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ABSTRACT

This paper describes two models of the cost of data movement
in parallel numerical algorithms. One model is a generalization of
an approach due to Hockney, and is suitable for shared memory
multiprocessors where each processor has vector capabilities. The
other model is applicable to highly parallel nonshared memory
MIMD systems. In this second model, algorithm performance is
characterized in terms of the communication network design.
Techniques used in VLSI complexity theory are also brought in, and
algorithm independent upper bounds on system performance are
derived for several problems that are important to scientific com-
putation.

1. Introduction

The traditional model of parallel algorithm analysis was motivated by a
desire to explore the potential of parallelism. Thus the question was asked:
given an unlimited number of processing elements and an infinite cepacity to
move and permute data, what is the fastest method to solve the problem under
consideration? This has proven to be a fruitful area of research and much has
been learned. However, with the appearance of the llliac IV, the Cray I and the
CDC Cyber 205, it was quickly realized that the design of data structures and the
cost of processor to processor and processor to memory communication are
critical ingredients in the design and analysis of practical algorithms. The goal
of this paper is to highlight the role played by communication cost in the
analysis of numerical algorithms.

. Because the spectrum of parallel architectures suitable for scientific com-
putation is so broad, it is difficult to derive one analytical model of computation
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that characterizes the performance of every machine. In this paper we restrict
our attention to three families of machine architectures and describe an analyt-
ical model of performance that is reasonably suited to each. In particular, our
goal for each model is to characterize the effect of communication costs on sys-
tem performance. In each model we give an estimate of effective efliciency or
speed-up of a computation as a function the latency and bandwidth of the pro-
cessor communication medium.

The first model is that of a "medium scale” shared-memory multiprocessor,
having perhaps 2 to 32 processors, with each processor capable of exploiting
substantial local vector parallelism. Section 2 of this paper gives a formal
description of the shared memory model and illustrates a method of analyzing
algorithms for machines of this type. Several standard, but important, numeri-
cal problems are studied and a number of alternate implementations are
analyzed. In particular, it is shown that for machines which have two levels of
parallelism the performance of algorithms depends strongly on the way in which
the problem is partitioned to fit on the architecture. The performance of the
algorithms is given as a function of global and local memory latencies, the speed
of arithmetic operations, the number of processors, and the size of the problem.

The second model is that of a highly parallel MIMD system where processors
communicate through a large network and there is no shared memory. We
assume here a number of processors ranging from perhaps 32 to a few thousand,
but with processors of lesser power than in the shared memory model. Analysis
and design of algorithms for such systems turns out to be significantly different
thar it is for the shared memory machines. In section 3 it is shown that the
techniques used in VLSI complexity analysis can be used to derive reasonable
upper bounds on speed-up and efliciency. The appropriate parameters for this
analysis turn out to be the ratio of message transmission times to arithmetic
speed, and the relation of the problem being solved to the topology of the com-
munication network. By looking at specific algorithms it is shown that many of
the derived upper bounds are exact.

As a variant of this second architecture model, in section 4 we consider
machines interconnected by packet switched communications networks.
Analysis of algorithms for such machines is similar to analysis of algorithms for
other non shared memory machines, except communication delays play a cen-
tral role. The paper concludes with a discussion of the shortcomings of the
approaches described here and suggests several directions where more work
. needs tc be done.

2. Shared Hemory Hachines

One of the clearest trends in commercial systems is the trend toward mul-
liprocessor shared memory architectures (see Figure 2.1), where each proces-
sor has either a pipelined multitasking or vector capability. This family of mul-
tiprocessors includes the Cray X-MP, Cray-1I, the HEP-I and HEP-//! and the ETA
GF10. The proposed Cedar multiprocessor [GKLS83] may be viewed as a machine
in this class, where each "processor” is in fact a cluster of smaller processors.
in this section we consider the design and analysis of algorithms for such
riachines. We begin with a list of properties shared by many machines in this
cless. (Of course, no list will characterize every machine and the set of
specification below should be considered only as an approximation to a family of

-! The Hep [ and II machines belong in this class, though the model of analysis given below
cCoes not fully describe their performance.
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architectures.)

1.
2.

3.

There are p processors, with p roughly in the range 2<sp=<32. .

All processors have equal access to shared memory and vectors may be of
arbitrary length and stride 2
Each processor also has a sizable local memory from which it can fetch vec-
tors of arbitrary length and stride.
Each processor can perform vector diadic operations (or vector triadic
operations where one operand is a scalar) using operands in from either the
local memory or global shared memory. The execution time for a vector
operation of length n is

ral(n + nf)
if either operand is in global memory, while it is

rat(n +nf)

if both operands are in local memory. Here 75! is the asymptotic perfor-
mance rate for one processor, and ny is the vector length required to
achieve half the asymptotic performance rate, an idea due to Hockney and
Jesshope [HoleB81]. Here we assume local memory accesses have much less
latency than global memory accesses, and thus

n§ < nf
The scale of this inequality depends on the machine. For a system that uses

a network of log(p) stages to bring data from shared memory into local
(cache) memory, one may have nf§ = nff + C*log(p) for some constant C.

: n
In general, the ratio - ﬁ might vary between 10 and 1000 .3

The parallel execution of p tasks on p processors is denoted by:

pardo(i = 1,p)
task(i);
endpar;

Here task(i) is a procedure, block, or statement that is executed on the i-th
processor. No assumptions will be made about the processor synchroniza-
tion or task scheduling mechanisms other than that the execution order
will be consistent with the serial data dependencies.

Algorithm Design

The most natural way to design algorithms for these systems is to employ

what the mechanical and structural engineering community has called problem
substructuring. In this approach, the problem is divided into a set of indepen-
dent tasks, each operating on its own portion of the data structure.

—————— - .
=% In sorue systems performance may be severely degraded if two processors access the
same vector or an access has non-unit stride. The algorithms that follow avoid multiple
accesses, but to simplify the analysis, non-unit stride performence problems have been ig-

ao%'ed.

" An ealternate assumption would be that the latencies nﬁ and 'nﬁ are equal but that the

computation rates for operand from global and local memory differ, or that all vector opera-
tions on global data must be "cached” to local memory before execution. An analytical
mode. can be built from any such set of assumptions.




To illustrate this idea we consider an example studied many times in the
literature [HoJe81],[BrKa81],[LaVo75],[Ston75].[Hell77]: that of solving T sys-
tems of tridiagonal matrix equations each of size n. Our notation is as follows.
Vecturs and arrays will be denoted with capitol letters (X, Y) and problem
instances will be denoted with a superscript. Scalars (and vector components)
will be denoted by lower case letters (with subscripted positions). A range of
superscripts or subscripts will be denoted by [i;j] where i is the first element
and j is the last element. In general, we shall use superscripts to denote equa-
tion numbers and subscripts to denote the row within the matrix of an equation.
Let 4 be the tridiagonal matrix whose i** row has nonzero elements (b,, a;, c).
We seek the solutions of T tridiagonal systems.

AXI =Y, j=1T
We assume here, and through out this paper, that the matricies 4 are all sym-
metric positive definite and can be factored without partial pivoting.
The simplest algorithm is to divide the problem into P sets of problems

each containing 7/p subproblems. The standard vector algorithm is then run
on each processor.

simple( A, Y, X)
Pardo(i = 1, p)
begin (* on processor i do *)

r = (i-1)*T/p+1; s = i*T/p;

forj= % t;c]: n dc;}l:_e' ir} }r"]
mbral = plral Jqjr:
e oo,
vl = yfif) + mlrdleyfral;

_end; _
z,{"'] - ['-'1/0.,?"]:
for j = n-1 downto 1 do

z}""] - (y}r::l - c’[r::]tz}gf])/a’[r:l];
end;
endpar;

The indices r,s,j and vector m within each block are assumed to be local to the
executing processor. If all data is stored and fetched from shared (global)
memory (local memory used only for m ) then the cost of this algorithm is

TSmp.Cl = £21(gn — 7)(§+ ng)

On the other hand, if one first brings the matrix and data vectors down to the
local memory and then solves the —problems there and copies the solution vec-

' tor back to global memory the cost is in terms of ‘n.ﬁ for the expression above,

but it also includes the movement of 5 vectors (af{:A], b3}, c{i], Y**1 anq

'.. X3]) each of length -Z-:'—to and from shared memory.

T3P Ll = p211(gn — 7)(§-+ n§)+5%( 7;‘ + ng)

One useful method for comparing these two implementations of this algo-
ritim is to compute the "effective efficiency” of each. Observe that the asymp-
tolic speed of our machine is 7.p operations per second. The set of T tridiago-
nals requires (8n-7)T operations. If the machine could be programmed to
operate at 100% efficiency the execution time would be



TOP‘ = T:IM
' p
The effective efficiency of the simple algorithm operating from shared
memory is defined by

_ TPt 1
Erimp Gl = = (2.1)
Ttimp.Gll
L4 P_;i
For n > p, the algorithmic effective efliciency for the simple algorithm operat-
ing from local memory is approximately

Erimp LN - 8/ 13 2.2
s Sk S o
13T 13nT
Thus, if T is large in relation to pn.g, the latency cost for global memory access
gets masked by the arithmetic, and the global memory scheme is superior. On
the other hand if T is near nﬁ. then the local memory method is superior.

An alternative solution is to substructure the problem so that processor i
eliminates variables (i-1)n/p +1 through in/p-1 from each of the T systems.
The result is a set of T problems of size 2p. (This is a variation on a parallel
algorithm of Sameh and Kuck [Saku78].)

Substructure(A,Y,X);

eliminate: pardo(i = 1, p)

(* in processor i do *)

for j = (i-1)*n/p + 2 to i*n/p - 1 do begin
SI:T?= -b }_:ﬂ/aj[l:T:

LT] = g[L:T] 4 m[iT]sg L7],
:f::ln - m.?“”‘b l:T]: ’[
yj[}_;?’ - j[}_:lT] + m[l:T]uyJ[l:T];

pado(i = 1, p)
(* in processor i do *)
forj= i‘nAp - 1 downto (i-1)*n/p + 2 do begin
[T = -c 1:1'] a 1:7’]:
BI1T1 = b7 4 m [L:T]ep [1:T],
cil:‘ﬂ = mfil:ﬂtc LTl
y}lzlﬂ - .y)[l:lT] + m[l:T]t.y’ll:ﬂ;
end; :
endpar; '

The resulting system is shown in Figure 2.2. The subsystem corresponding to
rows (i—1)*n/p and i*n/p -1 for i = 1.,p can be solved by the "simple”
method described above and the remaining variables can be solved by the "back
solve” process '

bk-solve: pardo(i = 1,p) ‘
for j = (i-1)*p/n+1 to i*p/n-1 do begin
Yiim = y:”;.rr]f : :frl{* z{i g/ + ofiTIez U7
LTl = 4 {LT] fg]LT),
end;
-endpar;
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As uming all vectors are fetched and stored in shared memory, the algorithm
given above requires

Tgest Sn. T) = 17(=-2)*r2N(T + nf2) + (16p —7)‘f:‘(§+ nise) + 45

time steps where S is the cost of processor synchronization. To do the same
algorithm from local memory requires the downloading of 4 vectors of length
nT/p for the original problem and 4 vectors of length T for the T subproblems
of size p divided among p processors. The uploading of the subproblems
requires one vector move of length T for each processor and uploading the final
solution is a vector move of length nT/p. The penalty for doing the substruc-
tured algorithm in local memories is then

' 5'(-’-‘p—7l+ T + 2nf).

Define the multiprocessor speed-up for the simple algorithm from shared '
memory by the relation
Ty(n,T)

TEmP(n, T)
For the shared memory version, this value is approximated by
(T +nf,,)
- T+pnf,
"For T = 'n.lc,é this gives a speed-up of less than % For large n and ignoring

Sgimie(n, T) =

S, the substructured algorithm that uses only shared memory has a speed-up of

approximately
8
Smbatr - 17
*®, 14 18 (T+pn€)
17n (T+n%)

. " over the single processor simple method. In the range T = nf,; the substruc-
»* 7 ,tured algorithm yields a speed-up of approximately p/ 2. In fact, the reader can
" verify that the point at which the simple algorithm is superior to the substruc-
' tured algorithm when both use only shared memory is

1 4r.p
T > o{8p - 17)n§ S(n=2p) S.

If we again consider eflective efficiency, one finds that for n > p the approxi-
mate performance is )

R | o 8/ 17
A Erobat GH = n® 16570 (2.3)
1+ T 1T
Fsubst LU - 8s22 2.4
14 Lmi  (10p+16p%)ng @
- 22T 8nT

'I~'igux:e.2.3 plots the effective efliciencies (equations 2.1-2.4) for the four methods
described above as a function of T for n = 64,000, p=32, n¥ = 10, n% = 1000.
Observe that as T becomes large the simple shared memory method has the
best asymptotic performance. On the other hand, for small T the local memory,
substructured algorithm is clearly superior. Consequently, we find the choice of
optimal algorithm depends heavily on the relation of problem parameters to




Mul tiprocessor Efficiency

@.90

a.2a

8.7

@.60

0.50

98.49

9.30

.90

Simple, GM

/

4

Simple, LM

Substr, GM

Substr, LM

_..--'/

8 4.9

6.9

8.0 18. 2. 14. 6. 18. 2.

X-axis = Log2( T ) “Y-axis = Efficiency

Figure 2.3. Effective Efficiencies E*mp.CUl | petmp LR preubet G preubst LU

for n=64000, p = 32, n§

=10, nf = 1000, plotted as a function of T.




- 10 -

Hockney-Jessope parameters, 7,2 and the multiprocessor parameters P and S,

AU Iteraticns

As an application of these results consider the solution of a system of finite
difference equation arising from the solution of a partial diflerential equation on
a two dimension square domain. The region is discretized as an n by n grid and
the differential operator is approximated by a sparse matrix M of size n? by n2.
To find an approximate solution to the partial differential equation requires that
we solve the equation #X=Y where Y is a given n by n array of values. A com-
mon technique used to solve for X array is to view & as approximately factored
into a product A*F where the matrix 4 is a system of tridiagonal matrices link-
ing the rows of the X array and B has the same structure but it links the
columns of the X array. To find X = B~14"1Y requires us to first solve n tridiag-
onal systems

AZi=Y for 1sj=<n

where the superscript j refers to the jth column of the gird. Then the set of
solution columns Z/ is viewed as a set of vectors in the solution of another n tri-
diagonal systems

B X; = Z; for 1sj<n
Thiz method is known as the Alternating Direction Implicit (ADI) method and is
used 12 many applications [PeRa55]. We examine two solution schemes.

Assume the components of the arrays are stored by rows. The most natural
partitioning of the algorithm is to substructure the system ( A matrix , B matrix

, and Y array) into blocks of size ;—by n. Let ry = %— and s = 1';1 'n- The

' block A[[{'.‘,::]‘] is the set of coefficients corresponding to %—column equations and

the block B[[;‘,;:f] corresponds to components r; through s; of all » row equa-

tions. By "downloading” the data
[ry:a] [rg:s) [ra]
(Aitaf + Bliaf + Yiial )
into the local memory of processor i, one may use the "simple” algorithm to
compute :
. Z[r;s] = (A[ﬂ’])-l}/‘[ﬂl]
in each processor using only local memory. Then, without "uploading" the Z

array back to shared memory, it is possible to use the substructured method to
solve the row equations

Xxirs]l = (B[l.-n])_lz-

The only use of the shared memory is to solve n reduced systems of size 2p
required to complete the substructured elimination.. The total time to complete
this is

Step 1. Download data and solve column equations

2
7r:1(%+ n§) + r:‘(Bn—?)(:T+ ng)
Step 2. Do the substructured elimination and upload final results
2
17(—;——2)1':‘(17. +nf) + (16p—7)(:—+ nf) + 8(n +nf) + (1;—+ ng)

The alternative is to use the simple algorithm for both column and row
tquations. Unfortunately, this requires that the partial solution vector Z be
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moved back to shared memory and read back to local memory in transposed
order. Based on our memory addressing assumptions this step requires a

minimum of 'r:‘%(n + nf) seconds.
Step 2'. Transpose Z and use the simple method and upload final results.
n n? n
rol! (8n—7)(;+ ng) + 2r:‘(p—+ n§) + r:’;(n +nf)

To determine the effective efficiency observe that to compute B~I4lY
requires at least n(16n—14) operations. If the machine can be programmed to
run at 1007 efficiency the execution time would be

r.:l%(lsn-m)

The asymptotic efficiency for the substructured algorithm is 50% (computed in
the limit as n goes to infinity) and 82% for the transposed simple method.’ In the
case that n is small (near or below ‘n.ﬁ) the substructured algorithm is superior.
To illustrate this, consider the special case of p=32 processors, n§’= 1000 and
nﬁ = 10. Figure 2.4 depicts the efliciency as a function of n. The cross point at

. :.!"which both methods are equal is when n is approximately 12000. In general, one

can show that the substructured algorithm is superior to the simple scheme

* when
_ 1,. 4 4,. P,
n < p(g(l ;éng + 3—(1 7")'n.g)
I11. Algorithm Analysis for Hachines Based on Large Networks ‘ '

In this section we consider systems built from a large number of simple
prucessors interconnected by a communication network. Each processor con-
tains local memory, but there is no global shared memory. These architectures
can be based on a variety of types of communications networks. These networks
can be of fixed topology, such as a ring or mesh, or can be packet switched or
circuit switched networks. Numerous examples exist. The Finite Element
Machine [Jord78] is a mesh connected lattice of 38 processors. The Cal-Tech
Cosmic Cube contains 84 processors connected as a binary 8-cube. The Non-Von
(Columbia Univ.) is a tree of processors. The CHiP architecture is lattice of pro-
cessors [Snyd82] interconnected via a circuit switching network which can be
configured as any member of a large family of graphs. The Boolean Vector
Machine (Duke University) is an implementation of the Cube Connected Cycle
network [PrViB2]. These machines are all non-shared memory MIMD architec-
tures based on large communications networks.

In all of the above machines, no shared memory is used, and all interpro-
cessor communication takes place via explicit interprocessor communication
steps. In other cases a processor connection network is used to emulate a
crossbar switch. Examples in this category the CDC Cyber plus which is a net-
work of four rings with 16 processors in each ring. Zmob (Univ. of Maryland) and
Crystal (Univ of Wisconsin) are based on ring architectures. A host of other sys-
tems share properties that are similar to the machines cited, but have a global
address space and share data through a processor to memory permutation net-
work. These systems include the TRAC system [LiTr77], PASM [Sieg79).
Cedar[GKLS82], and the ULTRA Computer [GoSc82]. These systems are con-
sidered in section 4. - '

Jur principal focus in this section is on nonshared memgry machines where
data movement is explicitly controlled by the processors and limited by the
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topology of the. network. The primary result presented here is that techniques
developed for VLSI complexity analysis can be used to derive algorithm indepen-
dent upper bounds on speed-up and effective efficiency that depend only on the
problem being solved and the network topology. The upper bounds are derived
for three problems: Fourier Transforms, Tridiagonal systems of Equations, and
two dimensional elliptic boundary value problems. To prove that many of the
bounds are exact, we describe the optimal algorithms. The system hardware will
be modeled by the following rules:

1. The system is composed of p processors where P could be very large,
P = 32.

2. Each processor has a sizable local memory and there is no shared memory.

3. Each arithmetic operation takes a seconds. Initiation or receipt of a data
transmission requires f seconds per word of data, and receipt of a message
can be done immediately after transmission, or at any time thereafter.
Processors do not "overlap” communication with arithmetic. (This is the
primary focus of section 4.) ‘

4. The processors communicate with each other along paths that correspond
to edges of a fixed connection graph. If the graph is complete, a crossbar
network is modeled. If the graph is not complete, communication between
processors not connected by an edge must be broken down into a sequence
of message transmissions between processors along a path connecting the
origin and the destination processors.

In the paragraphs that follow we examine the performance of algorithms
that have been implemented on this class of architectures, paying particular
attention to the structure and cost of communication.

The Cost of Communication.

Let 4 be a parallel algorithm and let # be a machine with D processors. We
can describe the interconnection topology of the machine # as a graph G(M).
Similarly, the data flow graph of the algorithm 4 can be defined as the graph
G(A) which is the directed acyclic graph whose nodes represent the operations
in 4, and whose arcs represent operand data dependencies. By an implementa-
tion of A on ¥ we mean a mapping

im:G(4) » G(HM)
where the operations of G(A) are mapped to processors and the communication
arcs map to G(M) in one of three possible ways. Let @ and b be operators in
G(A) that are connected by an arc ¢. Assume @ and b are mapped to processors
Pa and pp respectively. The three possible mappings of the arc ¢ are
1.  Processors p, and p, coincide. In this case arc ¢ becomes a self-loop and
no interprocessor communication is need to implement this are.

2. Processors p, and p, are connected by an arc in the graph G(M). In this
case pg transmits a value to p, to implement arc c.

3. Processors p, and p, are not connected in the graph G(M). In this case the
arc ¢ must be mapped into a path

Pa = Pn.P2 P = Dy »
where p, is connected by an arc in G(M) to p;,,. That is the communication
along arc ¢ is mapped into a sequence of interprocessor communications
need to relay the message.
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’

The time required to perform the communication represented by arc ¢ will
vary depending on which of these cases applies. In the first case, no communi-
cation occurs. In the second case, the message must be sent and received,
requiring time 28. In the third case, where the message is relayed k times, the
communication time becomes 2kg. In this third case, performance of all pro-
cessors along the path is degraded by the time spent forwarding messages.

Let T§(a.B) be the time required to execute algorithm A on machine M. It
is often the case that algorithms designed for this class of architecture take the
form of a loop with two steps

Repeat
‘ 1. Permute the data via the Communication network.
2. Execute a set of arithmetic functions in parallel.
until done;

(Though all parallel algorithms can be put in this form, many have optimal
implementations that violate this structure. This case is briefly considered in
the next section.) Tf(a,0) is the total amount of time required to execute step 2
for all passes through the loop and Tﬂ(o.ﬂ) is the total amount of time required
to cornplete the data routing. In this case we have

Th(a.8) = T4(«,0) + TH(0.8)

In the general case, 1/0 can be generated in one processor while another is
engaged in arithmetic and messages are moving through the wires. In this case
it is possible (but not trivial!) to show that the equality above becomes a <.
Hence, given a parallel program it is possible for us to put an upper-bound on
execution time. For a given problem, we can ask what is the lower bound on the
execution time for any algorithm running on machine A. Clearly, if we know the
optimal serial algorithm SER, we have the bound

:TT‘fER(a.O) < Tf4(a,0).

This bound is tight only if there is enough parallelism to exploit p processors. A
technique devised by Thompson [Thom80] (and extended by many others
[AggaB3), [BrGo82], [CaMo81], [Leig81], [Sava81], [Viulg0]) to study the area-
time trade-off in VLSI design can be used to find lower bounds on T4(0,8). Define
a bisector B of a graph G of n nodes to be a set of arcs of G whose removal

separates G into two graphs of equal size (i.e. if n is odd, one subgraph is size

LC 1—ami the other is of size g—— %% Let b; be the number of arcs in the

2 2
minimal bisector. The bisection bandwidth,

( bcqu
B
is the number of words per second that can cross any minimal bisector of G(#).

Let B be a minimal bisector of G(#) and im:G(A)-»G(M) be an implementation
of A on M with the following property :

If A has n inputs and n outputs then im maps :——inputs and ;Toutputs to

each of the p processors. -

In other words, we assume the implementation "uniformly distributes” the
problem. This condition implies the set Im~!(7) is a bisector of the input and
output nodes of G(4). Let bp. be the size of the minimal bisector of G(A) for all
algorithms that solve the given problem Pr. We then have
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el 22) < 400,

bow)

This inequality characterizes the communication "bottleneck” imposed by the

network topology induced bandwidth constraints. Network delay can also play
an important role. A function with n inputs and n outputs is said to be transi-

tive if every output is a nontrivial function of every input. For any transitive -
- function that has been uniformly distributed over P processors, the minimal

time that information about each input can be propagated to each output is

2Blog(p). In this case we have

aLEZﬂ.,. ﬁmaxir

Values of bp. have been derived for a wide variety of problems. We consider
three problems important for scientific computation. -

1. FFT,:an FFT onn complex numbers X[0;n —1].
2. TRi,: The direct solution of a tridiagonal matrix of size n.

3. EU,: The direct solution of the n linear equations obtained by a simple
approximation (5 or 9 point star) of a second order elliptic boundary value
problem on a unit square discretized as a Vo' by Vo grid.

The first problem here is well known ([ThomB80]), but the second two have
not been studied in this context and it is interesting to note that the same proof
applies to all three problems.

!
B 2log (p)| < Ti(a.)
G(N)

Lemma 3.1.

Assume that n is even and each of the problems three FFT, , TRi,, and
£ll, is solved by algorithms where the inputs X[0;m ] and outputs Y[O;m] are
equally distributed over all processors. Then all three problems are transitive
functions of their inputs and

bmﬂ = n; bnﬁn = 2 bgun = 2Vn;

Proof:

Each of the problems above can be viewed as the problem of solving a

matrix equation of the form
Ax = y

for a given n by n invertible matrix A. The basic idea is as follows: any bisector
will divide the flow graph of an algorithm into two "machines” where one
machine has one half the input vector, call it )., and the other machine has the
other half, ¥,. The bisection width of the problem is defined to be the minimal
amount of "information" about ¥, that machine 1 must send to machine 2 plus
the "information” about y, that machine 2 must send to machine 1. The theorem
states that, for example, no algorithm exists for directly solving elliptic boun-
dary value problems for which the the information flow between the two halves
.of tne system falls below 2vn words for all input vectors y. The formal proof
requires a formal definition of information and algorithm. Assume, without
much loss of generality, that A and y have values that are rational numbers.
Define an algorithm to be any finite sequence of tests and branches and rational
arithemetic operations (+,~*%,/). In other words, an algorithm is assumed to be
a piecewise rational function of the inputs. The basic unit of information will be
a rational number.
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Let A denote the matrix obtained from A4 by permuting the rows and
columns so that the components of z and y corresponding to machine 1 are the

first 1—2"-rows and the components of z and y corresonding to machine 2 form the
bottom half of the system. The linear equation can now be written in the form

S I A
L =[5 alF = B

The inverse of A exists and, can be decomposed into blocks of size %—by g—as
L) len 0.l )]
z] D, Cz] lyz]

zy = Qy, + Dy, i =12

We pose the question: How much information about Y2 must be known to com-
pute z,? Let G(yz) be the part of the algorithmin in machine 2 that encodes the
minimal amount of information about the vector ¥, needed to compute z, given
¥ and let F be algorithm in machine 1 used to compute z, given G(y2).

zy = F(yi G(y2))
Setting ¥, = 0, we have a new function F defined by

zy = F(G(yz)) = F(0, G(ygz)).

follows:

or

Bu then

Dy2 = F(G(y2)).
If G returns k values it follows that
‘ k = rank(D,)
The same argument shows that the minimum amount of information about y,

that one needs to compute z; is rank(Dz). The minimal bisection width bp is
then given by

min(rank (D,) + rank (D,))
over all row and column permutations of the matrix A. Because the inverse of 4
exists and the blocks are of equal size, it can be shown that rank (D;) = rank (5,)
for 1=1,2. To complete the proof we make the following observations

1  For a tridiagonal system B; contains only one element and, hence has rank
1

2 The block tridiagonal system obtained by the natural order of a finite
__ difference operator has rank (5;) = n¥ which, the reader can verify, can not
1 be reduced by any row or column permutations.

J The FFT matrix is composed of n column vectors that are of the form

At = [1’1’t. ,’321' e .,3(75-1)1]7"
where 4 is a primative root of unity. Selecting any %-rows from any %—

co‘lumns is easily shown to have rank g’— QED
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Upper Bounds on Efficiency.
Asymptotic lower bounds on the operation counts are well known for each of
these problems. _
T = 2n log(n), TR = gn-7, T = Cn log(n)
The constant 2 in the FFT algorithm assumes a complex operation requires only
1 time unit. In terms of operations on real numbers only, the formula is
3n log(n). The constant C depends on the special properties of the equation. In

the case Ell, we restrict our attention to the family of implementations of Fast
~ Poisson Solvers [BuGo70, SCKu76]. In this case the lower bound brps, = bpy, and

the arithmetic serial complexity is

T{PS = 2n(log(n)+4) =7
The resulting lower bounds on parallel complexity can be expressed as upper
bounds on eflective efliciency. Lettingr = ;Lthe bound are

EFS < 1 " |
1+—Lmaxi [en® ] 109@)]

2nlog (2n) bc(y)

To apply these bound_f.o specific processor connections, we need only specify
G(M) and determine be). Figure 3.1 illustrates 5 graphs: '

Com, the complete graph on p processors; be(om) = P.

Shuf, a reduction of the shuffle-exchange graph on 2p processors obtained

by identifying pairs of adjacent processors connected by exchange edges;

bo(smur) = P.

Ring, a ring of p processors; be(ring) = 2.

Tree, a tree'ofp —1 processors; bg(nrge) = 1.

Mesh, a p# by p* octagonally connected grid of processors; bg(uess) = p”.

Given the Efficiencies, an upper bound on the speed-up Sff can be derived
using the relation Sg§ = £f. Using the relation SP§ = pEf, one can derive an
upper bound on speed-up performance for each of these network topologies.
This information is given in Table 3.1. These bounds are exact, up to constant
terms, as functions of m. Their primary short comings are that they often
underestimate communication costs by a factor of log(p) for networks of large
bandwidth. A better model of the delay seems to be needed. In the case of the

'FFT, the communication delay term is, in fact, E1log(_p) not just log(p) as we

have indicated.) To show that some of these upper bounds are tight, we now con-
struct algorithms and consider each case in turn.
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‘Ring

Figure 3.1 Network Connection Graphs.
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FFT Tridiagonal System Elliptic PDE
Tree | = P = v = cp
1+cr—2— 1+c'rm}— 1+c1'—-'L—
log(n) n n¥logn
. ] rp
Ring | = i << P <
1+c‘r—L 1+c‘rm-q—(3L 1+¢:1'—-L
lag (n) n n%logn
: P p cp
Mesh = << =
% ]
1+ or B2 1+ or Rlog(®) |~ _p*
logn n n#logn
A cp
Sawuf < . = L <<
1+ —EL 1+ cr plog(p) 1+ cr 1
log (n) - n ‘n¥logn

Table 3.1 Bisection Width Speed-up Upper Bounds.

The value r = ;Land the constants ¢ and & are both less than 1. Terms

preceded by < are exact if r is replaced by = log(p). The prefix < indi-
cates the best known methods are substantially slower and = means that
the bound is exact for the appropriate choice of the constants.

The Fast Fourier Transform.

The FFT algorithm on a problem of size n can be defined in many ways.
Here we follow [AHUI74]. The.algorithm is expressed in terms of a sequence of
log (n) permutations. The &* term in this sequence is defined on a vector of
length n, X[0;n~1] by the expression,

Bflyl‘»(x) = XP;(O)' XPg(i)' T Xp,(n—l)
where

Pe(G) = zb‘_grj + (7 + 2! mod 2*).
These "butterfly’ permutations are concatenated to form the flow graph of the
FFT algorithm as shown in Figure 3.2. This butterfly graph has an interesting
property. If p divides n we can group the columns into p blocks of n—adjacent

columns each. Then the resulting "quotient graph” of the butterfly graph Bfly,
is the butterfly graph Bfly, _j5(p)- (See [FiFi82], [Degr83] for many other useful
quotient graph relations). Assuming that inputs X(j-1r to X4, all reside on pro-
cessor j for j=1,p, we can write the FFT algorithm as

FFT( X[0:n-1] );
for i = log(n) downto 1 do begin
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"Shuf" implementation

2a8

‘.,
0‘
Butterfly

Figure 3.2 Butterfly based FFT flow graph
d equivilent Shuffle implementati
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Y = Bfly‘ (X):
pardo(j = 1,p ) :
for k = (j-1)n/p to jn/p-1do
Xe =X + 9 1* s
endpar;
end;
end ;!

The values ¥;; are powers of primative roots of unity that are given in [AHU174)
and are not of concern here. As index variable % runs from log(n) down to 1, the
permutation Bfly; can be accomplished using the interprocessor connection
BlfYi-1og(nsp)- For values of i < log(n/p) no interprocessor communication is

involved. For the other values of i, there are ;"T data items to be sent and
received by each processor, so Z;;— communication steps are required. This
requires time ﬁgpp—on the Com network.

It can be shown that the log(p) stage butterfly network is topologically
equivalent to the log (p) passes of the Shuf permutation. (The rearrangement is
shown in Figure 3.2 and a formal proof is given in [Park80]). Consequently, on
machines with Comn. and Shuf interconnection topologies, the execution time is
approximately,

I7T(0f) = aZlog(n) + (BE0g @)
with speed-up

SPFFT = . P
log(n)
To emulate the permutation Bfly, on a ring network requires uniform shifts of
distance +2°~!, VWith each such permutation requiring 282* seconds the speed-
up is found to be '

SPET = E
14 7—L—u

. log(n)

On a mesh connected computer the uniform shifts of distance 2! can be done

in time g2¢ #9() (see [ThKu77]) and the speed-up is

SPIEL, = L

1+7
log(n)
In the case of the Ring and the Mesh, the speed-up agrees with the theoretical
upper bound and must be optimal. In the other cases, we feel the algorithm is
optimal and the speed-up bound is too generous.
Figure 3.3 depicts the relative efficiencies of the FFT algorithm on the three
netwerks described above in the case that p = 512 and 7=1.0.

—~! We have omitted the usual terminating "bit reversal” permutation to simplify the discus-
sion. Inclusion of this permutation would have only a minor effect on the results here.
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FFT Multiprocessor Efficiency

1.09 FFT Shuffle

.96 ¢ /‘”

0.0

8.70 { FFT Mesh

.60

.50

9.48

0.39

8.2a

8.18 | FFT Ring/Tree

0.09

1.6 5.9 18. 15, 20. @os. 38. 35. 48. 45. 50,

X-axis = Log2( n ) Y-axis = Efficiency

Figure 3.3 Multiprocessor Algorithm Efficiency for FFT on three networks,
Shuflle connection, Mesh, and Ring each with p = 512, r = 1.0.
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‘Iridiagonal Systems ] _

To solve the tridiagonal system AX = Y we assume that the inputs
Y[(i-1) 2 in—l] are located in processor i for 1€[1..p]. We employ the same
solutiongtrategy as used in section 2. By substructured elimination we reduce
the %—equations in each processor to 2. This takes time

n
12a( =—-1
(-1

and involves no interprocessor communication. To solve the reduced system of
size 2p let M be a tree of p—1 processors with the root processor numbered 1
and the children of the i*® processor numbered 2i and 2i+1. Assume the p
pairs of equations are represented as p records e[0;p —1] of the form

eqn = record
a,b,c,y: array[0,1] of real;
end;

After an operation of log (p) communication steps we may assume the elements
of the array e have been stored in the leaves of M with equation-pairs e[2i] and

e[2i+1] i€[o0, %-—-1] stored in processor éL+ i. To solve the system of tridiago-

nal equation on a tree of processors we use the following basic idea. Each inter-
nal node of the tree receives a pair of equations from its two decendants giving
it 4 equations

bi:.."j‘._1 tazy fozy, =Yy i=14
in B8 variables

zfo' zf;' T 215
Let elim () be a function called by the tree node that applies the substructured

elimination computation to a set of four such equations and sends first and last
of the new set

bzy, + a,zy, + 1%y, = Yy
b4:z:,-°‘+ QyTj, + CuTy, = Yy

f.o its parent node and leaves the other 2 equations stored in the executing pro-
cessor. To recursively reduce the 2p equations to 2 on the Tree connection we
apply the function

function reduce(i: integer): eqn;
begin

on processor(i) do

reduce := if (i >= p/2)
: elim(e[2i-p], e[2i-p+1])
else

, elim(reduce(2i), reduce(2i+1))
end;

Figure 3.4 illustrates the movement of the variables through the tree. Once the
2 by 2 system has been solved a "backsolve"” procedure can be used to move the
solutions back to the leaf processors. The backsolve process requires 5 arith-
metic steps per equation, and somewhat less communication than the forward
elimination. Observe that this algorithm works with 4 equations per processor
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while other parallel tridiagonal system solvers need only three equations in each
process. The advantage of this algorithm is that we can do the communication
on the Tree while the standard methods require a more elaborate connection
network.

Taking both the elimination and the backsolve into account, the execution
time is found to be:

TIin(g g) = a(17:—+ 34 log(p) + 9) + 17 B log (p)

and the speed-up is approximately

8
1"('1

Spls™ =
1+(2+,.)I£’.9nJP_L

This differs from the theoretical upper bound for this problem by the factor ]%-
in the numerator, and by the factor 2 in the communication term. The later is
due to extra arithmetic caused by "matrix fill" associated with the the sub-
structed elimination and the constant 2 comes from redundant arithmetic used

to solve the reduced system.

To execute this algorithm on the Shuf network we need only embed the
tree structure in the target graph (as shown in Figure 3.4) and the execution
time and speed-up will be the same as on the tree. The tree has the property
that any node can be reached in at most 2log(p) steps from any other node,
consequently no direct embedding of the tree is possible in the ring or mesh.
We do not know of an algorithm for these networks that is mthm a factor of
log (p) of the correct communication complexity.

The tree computation above proceeds as a wave from the leaf nodes to the
root. If we consider the problem of solving m tridiagonal systems of size n
(m_Tri_n), we can pipeline the method above. The execution time is

T (q,8) = 17a( + 2(-n.-m.—1) + 3log(p)) + 9a + 308(n +log(p))

This result will be used below

FFast Poisson Solvers
There are a wide variety of interesting direct solvers for the poisson equa-
tion
Véz =y
(see [HoJeB1], [Gros79], [SCKu76]). The method here is the easiest to explain.

Consider a grid of n by n” points. The basic fast poisson solver operates in
three steps on an array of values y.

1. Apply an FFT to each row of the grid of ¥ values. (§ = Row_FFTs(y)).
2. Solve n systems of tridiagonal equations of size n using the columns of the
grid of ¥ values as the right hand sides.
3. Apply an inverse FFT to each row of the solution of the previous step.
With Dirichlet boundary conditions, the FFTs used here are actually real sin
transforms which can be computed with the complex FFT algorithm (see

[HoJeBR] for details). Assume we have p processors to execute this algorithm.
Let k& be a divisor of p and partition the problem so that the columns are divided

into £ groups and the rows are divided into %groups. We can then assign each
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%
processor to a block with nk.—columns and n”:Trows. In steps 1 and 3 each row

of £ processors must compute 'n.”k—FFTs of size n¥ Using the algorithms above,
the minimal execution time for both steps is

TPl = ZaE;,ﬂﬂ + 4ﬂ£—log(k),
In step 2, each column of %processors must solve nk—tridiagonal systems of
size n}%. As we have seen, this step takes
: ¥
T = 17a(:—+ Zlog(%)) - 25a + 305(7;—+ lag(i—) -1)
To choose the optimal partitioning of the problem we minimize 7577 + 7T a5 a
function of k E[-"%{ min(p,n¥)]. The function takes the form
%
R + 30,3",‘—+ (45’;‘-— 34a — 308) log (k) (3.2)

where R is independent of k. Minimizing 3.2 as a function of & is, in general, not
easy. There are two interesting cases to consider.

n_ 17 a , 15
Case 1. —=< ——% 4 22
P kB8 2

In this case the last term in 3.2 is negative, thus we pick k£ as large as possi-
ble. If p < n¥ then we set k& =p which implies that it is best to distribute
the FFTs across all p processors and to solve the columns of tridiagonal sys-

tems without communication ( Z— columns per processor.) If n¥ or p is

greater than %— %—-i- -l-zg-we find n¥ <p. Setting k& = n¥ the FFTs are again

distributed and the execution time is

TFPS = gq(2nlog(n) 1;" + 3alog (B + ﬂ(@ﬁgﬂl + 30log (Fp)

P
n 17 o 15
Casez.P> > ﬂ+_2'

The optimal value for k is found to be
2 n* 34 «a
k. = N - + —_— -1
maz( 1 (5 nKi+ 5 g )7)
In the case that n¥ > Lzslwe have k=1 and the execution time is

775 = a(Ziog(p) + 123 + 3alog(p)) + B0B(m* + log(p)

Setting k=1 implies that each row of the grid is stored completely in one
processor and the FFTs involve no communication. Consequently, only the solu-
tion of the tridiagonal systems involve communication and the time bound above
is valid for a tree network. The resulting speed-up is of optimal complexity. On
the other hand, the theoretical lower bound for communication cost for an Ellip-

tic problem is 'ﬂCnT for a mesh network and HC% for the Shuf network. The
P

time estimate above suggests that this form of the Fast Poisson Solver is subop-

timal for these networks.

Based on the upper bounds for speed-up in table 3.1, Figure 3.5 illustrates
the relative performance of optimal Fast Poisson Solvers as a function of
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' Multiprocessor Efficiency

Elliptic PDE Shuffle

8.908 : Elliptic PDE Mesh
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Figure 3.5 Efficiency upperbounds based on table 3.1 for
Fast Poisson Solvers. p =512, r = 1.0.
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problem size (n) when p = 512 and =1 for the three network topologies Ring,
Mesh and Shuf. :

Multi-Grid iterative methods [Bran81, GaVr82] are structured so that each
stage of the iteration reduces a n by nk problem to a problem of smaller size
which is solved by a direct method. Let the initial problem be distributed such

that square subgrid of size (l)” by (1)’é are mapped to each processor in a
mesh. The communication cost to reduce the original problem to one of size p”
by p is ﬁC,(:’—ﬁ” for some constant €. Using the FPS method (case 1) to solve

the reduced problem on the mesh requires an additional ﬁCgp” communication
steps. Applying K such iterations will reduce the error to a fixed level and cost

%
ﬂK(cxg—,; + Coph)

which is of the optimal complexity. Other methods, such as the preconditioned
conjugate gradient can also be shown to have this communication bound. On
the other hand, the authors know of no method that achieves the lower bound of

‘pcz‘p— for the networks with high bandwidth.

4. Multistage Packet Switched Networks

The analysis of non-shared memory multiprocessors to this point assumed a
machine M with a fixed or switchable connection topology G(#). The only com-
munication cost in this model was the time B taken by the processors to per-
form sends and receives. For most non-shared memory multiprocessors, this
model is probably quite reasonable.

However, this model corresponds poorly to machines with rmultistage
packet switched networks. An example of such a network is the Omega network
of Lawrie [Lawr75]. With this type of network, messages can be broken into
packets of uniform size where each packet consisits of a destination tag and a
data field. The switches in the network read the destination tag and forward the
packet along its route. An Omega network interconnection of P processors con-

tains log(p) stages, each having %switches. In the best case, a packet can be

routed through the network in log(p) steps. However, when the network has
heavy traffic, contention occurs and contending packets must be queued at the
switches. Simulation results suggest packets are delayed by an average amount

Colog (p)
and that the number of packets transmitted per clock cycle is about

Cip
for any number of processors p. Thus the Omega network behaves much like a
croscbar switch, except message propagation delays are relatively long
[KrSn82], [GoSc82]. Performance of other log(p) stage packet networks, such as
the Banyan network, baseline network, and so on, is comparable to that of the
Omega network.

In principal, packet switched networks can be accommodated in our mul-
tiprocessor model by treating switches as specialized processors. Though feasi-
ble, this approach is difficult, since the communications patterns in packet net-
works are complex. A more illuminating approach is to view the packet switched
network as a close emulation of a crossbar switch, and modify our multiproces-
sor model accordingly. The model given at the beginning of this section needs to
he modified only in the two provisions governing communication:
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3" Each arithmetic operation takes « seconds. Transmission or receipt of a
word of data takes 8 seconds. Receipt of a message can be done ¥ seconds
after its transmission or any time thereatter.

4' The connection topology is a complete graph.

The delay parameter ¥ here is designed to model the time taken to route
and forward messages in the network, and the time packets spend queued at
switches when there is contention. With this model, sending a one word message
between two processors takes total time 28 + 7- In sending a & word message, k
sends and receives are required. But the propagation delays can be overlapped,
so after receiving the first word, a new word can be received every f seconds,
giving a total message delay of:

(k + 1) + .

With this model of a multiprocessor interconnected by a packet switching
network, it is possible to look at any of the algorithms already considered. We
look here at fast Fourier transforms, since there are interesting aspects of this
algorithm not yet treated. The communications required in an FFT can all be
viewed as permuting data between processors. Suppose we have n words of

data, with n—words per processor. Then we can ask, how much time is required
to simultaneously move the data on every processor to some other processor.
Let the time taken to perform this operation be denoted by X(n).

To compute the value of X, (n), note that to move ;’—data words from one
processor to another should take time

(:T"' 1)8 + 7.

as discussed above. But this will be so only if the target processor is ready to
receive the data as soon as it arrives there. In permuting n words of data, each

n ... n . . .
processor must send —and receive —words, so the execution time for this per-

mutation cannot be less than:

2n

—p—ﬁ

In fact, the time perform this permutation is
X%(n) = max((Z46, (2-+ 1)g + 9] (4.1)

as one can easily verify.

Now consider the problem of performing an FFT on a vector of length n, with
this multiprocessor model. The execution time will be:

TFFTn _ a( -2—;—)log (n) + X;,(n)loy(p)

a(Ziog (n) + max((Z)p, (Z-+ 1)8 + yliog(p)

This is exactly the same as the execution time derived previously, except for the
new term involving y. Notice here that the vector length n does not multiply ¥,
so the impact of a large 7, caused perhaps by packet contention, is not as severe
as onc might expect.

Next consider the problem of performing multiple fast Fourier transforms.
In treating fast Poisson solvers, it was implicitly assumed that to take fast
Fourier transforms of m vectors, one would just repeat the parallel algorithm
for a single FFT m times. This is not necessarily the best approach, especially
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on packet switched networks where one needs to contend with propagation
delays. At least four reasonable approaches to performing m fast Fourier
transforms can be found:

1 Repeat the parallel algorithm FFT_pn, for a single data vector, m times.

2 Combine m invocations of FFT_n to overlap communication. Each step of
the FFT would be performed on all m data vectors at once before proceed-
ing to the next step. :

3 Ifm =<pand m | p, the data can be permuted so data vector i resides on
processors (i~1) %-i- 1 through i-’% Then the algorithm FFT_n for a single

data vector can be performed on each block of %processors. Finally the

results must be permuted back to their correct locations.

4 Ifps<m and p | m, the data can be permuted so each data vector resides
on only one processor. Each processor then performs sequential FFTs on

the ™ data vectors it has, and finally the results are permuted back to

their correct locations.

Now looking in detail at each of these, for the first approach, the execution
time is just m times the execution time of FFT_n. That is:

TRFFTn = a(z—':%log(n) + mXy(n)log (p)

With the second approach, one will have only log(p) communication steps
rather than mlog(p) as in the first approach. However, each step is now a per-
mutation on mn words of data rather than on n words as in the first approach.
The execution time is thus:

| TpFFTa o a(a—'f‘—)zogm)u,(mn)zog(p)

At first sight there appears to be little difference between the two approaches.
However, the function X,(n) satisfies the inequality

X(mn) < mXy(n)
for all m, so the second approach is always at least as good as the first
approach.

The third approach here is somewhat more complex. Two operations are
involved, permuting the data, so each of the m vectors is distributed over a

block of %processors. and then performing FFTs on these processor blocks.
The FFT algorithm needed here is just the FFT for a single data vector, FFT_n,
already studied, except only J:L—pr'oc';-.ssors are used now. The execution time to

perform these FFTs on processor blocks is:
FFT _ 2n
;' = a(p/m)log('n) + Xp(nm)log(-n%a
where we have used the identity X;,m(n) = X;(mn) which is easily derived
from equation 4.1.

The other operation needed is permuting the m data vectors. Each data
vector is originally distributed evenly over the p processors, and must be moved

so it is distributed over a block of ﬁ-—processors. The cost of this is:
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[ _ _ I
Tiata = max 2’;"{1’ Lyg, (P 1‘+1)ﬂ+7]

P p p’ |

The factors tl-arise since a fraction of each vector is already in the proper
processor memory and does not need to be transmitted. Assuming p is large,
%lis close to unity and we can set:

Tasta ~ Xp(mn)

The data needs to be permuted before and after performing the FFTs, so the
total execution time becomes

Tw-" = af z—zl;lalog(n) + Xy (mn)(log (p) - loag(m) + 2)

Analysis of the fourth algorithm is similar. No communication is involved in
the FFTs in this case, but data permutations are required before and after the
FFTs. The execution time is thus:

TP Ta = o 27;'"’ Jlag (n) + 2X,(mn)

One way to compare these four algorithms for computing m FFTs is to com-
pute their speed-ups. The results are:

Sl=

P
I . Mg @)
1+ma.xl;L. -2%+ 2na ﬁ+7)] l:g(n)

Sz = - 2
1+max|&; £+ P ’ﬁ+7)j£ﬁ7—(ﬁ)—

a' 2a 2mna

D

I l '
g . _» log(p) —log(m) + 2
1+maxl;L. 2a T 2mna‘p+7)J log(n)

Sa=

S4= 2

| |
B B y 2
1+max o 2a ' 2mn?ﬂ+7)l log(n)

Comparing these equations it is clear that the first algorithm is never
better than the second, as already mentioned, since the impact of 9 is smaller in
the second. Note that this conclusion applies only for the packet switched net-
works under consideration. For networks with fixed or circuit switched topology
these two algorithms perform identically.

Figure 4.1 illustrates the efficiency in the case that a = g = 1.0 and ¥ = 50.0,
P =012 and n = 1024. In this case we have plotted the preformance as a func-
tion of the number cf equations, m. Observe that the third algorithm becomes
beiter than the second when m=4. Had we included the cost of the "bit rever-
sal” permutation in all algorithms, the third algorithm would have become
better even earlier. Between the third and fourth algorithms there is nothing to
decide, since the third applies only to the case m < P and the fourth to the case
m = p. Figure 4.1 depicts these two methods as one with a transition at m = p.
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} Alyorithm Efficiency for m FFTs
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Figure 4.1 Efficiency as a function m for 4 methods to'implement
algorithms for doing m FFTs of size n. P =512, n = 1024, a = 8 = 1.0 and ¥ = 50.0.
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Though searching for optimal algorithms is interesting, the real issue here
is the impact of the delay 7 caused by the use of a packet switching network.
The effect of v depends on the ratio of problem size to the number of proces-
sors; on problems with a great deal of computation, 7 is well masked. In fact in
the three FFT algorithms for multiple data vectors found to be best, ¥ always
enters the execution time in the ratio:

S A

2mna
Though this analysis was performed only for FFT algorithms, experience sug-
gests that the delays caused by packet switched networks are relatively unim-
portant on most compute bound problems.

5. Conclusion

This paper has considered three basic families of multiprocessors and the
analysis of communication complexity in the algorithms for these architecture
classes. The principal goal here was to look at communication and its impact on .
algorithm performance. For large shared memory multiprocessors analyzing
communication turns out to be relatively straight forward. The main issues are
memory latency and finding ways to organize or substructure problems to
minimize its effect.

Studying algorithms on non-shared memory machines is more difficult,
since the topology of the communication network is a central issue. Our
analysis of non-shared memory network based machines was divided into two
parts, the first covering machines with a fixed or circuit switched topology, the
second covering machines based on packet switched networks.

On circuit switched machines, techniques borrowed from VLSI complexity
theory provide a nice tool for obtaining lower bounds on algorithm complexity.
Given an interconnection topology, one can with relative ease compute upper
bounds on efficiency of the problem solution. An important point here is that
these are upper bounds on the problem, (e.g. FFT, Fast Poisson Solve, direct
solution of tridiagonal systems) not on any particular implementation of an algo-
rithm for solving the problem. In the cases studied, these upper bounds are
apparently quite tight; in two of the three cases studied these upper bounds are
actually attained.

By contrast, analysis of algorithms on machines interconnected by a large
packet switching network is far easier, given our simple model of the behavior of
packet switching networks. Here the propagation delay parameter ¥, modeling
the impact of packet contention, is quite important. But on most large prob-
lems it seems to be possible to substructure the problem so that the effect of Y
is minor. With our model of a packet switched network, in which such a network
is treated as a crossbar switch with delay, analysis of algorithms is no more
difficult than for shared memory multiprocessors. (In fact, the delay v is closely
related to the value nﬁ.) At the moment this model rests only on heuristic con-
siderations and simulation results, so it would be valuable to establish the pre-
cise circumstances under which it holds.

Many important problems remain to be solved. In particular, improved
techniques are needed for lower bounds on communication in multiprocessors.
In the case of specific algorithms, we do not know of better lower bounds (or
Letter algorithms) in the case of elliptic PDEs on high bandwidth networks like
the Shuf connection. ‘ :
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Of particular importance are issues that were not considered at all in this
paper. This includes a systematic approach to algorithms with dynamic data
structures, such as adaptive grid algorithms for PDEs. Do these problems have a
reasonably nice solution on nonshared memory systems? If so, what is the
structure of the communication? A closely related problem is the analysis of
complexity of communication in Data Flow machines. How does it differ from
the models we have surveyed in this paper?
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