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MAGSAT Correlations with Geoid Anomalies

A digital data library of MAGSAf data has been created under our prior
MAGSAT investigator grant. This library consists of 1,615,636 measurements
from the quiet data set, is geographically sorted, and allows rapid analysis
and processing of all the quiet magnetic data about any selected location. By
using objective Mapping Techniques (Bretherton, et al., 1976; Gandin, 1965) we
are able to interpolate the data to profiles composed of equally spaced data
points for convenient analysis using time-series techniques in the spatial or
frequency domain, or to prepare grids of data points for two-dimensional
spatial and frequency analysis and to prepare contour maps. This library of
MAGSAT data is compatible with our existing gravity and geoid data library
processing and display system software, and thus permits rapid retrieval,
processing, filtering, interpolation, and display of MAGSAT data. MWith this
system it is possible to obtain MAGSAT, surface gravity, GEOS-3 radar
altimeter geoid, and bathymetric data all at coincident locations. Thus
correlations between these data sets now can be conveniently detected and
analyzed.

We experimented with the use of removing polynomial trends from each half-
orbit as an effective way of estimating and removing ring current effects
following estimation of the core field contribution (Langel et al., 1981). HWe
used this method in order to avoid the subtraction of the three linear trends

found necessary by Langel et al., (1982) after modeling the ring current
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effects by fitting a theorétical mathematical expression for the ring current
and, particularly, to avoid the transition problem between one linear trend
and the next.

We have examined several sets of coincident orbits where the ground track
is nearly identical. In these cases the crust and upper mantle magnetic
anomalies should be the same, but different ring current contributions would
be expected because the orbits occur at different times, several weeks to
months apart. Figures 1 and 2 show the results for two different sets. 1In
Figure 1, the polynomial order curves are purposely displaced vertically from
each other for clearer comparison. The polynomlal fitting is based only upon
the data between 50°N and 50°S latitudes. The best-fitting computed
polynomial trends are then subtracted from the entire half-orbit to obtain the
anomaly estimates. The higher the order of polynomial fit, generally the
smaller are the magnitudes of the estimated anomalies. .0ur initial studies
suggest that a third order polynomal provides the best anomaly estimate. The
second order polynomial fit provides good consistency the region of fitting,
between 50 degrees north and south latitudes, however, the third degree
provides a slightly better degree of consistency both within that same region
as well as farther north and south beyond those bounds. Note how well the
residuals from the third order polynomial agree with each other in both
figures even though the original curves show considerable departures from each
other presumably due to time-varying ring current effects. Thus a third order
polynomial is the lowest polynomial order that appears to provide the best
consistency of residual anomalies between coincident orbits. Because some
half-revs yield residual crustal and upper mantle anomalies discordant with
data from other nearby orbits, we, like Langel et al., 1982, délete values
more than two standard deviations from the mean when interpolating data about

a point.
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Comparison of .data from three coincident MAGSAT orbits. In the upper left hand corner are. shown the MAGSAT
residual anomaly profiles after removal of a core field represented by spherical harmonic coefficients througn
degree and order 13 (Langel et al., 1981) for half-orbits 1076, 1463, and 185]. The remaining panels show the
residual anomalies remaining after subtraction from the aforementioned residuals of a polynomial trend of the
degree indicated. The polynomial trends were computed oniy from data between 50°N and 50°S, although the
continuation of those trends to higher latitudes enable residuals to be calculated over the range 80°N to 80°S.
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The estimates of crdstal and upper mantle magnetic anomalies above 50oN and
below 500S show considerable variation between coincident orbits, and among the
residuals using different orders of polynomial fitting. Thus, for the immediate
future we plan to concentrate our efforts on the region between
those two lat}tudes. However, we have retained all values in our digital data
lTibrary because with further examination, selection criteria for identifying
valid crustal anomalies may be developeﬁ.

Under this NASA support we analyzed the MAGSAT data in the Gulf of Mexico
region to define better the possible relation of the negative MAGSAT anomaly
there to the negative residual geoid anomaly in the western Gulf of Mexico. The
MAGSAT anomaly is seen in the map of Langel, et al. (1982) to lie in the western
half part of the Gulf, as does the residual geoid anomaly (Bowin, 1983, Fig. 11).
A residual geoid anomaly map of the Gulf of Mexico from a grid having
approximately 25 data points per dedree square is shown in Figure 3. This is a
black and white reproduction of the original in color. The negative residual
geoid low is centered at about 25°30'N, 94°45' W.

The locations of MAGSAT measurements in our digital library for the Gulf of
Mexico region is displayed in Figure 4. The values at each location along each
rev were obtained in the manner previously described. Unfortunately, bias
differences, albeit at a lower magnitiude than in the original rev data, still
remain in the results. For example, in Figure 5 we show the ground tracks for two
sets of near adjacent revs for comparisons. Profiles of the western set of revs
are shown in Figure 6, and are given in Figure 7 for the eastern set of orbits.
Note the general similarity in tha shapes of adjacent profiles, although in a few
cases, such as for rev 1171 in Fig. 7, the peak to trougﬁ relief appears
attenuated in comparison with the other profiles. Although the shapes are very

similar, superimposing one profile upon others, differences in magnitude of up to
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Figure 3. Residual geoid anomaly map for Gulf of Mexico region. Contour interval is 1 m. Jbtained by subtracting

spnerical narmonic GE4Y degree 10 geoid field from the surf: id fi i GEUS- ;
measurenents. 9 g face geoid field defined by GEUS-3 radar altimeter
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Distribution of MAGSAT magnetic anomaly data in the Gulf of Mexico region,

Figure 4.
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Figure 6.  Comparison of data from the western set of adjacent revs in Gulf of Mexico. Location of data shown in Figure 5.
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Figure 7. Comparison of data from the eastern set of adjacent revs in Gulf of Mexico. Location of data shown in Figure 5.



four or more gammas can be observed. These differences are not simple bias level
shifts since the magnitude of the differences change along the revs. These
remaining offsets fo about 4 gammas between revs frustrate the direct contouring
of the data values at a 1 gamma contour interval. We therefore explored for a
way to adjust the data for these data offsets, thereby permitting further
analysis.

In Figure 4 note that the MAGSAT data cémprise two sets of measurements.
Those from the first half of each orbit (starting at the south pole) are
ascending revs, have a track azimuth in the Gulf of Mexico region of 170 degrees,
and we designate them the A set. Those from the second half of each orbit are
descending revs, have track azimuths of about 10 degrees in the Gulf of Mexico,
and are referred to as the B set. Polynomial surfaces fit separately to these
two sets show striking differences. Compare the individual plots between sets A
and B in Figures 8. Note particularly the great difference in the second order
two-dimensional polynomial surfaces between sets A and B. We judged the greatest
similarity at the lowest order to occur at the third order surfaces. Thus, for
the remainder of our experiments we fit a third order polynomial to the combined
A and B data sets. This third order polynomial surface was added back at the end
of the processing, and served to provide a reference surface to which the rev
data could be adjusted rev by rev.

The difference between each rev (half orbit) and the above described 2-D
third order polynomial surface was then determined (we call this difference the
delta value), and a second order 1-D polynomial curve was fit to each rev profile
of delta values. The second order 1-D field was then used to astimate the
remaining ring current and estimated core field errors not accounted for in the
earlier processing. Hence, a new edited MAGSAT anomaly was calculated by

subtracting (on a rev by rev basis) the 1-D polynomial value from the digital
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library value, and then adding back the 2-D polynomial reference surface value.
The correction then being the discarded second order 1-D polynomial fit to the

delta values. The results of these procedures in the Gulf of Mexico region are
shown in Figure 9. Upon reaching this stage our NASA and suplemental ONR funds
were exhausted and further effort had to be suspended.

The estimated magnetic crustal anomaly pattern seen in Fig. 9 has a magnetic
low in the region of the residual geoid low (Fig. 3), but the shape of the
anomalies aiZ—different. Since the shape and location of the negative magnetic
anomaly is variable depending upon the particular polynomial surface and curve
orders used, we are reluctant at this time to reach a conclusion either way on
the degree of correspondance between the residual geoid and MAGSAT lithosphere
anomalies in the western Gulf of Mexico. However, the similarity is suggestive
enough to indicate that further attempts at obtaining useful detailed MAGSAT
anomaly definition should be continued. Such a capabi]ity, of course, would be

important and useful for investigations of many features on the earth.
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