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Abstract

The Helmholtz equation

(A + K2n2)u = f

with a variable index of refraction n, and a suitable radiation condition at

infinity serves as a model for a wide variety of wave propagation problems.

Such problems can be solved numerically by first truncating the given

unbounded domain and imposing a suitable outgoing radiation condition on an

artificial boundary and then solving the resulting problem on the bounded

domain by direct discretization (for example, using a finite element

method). In practical applications, the mesh size h and the wave number K,

are not independent but are constrained by the accuracy of the desired

computation. It will be shown that the number of points per wavelength,

measured by (Kh)-I, is not sufficient to determine the accuracy of a given

discretlzatlon. For example, the quantity K3h 2 is shown to determine the

accuracy in the L2 norm for a second-order discretization method applied to

several propagation models.

*The submitted manuscript has been authored under Contract DE-AC02-

76CH00016 with the U. S. Department of Energy. Accordingly, the U.S.

Government retains a nonexclusive, royalty-free licenses to publish or

reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes.

**Author partially supported by the National Aeronautics and Space
Administration under NASA Contract NASI-17130 while the author was in

residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

i





Introduction

The Helmholtz equation

(i.I) Au + K2n2u = 0,

where K is the wave number and n(x) is the index of refraction, describes

a wide variety of wave propagation phenonmena through an inhomogeneous medium.

Inhomogenelties are represented by spatial variations in n(x) and also by

interfaces and scattering surfaces. Equation (I.I) is fundamental in

acoustics, in particular, in underwater acoustics ([7], [8]), duct acoustics

([2], [I0], [12]), and acoustical scattering ([5]). In addition, certain

models of electromagnetic and elastic wave propagation can be described by

(I.I) ([II], [12]). Vector formulations of (I.i) describe general

electromagnetic and elastic wave propagation ([15]). Finally, the propagation

of pulse-like waves can be reduced to an analysis of (I.I) after Fourier

transforming the time variable ([I]).

If the wave length %(=2_/K) is small relative to the other length

scales in the problem, solutions to (I.I) can be approximated by asymptotic

methods. However, if % is of the same order as some characteristic length

scale, these expansions can break down and the problem must be, in general,

solved by numerical methods. The methods we are considering are based on

truncating the domain in whlch the wave propagation is occurring and imposing

a suitable outgoing radiation condition on an artificial boundary. The

resulting problem is then solved on the bounded domain by directly

dlscretizlng (I.I). Such a method is described in [4], where an efficient

technique to solve the resulting linear system of equations is also

introduced.
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In general, radiation conditions do not completely absorb all

reflections. The total error inPthe numerical solution of (I.I) is the sum of

two errors: the error due to the approximate radiation condition and the

dlscretizatlon error due to the approximation of the continuous problem by a

discrete problem. In this paper we will analyze only the dlscretlzatlon

errors due to a standard finite element approximation scheme for (I.I), on a

bounded domain with a suitable radiation condition.

In any wave propagation problem there are at least three important and

distinct length Scales. These are £ - the diameter of the truncated

computational region, a - the diameter of the region containing the inhomo-

geneitles or other effects which distort free space wave propagation, and the

mesh size h. Since K has units (length) -I, this gives three nondimensional

quantities Ka, K_, and Kh which relate these characteristic lengths to the

wavelengths.

(Kh)-I is the number of grid points per wavelength (up to a constant

factor) and has been used as a measure of accuracy by many authors (see, for

example, [2], [7], and [13] and the references contained therein). Ka is

essentially the number of wavelengths in the inhomogeneous region and is a

measure of the degree of distortion of the solution from free space wave

propagation. Kg is a measure of the number of wavelengths in the computa-

tional domain. It depends on the effectiveness of the radiation boundary

condition in simulating outgoing radiation and on the positions at which the

solution is desired. In general, the computational domain is fixed and

includes all the inhomogenetles. The wave number then varies over some range

of physical interest.
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In this paper it will be established that Kh is not a sufficient

indicator of the truncation error of a discrete approximation to (I.I). The

arguments, in general, will be given in the context of a finite element

dlscretlzation, nevertheless we expect that similar results are valid for

finite difference approximations. It will be shown that the discretization

error depends on both K% and Kh. Thus, when the computational domain is

fixed, discretization errors will grow as K increases even though the number

of points per wavelength remains fixed. If a finite element method accurate

to order m is used, an error bound of 0(Km hm-l) will be established for

errors in the Hl-norm. Furthermore, an error bound of

(1.2) O_K m+l+a hm)

will be established for errors in the L2-norm, where = > 0 depends on both

the geometry of the problem and the radiation condition. This estimate is

suboptimal in the sense of approximation theory for the finite element

subspace. We stress that this analysis is only for the discretization error

and does not include the errors due to the approximation of the radiation

condition at a finite boundary.

Estimate (1.2), with a = 0, was used in [6] in discussing the usefulness

of the _Itigrid method to solve the Helmholtz equation. In Section 2, (1.2)

will be established rigorously in a fairly general setting. It will be shown

that a = 0 is the most favorable bound and is sharp for a one-dimensional

model problem but that in general c > 0. The results are obtained from a

standard finite element error analysis combined with some non-standard lemmas

bounding the solution in term of the data and K. A reader only interested in
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the consequences of the theory can skip Section 2 and just read the precise

statement of Theorem 2.2. Numerical results will be presented in Section 3

validating the theory in a wavegulde geometry. In Section 4 several practical

consequences of this theory will be discussed.

2. Error Estimates

We now outline the theoretical results. We first consider the model

problem:

(2.1a) [-A - (K2 + i_K)]u(x) = f(x) x € _,

_u

(2.1b) _ = 0 on _R,

where _ > 0, K > 0, R is a bounded domain in RN(N = i, 2, 3) with a smooth

boundary _ and f(x) smooth.

REMARK 2.1: The term i_K is introduced so that (2.1) is a well-posed

boundary value problem. In practical problems this is accomplished by the

radiation boundary condition.

To approximate (2.1) we use a finite element method and introduce a

variational formulation. Let
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a(u,v) = f [Vu.V_- (K2 + l_K)u(x)_(x)]dx

and

(f,v) = f f(x) v(x) dx,

then the weak form of (2.1) is

(2.2) a(u,v) = (f,v) all v E Hl(fl)

where HI(_) denotes the standard S0bolev space. Given a subspace

h Shsh CHl(fl) the finite element approximation is the function u C such

that

(2.2") a(uh,v h) = (f,vh) for all vh _ Sh.

We assume that L2 functions can be approximated to order hm by elements

of Sh. We can then prove the following theorem.

THEOREM 2.1: Suppose that u satisfies (2.2) and u € Hm+l(fl). Then

there exists a unique solution uh of (2.2") provided K2h is sufficiently

small. Furthermore, the following estimates hold for the error eh = u - uh

(2.3a) ,ehIHl <__Cm hm-l(l + Km)[lU,L2 + ym(f)]

(2.3b) nehEL2 < Cm hmll + Km+l)[_UIL2 + ym(f)]

where Cm depends on m and _ but is independent of K and the data f.
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_m is given by

If_L2 m , NfD
Hi-2-- + m even

(2.4a) K2 + 1 j=4 Kj + 1

ym(f) =

IfIL2 _ Rfn(2.4b) + ' Hi-2 m odd

K + 1 j=3 Kj + 1

The sum in (2.4a) ranges over even indices while the sum in (2.4b) ranges over

odd indices.

The estimate (2.3b) shows that the L2 error (normalized by lu_ + Am(f))

for a scheme of order m grows at least as fast as hm Km+l- We shall later

show that in some cases this rate of growth is sharp. For certain classes of

data f we can also show that 7m(f) _ C Hu_ where C is independent of
m L2

K and f. In these cases we have the estimate

(2.5) jehIL2 ( Cmll + Km+l)h m lUlL2

and so we have a bound on the relative error HehI_2/aUqL2.u An example of

such a class is data f which can be expanded in a sufficiently rapidly

convergent series of elgenfunctions of -A in _.

A proof of Theorem (2.1) for the model problem (2.1) will be presented

elsewhere. The proof depends on the finite element analysis of [16] together

with elliptic estimates and the following bound of the solution in terms of

the data
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C

(2.6) nUUL2(_) < _ nfnL2,

where C is independent of K and f. For more general problems where

(2.1b) is replaced by a radiation condition (which can be local or nonlocal,

see e.g., [3], [8] - [12])), the finite element analysis in [16] has been

extended to problems with different radiation conditions [9], [I0]. However,

(2.6) is not true, in general, and the strongest bound that we can establish

is

(2.7) NUHL2(_ ) _ _C HfNL2(fl)

where a _ 0 depends on the geometry, the dimension of the problem and the

radiation condition. In such cases we can establish the following bound for

the error eh

(2.8) HehNL2(fl) ( Cm(Km+l+a + l)hmIHUWL2(fl ) + ym(f)).

A proof of these results will appear elsewhere. We next consider the

validity of (2.7) for various problems with radiation boundary conditions. It

can be shown that for theone-dlmenslonal problem

i/

d2u K2u(x) = f(x) 0 _ x _ 1

(2.9) dx2
_u

u(0) = 0, _-_ (I) --iku(1)

where f(x) vanishes near x = I, (2.7) holds with a = O,
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We next consider the Helmholtz equation in a Cartesian wavegulde. Let

= {x _ [0,_], y _ [0,_]}, and let f = 0 near x = 7, and consider the

problem

(-A - KZ)u(x,y) = f(x,y) (x,y) _

(2.10)

u(0,y) = 0, u(x,_) = 0, Uy(X,0) = 0, Ux(_,y) = T(u),

where T(u) is the global boundary operator for outgoing modes introduced in

[8] and [I0]. In subdomains where f = 0, the solution to (2.9) can be

expressed as a sum of modes

io .x

(2.11) u = _ qj(y)e 3j=0

where

qj(y) = cos((j+ 1/2)y)

_j --4 K2 - (j+I/2)2

For K2 - (j +1/2)2 > 0, the jth mode is propagating and outgoing. For

K2 - (j+I/2)2 < 0, the jth mode decays exponentially and is called

evanescent. The values {j+ I/2 } are called cutoff frequencies. When K

equals a cutoff frequency the solution is not well-posed.

We can show that (2.7) holds for (2.10) with _ =I/2 provided K is

uniformly bounded away from a cutoff frequency. Furthermore (2.7) holds with

= 0 when the solution consists of a finite number of modes. Numerical
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results for a problem similar to (2.10) will be presented in Section 3.

Extensions of these results to exterior problems will appear elsewhere.

For m = 2, the estimate, a = 0, show that as K increases, the L2

error grows at a rate 0(K3h2). In order to show that this growth rate is

sharp we consider the difference equation in one dimension

(2.12) uj+ I - 2uj + uj_I + K2 h2 = 0uj

as a second-order approximation to the equation

(2.13) u + K2 u = 0.
xx

Equation (2.12) corresponds to discretizing (2.13) with piecewise linear

elements and lumping the mass matrix (i.e., the terms involving K2 in the

bilinear form). It can be seen that the argument below is also valid without

lumping.

Solutions to (2.12) are of the form

igx.

izjh 3 jh= e = e ; x =uj j ,
where

(2.14) zh = ± Kh[l + 0((Kh)2)].

If we wish to approximate the outgoing solution (as x + +_), the (+) sign

must be chosen in (2.14) and the approximate solution is
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l+O((Kh) 2)
u. eiZJh iKxj( )_ e •

3

Therefore,theerror ej is

iKx. ixj 0(K3h2)e. = e 3[e - I],3

and if we considera fixed region in x and assume K3h2 small, we obtain

NejNL2/HUNL2 = 0(K3h2).

3. Numerical Results

In order to numericallyvalidate the theory presented in Section 2, we

consider a model problem

+ u + K2u = O; 0 < x < _; 0 < y < _,
(3.1) Uxx YY ....

with boundaryconditions

u (x,O)= u(x,_)= 0
Y

u (O,y) = f(y)x

u (_,y) = T(u),
X

where the boundary operator T will be described below• We consider three
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examples. In example I, f(y) is chosen so that the exact solution is

i_ K2 - .25 x y
u(x,y) = e cos _ ,

and T(u) = 14 K2 - .25 u. In examples 2 and 3, f is chosen so that the

exact solution is

M
1 K2 I 2

u = _. ei_jx cos((j+_)y); £j = ,/ - (j+_) ,
j=O

where M = 4 for example 2 and M = 7 for example 3. The boundary operator

is the global operator T(u) referred to earlier which was introduced in [8]

for an underwater acoustics propagation model. When £. is real, the jth
3

mode in the solution has no decay in x and is called a propagating mode.

When %. is imaginary, the jth mode decays in x and is called evanescent.
3

A square N×N grid is used and the equations are solved by the pre-

conditioned conjugate gradient method described in [4]. Piecewlse linear

elements with lumping are used. Normalized L2 errors for the examples are

shown in Table I - III for different values of K and N.

In Table I and II the first three entries correspond to K3h 2 fixed

while the first and last two entries correspond to Kh fixed. It is clear

from the tables that the errors grow almost linearly in K for Kh fixed and

are nearly constant for K3h 2 fixed. In these examples, K is uniformly

bounded away from the cutoff frequencies and the estimate (2.5) is confirmed

numerically. (We have observed that this scaling of the error does break down

as K and N are decreased. This is to be expected from the estimate (2.5)

as K approaches 0.)



-12-

In Table III the first two entries correspond to K3h 2 fixed and the

first, third and fourth entries correspond to Kh fixed. For these entries,

K is not close to a cutoff frequency and the estimate (2.5) is again

confirmed. The last three entries contain values of K very near a cutoff

frequency. In these cases the errors do not scale as predicted and are in

fact considerably worse. This is because the constant depends on how close

K is to a cutoff frequency. The errors that would be observed in practice

depend on the sequence of K values, how close they are to cutoff

frequencies, and whether the modes close to cutoff are propagating or

evanescent.

Table I. Results forKxamplel

K N Error Kh K3h 2

4.16 65 .0120 .204 .173

5.45 97 .0137 .178 .173

6.60 129 .0147 .162 .173

6.24 97 .0182 .204 .260

8.32 129 .0252 ,204 .347

Table.ll. Results .for Example2

K N Error Kh K3h 2

4.16 65 .0133 .204 .173

5.45 97 .0120 .178 .173

6.60 129 .0114 .162 .173

6.24 97 .0165 .204 .260

8.32 129 .0227 .204 .347
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Table Ill. Results for Example 3

K N Error Kh K3h 2

4.16 65 .013 .204 .173

6.24 119 .013 .166 .172

6.24 97 .019 .204 .260

8.32 129 .025 .204 .347

5.45 97 .029 .178 .173

5.55 97 .045 .181 .183

6.60 129 .036 .162 .173

4. Implications

We conclude this paper by listing several computational implications of

the results in Section 2.

(a) Accuracy evaluations will have to account for the number of

wavelengths in the computational domain. The number of points per wavelength

will have to increase with the number of wavelengths to maintain accuracy.

Thus, the effects of this theory would be expected to become more important as

new numerical techniques and computer technology make the numerical solution

to (I.I) feasible for a larger number of wavelengths. For the simple model

problem (3.1) numerical experiments with a second-order finite difference code

indicate that we wish to choose the number of points N in each direction to be

N = .8(K%) 3/2 to achieve approximately a 7% L2 accuracy.

(b) The precise relationship between K and h to maintain a fixed

accuracy depends on both the order of the discretization scheme, the norm in

which it is necessary to maintain the accuracy, and also possibly on the



geometry and the boundary conditions. The advantages of using higher order

methods are greater as the number of wavelengths increases.

(c) Iterative methods for the solution of the linear systems of equations

obtained by dlscretlzing (I.I) are usually analyzed by studying the

convergence rate for fixed K as h + 0. In practice, K and h are

constrained by a given accuracy requirement and K increases over some

interval. Thus, for a second-order method and accuracy determined by the L2

norm of the error, these methods should be analyzed for K3h 2 fixed (provided

(2.5) is valid) and K increasing for the propagation models discussed in

this paper.
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