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Abstract

It is shown that when differencing analytic functions using the

pseudospectral Fourier or Tchebyshev methods, the error committed decays to

zero at an exponential rate.
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Introduction

The pseudospectral differencing methods, involve the exact differentation

of interpolants which are based on different sets of selected points; each

method is usually named after the base functions used to expand such

interpolants.

We discuss the pseudospectral Fourier and Tchebyshev differencing methods

-- the two most extensively used among all of the above, e.g., the survey of

Gottlieb, Hussaini and Orszag [5] and the references therein. This stems from

the possibility of implementing the FFT in these cases: one can efficiently

travel between the "physical" and "phase" spaces, making the (global)

pseudospectral calculations in these two cases, almost as economical as the

(local) finite difference ones. The definitive advantage of the former lies,

however, in their remarkable accuracy properties, which is the topic of this

paper.

As is well known, the pseudospectral differencing of (sufficiently) smooth

functions, enjoy "infinite" order of accuracy; that is, measured w.r.t, the

inverse number of selected points, the error committed is bounded by any fixed

polynomial order (e.g., Kreiss and Oliger [8] for the Fourier case, and a

different detailed study of Canuto and Quarteroni [I], which includes, among

others, the Tchebyshev case).

Here we show, that if the function under consideration is further assumed

to be analytic, then the asymptotic decay rate of the error with either the

Fourier or Tchebyshev differencing is, in fact, exponential. This should be

compared with the polynomial decay rate obtained by finite difference/finite

element differencing methods.

I
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We start in Section 2, discussing the Fourier differencing of smooth

functions: following [8], we first derive the allaslng relation, which

implies "infinite"order of accuracyin this case. In Section3, we show the

exponential decay rate of the error, with Fourier differencingof analytic

functions. Tchebyshevdifferencingmethod is likewise treatedin Section 4:

after putting the allaslng relationin an identicalform to the one obtained

in the Fourier case, the variouserror estimatesfollow along the same lines.

!

Similar to our treatmentof the stabilityquestionin [15, Part II], we

emphasizehere the central role played by the allaslng relations,from which

we derive all the results below. Thanks to these allaslng relations, the

error decay behavioris "essentially"due to the correspondingdecay of either

the Fourieror Tchebyshevcoefficients;an exponentialdecay of the latter is

widely known in the analytic case. Also, by considering the

Fourler/Tchebyshevcoefficients, the above derivation may still offer an

exponential decay rate of fractional order in non-analytlc, smooth cases

(e.g., standardcut-offfunctions).

In closing, we would like to point out that the above results are

intimately related to Bernsteln's theorem, regarding the exponential

convergence of best polynomial approximations. Specifically, given an

analytic function, Bernsteln'sproof verifies the exponentialconvergenceof

its truncatedTchebyshevseries expansion,e.g., [II, Section 6]. Using the

Gauss-Tchebyshevrule to compute that expansion'scoefficients,we are then

led to the Tchebyshev Interpolant; the further error inferred by such
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discretlzation (which is exactly an allasing error), is known to be also

exponentially small, e.g., [3, p. 239]. In other words, we conclude that the

above Tchebyshev interpolent -- so called near minimax polynomial, approxi-

mates a given analytic function within an exponentially decaying error. In

fact, the results below indicate that given an analytic function, both the

Fourier and Tchebyshev interpolants approximate the function and its

derivatives, within an exponential accuracy. Indeed, these results manifest

themselves for example, in the global error behavior of pseudospectrally

solved PDE's, e.g., [5,6,13].

Acknowledgement

I would llke to acknowledge Y. Maday for helpful comments concerning this

work.

2. Fourier I)Ifferenclngof Smooth Functions

Let w(x) be a 2_-perlodic function, whose values, w = w(x ), are

assumed known at the 2N equidistant grid points x =_h, h=_, v=0,1,'''2N-l.

The (pseudospectral) Fourier differencing of such function, refers to

dlfferentatlon of the trigonometric interpolant of these grid values: one

constructs the trigonometric interpolant(I)

N 2N-I

(2.1) _,(x)= _(x;N) = l''WpeIpx, Wp = _- I w9e-lpuh,
p=-N _=0

(i) (double) primed summation indicates halving first (and last) terms.
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and use its derivative

N

-- ^ ipx_X_) = _ ipwpe
p=-N

dw

to approximatethe "true" value,_x x=x ).

In order to examine the error we commit by such approximation,it is

convenientto work with Sobolevspace Ws, definedfor integralorders s,

s {w(x) i 2 ! nd(k)w,= lWlws= n <-}(2.2) wS - W2 k 0 L2[0,2_]

and extended by interpolation for fractional orders. Thanks to Plancherel's

formula, Ws is isometrically isomorphic to HS: assuming w(x) admits a

formal Fourier expansion

® 2_

(2.3a) wCx) ~ [ w(p)e ipx, w(p) =_.f wC_)e-iP_d_;
p=-_ 0

then we can equally work with Hs, s real, which consists of those functions,

w(x), having a finite Sobolev norm of order s,

(2.3b) Hs = {w(x) l lWi2HS= [ (1+IPl)2Slw(P)l2 <-}.
p=,,-_

The following lemma, relating the Fourier coefficients of w(x),

2_

(2.4) w(p) = _ f w(_)e-iP_d_, -_ < p <-
_=0
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with those of its trigonometric interpolant, _(x;N),

2N-1

(2.5) Wp =_ [ w(xg)e -ipgh, -N _ p ! N,
_=0

is in the heart of our discussion (e.g., Krelss and Ollger [8]).

Lemma 2.1. (Allaslng).

Assume w(x) is in Hs, s >1/2.(2) Then the following equality holds

(2.6) Wp = _ w(p+2kN), -N < p < N.
k=,,,_

Proof: It is well known that the Fourier expansion in (2.3a) converges in

this case, e.g., [16, Chapter II]; inserting that expansion, evaluated at

x = x , into (2.5), we obtain

2N-I = _.2N-I
(2.7) Wp =_ I w(x_ )e-lp_h N I [ I w(q)elqX_] e-lp_h-

v=0 v=0 q=-_

By Cauchy-Schwartz inequality the inner summation is absolutely convergent

® - 1

(2.s) I I (q)l < [ I 2
q=._ q=l(l+q) 2sJ Iw_Hs'

hence summations on the right of (2.7) can be interchanged. By so doing, the

desired result follows

(2)Thls smoothness assumption on w(x) can be relaxed.
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2N-I

we = [ w(q)'_ _ ei_(q-p)h = _ w(p+2kN),
q="= v=O k=--_

noting that the second summation in the middle term vanishes unless q - p =

0(mod 2N), i.e., q = p + 2kN.

Equipped with the aliasing lemma, we now may turn to estimate the error

between w(x) and its equidistant interpolant w(x): rewriting

w(x) = [ I'' + 1'']w(p)e Ipx,

IpI<_NIPI>_N

and, with the help of (2.6),

"w(x) = [''w(P) elpx + _''[ I w(p+ZkN)] eipx,

Ipl<__N Ipl<_Nk*0

the difference w(x) - _(x) is readily verified to equal

(2.9) w(x) - _(x) = - I''[ [ w(p+2kN)] elpx + ['" w(P)elpx.

Ipi<_Nk*0 IpI>_N

The first summation on the right represents allaslng of the higher modes with

the lower ones, IPl _ N, while the second summation consists of the truncated

higher mode, IPl _ N. A quantitative study of both terms gives us (compare

e.g., Krelss and Ollger [9], Pasclak [12])

Lemma 2.2. (Error Estimate).

1
Assume w(x) is in Hs, s > _. Then for any real o, 0 _ c _ s, we have
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1

(2.101 lw(x)-w(x;N)_H° < II+2"k!l(2k-l)-2s)_°_W_Hs'(1)s-O"

Proof. Starting with (2.9), then by definition

lw(x)- _(x;h)12o= IH(I+Ipj)2°[I w(p+2kN)I2
[p[<__N k*0

(2.11)

+ l"(l+Ip[)2°l (p)l2.
[p[>__N

Cauchy-Schwartz inequality implies

[ _ w(p+2kN)[2 < _ (I+[p+2kN[)2S°[w(p+2kN)[2" I (I+[p+2kN[)-2s,
k'$O k#O k$O

with the second summation not exceedng a value of

I (I+[p+2kN[) -2s < 2N-2S" I (2k-l)-2s, [p[ <N.
10_0 k=l

Inserted into (2.11), we find that the aliasing part of the error given in the

first term on the right, is bounded by

2N-2S" _ (2k-l)-2s" I N2° _ (I+[p+2kN[) 2s [w(p+2kN)[ 2

k=l IpI<N k*0

2
< 2* _. (2k-l)-2s'(1)2(s-°)'_W_s ;

k=l

The truncation error, given in the second term on the right of (2.11), is

equally found to be bounded by

[
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tl _2(s-c)....2)"'N2(O-s)'(I+Ipj)2s[w(p)12< '_" 'W's-
IpI>_N

Added together, the last two estimates yield (2.10).

Remark I. Observe that requiring w(x) to have more than "one-half"

bounded derivative enable us to control the allasin_ part of the error; apart

from that restriction, there is an error in decay in any Sobolev norm weaker

than that of w(x), which is equally due to aliasing and truncation errors.

Remark 2. The allasing relation (2.5) for the zeroth mode p = 0, implies

that the trapezoidal rule is highly accurate for the integration of smooth

periodic functions (Davis and Rablnowitz [3]): indeed, the error committed in

this case is solely due to allasing

2N 2_

_" X"w(x_) _I.f w(_)d_= [ ;(2kN).
v=0 0 k_0

This allows us to replace the H°-norm, measuring the error on the left of

(2.10), with its more applicable discrete counterpart (Gottlieb et.al. [5]):

2N.. d(k)w

'''w(x)-_(x;N]'' 2 = :!02+ _ [:xk-_Xv) d(_)_(x ;N)] 2 _ integral.H_ k v=O dx K v '

Returning to our original question, we find -- choosing c = 1 in Lemma

2.1 -- that the error in Fourier differencing does not exceed

dw dw, • . • .'l's-1
(2.12) l_x x) - N)l < Const-

_xxx, __ |W_Hs t_) ,
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for arbitrary real s, s > I. The norm on the left refers, of course, to

the H0 = L2 norm of the error, with a uniform Constant = 2 on the right. It

can be replaced, in fact, by any other reasonable (possibly discrete) norm:

for example, Sobolev's inequality implies for the somewhat more applicative

maximum norm

qMax _x(Xg) -_xtXg;N) _ Const ._w_ , s > _ > _ •
0<9<2N-I

Consider now a sufficiently smooth 2_-perlodlc function w(x).

Differencing such function by local methods, such as finite difference or

finite element methods, leads to an error bound of the type (2.12) with a

finite, flxed (3) degree, polynomial decay; the latter is usually identified

with the accuracy order of the differencing method. With this terminology in

mind, the (global) Fourier differencing method was thus shown to be

"infinitely" order accurate: the dlscretlzatlon error decays faster then any

fixed degree polynomial rate, e.g., [I-2], [4-7], [14-15]. It is worth

emphasizing that phrasing the error estimate (2.12) as "infinite" order of

accuracy, is limited on both accounts:

I. Consider a sufficiently smooth function w(x) in Hs, s >> I. The

error's order of magnitude for a given Fourier differencing of such

functions, may be difficult to calculate: an a" priori knowledge

regarding the size of the factors _w_, k d s, is required in this case.

(3)That is, independent of N.

I
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2. Assume w(x) is a C_- function. One cannot detect the exact

asymptotic decay rate, according to the error estimate (2.12): because of

its factor dependence on the power s -- when s increases so does

_W_H s -- one may not conclude, for example, an exponential convergence

rate simply by placing arbitrarily large powers s, since the optimal s

depends of course (usually in Unknown manner) on N.

S. Fourier Differencing of Analytic Functions

In this section, we show that the Fourier differencing of 2_-periodic

analytic functions, admits an exponentially decaying error; furthermore, in

some cases, the error's order of magnitude may be calculated as well.

To this end, assume

(3.1a) -_0 < Imz < no

to be the strip of analyticity where w(z) admits the absolutely convergent

expansion

(3.1b) w(z) = _ w(p)e ipz, llmzl _ _ < nO"
p=--_

Denoting

(3.2) M(n) = Max lw(z)l,

IImzl<

we may now state
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Theorem 3.1.

Assume w(x) is 2_-periodlc analytic, with analytlcity strip of width

2n0. Then for any n, 0 < n < no, we have

1

_r-_4dw dd_x(X;N_l< .... ,ctgh(Nn),_.Ne-Nn"(3.3) Udx,X) ' --- _ _Mt_)[ e2__I )

Proof. Making the change of variables, _ = eIz, then v(_) = w(z=-iLog_)

admits the power series expansion

(3.4) v(_) = w(z=-iLog_) = _ w(p)_ p.

p=,,._

By the periodic analytlclty of w(z) in the strip llmzl<n0, v(_) is found

to be single valued analytic in the corresponding annulus e-n0<_<e n0, whose

Laurent's expansion is given in (3.4):

_ -no(3.5) w(q) =_I_ =r v d_, e < r < en0.

To estimate the error of Fourier differencing in this case, we employ (2.11)

with _ = I, obtaining

2 N2o_'" w(p+2kN) 2 2 2
(3.6) _w(x)-_(x;N)_HI<-- I I I + _''(I+IPl)lw(P)lIPI<N IPI>N_

Using (3.5), we sum the allased amplitudes

k<0 k>0 I_ =r _P+I(_ZN-I) I_ =r-I (_--ZN--I)
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so that the first term on the right of (3.6) does not exceed a value of

M2(n) "'e2nP ...2..ctgh(Nn) N2e-2N,
(3.7a) 4N2(e2Nn 1)2• _ <__4M in) e2__ 1 •

- IPl<N

The truncation contribution to the error in the second term on the right of

(3.6), does not exceed (4)

(3.7b) 4M2(n)[ _'(l+p2)e-2nP+ [" (l+p2)e 2np] < 8 M2(n) N2e-2N_

p>__N p<_-N -- e2n-I "

Adding the last two bounds, yield (3.3).

Remark 3. According to the above derivation, the asymptotic dependence of

the overall error on N, is due to equal size contributions of both the

aliaslng and truncation parts. However, one can do better with regard to the

truncation error: indeed, let us denote

k

Mk(n) = e2kn- [ Max Iv(J)(=)l;3=0l=l=en

then by invoking the relation

I l=r

(4)We assume N is sufficiently large, N > (e2n-l)-I.
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the truncation contribution in (3.2b) is, in fact, found to be bounded by

M_(n) -2Nn
2M_(n)[ _'e-2np + _" e2np] < 4- e .

p>_N p<__-N -- e2n-I

Compared with the truncation estimate in (3.7b), we see that the loss of the

N2-factor is regained here.

Remark 4. Estimate (3.3) shows that the error with Fourier differencing

of an analytic function w(x), decays exponentially w.r.t, its asymptotic

dependence on N; furthermore, equipped with a bound on w(x) when moved into

the complex plane, one can estimte the size of the error in this case, using

the somewhat more aesthetic upper bound

dw d_, .N)I 4M(n) -Nn(3.8) l_x) - < )Ne_kx, -- sinh(n

Remark 5. The exponential convergence follows for derivatives higher than

one: with the usual loss of a factor of N for each derivative, we obtain

M(n) Nae-N_.
(3.9) [w(x)-_(x;N)[H_ ! C°nst_'sinh(,)

The preferable discrete estimates, follow along the lines of an earlier

remark, or alternatively, using Sobolev inequality to implement L_ error

estimates.
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4. TchebyshevDifferendng -The Non-PerlodleCase

In the non-periodlc case, the Tchebyshev differencing is usually

advocated,e.g., [I-2], [4-6],[I0], [13-14]. Let w(x) be definedfor

-I _x _ I, and assume its values wV = w(xV) are known at the N+I

grldpoints x_=cos(vh),h = _N ' v = 0,I, -.N. The (pseudospectral)Tchebyshev

differencingof such function refers to differentiationsof the polynomial

interpolantof these gridvalues: one constructsthe polynomialinterpolant

N N

^ _ "'WvTp(xV)(4.1) _T(X) = _T(X,N) = _''WpTp(X), Wp = -[ ,
p=O v=0

in terms of Tchebyshev polynomials Tp(X) = cos[p(cos-lx)],and use its

derivative

d_, . N .A dT
_x V) = [" Wp _x (x--xv)

p=0

to approximate the _true J
value,_x x=xv). The latter summation, can be

translated into standard cosine FFT-llke summation using a single two-step

recursslon formula, see [4-6]; thus Tchebyshev differencingadmits a fast

efficientimplementation.

To measure the error in this case, one usually employs the appropriately

weightedTchebyshevnorm

1 w2(x)wwai
-I (l-x2)I/2 dx

S

and the corresponding weighted spaces under the WT norm, s integral,
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s 2 = s .d(k)wR2

(4.2) WT = {w(x)[ [W_w$ k!0_7[ T < _};

s of factional order s are suitably interpreted by
Tchebyshev spaces WT

interpolation.

We have found it more convenient, however, to work below within the spaces

s
HT, s real: assuming w(x) admits a formal Tchebyshev expansion

- 1 w(_)Tp(_)
(4.3) w(x)~ I'_(p)Tp(X), _(p) = _'f dE,

p=O -1 (1-_Z)I/Z

then, in complete analogy with (2.3b), we introduce

(4.4) H_ = {w(x) I lW_2s = I (l+p)2Slw(p)12 < "}-
_T p=0

Unlike the Fourier case (endowed with the usual Euclidean

s and s
weighting), WT HT are not equivalent unless s = 0, in which case they

are in fact isometrically isomorphic by the Tchebyshev transform

2 2 2

(4.5) _w_H = V _w_W

Making use of the inverse inequalities of Canuto and Quarteroni [1], will

S
enable us, later on, to recover the HT-estimates derived below, within the

S

more standard WT-spaces. We begin with the aliasing relation in this case,

which reads (e.g. Gottlieb [4], Reyna [14])
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Le_ma 4.1. (Aliasing).

s 1
Assume w(x) is in HT, s > _. Then the following equality holds

(4.6) Wp = w(p) + _ [w(-p+2kN) + w(p+2kN)], 0 ! P _ N.
k=l

Proof. Inserting the Tchebyshev expansion in (4.3) evaluated at x = x ,

into the discrete Tchebyshev coefficient in (4.1), we find

N _w(q)Tq(Xv _ NWp =_^ 2 _[ )]Tp(X_) = 2 _w(q)[ _Tq(x_)Tp(xv) ]
v=0 q=0 q=0 v=0

To calculate the inner summation on the right, we employ the identity

1 N..

2Tq(X)Tq(X) = Tp+q(X) + T[p_q[(X), while noting that _ X Tj(x ) vanishes,¢=0

unless j = 0(mod 2N) in which case it equals one. Hence, we end up with

Wp = l'w(q)[_qp + 6q0*6p0 + I 6q,2kN±p]
q=O k=l

and (4.6) follows.

Let us define T_p(X) = Tp(X) so that w(-p) = w(p). Tchebyshev

expansion (4.3) takes now the Fourier-like symmetric form

(4.7) wCx) _ _ _ w(p)Tp(X)
p=,--_

with an aliasing formula, identical to the one we had before in Lemma 2.1:
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A

(4.8) Wp = [ w(p+2kN).
k=,,_

Hence, we can equally conclude the corresponding error estimate, which we

quote from Lemma 2.2.

Lemma 4.2. (Error Estimate)

s 1

Assume w(x) is in HT, s > _. Then for any real o, 0 _ o _ s, we have

1

- wlH(4.9) Iw(x) -_T (x;N)] O <--2(1+2" (2k-l)-2s)2"[ .(1)s-¢ •
HT 1

Setting o = 0 in (4.9) gives us, in view of (4.5)

i

(410) _w(x)Wr(X;N)l0<[2_(1+2._ (2k-1)-2s)]AlWlH• -~ .(_)•
1 s

Using the inverse inequality [I, Lemma 2.1], one can "raise" the Sobolev norm

on the left of (4.10), obtaining (for details see Canuto and Quarteroni [I,

Theorem 3.1], Maday and Quarteronl [I0])

Corollary 4.3. (Error Estimate).

s 1

Assume w(x) is in WT, s > _ . Then for any real o, 0 _ o _ s, we have

S-20

(4.11) iw(x) - WT(X;N) <_ Constsp! w

Thus, each derivative infers a lost of N2 factor in this case, rather than

the usual factor N associated with the Fourier differencing.
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Remark 6. According to Y. Maday (private communication), the factor

dependence on the right of (4.11) is factorial, Const _ s!.
S

We turn now to consider the case where w(x) is analytic in the interval

[-I,I]. To this end, we employ Bernstein's regularity ellipse, Er, with

foci ±I and with sum of its sen/axis equals r, e.g., [II, Section 6].

Denoting

(4.12) _(r) = Max ]w(z)l ,
zcE

we may now state r

Theorem 4.4

Assume w(x) is analytic in [-I,I], having a regularity ellipse whose

n0
sum of its semiaxls equals r0 = e > I. Then for any n, 0 < n < no , w__ee
have

1

ctgh(Nn))_oNe-Nq

(4.13) _w(x) - WT(X;N)_H_ _ 8M(q)( emn_ 1 .

Proof. The transformation, _+_-I2 = z, takes the regularity ellipse E
r0

in the z-plane, into the annulus r_l<l_l<rov
in the _-plane. Hence,

v(_)=2w(z= ) admits the power series expansion

_) _ r0=en0(4.14) v(_) = 2w[z= = I w(P)_P, roI < I_I < •
p=--_

Indeed, upon setting _ = e18 and recalling that w(-p) = w(p), the above

expansion clearly describes the real interval [-i,I],
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_A

w(z=cosO)= [ w(p)cos(pO).

p=O

For the Laurent's expansion given in (4.14), we then find

_ -_0(4.15) w(q) = _-_ I_ =r _v, e < r < e"0.

Comparing (4.15) and (3.5), we end up with the same Cauchy integral formulae

for the amplitudes in both the Fourier and Tchebyshev expansions; coupled with

the identical allasing relations, (4.13) follows along the lines of Theorem

3.1.

1

Remark 7. As before, the factor (ctgh(Nn))_
e2n I on the right of (4.13), can

I yielding
be replaced by the more aesthetic bound of sinh(n)'

- M(n) Ne-Nn.
(4.16) _w(x) - _(x;N)_ 1 _ _sinh(n)

HT

1 Can
Next, an exponential error estimate in terms of the Sobolev norm WT

be derived: with the loss of an additional factor of N in the spirit of an

earlier remark, we then find

Corollary 4.5.

Assume w(x) is analytic in [-I,I]. Then we have

dw d_T M(n) N2e-Nn, 0 < n < _0"(4.17) l_x x) - dx--_-(x;N)_T_ Const.slnh(n )
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Higher derivatives can be estimated in a similar manner; in particular, since

L_H I/2 + _WT, a discrete maximum estimate follows.

Corollary 4.6.

Assume w(x) is analytic in [-I,I]. Then we have

dw dw M(n) N4e-Nn,(4.18) Max l_-_(xV) -_--_(xv;N)l< C°nst'slnh(n) 0 < n < no•0<v<2N-i

The fourth power of N on the right of (4.17) can be improved to be

.5/2 + €
N5/2 + _, by imbedding WI'_ in nT
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