
. . . - - I
NASA Contractor Report 3254\ RtVi 1 NASA-CR-3254 19

84
°:5: ~ _ .J

PAN AIR - A Computer Pro]gram for
Predicting Subsonic or Supersonic
Linear Potential Flows .AbolLlt
Arbitrary Configuratio11s Using a
Higher Order Panel Method
Volume IV - Maintenance Document

(Version 3,,10)

David J. Purdon, Pranab K. Baruah, John E. Bussoletti, Michael A. Eplton, William A.

Massena, Franklin D. Nelson, and Kiyoharu Tsurusaki -111J1~'I~r.'~[If.III~"III"rll"III'li"I-J
NF02111

CONTRACT NAS2-12036
JANUARY 1990

i nilicnnt carlycolilll1p.rcinl potential, this infonnatio!1, which has been clevellOpecl tinder aU. S. GOVl"rI

program, is bem . ed within the United States in advance (If generall til' . e
duplicated and used"by the recI . IS led. Release of this information to other
domestic parties by the reci . ..,. ° 1('5 Him [plellse may be rna(~e .oniy wit~ pr~or

ropnnte export licenses. 1 hIS legencl sholl be marked on any repriffiilftldll ill.. [rt"p\IPQ m
w ole Qr in pnrt: hate for genera I release January 1992.

NJ\S/\

NASA Contractor Report 3254

PAN AIR - A Computer Program for
Predicting Subsonic or Supersonic
Linear Potential Flows About.
Arbitrary Configurations Using a
Higher Order Panel Method
Volume IV - Maintenance Document

(Version 3.0)

David J. Purdon, Pranab K. Baruah, John F.. Bussoletti, Michael A. Epton, William A. Massena,
Franklin D. Nelson, and Kiyoharu Tsurusaki
Boeing Military Airplane Company
Seattle , Washington

Prepared for
Ames Research Center, and
Langley Research .Center
under Contract NAS2-12036

and for the
Air Force Aeronautical Systems Division
Air Force Wright Aeronautical Laboratories
Naval Coastal Systems Center

NI\SI\
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field. California 94035

Page Missing in

Original Document

TABLE OF CONTENTS

Page

TABLE OF CONTENTS i
TABLE OF CONTENTS OF APPENDICES xi
LIST OF FIGURES xv
LIST OF FIGURES OF APPENDICES .

X1X
LIST OF TABLES xxiii
LIST OF TABLES OF APPENOICIES xxiv
SUMMARY xxvii

1.0 PAN AIR SOFTWARE SYSTEt4 1.1

1.1 I NTRODUCTI ON 1.1

1.2 SYSTEM OVERVIEW 1.1
1 .2. 1 Program Modules and Data Bases 1.1
1. 2.2 PAN AIR System Execution Flow 1.1
1 .2.3 Data Base Manager 1.2

1.3 SYSTEM COMPONENTS 1.4
1.3.1 JCL Cards for Initiation of PAN AIR 1.4
1 .3.2 Data Input 1.5
1.3.3 Data Bases 1.5
1.3.4 PAN AIR Modules 1.5

1.3.4.1 PAN AIR System External Interfaces 1.6
r-' 1.3.4.2 PAN AIR System Internal Interfaces 1.6

1.3."4.3 Sizing and Timing Estimates 1.6
1.3.4.4 Software Design Consideration 1.6

1.4 A GUIDE TO MODULE INTERPRETATION 1.7
1.4.1 Functional Decomposition and Structure 1.7
1 .4.2 Preface of Modules and Subprograms 1.?
1.4.3 Data Flow 1.8

1.4.3.1 Formal Parameters 1.9
1.4.3.2 Labeled Common 1.9
1.4.3.3 Data Base Communication 1.9

1.5 t;IAINTENANCE OF PAN AIR SOFTWARE 1.11
1.5.1 Update Feature 1.11
1. 5.2 Common Data Blocks 1. 12
1.5.3 Master Definition Modification and Maintenance 1. 12
1 .5.4 Documentation Maintenance 1.13

2.0 MODULE EXECUTION CONTROL (MEC) MODULE 2. 1

2. 1 INTRODUCTION 2.1

2.2 NEC OVERVIEW 2.1
2.2.1 Purpose of NEC 2. 1
2.2.2 MEC Input/Output Data 2. 1
2.2.3 Data Base Interface 2.1

~
2.3 MODULE DESCRIPTION 2.2

iii

TABLE OF CONTENTS (Continued) .-
Page

2.3.1 Overall Structure 2.2
2.3.2 Overlay Descriptions 2.2

2.3.2.1 MEC Overlay (0,0) 2.2
2.3.2.2 READUD Overlay (1,0) 2.2
2.3.2.3 PRDATA Overlay (1 ,1) 2.2
2.3.2.4 PREXEC Overlay (1,2) 2.2
2.3.2.5 GENDB Overlay (2,0) 2.2
2.3.2.6 GENCC Overlay (3,0) 2.2

2.3.3 MEC Data Base 2.3
2.3.4 MEC Interfaces 2.3

2.3.4.1 System Interfaces 2.3
2.3.4.2 External Interfaces 2.3
2.3.4.3 Internal Interfaces 2.3

2.3.5 Data Flow 2.3

2.4 LOWER LEVEL FUNCTIONS 2.3
2.4.1 Functional Decompositions 2.3
2.4.2 Subroutine Descriptions 2.3

3.0 DATA INPUT PROCESSOR (DIP) MODULE 3.1

3.1 I NTRODUCTI ON 3.1

3.2 DIP OVERVIEW 3.1 ~

3.2.1 Purpose of DIP 3. 1
3.2.2 DIP Input/Output Data 3.1
3.2.3 Data Base Interface 3. 1

3.3 MODULE DESCRIPTION 3.2
3.3.1 Overall Structure 3.2
3.3.2 Overlay Descriptions 3.2

3.3.2.1 DIP Overlay (0,0) 3.2
3.3.2.2 INITIAL Over1 ay (1,0) 3.2
3.3.2.3 GLOBDP Overlay (2,0) 3.2
3.3.2.4 NETWDP Overlay (3,0) 3.2
3.3.2.5 GEOMDP Overlay (4,0) 3.2
3.3.2.6 FLOWDP Overlay (5,0) 3.3
3.3.2.7 SURFLO Overlay (5,1) 3.3
3.3.2.8 FFDATA Overlay (5,2) 3.3
3.3.2.9 FORMOM Overlay (5,3) 3.3
3.3.2.10 PPPDIR Overlay (6,0) 3.3
3.3.2.11 PPGEOM Overlay (6,1) 3.3
3.3.2.12 PPPOIN Overlay (6,2) 3.3
3.3.2.13 PPCONF Overlay (6,3) 3.3
3.3.2.14 FINIS Overlay (7,0) 3.3

3.3.3 DIP Data Base 3.4
3.3.4 DIP Interfaces 3.4

3.3.4.1 System Interfaces 3.4
3.3.4.2 External Interfaces 3.4
3.3.4.3 Internal Interfaces 3.4 ,--.,.

3.3.5 Data Flow 3.4
c

iv

TABLE OF CONTENTS (Continued)

Page

3.4 LOWER LEVEL FUNCTIONS 3.4
3.4.1 Functional Decomposition 3.4
·3.4.2 Subroutine Descriptions 3.4

3.4.2.1 Subroutines from GLOBDP Overlay (2,0) 3.4
3.4.2.2 Subroutines from NETWDP Overlay (3,0) 3.7
3.4.2.3 Subroutines f.rom GEor~DP Overlay (4,0) 3.12
3.4.2.4 Subroutines from FLOWDP Overlay (5,0) 3.12
3.4.2.5 Subroutines from SURFLO Over1 ay (5,1) 3.12
3.4.2.6 Subroutines from FFDATA Overlay (5,2) 3.13
3.4.2.7 Subroutines from FORMOM Overlay (5,3) 3.15
3.4.2.8 Subroutines from PPGEOM Overlay (6,1) 3.16
3.4.2.9 Subroutines from PPPOIN Overlay (6,2) 3.16
3.4.2.10 Subroutines from PPCONF Overlay (6,3) 3.17
3.4.2.11 Subroutines from FINIS Overlay (7,0) 3.17

4.0 DEFINING QUANTITIES GENERATOR (DQG) MODULE 4.1

4. 1 INTRODUCTION 4.1

4.2 DQG OVERVIEW 4.1
4.2.1 Purpose of DQG 4.1
4.2.2 DQG"Input/Output Data 4.2
4.2.3 Database Interface 4.3

4.3 MODULE DESCRIPTION 4.3
4.3.1 Overall Structure 4.4
4.3.2 Overlay Descriptions 4.4

4.3.2.1 OPENER Overlay (l ,0) 4.4
4.3.2.2 NETDEF Overlay (2,0) 4.4
4.3.2.3 EDGDEF Overlay (3,0) 4.5
4.3.2.4 PRABUT Overl ay (3,1) 4.5
4.3.2.5 ABTMNT Overlay (3,2) 4.6
4.3.2.6 GAPSIZE Overlay (3,3) 4.6
4.3.2.7 MATCH Overl ay (3,4) 4.6
4.3.2.8 GAPPNL Overlay (3,5) 4.6
4.3.2.9 ADCPSG Overlay (3,6) 4.7
4.3.2.10 BNDYDF Overlay (4,0) 4.7
4.3.2.11 TOPSPL Overl ay (5,0) 4.7
4.3.2.12 SAEDGS Overlay (5,1) 4.7
4.3.2.13 SPLINR Overlay (5,2) 4.7
4.3.2 •. 14 PANDEF Overlay (6,0) 4.8
4.3.2.15 SUMMRY Overlay (7,0) 4.8

4.3.3 Module Data Base 4.8
4.3.4 Data Interfaces 4.8

4.3.4.1 System Interfaces 4.8
4.3.4.2 Subprogram Interfaces 4.8

4.3.5 Data Fl ow in DQG 4.8

4.4 LOWER LEVEL FUNCTIONS 4.11
4.4.1 Functional Decomposition 4.11
4.4.2· Subroutine Descriptions 4.12

v

TABLE OF CONTENTS (Continued) .-..

Page

5.0 MAG MODULE 5.1

5.1 INTRODUCTION 5.4
5.1 .1 Formulation 1, Morino's Method 5.4
5.1.2 Formulation 2, Hess' Method 5.7
5.1 .3 Definitions of Influence Coefficients 5.9

5.2 MAG OVERVIEW 5.13
5.2.1 Purpose of MAG 5.13

5.2.1.1 The Principle Datasets, AIC-MATRIX and 5.13
IC-MATRICIES

5.2.1.2 The Principle Dataset MAG-PANEL-DATA 5.18
5.2.1.3 The Auxiliary Datasets DATA-BASE-HEADER 5.18

and SYMMETRY
5.2.1.4 The Auxiliary Datasets COLMAP, COLMAP- 5.18

INVERSE and COLV~P-BULK
5.2.1.5 The Auxiliary Datasets ROWMAP, ROWMAP- 5.19

INVERSE and ROWMAP-BULK
5.2.1.6 The Matching Condition Datasets 5.19
5.2.1.7 The PANEL-GROUP Dataset 5.20

5.2.2 MAG Input/Output Data 5.21
5.2.3 Data Base Interfaces 5.22

5.3 MODULE DESCRIPTIONS 5.23 r'\

5.3.1 Overall Structure 5.23
5.3.2. Overlay Descriptions 5.23

5.3.2.1 MAG10, Overlay (l ,0) 5.23
5.3.2.2 MAG20, Overlay (2,0) 5.25

5.3.3 MAG Databases 5.26
5.3.3.1 PANDTA Database: Random Access to 5.27

Minimal Panel Data
5.3.3.2 FPDQ Database: Sequential Access to 5.28

Minimal Panel Data
5.3.3.3 ICTP Database: Sequential File Storage 5.28

of the Influence Coefficients for a
Control Point Block

5.3.4 Data Flow 5.31

5.4 LOWER LEVEL FUNCTIONS 5.32
5.4.1 Functional Decomposition 5.32
5.4.2 Functional Decomposition for the PIVC Subassembly 5.36
5.4.3 Subroutine Descriptions 5.37

6.0 REAL MATRIX SOLVER (RMS) MODULE 6.1

6.1 INTRODUCTION 6.1

6.2 Rt4S OVERVIEW 6.2
6.2.1 Purpose of RMS 6.2
6.2.2 RMS Output Data 6.2
6.2.3 Data Base Interfaces 6.2

vi

TABLE OF CONTENTS (Continued)

Page

6.3 MODULE DESCRIPTION 6.2
6.3.1 Overall Structure 6.2
6.3.2 Overlay Descriptions 6.2

6.3.2.1 RMS Overlay (0,0) 6.2
6.3.2.2 RMSINT Overlay (l ,0) 6.3
6.3.2.3 BLOCKA Overlay (2,0) 6.3
6.3.2.4 DCOMPO Overlay (3,0) 6.3

6.3.3 RMS Data Base 6.4
6.3.4 RMS Interfaces 6.4
6.3.5 Data Flow 6.4

6.4 LOWER LEVEL FUNCTIONS 6.4
6.4.1 Functional Decompositions 6.4
6.4.2 Subroutine Descriptions 6.4

7.0 RIGHT HAND SIDE (RHS) MODULE 7.1

7.1 INTRODUCTION 7.1

7.2 RHS OVERVIEW 7.1
7.2.1 Purpose of RHS 7.1
7.2.2 RHS Input/Output Data 7.1
7.2.3 Data Base Interface 7. 1
7.2.4 Role of RHS Within PAN AIR 7.1
7.2.5 Operating Environment 7. 1
7.2.6 Data Base Interfaces 7.1
7.2.7 Output 7.1

7.3 MODULE DESCRIPTION 7.2
7.3.1 Overall Structure 7.2
7.3.2 Overlay Descriptions 7.3

7.3.2.1 OPENDB Overlay (l ,0) 7.3
7.3.2.2 PBCAD Overlay (2,0) 7.3
7.3.2.3 RHSC Overlay (3,0) 7.3
7.3.2.4 KNOWN Overlay (3,1) 7.3
7.3.2.5 TRANSF Overlay (3,2) 7.3
7.3.2.6 KWNCTR Overlay (3,3) 7.3
7.3.2.7 PHSOLV Overlay (4,0) 7.4
7.3.2.8 RHSD Overl ay (5,0) 7.4

7.3.3 RHS Data Bases 7.4
7.3.4 RHS Interfaces 7.4

7.3.4.1 Internal Interfaces 7.4
7.3.4.2 External Interfaces 7.4

7.3.5 Data Flow 7.4

7.4 LOWER LEVEL FUNCTIONS 7.5
7.4. , Functional Decompositions 7.5
7.4.2 Subroutine Descriptions 7.5

8.0 MINIMAL DATA GENERATOR (MDG) MODULE 8.1

vii

TABLE OF CmlTENTS (Conti nued) .~

Page

8.1 INTRODUCTION 8.1

8.2 MDG OVERVIEW 8.1

8.2.1 Purpose of MDG 8.1
8.2.2 MDG Input/Output Data 8.1

8.2.2.1 Input 8.1
8.2.2.2 Output 8.1

8.2.3 Data Base Interfaces 8.2

8.3 MODULE DESCRIPTION 8.2

8.3.1 Overall Structure 8.3
8.3.2 Overlay Descriptions 8.3

8.3.2.1 (1,O) Overlay (OPDBI) 8.3
8.3.2.2 (2,0) Overlay (PMPY) 8.3
8.3.2.3 (3,0) Overlay (SNGCP) 8.3
8.3.2.4 (4,0) Overlay (AQCP) 8.4
8.3.2.5 (5,0) Over1 ay (BPSV) 8.5
8.3.2.6 (6,0) Overlay (GPQTY) 8.5
8.3.2.7 (7,0) Overlay (EASY) 8.5

8.3.3 MDG Data Bases 8.5
8.3.4 MGD Interfaces 8.5 ."\

8.3.4.1 External Interfaces 8.5
8.3.4.2 Internal Interfaces· 8.6

8.3.5 Data Flow 8.6

8.4 LOWER LEVEL FUNCTIONS 8.6
8.4.1 Functional Decomposition 8.6
8.4.2 Subroutine Definitions 8.6

9.0 POINT DATA PROCESSOR (PDP) ~1ODULE 9.1

9.1 I NTRODUCTI ON 9. 1

9.2 PDP OVERVIEW 9.1
9.2.1 Purpose of PDP 9.1
9.2.2 PDP Input/Output Data. 9.1

9.2.2.1 Input 9.1
9.2.2.2 Output 9.2

9.2.3 Data Base Interface 9.2

9.3 MODULE DESCRIPTION 9.2
9.3.1 Overall Structure 9.2
9.3.2 Overlay Descriptions 9.3

9.3.2.1 PDP Overlay (O,O) 9.3
9.3.2.2 OPDBI Overlay (1 ,0) 9.3
9.3.2.3 COMVEl Overl ay (2,0) 9.3
9.3.2.4 FLPROP Overlay (3,0) 9.3

.~
9.3.3 PDP Data Bases 9.4
9.3.4 PDP Interfaces 9.4

viii

TABLE OF CONTENTS (Continued)

9.3.4.1 System Interfaces
9.3.4.2 External Interfaces
9.3.4.3 Internal Interfaces

9.3.5 Data Flow

9.4 LOWER LEVEL FUNCTIONS
9.4.1 Functional Decomposition
9.4.2 Subroutine Descriptions

10.0 COP MODULE

10.1 INTRODUCTION

10.2 COP OVERVIEW
10.2.1 Purpose of COP
10.2.2 COP Input/Output Data
10.2.3 Data Base Interface

10.3 MODULE DESCRIPTION
10.3.1 Overall Structure
10.3.2 Overlay Descriptions

10.3.2.1 COP Overlay (0,0)
10.3.2.20PDBI Overlay (1,0)
10.3.2.3 COMPFM Overlay (2,0)
10.3.2.4 LEDGF . Overlay (3,0)
10.3.2.5 GENOUT Overlay (4,0)
10.3.2.6 AMCOEF Overlay (5,0)

10.3.3 COP Data Base
10.3.4 COP Interfaces

10.3.4.1 System Interfaces
10.3.4.2 External Interfaces
10.3.4.3 Internal Interfaces

10.3.5 Data Flow

10.4 LOWER LEVEL FUNCTIONS'

10.4.1 Functional Decomposition
10.4.2 Subroutine Descriptions

11.0 PPP MODULE

11.1 INTRODUCTION

11.2 PPP OVERVIEW
11.2.1 Purpose of PPP
11.2.2 PPP Input/Output Data

11 .2.2. 1 Input
11.2.2.2 Output

11.2.3 Data Base Interface

11.3 MODULE DESCRIPTION

Page

9.4
9.4
9.5
9.S

9.5
9.5
9.S

10.1

10.1

10.1
10.1
10.1
10.2

10.2
10.2
10.2
10.2
10.2
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.4
10.4

10.4

10.4
10.4

11.1

11 .1

11 .1
11.2
11.2
11. 2
11.3
11.3

11.3

ix

TABLE OF CmJTENTS (Conti nued)

Page

11 .3.1 Overall Structure 11.3
11.3.2 Overlay Descriptions 11.4

11.3.2.1 PPP Overlay (0,0) 11.4
11.3.2.2 PPPINT Overlay (1,0) 11 .4
11.3.2.3 GEOMPR Overlay (2,0) 11 .4
11.3.2.4 POINTP Overlay (3,0) 11.4
11.3.2.5 CONFIG Overlay (4,0) 11.4

11.3.3 PPP Data Base 11.4-
11 .3.4 PPP Interfaces 11.4
11.3.5 PPP Data Flow 11.5

11.4 LOWER LEVEL FUNCTIONS 11 .5
11 .4.1 Functional Decompositions 11.5
11.4.2 Subprogram Descriptions 11 .5

12.0 FIELD DATA PROCESSOR (FOP) MODULE 12.1

12.1 INTRODUCTION 12.1

12.2 FOP OVERVI~W 12.1
12.2.1 Purpose of FOP 12. 1
12.2.2 FOP Input/Output Data 12.1

12.2.2.1 Input 12.1
12.2.2.2 Output 12.1 -'\"

12.2.3 Internal Data Files 12.2

12.3 MODULE DESCRIPTION 12.2
12.3.1 Overall Structure 12.2
12.3.2 Detailed Descriptions 12.2

12.3.2.1 Preparation Processing 12.2
12.3.2.2 Offbody Processing (OFFBD) 12.2
12.3.2.3 Streamline Processing (STf.1LNE) 12.3
12.3.2.4 Potential and Velocity 12.3

Calculation (PVCAL)
12.3.3 Module Data Base 12.4
12.3.4 Data Interfaces 12.4

12.3.4.1 System Interfaces 12.4
12.3.4.2 Subprogram Interfaces 12.4

12.3.5 Data Flow in FOP 12.4

12.4 LOWER LEVEL FUNCTIONS 12.4
12.4.1 Functional Decomposition" 12.4
12.4.2 Subroutine Descriptions

13.0 PAN AIR LIBRARY (PALIB) 13.1

13.1 INTRODUCTION 13. 1

13.2 PALlB OVERVIEW 13.1
13.2.1 Purpose of PALlB 13.1 /'"""',
13.2.2 PALIB Output Data 13.1

x

TABLE OF CONTENTS (Continued)

13.2.3 Data Base Interfaces

Page

13.1

13.3 DESCRIPTION OF CLASSES OF SUBROUTINES IN PALIB 13.2
13.3.1 Matrix and Vector Manipulations 13.2
13.3.2 General Routines Related to Arbitrary Geometry 13.2
13.3.3 Special Routines Related to PAN AIR Geometry 13.2
13.3.4 General Mathematical Routines 13.2
13.3.5 Constrained Quadratic Least Squares Fit 13.3
13.3.6 Bl ank Common Management 13.3
13.3.7 Special Purpose SDMS-Related Routin~s 13.3
13.3.8 Real Matrix Solver 13.3
13.3.9 Free Field Format Input Routines 13.3
13.3.10 Miscellaneous 13.3
13.3.11 Data Input Processing Support Routines 13.4

14.0 SCIENTIFIC DATA MANAGEMEtJT SYSTH1 (SDMS)

1.0 INTRODUCTION
1.1 Data Dependence
1.2 Data Independence
1.3 Data Base Construction Process
1.4 SDMS Features

2.0 DATA BASE DEFINITION
2.1 SDMS Data Base Fundamentals
2.2 Master Definition Structure

2.2.1 Master Definition Syntax
2.2.2 Dataset Syntax
2.2.3 Password Set Syntax
2.2.4 Key Set Syntax
2.2.5 Dataset Body Syntax
2.2.6 Element Set Syntax

2.3 Master Definition Example
2.4 Limitations
2.5 Definition Processing

3.0 DATA BASE ACCESS FACILITIES
3.01 Data Base Initialization Routine (ISDMS)
3.1 Data Base Initialization Routine (DBOPEN)

3.1.1 Data Base Creation
3.1.2 Post Creation Access

3.2 Data Base Termination Routine (DBCLOS)
3.3 Dataset Mapping Routines

3.3.1 Static Mapping
3.3.2 Dynamic Mapping
3.3.3 Map Creation
3.3.4 Static Mapping Example
3.3.5 Dynamic Mapping Example
3.3.6 Restrictions
3.3.7 Permissible Usages
3.3.8 Map Usage Techniques

14.1

1
1
2
2
2

7
7
9
9

11
11
12
12
13
15
16
17

24
25
26
27
28
28
30
30
33
35
36
38
38
38
39

xi

TABLE OF CONTENTS (Concluded)

3.3.9 Map Construction in Overlay Programs
3.3.10 Preventing Mapping Error Aborts

3.4 Random Dataset Functions
3.4.1 Put Element Set (ESPUT)
3.4.2 Put DIRECT Element Set (DESPUT)
3.4.3 Get Element Set (ESGET)
3.4.4 Get DIRECT Element Set (DESGET)
3.4.5 Replace Element Set (ESREP)
3.4.6 Replace DIRECT Element Set (DESREP)
3.4.7 Creating and Accessing Random Datasets
3.4.8 DIRECT Dataset Usage

3.5 Sequential Dataset Functions
3.5.1 Open Element Set Sequences (ESSOPN)
3.5.2 Position Element Set Sequence (ESSPPOS)
3.5.3 Close Element Set Sequence (ESSCLS)
3.5.4 Put Into Next Element Set (ESSPUT)
3.5.5 Get From Next Element Set (ESSGET)
3.5.6 Using Sequential Datasets

3.6 Miscellaneous Date Base Functions

4.0 ERROR HANDLING

5.0 DIAGNOSTIC FEATURES

6.0 RECOVERY OPTIONS

7.0 ACCESS TO SDMS SUBROUTINES

15.0 SDMS CONVERSION

15.1 INTRODUCTION

15.2 MACHINES AND OPERATING SYSTEMS TO WHICH SDMS
HAS BEEN CONVERTED

15.3 SUMMARY OF CONVERSION PROBLEMS BY SUBPROGRAM

15.4 PURPOSE OF ASSEMBLY LANGUAGE ROUTINES

16.0 SOFTWARE GLOSSARY

17.0 REFERENCES

xii

".--..,

Page

40
40
41
41
41
42
43
43
44
45
48
50
50
50
51
51
51
52
54

55

64
.""

65

66

15.1

15.1

15.3

15.3

15.4

16.1

17.1

TABLE OF CONTENTS OF APPENDICES

Page

SYSTEM

APPENDIX 1-A SUMf4ARY OF PAN AIR MODULES 1-A.1

APPENDIX 1-8 EXAMPLE OF HOW TO USE SDMS 1-B.1

MEC

APPENDIX 2-A TREE STRUCTURE DIAGRAM 2-A.1

APPENDIX 2-B MEC FUNCTIONAL DECOMPOSITION 2-B.1

APPENDIX 2-C DATA BASE COMMUNICATIONS CHART 2-C.1

APPENDIX 2-D MEC DATA BASE MASTER DEFINITION 2-D.1

DIP

APPENDIX 3-A TREE STRUCTURE 3-A.1

APPENDIX 3-B DIP FUNCTIONAL DECOMPOSITION 3-B.1

APPENDIX 3-C DATA BASE CO~1MUNICATIONS CHART 3-C.1
r"

APPENDIX 3-D MASTER DEFINITION 3-0.1

DQG

APPENDIX 4-A DQG TREE STRUCTURE 4-A.1

APPENDIX 4-B FUNCTIONAL DECOMPOSITION OF DQG 4-B.1

APPENDIX 4-C DATA BASE COMMUNICATION CHART 4-C.1

APPENDIX 4-0 DQG DATA BASE MASTER DEFINITION 4-0.1

APPENDIX 4-E ERROR MESSAGES IN DQG 4-E.1

APPENDIX 4-F ADDITIONAL DIAGNOSTIC OUTPUT 4-F .1

APPENDIX 4-G SAf4PLE OUTPUT FROM DQG 4-G.1

APPENDIX 4-H INDEXING SCHEMES IN DQG 4-H.1

APPENDIX 4-1 AUTOMATIC ABUTMENT SEARCH 4-1.1

APPENDIX 4-J ABUTMENT INTERSECTION SEARCH 4-J.1

APPENDIX 4-K OUTER SPLINE CONSTRUCTION 4-K.1
~

APPENDIX 4-L GAP FILLING PANELS 4-L.1

xiii

TABLE OF CONTENTS OF APPENDICES (Continued) ,~

Page

APPENDIX 4-M SELECTION OF BOUNDARY CONDITIONS 4-M.1

MAG

APPENDIX 5-A TREE STRUCTURE 5-A.1

APPENDIX 5-B MAG FUNCTIONAL DECOMPOSITION 5-B.1

APPENDIX 5-C DATA BASE COMMUNICATIONS CHART 5-C.1

APPENDIX 5-0 MASTER DEFINITION 5-0.1

APPENDIX 5-E THE UPDATE CAPABILITY 5-E.1

APPENDIX 5-F BLANK COMMON MANAGEMENT 5-F .1

APPENDIX 5-G THE PARTIAL COLUMN METHOD 5-G.1

RMS

APPENDIX 6-A TREE STRUCTURE DIAGRAM 6-A.1

APPENDIX 6-B RMS FUNCTIONAL DECOMPOSITION 6-B.1

APPENDIX 6-C DATA BASE CO~lMUtHCATIONS CHART 6-C.1

APPENDIX 6-0 R~IS AND RMST DATA BASE MASTER DEFINITIONS 6-0.1

APPENDIX 6-E RMS ERROR MESSAGES 6-L1

RHS

APPENDIX 7-A TREE STRUCTURE OF RHS 7-A.1

APPENDIX 7-B FUNCTIONAL DECOMPOSITION 7-B.1

APPENDIX 7-C DATA BASE COMMUNICATIONS CHART 7-C.1

APPENDIX 7-0 DATA BASE NASTER DEFINITIONS 7-0.1

APPENDIX 7-E THE DIP FULL CONSTRAINT TRANSCRIBER 7-L1

APPENDIX 7-F THE UPDATE CAFABILITY 7-F .1

MDG

APPENDIX 8-A TREE STRUCTURE DIAGRAM 8-A.1

APPENDIX 8-B MDG FUNCTIONAL DECOMPOSITION 8-B.1 --,
APPENDIX 8-C DATA BASE COMMUNICATIONS CHART 8-C.1

xiv

TABLE OF CONTENTS OF APPENDICES (Continued)

Page

APPENDIX 8-0 MASTER DEFINITION 8-0.1

APPENDIX 8-E SYMMETRIZATION 8-E.l

APPENDIX 8-F MDG LIBRARY FUNCTIONAL DECOt:IPOSITION 8-F .1

APPENDIX 8-G MDG LIBRARY USAGE 8-G.l

PDP

APPENDIX 9-A TREE STRUCTURE 9-A.l

APPENDIX 9-B PDP FUNCTIONAL DECOMPOSITION 9-B.l

APPENDIX 9-C DATA BASE COMMUNICATIONS CHART 9-C.1

APPENDIX 9-0 MASTER DEFINITION OF PDP DATA BASES 9-0.1

COP

APPENDIX 10-A TREE STRUCTURE 10-A.1

APPENDIX 10-B FUNCTIONAL DECOMPOSITION 1 O-B. 1

APPENDIX 10-C DATA BASE COMMUNICATIONS CHART lO-C.1

APPENDIX 10-D MASTER DEFINITION 1 O-D. 1

PPP

APPENDIX ll-A TREE DIAGRAM ll-A.l

APPENDIX 11-B PPP FUNCTIONAL DECOMPOSITION 11-B.l

APPENDIX ll-C DATA BASE COM~1UNICATION CHART 11-C.l

APPENDIX 11-D PPP ERROR MESSAGES 11-D.1

APPENDIX 11-E GEOMETRY PLOT FILE ll-E.1

APPENDIX 11-F POINT DATA PLOT FILE 11-F .1

APPENDIX 11-G CONFIGURATION FORCES AND MOMENTS 11-G.1

FOP

APPENDIX 12-A TREE STRUCTURE 12-A.1

APPENDIX 12-B FUNCTIONAL DECOMPOSITION OF FDP 12-B.l

APPENDIX 12-C DATA BASE COMMUNICATIONS CHART 12-C.l

xv

PALIB

xvi

TABLE OF CONTENTS OF APPENDICES (Concluded)

APPENDIX 12-D

APPENDIX 13-A

APPENDIX 13-8

FDP INTERNAL DATASETS

TREE PLOT FILE DIAGRAMS OF PALIB

CONSTRAINED QUADRATIC LEAST SQUARES
FIT SUBROUTINES

Page

12-D.1

13-A.1

13-6.1

Figure

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1. 10

1. 11

1. 12

1. 13

1. 14

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

LIST OF FIGURES

PAN AIR Software System

Program Modules and Data Bases

PAN AIR Data Flow

Example of Master Definition Structure in SDMS

Deck Arrangement for PAN AIR Execution

Program/Subprogram Structure

Excerpt from DIP Master Definition

Excerpt from DQG Master Definition

DQG Data Base Communication Chart, First Form
for Overlay (1,0)

Portion of Glossary of Subroutine DIPDAT of the
DQG Module

Excerpt from Common Block /ABUT/ in Subroutine DIPDAT
of the DQG Module

DQG Data Base Communication Chart, Third Form for
Overl ay (1,0)

Maps of Dataset USER-ABUT from DIP and DQG Data Bases
to DQG Module

Summary of Example Data Flow Analysis

MEC Structure

Data Flow in MEC

DIP Structure

Structure and Data Flow of Overlay (1,0)

Structure and Data Flow of Overlay (2,0)

Structure and Data Flow of Overlay (3,0)

Structure and Data Flow of Overlay (4,0)

Structure and Data Flow of Overlay (5,0)

Structure and Data Flow of Overlay (6,0)

Page

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

- 1.31

1.32

1.33

1.34

2.5

2.6

3.19

3.22

3.23

3.26

3.29

3.30

3.36

xvii

LIST OF FIGURES (Continued)

Figure

3.8 Structure and Data Flow of Overlay (7,0)

3.9 DIP Data Execution Flow

4.1 III ustrati on of Network, Abutment and Panel

4.2 Top Level Structure of DQG

4.3 Top Level Structure of Overlay (3,0)

4.4 Top Level Structure of Overlay (5,0)

4.5 Structure and Data Flow of Overlay (1,0)

4.6 Structure and Data Flow for Overlay (2,0)

4.7 Structure and Data Flow for Overlay (3,1)

4.8 Structure and Data Flow for Overlay (3,2)

4.9 Structure and Data Flow for Overlay (3,4)

4.10 Structure and Data Flow for Overlay (3,5)

4.11 Structure and Data Flow for Overlay (3,6)

4.12 Structure and Data Flow for Overlay· (4,0)

4.13 Structure and Oats Flow for Overlay (5,1)

4.14 Structure and Data Flow for Overlay (5,2)

4.15 Structure and Data Flow for Overlay (6,0)

4.16 Structure and Data Flow for Overlay (7,0)

5.1 Data Base Relationships

5.2 Overall Program Structure Diagram, Including PIVC
Subassembly

5.3 Sub1ibraries Used by MAG

5.4 Data F10\'/ Diagram for MAG Giving Data Activity by Map
Name

5.5 List of All Map and File Names

6.1 Top Level Structure of RMS

6.2 Structure of Overlay (2,0) of RMS

xviii

Page

3.39

3.40

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

5.39

5.40

5.41

5.42

5.43

6.6

6.7

r'.

Figure

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4

7.5

7.6

7.7

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

9.1

9.2

9.3

9.4

9.5

9.6

10.1

LIST OF FIGURES (Continued)

Data Base Relationships

Structure and Data Flow of Overlay (1,0)

Structure and Data Flow of Overlay (2,0)

Structure and Data Flow of Overlay (3,0)

Data Base Relationships

Structure and Data Flow of RHS

Structure and Data Flow for Overlay (1,0)

Structure and Data Flow for Overlay (2,0)

Structure and Data Flow for Overlay (3,0)

Structure and Data Flow for Overlay (4,0)

Structure and Data Flow for Overlay (5,0)

Data Base Relationships

Execution and Data Flow of Overlay (1,0)

Execution and Data Flow of Overlay (2,0)

Execution and Data Flow of Overlay (3,0)

Execution and Data Flow of Overlay (4,0)

Execution and Data Flow of Overlay (5,0)

Execution and Data Flow of Overlay (6,0)

Execution and Data Flow of Overlay (7,0)

Data Base Relationships

PDP Structure and Data Interfaces

Structure and Data Flow of Overlay (0,0)

Structure and Data Flow of Overlay (1,0)

Structure and Data Flow of Overlay (2,0)

Structure and Data Flow of Overlay (3,0)

CDP Structure - Overlay (0,0)

Page

6.8

6.9

6.10

6.11

7.7

7.8

7.9

7.1 °
7.11

7.12

7.13

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

9.11

9.12

9.13

9.14

9.15

9.16

10.9

xix

LIST OF FIGURES (Concluded)

Figure Page

10.2 COP Structure - Overlay (l ,0) 10.10

10.3 COP Structure - Overlay (2,0) 10.11

10.4 COP Structure - Overlay (3,0) 10.12

10.5 COP Structure - Overlay (4,0) 10.13

10.6 COP Structure - Overlay (5,0) 10.14

10.7 Data Execution Flow for Forces and Moments 10.15

10.8 Data Execution Flow for Added Mass Coefficients 10.16

11.1 Top Level Structure of PPP 11.13

11.2 Structure and Data Flow of PPPINT Overlay(l,O) 11.14

11.3 Structure and Data Flow of GEOMPR Overlay (2,0) 11.15

11.4 Structure and Data Flow of POINTP Overlay (3,0) 11.16

11.5 Structure and Data Flow of CONFIG Overlay (4,0) 11.17

11.6 External Data Interfaces 11.18

12.1 FOP External Interfaces 12.8

12.2 FOP Internal Interfaces 12.9

12.3 Offbody Internal Interfaces 12.10

12.4 Streamline Internal Interfaces 12.11

12.5 PVCAL Internal Interfaces 12.12

xx

1-B.1

1-B.2

1-B.3

4-H.1

4:..H.2

4-H.3

4-H.4

4-H.5

4-H.6

4-H.7

4-H.8

4-H.9

4-H.10

4-H. "

4-H.12

4-H.l3

4-H .14

4-H.15

4-H.l6

4-H.l7

4-H.18

4-H.l9

4-H.20

4-H.2l

4-H.22

4-H.23

LIST OF FIGURES OF APPENDICES

Inefficient Use of SDMS

A More Efficient Approach to the Problem of Figure 1

Key Set for Example in Figure 1-B.2

The Panel

The Subpanels

Indexing of Sub panel Points

A Network

Coarse Grid Lattice Indices (M,N)

Fine Grid Lattice Indices (MfNF)

Indexing at Edge Points

Panel Lattice Indices (MpN p)

Control Point Indexing

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Page

1-B.8

1-B.9

1-B. 1 0

4-H .18

4-H.19

4-H.20

4-H.21

4-H.22

4-H.23

4-H.24

4-H.25

4-H.26·

4-H .• 27

4-H.28

4-H.29

4-H.30

4-H.3l

4-H.32

4-H.33

4-H.34

4-H.35

4-H.36

4-H.37

4-H.38

4-H.39

4-H.40

xxi

LIST OF FIGURES OF APPENDICES (Continued)

4-H.24 Indexing of Singularity Parameters

4-H.2S Indexing of Singularity Parameters

4-H.26 Indexing of Singularity Parameters

4-H.27 Indexing of Singularity Parameters

4-H.28 Indexing of Singularity Parameters

4-1.1 Sample Configuration Illustrating Abutments

4-1.2 Configuration for Example Discussed in Paragraph 4-1.4

4-1.3 A Special Case Treated Correctly by Subroutine CONABT

4-J.1 Example of an Abutment Between Two Network Edges

4-J.2 Example of an Abutment Intersection

4-J.3 An Abutment Intersection with 6 Abutments

4-J.4 Another Abutment Intersection with 4 Abutments

4-J.S Line Segment and Point Deagrams Corresponding to
Three Abutment Intersections

4-J.6 An Example of a Graph

4-J.7 Illustration of Irreducible Subgraphs

4-J.8 Assignment of an Index to All Branches and
Nodes of a Graph

4-J.9 Abutment Intersections at Collapsed Edges of Networks

4-J.10 Data Flow and Program Operation for Intersection
Construction

4-J.11 Data Flow and Program Operation for Matching
Assignment

4-J.12 Configuration for Example of Abutment Intersection
Search

4-J.13 Abutments in Example Configuration

4-J.14 Abutment and Corner Point Indexing

4-J.15 Doublet Matching Assignments at the Conclusion of the
Abutment Intersection Analysis

xxii

Page

4-H.41

4-H.42

4-H.43

4-H·fl4

4-H.45

4-1.15

4-1.16

4-1.17

4-J.22

4-J.23

4-J.24

4-J.24

4-J.2S

4-J.26

4-J.26

4-J .27

4-J.28

4-J .29

4-J .30

4-J .31

4-J.32

4-J .33

4-J .34

LIST OF FIGURES OF APPENDICES (Continued)

4-K.l Singularity Parameters Used for Smooth Abutment

4-K.2 Storage at Corner Point Coordinates and Singularity
Parameter Indices

4-K.3 Surrounding Singularities for Corner Point Spline
Computation on Smooth Edge

4-K.4 Surrounding Singularities for Edge Midpoint Spline
Computation on Smooth Edge

4-K.5 Alternate Spline Vector Selection

4-K.6 Point Selection for Alternate Spline Vectors

4-K.7 Location of Doublet Parameters on an Analysis Edge

4-K.8 Dependence of Spline Vectors for Analysis Edges

4-K.9 Unit Spline Point for Collapsed Network Edge

4-K.10 Sequence of Edge Midpoint Selection for Splining
Corner Points on Analysis Edges

4-K.ll Singularity Parameter Locations for Design Edges
of Networks

4-K.12 Singularity Parameters for Intermediate Spline
Vector Construction

4-K.13 Surrounding Point Locations for Corner Splines for
Doublet Analysis Network

4-K.14 Surrounding Point Locations for Column Edge Midpoint
Splines of Doublet Analysis Network

4-K.15 Surrounding Point Locations for Row Edge Midpoint
Splines for Doublet Analysis Network

4-K.16 Surrounding Point Locations for Corner Point Splines
for Doublet Design Networks

4-K.l7 Surrounding Point Locations for Row Edge Midpoint
Splines for Doublet Design Networks

4-K.l8 Surrounding Point Locations for Column Edge Midpoint
Splines for Doublet Design Networks

4-K.19 Point Selection for Corner Point Near Edge, Analysis
Network Omi t

Page

4-K.16

4-K.17

4-K.18

4-K.19

4-K.20

4-K.21

4-K.22

4-K.22

4-K.23

4-K.24

4-K.2S

4-K.25

4-K.26

4-K.27

4-K.28

4-K.29

4-K.30

4-K.3l

4-K.32

xxiii

LIST OF FIGURES OF APPENDICES (Concluded)

4-K.20 Point Selection for Row Edge Midpoint Near Edge,
Analysis Network

4-K.21 Point Selection for Column Edge Midpoint Near Edge

4-K.22 Point Selection for Center Point Near Edge

4-K.23 Point Selection for Row Edge Midpoint Near Edge

4-K.24 Point Selection for Column Edge Midpoint Near Edge

4-K.25 Illustration of Operation of Algorithm

4-K.26 Surrounding Point Locations for One Row Network

4-K.27 Surrounding Points for Source Analysis Spline
Computation

4-K.28 Source Spline Point Selected for One Column/Row
Networks

4-K.29 Surrounding ~oints for Source Design II Spline
Computation

4-L.l Addition of Gap Filling Panles to an Abutment

4-L.2 Indexing of points in a gap filling panel

4-L.3 Excluded Special Case of Multiple Valued Doublet
Strength for Gap Filling Panel

5-D.l Inclusion of Panel Influence Coefficients in the
Panel Group ~n Control Point Block IC Buffer

5-D.2 Tree Diagram for the PIVC Subassembly

,5-F.1 Index to Summary of Substantial 1-0

5-F.2 Error Conditions Detected by MAG

13-B.l Tree Structure of Constrained Least Squares Subroutines

13-B.2 Outline of Algorithm Implemented in LSQSFX

xxiv

Page

4-K.33

4-K.34

4-K.35

4-K.36

4-K.37

4-K.38

4-K.39

4-K.40

4-K.41

4-K.42

4-L.5

4-L.6

4-L. 7

5-D.6

5-D.7

5-F.6

5-F.7

13-B.9

13-B.10

Table

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

9.1

11.1

11.2

11.3

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

13.10

13.11

15.1

15.2

LIST OF TABLES

PAN AIR Installation Considerations

Module and Data Base Interactions

Validation Case CPU Time Requirements

Validation Case I/O Volume Requirements

Validation Case I/O Frequency Requirements

Module Size and Compilation Time

Non-ANSI FORTRAN Code Usage

CAL Code Usage

List of Surface Flow Quantities

Maximum and Typical Counts on Problem Options

PDP Parameter Name List

COP Parameter Name List

Matrix and Vector Manipulation Routines

General Geometry Routines

PAN AIR Geometry Routines

General Mathematical Routines

Constrained Quadratic Least Squares Fit Routines

Blank Common Management Routines

Special Purpose SDMS-Related Routines

Real Matrix Solver Routines

Free Field Format Input Routines

Miscellaneous Routines

Data Input Processing Support Routines

Conversion Tasks Grouped by Subprogram

DDP Conversion Tasks Grouped by Subprogram

Page

1.14

1.15

1.16

1.16

1.17

1.18

1.19

1.20

9.10

11.9

11.10

11.11

13.5

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15

15.5

15.15

xxv

LIST OF TABLES OF APPENDICES ~-

Table Page

4-H.l Source/Doublet Parameters 4-H.6

4-H.2 Source/Doublet Parameters 4-H.7

4-H.3 Source/Doublet Parameters 4-H.8

4-H.4 Source/Doublet Parameters 4-H.9

4-H.S Source/Doublet Parameters 4-H. 1 0

4-H.6 Source/Doublet Parameters 4-H.11

4-H.7 Source/Doublet Parameters 4-H.12

4-H.8 Source/Doublet Parameters 4-H.13

4-H.9 Source/Doublet Parameters 4-H.14

4-H.1O Source/Doublet Parameters 4-H .1S

4-H.11 Source/Doublet Parameters 4-H.16

4-H .12 Source/Doublet Parameters 4-H.17

4-1.11 IABUT Array 4-1.11

4-1.2 Generation of Expanded Abutments
network 2 edge 4

for 4-1. 12

4-1.3 The ILIST Array 4-1.12

4-1.4 IXPAND Arrays 4-1.13

4-I.S Final Abutment Description 4-1.14

4-J .1 Connections in the graphs of Figure 4-J.8 4-J.12

4-J.2 Sorting table whose generation determines the
number of irreducible subgraphs in a graph

4-J .13

4-J.3 Edge Abutments for the example in Figure 4-J.12 4-J .14

4-J .4 Empty Space Abutments for the example in 4-J.15
Figure 4-J.13

4-J .5 IABUTS Array for the example of Figure 4-J .16
4-J.12 and 4-J.13

4-J.6 ICPMAP array for the example in Figure 4-J .17
4-J.12 and 4-J.13 ,~

xxvi

I~
LIST OF TABLES OF APPENDICES (Concluded)

Table Page

4-J.7 The list of Connections
Fi gure 4-J. 12

for the example of 4-J.18

4-J.8 Transition of array CPLST during abutment 4-J .19
intersection search in subroutine NTRLST

4-J.9 Abutment Intersections in example of 4-J .20
Fi gure 4-J. 12

4-J.10 PNOO Array for First Intersection 4-J.21

4-J .11 CPLIST Array for First Intersection 4-J.21

4-J .12 NOOSEG Array for First Intersection 4-J.21

4-K.l Values for arrays ISH, LHtXY and OVF 4-K.1S

4-M.1 Boundary Condition Selection 4-M.6

4-t~. 2 Boundary Condition Selection 4-M.7

12-0.1 Basic Streamline Data 12-0.4·

xxvii

Page Missing in

Original Document

FOREWORD

NASA CR 3254 is published in"two parts. Part 1 contains sections 1 through 5.
Part 2 contains sections 6 through 17, and appendices 1 through 13. The table of contents,
including a listing of figures and tables, is repeated in each part.

xxix

Page Missing in

Original Document

SUMf·1ARY

The PAN AIR system was written in the eFT (GRAY Fortran) language except
for a few CAL (CRAY Assembly Language) subprograms in the libraries.
Structured programming techniques were used to provide code documentation and
maintainability. The operating system is COS (CRAY Operating System).

The system is comprised of a data base management system, a program
library, an execution control module and eleven separate FORTRAN technical
modules. Each module calculates part of the posed PAN AIR problem. The data
base manager is used to communicate between modules and within modules. The
technical modules must be run in a prescribed fashion for each PAN AIR
problem. In order to ease the problem of supplying the many JCL statements
required to execute the modules, the JCL statements are created by
procedures. .

In this volume, an overview of the PAN AIR software is given in section
1.0. Sections 2.0 through 12.0 describe the individual modules and contain
information describing program structure, functional decomposition, data base
communication, subroutine contents, program tree structure, data base
structure and details of those major algorithms used in the module which are
not straightforward and not described elsewhere. Sections 13, 14 and 15
describe the PAN AIR Library Software (PALlB), the use of the Scienti fic Data
Management System (SDMS), and the operating system dependant features of SDMS
respectively. Section 16 contains the Software Glossary followed by a list of
references. Each section is designed to lead the reader through the main
structural code. It is not intended to be a detailed description of a module

r-'. since the structured code and comments provide this information.

Most of this document has not changed from the previous version. Unlike
previous versions, however, this document covers only version 3.0 of PAN AIR.
The major changes are summarized below by section.

Section 1 System overview descriptions and program statistics now apply
strictly to version 3.0.

Section 2 ~lajor portions of the code in the MEC module, which generate Cyber
control cards, are not executed. The routines are referenced but
no longer described.

Section 3 An additional overlay (5,2) was added to the DIP module to
interpret streamline and offbody directives.

Section 4 Appendix 4-M more closely describes the way the code selects
boundary conditions.

Section 5 This is a complete rewrite of the description of the fviAG mOdule.

Section 8 In the sixth overlay, GPQTY, was rewritten to implement new edge
splines.

Section 12 This is a new section to aid in maintaining the FDP module.

xxxi

Section 13 This section completely describes only the PAN AIR Library
routines used by version 3.0.

Section 14 The reprint of the Boeing Cyber sor~s User's fvlanual is prefaced by
comments which make it applicable to the CRAY version.

Section 15 This is a new section that identifies the requirements for
converting SDMS to another machine.

Section 16 Some CRAY terms were added to this glossary.

Section 17 The CRAY Operating System Manual was added as a reference.

The tree structure diagrams and master definition listings have been
moved to the installation tape. They were previously printed in Appendix A
and D of each of the sections. There are cross references in the Maintenance
Document and the installation instructions.

The authors wish to thank Dr. Emilio J. Zeppa, Dr. John.Wai and Dr.
Kenneth W. Sidwell of the Boeing Company and Dr. Alfred E. fvlagnus formerly of
the Boeing company for their efforts in reviewing and/or preparing portions of
this document. The authors also wish to extend their appreciation to Bonnie
J. Jones, Mary A. Kellie, Kathleen J. Christianson and Particia S. Bradley of
the-Boeing Company for their assistance in typing •.

xxxii

1.0 PAN AIR SOFTWARE SYSTEM

1.1 INTRODUCTION

This section introduces the PAN AIR software system. The major
components are the 11 program modules, a database management system, a library
of subprograms and the operating system. The components of the system are
described in some detail and their relation to one another is explained. The
use of the various charts which appear in later sections (e.g., the
functional-decomposition charts, data-flow charts, etc.) is illustrated. The
CPU, memory and I/O resources required by PAN AIR are detailed. A summary of
the PAN AIR Modules is presented in Appendix l-A, and an overview of the
database management is presented in Appendix l-B. Finally,
software-maintenance procedur.es are outlined in Paragraph 1.5.

1.2 SYSTEM OVERVIEW

The PAN AIR software system consists of several parts. Figure 1.1
illustrates these parts and their overall relationship to one another.
User-supplied JCL (Job Control Language) statements activate the operating
system by invoking special PAN AIR JCL procedures which execute the
appropriate PAN AIR modules in sequence. The MEC (Module Execution Control)
module is always executed to define certain properties of any databases
created by the modules. These databases are generated using the Scientific
Data Management System (SDMS). The DIP (Data Input Processor) module is
always executed, since it processes all input data for all other modules. In
addition, all modules call a subroutine library, PALIB, to perform certain
common tasks. During installation of the PAN AIR software system at a user's
computer site, the special program DDP (Data Definition Processor) is used to
define the structure of each database. This latter procedure is subsequently
performed only when a database structure must be modified. (See paragraphs
1.3.3 and 1.5.3)

1.2.1 Program Modules and Databases

The ten program modules, the MEC module and the databases generated by
the modules are illustrated in Figure 1.2. The purpose of each module is also
defined. The implied execution sequence is for a typical PAN AIR problem.

1.2.2 PAN AIR System Execution Flow

The normal sequence of operation for the PAN AIR software system is
displayed in Figure 1.3 and the deck arrangement for PAN AIR execution is
shown in Figure 1.5. User-supplied control statements invoke special PAN AIR
JCL procedures which execute the modules in the proper sequence and usually
generate the user directives for r~EC. The user input-data module DIP is then
executed. From then on, module after module is executed in sequence.
Databases are created and used for internal data-storage and for communication
between modules. Printed output is always generated by the MEC and DIP
modules. Other printed output is obtained from the DQG, PDP, FOP, COP and PPP
modules if requested by the user through DIP input. The PPP module also
generates a plot file on disk if requested.

1.1

1.2.3 Database Manager

The Scientific Data Management System (SDMS) is a set of CFT (CRAY
FORTRAN) and CAL (CRAY Assembly Language) subroutines (the SDMS Library) which
are employed in the PAN AIR system to perform nearly all disk I/O (i.e., it
replaces FORTRAN I/O). Unlike FORTRAN I/O, SDMS forces the user to design the
database before the design of the various modules that access it. Thus,
structuring the data in a logical sense early in the design cycle will support
the design of a well-structured module. This section is an introduction to
the concepts and structures of SDMS.

The major collection of data in SDMS is the database. Each database is
described by an input file called a Master Definition file, which describes
the data within the database.

A database is a collection of more basic quantities called datasets.
Datasets are analogous to files, and are defined in the Master Definition by
names containing up to 20 characters.

Each dataset consists of one or more element sets. Element sets are
similar to records, and are distinguished from one another by the values of a
set of data-items called keys. A keyset is the collection of up to ten
data-items where varues distinguish one element from another. An element set
consists of a collection of scalars, variable-length or fixed-length vectors
in any combination. Each is described in the Master Definition by a name
containing up to 20 characters.

Figure 1.4 illustrates an example of a Master Definition file for a
database. Each module in the PAN AIR system creates one or more databases to
be used for temporary storage or for data communication between modules. The
Master Definition file is discussed in paragraph 1.4.3.3.

A database can be created after creating a Master Definition file using
DDP (Data Definition Processor). The database is created by a sequence of
calls to routines in the SDMS Library. First, subroutine ISDMS (Initialize
SDMS) is called to define areas in CM (Central t~emory) which will be used to
store buffer arrays required by SDMS. Then, subroutine DBOPEN (Database Open)
is called to create four unblocked physical disk-files, which hold all of the
database information. In PAN AIR, the routine PAOPEN (in PALIB) orchestrates
the call the DBOPEN.

Communication channels between the program and the database are defined
by SDMS maps. A map sets up a correspondence between the program variables
(FORTRAN name for a quantity) and the elements (SDMS names for the quantities)
of a dataset as defined in the Master Definition file for the database. There
are two kinds of maps: static maps and dynamic maps. In a static map,
program variables are put in an exact correspondence with data items
(elements) in the database. In a dynamic map, the data items on the database
which are to be transferred are mentioned, but the program variables are left
unspecified until the I/O operation is executed. PAN AIR uses both dynamic
and static maps. A map may mention any subset of the data items and must
always mention all data items which are part of the keyset of the dataset.
Appendix l-B, which gives an example of how to use SDMS to access a PAN AIR

1.2

~, database and illustrates a static- and a dynamic-map definition. A call to
subroutine DSMAP (Define Dataset Map) initiates the map-definition process.
This call contains as its arguments the name associated with the map, the name
of the dataset which the map refers to, and the name of the database which
contains the dataset. The map is established by calling SVMAP (Static
Variable Map) to define a static map and/or DVMAP (Dynamic Variable Nap) to
define a dynamic map. A maximum of 10 calls to SVMAP may be made, but only
one call to DVMAP is permitted in a map definition. The arguments of SVMAP
are first the program (FORTRAN) variable-name which will contain the data, and
then (in a 20H (Hollerith) field) the SDMS element name of the corresponding
data item in the dataset. The arguments of DVMAP are simply the names of the
data items in the dataset (also in a 20H field). After all correspondence has
been defined, the map"is terminated by calling subroutine ENDMAP. A total of
32 maps may be defined for each database which is opened.

Having defined the correspondence between program variables and data
items in the database, the I/O operations are executed by calling one of
several other subroutines: e.g., ESGET, ESPUT, ESREP, and ESPOR. These
subroutines are described as follows.

ESGET will "get" data from the database. Its calling sequence contains
first the name of the map which is to be used during the transfer, and then
the list of program variables which are to receive data from the dynamic part
of the map (if any) are present. During its execution, data items on the disk
are read into a buffer established by the SDMS routines, and those data items
which were mentioned in the map are transferred to the locations of the
program variables. Fixed-length vectors are always fully transferred into the
same number of sequential memory locations according to their lengths.
Variable-length vectors only fill the space corresponding to their length.
(Note: when using variable-length vectors in an SDMS database, if the vector
is mentioned in a map, the data item containing its length must also be
mentioned in the same map.)

ESPUT, ESREP and ESPOR have an argument structure which is the same for
ESGET, but with ESPUT, data is transferred from the program variables out to
the disk. ESPUT is used to write an element set of a dataset the first time.
If the data items are to be changed, one must call ESREP to replace the
existing element set with a new one. If one is uncertain about whether a
given element set.has already been written, but one still wishes the current
vari abl es to repl ace what mi ght be on the di sk, a call to ESPOR ("put or
replace") will perform the task. If ESPUT is called with reference to an
already existing element set, an error flag is set, and no data transfer
occurs. Similarly, if ESREP is called and the indicated element set does not
exist, an error flag is set, and no data transfers occur.

After all required I/O has been performed, the database must be closed
to guarantee the validity of all data which has been written to the database.
This is accomplished by calling subroutine DBCLOS with the database name as
its argument. In PAN AIR, the routine PACLOS (in PALIB) orchestrates the call
to DBCLOS •

• For further information regarding SD~lS, the reader is advised to consult
Section 14 (SDMS Reference Manual) of this document. An example of the use of

1.3

SDMS routines in a FORTRAN program is shown in Appendix 1-B. Some discussions
of SDMS I/O efficiency are also presented there.

1.3 System Components

The PAN AIR software system consists of several components: the JCL
statements to execute a PAN AIR run, a set of input statements for the DIP
module, the Master Definition files of the databases,used by the various
modules, the PAN AIR modules and the actual databases generated by the
modules. These components are defined in detail in other sections of this
document or in the PAN AIR User1s Manual (Ref. 2).

1.3.1 JCL Cards for Initiation of PAN AIR

Version 3.0 of PAN AIR is meant to be executed on the CRAY series of
computers. The standard CRAY operating system (COS) JCL supports a very
powerful procedure capability. This capability has been exploited to enable
users to more easily run PAN AIR and manipulate PAN AIR databases. In fact,
the COS operating system can automatically generate the input for MEC. 10
invoke this capability, the user must first access a library named PAPROCS
that contains the PAN AIR procedures. The following JCL will do this:

For an operating system (sUGh as NASA Ames) in which users are
permitted to keep permanent files on the CRAY disks:

ACCESS(DN=TEMP,PDN=PAPROCS,ID=PANAIR)
COPYD(I=TEMP,O=$PROC)
RELEASE(DN=TEMP)

For an installation in which datasets must be stored on the front end
computer system, the FETCH command must be used. For the Boeing
EKS/VSP system it would take the form:

FETCH(DN=$PROC,GDN=PAPROCS,UN=PANAIR)

After PAPROCS has been accessed, the user may immediately begin to run PAN
AIR. This is done by invoking one of the procedures FINDPF (for IIFIND
POTENTIAL FLOWII), FINDSU (for IIFIND SOLUTION UPDTE II), FINDICU (for IIFIND IC
UPDATEII) and FINDPPU (for IIFIND POST PROCESSING UPDATE II). These four
procedures can generate the input for MEC automatically.

For a description of PAPROCS, the PAN AIR procedures for the CRAY, see
Section 5.2.5 of the User1s Manual.

While the documentation of PAPROCS in this User1s Manual (especially
Section 5.2.5.1) should be sufficient for most users, others may wish for more
detailed information and/or may wish to modify a copy of PAPROCS for their own
purposes~' The latter may be done by following the instructions in Section
5.2.5.5.

NOTE:

1.4

The Version 3.0 does not generate a MECCC file (MEC control card
file). The FINDPF, FINDICU, FINDPPU and FINDSU procedures perform
the function that MECCC in the previous Cyber versions performed.

1.3.2 Data Input

The input data required by the PAN AIR software system consists of two
sections. The module MEC, which defines the names and IDs of the PAN AIR
databases and their Master Definitions, needs a set of input statements.
These are typically generated by the PAN AIR procedures. Some maintenance
activities may require the user to specify the input directives for MEC. For
example, PAN AIR can be directed to use a different Master Definition dataset
wi thout modifyi ng the standard. When the new ~laster Defi niti on has been
tested, it can be given the standard name. The module DIP processes input
statements for the. remaining modules. This data specifies the geometry, flow
properties and output options required for the problem. The data input stream
is depicted in Figure 1.5. Detailed discussion of the MEC and DIP input-data
specifications are given in the PAN AIR User's Manual, (Reference 2).

1.3.3 Databases

As mentioned previously, a database manager, SDMS, is used in the PAN AIR
software system. The modules communicate among themselves through the use of
the databases. SDMS databases are also used to facilitate internal
communication between submodules of a module. Two steps are required for
generating a database; one, the creation of a Master Definition of all data to
be contained in a database; and two, the creation of the databases by the
respective modules by calling the appropriate SDMS subroutine (D80PEN). An
example of the usage of the database manager is given in Appendix 1-8.

The creation of a Master Definition of a database occurs during system
installation or revision. The Master Definition is then used over and over
again~ The creation process is separate from a PAN AIR run and is initiated
by use of a separate program called DDP. The resulting Master Definition is
then stored as part of the PAN AIR software. The reader is referred to
Appendix 1-8 and the Scientific Data Management System (SDMS) User's Reference
Manual, Section 14 of this document. Revision of a Master Definition is
possible and the procedure to do so is described.

Access (reading and writing) to the databases is accomplished within each
module using a library named SDMSLI8. Capabilities include creation of maps
or pointers from program variables to Master Definition variables, and
transmitting information to and from the database. The reader is referred to
Appendix 1-8 and the PAN AIR User's Manual (Reference 2) for more details.

The Master Definitions for each module are detailed in Appendix 0 of
Sections 2 throug~ 12 in this document.

1.3.4 PAN AIR Modules

The functions of each of the PAN AIR modules is illustrated in Figure
1.2. In Appendix l-A a summary of each module is given. The reader is
referred to the PAN AIR User's Manual (Reference 2), and Sections 2 through 12
of this document for more details on each module.

1.5

1.3.4.1 PMJ AIR System External Interfaces

The only external data-interfaces for the PAN AIR system are
user-requested plot files produced by the FOP and PPP modules. Because of the
variety of plotting devices and their software, the plot files consists of
labels and data in one general format. Special user-supplied processing
programs are required for the user to interface with local plotting equipment.

1.3.4.2 PAN AIR System Internal Interfaces

The internal interfaces between PAN AIR modules occur only with the
databases created by the modules. Some modules use non SOMS datasets for
internal communication but all data transfer between modules uses an SOMS data
base. Table 1.2 summarizes the data interaction during a PAN AIR run in which
every module is used. The column on the left names the various modules in the
order of use. The top row gives the database names. As one reads from top to
bottom, each row gives the status of each database for each module. The PAN
AIR system automatically releases unneeded databases (status 4 in the table)
unless the user intervenes with a directive to MEC to save any or all of them
(see Section 6 of the PAN AIR User's Manual for details).

1.3.4.3 Sizing and Timing Estimates

The computer CPU time required varies greatly from problem to problem.
Even for a given problem, the time may vary depending on the output options
selected by the user. In general, the CPU time required varies as a quadratic
function of the number of panels in the configuration. Actual CPU times
required in the PAN AIR validation cases are given in Table 1.3. The cases
considered are described in the PAN AIR Case Manual (Reference 4). The
quadratic effect becomes more evident' for cases larger than case 3.

The I/O resource requirements vary greatly from problem to problem and
from module to module. The MEC and DIP modules require relatively constant
amounts. The modules OQG, MAG, MOG, RMS vary as a quadratic function of the
number of panels. The module RHS varies linearly with the number of panels.
The modules PDP, FOP, COP, and PPP vary in proportion to the number of output
options requested by the user. Table 1.4 summarizes the I/O volume
requirements for the PAN AIR validation cases detailed in Reference 6, the
Case Manual. Table 1.5 summarizes the I/O frequency requirements.

Version 3.0 can be run within one million words of memory on the CRAY.

The size of each module and the approximate requirements for compilation
are given in Table 1.6. Note that the module OQG requires significantly more
resources than the other modules.

1.3.4.4 Software Design Consideration

Structured FORTRAN coding principles were used throughout the PAN AIR
software system. This approach results in a documented modular set of code,
and it encourages analysts to provide comments to explain what the code is
accomplishing. Structured coding does not guarantee well documented programs,
but it does ensure modular and readable code.

1.6

,.---..

The structured approach does aid program maintenance. Experience during
the PAN AIR system validation process showed that a person familiar with the
system could delve into a program, find and correct errors without the aid of
the programmer who wrote the original code.

The PAN AIR software was originally designed for the Control Data 7600,
6600, Cyber 175 computer systems and then converted to the CRAY. All programs
were compiled under CFT or CAL. The non-ANSI FORTRAN statements listed in
Table 1.7 were used as sparingly as possible. The DECODE and ENCODE functions
were used only in the MEC module. Masking operations were used in r~EC, DIP,
~lAG and the PAN AIR Li brary. CAL code was restri cted to the SD~IS code and the
PAN AIR Library. The routines in the PAN AIR library using CAL are listed in
Table 1.8. .

1.4 A Gui(1e to ~lodu1e Interpretation

The Maintenance document was designed to be used in conjunction with the
information contained in the preface and code of each program and/or
subprogram. The Maintenance document and the installation tape contain
functional decomposition charts, database-communication charts, tree diagrams,
subprogram definitions, and database Master Definitions. Each program or
subprogram contains a decomposition level, purpose and/or method, glossary,
communication-vehicle description, labeled common-blocks Clescriptions and
design code which correspond to program statements. The structure of a
program or subprogram is illustrated in Figure 1.6. The use and
interpretation of these components is described as follows.

1.4.1 Functional Decomposition and Structure

The functional-decomposition chart gives a complete overview of what a
particular overlay of a module accomplishes. Consider the
functional-decomposition chart of the MEC module (Appendix 2-B, Section 2 of
this document). One can easily see, for example, that overlay (1,0), called
READUD at the B level, consists of three main portions. The B.C decomposition
portion, namely PREXEC is the most complicated, but the structure and the
tasks performed are clear. One should also note that if a subprogram is used,
the name of the routine appears, as does the decomposition level. For
example, the decomposition level B·C·B·L corresponds to subprogram
DBASE. One can compare the functional decomposition to the program listing
and find a direct correspondence to the code and structure of the code. In
the code, the decomposition level of a particular section would typically
appear at the rtght in column 55 and would also indicate the name of a
subprogram, if one is used at that .leve1. For example, if one looks at level
B.C.C.A, the subprogram LODREC is used. The code decomposition would read
(A=PALIS=LODREC) with the upper 1eveJ at MEC.B.C.C. This would indicate that
the routine LODREC is in the PAN AIR Library and is used in MEC module at
level B.C.C.A. If a routine is used at more than one level, then the symbol
.LIB is attached to the end of the unique portion of the decomposition level
of that routine. Hence, B.C.C.A.LIB indicates that the routine with this
decomposition is used at different levels below the level B.C.C.A • .

The tree diagrams in Appendix A of each section give another complete
overview of a module and its subprograms and are very useful for tracing the

1.7

path of a formal parameter of a subprogram back to its calling programs.
Also, if one modifies a subprogram, one can determine what other subprograms
may be affected. Finally, lf COMMON is used for data communication, the
calling program will almost always include the common blocks used in its
subprogram.

The alphabetical list of subprograms and the associated abbreviated
functional description in Appendix B of each section can be used in
conjunction with the tree diagram (Appendix A of each section) to gain another
view of the structure and purpose of a module.

1.4.2 Preface of Modules and Subprograms

The preface of each program and subprogram (see Figure 1.6) contains the
upper decomposition-level, the purpose (if the title of the routine is not
self-explanatory), a method (algorithm) if appropriate, and
communication-vehicle descriptions which give an overview of the
input/output. Any labeled common-blocks of data used for input or output are
listed. Formal parameters of subprograms are also indicated.

1.4.3 Data Flow

Labeled common, database input/output and formal parameters of subprograms
are major vehicles used for data communication within modules and between
modules. Only the modules FOP and PPP write a disk file without the use of
the database manager. They can produce plot information file for
post-processing.

Internal communication refers to data flow within a module. The various
modules use labeled common and formal subprogram parameters for internal
communication. Sometimes temporary databases are also used for intermediate
data storage if the volume of data exceeds central-memory limits.

External communication refers to data flow between modules. The database
manager is used for this purpose.

Methods to analyze data communications will now be described in some
detail. There are three kinds of data flow with;n the typical PAN AIR
module: (1) data flow from a database to the program, (2) data flow from one
part of the program to another and (3) data flow from the program to a
database.

The first and third kinds of data flow intimately involve the use of SDMS
maps (Paragraph 1.2.3 and Appendix l-B). To aid in the process of tracing
data flow, each module-maintenance section includes three related
database-communication-charts. The first form of the chart lists in
alphabetical order, for each overlay of the module, the databases and datasets
which are accessed in that overlay. Corresponding to each dataset there is
listed the name of the map which sets up the correspondence between data items
in the dataset and program variables. Also listed is the common block(s) in
which the mapped program variables lie, if applicable, and the name of the
subroutine in which the map is defined. The second form of the chart contains
the same information but it is arranged with the map names in alphabetical

1.8

order. The third form of the charts repeats the same information but has it
ordered alphabetically by common-block name. The use of these charts is
illustrated in Paragraph 1.4.3.3.

To allow speedy tracing of the second kind of data flow, several
documentation devices have been incorporated in the coding of the modules.
Chief among these is the glossary.

The glossary of each program or subprogram lists all those FORTRAN
variables which are used in the program for input, output or as auxi1ary
parameters. Each variable is flagged with an I for input or an 0 for output.
All formal parameters (arguments of a subprogram) are so indicated by an
IIF.P.II flag. If the variable appears in a labeled common block, the name of
the block is listed. Finally, a short definition of the variables is also
given when appropriate.

1.4.3.1 Formal Parameters

The analysis
straightforward.
tree diagram can
subprograms.

of formal parameters for internal communication is
The glossary identifies and defines these parameters.

be used to relate the parameter to other programs and

1.4.3.2 Labeled Common

The

Labeled common is used for internal communication between subprograms
and calling program/subprograms. The glossary defines the input/output
-variables and indicates in which labeled common-block the variables reside.
If a labeled common-block is mentioned, one can look at the data-group section
of the code (See Figure 1.6) and find a definition of the variables contained
in the block.

The section of code in the Preface of each program called COMMUNICATION
VEHICLES can also be used to find common blocks which are used for
input/output.

1.4.3.3 Database Communication

The various modules use databases to pass data to other modules and,
sometimes, for temporary scratch storage. Usually, labeled common is used to
store data obtained from a database. Unlabeled common, usually called blank
common, is also used to hold data until it is transferred to a database. The
source code calls subroutines from the SDMS library to accomplish these data
transfers.

A means is available to analyze or trace data from labeled common to a
database, if such a correspondence exists. The data communication charts in
conjunction with the glossaries and the database map-definitions are the
available analysis tools. An example of the analysis is presented using part
of the DQG code.

Suppose that we wish to find out what happens to the user-defined abutment
data (PAN AIR User's Manual, Reference 2) as it is transferred from the DIP

1.9

database, through the DQG module, and then to the DQG database. Figures 1.7
and 1.8 show relevant excerpts from the DIP module Master Definition (Section
3, Appendix 3-D) and the DQG module Master Definition (Section 4, Appendix
4-0). Both databases contain dataset USER-ABUT which contains information
about user-defined abutments. Examination of the first form of the database
communication-ahart for module DQG (Fig. 1.9) shows that the DIP database is
used in the. first overlay (1,0) of DQG. Further, within that overlay, dataset
USER-ABUT on the DIP database is connected with program variables in the
/ABUT/ common block of DQG by means of a map named USABIN. This map is
defined in the subroutine DIPDAT of the DQG module~

Examination of the map USABIN in subroutine DIPDAT (See the following
r.aragraphs which discuss Figure 1.13a) shows that the keyset aata-item
'ABUT-INDEX" is mapped dynamically and the other data items are mapped
statically to program variables NBRNAB, POSABT, SMOOAB and the array USABUT.
In the glossary of the subrouti ne DIPDAT (.Fi g. 1.10) we fi nd that these
variables are all located in common block /ABUT/. At the beginning of the
subroutine DIPDAT, we find the common-block contents described (Fig. 1.11).
Here NBRNAB is the number of networks in the abutment and that the array
USABUT contains information which identifies the network, the edge, and the
corner points marking the start and end of the abutments. Figure 4.5
(Structure and Data Flow of DQG Overlay (1,0)) in Section 4 of this document
shows that the dataset is read from the DIP database by the UQG module in
subroutine DIPDAT.

Thus far, we have traced the data from the DIP database into the DQG
program. We can now examine how the data gets to the DQG database. Figure
4.5 (Section 4) shows that the DQG module generated dataset USER-ABUT is
written to the DQG database within the same ove~lay. We already know that the
program variables which contains the data resides in the common block /ABUT/.
If we look at the third form of the database communication-chart (Fig. 1.12)
we find that there is a map called USABIN which maps data from common block
/ABUT/ to the dataset uSER-ABUT on the DQG database. As mentioned above, this
map is defined in subroutine DIPDAT of the DQG module. Examination of the
maps in subroutine DIPDAT (Fig. 1.13) shows that the program variables NBRNAB,
SMOOAB and the array USABUT are mapped onto data items (elements) in the two
USER-ABUT datasets and we see that some items do not seem to appear on the DQG
database (i.e., "POS-FLAG") while some items are "longer" than they were (the
array USABUT (I,J) is filled only for J=1,4 by the map to the DIP database,
while the map to the DQG database connects to the full array USABUT (I,J), J =
1,6). Yet other items have one-to-one correspondence in both databases,
(e.g., NO-NET-ABUT in the DIP database ana NMBR-NETWK-IN-ABUT in the DQG
database). This is not a surprising result if we examine the short
description of the subroutine DIPDAT in Paragraph 4.4.2 of Section 4.

Subroutine DIPDAT reads data from the DIP database and copies it to the
DQG database, sometimes changing its form to better suit DQG's requirements.
Clearly, the array USABUT has undergone some transformation and a detailed
examination of the code and comments in DIPDAT clarifies what has occurred.
Looking through the code in subroutine OIPDAT, we find a call to ESGET with
the map name "USABIN". Thi sis where the data enters the OQG program. Now,
after the data is available, if the plane-of-symmetry flag is set, the number
of networks in the abutment is increased by one and the new network edge i s ~

1.10

,~ labeled by defining the entry of USABUT(NBRNAB,l) = -POSABT. This explains
why the plane of symmetry flag is not present in the DQG dataset. Further,
the USABUT(I,3) and USABUT(I,4) entries are stored as ISTART and lEND in the
program. The glossary of DIPDAT describes these as the start and end
corner-points of an abutment in the counter-clockwise sequential-index system
(Appendix 4-F). These are passed to a subroutine EDGLAT. The call is
commented by "COMPUTE COARSE LATTICE INDICES FOR START AND END POINT" and the
preface of EDGLAT indicates its function is to transform the counter-clockwise
indexing scheme along a network edge to the coarse grid lattice-indexing
scheme. Immediately after the call to EDGLAT, a call is made to ESPUT with
the USABUT map name. This writes the abutment data to the DQG database.

From this analysis we can see that the user-defined abutment is read from
the DIP database with the data stored in a particular fashion; the data is
then transcribed into a form which DQG finds more useful and is written to the
DQG database. Thus, we have traced the data and have observed its
transformations. Figure 1.14 summarizes the analysis of the data flow.

If more detail is required concerning the transformations, then we must
make use of the glossary of subroutine EDGLAT of the DQG module to find the
correspondence between the local variables as they appear in the subroutine
EDGLAT and the variables which appear in the call to EDGLAT in subroutine
DIPDAT. The glossary of EDGLAT identifies which of the formal arguments are
input and which are output. Examination of the code defines precisely the
form of the transformation.

The database Master Definitions also can be used to relate program
variables to database element names. Usually, the correspondence between
variable names and element names is placed after a $ appearing at the
right-hand side of-the Master Definition. Therefore, once a variable name is
attached to a database name using the glossary and the data communication
chart, the correspondence between program-variable names and element names can
usually be found using the Master Definition (sometimes, as in Figure 1.8, the
FORTRAN variable names are not given). For example, in Figure 1.7 the
variable names IABUT is mapped into the element name ABUT-INDEX of the DIP
database dataset named USER-ABUT.

The Master Definitions can be obtained by executing the UPDATE tool with the
Master Definition Program-Library provided on the installation tape.

1.5 Maintenance of PAN AIR Software

The continued maintenance of both source code and documentation is
absolutely necessary to improve and insure the integrity of a large
software-system such as PAN AIR. Several tools are available to aid the
maintenance process.

1.5.1 UPDATE Feature

The PAN AIR software was developed using the UPDATE software-management
program. Using this tool, a program-library file is created; then
corrections, additions, deletions, etc. are easily made to the library. A
running history of changes is an output of the UPDATE program. Details of

loll

using this feature are to be found in the UPDATE Reference Manual. Each
module in the PAN AIR system is maintained as a separate Program Library
(PL). In addition there is a separate PL for the routines in the PAN AIR
Library and the SDMS Library. The PL for SDMS includes both the routines for
SDMSLIB and the program DDP.

The creation of an absolute program for each PAN AIR module is
straightforward. The UPDATE program can be used to generate a COMPILE file,
which is then compiled. This generates a file of re10catab1e binaries. Then
the LOR feature of the operating system can be used to link the re1ocatab1e
binaries with the PAN AIR libraries to generate the absolute file.

It is strongly recommended that the UPDATE program (or one similar in
function) be used in the future to maintain the PAN AIR software system.
Configuration control of a large software system mandates that changes to a
dataset be reproducible. An UPDATE modification set can fi~st be tested and
then later applied to the controlled version of the code. The effects of the
modification set may be undone at a later time. By saving modification sets,
there is a precise definition of the changes from version to version.

1.5.2 Common Data Blocks

The PAN AIR software system relies heavily on the use of labeled
common-blocks. This condition was the result of using the SDMS database
manager which is executed most effectively using labeled common.

Each labeled common-block is used many times with the various subprograms
and modules. If a modification was made to one block of one subprogram
without making the same changes in the same block used elsewhere,· the PAN AIR
software would no longer function correctly.

Fortunately, the UPDATE feature can also be used to maintain each common
block. Each block is placed in a COMDECK and becomes part of the program
library (PL) of a module. If a change is made to a common block, the UPDATE
feature automatically makes the change in all subprograms and programs using
the mOdified labeled common block.

1.5.3 Master Definition Modification and Maintenance

Modification of a module may require a change to the Master Definition of
a database. For example, a new element or collections of elements, called
datasets, may be added or deleted. The modification process is quite
straightforward.

Each Master Definition is stored as an UPDATE deck on a Master Definition
Program Library (MDFPL). The deck is changed and the new version is written
to the COMPILE file. The old Master Definition is then purged and the program
DDP (stored with the PAN AIR software system) is run using the COMPILE file
produced by the UPDATE execution as input to the program. This process will
result in a new Master Definition containing the changes made previously.

1.12

1.5.4 Document Maintenance

Program modifications may require revisions to be made to the supporting
documents, of References 1, 2 and 3. In particular, the
functional-decomposition charts, tree diagrams, data-communication charts,
Master Definitions and text of each section of this document may have to be
modified. At each major computer-installation, a utility program to produce
tree diagrams is usually available. This tool could be used to produce a new
tree-diagram if the subprogram linkage is modified. If the Master Definition
of a database is changed, a new listing is automatically produced by the DDP
utility program of the PAN AIR· software.

The functional-decomposition chart of each section of this document must
be modified if a subprogram is changed. Most computer installations have a
software utility-program which extracts the structure of pseudocode of a
program. The extraction process is keyed upon finding a "C" in column 1 of a
Rrogram listing and/or other key words or symbols. The PAN AIR code was
developed using "C", "C. ", "CP", "CPE", "GLOSSARY", "DATA GROUPS" as key words
to separate sections of comments and code. If such a software tool is
available, it could be used to an advantage to modify the
functional-decomposition charts of this document.

1.13

1.14

Location

NASA AMES

AEDC

NCSC

Table 1.1- PAN AIR Installation Considerations

Operating
System

COS 1.14

COS 1.14

COS 1.12

Computer
Hardware

CRAY x-r~p

CRAY X-MP

CRAY 1

Front End
Computer

Cyber and Vax

Amdahl

Cyber

..--,
,

Table 1.2 - Module and Database Interactions

Using
Module Database Name

DIP DQG MAK RMS RHS MDG PDP' CDP

DIP 1 0 0 0 0 0 0 0

DQG 2 1 0 0 a 0 0 0

MAG 2 2 1 0 0 0 a 0

RMS 0 0 2 1 0 0 0 0

RHS 2 2 2 4 1 0 0 0

MDG 2 3 4 0 4 1 a a

PDP 2 0 a a a 2 1 a

,,---.. FDP 2 a 0 a a 2 0 a

CDP 2 a a 0 a 4 a 1

PPP 4 4 a a 0 a 4 4

Codes for Databases

a - Not used or created

1 - Created

2 - Used

3 - Not needed thereafter unless PPP was requested or a save directive has
been issued.

4 - Not needed thereafter unless requested for a save

1.15

Table 1.3 - Validation Case CPU Time Reguirement
(NASA AMES CRAY X-MP)

Cumulative CPU Execution Reguirements X-MP (Sec) •
After
Module Case 1 Case 2 Case 3 Case 6
MEC 0.2411 0.2472 0.3097 0.2646
DIP 0.4760 0.5301 1.5773 0.7674
DQG 1.7998 3.3792 61 .5878 13.4035
MAG 2.4605 6.9902 176.3091 40.3996
RMS 2.6413 7.2486 202.3822 42.3715
RHS 3.1715 10.0269 212.1791 45.5931
MDG 4.3120 14.5731 239.4363 58.3829
PDP 5.1179 16.3864 243.3971 62.8354
CDP 5.7290 17.4047 251.9595 67.0223
FDP 5.8903 17.5910 252.5155 67.3297
PPP 6.5467 18.2493 254.9603 68.3105

,~

Table 1.4 - Validation Case I/O Volume Reguirements

Cumulative Disk Sectors Moved
After
Module Case 1 Case 2 Case 3 Case 6
MEC 683 684 702 686
DIP 1274 1281 1540 1301
DQG 2663 2989 23573 5551
MAG 3497 4411 47519 11833
RMS 3929 5023 62297 13956
RHS 4712 6116 69575 16500
MDG 6442 8672 82315 22407
PDP 7154 9608 84390 23637
CDP 7784 10406 85993 24702
FDP 8330 11030 87307 25580
PPP 9021 11766 88409 26406

~,

1.16

Table 1.5 - Validation Case I/O Frequency Requirements

After
Cumulative I/O Reguests

Module Case 1 Case 2 Case 3 Case 6

MEC 112 113 114 114

DIP 245 247 345 250

DQG 648 801 18558 2905

MAG 847 1185 23407 4394

R~1S 947 1293 24727 4593

RHS 1162 1528 27625 5002

MDG 1560 2036 32674 6604

PDP 1727 2218 33445 6796

CDP 1874 2379 34156 7160

FDP 1966 2476 34315 7279
,--- PPP' 2110 2630 34527 7440·

1. 17

Table 1.6 - Module Size and ComEi1ation Time ~

Module Lines Statements ComEil ati on Time (Seconds)

MEC 8,630 1,982 .7293

DIP 42,555 7,734 3.1778

OQG 79,253 15,532 8.4553

MAG 24,887 4,442 2.8676

RMS 2,659 449 .2139

RHS 11 ,161 2,074 .9896

MOG 28,635 5,648 2.7902

PDP 23,006 3,967 2.1710

FOP 20,820 5,009 3.0672

COP 19,540 3,638 2.0957

PPP 17,492 2,522 1.5384

-,

1.18

Table 1.7 - Non-ANSI FORTRAN CODE USAGE

OVERLAY

PROGRAM (INPUT,OUTPUT, •••)

DATA arrays

variable = 3H XXX

J.AND.K,J.OR.K

(Hollerith constants)

(Masking)

Array referenced with fewer subscripts than in DIMENSION

FORMAT(3HXXXA10) (No field separator)

78 (Octal constant)

DECODE functi on

ENCODE func"ti on

Mixed mode arithmetic and comparisons

nLf (Left justified Hollerith)

Equivalencing of arrays

1.19

Table 1.8 - CAL CODE USAGE

Subroutine

BIT$LGN

BIT$LOC

BIT$MSK

CAB

GETT

MXMACA

PAC

PUTT

REDUCR

STRMOV ~,

UNPAC

ZERO

1.20

DIRECTIVES/DATA

JCl

/ DIP

DIRECTIVES r--
DIP

O/S -

PAN AIR

DQG MAG RMS

SYSTEM
JCl

EXECUTIVE

TECHNICAL

RHS MDG

DATA MAr1AGER

SDMSLIB

DATA
I

rJ

urCAl .--
MEC

MODULES

PDP COP FOP PPP

Figure 1.1 - PAN AIR Software System

MEC
DIRECTIVES

PAN AIR

TECHNICAL

LIBRARY

(PALIB)

DDP

1. 21

MODULES DATA BASES

MEC

DIP

DQG

I :: I :;e:R=M=S:c

o
0~~
~4:CDPJ

r;;I rPLoT\
~.~

MODULES AND THEIR PURPOSE

MEC generat~s control cards for problem

DIP interprets user input

DQG generates panel defining quantities plus data
for control points, boundary conditions and
singularities

AIC MAG creates Aerodynamic Influence
Coefficients

AIC

Unknown Singularity Portion

MAG creates Aerodynamic Influence
Coefficients
Known Singularity Portion

IC MAG computes Influence Coefficients

RMS Decomposes AIC unknown

RHS processes singularities and boundary condition
data

MDG finds average potential , velocity and normal ~
mass flux at control and grid points plus DQG
geometry

PDP computes potential, velocity, mass flux,
and pressures for selected surfaces

COP computes forces and moments accumulated over
portions of congifuration

FOP computes potential, velocity, mass flux and
and pressures at locations off configuration and
along streamlines

PPP selects data formatted for external display
processing

Figure 1.2 - Program Modules and Data Bases

1.22

PAN AIR
JCL

PROCEDURES

DIRECTIVES

"1
I

I •

SDMS DATA BASEs

\,
y

PRINTED OUTPUT
FROM MODULES
UPON REQUEST

-
I-

I

Figure I.J - PAN AIR Dat~ Flow

PRINTED
OUTPUT

I ,
I
I , ,

I , ,
I , ,

I
I

/
USER

INPUT DATA

1. 23

MASTER DEFINITION MDFILE $
$
$

DATASET FILE-NUMBER-1 $
$
$

KEY SET $
$
$

REC-IND-1 $
REC-IND-2 I

$
END $

$
$

ELEMENT SET $
$
$

INTEGER-VAR-1 I $
SCALAR-VAR-1 R $
VECTOR-VAR-1 3 R $
VAR-LENG-VECTOR-1 INTEGER-1 R $

$
$

END $
$ r'\

END DATASET $
$
$

END MASTER DEFINITION $

Figure 1.4 - Example of Master Definition Structure in SDMS

1.24

User Supplied JCL

Dip Input Data

(Limited set of control statements
to invoke special PAN AIR
procedures)

(CRAY end of file)

(User Input Data Defining Problem)

(CRAY end of dataset)

Figure 1.5 - Deck arrangement for PAN AIR Execution

1.25

NAME: name - short title
DECOMP: program decomposition
DESIGNER:
PROGRAMMER:
[PURPOSE:

name, date, company
name, date, company

test]
[METHOD: test]

INPUT DATA:
OUTPUT DATA:

[ARGUMENT LIST:]
[GLOSSARY]

DATA GROUPS i.e., common b1ks
TYPE DECLARATIONS
DATA STATEMENTS

INITIALIZATION
TASK 1

SUB-TASK 1
SUB-TASK 2

TASK 2
SUB-TASK 1
SUb-TASK 2

ERROR PROCESSING

5000 series - input
6000 series - output
8000 series ~ errors

(A)
(AA)

(AB)
(B)
(BA)
(BB)

PREFACE

SPECIFICATION STATEMENTS

BODY

FORMATS

Figure 1.6 - Program/Subprogram Structure

1.26

$ -
$

DATASET USER-ABUT

KEY SET

ABUT-INDEX

END

ELEMENT SET

NO-NET-ABUT

NETWK-LIST NO-NET-ABUT

EDGE-NMBR NO-NET-ABUT

$USER DEFINED ABUTMENT
$
$
$ IABUT =

I $ ABUTMENT INDEX NUMBER.
$ RANGE IS 1 TO NO-USER-ABUT
$ VALUE IN DATASET NAMED NETWORK-DATA
SON THIS (DIP) DATABASE.
$
$
$
$
$
$
$
$ NONEAB =

I $ NUMBER OF NETWORKS IN ABUTMENT
$
$ NETIND =

I $ LIST OF NETWORKS IN ABUTMENT.
$ ENTRIES REFLECT INPUT ORDER.
$"
$ EDGNO =

I $ EDGE OF NETWORK IN ABUnlENT
$
$ STRTPT =

STRT-PT NO-NET -ABUT I $ STARTING EDGE POINT- NUMBER FOR
$ NETWORK EDGE.

END-PT NO-NET-ABUT

POS-FLAG

EDGE-TREAT

END

$
$ ENDPT =

I $ ENDING EDGE POINT NUMBER FOR
$ NETWORK EDGE.
$
$ ABUPOS. =

I $ PLANE OF SYMMETRY FLAG.
$ ALLOWABLE OPTIONS ARE:
$ 0 = NO PLANES OF SYMMETRY
$ 1 = FIRST PLANE OF SYMMETRY
$ 2 = SECOND PLANE OF SYMMETRY
$ 3 = BOTH PLANES OF SYMMETRY
$
$ EDGTRE =

I $ EDGE TREATMENT FLAG.
$ ALLOWABLE OPTIONS ARE:
$ 0 = STANDARD ABUTMENT
$ 1 = SMOOTH ABUTMENT
$
$
$

END DATASET $
Figure 1.7 - Excerpt from DIP Master Definition

1.27

1.28

DATASET USER-ABUT

END

KEY SET

INDEX

ELEMENT SET

NMBR-NETWK-IN-ABUT

END

NETWK-ID
EDGE-NMBR
STRT-CRNR-PT-NMBR-I
STRT-CRNR-PT-J
END-CRNR-PT-NMBR-I
END-CRNR-PT-J

SMOOTH-ABUT-FLAG

END DATASET

$ USER DEFINED ABUTMENT
$
$
$

I $ I
$
$
$
$
$

I $ I
$. .
$ NUMBER OF NETWORKS WHOSE EDGES
$ MAKE UP THE ABUTMENT
$

NMBR-NETWK-IN-ABUT I $
NMBR-NETWK-IN-ABUT . I $
NMBR-NETWK-IN-ABUT I $
NMBR-NETWK-IN-ABUT I $
NMBR-NETWK-IN-ABUT I $
NMBR-NETWK-IN-ABUT I $

$
$ THESE ARE THE NETWORK EDGES WHICH MAKE
$ UP THE ABUTMENT. $

T $
$
$
$
$
$

$

Figure 1.8 - Excerpt from DQG Master Definition

('
DATABASE

MEC

DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP

* DIP

DQG
DQG
DQG

DQG

DQG
DQG
DQG

DATASET NAME MAP NAME COHMON BLOCK

DATA-BASE-HEADER IDS /RUNIDS/

CLOS-COND DIPCLOSDAT /GENBCD/
COEF-GEN-BC CGBCMP /GENBCD/
GLOBAL GLOBAL-:EN /GLOBAL/
GLOBAL-PRINTS PRINT-OPT Dynamic
NETWN-BDC NETBDC /NETBDC/
NETWN-SPEC NEll-1AP /NETWN/
PANEL-COORDS PAN-COR-PI /COORDS/
TANG-VEC TVECTCOEFF /GENBCD/
USER-ABUT USABIN /ABUT/

CLASS-5-BC-DATA CLASS 5 /NBCDIN/
CLOSURE-DATA-IN CLOSDIN /CLOSUR/
GLOBAL GLOB-DYN /GLOBAL/

Dynamic
NETWK-BNDRY-CONDN- BCDATIN /NSCDIN/
IN
NETWK-SPEC NETMAP /MESWN/
·PANEL-CORNER-COORDS COORDS-GEN Dynamic
USER-ABU:r USABUT /ABUT/

Figure 1.9 - DQG Database Communication Chart,
First Form for (1,0) OVERLAY

PROGRAM/
SUBROUTINE

OPENER

BNDYIN
BNDYIN
DIPDAT
DIPDAT
BNDYIN
DIPDAT
DIPDAT
BNDYIN
DIPDAT

BNDYIN
BNDYIN
DIPDAY

BNDYIN

DIPDAT
DIPDAT
DIPDAT

1.29

NAME TYPE ORIGIN
~

USAGE DESCRIPTION --
C.LCLASS I /NETWK/ I/O
C.LENGTH I LENGTH OF ARRAY OF COLUMN OF CORNER POINTS
C.MACH R /GLOBAL/ I/O
C.MESH I /NETWK/ I/O
C.MVCOMP I /NETWK/ I/O
C.NABUT I /GLOBAL/ I/O
C.NBRCP I /GLOBAL/ I/O
C.NBRHS I I/O NUMBER OF SOLUTIONS

* C.NBRNAB I /ABUT/ I/O
C.NBRNET I /GLOBAL/ I/O
C.NBRPOS I /GLOBAL/ I/O
C.NBRSNG I /GLOBAL/ I/O
C.NCOL I UPPER LIMIT ON CORNER POINT COLUMNS
C.NETCTR R /NETWK/ I/O
C.NETID I /GLOBAL/ I
C.NETORD- I /GLOBAL/ I
C.NGAPNL I /GLOBAL/ I
C.NIAB I UPPER LIMIT OF USER SPECIFIED ABUTMENTS
C.NLRCLS I I/O NUMBER OF LEFT/RIGHT CLASS 4 BC
C.NMBROW I /COORDS/ I/O
C.NNETOT I /GLOBAL/ I/O
C.NPT I NUMBER OF POINTS IN NETWORK EDGE SEGr4ENT
C.OMMINF R /GLOBAL/ I/O

* C.POSABT I /ABUT/ I
C.POSFLG I /NETWK/ I/O ~

C.POSLOC R /GLOBAL/ I/O
C.POSNRM R /GLOBAL/ I/O
C.PRTOPT I /PRNTOP/ I
C.RCLASS I /NETWK/ I/O
C.RORG R I/O ORIGIN FOR ROTATIONAL ONSET FLOW
C.RUNTYP I /GLOBAL/ I/O
C.RVEC R I/O AXIS FOR ROTATIONAL ONSET FLOW
C.SECMET R /GLOBAL/ I/O
C.SLDF I /NETWK/ I/O

* C.SMOOAB I /ABUT/ I/O
C.SNGTYP I /NETWK/ I/O
C. SOLID R I/O SOLUTION IDENTIFIER
C.SPFLG I /NETWK/ I/O
C.SUPSUB R /GLOBAL/ I
C.TRDMET R /GLOBAL/ I/O
C.TRNGTL R /NETWK/ I/O
C.UNIF R I/O UNIFORM ONSET FLOW
C.UPDATN I /NETWK/ I/O

* C.USABUT I /ABUT/ I/O
C.WAKSOL I /NETWK I/O
C.WEABUT I /ABUT 0

Figure 1.10 - Portion of Glossary of Subroutine DIPDAT of the DQG Module ~

1.30

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

WEABUT(J, I) CONSISTENT ABUTMENT DESCRIPTION
J FROM 1 TO 15 NETWORKS IN ABUTMENT
(J,l) - NETWORK INDEX
(J,2) - EDGE INDEX
(J,3) - START CORNER POINT INDEX-I
(J,4) - START CORNER POINT INDEX-J
(J,5) - END CORNER POINT INDEX-I
(J,6) - END CORNER POINT INDEX-J
NUMBER OF NETWORKS.IN ABUTNENT NBRNAB

POSABT Plane of symmetry (POS) flag indicating
that the POS is part of an abutment

USABUT(I,J)

SMOOAB

GAPSET

Value = 0 if no POS
=1 if 1st POS
= 2 if 2nd POS

USER ABURMENT DESCRIPTION
SEE DESCRIPTION OF WEABUT ARRAY
SMOOTH ABUTMENT FLAG

FLAG INDICATING GAP-PANELS ADDED
TO ABUTMENT.

COMMON /ABUT/IABUT(20,8),WEABUT(5,6),NBRNAB
1,IESABT(6),NUMBER(5),ASSINF(5,3,3),QTRCRD(5,3,3),
2TWEABUT(lO,6),EDGPOS(4),USABUT(5,6),DSMTCH(3,2),
3SMOOAB,POSABT,GAPSET

INTEGER POSABT,GAPSET
INTEGER WEABUR,T~EBUT,EDGPOS,USABUT,SMOOAB,DSMTCH

Figure 1.11 - Excerpt from Common Block /ABUT/in Subroutine
DIPDAT of the DQG Module

1.31

COMMON
BLOCK

/RUINDS/

* /ABUT/
/COORDS/
Dynamic
/GENBCD/
/GENBCD
/GENBCD/
/GLOBAL/
/NETBDC/
/NETWK/

/ABUT/
/CLOSUR/
Dynamic
/GLOBAL/
/NBCDIN/
/NBCDIN/
/NETWK/

1.32

PROGRAM!
DATABASE . MAP NAME DATASET NAME SUBROUTINE

MEC IDS DATA-BASE-HEADER OPENER

DIP USABIN USER-ABUT DIPDAT
DIP PAN-COR-PT PANEL-COORDS DIPDAT
DIP PRINT-OPT GLOBAL-PRINTS DIPDAT
DIP DIPCLOSDAT CLOS-COND BNDYIN
DIP CGBCMP COEF-GEN-BC BNDYIN
DIP TVECTCOEFF TANG-VEC BNDYIN
DIP GLOBAL-IN GLOBAL DIPDAT
DIP NETBDC NETWK-BDC BNDYIN
DIP NETMAP NETWK-SPEC DIPDAT

DQG DIPDAT USABUT USER-ABUT
DQG CLOSDIN CLOSURE-DATA-IN BNDYIN
DQG COORDS-GEN PANEL-CORNER-COORDS DIPDAT
DQG GLOB-DYN GLOBAL DIPDAT
DQG CLASS5 CLASS-5-BC-DATA BNDYIN
DQG BCDATIN NETWK-BNDRY-CONDN-IN BNDYIN
DQG NETMAP NETWK-SPEC DIPDAT

Figure 1.12 - DQG Database Communication Chart, Third Form for
(l ,0) Over1 ay

r'

C

C
C

C

C

C
C

C

C

C
C

C
C

C

(a) MAP FROM DIP DATABASE TO DQG MODULE

BEGIN MAP USABIN
CALL DSMAP(lOHUSABIN ,20HUSER-ABUT ,DIPDBD)

DEFINE STATIC MAP
CALL SVMAP(NBRNAB ,20HNO-NET-ABUT

1 USABUT(l ,1) ,20HNETWK-LIST
2 USABUT(l ,2) ,20HEDGE-NMBR
3 USABUT(l ,3) ,20HSTRT-PT
4 USABUT(l ,4) ,20HEND-PT
5 POSABT ,20HPOS-FLAG
6 SMOOAB ,20HEDGE-TREAT

DEFINE DYNAMIC MAP
CALL DVMAP(20HABUT-INDEX

END OF MAP
CALL ENDMAP

(b) MAP FROM DQG DATA BASE TO DQG MODULE

BEGIN MAP USABUT
CALL DSMAP(lOHUSABUT ,20HUSER:'ABUT .DQGDBD)

DEFINE STATIC MAP
CALL DVMAP(20HINDEX
CALL SVMAP(NBRNAB ,20HNMBR-NETWK-IN-ABUT

2 USABUT(l ,1) ,20HNETWK-ID
3 USABUT(l ,2) ,20HEDGE-NMBR
5 USABUT(l ,-3) ,20HSTRT-CRNR-PT-NMBR-I
6 USABUT(1,4) ,20HSTRT-CRNR-PT-J
7 USABUT (l ,5) ,20HEND-CRNR-PT-NMBR-I
8 USABUT(1 ,6) ,20HEND-CRNR-PT-J
9 SMOOAB ,20HSMOOTH-ABUT-FLAG

END OF MAP
CALL ENDMAP
BEGIN MAP GLOB-DYN

Figure 1.13 - Maps of dataset USER-ABUT from DIP and
DQG Data Bases to DQG Module

1.33

DOCUMENTATION PROCESS
TO FOLLOW DATA FLOW

Fig 1. 7

Fig 1. 9

DIP
MASTER
DEFINITION

1
DQG DATA BASE
COMMUNICATION CHART
FIRST FORM

1
Fig 1.13(a) SDMS MAP FROM DIP

DATA BASE, SUBROUTINE
DIPDAT OF DQG MODULE

1
Fi g 1.10 GLOSSARY OF SUBROUTINE.

Fig 1.11

Fig 1.12

DIPDAT OF DQG MODULE

1
COMMON BLOCK/ABUT/
DESCRIPTION

1
DQG DATA BASE
COMMUNICATION CHART
THIRD FORM

1
Fig 1. 13(b). SDMS MAP FROM DQG

DATABASE TO SUBROUTINE
DIPDAT OF DQG MODULE

1
Fig 1.8 DQG

MASTER
DEFINITION

M

-~ SDMS MAP
"USABIN"

SDMS MAP
"USABUT"

M

DIP

ESGET

DIPDAT

ESPUT

\ /
DQG

.r---.,.

DATA FLOW
WITHIN PROGRAM DgG

DIP
DATA BASE

ESGET
OPERATION

PROCESS
ABUTMENT
INFORMATION

ESPUT
OPERATION

DQG
OPERATION

Figure 1.14 - Summary of Example Data Flow Analysis

1. 34

APPENDIX l-A SUMMARY OF PAN AIR MODULES

l-A.l

Page Missing in

Original Document

1-A.1 MEC - Module Execution Control

MEC creates a temporary database named, MEC for use by other PAN AIR
modules. It contains database information on databases used or created by the
other modules. Run identification is also processed and stored in the
database. Codes are set to indicate whether databases are used, in existence
or saved.

User directives for modifying the database information table are processed
by MEC and appropriate modifications to the MEC database are made.

1-A.2 DIP - Data Input Processor

1-A. 2. 1 Purpose

The DIP module reads user input data which describes the PAN AIR problem
and stores the data on the DIP database.

1-A.2.2 Tasks Performed

Following the execution of the MEC module, the DIP module accesses the MEC
database to read the type of PAN AIR problem to be run. From this dataset,
DIP can determine whether a new or updated database is to be created from the
inputs. The possible options, described in detail fn Section 4.3.2 of .
Reference 2, are as follows:

1. Creation run - no preexisting database.

2. Post processing run - use existing database and update only
directives to it.

3. Right-hand-side update-run - use existing database and update only
"solution data."

4. IC update run - use existing database and update geometric data.

The input data is read in free field format from card images. Each card
image is read, printed and processed. The data is organized and stored on the
DIP database. The initial input data for DIP should contain global data to
described the boundary value problem and global defaults, network data to
describe the surface definition and boundary conditions, and the geometric
edge matching data to describe network edge matching. The above data
(original or updated) is required for solving a potential flow solution.

The post processing input data for DIP may contain post-solution
calculation cases and database output directives. Both of these types of data
require a preexisting DIP database plus the results of a potential flow
solution on the database produced by the MDG module.

1-A.3

l-A.3 DQG - Defining Quantities Generator

l-A.3.l Purpose

The Defining Quantities Generator computes and defines a large number of
intermediate quantities required for solution of the potential flow problem.
These quantities fall into three classes: control data, geometrical data and
boundary condition data.

The control data consists of indices of all singularity parameters and
control points in the configuration as well as an indication of those
singularity parameters that are "known" and those singularity parameters and
control points that are "null" (not used to solve the problem).

The geometrical data includes descriptions of network abutments and
abutment intersections, the coefficients of the source and doublet splines
that define the singularity strengths over the surfaces of the networks and
those geometrical properties of panels which are required to compute the AIC
matrix in module MAG.

The boundary condition data processing includes assignment of user
specified boundary conditions as well as automatic imposition of doublet
matching conditions at network boundaries.

All of the data are stored on the DQG database. A small amount of printed
data is available to the user through selection of certain print options in
the input to DI P. ".-....,

DQG also analyzes the configuration for many types of errors which may
lead to an erroneous or singular solution and produces diagnostic information
that the user might use to correct his input to DIP.

l-A.3.2 Tasks Performed

The basic tasks of DQG are performed in the six primary overlays of DQG.
(A seventh primary overlay performs some useful but perfunctory communication
to the user.) In the first overlay, data from the DIP database is read,
copied and (in some cases) transcribed onto the DQG database. In the second,
the data associated with individual networks are defined. Also included are
error checks on network size and indexing of singularity parameters and .
control points. The third overlay of DQG deals with the inter-relationship of
networks with each other: abutments and abutment intersections. User defined
abutments are imposed and a search is made for any additional abutments in the
configuration. A determination is made of network edges and corner points
where doublet matching boundary conditions will be imposed. If additional
paneling is required to fill in gaps between network edges, gap filling panels
are generated. Also network overlaps are found, if any, and diagnostics are
given as printed output. The fourth overlay assigns the approprlate number
and type of boundary conditions at each control point in the configuration.
The fifth overlay constructs source and doublet spline vectors for networks.
The sixth overlay computes panel geometrical data, assembles spline matrices
describing source and doublet strength over the surface of the panel and
computes the moments of source and doublet strength over the surface of the

l-A.4

panel. The seventh overlay produces printed output of control point data and
boundary condition data.

l-A.4 MAG - Matrix Generator

l-A.4.l Purpose

The Matrix Generator module uses output from the OQG database to generate
influence coefficients, incorporate symmetry constraints, assemble the
influence coefficient (IC) matrix, and perform operations related to the
transformation of the boundary value problem into systems of simultaneous
linear equations.

l-A.4.2 Tasks Performed

The singularity and control point data from OQG are grouped into
categories of updatable and non-updatable. In addition, the singularity data
is further divided into known and unknown partitions. The new grouping of
data is put into two directories relating OQG data and MAG data. The
directories are stored in the MAK database. A number of matrices are formed
from the OQG data. First, the panel geometry specifications and the
reformatted control point data are obtained from the OQG and MAK databases
respectively. The pan~l influence coefficients (PIC) are then formed from
complex computations defined in Section 4.2.2 of the PAN AIR Theory Oocument
(Reference 1). These PIC matrices are symmetrized to form the entries of the
IC matrices. These IC matrices are stored temporarily. Next, th~ IC,matrices
in required row form (up to sao a words long) are produced. The aerodynamic
influence coefficients (AIC) are then constructed from the boundary conditions
specified by OQG and the IC matrices. The AIC matrices which correspond to
the known and unknown singularities are stored in the MAK database. Finally,
the influence coefficients (IC's) needed by the MOG module are transferred
from the temporarty database to the MAK database.

l-A.S RMS - Real Matrix Solver

l-A.S.l Purpose

The Real Matrix Solver (RMS) module decomposes the partition of the AIC
matrix associated with the unknown singularity parameters.

l-A.S.2 Tasks Performed

The RMS matrix solution subroutines operate on the matrices in "blocked
partitioned format." The major tasks of RMS are to block and decompose the
AlC matrices into upper and lower triangular matrices and pivot terms for use
in the solution process in the RHS module.

l-A.6 RHS Right-Hand-Side Generator

l-A.6.l Purpose

The RHS creates the right-hand-side equality constraints for the linear
system of equations defining the aerodynamic problem. The constraints are

l-A.S

formed from the boundry conditions and other known quantities. The module
also obtains the solutions to the linear system for each control point by
forward and backward substitution with the decomposed AIC matric obtained from
the RMS module.

l-A.6.2 Tasks Performed

The constraint data for the right-hand-side is obtained from the DIP
database and transformed into a usable form by RHS. The transformed
constraint data is then stored in a temporary database.

The RHS module also generates the symmetrized right-hand-side matri~
consisting of two partitions; those for the known AIC elements and those for
the unknown. Using matrix partition algebra and backward sUbstitution on the
decomposed AIC matrix, all singularity parameters from all solutions are found.

l-A.7 MDG - Minimal Data Generator

l-A. 7.1 Purpose

The Minimal Data Generator module is the primary interface of the upstream
PAN AIR modules, DIP, DQG, MAG and RHS, with the post processing PAN AIR
Modules, PDP and COP. It reads geometry, influence coefficient, and
singlarity data to generate a minimal database of information at control point
and panel grid point locations. This data, used by PDP and COP, consists of
geometric information and basic flow quantities: source and doublet
singularities, average potential, average mass flux, and in specific ~
instances, average velocity in three components. All basic flow quantities
are stored'on the MDG database for all solutions and (if planes of symnetry
are present) for all distinct images. (See PAN AIR Theory Document, Sections
5.7.2 and K.l (Reference 1)).

The minimal database generated by MOG enables PDP and COP to process data
without accessing the DQG, MAK, and RHS databases and have that data available
in a convenient format at either control points or panel grid points for a
given image and solution.

A-7.l.2 'Tasks Performed

MDG opens and checks the condition of the databases from DQG, MAG, and RHS
. to assure that other upstream modul es have executed without errors. ,It forms
the MOG permanent database for the global, network-spec, and solution data
sets. For each network, the control points are determined for each panel.
The control point and grid point geommtry is output to the MOG database.

The IC-matrices from MAK and the singularities from RHS are postmultiplied to
form control point values of average potential, mass flux and velocity in
three components if specified by the user. Singularities are reformatted
uniformly and unsymmetrized.

Using spline vectors created by DQG, singularity values are obtained at
nine defining grid points and five defining grid points for doublet and source

l-A.6

singularities respectively on each panel. Subpane1 splines are used to
calculate singularity values at control points.

At control point locations where Ie values were not calculated, values are
calculated from the boundary conditions. If Ie's were calculated, the mass
flux is calculated from the inner product of these velocities and the control
point conorma1. The values of average potential, mass flux, velocity, if
specified, and singularities at control points are placed on the MDG database.

Potential splines, similar to DQG doublet analysis splines, are calculated
to produce values of flow quantities at grid points from values at control
points. The same quantities output at control points are output at grid
points on each network.

1-A.B PDP - Point Data Processor

1-A.B.1 Purpose

The Point Data Processor module is designed to compute flow quantities on
configuration body and wake surfaces. These surface flow quantities consist
of perturbation and total potential, perturbation and total velocities,
perturbation, total and normal mass flux, pressure coefficients and local Mach
numbers for isentropic, linear, second-order, reduced second order and slender
body approximations.

Each of these computed data items is printed out and/or stored on a
permanent database for later retrieval as selected by the user •. The PDP
database is generated only if database storage is requested by the user.

The user options are available to PDP in the DIP database. These consists
of computation options for potential, velocity, velocity correction and
computation schemes, pressure coefficient and local Mach numbers.

The user has the option of requesting a printed output of the computed
quantities for each case.

1-A.B.2 Tasks Performed

The configuration geometry and a minimal set of velocity data
(perturbation velocities at points computed from the Ale matrices and the
local incremental onset flow velocities etc.) are available to PDP in the MDG
database. PDP computes the average and difference velocities at user selected
point types for each selected network, image and solutions and uses these data
to compute the perturbation and total velocities on each selected surface.
The velocities are corrected by PDP by the user selected correction schemes
and are then used to compute pressure coefficients and local Mach numbers for
the selected rules (isentropic, linear, second order, reduced second order and
slender body). Details of the computation of surface flow properties can be
found in Section N of the PAN AIR Theory Document (Reference 1).

These flow quantites are written to the output file and/or to the PDP
database for later retrieval by the PPP module.

1-A.7

1-A.9 FOP - Field Data Processor

1-A.8.1 Purpose

The Field Data Processor module is designed to compute flow quantities at
designated points off the configuration body and along streamlines in the flow
field. These flow quantities consist of perturnation and total potential,
perturbation and total velocity, perturbation and total mass flux, and
pressure coefficients and local Mach numbers for isentropic, linear, second
order, reduced second order and slender body approximations. Arc length and
time of traversal are to additional flow quantities associated with
streamlines.

Each of these computed data items is printed out and/or written to a plot
file for later retrieval as selected by the user. The FOP plot file is
generated only if requested by the user. .

The user options are available to FOP in the DIP database. These consists
of computation options for potential, velocity, velocity correction and
computation schemes, pressure coefficient and local Mach numbers.

The user has the option of requesting a printed output of the computed
quantities for each case.

1-A.9.2 Tasks Performed

The panel defining quantities and the singularity solutions are available
to FOP in the MDG data base. For a point off the configuration surface, FOP
uses that data to compute the perturbation and total velocity for selected
solutions. The velocity is corrected by FOP according to user selected
correction schemes and is then used to compute pressure coefficients and local
Mach numbers for the selected rules (isentropic, linear, second order, reduced
second order and slender body). To compute the points along a velocity or
mass flux streamline, FOP uses a predictor-corrector method of integration. A
more detailed explanation can be found in appendix P of the PAN AIR Theory
Document (Reference 1). .

These flow quantites are written to the output file and/or to the FOP plot
file.

1-A.10 COP - Configuration Data Processor

1-A. 1 O. 1 Purpose

The Configuration Data Processor is designed to compute forces and moments
on configuration body and wake surfaces. The computed forces and moments are
printed out and/or stored in a permanent database for later retrieval as
selected by the user. The COP permanent database is generated only is it is
requested by the user.

The user options for COP are obtained from the DIP database and the
configuration geomtry and other minimal data are obtained from the MOG
database.

1-A.8

1-A.10.2 Tasks Performed

The Configuration Data Processor obtains the processed user input from the
DIP database. These consists of lists of user selected networks, solutions,
axis systems and configuration options for forces and moments.

The user has the option of requesting printed output and/or storage in the
COP database of the computed force and moment data for each case of options.

The configuration geometry and a minimal set of velocity data are
available from the MOG database. The COP module computes the average and
difference velocities on the points of each panel, corrects these velocities
according to the user selected correction schemes, and computes the selected
Rressure coefficients from the velocity in a user-selected preferred
direction. These pressure coefficieints are used to compute forces and
moments on each panel. The edge forces and the corresponding moments are also
computed on user selected network edges.

The computed forces and moments are transformed to user selected axis
systems (a maximum of 4) and printed out and/or stored in the COP database for
later retrieval by the user with the PPP module.

The COP module allows the user to sum forces and moments for all panels in
a column, for all columns in a network and for all networks in a
configuration. A configuration consists of all selected networks for a
particular case. In addition the user may request to sum or accumulate forces
and moments for selected configurations of a PAN AIR run.

1-A.11 PPP - Print/Plot Processor

l-A. 11 .1 Purpose

The Print Plot Processor module extracts user selected information from
selected PAN AIR databases and prepares the data in a format suitable for
processing by plot programs external to PAN AIR.

1-A.11.2 Tasks Performed

The PPP module extracts user selected data from the OQG, PDP and COP
databases and reformats the information for use in preparing plot files. The
data are selected from a menu consisting of geometry data from OQG, point data
from PDP, and configuration data from COP.

1-A.9

APPENDIX 1-8 Example of How to Use SDMS

1-8.1

Page Missing in

Original Document

r', 1-B.1 SDMS Example Program

The PAN AIR user, with specific needs not satisfied by the standard PAN
AIR output options, may obtain additional information from the permanent
databases created during a PAN AIR run. A simple FORTRAN program prepared by
the user performs this task. This example illustrates the correct procedure
to use to generate such a program.

In this example, the data identified by SDMS names (elements) is loaded
into Fortran variables as indicated below:

SDMS Name Fortran

NMBER-ACT-NETWK NBRNET
NETWK-ORDER NETORD
TOTAL-EDGE-LENGTH EDGLEN

Map

GLOBAL-MAP
GLOBAL-MAP
EDGE-LENG

Dataset Name

GLOBAL
GLOBAL
NETWK-SPEC

The FORTRAN program performs the I/O transfers from the database to
central memory by calling the same SDMSLIB subroutines which PAN AIR uses to
perform similar operations. The SDMS routines needed to read data from the
database are listed below. All of these may be loaded by following the
control procedures outlined below. A more detailed discussion of SDMS
routines may be found in Section 14 of this document.

C
C

Subroutine Table
Name Action

DBCLOS
DBOPEN
DSMAP
DVMAP
ENDMAP
ESGET

ISDMS
SVMAP

Closes the Database
Opens the Database
Initiates Map definition
Defines Dynamic Map
Terminates Map definition
Gets a specified element set at a specified dataset from the
database
Initiates SDMS tables
Defines static map

PROGRAM EXAMPL(INPUT,OUTPUT)

C PURPOSE
C THIS PROGRAM IS AN EXAMPLE OF THE USE OF SDMS ROUTINES
C TO .TRANSFER DATA FRor~ A DATABASE TO CENTRAL MEMORY
C
C THIS PROGRAM READS THE DQG DATABASE.
C
C
C DATA GROUP LOCAL DIMENSIONED DATA

DIMENSION NETORD(100),EDGLEN(4)
DIMENSION DBN(3)
DIMENSION IWSA(2000)
DATA INFIL/5LINPUT/,IUTFIL/6LOUTPUT/
DATA IWSA(l) / 1 /

1-B.3

C
C INITIALIZE SDMS TABLES

CALL ISDMS(IWSA(l),IWSA(2000))
C
C READ DATABASE DESCRIPTION FROM INPUT FILE

READ (INFIL,5000)(DBN(I),I=1 ,3)
READ (INFIL,5000) DBPW

C
C IF BLANK NAMES, THEN SET DEFAULT VALUES

IF (DBN(2).EQ.1H) DBN(2)=O
IF (DBN(3).EQ.1H) DBN(3)=O
IF (DBPW.EQ.1H) DBPW=O

C
C ENDIFC
C OPEN DATABASE

CALL DBOPEN(DBN(1),9HPERMANENT,DBPQ,3HOLD)
C
C DEFINE MAP TO GLOBAL DATASET OF DQG DATABASE
C TO FIND NUt4BER AND ORDER OF ACTIVE NETWORKS

CALL DSMAP(lOHGLOBAL-MAP,20HGLOBAL
C
C DEFINE STATIC MAP

CALL SVMAP(NBRNET,20HNMBER-ACT-NETWK
1 NETORD(1),20HNETWK-ORDER

C
C TERMINATE MAP

CALL ENDMAP
C
C DEFINE MAP TO NETWK-SPEC DATASET OF DQG DATABASE
C TO FIND EDGE LENGTHS OF NETWORKS

CALL DSMAP(lOHEDGE-LENG ,20HNETWK-SPEC
C
C DEFINE STATIC MAP FOR EDGE LENGTH

CALL SVMAP(EDGLEN(l),20HTOTAL-EDGE-LENGTH
C
C TERMINATE MAP

CALL ENDMAP
C
C NOTE IN THE ABOVE MAP A STATIC MAP WAS USED FOR THE
C DATA ITEMS WHILE A DYNAMIC MAP WAS USED FOR THE KEY
C SET DATA. THIS IS NOT REQUIRED. EITHER METHOD OF
C MAPPING MAY BE USED FOR EITHER DATA OR KEY SET
C INFORMATION. HOWEVER, WE RECOMMEND THE APPROACH
C AS ABOVE.
C
C GET NUMBER OF NETWORKS AND ORDER

CALL ESGET(lOHNBRNET)
C
C WRITE LABELS AT TOP OF PAGE

WRITE (IUTFIL,6000)

1-B.4

,DBNO))

,DBN(l))

,.-..

C
C FOR EACH ACTIVE NETWORK DO
C DO 100 IN=l,NBRNET

INET=NETORD(IN)
C
C GET EDGE LENGTH DATA

CALL ESGET(10HEDGE-LENG ,INET)
C
C WRITE NETWORK INDEX AND EDGE LENGTHS

WRITE (IUTFIL ,6001) IN·, INET, EDGLEN(I), 1=1,4)
C
C ENDDO ON NETWORKS

100 CONTINUE
C
C CLOSE DATABASE

CALL DBCLOS(DBD(l))
C
C EXIT
C

5000 FORMAT (BA10)
C

6000 FORMAT(lH1,7X,3HIN,6X,4HINET,2X,12HEDGE LENGTHS)
6001 FORMAT (5X,I5,5X,I5,4(2X,IPE10.3))

C END

1-B.5

1-8.2 Efficiency Considerations and SDMS

The Scientific Data Management System (SDMS) used in PAN AIR provides a
powerful mechanism for storage and classification of scientific data. Through
its use of English descriptions of data elements it allows data
classifications which are easily understood. The dataset construction allows
grouping of data items in ways which reflect actual use or application instead
of ways which force an artifica1 grouping (e.g., all scalars stored in one
fashion, vectors in another).

When SDMS is used to solve complex problems which involve many I/O
operations, as in the PAN AIR system, some special consideration needs to be
given to SDMS usage to avoid undue I/O cost. To understand these
considerations it is necessary to know a little more about the internal
operations of SDMS.

An SDMS database consists of four files. The first file is a copy of the
Master Definition file and is used to generate maps. The second file contains
indexing information (pointers) which describe where on the third and fourth
files a particular element set is to be found. The third file contains all of
the random access data. The fourth file contains all of the sequential access
data.

A two level pointer system is usetl in SDMS. The top level pointer array
indicates which of several second level pointer arrays contains the disk
address of the required data. Each SDMS buffer can store a pointer array.
One buffer will ho1 d the top level pointer' array. Second level pointer arrays /-..,
can reside in the remaining buffers. When an SDMS operation is performed
(e.g. an ESGET), if all of the pointer information is already in core, only
one disk access is made to obtain the data. If the second level pointer array
is not in core, SDMS reads the second file to obtain the second level pointer
required and then reads the third file to obtain the data. The second level
pointer array fills any buffer that is empty. If none are available and no
write operations have occurred, the second level pointer array overwrites the
oldest full buffer. If there have been some write operations, the oldest
pointer data in the buffer is written to the database before the new second
level pointer data is read in. A similar process occurs if the top level
pointer array required is not in core.

Several disk accesses may be required for each SDMS operation. If a small
number of available SDMS buffers forces the top and second level pointer
arrays to be swapped in from the disk, then up to five accesses may be
required for a single SDMS operation. Increasing the number of SDMS buffers
can decrease the number of disk accesses per SDMS operation.

If four buffers are available to hold indexing data, there can be at most
two SDMS operations to two different datasets within a loop unless multiple
disk accesses per SDMS operation can be tolerated.

Fig. 1-8.1 shows an example of inefficient use of SDMS(assuming four
available buffers). Within the inner loop there are SDMS requests to five
different datasets. The fi rst two II GET II operations fi 11 the buffers. The
REPLACE of the Singularity-Map dataset occurs efficiently (one disk access for

1-8.6

the operation) but the next REPLACE overwrites the indexing information for
the CONTROL-POINTS data, even though the next operation is the replacement of
that same dataset. Overall this loop structure yields four data accesses per
SDMS operation.

Fig. 1-8.2 shows a more efficient approach. The CONTROL-POINT DATASET,
the BOUNDARY-CONDITION DATASET and the RIGHT-HAND SIDE dataset have been
combined into one dataset, the BOUNDARY CONDITION/CONTROL POINT dataset. The
replacement of the SINGULARITY MAP dataset has ~een removed to a separate loop
of its own. There are only two different datasets which are accessed in the
inner loop. Thus on the average there will be between 1 and 2 disk accesses
per SDMS operation. This restructuring of the data and control logic will
save a factor of 3 in (I/O) cost over the approach in Fig. l-B.l.

By far the most efficient I/O operations with random access f,les occur
when the random access data is transferred in a sequential fashion. SMDS has
a key set system which indexes elements sets within a dataset. If the element
sets are stored in an order in which the last key set index changes most
rapidly, this will minimize accesses to the pointer file. If the data are
read in a similar order this will also reduce I/O cost. In Fig. l-B.3 the key
set structure is shown for the BOUNDARY CONDITION/CONTROL POINT dataset.
Since the panel row index (number of panels in a column) is the inner loop in
Fig. l-B.2, this random access data is being read and written in a sequential
manner.

l-B.7

EXIT

FOR EACH NETWORK DO

GET NETWORK DATASET

FOR EACH PANEL COLUMN DO

GET COLUr4N OF COORDINATES DATASET

GET COLUMN OF COORDINATES DATASET

FOR EACH PANEL IN COLUMN DO

GET CONTROL-POINT DATASET

(COMPUTE CONTROL POINT DATA)

GET SINGULARITY-MAP DATASET

(MODIFY DATA)

REPLACE SINGULARITY-MAP DATASET

REPLACE SINGULARITY-SPEC DATASET

(ASSIGN BOUNDARY CONDITIONS)

REPLACE CONTROL-POINT DATASET

PUT BOUNDARY CONDITION DATASET

PUT RIGHT-HAND-SIDE DATASET

ENDDO ON PANELS ON COLUMN

ENDDO ON COLUMNS OF PANELS

ENDDO ON NETWORKS

Figure 1-B.1 - Inefficient use of SDMS.
Average of four disk accesses per SDMS operation.

1-B.8

EXIT

FOR EACH NETWORK DO

GET NETWORK DATASET

FOR EACH COLUMN OF PANELS DO

GET A COLUt~N OF COORDINATES DATASET

GET A COLUMN OF COORDINATES DATASET

FOR EACH PANEL IN THE COLUMN DO

GET BOUNDARY CONDITION/CONTROL POINT DATASET

(COMPUTE CONTROL POINT DATA)

GET SINGULARITY-MAP DATASETS

(MODIFY DATA)

REPLACE SINGULARITY-MAP DATASET

(ASSIGN BOUNDARY CONDITIONS)

REPLACE BOUNDARY-CONDITION/CONTROL POINT DATASET

ENDDO OF PANELS IN COLUMN

ENDDO ON COLUMNS· OF PANELS

ENDDO ON NETWORKS

FOR EACH SINGULARITY PARAMETER DO

GET SINGULARITY-MAP DATASET

REPLACE SINGULARITY-SPEC DATASET

ENDDO ON SINGULAIRTY PARAMETERS

Figure l-B.2 - A More Efficient Approach to the Problem of Figure 1
A maximum of two disk accesses per SDMS operation

l-B.9

1-B.10

DATASET BOUND-COND/CONT-PT

KEY SET

NETWORK-INDEX

PANEL-COLUMN

PANEL-ROW

END

ELEMENT SET

END

Fig. 1-8.3 Key Set for Example in Figure 1-8.2 r". ,

2.0 MODULE EXECUTION CONTROL(MEC) MODULE

2.1 INTRODUCTION

A temporary data base is created by the MEC module for use by the other
PAN AIR modules. The data base contains the names, accounts, disk set names,
passwords and status of all permanent and temporary data bases used by the
other PAN AIR modules. These data base parameters can be modified by means of
use~ supplied data base directives described in Paragraph 6.4 of Reference 2.

The MEC module consists of a top level program with main overlays. The
first overlay reads all the user directives. The data base directives are
processed first and the data base information table is updated as directed.
The executive directives used for problem identification are then processed
and stored for future use by the third overlay. The second overlay displays
the data base information table and actually stores this data in the MEC data
base on disk. The third overlay, which previously generated control cards for
Cyber computers, is not invoked.

2.2 MEC OVERVIEW

2.2.1 Purpose of MEC

Originally MEC was intended to generate control cards for the Cyber
versions. This function is not used by version 3.0. It has been replaced by
CRAY JCL procedures. The remaining task for MEC is the accumulation of

r information about PAN AIR data bases.

2.2.2 MEC Input/Output Data

The MEC input data includes the data base directives discussed in
Paragraph 2.1. The MEC directives are described in Paragraph 6.5 of Reference
2.

The printed output from MEC consists of the data base information
table. This table contains the same information which is stored in the data
base. An example of the MEC output can be found in Paragraph 8.5 of Reference
2.

2.2.3 Data Base Interface

The MEC module creates a temporary data base which is used by the other
PAN AIR modules. The data base contains run identification information, data
base information for the other PAN AIR modules and status of the other data
bases. The data base information consists of data base default names, actual
data base names, user numbers, set names, user id1s, Master Definition names,
user names for the Master Definition, set names for the Master Definition,
user ID names for the Master Definition and passwords. The data base status
information includes items such as permanent or temporary, existing or not
existing and used or not used during a PAN AIR run.

The DIP module is the only other PAN AIR module which writes on the MEC
data base. It passes back to MEC the problem identification information and
the user identification information.

2.1

2.3 MODULE DESCRIPTION

" The high level aspects of the MEC module design is described in this
section. The lower level functions are described in Paragraph 2.4. The
functional decomposition of MEC is illustrated in Appendix 2-B.

2.3.1 Overall Structure

The overall structure of MEC is depicted in Figure 2.1.

2.3.2 Overlay Descriptions

2.3.2.1 MEC Overlay (0,0)

The top level overlay initializes the data base and other parameters.
The module then calls upon the second level overlays READUD and GENDB.
Overlay READUD processes the user input directives. The data base information
table and the data base are created in the overlay GENDB.

2.3.2.2 READUD Overlay (1,0)

The second level overlay READUD reads all the user directives. The data
base directives are processed by the third level overlay (1,1) in PRDATA. The
executive directives for solving a PAN AIR problem are processed in the other
third level overlay (1,2) PREXEC.

2.3.2.3 PRDATA Overlay (1,1)

The third "level overlay PRDATA processes the data base user directives.
The available user directives are defined in Paragraph 6.4 of the PAN AIR
User's Manual (Ref. 1). Such things as names, user accounts, disk set names,
user identification and data base status may be changed. An in-core data base
information table is used to store the old and new information.

2.3.2.4 PREXEC Overlay (1,2)

The third level overlay PREXEC processes the executive user directives
defined in Paragraph 6.5 of Reference 2. The executive directives refer to
standard and non-standard PAN AIR Problem definitions. The commands are
stored in-core in a table.

2.3.2.5 GENDB Overlay (2,0)

The second level overlay GENDB displays the data base information in
printed form and also stores the table data in the MEC temporary data base for
use by the other modules.

2.3.2.6 GENCC Overlay (3,0)

The overlay generated control cards for Cyber versions of PAN AIR. It
resides in MEC but it is not invoked.

2.2

2.3.3 MEC Data Base

A temporary data base named MEC· is created by MEC module. The Master
Definition for this data base is described in Appendix 2-D.

2.3.4 MEC Interfaces

2.3.4.1 System Interfaces

The MEC module 'is accessed by JCL procedures.

2.3.4.2 External Interfaces

The MEC data base is used by all other PAN AIR modules. MEC and DIP are
the only modules which write on the MEC data base. The problem identification
(PID), and user identification (UID), are the only variables affected.

2.3.4.3 Internal Interfaces

The interfaces between the overlays and the subprograms is defined by a
tree structure diagram in Appendix 2-A.

2.3.5 Data Flow

The flow of execution is depicted in Figure 2.2. During execution data
flows between overlays, subprograms, data bases and disk files. Figure 2.2

~ depicts this activity in a general way. Detailed data flow information can be
found by consulting the glossaries of those programs/subprograms which are of
interest. Also, Appendix 2-C has been included to· aid analysis of data flow
between MEC and its temporary data base. Section 1, Paragraph 1.4 of this
document can be consulted for more detailed information of the use of the
tools available for analysis of data flow.

2.4. LOWER LEVEL FUNCTIONS

The following paragraphs present the functional decompositions
(hierarchial structure) of the overlays and their subprograms and gives the
purpose of each subroutine.

2.4.1 Functional Decomposition

See Appendix 2-B for a description of the MEC functional decomposition.
Section 1, Paragraph 1.4.1 of this document can be consulted for more detailed
information of the use of the functional decompositions.

2.4.2 Subroutine Descriptions

The subroutines used in the MEC module are described below. Also refer
to the tree structure in Appendix 2-A. The subroutines called by GENCC are
included with PAN AIR but are not invoked by version 3.0. They are not
described below.

2.3

2.4

APPEND

DBASE

Appends a three character or less suffix to the default name of
one or more data bases.

-- Updates the in-core data base information table as prescribed by
the user directives for data base modification.

DISBIT

KEEP

Displays the data base information table in printed form.

Processes user directives indicating which data bases should be
kept for later PAN AIR problems.

KEYCHK
Selects a portion of an input character string to determine the
key portion of the string. The length of the extraction is either
three or four leading characters for the PAN AIR software.

PLIMIT
Processes PL directive for setting print limits for PAN AIR modules

PRCHEC

STATDB

STRWRD

WRITDB

Processes the user directive for a data check. The output is used
by CHECK to create control cards (CDC computers only).

Alters data base type from PAN AIR default to user specified
PERM/TEMP status.

Stores a designated entry into the data base information table.

Iransfers the entries from the in-core data base information table
to the MEC data base stored on disk.

User
Directive
Inputs.

"

OVERLAY(1,O)
READUD

Read and
Process all

Directive Data

"

, ,r

OVERLAY (1, 1) OVERLAY(1,2)

PRDATA PREXEC

Process Process User
Data Base Executive
Directives Directives

MEC
TOP LEVEL

OVERLAY(O,O)

Initialize
an,d Call

other Overlays

1,

OVERLAY(2,O)
GENDB

Write
and Display
Data Base

-.. MEC
Data
Base

.....

,
Data Base

Information -... -

"'"

Figure 2:1 - MEC Structure

NOT INVOKED . , ,
OVERLAY(3,O)

GENCC

Generate
Contr-ol Card

File

,

1
~ ;)

" ~

Control Control

Card Card -
Fil e

...... ..."

2.5

2.6

un
dentificatio
nfonnation

Data
Base

: Directives

/

Executive
Directives

MEC
DATA
BASE

. .,.

-~

~--------•

-.

Initial
Control Cards

+
System Procedure

Ca 11 ed

-+
MEC

Executes ,
READUD

Executes ,
PRDATA

Executes

+
PREXEC

Directives

GENDB
Executes

Figure 2.2 - Data Execution Flow

-

~

Data Base
Infonnation

"Table

Directive
Table

APPENDIX 2-A TREE STRUCTURE

The tree structure diagram of the MEC module has been deleted from this
document. It is, however, available on the installation tape.

2-A.l

r"
I APPENDIX 2-6 MEC FUNCTIONAL DECOMPOSITION

2-6.1

Page Missing in

Original Document

MEC - Module Execution Control

A MEC (O,O) Overlay Initialize ~1EC Execution
A PRGEG - Initialize Program Printout
B ISDMS - Initialize SDMD Execution

B READUD-OVERLAY (l,O) - Read User Directives and Store
A Initialize READUD
B LOADREC - Read a record from Input Card File

A - If End of File, Set Error Flag and Abort
B - STRMOV - Extract Keyword

C Process Input Record
A - Store Run Identification if Present
B - PRDATA OVERLAY (1,1) - Process Data Base Directives if

"DATA" is keyword
A LOADREC - Read Input Record Determine Input Errors

and Extract Keyword if Present
B KEEP - Record Data Bases to be Saved if "KEEP" is

Present Keyword
C STRWRD - Record Data Bases to be Dropped if

"RELEASE" is Present Keyword
D APPEND - Add Suffix to Data Base Name if "APPEND"

is Present Keyword
E STRWRD - Record Data Base User's Account if "UN" is

Present Keyword
F STRWRD - Record Data Base ID if "UID" is Present

Keyword
G STRWRD - Record Data Base Set Names of "SET" is

Present Keyword .
H STRWRD - Record Master Definition User Account if

"MUN" is Present Keyword
I STRWRD - Record Master Definition ID if "MUID" is

Present Keyword
J STRWRD - Record Master Defi nti on Set Name if "MEET"

is Present Keyword
K STRWRD - Record Password for Data Bases if "PW" is

Current Keyword
L DBASE - Determine Name and Location of Single Data

Base for "DBASE" Keyword
M STATDB - Alter status of selected data bases to

permanent
N STATDB - Alter status of selected data bases to

temporary ° - Indicate End of Data Base Directives if
"END" is Keyword

P - Diagnose Unrecognizable Directive and
Abort "RUN"

Q - Diagnose and take error exit, if number of
errors in input exceeds program limit

C PREXEC OVERLAY (1,2) - Process all EXEC Directives if
"EXEC" is Keyword

A LOADREC - Read Input Record
B KEYCHK - Determine Keyword

2-B.3

C If Keyword is FIND, Determine which Type
A If "POTENTIAL" is Present, Store Executive

Type as POTENTIAL
B If IC "UPDATE" is Present, Store Executive

Type as IC
C If "SOLUTION" is Present, Store Executive

Type as SOLUTION
o If 'POST' is present, store execution type

as post processing
E Diagnose Unrecognizable Directive if Detected

o If "FIELD" or "PLOT" are Present, Store in
Executive Parameters

E If Keyword is "RUN", Process and Store Module
Information

F IF Keyword is "DROP", Process and Store Purge
Data Base Information

G I f Keyword is "MOUNT", Store Di smount Di sk
Command Information

H If Keyword is "DISMOUNT", Store Dismount Disk
Command Information

I If Keyword is "CC=", Store Control Card Image
Informati on

J If Keyword is "ERROR", Store EXIT Parameters if
Present

o If Keywpord is" INPUT" ,. Store Fil e Name
K If Keyword is "END", Record End of EXEC Directives ~.
L Diagnose Unrecongizable Directives if Present
M Diagnose too many Directives
N Diagnose too many Errors on Input

o PRCHEC - Process Data Check Directive if Present
A - Initialize Data Check Options
B - If "DQG" is Requested, Record Via Switch
C - If "PLOTS" are requested, Record Vi a Switch

E Store SYSTEM Card Parameters if Present for Boeing, Ames,
Langley or WPAFB computer installations

F If Keyword is "END", Indicate No More PAN AIR Directives Exist
G If Too Many Input Errors Were Recorded, Print Diagnostic and

Abort Run

C GENCC OVERLAY (3,0) - Generate JCL Control Cards for Requested PAN AIR
Problem (This code was previously used for Cyber computers and is not
invoked)

o GENDB OVERLAY (2,0) -
A DIST
B WRITDB

Define MEC Data Base Table
Display MEC Data Base Table
Write the Data Base Table on the MEC Data Base

E PRGEND - Terminate the Execution of the MEC Module

2-B.4

APPENDIX 2-C DATA BASE COMMUNICATIONS CHART

The Data Base Communications Chart is presented in three forms. The
first form has a column order of Data Base, Dataset Name, Map Name, Common
Block, and Program/Subroutine. The second form has a column order of Data
Base, Map Name, Dataset Name, Common Block, and Program/Subroutine. The third
form has a column order of Common Block, Data Base, Map Name, Dataset Name,
and Program/Subroutine. Thus a person can get a cross reference on a data
element by knowing either the Dataset Name, Map Name or Common Block.

2-C.l

Page Missing in

Original Document

FIRST FORM

DATA COMMON PROGRAM/
BASE DATASET-NAME MAP NAME BLOCK SUBROUTINE

MEC DATA-BASE-HEADER DBHED /MECDB/ WRITDB
MEC DATA-BASE-LOCATION DBLOC /MECDB/ WRITDB

SECOND FORM

DATA COMMON PROGRAM/
BASE MAP NAME DATASET-NAME BLOCK SUBROUTINE

MEC DBHED DATA-BASE-HEADER /MECDB/ WRITDB
MEC DBLOC DATA-BASE-LOCATION /MECDB/ WRITDB

THIRD FORM

COMMON DATA PROGRAM/
BLOCK BASE DATASET-NAME MAP NAf.1E SUBROUTINE

/MECDB/ MEC DATA-BASE-HEADER DBHED WRITDB
/MECDB/ MEC DATA-BASE-LOCATION DBLOC WRITDB

2-C.3

APPENDIX 2-D MASTER DEFINITION

The data base master definition. listing of the MEC module has been
deleted from this document. It;s produced from the PAN AIR tape during
installation.

2-0.1

3.0 DATA INPUT PROCESSOR (DIP) MODULE

3.1 INTRODUCTION

The DIP module is the input processor for the PAN AIR system. It reads
user supplied PAN AIR directives, collects them into related groups of data
and stores them on the DIP database for use by other modules in the PAN AIR
system. DIP also provides some diagnostic information to the user on the
output file. Most of the contents of DIP deals with the recognition of
alphanumeric data and the consequent storage of the data. DIP has two modes
of operation. The first mode of operation is invoked to define a new
problem. The second mode of operation involves an "update" or change in the
parameters describing a previously executed problem. User supplied directives
to module MEC (see Paragraph 6.3 of Reference 2) determine the mode of DIP
operation.

3.2 DIP OVERVIEW'

3.2.1 Purpose of DIP

The DIP module reads the user's description of the problem and stores it
for use by other modules. The DIP module consists of a top level program
which calls from two to seven primary overlays. The first primary overlay
performs the module initialization function. The second primary overlay reads
and loads the global data. The third primary overlay reads and loads the
network data. The fourth primary overlay reads and loads the geometric edge
matching data. The fifth primary overlay reads and loads the flow properties·
calculation data. The sixth primary overlay reads and loads the data printout
directives. The seventh primary overlay performs the module termination
function. All PAN AIR input data, except execution control directives, are
read by the DIP module. The data is checked for accuracy and loaded into the
DIP data base for use by subsequent modules.

3.2.2 DIP Input/Output Data

The DIP module receives input from three sources. The first is the MEC
data base which provides DIP with problem identification, user identification
and run mode. The run mode will indicate that DIP is either to generate a new
data base or use an old data base. The second source of input is the old DIP
data base if this is an update or follow-on run. The final source of input is
the user supplied input data for DIP.

The DIP module produces a printout of each input record (card) read,
followed by any diagnostics associated with the record. The printed output
also contains a summary of the global data, a list of the solutions and a
summary of the networks.

3.2.3 Data Base Interface

The DIP module creates/updates a DIP data base which is used by the
other PAN AIR modules. This data base contains the flow regime data,
configuration data, a list of networks plus individual network data, and a
list of solutions plus individual solution data. It also contains the DIP

,~ global defaults, flow properties data, PAN AIR module print flags, and data
printout directives.

3. 1

The DIP module also writes the problem identification and user
identification on the MEC data base.

3.3 MODULE DESCRIPTION"

3.3.1 Overall Structure

The main overlays of DIP are briefly summarized in this paragraph.
Lower level subroutines are described in Paragraph 3.4. The DIP functional
decomposition and a chart of the subroutine tree diagram are presented in
Appendices 3-B and 3-A, respectively. The overall structure of DIP is
depicted in Figure 3.1.

3.3.2 Overlay Descriptions

3.3.2.1 DIP Overlay (0,0)

The top level overlay initializes the data base and default parameters
by calling Overlay (1,0) (Program INITIL). The module then responds to input
data, calling overlays GLOBDP, NETWDP, GEOMDP, FLOWDP, and PPPDIR. The global
data is processed by GLOBDP, the network data is processed by NETWDP, the
geometric edge matching data is processed by GEOMDP, the flow properties data
is processed by FLOWDP and the data printout directives are processed by
PPPDIR. At the completion of input data, the module calls overlay FINIS.

3.3.2.2 INITIL Overlay (1,0)

The second level overlay INITIL (F"igure 3.2) opens the data base and
reads the data base header and the run options.· The DIP data base is then
checked and opened. If the MEC run options indicate an update run, INITIL
reads the global level data sets from the DIP data base into core.

3.3.2.3 GLOBDP Overlay (2,0)

The second level overlay GLOBDP (Figure 3.3) is called in response to a
IIBEGIN GLOBAL DATAII input record. It processes all of the global data input
by the user. Data transmitted to the DIP data base consists of header data,
global defaults, and global prints. Data transmitted to the MEC data base is
header data.

3.3.2.4 NETWDP Overlay (3,0)

The second level overlay NETWDP (Figure 3.4) is called in response to a
IIBEGIN NETWORK DATAII input record. It processes all of the network data input
by the user. Data transmitted to the data base consists of individual network
data for panel coordinates and constraints.

3.3.2.5 GEOMDP Overlay (4,0)

The second level overlay GEOMDP (Figure 3.5) is called in response to a
"BEGIN GEOMETRIC EDGE MATCHING II input record. It processes the edge matching
(abutment) data. Data transmitted to the data base consists of the user
defined abutments.

3.2

,~,

3.3.2.6 FLOWDP Overlay (5,0)

The second level overlay FLOWDP (Figure 3.6) is called in response to a
"BEGIN FLOW PROPERTIES CALCULATIONS DATA" input record. Surface flow
properties are processed by the third level overlay SURFLO. Forces and
moments .are processed by the thi rd 1 evel overl ay FOR~tO~l.

3.3.2.7 SURFLO Overlay (5,1)

The third level overlay SURFLO (Figure 3.6) is called in response to a
"SURFACE FLOW PROPERTIES" input record.

3.3.2.8 FFDATA Overlay (5,2)

The third level overlay FFDATA (Figure 3.6) is called in response to a
"FIELD FLOW PROPERTIES" input recor~.

3.3.2.9 FORMaM Overlay (5,3)

The third level overlay FORMOM (Figure 3.6) is called in response to a
"FORCES AND MOMENTS" input record.

3.3.2.10 PPPDIR Overlay (6,0)

The second level overlay PPPDIR (Figure 3.7) is called in response to a
"BEGIN PRINT PLOT" input record. The data group processed by this overlay
specifies point options for the Print/Plot Processor (PPP) module. Geometry
print options are processed by the third level overlay PPGEOM. Flow
properties at points print options are processed by the third level overlay
PPPOIN. Force and moment data for surface configurations is processed by" the
third level overlay PPCONF.

3.3.2.11 PPGEOM Overlay (6,1)

The third level overlay PPGE0I4 (Figure 3.7) is called in response to a
"GEOMETRY DATA" input record. The input record set processed by thi s overl ay
specifies the print files that PPP will create from DQG data.

3.3.2.12 PPPOIN Overlay (6,2)

The third overlay PPPOIN (Figure 3.7) is called in response to a "POINT
DATA" input record. The input record set processed by this overlay specifies
the print files that PPP will create from PDP data.

3.3.2.13 PPCONF Overlay (6,3)

The third level overlay PPCONF (Figure 3.7) is called in response to a
"CONFIGURATION DATA" input record. The input record set processed by this
overlay specifies the print files that PPP will create from COP data.

3.3.2.14 FINIS Overlay (7,0)

The second level overlay FINIS (Figure 3.8) is called in response to a
/~ "END PROBLEW' input record or an END-OF-FILE mark on the input file. This

overlay writes the global and global flow data sets to the DIP data base and
closes the DIP data base. It then closes the MEC data base.

3.3

3.3.3 DIP Data Base .~
DIp creates one permanent data base. The Master Definition is described

in Appendix 3-D.

3.3.4 DIP Interfaces

3.3.4.1 System Interfaces

The DIP modul e is accessed through t4EC by user control cards and a
system procedure. This interface is described in Sections 1.0 and 2.0 of this
document.

3.3.4.2 External Interfaces

The DIP data base is used by all other modules. DIP is the only module
which can write on the DIP data base. DIP also writes on the MEC data base.
The problem identification (PID), and user identification (UID), are the only
variables affected.

3.3.4.3 Internal Interfaces

The interfaces between the overlays and the subprograms are defined by a
tree structure diagram in Appendix 3-A.

3.3.5 Data Flow

The flow of execution is depicted in Figure-3.9. -D~ririg execution, data
flows between overlays, subprograms and data bases via labeled common blocks.
Figure 3.9 illustrates this activity in a general way. Detailed data flow
information can be found by consulting Figures 3.2 through 3.8, Appendix 3-C
(Data Base Communications Chart) , and the glossaries of the
programs/subroutines which are of interest.

3.4 LOWER LEVEL FUNCTIONS

The following paragraphs describe the general structure and purpose of
the overlays and their subprograms.

3.4.1 Functional Decomposition

See Appendix 3-B for a description of the DIP decomposition.

3.4.2 Subroutine Descriptions

3.4.2.1 Subroutines from GLOBDP - Overlay (2,0)

ADDE

3.4

Processes the "ADDED MASS COEFFICIENTS" input record. This record
may contain a moment reference point, but COP apparently does not
use it.

The input data is loaded into DIP data set GLOBAL-FLOW-PROP.

AMCGLR

CHEC

CONF

GLDAPR

GLOOPT

GLOSOL

Generates the 6 solutions required for added mass coefficient
calculations by COP, checks Mach number and checks for symmetric
planes of symmetry. The generated data is loaded into DIP data
set GLOBAL.

Processes the "CHECKOUT PRINTS" input record. This record
contains a parameter list of one or more abbreviated module names,
each followed by its own list of integer print options. The input
options are loaded into DIP data set GLOBAL-PRINTS.

Processes the "CONFIGURATION" input recor"d. Thi s record contai ns
the configuration and flow symmetry data. The input options are
loaded into DIP data set GLOBAL.

Transforms the WM (magnitude of rotational flow) and WDC
(direction cosines of axis of rotation) into the rotational flow
vector for all new solutions.
Prints the global data, including new solutions, if the DIP global
data print flag is set true. This flag is set in CHEC in response
to DIP option"3."

Processes the solution update parameter on the "BEGIN GLOBAL DATA"
input record. The options are:

NEW (DEFAULT) no updates.

REPLACE

UPDATE

purge solution data from previous
run(s).

old solution data can be selectively
updated. No new solutions may be
defined. Solution idents remain
fixed.

Processes the option 2 input records for global solution data.
This option introduces data by columns. An example is:

ALPHA = .2 , .3 , .5

The input data is loaded into DIP data set GLOBAL.

3.5

3.6

IDCNCV

MACH

Checks for missing input for Problem 10, User 10, configuration
symmetry and flow regime data. Load default values for all
missing items just listed. This routine is only called during a
creation run. None of the above items are updatable. The
defaults are written into the DIP data set GLOBAL.

Processes the flow regime definition record. This record defines
the freestream Mach number and the direction of compressibility
effects. Angles are input in degrees. Examples:

MACH = 1.2, CALPHA = 2.0, CBETA = .05
MACH = 1.2, CALPHA = 2.0

Parameter defaults:

MACH = 0., CALPHA = 0., CBETA = O.

The input data is loaded into DIP data set GLOBAL.

OP1DAT

Processes ·the option 1 data input records for global solutions.
This option introduces data by rows. Examples:

.2 SOL-l

.3 SOL-2

.5 SOL-3

See OP1HED for headers.

The input data is loaded into DIP data set GLOBAL.

OP1HED

PIDUID

Processes the option 1 header input record(s) for global
solutions. This option introduces data by rows. Example:

ALPHA SID

See OP1DAT for data.

The input data is loaded into DIP data set GLOBAL.

Processes the "PID" and "UID" record types. Examples:

PID = THIS IS A SAMPLE PROBLEM 10
UID = THIS IS A SAMPLE USER 10

The input data is loaded into DIP and MEC data sets
DATA-BASE-HEADER.

.~

RVPFIL

Provides reference velocity for pressure defaults and ratio of
specific heats defaults for solutions, when necessary.

The input data is loaded into DIP data set GLOBAL-DEFAULTS •
•

SOLFIL

Provides default solution data as required. If no solutions were
defined (creation run only), generate a single solution with the
values indicated below. Parameter defaults for solution data:

ALPHA BETA
O. O.

UINF
1.

WM
O.

WDC
0.,1.,0.

WCP SID
O. ,0. ,0. (2

blank
. words)

SOLTRN

Transforms the alpha, beta and unif (magnitude of uniform onset flow)
into the uniform onset flow vector for all new solutions.
The results are loaded into DIP data set GLOBAL.

3.4.2.2 Subroutines from NETWDP - Overlay (3,0)

BCSTEC

BOUN

Checks user inputs and load defaults when required for the following
types of. network data:

Supplement record duplicatl0n checks;
Boundary condition class and subclass input;
t4ethod of velocity computation;
Singularity types;
Edge control point data;
Closure input for edges;
No doublet edge matching; and
Adjacent edge check for control point edges.

Processes the Boundary Condition Specification record for networks.
Examples:

BOUNDARY CONDITION = OVERALL, 1, 3
BOUNDARY CONDITION = LOCAL, 1, 4

The class and subclass data is loaded into DIP data set NETWK-SPEC.

CBC123

Defines defaulted general boundary condition coefficients for classes
1, 2, and 3. Check user inputs of specified flows for classes 2 and
3. Check user inputs of tangent vectors for class 3.

3.7

3.8

CHKBC4

Checks user inputs of constraint data for a boundary condition class
4 problem.

CHKBC5

Checks user inputs to determine if the boundary condition coefficient
terms for RHS tangential (term indices 15 and 30) have been
specified. If user did not input these terms, define default term
with a value of -1 for first and second equations.

CLDATA

CLOS

COEF

Processes the values for the closure edge boundary condition data set
for a network. The closure values may appear as a floating point
value, an array of values, or as indexed input. Indexed input starts
with a left paren as follows:

(row, column) = value

Processes the closure edge boundary condition data set for a
network. It recognizes the following record types:

TERH =
SOLUTIONS =

values

This routine is responsibile for loading data into DIP data sets
CLOS-COND and NETWK-BDC.

Processes the coefficients of general boundary condition equation
data set for a network. It recognizes the following record types:

TERH =
SOLUTIONS =

POINTS =
values

This routine is responsible for loading data into DIP data sets
COEF-GEN-BC and NETWK-BDC.

GRID

LOCA

METH

Processes the network grid point data which follows the network ID
record. Each point is defined in triplet form (X, Y, Z) and must not
spill across record boundaries. Each data set contains one complete
grid column.

The data is loaded into DIP data set PANEL-COORDS.

Processes the local incremental onset flow data set for a network.
It recognizes the following record types:

TERM =
INPUT-IMAGES =

SOLUTIONS =
POINTS =

values

This routine is responsible for loading data into DIP data sets
LOCAL-FLOW and NETWK-BDC.

Processes the "METHOD OF VELOCITY COMPUTATION" record for network
data. Examples:

METHOD OF VELOCITY COMPUTATION = LOWER-SURF ACE-STAGNATION

The data is loaded into DIP data set NETWK-SPEC.

NDELDR

Loads general network data defaults in response to the network
identifier record. All defaults may be over-written by user inputs.

NECDWR

Writes foll o\'Ii ng network control data sets to DIP data base:

NEDAPP

NETWK-SPEC

NETWK-BDC

NETWORK-UPDATE-CODES

Prints network data for all known networks, including input order
number, user label, status (NEW, REPLACED, UPDATED, DELETED, or OLD),
boundary condition class and subclass, singularity types, and grid
point row and column counts.

3.9

3.10

NETIDS

Isolates the network ID (if any) found in the parameter list of the
network identifier record.

NETOPT

Process the option parameter at the end of the network record. The
opti ons are:

NETWID

DELETE
SOLUTION (.IC)
REPLACE
NEW (Default)

Recognizes network data records. Examples:

NODOUB

STORE VIC MATRIX
STORE LOCAL INCREMENTAL ONSET FLOW
DELETE REFLECTION IN PLANE OF SYMMETRY
WAKE FLOW PROPERTIES TAG
TRIANGULAR PANEL TOLERANCE =
UPDATE TAG =
BOUNDARY CONDITION =
METHOD OF VELOCITY COMPUTATION =
SINGULARITY TYPES = SA DA
EDGE CONTROL POINT LOCATIONS =
NO DOUBLET EDGE MATCHING =
CLOSURE EDGE CONDITION
COEFFICIENTS OF GENERAL BOUNDARY CONDITION EQUATION
TANGENT VECTORS FOR DESIGN
SPECIFIED FLOW
LOCAL INCREMENTAL ONSET FLOW
NETWORK

Processes the "NO DOUBLET EDGE MATCHING" record for network data.
Examples:

NO DOUBLET EDGE MATCHING = 2, 4

NO DOUBLET EDGE MATCHING = 1

The data is loaded into DIP data set NETWK-SPEC.

NOPCHK

Processes the network option for update runs. This option is
specified or defaulted in the parameters list of the network
identifier record. The option was decoded by routine NETOPT. Also
loads network ID for new networks. The ID is loaded into DIP data
set GLOBAL.

SING

SPEC

TANG

UPDA

Processes the "SINGULARITY TYPES" record for network data. Examples:

SINGULARITY TYPES =
SING =
SING =
SING =
SING =

NOS, NOD
SA, DA
SOl, DDl

DWl
DW2

The data is loaded into DIP data set NETWK-SPEC.

Processes the specified flow data set for a network. The follO\'Iing
record types are recognized:

TERM =
INPUT-IMAGES =

SOLUTIONS =
POINTS =

values

This routine is responsible for loading data into DIP data sets
NETWK-BDC and SPEC-FLOW.

Processes tangent vectors for design data se~ for a network. It
recognizes the following record types:

TERM =
UNALTERED

SOLUTIONS =
POINTS =

values

This routine is responsible for loading data into DIP data sets
NETWK-BDC and TANG-VEC.

Processes the "UPDATE TAG" record for network data. Examples:

UPDATE TAG = 1, 2, 3, 4
UPDATE TAG
UPDATE TAG = 1

The data is loaded into DIP data set NETWK-SPEC.

3.11

3.4.2.3 Subroutines from GEO~1DP - Overlay (4,0)

ABNEID

ABUT

Processes the abutment definition records parameter list. The list
included the network lOis and their whole or partial edges which form
the abutment. Each network 10 must be preceded by an equal sign
(=). Examples:

ABUTttlENT = NETWORK-NO-2, 2, 1, 5 +
= NETWORK-NO-5, 4, ENTIRE-EDGE +
= 7 , 4.

ABUT = 2, 2, 1, 5 = 5, 4, = 7, 4

The data is loaded into DIP data set USER-ABUT.

Recognizes the abutment definition record. It also processes the
supplement records for planes of symmetry and smooth edge treatment.
Examp1 es:

ABUTMENT = 7 , 4

PLANE = SECOND

SMOOTH EDGE TREATMENT

The data is loaded into DIP data set USER-ABUT.

3.4.2.4 Subroutine from FLOWDP - Overlay (5,0)

FLWOPT

Processes the post solution update option on the "BEGIN FLOW
PROPERTIES CALCULATION = option" input record. The options are:

NEW (Default) /
REPLACE /
UPDATE /

All new cases
Purge old, all new cases
Update old, add new cases

3.4.2.5 Subroutines from SURFLO - Overlay (5,1)

3. 12"

FPPOIN

Processes the calculation point locations record for surface flow
properties calculations. Examples:

POINTS = CENTER-CONTROL-POINTS
POINTS = EDGE-CONTROL-POINTS
POINTS = ADDITIONAL-CONTROL-POINTS
POINTS = ALL-CONTROL-POINTS
POINTS = GRID -

The data is loaded into DIP data set SURF-FLOW.

SFDELO

Checks surface flow case record type counts to determine if there is
any duplication of same, or a missing surface flow properties
record. Also load default values for any missing record types.

3.4.2.6 Subroutines from FFDATA - Overlay (5,2)

CVRTVC

Translates velocity correction requests from an input record form to
an output database specification form.

CVTPDR

Translates print and database requests from their input form to their
output form.

~ FFDEFA

Uses the defaults for any record in a field flow properties case that
has not been specified. If the record cannot be defaulted then the
user is warned and the case is dropped.

FFINIT

Initializes the labeled common blocks which describe the allowable
record syntax and parameter values. It also maps the record type to
the posiition in a labeled common block where its parameter vaJues
are stored.

FFOREQ

FFSOL

Processes the parameters specified in the PRINTOUT or DTA BASE
records. It reads the compressed list of option selections (by
number of keyword) and produces a full option list whose set entries
correspond to selected options.

Processes the SOLUTION record by transfering the solution number
directly to a local array and by interpreting the solution number
from the solution name and transfering it to a local array.

LISPAC

Converts a list of options selected and not selected to a packed list
of only those options selected. It can extract two types of packed
lists. It does not do word packing.

LOOKUP

Finds the occurance(s) of an item in a list of items.

3.13

3.14

MARKRC

Records the occurance of a record type and warns if that record type
was previously specified.

OBCASE

Controls the handling of off body case records.

OBCLOS

Replaces unspecified records in an off body case with their defaults,
converts the input specifications to a form suitable for the F;-eld
Data Processor to user, and writes the data to the DIP data base.

OBOPEN

Initializes the defaults for an off body case. For a standard run,
thses defaults will include global defaults. For an update run,
these defaults will be the values for the previous case.

OFLOAD

Transfers a numerical (integer or real) list of parameters in an
input record to a local array.

PDRCVT

Translates print and data base requests from their output form to
their input form.

REPARS

Reads and parses the next valid record in the input stream.

SLCASE

Controls the handling of streamline case records.

SLCLOS

Replaces unspecified records in a streamline case with their
defaults, converts the input specifications to a form suitable for
the Field Data Processor to use, and writes the data to the DIP data
base.

SLOPEN

Initializes the defaults for a streamline case. For a standard run,
these defaults will include global defaults. For an update run,
these defaults will be the values for the previous case.

VCHECK

Checks the validity of the current input record by comparing it with
the allowable forms of syntax and values defined by several labeled

common areas initialize by FFINIT.

3.4.2.7 Subroutines from FORMOM - Overlay (5,3)

FMACCU

Processes the "ACCUMULATE" record from the forces and moments data
subgroup of the flow properties data group.

FMACDE

Processes the parameter defaults for the forces and moments
"ACCUMULATE" record. The data is loaded into DIP data set SURF-FAM.

FMACPL

Processes the parameter list for the forces and moments "ACCUMULATE"
record. The data is loaded into the DIP data set SURF-FAM.

FMASDL

Loads the defaults for user selected axis systems. The data is
loaded into DIP data set SURF-FN~.

FMASPS

Processes the parameter list on the AXIS SYSTEM record. The data is
loaded into DIP data set SURF-FAM.

FMAXSY

Processes the AXIS SYSTEMS record from the forces and moments data
subgroup of the flow properties data group.

FMCASE

Processes forces and moments "CASE" records plus 14 supplement record
types. The supplement record types are:

NETWORKS-IMAGES
EDGE FORCE CALCULATION
MOMENT AXIS
LOCAL REFERENCE PARAMETERS
SURFACE SELECTION
SELECTION OF VELOCITY COMPUTATION
COMPUTATION OPTION FOR PRESSURES
VELOCITY CORRECTIONS
PRESSURE COEFFICIENTS RULES
RATIO OF SPECIFIC HEATS
REFERENCE VELOCITY FOR PRESSURE
LOCAL PRINTOUT
LOCAL DATA BASE
ACCUMULATE

3.15

FMEDFO

Processes the EDGE FORCE CALCULATION record from the forces and
moments data subgroup of the flow properties data group. The data is
loaded into DIP data set SURF-FAM.

FMGLDE

Initializes supplement (global) record type counts and load global
defaults for the forces and moments data subgroup. The default data
is loaded into the DIP data set SURF-FAM.

FMLODE

Checks inputs and load defaults as required for case level data in
the forces and moments subgroup. The data is loaded into DIP data
set SURF-FAl~.

FMLOIN

Initializes case level defaults and parameter values. The default
data is loaded into DIP data set SURF-FAM.

FMMDAX

Processes the MOMENT AXIS record from the forces and moments subgroup
of the flow properties data group. The default data is loaded into
DIP data set SURF-FAM.

FMSURF

Processes the SURFACE SELECTION record from the forces and moments
data subgroup of the flow properties data group. The data is loaded
into the DIP data set SURF-FAM.

3.4.2.8 Subroutine from PPGEOM - Overlay (6,1)

NETDQG

Processes the network 10 list on the NETWORKS record for the PPP
IIGEOMETRY DATAII group. The data is loaded into DIP data set
GEOM-PRINT-PLOT.

3.4.2.9 Subroutines from PPPOIN - Overlay (6,2)

NETPDP

3.16

Processes the network 10 list and corresponding images on the
NETWORK-IMAGES record for the PPP IIPOINT DATAII group. The data is
loaded into DIP data set POINT-PRINT-PLOT.

PPARAY

Processes the IIARRAY II record for PPP IIPOINT DATA II • Thi s record
indicates grid direction (rows or columns) and point type (control or
grid). The data is loaded into DIP data set POINT-PRINT-PLOT.

.~

.",

3.4.2.10 Subroutine from PPCONF - Overlay (6,3)

NETCDP

Processes the network ID list and corresponding images plus panel
and/or column-sum options on the NETWORK-U4AGES record for the PPP
CONFIGURATION DATA group. The data is loaded into DIP data set
CONFIG-PRINT-PLOT.

Responds to an "ADDED MASS COEFFICIENTS" input record at time of DIP
termination. Wake networks are eliminated. CDP cases are updated to
reflect the 6 new Added Mass Coefficients onset flows (SOLUTIONS).

3.17

Page Missing in

Original Document

w
-"
ID

)

~ ~
MEC .

~
DIP I

DATABASE I
(UPDATE RUN) I

-i
OVERLAY (1,0)1

INITIL

OPEN MEC&
DIP

DATABASES

'"

USER : I-
INPUTS,

OVERLAY (2,0)1
GLOBDP

OVERLAY (3,0) I
NETWDP

')

DIP
TOP LEVEL

OVERLA Y (0, 0)

INITIALIZE &
CALL OTHER I

OVERLAYS !

, READ~ WRITE,

READ, WRITE, 'II READ, WRITE, II rHECK & LOAD
CHECK & LOAD I CHECK & LOAD I GEOMETRIC
GLOBAL DATA NETWORK DATA i EDGE MATCH·

ING DATA

r •

FIGURE 3.1 DIP STRUCTURE

. READ, WRITE,
CHECK & LOAD

FLOW
PROPERTIES
DIRECTIVES

SEE
. FIG. 3.1
. (CO NT)

i

f

w

)

\ OVERLAY (61 0)
PPPDIR

~ READ, WRITE, II CLOSE MEC & CHECK & LOAD I DIP
PPP ,

! DIRECTIVES I DATA BASES

I SEE
1 FIG. 3.1
i (CONC) .

•

f t. ..

. -

r

c-~
MEC

,DATABASE
~ .--1

DIP
!DATA BASE

I

'--- .--J

INPUT DATA ! t-I-
PLUS SUMMARY' --

l
T

OVERLAY (5,0)

-

,Ir

" '1

OVERLAY (5, 1) OVERLAY (5,3)'

SUR FLO FORMOM
.

Process Surfac.e Process Forces
Flow and

Properties Data Moments Data

,; ,r.

3.20
,

Figure 3.1 - Continued

OVERLAY (6,1)
PPGEOM

Process Geometry

Print Data

OVERLAY (6,0)

"

,f

OVERLAY (6,2)
PPPOIN

Process Point
Print Data

Figure 3.1 - Concluded

"

OVERLAY (6,3)
PPCONF

Process
Configuration
P~int Data

1

3.21

n ~ / MEC ..
\1 J

f'.
"' DIP

\))

(Update Runs Only)
DIP:
DATA-BASE-HEADER
GLOBAL

- GLOBAL-FLOW-PROP
GLOBAL-DB-OUTPUT
GLOBAL-DEFAULTS
GLOBAL-PRINTS
NETWORK-UP DATE-CODES

..

{DATA-eASE-HEADER
MACRO-OPTIONS

OVERLAY (1,0)
INITIL

-

Figure 3.2 - Structure and Data Flow of OVERLAY (1,0)

3.22

..

.~.

~N GLOBAL ...
DATA ,. OVERLAY (2,0)

GLOBDP

PID • -

PIDUID

UID •

~

CONFIGUR -
ATION • .. CONF -

MACH ,.

CALPHA • -
CBETA ,. MACH

DATA-BASE-HEADER

\
....
_ ...

f\

MEC

\J

f\

DIP

! \1

DIP:
DATA-BASE-HEADER
GLOBAL-DEFAULTS
GLOBAL-PRINTS

\

J

,

j

Figure 3.3 - Structure and Data Flow of OVERLAY (2,0) 3.23


~~~~~oo ooili ~I 
~~:: .. ooili ~I 
/ALPHA :a 
a T'ji'lli. (1 ) , 
alpha(2) , ... 

r'fOLERAN'CE .. 
For . .. 

.. 
a . 

ttURFACE 
SELECTION -

"RATIO OF I SPEC. =-

REFERENCE 
L -. 

VELO. =- -- . 

3.24 Figure 3.3 - Continued 

OPIHED 

OPIDAT 

GLOSOl 

FPVALU 
-

SURF 

REFE 

I 
I 

I 

I 



STORE VIC 
MAT s 

STORE LOCAL 
INC 2 

CHECKOUT 
PRINTS· 

l 

ADDED MASS 
COEFF::a 

L 

BEGIrt. XXXX 
END 

h 

H ...... -

SETFLG 

~ 

r"i .... -

t-1 

CHEC 
...lII 

r"i 

h ... ADDE 

GLDAPR 

Figure 3.3 - (Concluded) 

3.25 



BEGIN bVERLAY (3,0 ... . NETWORK = ~ 

NETWDP 

qmORK W~ • J ~ W---------l... NETWI D 

Grid Points 
XPl, 
Y (1), GRID 
Z(l), .•. -

Y 
STORE : PANEL-COORDS 

VIC MAT ~ 

I 
SETFLG 

~TORE 
f .LOCAL INC .. -

~FLECTIO ~ ~ELETE ~ -

·1 
PLAN 

1 

~A ~ER ;pL O.W~ ·1 
SETFLG 

1 

~A~A:AGNU :lli -

·1 1 
FPVALU 

~PDA;:G lli ·1 .1 
UPDA 

I 

" --, 
3.26 Figure 3.4 - Structure and Data Flow of OVERLAY (3,~) 



C~~~~~R: ~ ·1 BOUN I 
~ET~~~. o:~ ·1 METH 

I 
~~ARlTY ~. emu. ~ 

·1 SING I 
GOGE ~ ·1 I ~ONTROL EDGE 

I 
~ 

~OOU8LET .~ ·1 NODOUB I '. 
CLOSURE.': ... CLOS ~ 

CLOS/cOND 
COE.FFI---CIENTS :a - COEF ... 

~ 

/ -
COEF-GEN-BC 

TANGENT ~ -- ... -- TANG 

TANG-~C 
-

tfPECIFIED 
FLOW ... SPEC 

SPEC.{LOW 

~ 

LOCAL INC .... LOCA ... 

LOCA(FLOW , 
-Flgure 3.4 Contlnued 



-llIN . XXXX ... 
END .. 
NETWORK 

BEGIN . XXXX 
END 

3.28 

~ 

,Ir 

NECDWR -- -

NETWK-SPEC . }~ 
NETWK-BDC 
NETWORK-UPDATE-CODES 

, 
. 

r, , 
DIP 

\) J 

Out ut File 

NEDAPR 

Figure 3.4 - Concluded 



BEGIN GEOM ... OVERLAY (4,0) 
GEOMDP 

f\ , 
I-

ABUTMENT .. -'" ABUT - DIP 

/ \1 J 

USER-ABUT 

Figure 3.5 - Structure and Data Flow of OVERLAY (4,0) 3.29 



OVERLAY (5.0) 
~N FLOW = - FLOWDP 

SURFACE ~ OVERLAY (5.1) 
FLOW = - SUR FLO 

---

NETWORK - ... 
NETWIM -IMAGES ,., 

SOLUTIONS = - SOLSFP -~ 

!-

POINTS = ~ FPPOIN -- - . -. 

SURFACE ~ 

~ SURF 
SELE. = -

SELECTION = !- SELE -

3.30 Figure 3.6 - Structure and Data Flow of OVERLAY (5,0) 



~UTATION 2° 
a CaMP ,. 

RATIO OF I-

~ REFE 
SPEC. 2 

REFERENCE 
L- - REFE 

VEL. • ·0 

PRINTOUT • ~ 

__ 0 

SFPRDB 

I 

, 
VELOCITY ~ 

I- - VELa 
CaRR 2 

I 

"-PRESSURE 
~ - PRES 

COEF • • 
r 

~ 

DATA BASE 2 I- - SFPRDB 

T n , 
I1:EG1N XXXX -- - - .< 

~ FPDAWR rmr- -- - DIP SURFACE FLOW (PAllB) -? \j --
J FORCES 

-SURF FLOW 
Figure 3.6 - Confinued 3.31 



w 
W 
N 

) 

,,- ......... 
~ ~ 

GLOBAL 
FLOW 

PROPERTIES 

", ....... 
~ -' 

UPDATE ..... 
OFFBODY 
OPTIONS RUN .. OBOPEN 

OFFBODY 
CASE ...... OBCASE .. 

RECORDS 

OBCLOS 

~ """""I 
'- --' ..... OVERLAY (5,2) ..... GLOBAL 

po FFDATA --..- FLOW 
PROPERTIES 

~ -.. 
~ -' UPDATE .. 

STREAMLINE RUN .... SLOPEN 
OPTIONS 

~ STREAMLINE 
CASE ..... 

RECORDS 
--.... SLCASE 

" ~ ~ """""I 

'-- ~ ~ -' 
... OFFBODY SLCLOS .... STREAMLINE 

--....- OPTIONS -- OPTIONS 

FIGURE 3.6 - CONTINUED 

) ) 



~ 
i 

FORCES and bVERLAY (5,3 

MOMENTS ... FORMOM -' 

REFERENCE .. FMREFE 
PARA .. 

AXIS 
-'" FMAXIS 

SYSTEMS .. 

f-

SOLUTIONS = ... SOLSFP ,--

PRINTOUT = FMPRDA 

DATA BASE .. 

-
CASE .. ... FMCASE 

-

NETWORKS- f-

... NETWIM 
IMAGES .. 

f-

~ FORCE .. FMEDFO -

Figure 3.6 - Continued 3.33 



3.34 

!1Q!1INT AXIS:z 

.-

--

LOCAL REFE 

PAR' • 

SURFACE 
SELEC :z 

ELECTION 
OF :z 

COMPUTATION 
OPT :z 

VELOCITY 

CORR :z 

PRESSURE 
COEF. :z 

RATIO OF 

SPEC. :z 

REFERENCE • 

--

-.. 
-'" 

~ -

~ 

I- .. -

--"" 

~ 

--'" 

- .. -

~ 

---

Figure 3.6 - Continued 

FMMOAX 

FMREPA 

FMSURF 

SELE 

COMP 

VELO 

PRES 

REFE 

REFE 



LOCAL 
PRINTOUT = 

LOCAL DATA 
.-. 

BASE = 

~MULATE = 

... ... 

-

~ 

... 

FMPRDB 

FMACCU 
-. 

FPDAWR 
(PALIB) 

SURF-FAM 

Figure 3.6 - Concluded 3.35 



BEGIN PRINT 
I-

~VERLAY (6,0 -- roo ... 
DATA PPPDIR 

I 

- roo GEOMETRY PVERLAY (6,1 ... 
DATA - PPGEOM 

I 

~ 

NETWORKS ::I roo -" NETDQG 

tfETWORKS 
/ , , POINT I CONFIGURATIO~ 

- PPPORT 
BEGIN .. (PALIB) 

.. DIP - -
END \1 J y 

GEOM-PRINT-PLOT 

3.36 Figure3.7 - Structure and Data Flow of OVERLAY (6,0) 



~ 
.r 

~ 
bVERLAY (6,2 -POINT DATA :z 

PPPOIN 

~ 

CASE :: I- ... PPCASE 
~ 

I-

SOLUTIONS :z I- - SOLSFP 
~ .- . 

I , 

i-

NETWORKS ,. I- - NETPDP 
~ 

I 

ARRAY = ~ PPARAY ,. 

I 
I 

~ASE - PPPORT CONFIGURATION -GEOMETRY (PALIB) 
BEGIN XXXX ..---
END 

POINT-PRINT-PLOT 

Figure 3.7 - Continued 

1\ \ 

- DIP 

\j ) 

3.37 



CON FI G~RATIOt pVERLAY- (6,3 
DATA PPCONF 

, 

CASE = ... - PPCASE · 

SOLUTIONS • l- · SOLSFP 
-~ 

NETWORKS = too NETCDP 

f\ , 
CASE 

I-
POINT PPPORT DIP 
GEOMETRY - (PALlB) · / j BEGIN XXX X \ ) 
END 

I 

CONFIG-PRINT-PLOT 

-3.38 Figure 3.7 - Concluded 



END PROBLEM -

(or) 

IIENO OF FILEII 

--
... -

OVERLAY (7,0 ) 

. FINIS. 

/ 
GLOBAL 

GLOBAL-FLOW-PROP 
GLOBAL-DB-OUTPUT 

Figure 3.8 - Structure and Data Flow of OVERLAY (7,0) 

f\ \ 

... DIP 

\J J 

3.39 



3.40 

MEC 
DataBase r--- -,,-

DIP DataBase 
~Pdate R~ 

Global 
Data 

Network 
Data 

~el)metric 
Edge 
Matching 
Data 

Flow 
Properti e~ 

Data 

/Surface 
Flow Data 

-"FIELD FLOW 
DATA 

... 

.... ----.... _, 

-~ 

. 

MEC 
Execution 

t 
DIP 

Executes 

t 
INITIL 

Executes 

GLOBDP 
Executes 

NETWDP 
Executes 

i 

GEOMDP 
Executes 

FLOWDP 
Executes 

SUR FLO 
Executes 

+ 
FFDATA 

Executes 

'~eader Oa t~ 
..... __ .-.-... Global 

J j 

'eader Da~ 
1--__ --1-..,. G lob a 1 

J Data j 

\ , 
Network - Data 

J j 

-
U·ser 

Abutment 
Data - J j '-___ -J 

, surf·ace" 
--.. -Flow Data 
) ) 

, FIELD FLOW"' 

DATA 
) J 

Figure 3.9 - DIP Data Execution Flow 

. 

'. 

--" 



t , , 
FORCES & FORMOM FORCES & A B 
MOMENTS I- .. ... MOMENTS 
DATA EXECUTES ~ 

DATA I ) 
, , l 

Print PPPDIR 
Data. .. 

Executes 

+ \ \ .. 
Geometry PPGEOM Geometry Print 

Data Executes PPP Data 
J 

+ , 
~ 

. 
Point Point 

Print I- PPPOIN .. PPP -... 
Data Executes - Data 

J j , 
, Confi gUl'" - \ tonfi gura PPCONF -.. ation _. tio.n -'" - P?P Pl"'i nt Da ta Executes Data j • \ 

Ifnd of FINIS Global-
... --"" 

Data -\Input Data Executes 
J 

~ 

, 
f" ...... 
~ .,., 

DIP 
~ata 

Base 
" -MEC 
Data ~ 

....... Ba~ 

Figure 3.9 - Concluded 3.41 



APPENDIX 3-A TREE STRUCTURE 

The tree structure diagram of the DIP module has been deleted from this 
document. It is, however, available on the installation tape. 

3-A.l 



APPENDIX 3-B DIP FUNCTIONAL DECOMPOSITION 

The functional decomposition of the DIP module is presented here. The 
decomposition labels are given in the order of their execution and therefore 
may not be alphabetic. 

3-B.l 



Page Missing in 

Original Document 



DIP - Data Input Processor 

DIP (0,0) Overlay -
I - Program initialization 

H PRGBEG Begin DIP execution 
ISDMS Initialize SDMS 

J LODREC Read input record 
JB Load first two key words, if any. 
JC If input file empty, terminate run. 

A INITIL (1,0) Overlay - Initialize for input data processing 
A DBOPEN Open MEC data base. 
B DSMAP, Define MEC maps and read MEC header data and MEC 

ESGET run options (update flags). 
C CHPADB Check DIP data base - if bad, terminate run. 
D PAOPEN Open DIP data base. 
E DSMAP Define DIP maps for DIP global level datasets 
F ESGET If run options indicate an update run, read DIP 

global level datasets. 
G Initialize key global parameters 
AA If errors occurred in INITIL, terminate DIP. 

B GLOBDP (2,0) Overlay - Read, write, check and load global input 
data, if first two key words are BEG I N 
GLOBAL. ----

W GLOOPT Process global option flag on BEGIN GLOBAL DATA 
record 

B LODREC Read next input record. 
Load first two key words, if any. 

·v OP1DAT Load option 1 solution data, if present. 
C PIDUID Process problem ID or user ID record if first key 

word is P I D or U I D. 
D CONF Process configuration-record, if first key word is 

CON FIG U RAT ION. 
E MACH Process flow regime data record, if first key word 

is MAC H or CAL P H A or C BET A. 
F OP1HED Process-option-l-solution header record if first 

key word is ALP H A or BET A or U I N F or W M 
or W D C or We P -or S I-D-and-no parameter 1 ist-
delimeter exTsts:- - --

X GLOSOL Process option 2 solution data record if first key 
word is ALP H A or BET A or U I N F or W M or 
W D C orWC-P-or S I-D-andi s f01Towed by a -
parameterlTst. - - -

G FPVALU Process geometric network edge matching tolerance 
record, if first key word is G E 0 MET RIC. 

H SURF Process surface selection record,-if first key 
word is SUR F ACE. 

I SETFLG Process store vic matrix record when first two key 
words are S TOR E V I C. 

J SETFLG Process storeTocal onse~flow for computation of 
pressure record, if first two key words are 
S TOR E L 0 CAL. 

A SELE Process selection-of velocity computation record, 
if first key word is ~~~~ C T ION. 

3-B.3 



C 

3-8.4 

a CaMP 

K VELa 

T PRES 

L REFE 

M REFE 

N CHEC 

U AOOE 

P IDCNCV 

Q SOLFIL 
E AMCGLR 

Y RVPFIL 

Z CLOAPR 
R. SOLTRN 
T 
S 

SA 
S8 
thru 
SD 

REP 
ESPUT 

Process computational option for pressure record, 
if first key word is COM PUT A T ION. 
Process velocity corrections record, if first key 
word is VEL a CIT Y. 
Process pressure coefficient rule record, if first 
word is PRE S SUR E. 
Process reference velocity for pressure record, if 
first key word is REF ERE N C E. 
Process ratio of specific heats record, if first 
key word is RAT 1 O. 
Process checkout-prints record, if first key word 
is C H E C K OUT. 
Process-added mass coefficients record, if first 
key word is A 0 0 E D. 
Check need orderaults for problem ID, user ID, 
configuration and field flow data. 
Check need of default solution data. 
Generate 6 solutions required for added mass 
coefficient calculations. 
Check need to fill reference velocity for 
pressures 1 i st. 
Check need to print new solutions. 
Transform input solution data to vectors. 
Compute first, second and third handy matrices. 
Write global level data to data base. 

Write header data to MEC data base. 
Write header data, globai defaults 
and global prints to DIP data base. 

NETWDP (3,0) Overlay - Read, write, check and load network input 
data, if first two key words are 8 E GIN 

A OSMAP 
B LODREC 

C NETWID 

T NETOPT 

U NETIDS 
V NOPCHK 
Z NDELOR 
M GRID 
8 LOOREC 

A 
L SETFLG 

D SETFLG 

E PLAN 

F SETFLG 

G FPVALU 

NET WaR K. - - --
Define-mapsfor individual network datasets. 
Read input record. 
Load first two key words, if any. 
Process network 10 record if first key word is 
NET WaR K. . 
Process network record update parameter option, if 
any. 
Process network record ID, if any. 
Check network update option. 
Load network defaults. 
Read network grid data. 
Read input record. 
Load first two key words. 
Process store vic matrix records, if first two key 
words are S TOR E V I C. 
Process store local onset-flow for computation of 
pressure record, if first two key words are 
S TOR E LaC A L. 
Process delete reflection in plane of syrrmetry 
record, if first key word is DEL E T E. 
Process wake flow properties tag record, if first 
key word is W A K E. 
Process triangular-panel tolerance record, if 
first key word is l~l~ N G U L A R. 



H UPOA Process update tag record, if first key word is 
UPDATE. 

I BOUN Process boundary conditions record, if first key· 
word is B 0 UNO A R Y. 

C METH Process method-of velocity computation record, if 
first key word is MET HOD. 

J SING Process singularity types record, if first key 
word is SIN G U L A R I T Y. 

K EDGE Process edge-control point locations record, if 
first key word is E 0 G E. 

o NOOOUB Process no doublet-edge matching record, if first 
key word is N O. 

P CLOS Process closure edge condition data, if first key 
word is C LOS U R E. 

A EDGE Process the identifier and locator 
parameters on the closure edge condition 
record. 

B NBOORT Read next record, load key word, identify, 
and check order of input. 

o BOTERM Process term, 10, if key word is 
T E R M. 

E SOLSFP Process solutions list, if key word is iQh 
u. 

F CLOATA Process closure data values, if first key 
word is a numeric. 

N COEF Process coefficients of general boundary condition 
equation data, if first key word is 
C 0 E F F I C lEN T S. 

A NBOORT-~- Read next record, load key word, identify, 
and check order of input. 

C BOTERM Process term 10, if key word is 
T E R M. 

o SOLSFP Vrocess solutions list, if key word is SOL u. ---
E NEPOIN Process control point locations record, if 

key word is POI N T. 
o NEOATA Process coefficient data values, after a 

control point locations record. 
Q TANG Process tangent vectors for design data, if first key 

word is TAN G E N T. 
A NBOORT -Read-next record, load key word, identify, 

and check order of input. 
C BOTERM Process term 10, if key word is T E R M. 
o Set flag to suppress scaling of vectors to 

unit length, if key word is UNA L T ERE 
O. - - --

E SOLSFP Process solutions list, if key word is SOL 
UTI 0 N S. --

F NEPOIN Process control point locations record, if 
key word is POI N T. 

G NEOATA Process tangent data values or a method of 
computation flag record after a control 
point locations record. 

R SPEC Process specified flow data, if first key word is 
S P E C I FIE O. 

3-B.5 



A NBOORT Read next record, load key word, identify, /"\ 
and check order of input. 

C BOTERM Process term 10, if key word is T E R M. 
0 INPIUM Process input or images options,-irkey word 

isINPUT. 
E SOLSFP Process-solutions list, if key word is SOL 

UTI 0 N S. - --
F NEPOIN Process control point locations record, if 

key word fs POI NT. 
G NEOATA Process specIfIed flow data values after a 

control point locations record. 
H ESGET Read existing boundary condition 

coefficients data from dataset NETWK-BOC 
S LOCA Process local incremental onset flow data, if first 

key word is L 0 CAL. 
A NBOORT Read next record, load key word, dentify, 

and check order of input. 
C BOTERM Process term 10, if key word is T E R M. 
0 INPUIM Process input or image options, If-key-Word 

is I N PUT. 
E SOLSFP Process-solutions list, if key word is ~Q~ 

UTI 0 N S. 
F NEPOIN - Process control point locations record, if . 
G NEOATA 

key word is POI N T. 
Process-local-incremental onset flow 
values after a control point locations 
record. 

W If key word is BEG I N or END, set network 
complete flag. ---- ---

A Perform network checks. 
AC BCSTEC . If not a solution update, check user 

inputs for current network. 
AD CBC123 Check data for boundary condition 1 , 2 

or 3. 
AE CHKBC4 Check data for boundary condition 4. 
AF CHKBC5 Check data for boundary condition 5. 
AG NECOWR Write network control data to data base. 
AH NEOAPR Print summary of networks data, if 

networks data complete flag set. 
0 GEOMOP (4,0) Overl ay - Read, write check and load geometric edge 

matching data, if first two key words are ~ 
E GIN G E 0 MET RIC. 

A OSMAP Define-network dimensIons and use abutment data 
maps. 

B LOOREC Read a record from input. 
BB Load first two key words, if any. 

C ABUT Process abutment record, if first key word is 
ABU T MEN T. 

A ---Initialize ~nd update parameters. 
B ABENID Process parameter list of abutment 

definition record. 

3-B.6 



E 

C 
E 
H 

I 

J 
thru 
M 

LODREC 

PLAN 

SETFLG 

N ESPOR 

Read a record from input. 
Load first two key words, if any. 
Process planes of symmetry record, 
if first key word is P LAN E S. 
Process smooth edge treatment 
record, if first key word is 
S MOO T H. 

When first key word is ABU T MEN T 
or BEG I N or END, test-
curren-t aoutment-data. 

Write user abutment on data base. 
F(OWDP (5,0) Overlay - Read, write, check and load flow 

properties calculations data, if first 

A 

B 

C 

FLOWPT 

LODREC 

SURFLO 

A 
B 

C 

D 
F 
I 

J 

K 

M 

N 

o 

-R 

S 

T 
U • 

two key words are BEG I NFL 0 W. 
Process the post solution update option on-BEG TN 
FLOW record. 
Read a record from input and load first two key 
words. 

(5,1) Overl ay - Process surface flow properties, if 
first two key words are SUR F ACE 

DSt~AP 
FPCASE 

LODREC 

NETWIM 

SOLSFP 

FPPOIN 

SURF 

SELE 

COMP 

REFE 

REFE 

SFPRDB 
SFPRDB 

B SFOULD 

FLOW. ----
Define-surface flow properties data maps 
Process case name on "SURFACE FLOW" 
record. 
Initialize output array and supplement 
record counts. 
Read a record from input. 
Load first two key words, if any. 
Process network images list record, if 
first key word is NET W 0 R K -
I MAG E S. - - - -

Process solutions list records, if 
first key word is 
SOL UTI 0 N S. 
Process control points record, if 
first key word is POI N T. 

Process surface selection-record, if 
first key word is SUR F ACE and 
second key word is-not-r-L 0 W. 
Process selection of veTocity
computation record, if first key word 
is S E L E C T ION. 
Process-computation option for 
pressures record, if first key word is 
COM PUT A T ION. 
Process ratio of specific heats record, 
if first key word is RAT I O. 
Process reference velocTtyror pressure 
record, if first key word is 
REF ERE N C E. 
Process printout/database record, 
if first key word is P R I N T 0 U T 
or D A T A. - - - -

-Process parameters list of 
printout/data base record. 

3-B.7 



3-B.8 

C 
E 
F 

LODREC 

PRES 

Read a record from input. 
Load first two key words, if any. 
Process pressure coefficient rules 
record, if first key word is 
PRESSURE. 

G VELO ---Process velocity corrections 
record, if first key word is 
VEL 0 CIT Y. 

I SFOUCL Load output-array with pressure 
and velocity data. 

V SFDELO Load defaults for current surface 
flow properties calculation case. 

W FPDAWR Write current surface flow 
properties calculation case to 
data base. 

E FFDATA (5,2) Overlay - Process field flow properties if first 
two key words are FIE L D FLO W 

A Perform field flow initialization. ---- ----
A Define maps 
B FFINIT - Initialize labeled common areas 
C Process field flow subgroup identifier 

B REPARS - Read and parse a valid input record 
A LODREC - Read and parse the next input record 
B VCHECK - Check the validity of that input record 

A Check for valid record type 
B Check for valid record sequence 
C Check for valid record syntax 

C Interpret off body case specifications 
-A OBOPEN - Initialize processing for an off body 

- case 
A Initialize default data with-global defaults 
B Retrieve case identifier 
C Add a new case on an 'update run 
D Use an old case on an update run 
E Add a new case on a standard run 

B OBCASE - Process off body case records 
A REPARS - Read and parse a valid input record 

(see EEB) 
B FFSOL - Process solution record 
C Process point list header record 
D Process point list record 
E Process grid definition record 
F Process grid limits record 
G Process grid plane density record 
H Process pressure computation record 
I Process ratio of specific heats record 
J Process reference velocity record 
K FFOREQ - Process print request record 
L Process velocity correction print record 
M Process pressure rule print record 
N FFOREQ - Process data base request record 
o Process velocity correction data base record 
P Process pressure rule data base record 



C OBCLOS - Complete processing for an off body case 
A FFDEFA - Use available defaults on unspecified 

records 
B Convert data in input form to output form to match 

dataset specifications 
C Write data to database 

D Interpret streamline case specifications 
A SLOPEN - Initialize processing for a streamline 

case 
A Initialize default data with global defaults 
B Retrieve case identifier 
C Add a new case on an update run 
D Use an old case on an.update run 
E Add a new case on a standard run 

B SLCASE - Process streamline case records 
A REPARS - Read an parse a valid input record (see 

EEB) 
B FFSOL - Process solution record 
C Process step size record 
D Process number of integrations record 
E Process integration error record 
F Process streamline direction record 
G Process streamline type record 
H Process streamline limits record 
I Process print frequency record 
J Process starting points header record 
K Process starting points list record 
L Process pressure computation record. 
M Process ratio of specific heats record 
o FFOREQ - Process print request record 
P Process velocity correction print record 
Q Process pressure rule print record 
R FFOREQ - Process database request record 
S Process velocity correction data base record 
T Process pressure rule database record 

C SLCLOS - Complete processing for a streamline 
case 

A FFDEFA - Use available defaults on unspecified 
records 

B Convert data in input form to output form to match 
dataset specifications 

C Write data to database 
E Replace global flow properties dataset 

F FORMOM (5,3) Overlay - Process forces and moments data, if 
first key word is FOR C E S. 

A DSMAP Define surfacetorces and moments 
data map. 

B FMGLDE Initialize forces and moments 
global values. 

C LODREC Read a record from input and load 
first two key words. 

F FMREPA Process references parameters 
record, if first key word is 
REF ERE N C E. 

G FMAXSY Process axis systems record, if 
first key word is ~!l~. 

3-B.9 



H SOLSFP Process solutions list record, if .~ 
first key word is 
SOL UTI a N S. 

I FMPRDA Process printout/data base record, 
J FMPRDA if first key word is 

P R I N TaU T or 0 A T A. 
K FMPDCK Check/Toad global prfntout/data 

base options. 
L FMCASE Process case record, if first key 

word is CAS E. 
B FPCASE Process case-record parameter list. 
C FMLOIN Initialize local variables. 
0 LODREC Read a record from input. 

0 Load first two key words. 
E NETWIM Process networks images list 

record, if first key word is 
NET WaR K S - I MAG E S. 

F FMEDFO Process edge force calculations 
record, if first key word is 
E 0 G E. 

G Ft~t~OAX Process moment axis record, if 
first key word is MOM E N T. 

H FI·1REPA Process local referenfeparameters 
record, if first two key words are 
LaC A L REF ERE N C E. 

I FMSURF Process surface-selection record, 
if first key word is SUR F ACE. 

J SELE Process selection of veTocity 
computation record, if first key 
word 'is S E L E C T ION. 

K CaMP Process computation option for. 
pressures record, if first key 
word is COM PUT A T ION. 

L VELD Process velocity corrections 
record, if first key word is 
VEL a CIT Y. 

M PRES Process pressure coefficient rules 
record, if first key word is 
PRE S SUR E. 

N REFE Process ratio of specific heats 
record, if first key word if 
RAT I O. 

a REFE Process reference velocity for 
pressure record, if first key word 
is REF ERE N C E. 

P FMPRDA Process~oca1 printout/local data 
Q FMPRDA base record, if first two key 

words are LaC A L 
P R I N ToUr-or LaC A L 
U 7f. T 7f.. ----

R FMACCU 
----Process accumulate record, if 
first key word is 
A C CUM U L ATE. ----

3-8.10 



S End of case processing. 
SA FMPDCK Check/load local printout/data 

base options, if first key word is 
SUR F ACE, or BEG I N, or 
!' If l) 'Or CAS E. - - - -

SB FMLODE Load-defaults7-
T FPDAWR Write dataset SURF-FAM to data 

base. 
U Set forces and moments done flag, 

if first key word is 
SUR F ACE, or BEG I N or 
"E lrrr. - - - - -

W Generate a pure accumulation case, 
X if any accumulations in previous 

data. 
XA FPDAWR Write dataset SURF -F Af'r1 to data 

base. 
Set flow complete flag, if first 
key word is BEG I N or END. 

F PPPDIR (6,0) Overlay - Read, write, check ana Toad data~ase 

C LODREC 
D 
E PPGEOM (6,1) 

A DSMAP 
B 
C 
D PPPORT 

F NETDQG 

F PPPOIN (6,2) 

A DSMAP 
B 
C 
D PPPORT 

F PPCASE 

G SOLSFP 

H NETPDP 

I PPARAY 

directives. 
Read a record from input. 
Load first two key words, if any. 

Overlay - Process geometry data record set, if 
first key word is G E 0 MET R Y. 
Define geometry PPPdata-maps. 
Initialize. 
Load default network count. 
Read next record, load key word, 
identify, and check order of input. 
Process networks record, if key word is 
NET W 0 R K S. 

Overlay - Vr'Ocess point data record set, if first 
key word is POI N T. 
Define pOint-PPP-data map. 
Initialize. 
Load defaults. 
Read next record, load key word, 
identify and check order on input. 
Process case record and load lower 
level defaults, if key word is CAS E. 
Process solutions list record andrload 
lower level defaults, if key word is S 
OLUT·IONS. -
Process surface record and load lower 
level defaults, if key word is S U 
R F ACE. 
Process array record, if key word is A 
R RAY. 

G PPCONF (6,3) Overlay - Process configuration data record set, 
if first keyword is 

A DSMAP 
B 
C 

CON FIG U RAT ION. 
Define-configuration PPP data maps. 
Initialize. 
Load defaults. 

3-B.ll 



0 

F 

G 

H 

H 

G FINIS 
B 
F 
H 
J 

3-8. 12 

PPPORT Read next record, load key word, 
identify and check order of input. 

PPCASE Process case record and load lower 
level defaults, if key word is CAS E. 

SOLSFP Process solutions list record and-'oad 
lower level defaults, if key word is S 
a L UTI a N S. -

NETCDP Process surface record, if key word is 
SUR F ACE. 

Set PPP complete 71ag-:- if key word is BEG I N or 
END. - - --

(7,0) Overlay-- Conclude input data processing 
ESPOR Write global data to data base. 
PACLOS Close DIP and MEC data bases. 
PREGEND - End DIP execution. 
Af.1CFLR Delete wake networks and update 

solution lists for COP cases 
(response to added mass record). 



APPENDIX 3-C DATA BASE COMMUNICATIONS CHART 

The Data Base Communications Chart is presented in three forms. Each form is 
alphabetized by columns, from left to right. The first form has a column 
order of Data Base, Dataset Name, Map Name, Common Block, and 
Program/Subroutine. The second form has a column order of Data Base, Map 
Name, Dataset Name, Common Block, and Program/ Subroutine. The third form has 
a column order of Common Block, Data Base, Map Name, Dataset Name, and 
Program/Subroutine. Thus a person can get a cross reference on a data element 
by knowing either the Dataset Name, Map Name or Common Block name. 

3-C.l 



Page Missing in 

Original Document 



FIRST FORM 

DATA COMMON PROGRAM/ 
BASE DATASET NAME MAP NAt·1E BLOCK SUBROUTINE 

DIP CLOS-COND DIP-CLOS /NETABC/ NETWDP 
DIP COEF-GEN-BC DIP-COEF /NETABC/ NETWDP 
DIP CONFIG-PRINT-PLOT DIP-CONF /CONFDA/ PPCONF 
DIP DATA-BASE-HEADER DIP-HEADER /HEADER/ INITIL 
DIP GEOM-PRINT-PLOT DIP-GEOM /GEOMDA/ PPGEOM 
DIP GLOBAL DIP-GLOGLO /GLOBAL/ INITIL 

/DQGPAR/ 
/NETDAT/ 
/SOLDAT/ 

DIP GLOBAL-DB-OUTPUT DIP-GLODBO /GLOPPP/ PPPDIR 
DIP GLOBAL-DEFAULTS DIP-GLODEF /GLODEF/ INITIL 
DIP GLOBAL-FLOW-PROP DIP-GLOFLO /GLOFLO/ INITIL 
DIP GLOBAL-PRINTS DIP-GLOPRI /GLOPRI/ INITIL 
DIP LOCAL-FLOW DIP-LOCF /NETABC/ NETWDP 
DIP NETWK-BDC DIP-NETBDC /NETBDC/ INITIL 
DIP NETWK-SPEC .DIP-NETSPC /NETSPC/ INITIL 

NETWDP 
DIP NETWORK-UPDATE-CODES DIP-NETWUD /NETWUD/ INITIL 
DIP OFFBODY-OPTIONS DIP-OBCOUT /OBCOUT/ FFDATA 
DIP PANEL-COORDS DIP-NETDIM /NETDIrV GEOMDP 
DIP PANEL-COORDS DIP-PANCRD /PANCRD/ GRID 

/NETABC/ 
,r-- DIP POINT-PRINT-PLOT DIP-POIN /POINDA/ PPPOIN 

DIP SPEC-FLm~ DIP-SPEC /NETABC/ NETWDP 
DIP STREAMLINE-OPTIONS DIP-SLCOUT /SLCOUT/ FFDATA 
DIP SURF-FAt~ DIP-SURFAM /SURFAM/ FORMOM 
DIP SURF-FLOW DIP-SURDAT /SURDAT/ SURFLO 
DIP TANG-VEC DIP-TANV /NETABC/ NETWDP 
DIP USER-ABUT DIP-USEABU /USEABU/ GEOMDP 
MEC DATA-BASE-HEADER MEC-HEADER /HEADER/ INITIAL 
MEC MACRO-OPTIONS MEC-RUNOPT /RUNOPT/ INITIL 

3-C.3 



SECOND FORM ,/"\ 

DATA COtlt'lON PROGRAr,,/ 
BASE MAP NAME DATASET NAME BLOCK SUBROUTINE 

DIP DIP-CLOS CLOS-COND /NETABC/ NETWDP 
DIP DIP-COEF COEF-GEN-BC /NETABC/ NETWDP 
DIP DIP-CONF CONFIG-PRINT-PLOT /CONFDA/ PPCONF 
DIP DIP-GEOM GEOM-PRINT-PLOT /GEOMDA/ PPGEOM 
DIP DIP-GLOGLO GLOBAL /GLOBAL/ INITIL 

/DQGPAR/ 
/NETDAT/ 
/SOLDAT/ 

DIP DIP-GLODBO GLOBAL-DB-OUTPUT /GLOPPP/ PPPDIR 
DIP DIP-GLODEF GLOBAL-DEFAULTS /GLODEF/ INITIL 
DIP DIP-GLOFLO GLOBAL-FLOW-PROP /GLOFLO/ INITIL 
DIP DIP-GLOPRI GLOBAL-PRINTS /GLOPRI/ INITIL 
DIP DIP-HEADER DATA-BASE-HEADER /HEADER/ INITIL 
DIP DIP-LOCF LOCAL-FLOW /NETABC/ NETWDP 
DIP DIP-NETBDC NETWK-BDC /NETBDC/ INITIL 
DIP DIP-NETDIM PANEL-COORDS /NETDI~1/ GEOMDP 
DIP DIP-NETSPC NETWK-SPEC /NETSPC/ INITIL 

UETWDP 
DIP DIP-NETWUD NETWORK-UPDATE-CODES /NETWUD/ INITIL 
DIP DIP-OBCOUT OFFBODY-OPTIONS /OBCOUT/ FFDATA 
DIP DIP-PANCRD PANEL-COORDS /PANCRD/ GRID 

/NETABC/ 
DIP DIP-POIN POINT-PRINT-PLOT /POINDA/ PPPOIN 

. DIP DIP-SLCOUT STREAMLINE-OPTIONS /SLCOUT/ .FFDATA 
DIP DIP-SPEC SPEC-FLOW /NETABC/ NETWDP 
DIP DIP-SURFAM SURF-FAM /SURFAM/ FORMOM 
DIP DIP-SURDAT SURF-FLOW /SURDAT/ SURFLO 
DIP DIP-TANV TANG-VEC /NETABC/ NETWDP 
DIP DIP-USEABU USER-ABUT /USEABU/ GEOMDP 
MEC MEC-HEADER DATA-BASE-HEADER /HEADER/ INITIL 
MEC MEC-RUNOPT MACRO-OPTIONS /RUNOPT/ INITIL 

3-C.4 



THIRD FORM 

COMMON DATA PROGRAM/ 
BLOCK BASE MAP NAME DATASET NAME SUBROUTINE 

/CONFDA/ DIP DIP-CONF CONFIG-PRINT-PLOT PPPCONF 
/DAGPAR/ See /GLOBAL/ 
/GEOMDA/ DIP DIP-GEOM GEOM-PRINT-PLOT PPPGEOM 
/GLOBAL/ DIP DIP-GLOGLO GLOBAL INITIL 
/GLODEF/ DIP DIP-GLODEF GLOBAL-DEFAULTS INITIL 
/GLOFLO/ DIP DIP-GLOFLO GLOBAL-FLaW-PROP INITIL 
/GLOPPP/ DIP DIP-GLODBO GLOBAL-DB-OUTPUT PPPDIR 
/GLOPRI/ DIP DIP-GLOPRI GLOBAL-PRINTS INITIL 
/HEADER/ DIP DIP-HEADER DATA-BASE-HEADER INITIL 
/NETABC/ DIP DIP-CLOS CLOS-COND "NETWDP 

VALUE 
/NETABC/ DIP DIP-COEF COEF-GEN-BC NETWDP 

VALUE 
/NETABC/ DIP DIP-LOCF LOCAL-FLOW NETWDP 

VALUE 
/NETABC/ DIP DIP-PANCRD PANEL-COORDS GRID 
/NETABC/ DIP DIP-SPEC SPEC-FLOW NETWDP 

VALUE 
/NETABC/ DIP DIP-TANV TANG-VEC NETWDP 

NEDATA 
VALUE 

/NETBDC/ DIP DIP-NETBDC NETWK-BDC INITIL 
GLOOPT 
NETWDP 
NECDWR 

/NETDAT/ See /GLOBAL/ 
/NETDn1/ DIP DIP-NETDIM PANEL-COORDS GEOMDP 

ABNEID 
/NETSPC/ DIP DIP-NETSPC NETWK-SPEC NETWDP 

NECDWR 
NEDAPR 
NOPCHK 

/NETWUD/ DIP DIP-NETWUD NETWORK-UPDATE-CODES INITIL 
NECDWR 

/OBCOUT/ DIP DIP-OBCOUT OFFBODY-OPTIONS FFDATA 
/PANCRD/ DIP DIP-PANCRD PANEL-COORDS GRID 
/PO~NDA/ DIP DIP-POIN POINT-PRINT-PLOT PPPOIN 

PPPORT 
/RUNOPT/ DIP MEC-RUNOPT MACRO-OPTIONS INITIL 
/SLCOUT/ DIP DIP-SLCOUT STREAMLINE-OPTIONS FFDATA 
/SOLDAT/ See /GLOBAL/ 
/SURDAT/ DIP DIP-SURFLO SURF-FLOW SURFLO 

FPDAWR 
/SURFAA/ DIP DIP-SURFAA SURF-FAA FORMOM 

FPDAWR 
/USEABU/ DIP DIP-USEABU USER-ABUT GEOMDP 

ABUT 
/HEADER/ MEC MEC-HEADER DATA-BASE-HEADER INITIL 

3-C.S 



APPENDIX 3-D MASTER DEFINITION 

The data base master definition listing of the DIP module has been deleted 
from this document. It is produced from the PAN AIR tape during installation. 

3-0.1 



4.0 DEFINING QUANTITIES GENERATOR (DQG) MODULE 

4.1 Introduction 

The Defining Quantities Generator (DQG) is a stand alone program which 
is a module of the PAN AIR system. DQG performs many tasks which, from a 
general point of view, translate the definition of the configuration and flow 
properties in terms which are convenient to a user into a definition which is 
more mathematically tractable. DQG also performs a number of convenience 
operations (such as automatically indexing control points and singularity 
parameters and automatically defining abutments) and performs a comprehensive 
analysis of the problem for errors in the configuration which might lead to a 
singular or invalid solution. 

4.2 DQG OVERVIEW 

4.2.1 PURPOSE OF DQG 

The problem of finding the flow around a body of arbitrary shape is 
reduced by PANAIR to the problem of solving a large system of linear 
equations viz., [Ale] [A] = [b]. This is done by approximating the surface of 
the body by flat rectanguar and/or triangular panels. For each panel two 
unknown singularity parameters are introduced. Once these parameters [A] are 
found, ·the solution to the original problem can be constructed. 

DQG performs a variety of calculations to provide data necessary for the 
construction of the Ale matrix. These calculations are associated with four 
classes of data: network data, abutment data., control point data and panel 
data. With regard to network data, DQG indexes control points and singularity 
parameters in the network and assures that panels in the network are large 
enough to allow accurate calculation and that panels do not have excessive 
aspect ratios (less than 10,000). For more details see PAN AIR User's 
Document, Section B.1.3 (Reference 2). The relationships between networks are 
defined by the abutment data. Thi s data defines \'/here alternate boundary 
conditions must be imposed to assure doublet continuity across network 
boundaries. The control point data defines which user-defined boundary 
condition or alternate boundary condition is imposed at control points and 
provides geometrical data (tangent and normal to surface) required for the 
evaluation of the boundary condition. The panel data includes geometrical 
properties of the panel and a description of how the source and doublet 
distribution on the panel surface depends on surrounding singularity 
parameters. Also included in the panel data are certain integrated moments of 
source and doublet strength evaluated over the surface of the panel. These 
are employed by MAG to more efficiently determine the panel influence on 
control points which are not too near the panel. 

While computing the required quantities, DQG constantly evaluates the 
results for conditions that might produce a singular or incorrect solution. 
More than seventy irregular conditions are noted by fifty-nine error messages 
and sixteen warning messages. In addition the user may require DQG to produce 
printed output which can be evaluated by the knowledgeable user to assure that 
not only will the data produced by DQG produce a solution, but the solution 
will be the solution to the problem the user thinks he has defined. (See the 
PAN AIR User's Manual, Section 7, record G.17 (Reference 2) and Section 8 of 
the same document.) 

4.1 



4.2.2 DQG Input/Output Data 

Input to DQG occurs only through the SDHS database system (see Secti on 
1 and Section 13 of this docUment). DQG reads databases created by the MEC 
and DIP modules. The MEC database contains information concerning the names 
of files which contain the databases which DQG requires or will generate. The 
DIP database contains the user's description of the problem. The information 
which DQG reads from the DIP database may be classified as global 
configuration data (such as Mach number, direction of flow, symmetry 
properties of the problem), network data (singularity types of networks, 
boundary conditions which the user wishes to imposer coordinates of points in 
the network) and abutment data, if any is supplied a description of how the 
networks connect together to form the configuration). DQG also reads 
information on the DIP database which defines what types of printed output the 
user has requested from DQG. 

DQG offers a number of output options which may be selected by the user 
through data provided to DIP. 

The default output consists of a general description of the status of 
DIP and DQG data bases, timing statements at the end of each overlay, and a 
description of some global and network properties of the problem at the end of 
execution. In addition fatal errors encountered during execution produce 
diagnostic messages. A small number of mandatory warning messages are also 
produced when a questionable situation arises. NO more than ten fatal error 
messages are permitted to accumulate before execution stops. There is no 
limit to the number of warning messages. A complete list of error and warning 
messages is provided in Appendix 4-E. The PAN AIR User's r~anual Section 8 0 
(Reference 2) discusses the interpretation of the error and warning"messages. 

Additional warning messages are printed as situations arise if the user 
has specified that warning messages are desired. There is no restriction on 
the number of warning messages that are produced. 

Either the coarse grid coordinate of the networks (corner pOint 
coordinates) or the fine grid coordinates of the network (corner, edge 
midpoint and center point coordinates) or both are printed as the user 
requests. Those network edges which are collapsed have the corner point 
coordinates flagged to indicate the DQG modified the collapsed edge points to 
assure that they all had identical coordinates. 

DQG may print descriptions of gap filling panels which have been added. 
Included in this printout are the corner points of the gap filling panels, the 
edges of the networks to which they are attached, and whether they are 
triangular gap filling panels. 

A description of empty space abutments or of all abutments may be 
produced. Besides indicating how the networks are joined together, this 
output also describes which network edges and corner points will be assigned 
doublet or source matching boundary conditions to replace those which are 
specified by the user. 

4.2 



Control point and boundary condition data may be printed at the end of 
execution if the user requests. The control point data include global index 
and network and fine grid lattice indices of the control point as well as it's 
hypothetical location, normal vector and boundary condition characterization. 
The boundary condition data includes all of the indexing information of the 
control point data and lists all non-vanishing cofficients for the left hand 
side of the boundary condition equation. 

In addition to the above, DQG may be compiled from its program library 
with diagnostic print statements inserted automatically. A description of how 
to accomplish this is given in Appendix 4-F. 

Appendix 4-G contains an example of output obtained from DQG execution. 
Section 8.1 of the PAN AIR User's Manual (Reference 2) discusses the 
interpretation of the DQG output. 

4.2.3 Database Interface 

Module DQG reads input data from databases created by MEC and DIP. The 
MEC database provides database names, account numbers, database status, date 
of execution and other similar information. The DIP database contains the 
user's description of the problem. 

DQG creates a singTe database during its execution. The database 
provides a description of the user's problem in a form that the other PAN AIR 
modules can easily process. The information is used by the NAG, RHSi-,MDGand 
PPP modules. 

The DQG database master definition is described in Appendix 4-D. (See 
Section 1 of this document for an introduction to SDMS). 

4.3 MODULE DESCRIPTION 

The main overlays and subroutines of DQG are briefly summarized in this 
section. Estimates of the core requirements and execution time requirements 
of the overlays of DQG are also provided. Lower level subroutines are 
described in secton 4.4. A tree diagram of the calling relationships of the 
subroutines in DQG may be found in Appendix 4-A. The DQG functional 
decomposition is contained in Appendix 4-B. 

Figure 4.1 contains a simplified configuration which illustrates the 
concepts of panel, network and abutment. Singularity parameters are defined 
to be located on networks. These parameters are related to perturbations i.n 
the flow field. The values of the singularity parameters are determined by 
imposing boundary conditions at selected points. on the network called control 
points. DQG translates fairly simple geometric data into mathematical 
descri pti ons of the boundary condi ti ons and s i ngul arity parameters. 

4.3.1 Overall Structure 

The overall structure of DQG is described in Figures 4.2, 4.3 and 4.4. 
The figures also provide some indication of data flow during DQG execution. 
The data flow aspects of the figures is discussed in paragraph 4.3.5. 

4.3 



The seven primary overlays of DQG are indicated as rectangular blocks in 
Figure 4.2. Two primary overlays ( the (3,0) and (5,0) overlays) are divided 
into six and two secondary overlays respectively as is indicated in the 
figure. The dotted line connecting the main (O~O) overlay with the seven 
primary overlays indicates that the (0,0) overlay causes each one of the 
primary overlays to be loaded and executed. Besides the overlay index (e.g. 
(1,0» the figure also gives the name of the main program in the overlay (for 
the (1,0) overlay it is OPENER). Below this there is a short summary of the 
operations which the overlay performs. The solid lines in the figure indicate 
the flow of data from the program to the disk files that make up the DQG 
database and from the MEC, DIP and DQG database files into the program. Note 
for example that the tvlEC and DIP databases are read only in the (l,O) overlay 
and that DQG never writes on either one of them. All other input and output 
for DQG occurs from or to the DQG database or to the printed output file. 
Note that the output to the printed output file is not shown in the figure. 
All overlays of DQG produce some printed outputs. 

Figures 4.3 and 4.4 provide a similar overview of the structure and data 
flow for the secondary overlays of the (3,0) and (5,0) overlays respectively. 

4.3.2 Overlay Descriptions 

This paragraph describes the major functions which are performed in each 
primary and secondary overlay of DQG. Paragraph 4.3.5 discusses data flow in 
the program. 

4.3.2.1 OPENER Overlay (1,0) 

This overlay obtains input data from the t4EC and DIP databases and 
copies data required to solve the problem onto the DQG databases. Certain 
data are transformed into a form consistent with efficient processing and some 
useful data is derived from the basic parameters describing the problem. 
Figure 4.5 illustrates the main subroutine structure for the (1,0) overlay of 
DQG. The main program OPENER opens the DIP and MEC databases and creates an 
empty DQG database. There is only one major subroutine in the overlay. It is 
called DIPDAT and copies data from the DIP database onto the DQG database. 

4.3.2.2 NETDEF Overlay (2,O) 

The second overlay checks that the networks satisfy certain required 
properties and provides a global index for all control points and singularity 
parameters in the problem. Indexing schemes used in DQG are described more 
fully in Appendix 4-F. Figure 4.6 illustrates the main subroutines for the 
(2,O) overlay of DQG. The main program in the overlay is NETDEF. It calls a 
sequence of subroutines which perform the varied tasks of the overlay. Three 
main tasks are performed. They may be roughly characterized by the terms 
geometrical tasks, indexing tasks and output operations. The geometrical 
tasks are discussed first. 

Subroutine DFEDGE defines the coordinates of the corner points on the 
perimeter of the network. EDGCHK computes the length of the edges to check 
for collapsed edges (see PAN AIR Theory t·lanual, Section 1.4 of Appendix D 
(Reference 1) and the PAN AIR User's Manual Section B.l(Reference 2)}. INDCTR 
computes the coordinates of a point that is at the indicial center of the 
network. Subroutine TRICHK checks each panel in the network for both aspect 

4.4 



ratio and triangularity. (No interior panel of a network is permitted to be 
triangular.) Subroutine FINGRD defines the fine grid coordinates of the 
network from the panel corner point coordinates and writes them in the 
FINE-GRID-COORDS dataset. 

The indexing tasks are performed by SINGDF (and the subroutines it 
calls) and by CONTPT. SINGDF defines a unique index for every source and 
doublet parameter in the configuration. The exact indexing schemes are 
discussed in Appendix 4-H of this manual. This subroutine also labels 
singularity parali1eters that lie on a collapsed network edge as IInullll, i.e., 
they do not contribute any effects to the flow. Control point indexing is 
performed by the subroutine COIHPT. r~ote that control points are always 
defined for a network at the same locations (all panel center points, the four 
network corner points and the edge midpoints on the perimeter of the network) 
even though, for example, on a wake network, all control points located at 
panel centers do not have any boundary conditions (see PAN AIR User'S Manual, 
Section B.3.4 (Reference 2) and the PAN AIR Theory Doculi1ent, Appendix G 
(Reference 1)). This is done to allow consistent processing of flow data in 
post processing. The final function performed by the (2,0) overlay is to 
print the coordinates of all of the corner points and/or fine grid points in 
the network if requested by the user. Sub,routi ne PRTNET performs thi s task. 

4.3.2.3 EDGDEF Overlay (3,0) 

The (3,0) overlay calls the secondary overlays (3,1) through (3,6). 
These programs perform an analysis of abutments in the configuration. At the 
end of the analysis a complete description of the abutments is printed at the 
user's request. .. 

4.3.2.4 PRABUT Overlay (3,1) 

This program lists the abutments defined by the user in a more complete 
form than the user provides to DIP. It initiates the automatic abutment 
search by describing all pairwise abutments which have not been described 
already by the user. A detailed description of the automatic abutment search 
is given in Appendix 4-1. Figure 4.7 illustrates the main subroutines in the 
overlay. First USEABT is called. This subroutine reads the user defined 
abutli1ents data and fills in any missing information. For example, the user 
can specify only the net\'1ork and edge index for all the networks in the 
abutment. In this case USEABT defines the coarse grid lattice indices which 
correspond to the start and end points of each network edge in the abutment 
and adds these coarse grid lattice indices to the abutment data. After all 
user abutment data is processed, a lower level subroutine (not illustrated-) 
prepares a list of network edge segments which the user has not defined to 
take part in an abutment. Then in NETABT the automatic abutment search 
begins. Each edge segment which has not been described by the us~r is 
examined to see if any of the other such segments lie near it (see PAN AIR 
Theory Document, Section 3 of Appendix F (Reference 1)). Subroutine EDGLST 
prepares a preliminary list of all network edges which lie somewhat close to 
the edge in question. The remainder of PRABUT defines all pairwise abutment 
descriptions in which each segment takes part. This process is discussed more 
fully in Appendix 4-1. 

4.5 



4.3.2.5 ABHINT Overlay (3,2) 

Overlay (3,2) completes the automatic abutment search. This procedure 
is described in Appendix 4-1. After the search is over, all abutments are 
checked to assure that they satisfy certain rules. Warning and error messages 
are produced as questionable or erroneous situations arise. Figure 4.8 
illustrates the major subroutines in the (3,2) overlay. Subroutines ABXPND, 
CONABT and SEARCH complete the automatic abutment search. This process is 
discussed fully in Appendix 4-1. Subroutine EDGPRP defines some additional 
data that is required to characterize abutments (labelling of matching edges, 
etc.). Subroutine CHECK examines all network abutments to see that they 
conform to the appropriate set of rules concerning abutments (see PAN AIR 
User's Manual, Section B.3.6 (Reference 2)). 

4.3.2.6 GAPSIZ Overlay (3,3) 

Th is over1 ay computes gap sizes for all of the network abutments. The 
gap size for a panel and a network edge is the greatest of the distances from 
the panel to the closer point on all other network edges which take part in 
the abutment. 

4.3.2.7 MATCH Overlay (3,4) 

Program MATCH determines which edges and corner points will be used to 
impose doublet and source matching boundary conditions. Figure 4.9 
illustrates the main subroutine structure of the (3,4) overlay. Subroutine 
EMATCH determines which network edge among those that form an abutment will be 
used to impose doublet matching boundary conditions at the abutment (see PAN .~ 
AIR Theory Document, Section 5.3 (Reference 1)). In an abutment where a wake 
has been assigned voritcity matching, HIATCH will find a doublet analysis edgE! 
on which to place the actual boundary condition. Er~ATCH also defines those 
edges and corner points where source matching boundary conditions are 
required. Subroutine INTRSC analyzes the configuration for abutment 
intersections using a technique from graph theory. This is discussed more 
fully in Appendix 4-J. Subroutine ASSIGN examines each abutment intersection 
and assigns an appropriate number of corner points to insure doublet matching 
at the abutment intersection. 

4.3.2.8 GAPPNL Overlay (3,5) 

This program adds gap filling panels between network edges which have 
been declared to form an abutment by the user but which lie further apart from 
one another than the global tolerance distance. A description of how gap 
filling panels are constructed is given in the PAN AIR Theory Document, 
section 6 of Appendix F (Reference 1) and Appendix 4-L of this document. 
Figure 4.10 illustrates the subroutines in this overlay. The main program 
GAPPNL searches the abutment related data for abutments where the gap size 
exceeds the tolerance distance. The edges of network which make up such an 
abutment are parameterized by subroutine PRMEDG (see the PAN AIR Theory 
Document, Section 5 of Appendix F (Reference 1)). Subroutine DEFPNL defines 
the data required to describe the gap filling panel (see Appendix 4-L). 
Subroutine POSPNL defines gap filling panels for abutments with planes of 
symmetry and which have gaps larger that the tolerance distance. 

4.6 



4.3.2.9 ADCPSG Overlay (3,6) 

ADCPSG adds additional control points and doublet singularity parameters 
at panel corner points where an abutment begins or ends, if the corner point 
is not one of the four network corner points. This program also sets up a 
description of matching edges and corner points in a form which is usable by 
the fourth overlay (subroutine MTCHPT) and defines the extra hypothetical 
locations for the matching points (subroutine XHLOC)(see PAN AIR Theory 
Document, Appendix G (Reference 1)). Figure 4.11 illustrates the subroutine 
structure of the overlay. 

4.3.2.10 BNDYDF Overlay (4,0) 

This overlay defines geometrical data required at each control point and 
selects the appropriate number and type of boundary condition to impose at the 
point from those supplied by the user and those supplied by DQG. A detailed 
description of what this overlay produces is described in the PAN AIR Theory 
Document, Appendices G and H (Reference 1). Figure 4.12 illustrates the major 
subroutines in the overlay. GETBC obtains the boundary conditions for the 
control points in the network. Subroutine CENTCP defines geometric data and 
boundary condition coefficients for the generalized boundarY,condition 
equation (see PAN AIR Theory Document, Section 5.4 (Reference 1)) and 
subroutine EDGECP defines similar data for corner and edge midpoint control 
points. 

4.3.2.11 TOPSPL Overlay (5,0) 

This overlay calls the (5,1) and (5,2) overlays in sequence. 

4.3.2.12 SAEDGS Overlay (5,1) 

This overlay computes doublet spline vectors at points along the edges 
of networks which form a smooth abutment. A detailed discussion of this 
process occurs in Appendix 4-K of this document. Figure 4.13 shows the major 
subroutines in the (5,1) overlay. Subroutine PTSFIL obtains coordinates of 
the corner points in the vicinity of the smooth abutments (See Appendix 4-K). 
SNGFIL obtains the singularity parameter indices for doublet singularities 
located at center points near the smooth abutment. Subroutine PARMSA 
parameterizes the smooth abutment (see PAN AIR Theory Document, Section 1.2 of 
Appendix I and Appendix F (Reference 1)). Subroutine COARSP defines the outer 
spline vectors at each corner point and edge midpoint along the smooth edge 
(see Appendix 4-K and the PAN AIR Theory Document, Section 1 of Appendix I 
(Reference 1)). Subroutine FINESP defines the outer spline vector for points 
on the finer edge in terms of the splines along the coarse edge and the 
parameterization of the abutment. The details of this process are discussed 
in Appendix 4-K of this document and in the PAN AIR Theory Document, Appendix 
I (Reference 1). 

4.3.2.13 SPLINR Overlay (5,2) 

This program computes source and doublet spline vectors for all points 
which do not fallon the edge of a smooth abutment. The details of this 
procedure are provided in the PAN AIR Theory Document, Section 1 of Appendix I 
(Reference 1) and in Appendix 4-1 of this document. Figure 4.14 illustrates 
the main subroutines in the (5,2) overlay. ANALS computes the outer spline 

4.7 



vectors for source analysis networks. ANALD computes the outer spline vectors ~ 
for doublet analysis networks. DSGN1S and DSGN1D compute the outer spline 
vectors for source design and doublet design networks. Subroutine WAKGAP 
defines the outer spline vectors for wake networks and for gap filling 
panels. Appendix 4-K discusses the spline operations in greater detail. See 
also the PAN AIR Theory Document, Sections 1 and 2 of Appendix I (Reference 1) • 

• 
4.3.2.14 PANDEF Overlay (6,0) 

The sixth overlay co~putes and assembles the panel defining quantities 
required by MAG for the construction of the AIC matrix. These include 
geometrical properties (areas, normal ~ectors aBd tangents, computed in 
GEOMQU), the outer spline matrices, [B ] and [B ], and sub panel spline 
matrices, [SPSPLS] and [SPSPLD], computed in SDSPLM, (see PAN AIR Theory 
Document, Sections 1, 2, and 3 of Appendix I (Reference 1)) and the far field 
moments, computed in FFMOM, (PAN AIR Theory Document, Section 4 of Appendix I 
(Reference 1)) for each network panel and each gap filling panel. Subroutine 
PANDEF collects all the information, computes discontinuous source spline 
vectors, and writes out the data as the PANEL-SPEC dataset. Figure 4.15 
illustrates the main subroutines of this overlay. 

4.3.2.15 SUMMRY Overlay (7,0) 

The (7,0) overlay program SUr~MRY transcribes some information on the 
GLOBAL and NETWK-SPEC datasets and re-writes the datasets to the DQG 
database. The other routines in this overlay read either the NETWK-SPEC 
dataset or the BNDRY-CONDN-SPEC dataset in order to produce the requested 
printed summary of network, control point and boundary condition properties. 

4.3.~ Module Database 

The master definition of the DQG database are given in Appendix 4-D. 
The dataset names and contents are described in detail. The database 
communication charts (See Section 1) may be found in Appendix 4-C. 

4.3.4 Data Interfaces 

4.3.4.1 System Interfaces 

Figure 4.2 through 4.4 illustrate the internal and external interfaces 
between the module and the MEC, DIP and DQG databases. The DQG database is 
used by modules MAG, RHS and I1DG. 

4.3.4.2 Subprogram Interfaces 

A tree diagram of all routines in DQG is given in Appendix 4-A. This 
shows the interrelationship5 among the subroutines which make up DQG. Each 
subroutine is briefly described in Section 4.4.2. 

4.3.5 Data" Flow in DQG 

Figures 4.5 to 4.16 illustrate the data flow for the major sections of 
DQG. They will aid the discussion in the following paragraphs. 

4.8 



After opening the DIP database and creating the DQG database the first 
overlay calls DIPDAT. Global, network data and abutment data are copied onto 
the DQG database. Then the boundary conditions are transcribed and written to 
the DQG database. The transcription is the major task of this overlay. DIP 
provides information on how many boundary conditions have been specified by 
the user in the NETWK-8DC dataset. Each coefficient is obtained from the 
COEF-GEN-BC dataset and the TANG-VEC dataset. The coefficients might be for 
the whole network, for only center, edge-mid-point or corner control points in 
the network or for only one control point in the network. DQG requires that 
all coefficients for one control point are grouped together. Data for network 
wise NETWK-BNDY-COrJDN-IN datase.t and is keyed by point type (center, edge 
mid-point or corner point). Point-by-point specification of boundary 
conditions is stored by CLASS-5-BC-DATA and is keyed by fine-grid lattice 
index of the point (See Appendix 4-H). The transcription operation consists 
of reading a non-zero coefficient from the DIP database, reading the current 
DQG dataset for the control point, copying the additional coefficient to the 
output array and writing a modified version of the DQG dataset. This is a 
somewhat costly I/O operation if point-by-point boundary conditions are 
specified, i.e., if the user chooses Class 5 boundary condition specifications. 

In the second overlay (Figure 4.6) networks are checked for short edges 
and triangular panels, an EDGE-POINT-COORDS dataset is created which contains 
the corner points on the network edges sequenced in a counter clockwise 
direction when looking at the "upper" surface around the network perimeter, 
and singularity parameters and control points are indexed. (See Appendix 4-H 
for details concerning indexing schems used in DQG.) 

Two complimentary datasets are created by subroutine SINGDF. One is 
called SINGULARITY-NAP and the other is called SINGULARITY-SPEC. The 
SINGULARITY-MAP dataset allows one to find the index of a singularity 
parameter given information about its location in the network. The 
SINGULARITY-SPEC dataset gives information about where a singularity parameter 
is located in the network given its index. The CONTROL-PT-SPEC dataset is 
created by the CONTPT subroutine. 

In the third overlay (Figure 4.7) user defined abutments are created by 
USEABT. The subroutine reads the user description from the dataset USER-ABUT 
and writes the data to the ABUTMENT-SPEC dataset. The SEARCH-LIST dataset 
specifies those networks which the user has not defined to form abutments. 
The SPECIAL-POINTS dataset defines which corner points on a network form start 
or end points of the abutment. Subroutine EDGLST reads the NETWK-SPEC and the 
EDGE-PT-COORDS datasets in order to decide which edges lie sufficiently close 
to another edge that they might form an abutment. The main program PRABUT 
reads the EDGE-POINTS-COORDS and the NETWK-SPEC datasets. Subroutine NETABT 
reads SEARCH-LIST to define the pairwise abutment data. This data is written 
to the database as the IABUT dataset. In the (3,2) overlay (Figure 4.8), 
subroutine A8XPND reads the IABUT dataset and expands the pairwise abutment 
description to form the expanded abutment description (see Appendix 4-1). 
This data is stored on the database in the ABUT-KEYS and EXPANDED-ABUTMENT 
datasets. 

4.9 



Subroutine CONABT reads the expanded abutment descriptions, contracts 
them to form the abutment description (see Appendix 4-1) and writes the 
abutment data to the ABUTf.1ENT -SPEC dataset. After all abutments are 
processed, subroutine SEARCH reads the abutment descriptions and writes out 
the SEARCH-LIST dataset again. This dataset is used later by subroutine 
MTABUT (not illustrated) to define the empty space abutments. Subroutine 
CHECK reads the ABUTMENT-SPEC dataset and checks ~hat the abutments satisfy 
certain rules. Occasionally the subroutine modifies some of the abutment data 
(when the rules have been violated) and must re-write the ABUTMENT-SPEC 
dataset. CHECK also labels singularity parameters which lie on a smooth 
abutment as null. Thus it reads the SINGULARITY-MAP dataset and re-writes the 
information contained in it as both the SINGULARITY-MAP and SINGULARITY-SPEC 
datasets after it sets a flag indicating that the singularity parameter is 
null. It also reads, sets a flag and re-writes a SPECIAL-POINTS dataset to 
indicate to the fourth overlay that those control points on the smooth edge 
are also null, i.e., that they do not have any boundary conditions to impose 
at them. 

In the (3,4) overlay, (Figure 4-9) the main program f4ATCH reads the 
ABUTMENT-SPEC and EMPTY-SPACE-ABUT DATASETS and re-writes them after the edge 
matching data has been defined by EMATCH. Subroutine EMATCH reads the 
NETWK-SPEC dataset to determine the edge types of networks which might make 
up and abutment. 

Subroutine INTRSC reads the ABUTMENT-SPEC and EMPTY-SPACE-ABUT data sets 
and generates the INTERSECTION dataset. This describes the abutment 
intersections in the problem. The INTERSECTION dataset is read by subroutine 
ASSIGN. A decision is made as to which corner point is assigned to impose ~ 
doublet matching and t~e appropriate abutment data is read from the database. 
The data is re-written after setting the proper matching corner point flag. 

In the (3,5) overlay GAPPNL reads the abutment data and checks the gap 
sizes stored in th GAP-SIZE dataset. The GAP-SIZE dataset had been defined 
in the (3,3) overlay. If gap filling panels are defined for the abutment, a 
flag is set and the abutment data is re-written to the database. Also a 
GAP-PANEL dataset is created which describes the gap filling panel. 

In the (3,6) overlay (Figure 4.11) subroutine ADCPSG reads the 
SPECIAL-POINTS dataset and, by noting where abutments start or end at places 
other than at the corner of a network, adds extra singularity parameters and 
control points. It writes CONTROL-PT-SPEC datasets, SINGULARITY-MAP datasets 
and SINGULARITY-SPEC datasets. Subroutine MTCHPT reads the abutment data 
(ABUTfvIENT-SPEC) and the SPECIAL-POINTS datasets, transfers the matching 
information from the abutment data to the SPECIAL-POINTS dataset and re-writes 
the SPECIAL-POIlJTS dataset. Subroutine XHLOC reads the abutment data, edge 
point coordinates and the network data and determines the coordinates of the 
extra hypothetical locations of control points along an abutment. See PAN AIR 
Theory Document Section 5.4.1 (Reference 1). This data is written as the 
EXTRA-HYPO-LOC dataset. 

The data flow in the (4,0) overlay (Figure 4.12) is fairly simple. The 
NETWK-SPEC dataset is read by BNDYDF as is the coordinates of the corner 
points (PANEL-CORNER-COORDS). Boundary conditions are read from either 
NETWK-BNDY-IN or CLASS5-BC-IN datasets by subroutine GETBC. The 
CONTROL-PT-SPEC dataset is read by CENTCP and EDGECP to obtain the control 

4.10 



point index. After all the required data is assembled, the CONTROl-PT-SPEC, 
BNDRY-CONON-SPEC and B-POINTER datasets are written. These summarize all of 
the boundary condition information for the control point. Note from Figure 
4.12 that the subroutine EDGECP additionally reads the SPECIAL-POINTS dataset 
to obtain information about where to impose matching boundary conditions. 
Note also that some additional I/O occurs if there are any known singularity 
parameters. If some boundary conditions lead to known singularity parameters, 
a lower level subroutine in the fourth overlay reads the SINGUlARITY-~lAP 
dataset, sets the appropriate known singul arity fl ag and re-\-Jrites the data as 
~oth the SINGULARITY-MAP and SINGULARITY-SPEC datasets. 

In the (5,1) overlay (Figure 4.13), the main program reads the 
ABUTMENT-SPEC dataset to find a smooth abutment. Subroutine PTSFIl obtains 
the required corner point coordinates from the PANEl-CORNER-COORDS dataset and 
subroutine SNGFIl obtains the required singularity parameter indices from the 
SINGULARITY-NAP dataset. The edges are parameterized by subroutine PARr·1SA, 
which reads the EDGE-POINT-COORDS dataset. Subroutine COARSP computes the 
outer spline vectors and writes them as the B-SPlINE-DOUBlET dataset. This 
process requires reading some previously computed outer spline data as well 
as the NETWK-SPEC dataset. Also an INTERIOR-SPLINE dataset is written. It 
is used in the (5,2) overlay to prevent a dependence of doublet strength on 
too many doublet parameters (see Appendix 4-K and the PAN AIR Theory Document, 
Section 1 of Appendix I (Reference 1)). Subroutine FINESP reads the doublet 
spline data for the coarse edge, computes the doublet spline for the fine edge 
and writes it as an additional element set of the B-SPlINE-DOUBlET dataset. 

The I/O in the (5,2) overlay (Figure 4.14) for each major subroutine is 
very similar to the others. Coordinate data (PANEl-CORNER-GOORDS and 
EDGE-POINT-COORDS), singularity parameter indices (SINGUlARITY-f.1AP dataset) 
and surrounding spline vectors (B-SPlINE-DOUBlET or B-SPlINE-SOURCE datasets) 
are read, the new spline vector is computed and the vector is written to the 
B-SPlINE-DOUBElT or B-SPlINE-SOURCE dataset. 

In the (6,0) overlay (Figure 4.15) network data, panel corner 
coordinates and gap panel data is read by the main program PANDEF. Subroutine 
GEOf.1QU reads the GAP-SIZE dataset to compute the gap size to panel size 
ratio. SPlINM reads the source and doublet spline vectors for the nine panel 
defining points and assembles them into the outer spline matrix. After all 
panel data are computed, PANDEF computes discontinuous source splines and 
writes the data as the MAG-PANEL-SPEC, MDG-PANEl-SPEC and PANEL-SING datasets. 

The (7,0) overlay program SUMMRY transcribes some information on the 
GLOBAL and NETWK-SPEC datasets and re-writes the datasets to the DQG 
database. The other routines in this overlay read either the NETWK-SPEC 
dataset or the BNDRY-CONDN-SPEC dataset in order to produce the requested 
printed sun~ary of network, control point and boundary condition properties. 

This completes the execution of DQG. 

4.4 lOWER lEVEL FUNCTIONS 

The following paragraphs present the functional decompositions of the 
overlays and their subprograms and give£ the purpose of each subroutine. 

4.11 



4.4.1 Functional Decomposition 

DQG functional decomposition is given in Appendix 4-B. 

4.4.2 Subroutine Descriptions 

The subroutines used in DQG are described below. 

ABASGN 
Sets matching doublet flag in ABUTMENT-SPEC or EMPTY-SPACE-ABUT dataset 
for imposition of matching boundary condition at corner point of 
network. In this fashion it assigns a matching corner point to the 
abutment (See Appendix 4-J). 

ABXPND 

AINV 

ANALD 

Constructs expanded abutment descriptions from the pairwise abutment 
descriptions (See Appendix 4-1). 

Constructs the inverse of the reference coordinate to local subpanel 
coordinate transformation (i.e., it computes the subpanel local to 
reference coordinate transformation.) See PAN AIR Theory Document, 
Appendix E, Section E.3 (Reference 1). 

------ Top level routine for the computation of doublet spline vectors for 
doublet analysis networks. 

ANALS 

ANDFW 

Top level routine for the computation of source spline vectors for 
source analysis net\'lOrks. 

Top level routine for the computation of forward weighted doublet 
analysis network splines. This subroutine is a copy of At~ALD. 

ASGNBC 

ASGNM 

Assigns boundary conditions to control points from user-specified 
boundary conditions and DQG generated conditions. 

------ Defines boundary condition coefficients and arrays to impose source, 
doublet or vorticity matching boundary conditions; if closure conditions 
are specified, calls routine to define closure data. 

ASGNU 

ASSIGN 

B~JDYIN 

4.12 

Defines boundary condition coefficients and arrays from user-specified 
boundary conditions. 

Sets up the data needed for the selection and assignment of matching 
corner points to abutments which form an abutment intersection (See 
Appendi x 4-J). 

Creates boundary condition dataset from class and subclass data or 
term-by-term data provided by DIP. 



CBLFFr·l 

CCPFN 

CCPGEO 

CENTCP 

CENTER 

CHECK 

CHOOSE 

CHKPOS 

CLOSTR 

CNCPBC 

COARSP 

COLAPS 

Computes doublet cross product far field moments. See PAN AIR Theory 
Document, Section 4 of Appendix I (Reference 1). 

Selects index of corner point on finer network edge which is closest to 
specified point on coarser edge. Used to generate smooth abutment 
splines (see Appendix 4-K of this document). 

. 
Computes geometric properties of corner control points. 
Theory Document, Appendix G (Reference 1). 

See PAN AIR 

Creates CONTROL-PT-SPEC and BNDRY-CONDN-SPEC datasets for center control 
points by computing geometric properties and assigning boundary 
conditions to the point. See PAN AIR Theory Document, Appendix G and 
Appendix H (Reference 1). 

Computes coordinates of center point of panels when performing smooth 
abutment spline calculations. 

Checks all network abutments to assure that they do not violate certain 
rules (See PAN AIR User's Document Section 3.5 of Appendix B (Reference 
2) ) • 

Chooses boundary conditions from user specified and DQG specified
boundary conditions to assign to control points. 

Checks that networks which lie on a plane of symmetry totally lie on a 
plane of symmetry. See PAN AIR Theory Document, Section 1.4 of Appendix 
K, and PAN AIR User's Document Sec. B.1.3 (Reference 2). 

Creates a DQG database CLOSURE-IN dataset containing all of the values 
of the closure coefficient required from the DIP input which is in the 
form of one coefficient value per dataset. 

Assigns center control point boundary conditions. 

Top level routine for computation of smooth abutment spline vectors 
along coarser edge of smooth abutment. 

Collapses coordinates of a short network edge to a single point. 

COLCPT 
Sets up an array required to assure that the assignment of corner points 
to abutments to assure doublet matching at abutment intersections is 
performed correctly when the intersection includes the collapsed edge of 
a neb/ork (See Appendi x 4-J). 

4.13 



CONABT 
Contracts the expanded abutment description to form an abutment 
description (See Appendix 4-1). 

CONTPT 
Indexes control points in a network (See Appendix 4-H). 

COPYBC 
Copies value of single boundary condition coefficient from data supplied 
by DIP to array of boundary condition coefficients used by DQG. 

CPANAL 

CPCSEL 

CPDSGN 

C13QTR 

DATANL 

DATS13 

DBLFH1 

Computes spline vector for corner point on the edge of a doublet 
analysis network. 

Selects indices of adjacent corner points on coarser edge of a smooth 
abutment which spans specified point on finer edge (See Appendix 4-K of 
thi s document). 

Computes spline vector for corner points on the edge of a doublet design 
I network. 

Computes the coordinates of a point one-quarter and three-quarters of 
the way along an edge segment of an abutment (See appendix 4-1). 

Selects surrounding points at which doublet singularity parameters are 
located to use in computing a doublet spline vector for a specified 
point. See Appendix 4-K of this document and the PAN AIR Theory 
Document, Section 1 of Appendix I (Reference 1). 

Selects surrounding points at which source singularity parameters are 
located to use in computing a source spline vector for a specified 
point. See Appendix 4-K of this document and the PAN AIR Theory 
Document, Section 1 of Appendix I (Reference 1). 

Computes the doublet for field moment integrals for a panel. 

DCSASP 

DEFLSQ 

DEFPNL 

4.14 

Computes discontinuous outer splines for source analysis networks. 

Defines coordinate and spline vector at specified point for use in 
computing spline vectors at points on a smooth abutment. 

Defines geometrical data required to create a gap filling panel (See 
Appendix 4-L). 



DEGOUT 
Copies degenerate boundary condition to output array for case of network 
which lies on a plane of symmetry. 

DEGPRP 

DFEDGE 

DIPDAT 

DISTQT 

DQGOUT 

DSCT 

DSGNID 

DSGNlS 

DSGN2D 

Defines boundary condition data for degenerate case of a network which 
lies wholly on a plane of symmetry. 

Creates EDGE-POINT-COORDS data~et in which corner point coordinates of 
points on a network edge and adjacent to a network edge are listed in a 
sequence which corresponds to traversing the network edge in a counter 
clockwise direction. 

Reads data from the DIP database and writes datasets on the DQG 
database, sometimes changing or combining the data into a form which DQG 
requires. 

Computes the distances from the one-quarter and three-quarter points of 
a network edge segment to the one-quarter and three quarter points of a 
reference network edge segment. Used in the automatic abutment search 
procedure (See Appendix 4-1). 

Copies DQG boundary condition to output array. 

Determines how many DIP boundary condition related datasets must be read 
by DQG to define the complete boundary condition arrays. 

Top level routine for the computation of doublet spline vectors for 
doublet design I networks. 

Top level routine for the computation of source spline vectors for 
source design I networks. 

Dummy routine in case design II doublet capabilities are added to PAN 
AIR. 

DSGN2S 
Top level routine for the computation of source design II spline vectors. 

DTENSR 

ECPGEO 

Computes D tensor for computation of far field moments. (See PAN A!R 
Theory Document, Section 1 of Appendix I (Reference 1)). 

Computes geometric properties of edge control points. (See PAN AIR 
"Theory Document, Appendix G (Reference 1)). 

4.15 



EDGCAL 
Computes average panel length and minimum panel length along edge of 
network. 

EDGCHK 
Decides whether a network edge satisfies the conditions which require it 
to collapse. {See PAN AIR User's Document, Section 3.2.2 (Reference 2), 
and PAN AIR Theory Document, Section 1.3 of Appendix D (Reference 1)). 

EDGCLS 
Reads closure boundary conditions, adds required geometrical information 
and writes a closure dataset. 

EDGECP 
Controls processing of corner point and edge midpoint control points. 
Causes geometric properties to be computed and boundary conditions to be 
defined for control points on network edges. 

EDGLAT 

EDGLS 

Transforms counter-clockwise-sense- sequential index of corner point on 
a network edge to coarse lattice indices of point (See Appendix 4-H). 

Computes quadratic one-dimensional fit to four points. Used for 
computation of doublet edge spline for non-matching edges of design 
networks. 

EDGLST 
Prepares a list of edge candidat~s for a pairwise abutment (See Appendi~ 
4-1). 

EDGPRP 
Computes and defines properties of network edge segments which make up 
an abutment, such as upstream factor, matching/non-matching flag and 
supersonic factor. See Appendix 4-1 and 4-J and the PAN AIR Theory 
Document, Section 4 of Appendix F (Reference 1). 

EDGSGQ 
Defines edge segments of a network edge which will be fit by a quadratic 
one dimensional spline. See Appendix 4-K and the PAN AIK Theory 

. Document, Section 1.2.5 of Appendix I (Reference 1). 

ENATCH 

E~1DSGI~ 

FHIOH 

4.16 

Sets matching source, doublet and vorticity flags in Abutment-Spec or 
Empty-Space-Abut datasetsfor imposition of matching boundary conditions 
at edge midpoints along edge segment in abutment. See Appendix 4-J and 
the PAN AIR Theory Document, Section 4 of Appendix F (Reference 1). 

Computes spline vectors at edge midpoints along non-matching edges of 
doublet design I networks. 

Computes basic far field moments and calls routines which compute 
source, doublet and doublet cross product moments. See PAN AIR Theory 
Document, Section 4 of Appendix I (Reference 1). 

.~ 



FINESP 
Computes spline vectors on the finer edge of a smooth abutment. See 
Appendix 4-K. 

FINGRD 

FUND 

GA~lVEC 

GAPSPL 

GEOMQU 

GETBC 

Computes fine grid coordinates for a network. 

Computes fine grid lattice indices for points on network edges which 
form part of a smooth abutment. 

Computes the gamma vector (described in PAN AIR Theory Document, Section 
1.5 of Appendix I (Reference 1) which is used to construct the edge 
spline for non-matching edges of doublet design networks. 

Defines spline vectors for gap filling panels. See Appendix 4-L. 

Controls computation of geometric data which are written to the 
Panel-Spec dataset. 

------ Obtains user1s boundary condition coefficients for control points from 
the DQG data base. 

GISTYP 

INDCTR 

INTERN 

INTRSC 

KAPVEC 

KNOWSP 

Determines the symmetry type for a particular Doundary condition. 

Defines the coordinate of the indicial center of a network. 

Writes a simplified spline vector for use in splining calculations for 
points on the interior of a network which lie close to an edge which is 
part of a smooth abutment. This assures that the spline is carried over 
to the adjacent network across the smooth boundary without produci ng a 
panel doublet spline matrix which depends on too many singularity 
parameters. See Appendix 4-K. 

Defines connections between corner points at abutment intersections and 
then finds all abutment intersections in the entire configuration. See 
Appendix 4-J. 

Defines the Kappa vectors used to compute subpanel doublet spline 
matrices. See PAN AIR Theory Document, Section 2.2.2 of Appendix I 
(Reference 1). 

Defines known singularity parameters for control points which have known 
source or known do'ublet characteristics. See PAN AIR Theory Document, 
Append; x H (Reference 1) •. 

4.17 



LATBC 
Defines fine grid lattice indices for control points when the user has 
defined point-by-point boundary condition specifications for a network. 
See PA~ AIR User's Manual Sections 7.4 and B.3.1 (Reference 2). 

LATEDG 
Transforms coarse lattice indices of corner point at edge of network to 
counter-clockwise-sense-sequential index around the edge. See Appendix 
4-H and the inverse routine EDGLAT. 

LATINO 

LOC2D 

Computes fine grid lattice index from coar.se lattice indices and point 
type (corner, center edge mid-point row and edge mid-point column). See 
Appendix 4-H. 

------ Computes a local two dimensional coordinate system for use in computing 
'doublet splines on the edge of a network which forms part of a smooth 
abutment. 

LSQDAT 

MAPB 

. t:IDCP 

Defines coordinate of a point and index of singularity parameter located 
there for use in computing doublet and source splines at points on a 
network interior. 

Defines SOl-IS maps used in the (2,0) overlay of DQG • 

Finds the'most distant center point adjacent to the corner point on the 
finer edge of a smooth abutment which is closest to a specified edge 
mid-point on the coarser edge. See Appendix 4-K. 

MDPLSG 

MODBC 

Computes minimum distance from a point to a line segment. 

Modifies boundary conditions on superinclined panels and subpanels. See 
PAN AIR Theory Document, Section 2.1 of Appendix H (Reference 1). 

MPPARM 
~ets flags indicating to MAG which of the VIC, VIC· Uc or (VICx , 
VICy' VICz) need to be computed and/or saved for use by MDG. 

r~TABUT 

~1TCHPT 

NBCLAS 

4.18 

Defines empty space abutments at all network edge segments which do not 
take part in network abutments. 

Reads matching flags from abutment data and sets flags in SPECIAL-POINTS 
dataset which indicates the 4th overlay which control points will 
receive matching boundary conditions. 

Determines number of boundary conditions user has imposed at control 
point and the boundary condition class of the user input. 



NETABT 

NTEDGA 

NTEDGD 

NTRLST 

ONDFCT 

PARMSA 

PANGEa 

PANPRJ 

PANSIZ 

PANSUB 

Searches the network edges, finds edges which abut and defines the 
pairwise abutment data •. 

Controls computation of doublet edge spline on analysis-type edges of 
networks. 

Controls computation of doublet edge spline on non-matching edges of. 
des i gn neblOrks. 

Defines abutment intersections. See Appendix 4-J. 

Computes a one-dimensional source spline for one column or one row 
networks. 

Controls parametrization of network edge segments which take part in a 
smooth abutment. See Appendix 4-K. 

Computes geometrical data associated with"a panel. 

Project reference coordinates to local panel coordinates. 

Computes pane"l size for panel s on network edges and compares them wi th 
the gap size. 

Computes source and doublet panel sub-splines for use in intermediate 
field PIC computations in f1AG. See PAN AIR Theory Document, Section 3 
of Appendix I (Reference 1). 

PBCDAT 

PCPDAT 

PGNDAT 

POINT 

Prints boundary condition data at all control points in the 
configuration. See Appendix 4-H. 

Points control point data at all control points in the configuration. 
See Appendix 4-H. 

Points global and network properties of the problem. See Appendix 4-H. 

Computes the coordinates of the specified center point, edge midpoint or 
corner point from the columns of corner point coordinates which are 
available in core. Used in the computation of spline vectors at network 
interiors. 

4.19 



POSPNL 
Constructs gap filling panels at network edges which abut a plane of 
symmetry, see Appendix 4-L and the PAN .AIR Theory Document, Appendix F 
(Reference 1). 

PRMEDG 
Parameterizes a network edge segment. See PAN AIR Theory Document, 
Section 6 of Appendix F (Reference 1). 

PRTNET 
Prints network corner point coordinates and fine grid coordinates as 
requested by the user. See PAN AIR User's Document, Section 7.3 
(Reference 2). 

PTSFIL 
Fills arrays of coordinates that are required to compute smooth abutment 
splines. See Appendix 4-K. 

Q1DFIT 
Computes a quadratic one dimensional fit to three one-dimensional 
coordinates. 

SALSQC 
Controls computation of doublet splines at corner points on a network 
edge which takes part in a smooth abutment. See Appendix 4-K. 

SALSQE 
Controls computation of doublet splines at edge midpoints on a network 
edge which takes part in a ~mooth abutment •. See Appendix 4-K. 

SDSPLM 
Assembles source or doublet spline matrix from spline vectors obtained 
from the DQG database. 

SEARCH 

SEDGCL 

SELECT 

SINGDF 

SIP 

Defines segments of network edges which have not already been included 
as part of a network abutment. See Appendix 4-1. 

Redefines source spline vectors on the collapsed edge of a network. See 
Appendix 4-K. 

Chooses a corner point for assignment to an abutment in order to impose 
doublet matching at an abutment intersection. This subroutine ·is not 
used in PAN AIR Version I. See Appendix 4-J. 

Controls the process of assigning indices to singularity parameters of 
networks. See Appendix 4-H. 

Computes the trace of the inner product of the D tensor with a specified 
segment of the far field moment matrix, that is, the shifted inner 
product of the tensors. See PAN AIR Theory Document, Section 4 of .~ 
Appendix I (Reference 1). 

4.20 



SNGDA 

SNGDD2 

SNGDW1 

SNGDW2 

SNGDEX 

SNGDFW 

SNGFIL 

SNGtJUL 

Indexes singularity parameters on analysis edges of networks. See PAN 
AIR Theory Document, Section 1 of Appendi~ 0 (Reference 1) and Appendix 
4-H of this document. 

Indexes singularity parameters on edges of source design ·II networks. 
See Appendix 4-H. 

Indexes singularity parameters on matching edge of doublet wake I 
network. See PM AIR Theory Document, Section 1 of Appendix D 
(Reference 1) and Appendix 4-H of thi s document. 

Indexes singularity parameter on matching edge of doublet wake II 
network. See Appendix 4-H and the PAN AIR Theory Document, Section 1 of 
Appendix D (Reference 1). 

Computes or obtains from the database the singularity index of a 
singularity parameter located at the specified point. Used for spline 
computations. 

Generates the singularity parameters for the edges of a forward weighted 
doublet analysis network. 

Fills array with indices of singularity parameters which are required to 
compute doublet splines at a smooth abutment. See Appendix 4-K. 

Defines null singularity parameters on collapsed edges of networks. See 
PAN AIR Theory Document, Section 1.4 of Appendix D (Reference 1). 

SNGPAN 

SNGSD1 

SNGSD2 

SPLA 

sPLItm 

Indexes singularity parameters on network interiors. See Appendix 4-H. 

Indexes singularity parameters on edges of doublet design I networks. 
See Appendix 4-H. 

Indexes singularity parameters on edges of source design II networks. 
See Appendix 4-H. 

Obtains data, computes doublet spline and assembles spline vector for 
specified point on the interior of a network. See Appendix 4-K. 

Controls computation and assembly of source and doublet spline matrices, 
sub panel spline matrices and panel-wide subspline matri~es. 

4.21 



SPLTRN 
Computes coordinate of specified point in local two dimensional 
coordinate system for use in computation of spline. 

SRCFFr~ 

SSIP 

SSP13 

Computes source far field moments. See PAN AIR Theory Document, Section 
4 of Appendix I (Reference 1). 

Computes scaled shifted inner product of D-tensor with basic far field 
moment. See paragraph 4.4.2 SIP and PAN AIR Theory Document, Section 4 
of Appendix I (Reference 1). 

Obtains data computes source spline and assembles spline vector for 
specified point. See Appendix 4-K. 

SUBGEO 
Computes geometric data for subpanels. 

SUBSPL 
Computes subpanel spline matrix. See PAN AIR Theory Document, Section 
4.2.1, Section 5.5 and Section 2 of Appendix I (Reference 1). 

SY~IFHl 

TANGOP 

TRICHK 

UNISPL 

UPDOHN 

USEABT 

USROUT 

VECUtJ~1 

Symmetrizes far field moments. See PAN AIR Theory Document, Section 4 
of Appendix I (Reference 1). 

Computes tan~ent vector at control point according to user option. See 
PAN AIR User s Manual, Section 7.4 (Reference 2). 

Checks panel in networks for short edges which indicate panel is 
triangular. 

Defines unit spline vector. See Appendix 4-K. 

Calculates upstream downstream parameters. See Appendix 4-J.3 

Defines abutments according to user specification. See Appendix 4-1, 
and the PAN AIR User's Document, Section B.3.5 (Reference 2). 

Copies user boundary condition data to output·array. 

Assembles spline matrix from spline vectors. 

VECUNV 

4.22 

Assembles spline vectors from coefficients of constrained least squares 
fit and spline vectors of points used in fit. 



XHLOC 

XIETAV 

XSCRIB 

XTEND 

WAKGAP 

Computes extra hypothetical locations of control points which are used 
to match source, doublet or vorticity strength. See PAN AIR-Theory 
Document, Appendix G (Reference 1). 

Computes a local two dimensional coordinate system for use in computing 
splines at points on the interior of a network. See Appendix 4-K and 
the PAN AIR Theory Document, Section 1.2.3 of Appendix I (Reference 1). 

Transcribes DIP boundary condition coefficients (stored one per dataset) 
into a form required by DQG (all coefficients for one control point in 
one dataset). 

Computes the first four rows of the extension matrix for source design 
II networks. See PAN AIR Theory Document, Section 2.1.3 of Appendix I. 

Computes spline vectors for wake networks and calls routine which 
defines spline vectors for gap filling panels. 

WTLSQ -
------ Defines upstream weighting coefficient for computing source and doublet 

splines. See Appendix 4-K and PAN AIR Theory Document, Section 1.2.4 of 
Appendix I (Reference 1). 

4.23 



Page Missing in 

Original Document 



Pane1 

Singu1arity and contro1 point 1ocation 

Figure 4.1 - I11ustra"tion of Network, Abutment and Pane1 

4.25 



,-. 

• 

MEC DIP 
_. , 'f 

~ .--- --

OVERLAY (1,0) 
OPENER 

Open Databases rI-
Copy and .. 

Transcribe DIP ~ 
Data ,Ir 

DQG TOP LEVEL 
OVERLAY (0,0) 

DQG 

Initialize Program 
and Call Other 
Overlays 

------ ~------I---- - ----.-. I 
I 

OVERLAY (2,0) I OVERLAY (3,0) 
NETDEF I EDGDEF 

I 
Compute Network I - Compute Abutment 

Related - I Properties 
Properties 

I • 
(Secondary Overlays) , I 1_ 2 3 4 5 6 L -- -~---------~---~~.-:-~,~-p;-~ 

I 
I 

OVERLAY (4,0) OVERLAY (5,0) I OVERLAY (6,0) 
BNDYDF TOPSPL I PANDEF 

Define Control ~ Compute Outer and 
I r- Compute Panel 

.. 

~ 

U· 

Points and Assign - Edge Spline Vectors ~ Data and ~ 
Boundary Conditions (Secondary Overlays) I . ,~ Spline Matrices 

~ I ' II , 1 . I 2 
I . .. 1"--_ .... --.. .. - 1 

OVERLAY {7,0) Output File 
" -- SUMMRY I""' 

DQG ~ 

0-

j Mark Database 
Complete and Print L 

L Global Summary - -
MAG ,~ 

RHS ---MDG 

Figure 4.2 - Top Level Structure of DQG 

4.26 



OVERLAY (3,0) 

EDGDEF 

.. Compute Abutment .. Abutment . - Description -

OVERLAY (3,1) OVERLAY (3,2) OVERLAY (3,3) 
PRABUT ABTMNT GAPSIZ 

Define User - Complete Automatic I-- Compute Gap ~ 

Abutments; First r Abutment Search r Sizes ,.' f- Stage of Auto Search r-- Check Abutments --"'" 

j~ .. .. 
--'" . . 

OVERLAY (3,4) OVERLAY (3,5) OVERLAY (3,6) -MATCH GAPPNL ,. ADCPSG 
~r 

~ -- Add extra control 
,~, Assign Matching Add, gap-fi 11 i ng points and singularity 

'edges and corner panels parameters and compute 
1-11 points I-- ~ extra hypothetical Ie 

'. locations 

-- ~ .. 
" -"" --- DQG 

-~ 
...... ~ 

Figure 4.3 - Top Level Structure of Overlay (3,0) 

4.27 



OVERLAY (5,1) 
SAEOGS 

Compute Smooth 
Abutment Splines 

, 

h 

.. -

OVERLAY (5,0) 
TOPSPL 

Call Secondary 
Overlays 

~ ~ 

OQG 

...... ...,; 

OVERLAY (5,2) 
SPLINR 

Compute Network 
Wide Splines 

,~ 

.. -
~ 

Figure 4.4 - Top Level Structure of Overlay (5,0) 

4.28 

" 

,,-. 
I 



" MEC 

\) 

f' 
DIP 

\) 

DIP: 
NETWK-SPEC 
PANEL-COORDS 
USER-ABUT 
GLOBAL-PRINTS 
TANG-VEC 
CLOS-COND 
COEF-GEN-BC 
NETWK-BDC 

r--

~ , 

J 

, 
r---

) 

OVERLAY (1,0) 

OPENER 

t 
~ 

-DIPDAT 

--
~{NETWK_BNDY_IN Lr ~~lss-5-BC-DATA 

CLOSURE-DATA-IN 

" 
\) 

GLOBAL 
NETWK-SPEC 
PANEL-CORNER-COORDS 
USER-ABUT 
NETWK-BNDY-CONDN-IN 
CLOSURE-DATA-IN 
CLASS-5-BC-DATA 

, 
DQG 

) 

Figure 4.5 - Structure and Data Flow of Overlay (1,0) 

4.29 



NETWK-SPEC 

( , , 
" 

, 
OVERLAY (2,0) 

DQG DQG --NETDEF -- -
\) j \) ) 

NETWK-SPEC 

'I' 
'f DFEDGE 

.. EDGCHK ,. INDCTR 
PANEL-CORNER-COORDS TRICHK FINE-GRID-COORDS 

FINGRD EDGE-POINT-COORDS ~ 

.. -,. ~ 

SINGULARITY-MAP SINGDF SINGULAR lTY -MAP 
SINGULARITY-SPEC 

~~ 

I I 
• --....." 

CONTPT CONTROL-PT-SPEC 
It 

OUTPUT 

- -.. PRTNET 
PANEL-CORNER-COORDS CORNER POINTS 
FINE-GRID-COORDS FINE GRID POINTS 

Figure 4.6 - Structure and Data Flow for Overlay (2,0) 

4.30 



D1JG 

EDGE-POINT-COORDS 
NETWK-SPEC 

I OVERLAY (3,1) 
PRABUT 

USEABT 
USER-ABUT 

EDGLST 
NETWK-SPEC 
EDGE-POINT-COORDS 

SEARCH-LIST NETABT 

I -ABU~ DQG 

ABUTMENT 
SEARCH-L 
SPECIAL-

I-ABUT 

Figure 4.7 - Structure and Data Flow for Overlay (3,1) 

4.31 

-SPEC 
1ST 
POINTS 



NETWK-SPEC 
EDGE-POINT-COORDS 

~ __ ¥UTMENT -SPEC 
f' , 

" 

r 

ABTMNT 

I-ABUT 
ABUT-KEYS 
EXPANDED-ABUTMENT 

ABUT-KEYS 
EXPANDED-ABUTMENT 

... -

-

ABXPND 

CONABT 

ABUTMENT-SPEC 

ABUT-KEYS 
EXPANDED-ABUTMENT 

ABUTMENT-SPEC 

" 
\J 

Figure 4.8 -Structure and Data Flow for Overlay (3,2) 

4.32 

, 
DQG 

J 

---

-



f' 
\J 

ABUTMENT-SPEC 
EMPTY-SPACE-ABUT 

~. 
~ OVERl:AY (3,4) 

OQG 
MATCH 

J 

.. -- EMATCH 
NETWK-SPEC 

" 

- INTRSC 
ABUTMENT-SPEC 
EMPTY-SPACE-ABUT 
INTERSECTION 

1 

-- ASSIGN 
ABUTMENT-SPEC 
EMPTY-SPACE-ABUT 
INTERSECTION 

" -. 
ABUTMENT-SPEC 
EMPTY-SPACE-ABUT 

\J 

.h 

.. 
INTERSECTION 

~ 

-
ABUTMENT-SPEC 
EMPTY-SPACE-ABUT 

Figure 4.9 - Structure and Oata Flow for Overlay (3.4) 

4.33 

, 
OQG 

J 



" DQG 

\J 

4.34 

ABUTMENT-SPEC 
NET\~K-SPEC 
GAP-SIZE , 

J 

,. 

EDGE-POINT-COORDS 

OVERLAY (3,5) 

GAPPNL 

PRMEDG 

DEFPNL 

POSPNL 

fY 
.. DQG -ABUTMENT-SPEC 

\J 

.. -
GAP-PANEL 

-. 
GAP-PANEL 

Figure 4.10 - Structure and Data Flow for Overlay (3,5) 

, 

J 



f' , 

DQG 

\J ) 

~ 

" 

NETWK-SPEC 
SPECIAL-POINTS-

I. OVERLAY (3,6) 
ADCPSG ~ 

NETWK-SPEC 
EDGE-POINT-COORDS 
ABUTMENT-SPEC 

... . 
ABUTMEN.T-SPEC 
SPECIAL-POINTS 

• f~ 
~ -. 

CONTROL-PT-SPEC 
SINGUlARITY-MAP \) 

SINGULARITY-SPEC 

XHlOC 

EXTRA-HYPO-LOC 

MTCHPT 

SPECIAL-POINTS 

Figure 4.11 - Structure and Data Flow for Overlay (3,6) 

4.35 

." 
.... 

DQG 

J 

JI' 

---.. 

,. 

-- .. 



" " 
OQG 

\J J 

4.36 

" 

., 

r 

NETWK-SPEC 
PANEL-CORNER-COORDS 

I OVERLAY (4,0) 
-"" BNDYDF 

--
NETWK-BNDRY-IN 
CLASS-S-BC-IN 

--
CLASS-5-BC-IN 
CONTROL-PT-SPEC 

... -
PANEL-CORNER-COORDS 
SPECIAL-POINTS 
CONTROL-PT-SPEC 

GETBC 

CENTCP 

EDGECP 

... 

CONTROL-PT-SPEC 
BNDRY-CONDN-SPEC 
B-POINTER 

-CONTROL-PT-SPEC 
BNDRY-CONDN-SPEC 
B-POINTER 

Figure 4.12 - Structure and Data Flow for Overlay (4,0) 

f' , 
DQG 

V J 

,~ 

~ 



f' , 
DQG 

\.l } 

ABUTMENT-SPEC 

OVERLAY (5,1) 
SAEDGS 

r 

--
PANEl-CORNER-COORDS 

, " 

SINGULARITY-MAP ,. 
~ 

EDGE-POINT-COORDS 

" 

--
NETWK-SPEC 

" B-SPlINE-DOUBlET 

.. 
~ 

B-SPlINE-DOUBlET 

PTSFIl 

SNGFIl 

PARMSA 

COARSP 

FINESP 

• 

B-SPlINE-DOUBlET 
INTERIOR-SPLINE 

B-SPlINE-DOUBLET 
INTERIOR-SPLINE 

" 
\1 

-

Figure 4.13 - Structure and Data Flow for Overlay (5,1) 

4.37 

, 
DQG 

1 

,~ 



·NETWK-SPEC 

DQG 

4.38 

OVERLAY (5,2) 

SPLINR 

PANEL-CORNER-COORDS 
EDGE-POINT-COORDS 
SINGULARITY-MAP 
B-SPLINE-SOURCE 

ANALS 
B-SPLINE-SOURCE 

ANALD 

PANEL-CORNER-COORDS B-SPLINE DOUBLET 
IEDGE-POINT-COORDS 
I SINGULAR ITY -MAP I I ANDFW 1-
'SPECIAL-POINTS ~ 

DQG 

INTERIOR-SPLINE ~, 
B B-SPLINE-DOUBLET 

SINGULARITY-MAP 

PANEL-CORNER-COORDS 
IEDGE-POINT-COORDS 
SINGULARITY-MAP 
SPECIAL-POINTS 
B-SPLINE-DOUBLET 

EDGE-POINT-COORDS 
SINGULARITY-MAP 
SPECIAL-POINTS 
B-SPLINE DOUBLET 
GAP-PANEL 

DSGN1S 
B-SPLINE-SOURCE 

y DSGN2S 1-

DSGN1D 
B-SPLINE-DOUBLET 

WAKGAP 
B-SPLINE-DOUBLET 

Figure 4.14 - Structure and Data Flow for Overlay (5,2) 



" 
DQG 

\J 

, 
) 

NETWK-SPEC 
PANEL-CORNER-COORDS 
GAP-PANEL 

OVERLAY (6,0) 
... . PANDEF 

" 

-"" 

GAP-SIZE 

,~ 

.. . 
B-SPLINE-SOURCE 
B-SPLINE-DOUBLET 

PANEL-SPEC 
PANEL-SING 

~ 

GEOMQU 
--'" 

GAP-SIZE 

SPLINM 

FFMOM 

Figure 4.15 . Structure and Data Flow for Overlay (6,0) 

f' ~ 

DQi2 

\J J 

4.39 



f' 
DQG 

\) 

'f 

r 

l. 

, 
) 

NETWK-SPEC 
GLOBAL 

OVERLAY (7,0) 
SU,..RY -

... 
~ 

BNDRY-CONDN-SPEC 

_ ... . 
BNDRY-CONDN-SPEC 

NETWK-SPEC 

" 
... -

GLOBAL \ J 

. NETWK-SPEC 
DATA-BASE-HEADER 

PBCDAT -. 
Boundary Condition Data 

PCP OAT . 
Control Point Data 

PGNDAT -
Global Data 
Network Data 

OUTPUT 

Figure 4.16 -Structure and Data Flow for Overlay (7,0) 

, 
DQG 

) 

" 

~ 

r 

., 



APPENDIX 4-A TREE STRUCTURE 

The tree structure diagram of the DQG module has been deleted from this 
document. It is, however, available on the installation tape. 

4-A.l 



APPENDIX 4-8 

. FUNCTIONAL DECOMPOSITION OF DQG 

This appendix describes the functional decomposition of DQG, that is, an 
outline form of the modular structure of DQG organized by task. Where a 
particular task is realized as a subroutine or subroutines in DQG, the 
subroutine name is listed in parentheses after the textual description of the 
operations which are performed. It is important to note that the execution 
sequence of each of the levels of a modular decomposition is not necessarily 
in accordance with the alphabetical order of the outline form. The control 
structure of the program (which is described in the comments within the 
particular subroutine) determines the execution sequence of the submodules. 
The alphabetical listing of the submodules is merely a listing device to guide 
the reader to particular sections of the code. 

4-8. 1 



Page Missing in 

Original Document 



4-B.l Functional Decomposition of DQG 

A. Open Database and Transfer Data from DIP database to DQG Database. 
(OPENER) [Overlay (1,0)] 

A. Retrieve Information from MEC Database 
A. Open the MEC Datbase (DBOPEN) 
B. Defi ne the SD~lS Map (DSMAP /DVMAP /ENDMAP) 
C. Get the Run, User and Problem lOis (ESGET) 
D. Check the file for the Databases (CHPADB) 
E. Close the MEC Database (DBCLOS) 

B. Transfer Data from DIP to DQG Database (DIPDAT) 
A. Define SDMS Maps (DSMAP/DVMAP/SVMAP/ENDMAP) 
B. Get the Global Data (ESGET) 
C. Get Network Data and Transform 
D. Process User Abutment Information (BNDYIN) 
E. Process Boundary Condition Information 

A. Define Additional SDMS Maps (DSMAP/DVMAP/SVMAP/ENDMAP) 
B. Get Network Data (ESGET) 
C. Clear Boundary Condition Arrays 
D. Define Class One BC Data 
E. Transcribe BC Data (XSCRIB) 

A. Initialize 
B. Modify Counter with Smear Option (DSCT) 
C. Define User Class and Number of BC (NBCLAS) 
D. Get DIP Database Data (ESGET) 
E. Clear BC Arrays (ZERO) 
F. Compute Lattice Indices for Be Data (LATBC) 
G. Copy BC Data to Output Array (COPYBC) 
H. Write BC Data to DQG Database (ESPOR) 

F. Transcribe Closure Data (CLOSTR) 
A. Define Number of Parallel and Perpendicular Panels 
B. Define Lattice Increments 
C. Define Lattice Indices 
D. Clear Closure Arrays 
E. Define Panel Indices 
F. Fill Array Indices 
G. Get Data from DIP (ESGET) 
H. Define Scale Coefficients 
I. Get Index of Value Array 
J. Add Contributions to Mass FLux and Source Terms 
K. Write Data to Database (ESPUT) 

C. Close Database (PACLOS) 

4-B.3 



B. Compute Network Defining Quantities (NETDEF) [Overlay (2,O)] 

A. Open Database and Define Maps 
A. Open DQG Database (PAOPEN) 
B. Define Maps (MAPB) 

B. Get Network Data 

C. Define Edge Point Coordinates (DFEDGE) 
A. Initialize 
B. Get Column of Points (ESGET) 
C. Store Corner Points for Edge Four and those Adjacent to Edge 

Four in Reverse Order 
D. Store First and Second Corner Points for Edge One and its 

Adjacent Row 
E. Store Last and Next to Last Corner Points for Edge Three and its 

Adjacent Row (Reverse Order) 
F. Store Corner Points for Edge Two and those Adjacent to Edge Two 
G. Write Edge Point Coordinates to Database (ESPUT) 

D. Check Network Edges (EDGCHK) 
A. Calculate Network Edge Length (EDGCAL) 
B. Diagnose Collapsing Edge Error 
C. Collapse the Network Edge (COLAPS) 
D. Diagnose Collapsing Edge Error 
E. Write Changed Coordinates to Database (ESREP) 
F. Diagnose Adjacent Collapsed Edge Errors 

E. Find Indicial Center of Network (INDCTR) 

F. Get a Columns of Corner Points (ESGET) 

G. Extract Panel Corner Points 

H. Check for Triangular Panels and High Aspects Ratio (TRICHK) 

I. Find Fine Grid Coordinates (FINGRD) 

J. Place Fine Grid Points on Database (ESPUT) 

K. Define Singularity Indices (SINGDF) 

4-6.4 

A. Establish Network Wide Variables 
A. Extract from Common Blocks NETWK and SINGLR 
B. Set to Default Values 

B. Generate Singularity Specifications for All Network Panels 
(SINGPAN) 

C. Generate Singularity Specifications for Doublet Network Edges 
A. Doublet Analysis Edges (SNGDA) 
B. Doublet Design I Edges (SNGSD1) 
C. Doublet Design II Edges (SNGSD2 
D. Doublet Wake I Edges (SNGDW1) 
E. Doublet Wake II Edges (SNGDW2) 
F. Forward Weighted Doublet Analysis Edges (SNGDFW) 



D. Generate Singularity Specifications for Source Network Edges 
A. Source Design I Edges (SNGSD1) 
B. Source Design II Edges (SNGSD2) 

E. Nullify Singularities at Collapsed Edges (SNGNUL) 

L. Index Control Points (CONTPT) 

M. Replace NETWK-SPEC Data Set (ESREP) 

N. Print Requested Network Data (PRTNET) 

4-B.5 



C. Compute Edge Defining Quantities (EDGDEF) [Overlay (3,0)] 

4-6.6 

A. Find Pairwise Abutments and Define User Abutments (PRABUT) 
[Overlay '(3,1)] 

A. Define User Abutments (USEABT) 
A. Initialize Abutment Counters 
B. Get User Abutment Data (ESGET) 
C. Define Reference Network 
D. Define Whole Edge to be in Abutment 
E. Find Closest Corner Point to Start/End Point of Reference 

Edge 
F. Write Abutment Data to Database ("ESPUT) 
G. Define Total Number of Abutments 
H. Define Search List for Automatic and Empty Space Abutment 

Search (SEARCH) 

B. Get Network Data (ESGET) 

C. Setup Blank Common Storage (INITIR,STARTR) 

D. Get Edge Point Coordinates (ESGET) 

E. Search for Network Abutment (NETABT) 
A. Get Search List for Current Reference Edge (ESGET) 
B. Define Candidate Edges (EDGLST) 
C. Define Search Pointers 
D. Compute Minimum Distance from Point to Line Segment 
E. Determine Nearby Segment Found 
F. Start a New Pairwise Abutment 
G. Extend an old Abutment 
H. Terminate the Abutment 
I. Determine Plane of Symmetry Abutment 

F. Delete Blank Common Storage (DELETR) 



B. Construct Abutments and Check Rules (ABUTMNT) [Overlay (3,2)] 

A. Generate Expanded List of Abutments (ABXPND) 
A. Make List of Pairwise Abutments in Which Network Takes Part 
B. Sequence Corner Point Indices 
C. Define Expanded Abutment Arrays 
D. Add Plane of Symmetry to Expanded Abutment Arrays 

B. Contract Expanded Abutments to Form Abutment Description (CONABT) 

A. Get Expanded Abutment Data (ESGET) 
B. Find a Reference Edge 
C. Compute Quarter and Three Quarter Point Coordinates (C13QTR) 
D. Computer Distance Between Quarter Points (DISTQT) 
E. Add Network Edge to Abutment 
F. Compute Distance from Quarter Points to Plane of Symmetry 
G. Add Plane of Symmetry to Abutment 
H. Copy Network Edges to Output Array 
I. Copy Plane to Symmetry to Output Array 
J. Clear Associated Information 
K. Write Abutment Data (ESPUT) 

C. Get Abutment Data (ESGET) 

D. Compute Associated Edge Properties (EDGPRP) 

E. Replace Abutment Data (ESREP) 

F. Define Search List for Empty Space Abutments (SEARCH) 

G. Check Abutment Rules (ESGET) 
A. Get Abutment Data (ESGET) 
B. Check Smooth Abutment Rules 
C. Define Null Singularity Rules 
D. Count Number of Matching Edges 
E. Check Plane of Symmetry Rules (CHKPOS) 

4-B.7 



C. Compute Gap Sizes (GAPSIZ) [Overlay (3,3)] 

A. Initialize 

B. Get Abutment Data (ESGET) 

C. Define Start and End Pointers 

D. Define Two Panel Corner Points 

E. Find Closest Point on Second Edge to Panel Point on First Edge 

F. Find Minimum Distance to Closest Line Segment 

G. Define Gap Size as Maximum of Minimum Distances 

H. Write Gap Size to Database (ESPUT) 

D. Define Empty Space Abutments (MTABUT) 

A. Get Abutment Data (ESGET) 

B. Compute Edge and Point Properties (EDGPRP) 

C. Replace Abutment Data (ESREP) 

D. Define Empty Space Abutment 

E. Write Empty Space Abutment 

4-B.8 



E. Assign Matching Data to Edges (MATCH) [Overlay (3,4)] 

A. Get 'Abutment Data (ESGET) 

B. Assign Network Edge to Abutment (EMATCH) 
A. Get Network Data (ESGET) 
B. Count r~atchi ng Edge 
C. Find Leading Edge of Most Downstream Edge Which is also a 

Supersoni c Edge 
D. Choose Finest Network 
E. Define Matching Edge 
F. Diagnose Fatal Error 
G. Diagnose Matching Doublet Pointer for Empty Space Abutment 

C. Replace Abutment Data (ESREP) 

D. Define Abutment Intersections (INTRSC) 
A. Get Abutment Data (ESGET) 
B. -Extend the Abutment Li st 
C. Extend the Corner Point Map 
D. Extend the Connection List 
E. Sequence Connections by Downstream Parameter 
F. Initialize Arrays for Intersection Description 
G. Assign Entries to Intersection List (NTRLST) 

A. Determine Corner Point Indices from Connection Data 
B. Define New Intersection List 
C. Define Intersection Index 
D. Add to Old Intersection List 
E. Combine Intersections 
F. .Change Si gn of Abutment Index for Closed Loop 
H. Define Number of Intersections 

E. Assign Corner Points for Doublet Matching (ASSIGN) 
A. Get Intersection Data (ESGET) 
B. Count Distinct Abutments 
C. Count Distinct Corner Points and Sequence Them 
D. Diagnose Error in Intersection Data 
E. Ini ti ali ze Assi gnment Counter 
F. Prepare Data Needed for Assignment 
G. Choose Corner Point for Assignment (ABTINT) 
H. Assign Corner Points to Abutments (ABASGN) 

A. Define Abutment Index 
B. Get Abutment Data (ESGET) 
C. Define Matching Data 
D. Increment Number Assigned 

4-B.9 



F. Add Gap Filling Panels (GAPPNL) [Overlay (3,5)] 

A. Get Abutment Data (ESGET) 

B. Define Panel Limits 

C. Define Shift Index for Panel 

D. Define Panel Index 

E. Set Indicator for Gap Size Exceeded 

F. Initialize Gap Panel Construction 

G. Pa"rameteri ze the Edge (PRMEDG) 

H. Merge and Sequence Parameterizations 

I. Define Gap Panel for Network Edges (DEFPNL) 
A. Initialize 
B. Compute Four Coordinates from a Pair of Parameterizations 
C. Compute Gap Panel Edge Lengths and Count Number of Short 

Edges 
D. Define Gap Panel Data 
E. Write Gap Panel Element Set (ESPUT) 
F. Error Exi t 

J. Define Gap Filling Panel for Plane of Symmetry (POSPNL) 
A. Find Plane of Symmetry Reference 
B. Get Coordinate Data (ESGET) 
C. Define Start and End Points and Lattice Indices of First 

Point 
D. Define Gap Panel Corner Points 
E. Define Gap Panel Data 
F. Count Number of Short Edges 
G. Write Gap Panel Element Set (ESPUT) 
H. Diagnose Error 

4-B.10 



G. Add Extra Singularities and Control Points (ADCPSG) [Overlay (3,6)] 

A. Get Network Data (ESGET) 

B. Increment Number of Control Points 

C. Assign Control Point Index 

D. Add Extra Singularity Parameter 

E. Replace Special Points Dataset (ESREP) 

F. Assign Extra Hypothetical Locations (XHLOC) 
A. Get Abutment Data (ESGET) 
B. Compute Extra Hypothetical Location for Corner Point 
C. Parameterize Network Edge Segment (PRMEDG) 
D.. Define Extra Hypothetical Locations for Edge 14idpoints 

G. Define Flags for Matching Boundary Conditions 
A. Get Abutment Data (ESGET) 
B. Count Number of Planes of Symmetry in Abutment 
C. Count Distinct Matching Pointers 
D. Find Edge Segment for Matching 
E. Assign Matching Condition 
F. Replace Special Points Dataset (ESREP) 
G. Define Special Points Dataset for Collapsed Edges 

A. Define First and Last Points for Each Edge 
B. Get Special Points Dataset (ESGET) 
C. Check if Matching Pointer Set for Null Control Point 
D. Define Value for Opposite Corner Point on Collapsed 

Edge 
E. Replace Special Points Dataset (ESREP) 
F. Define Special Points Dataset for Collapsed Edge 
G. Define Matching Value for Point 
H. Write Special Point Database for Collapsed Edge (ESPUT) 

4-8.11 



D. Compute Control Point and Boundary Condition Data (BNDYDF) [Overlay 
(4,0)] 

4-8.12 

A. Open Database and Define Maps (PAOPEN,DSMAP) 

B. Get Network Data (ESGET) 

C. Get Network-Wide Boundary Conditions (GETBC) 
A. Get BC Data (ESGET) 
B. Compute Average and Difference Coefficients 
C. Check for Nearly Vanishing Coefficients 

D. Determine Number of Boundary Conditions Required 

E. Copy Second Columns of Corner Points to First Column 

F. Compute Center Control Point Data (CENTCP) 
A. Compute BC Data 
B. Compute Geomtric Data 
C. Assign Boundary Conditions (ASGNBC) 

A. Prepare User Boundary Conditions (ASGNU) 
A. Initialize Characterization 
B. Redefine BC Coefficients 
C. Define C and 0 Vectors 
D. Assign Characterizations and Sequence User BC by 

Hierarchy 
B. Assign Matching BC (ASGNM) 

A. Test Point for Closure Point 
B. Define Vanishing C and 0 Vectors (ZERO) 
C. Test Point for Closure Point 
D. Test Poi nt for Source t~atchi ng Poi nt 

C. Choose Required Boundary Conditions (CHOOSE) 
A. Clear Output Array (ZERO) 
B. Initialize Be Pointers 
C. Copy DQG BC Data to Output Array (DQGOUT) 
D. Copy User BC Data to Output Array (USROUT) 
E. Copy Degenerate Data to Output Array (DEGOUT) 
F. Add Default BC if Insufficient BC Assigned 

D. Define MAG and PDP Parameters (MPPARM) 
E. Prepare Degenerate BC Data (DEGPRP) 
F. Clear Number of DQG Boundary Conditions 
G. Define Known Singularities (KNOWSP) 

D. Replace Control Point Dataset (ESREP) 
E. Write Boundary Condition Dataset (ESPUT) 



G. Compute Boundary Condition Data for Edge (EDGECP) 
A. Get Coordinates (ESGET) 
B. Get Network Wide BC (GETBC) 
C. Compute Geometric Information for Corner Points (CCPGEO) 

A. Define Panel Points 
B. Define Subpane1 on Which Point Lies 
C. Compute Normal and Conorma1 
D. Compute Recession Vector 
E. Define Control Point Location 
F. Compute Tangent Vector (TANGOP) 
G. Define Remaining Geometric Data 
H. Copy BC Data into User BC Array 

"A. Copy Data 
B. Check for Superinc1ined Subpane1 and Modify 

Boundary Conditions (t~ODBC) 
D. Assign Boundary Conditions to Point (ASGNBC) 
E. Replace Cqntro1 Point Dataset (ESREP) 
F. Write Boundary Condition Datasets (ESPUT) 
G. Compute Geometric Data for Edge ~idpoints (ECPGEO) 

A. Define Panel Points 
B. Compute Normal and Conorma1 Vector 
C. Compute Recession Vector 
D. Compute Tangent Vector (TANGOP) 
E. Define Miscellaneous Geometric Data 
F. Check for Superinclined Subpane1 and Modify Boundary 

Conditions (MODBC) 
H. Compute the "Kutta Tangent Vector 

H. Close Database (PACLOS) " 

4-B.13 



E. Choose Source and Doublet Splines (TOPSPL) [Overlay (S,O)] 
A. Compute Smooth Abutment Splines (SAEDGS) [Overlay (S,l)] 

4-6.14 

A. Open Database and Define Maps (PAOPEN,DSMAP) 
B. Get Abutment Data (ESGET) 
C. Choose Closest Network 
D. Parametrize Smooth Abutment (PARAMSA) 
E. Get Coordinates for Smooth Edge (PTSFIL) 
F. Get Singularity Parameter Indices (SNGFIL) 
G. Define Spline Vectors for Coarse Edge 

A. Define Unit Spline Vectors at End Points (UNISPL) 
B. Define Spline Data for Corner Points (SALSQG) 

A. Initialize Counter 
B. Find Closest Corner Point on Fine Network (CCPFN) 
C. Define Least Squares Data (DEFLSQ) 
D. Define and Write Internal Spline Vector (INTERN) 
E. Define Local Two Dimensional Coordinate System 

(LOC2D) 
F. Computer Transformtion to Local Two Dimensional 

Coordinate System (SPLTRN) 
G. Compute Weights for Fit (WTLSQ) 

C. Define Lattice Indices for Point (FLIND) 
D. Perform Constrained Least Squares Fit (CQLSF) 
E. Diagnose Error 
F. Print Warning for Poor Fit 
G. Accumulate Spline Vector (VECUNV) 
H. Write Spline Vector to Database (ESPUT) 
I.. Define Spline Vector for Edge Midpoint }SALSQE} 

A. Initialize Counter 
B. Find Closest Corner Point on Fine Network (CCPFN) 
C. Find Most Distant Center Point Adjacent to 

Closeset Corner Point (MDCP) 
D. Define Least Squares Data (DEFLSQ) 
E. Define and Write Internal Spline Vector (INTERN) 
F. Define Local Two Dimensional Coordinate System 

(LOC2D) 
G. Compute Transformation to Local Two Dimensional 

Coordinate System (SPLTRN) 
H. Compute Weights (WTLSQ) 

H. Define Spline Vector for Fine Edge (FINESP) 
A. Choose Corner Points on Coarse Edge (CPCSFL) 
B. Compute One Dimensional Quadratic Fit (Q1DFIT) 
C. Accumulate Spline Vector (VECUNV) 
D. Compute Internal Spline Data 
E. Write Spline Vector 

I. Close Database (PACLOS) 



B. Compute Spline Vectors for Network (SPLINR) [Overlay (5,2)J 
A. Open Database and Define Maps (PAOPEN,DSMAP) 
B. Get Network Data (ESGET) 
C. Compute Source Analysis Spline Vectors (ANALS) 

A. Initial ize 
B. Define and Write Unit Spljne Vectors (UNISPL) 
C. Get Arrays of Coordinates 
D. Compute Lattice Indices of Point (LATIND) 
E. Compute Least Squares Spline for Point (SSP13) 

A. Compute Least Squares Data for Point (DATS13) 
A. Initialize 
B. Check for One Dimensional Fit 
C. Increment Counter 
D. Define Least Squares Data for Point (LSQDAT) 
E. Define Xi and Eta Vectors (XIETAV) 
F. Compute Coordinate Transformation (SPLTRN) 
G. Compute Weights (WTLSQ) 
H. Perform One Dimensional Fit 

B. Perform Bilinear Fit (CQLSF) 
C. Diagnose Spline Error 
D. Print Warning Message 
E. Accumulate Spline Vector (VECUNV) 
F. Write Spline Vector (ESPUT) 

D. Compute Spline Vectors for Source Design Network 
A. Compute Fine Grid Lattice Indices 
B. Define Unit Spline Vector (UNISPL) 
C. Define Spline Vector 
D. Get Singularity Index for Point (SNGDEX) 
E. Write Spline Vector (ESPUT) 

E. Compute Doublet Analysis Spline Vectors (ANALD) 
A. Initialize 
B. Calculate Edge Spline Vectors 

A. Define Coarse Lattice Indices 
B. Define Lattice Indices for Point (LATIND) 
C. Define Unit Spline Vectors (UNISPL) 
D. Define Lattice Indices for Last Corner Point on 

Edge 
E. Write Spline Vector for Point (ESPUT) 
F. Perform Analysis Edge Spline (NTEDGA) 

A. Get Edge Coordinates (ESGET) 
B. Find Edge Segments for Quadratic Fit (EDGSGQ) 
C. Define Spline Vectors for Additional Corner 

Points 
D. Compute Spline Vectors for Corner Points 

( CPANAL) 
E. Compute Spline Vectors for Edge Midpoints 
F. Define Spline Vectors for Collapsed Edge 

C. Define Unit Spline Vectors at Center Points (UNISPL) 
D. Get Array of Corner Points (ESGET) 
E. Compute Lattice Indices of Point (LATINO) 

4-B.15 



4-B.16 

F. Compute Spline Vector for Point (SPLA) 
A. Compute Least Squares Data for Surrounding Points 

(DATANL) 

G. 

H. 

A. Ini ti ali ze 
B. Define Lattice Indices 
C. Increment Counter 
D. Define Least Squares Data for Point (LSQDAT) 
E. Define Infinite Weight for Point 
F. Define Xi and Eta Vectors (XIETAV) 
G. Compute Coordinate Transformation (SPLTRN) 
H. Define Weights (WTSLQ) 

B. Perform Constrained Least Squares Fit (CQLSF) 
C. Diagnose Error . 
D. Print Warning for Poor Fit 
E. Accumulate Spline Vector (VECUNV) 
F. Write Spline Vector (ESPUT) 

Compute Doublet Design Spline Vectors (DSGN1D) 
A. Initialize Limit Arrays 
B. Compute Network Edge Spline Vectors 

A. Define Lattice Indices for Point (LATINO) 

C. 
D. 
E. 
F. 

B. Define Unit Spline Vector for Point (UNISPL) 
C. Define Lattice Indices for Last Point on Edge 
D. Write Spline Vector for Point 
E. Perform Analysis Edge Spline (NTEDGA) 
F. Perform Design Edge Spline (NTEDGD) 

A. Ini ti al i ze 
B. Get Edge Coordinates (ESGET) 
C. Find Edge Segments for Quadratic Fit (EDGSGQ) 
D. Define Unit Spline Vector for Extra Points 

E. Compute Start/End Points for Segment 
(LATEDG) 

F. Parametrize the Segment (PRMEDG) 
G. Compute Intermediate Spline Vector for Edge 

Midpoints (GAMVEC) 
H. 
I. 
J. 

Define Lattice Indices (EDGLAT) 
Compute Corner Point Spline Vector (CPDSGN) 
Compute Edge Midpoints Spline Vectors 
(EMDSGN) 

Define Fine Grid Lattice Indices 
Define and Write Unit Spline Vectors (UNISPL) 
Get Arrays of Corner Points 
Compute Spline Vectors for Specified Point 
A.. Compute Lattice Indices (LATINO) 
B. Define Shifts and Limits 
C. . Compute Spl ine Vector (SPLA) 

Compute Wake or Gap Panel Spline Vectors (WAKGAP) 
A. Define Corner Point Lattice Indices 
B. Calculate Wake I Edge Spline 

A. Find Matching Edge 
B. Define Unit Spline Vector for Corner Points 



C. Perform Edge Spline for Matching Edge (NTEDGA) 
C. Calculate Wake II Edge Spline 
D. Diagnose Error 
E. Define Spline Vectors for Interior of Wake Network 
F. Define Spline Vectors for Gap Filling Panels (GAPSPL) 

A. Get Spline Vector for Point (ESGET) 
B. Define Network Data 
C. Compute Lattice Indices (LATINO) 
D. Compute Geomtric Weight Matrix 
E. Define Weight Vector 
F. Accumulate Spline Vector (VECUNV) 
G. Write Spline Vector to Datbase (ESPUT) 

I. Compute Forward Weighted Doublet Analysis Splines (ANDFW) 
A. Initi1ize 
B. Calculate Edge Spline Vectors 

A. Define Coarse Lattice Indices 
B. Define Lattice Indices for Point (LATINO) 
C. Define Unit Spline Vectors (UNISPL) 
D. Define Lattice Indices for Last Corner Point on 

Edge 
E. Write Spline Vector for Point (ESPUT) 
F. Perform Analysis Edge Spline (NTEDGA) 

A. Get Edge Coordinates (ESGET) 
B. Find Edge Segments for Quadratic Fit (EDGSGQ) 
C. Define Spline Vectors for Additional Corner 

Points 
D. Compute Spline Vectors for Corner Points 

(CPANAL) 
E. Compute Sp1i~e Vectors for Edge Midpoints 
F. Define Spline Vectors for Collapsed Edge 

C. Define Unit Spline Vectors at Center Points (UNISPL) 
D. Get Array of Corner Points (ESGET) 
E. Compute Lattice Indices of Point (LATINO) 

4-B.17 



F. Compute Panel Defining Quantities (PANDEF) [Overlay (6,O)] 
A. Open Database, Defi ne r~aps and Get Data for Network 

4-B.18 

B. Compute Geometric Quantities (GEOMQU) 
A. Compute Panel Defining Points 
B. Compute Panel Geometric Data (PANGEO) 

A. (Not Used) 
B. Compute Normal and Conorma1 Vector 
C. Compute Panel Diameter and Radius 
D. Define Panel Updatabi1ity 
E. Compute Skewness Parameters 
F. Compute Projected Area of Panel and Subpane1s 
G. Compute Average Plane Corner Point Coordinates 

C. Compute Subpane1 Geometric Data (SUBGEO) 
A. Compute Origin of Subpane1 Coordinate System 
B. Compute Normal and Conorma1 Vectors 
C. Compute Transformation to Subpane1 Coordinate System 
D. Compute Subpane1 Points in Subpane1 Coordinate System 
E. Compute In-Plane Side Normals 
F. Define Zero Value for Data (Error Exit) 

D. Compute Gap Size to Panel Size Ratio (PANSIZ) 
A. Initialize 
B. Compute Unit Normal to Panel Edge 
C. Define Vector from Center to Edge Midpoint 
D. Compute Inner Product of Vectors (VIP) 
E. Get Gap Size for Panel (ESGET) 
F. Compute Gap Size to Panel Size Ratio 
G. Rep1 ace GAP SIZE Dataset (ESREP) . 

E. Compute Edge Normal in Sub panel Eight Coordinate System "" 
C. Assemble Spline Matrices (SPLINM) 

A. Construct Outer Spline Matrix (SDSPLM) 
A. (Not Used) 
B. Initialize Counter 
C. Obtain Spline Vector (ESGET or DCSASP) 
D. Accumulate Spline Vector to Form Matrix (VECUNM) 
E. Clear Spline Matrix (ZERO) 

B. Construct Least Squares Defining Point Vectors 
C. Construct Subpane1 Spline Matrix (SUBSPL) 

A. Construct the Geometric Matrix 
B. Invert the Geometric Matrix (JORDAN) 
C. Assemble the Extension Matrix 
D. Multiply the Inverse Geomertric and Extension Matrices 

(CAB) 
E. Define Zero Subpane1 Spline Matrices (ZERO) 

D. Construct Kappa Vectors (KAPVEC) 
A. Clear Kappa Vectors 
B. Define Skewness Factors 
C. Compute Kappa Vectors for Subpane1s 
D. Scale All Kappa Vectors 

E. Construct Panel Subsp1ine Matrix 
A. Transform Point to Subpane1 Eight Coordinate System 
B. Define ~"eights According to Singularity Type 
C. Compute Constrained Quadratic Least Squares Fit (CQLSF) 
D. Define Zero Matrix (ZERO) 

F. Write Fatal Error 
G. Define Singularity Indices for Panel 



D. Compute Far Field Moments (FFMOM) 
A. Compute Basic Far Field Moments 

A. Initialize to Zero (ZERO) 
B. Define Points 
C. Compute Normal Distance from Origin to Line Segment 

(VIP) 
D. Compute Moments Along Line Segment 
E. Compute G(M,N) Along Line Segment 
F. Accumulate Basic Far Field Moment Contributions 

B. Compute Source Far Field Moments (SRCFFM) 
A. Initialize to Zero (ZERO) 
B. Define D Tensor (DTENSR) 
C. Compute Monopole Term 
D. Compute Dipole Term 
E. Compute Quadrupole Term 
F. Accumulate Contributions 
G. Symmetri ze Fa r Fi e 1 d t~oments (SYMFFM) 

C. Compute Doublet Far Field Moments (DBLFFM) 
A. Initialize to Zero (ZERO) 
B. Define D Tensor (DTENSR) 
C. Compute r~onopol e Term 
D. Compute Dipole Term 
E. Compute Quadrupole Term 
F. Accumulate Contributions 
G. Symmetrize Far Field Moments (SYMFFM) 

F. Summarize Execution (SU~~RY) 
A. Print Global and Network Summary (PGNDAT) 

A. Print Header at Top of Page 
B. Write Global Data to Output File 
C. Get Network Data (ESGET) 
D. Write Network Data to Output File 

B. Transform Data Representation 
A. Get Network Data (ESGET) 
B. Redefine Singularity Type 
C. Redefine Edge Type . 
D. Rep.lace Network Data (ESREP) 

C. Print Control Point Data (PCPDAT) 
A. Initialize 
B. Get Data (ESGET) 
C. Increment Counter 
D. Print Header 
E. Compute and Wri.te Data to Output Fi 1 e 

D. Print Boundary Condition Data 
A. Get Data (ESGET) 
B. Increment Counter 
C. Print Header 
D. Compute and Write Data to Output File 

E. Close Database (PACLOS) 

4-B.19 



G. Summarize DQG Operations (SUMMRY) [Overlay (7,0)] 
A. Open Database (PAOPEN) 
B. Define Maps (DSMAP,SVMAP,DUMAP) 
C. End Maps (ENDMAP) 
D. Replace Global Data (ESREP) 
E. Print Global and Network Data (PGNDAT) 
F. Print Control Point Data (PCPDAT) 
G. Print Boundary Condition Data (PBCDAT) 
H. Close Database (PACLOS) 

4-B.20 



APPENDIX 4-C 

DATA BASE COMMUNICATIONS CHART 

Tables 4-C.l through 4-C.3 describe the data flow within DQG. The 
IIFirst Form ll chart (Table 4-C.l) lists the dataset name in alphabetical order 
by overlay with its corresponding map names used within the overlay and with 
the destination of the data, usually a common block. Table 4-C.2 is the 
IISecond Form ll of the chart. It contains the same information but has it 
listed under Map Name in alphabetical order. Table 4-C.3 lists the common 
blocks in alphabetical order by overlay and shows to which dataset the 
information within the block connects. In the column labelled COMMON BLOCK 
the word IIDynamic ll sometimes appears. In this case the data is not 
transferred to a common block but is transferred ·to whatever variables are 
mentined in the I/O transfer call to ESGET, ESPUT or ESPOR. See Section 13 of 
this document. 

4-C.l 



Page Missing in 

Original Document 



Table 4-C.l Data Flow for DQG First Form 

Overlay (1,0) 

DATABASE DATASET-NAME MAP NAME COMMON BLOCK SUBROUTINE 

MEC DATA-BASE-HEADER IDS /RUINDS/ OPENER 
MEC MACRO-OPTIONS RUNOPT local OPENER 

DIP CLOS-COND DIPCLOSDAT /GENBCD/ BNDYIN 
DIP COEF-GEN-BC CGBCMP /GENBCD/ BNDYIN 
DIP GLOBAL GLOBAL-IN /GLOBAL/ DIPDAT 
DIP GLOBAL-PRINTS PRINT-OPT Dynamic DIPDAT 
DIP NETWK-BDC NETBDC /NETBDC/ BNDYIN 
DIP NETWK-SPEC NETMAP /NETWK/ DIPDAT 
DIP PANEL-COORDS PAN-COR-PT /COORDS/ DIPDAT 
DIP TANG-VEC TVECTCOEFF /GENBCD/ BNDYIN 
DIP USER-ABUT USABIN /ABUT/ DIPDAT 

DQG CLASS-S-BC-DATA CLASS /NBCDIN/ BNYDIN 
DQG CLOSURE-DATA-IN CLOSDIN /CLOSUR/ BNDYIN 
DQG GLOBAL GLOB-DYN /GLOBAL/,Dynamic DIPDAT 
DQG NETWK-BNDRY -COI~DN- IN BCDATIN /NBCDIN/ BNDYIN 
DQG NETWK-SPEC NETMAP /NETWK/ DIPDAT 
DQG PANEL-CORNER-COORDS COORDS-GEN Dynamic DIPDAT 
DQG. USER-ABUT USABUAT /ABUT/ DIPDAT 

r 
Overlay (2,0) 

DATABASE DATASET-NAME MAP NAME COMMON BLOCK SUBROUTINE 

DQG CONTROL-PT-SPEC CNTRLPS /CPGEOM/ MAPB 
DQG EDGE-POINT-COORDS EDGPTS Dynamic MAPB 
DQG FINE-GRID-COORDS FCNCORDS Dynamic MAPB 
DQG NETWK-SPEC NETMAP /NETWK/ MAPB 
DQG PANEL-CORNER-COORDS CORNCOORDS Dynamic MAPB 
DQG SINGULARITY-MAP SINGMAP /SINGLR/ MAPB 
DQG SINGULAIRTY-SPEC SINGSPC /SINGLR/ MAPB 
DQG SINGULARITY-SPEC SINGSPEC Dynamic MAPB 

4-C.3 



Overlay (3,0) 

DATABASE DATASET -NM1E MAP NAME COMMON BLOCK SUBROUTINE 

DQG ABUTMENT-KEYS ABUTMENTS Dynamic ABUTMNT 
DQG ABUTMENT-SPEC ABUTMENT /ABUT/ EDGECP 
DQG CONTROL-PT-SPEC CTLDEXMAP Dynamic ZHLOC 
DQG CONTROL-PT-SPEC CTLSPECDYN Dynamic ADCPSG 
DQG EDGE-POINT-COORDS EDGPTS Dynamic EDGDEF 
DQG EMPTY-SPACE-ABUTMENTS ESABUTMNT /ABUT/ EDGDEF 
DQG EXPANDED-ABUTMENT EXPABUT /EXPAND/ EDGDEF 
DQG EXTRA-HYPO-LOC XHLOCCP Local XHLOC 
DQG GAP-PANEL GAPPANEL /GAPANL/ GAPPNL 
DQG GAP-SIZE GAPSIZE Dynamic EDGDEF 
DQG I-ABUT IABUTMAP /ABUT/ EDGDEF 
DQG INTERSECTION CONNECTION /MATCHD/ MATCH 
DQG NETWK-SPEC NETMAP /NETWK/ EDGDEF 
DQG NETWK-SPEC NETWKS Dynamic EDGDEF 
DQG PANEL-CORNER-COORDS COORDS-GEN Dynamic ABUTMNT 
DQG SEARCH-LIST SEARCHLIST /LIST/ EDGDEF 
DQG SINGULARITY-MAP SINGMAP /SINGLR/ EDGDEF 
DQG SINGULARITY-SPEC SINGSPC /SINGLR/ EDGDEF 
DQG SINGULARITY-SPEC SINGSPEC Dynamic EDGDEF 
DQG SPECIAL-POINTS SPECIALPT /SPECPT/ EDGDEF 
DQG USER-ABUT USABUT /ABUT/ EDGDEF 

Overlay (4,0) ,~ 

DATABAS.E DATASET -NM1E MAP NAME COMMON BLOCK SUBROUTINE 

DQG BNDRY-CONDY-SPEC BNDRY /BCDOUT/ BNDYDF 
DQG B-POINTER BPOINT /BCDOUT/ BNDYDF 
DQG CLASS-5-BC-DATA CLASS5 jNBCDINj BNDYDF 
DQG CLASS-5-BC-DATA XCLASS5D /XBCDIN/ BNDYDF 
DQG CLOSURE CLOSURE /CLOSUR/ BNDYDF 
DQG CLOSURE-DATA-IN CLOSDIN /CLOSUR/ BNDYDF 
DQG CONTROL-PT-SPEC CNTRLPT /CPGEOM/ BNDYDF 
DQG CONTROL-PT-SPEC CTLDEXMAP Dynamic BNDYDF 
DQG CONTROL-PT-SPEC INDCTLMP Dynamic BNDYDF 
DQG NETWK-BNDRY-CONDY-IN BCDATIN /NBCDIN/ BNDYDF 
DQG NETWK-SPEC NETMAP /NETWK/ BNDYDF 
DQG PANEL-CORNER-COORDS COORDS-GEN Dynamic BNDYDF 
DQG SINGULARITY-MAP SINGI.,AP /SINGLR/ BNDYDF 
DQG SINGULARITY-SPEC SINGMAP Dynamic BNDYDF 
DQG SPECIAL-POINTS SPECIALPT /SPECPT/ BNDYDF 

4-C.4 



Overlay (5,0) 

DATABASE DATASET-NAME MAP NAME COMMON BLOCK SUBROUTINE 

DQG ABUTMENT-SPEC ABUTMENT /ABUT/ SAEDGS 
DQG ABUn1ENT-SPEC ABUTMENT /ABUT/ SPlTPR 
DQG B-SPLINE-SOURCE SPLINE-SRC Dynamic SPLINR 
DQG B-SPlINE-SOURCE SSPLINE /SPLINE/ SPlINR 
DQG B-SPlINE-DOUBlET DSPLINE /SPLINE/ SAEDGS 
DQG B-SPlINE-DOUBElT DSPLINE /SPLINE/ SPLINR 
DQG B-SPlINE-DOUBlET SPLINE-DBl Dynamic SAEDGS 
DQG B-SPlINE-DOUBlET SPLINE-DBl Dynamic SPlINR 
DQG EDGE-POINT-COORDS EDGPTS Dynamic SAEDGS 
DQG EDGE-POINT-COORDS EDGPTS Dynamic SPlINR 
D~G GAPPANEl GAP-PANEL /GAPAN/ SPLINR 
D G INTERIOR-SPLINE INTSPlMP Dynamic SAEDGS 
DQG INTERIOR-SPLINE INTSPlMP Dynamic SPLINR 
DQG NETWK-SPEC NETMAP /NETWK/ SAEDGS 
DQG NETWK-SPEC NETr~AP /NETWK/ SPLINR 
DQG PANEl-CORNER-COORDS COORDS-GEN Dynamic SAEDGS 
DQG PANEl-CORNER-COORDS COORDS-GEN Dynamic SPlINR 
DQG SINGULARITY-MAP SINGMAP /SINGlR/ SAEDGS 
DQG SINGULARITY-MAP SINGMAP /SINGlR/ SPLINR 
DQG SPECIAL-POINTS SPECAlPT /SPECPT/ SPlINR 

Overlay (6,0) 

DATABASE DATASET-NAME MAP NAME COMMON BLOCK SUBROUTINE 

DQG B-SPLINE-DBl SPLINE-DBl Dynamic PANDEF 
DQG BSPLINE-SRC SPLINE-SRC Dynamic PANDEF 
DQG GAP-PANEL GAPPANEl /GAPANl/ PANDEF 
DQG GAP-SIZE GAPSIZE Dynamic PANDEF 
DQG MAG-PANEL-SPEC r~AGPSPEC /PANEl/ PANDEF 

/SPLINE/ 
DQG MDG-PANEl-SPEC MDGPSPEC /PANEl/ PANDEF 

/FFM/ 
DQG NETWK-SPEC NETMAP /NETWK/ PANDEF 
DQG PANEl-CORNER-COORDS COORDS-GEN Dynamic PANDEF 
DQG PANEl-CORNER-COORDS CORNCOORDS /COORDS/ PANDEF 
DQG PANEL-SING PANSING /SPLINE/ PANDEF 
DQG PANEL-SPEC PANSPEC /FFM/ PANDEF 

/PANEl/ 
/SPLINE/ 

Overlay (7,0) 

DATABASE DATASET-NAME MAP NAME DATA SUBROUTINE 

DQG BNDRY-CONDN-SPEC BCOUTDATA Dynamic PBCDAT 
DQG BNDRY-CONDN-SPEC CTlOUTDATA Dynamic PCPDAT 
DQG DATA-BASE-HEADER DBHEADER Dynamic SUt4MRY 
DQG GLOBAL GlOB-DYN /GlOBAl,Dynamic SUMr~RY 
DQG NETWK-SPEC NETMAP /NETWK/ SUMMRY 

(~' DQG SPECIAL-POINTS SPECIAlPT /SPECPT/ SUMMRY 

4-C.S 



Table 4-C.2 Data Flow for DQG 

Second Form 

Overlay (1,0) 

DATABASE MAP N~1E DATASET-NAME COMMON BLOCK SUBROUTINE 

MEC IDS DATA-BASE-HEADER /RUINDS/ OPENER 
MEC RUN OPT MACRO-OPTIONS local OPENER 

DIP CGBCMP COEF":'GEN-BC /GENBCD/ BNDYIN 
DIP DIPCLOSDAT CLOS-COND /GENBCD/ BNDYIN 
DIP GLOBAL-IN GLOBAL /GLOBAL/ DIPDAT 
DIP NETBDC NETWK-BDC /NETBDC/ BNDYIN 
DIP NETMAP NETWK-SPEC /NEn~K/ DIPDAT 
DIP PAN-COR-PT PANEL-COORDS /COORDS/ DIPDAT 
DIP PRINT-OPT GLONAL-PRINTS DIPDAT 
DIP TVECTCOEFF TANG-VEC /GENBCD/ BNDYIN 
DIP USABIN USER-ABUT DIPDAT 

DQG BCDATIN NETWK-BNDRY-CONDN-IN /NISCDIN/ BNDYIN 
DQG CLASS CLASS-5-BC-DATA /NBCDIN/ BNYDIN. 
DQG CLOSDIN CLOSURE-DATA-IN /CLOSUR/ BNDYIN 
DQG COORDS-GEN PANEL-CORNER-COORDS Dynamic DIPDAT 
DQG GLOB-DYN GLOBAL /GLOBAL/,Dynamic DIPDAT 
DQG NETMAP NETWK-SPEC /NETWK/ DIPDAT 
DQG USABUAT USER-ABUT DIPDAT 

Overlay (2,0) 

DATABASE MAP NAME DATASET-NAME COMMON BLOCK SUBROUTINE 

DQG CORNCOORDS PANEL-CORNER-COORDS Dynamic MAPB 
DQG CNTRLPS CONTROL-PT-SPEC /CPGEOM/ MAPB 
DQG EDGPTS EDGE-POINT-COORDS Dynamic MAPB 
DQG FCNCORDS FINE-GRID-COORDS Dynamic MAPB 
DQG NETMAP NETWK-SPEC /NETWK/ MAPB 
DQG SINGMAP SINGULARITY-MAP /SENCLR/ MAPB 
DQG SINGSPC SINGULARITY-SPEC /SINGLR/ MAPB 
DQG SINGSPEC SINGULARITY-SPEC Dynamic MAPB 

4-C.6 



Overlay (3,0) 
r---. 

DATABASE MAP NAME DATASET-NAME CO~lMON BLOCK SUBROUTINE 

DQG ABUTMENT ABUTMENT-SPEC /ABUT/ EDGECP 
DQG ABUTMENTS ABUTMENT-KEYS Dynamic ABUTMNT 
DQG CONNECTION INTERSECTION /MATCHD/ MATCH 
DQG COORDS-GEN PANEL-CORNER-COORDS Dynamic ABUTMNT 
DQG CTLDExt4AP CONTROL-PT-SPEC Dynamic ZHLOC 
DQG CTLSPECDYN CONTROL-PT-SPEC Dynamic ADCPSG 
DQG EDGPTS EDGE-POINT-COORDS Dynamic EDGDEF 
DQG ESABUTMNT EMPTY-SPACE-ABUTMENTS /EXPAND/ EDGDEF 
DQG EXPABUT EXPANDED-ABUTMENT /EXPAND/ EDGDEF 
DQG GAPPANEL GAP-PANEL /GAPANL/ GAPPNL 
DQG GAPSIZE GAP-SIZE Dynamic EDGDEF 
DQG IABUTMAP I-ABUT /ABUT/ EDGDEF 
DQG NETMAP NETWK-SPEC /NETWK/ EDGDEF 
DQG NETWKS NETWK-SPEC Dynamic EDGDEF 
DQG SEARCHLIST SEARCH-LIST /LIST / EDGDEF 
DQG SINGMAP SINGULARITY-MAP /SINGLR/ EDGDEF 
DQG SINGSPC SINGULARITY-SPEC /SINGLR/ EDGDEF 
DQG SINGSPEC SINGULARITY-SPEC Dynamic EDGDEF 
DQG SPECIALPT SPECTAL-POINTS /SPECPT/ EDGDEF 
DQG USABUT USER-ABUT /ABUT/ EDGDEF 
DQG XHLOCCP EXTRA-HYPO-LOC Local XHLOC 

,~ Overl ay (4;0) 

DATABASE MAP NAME DATASET-NAME COMl40N BLOCK SUBROUTINE 

DQG BCDATIP NETWK-BNDRY-CONDY-IN /NBCDIN/ BNDYDF 
DQG BNDRY BNDRY-CONDY-SPEC /BCDOUT/ BNDYDR 
DQG BPOINT B-POINTER /BCDOUT/ BNDYDF 
DQG CLASSS CLASS-S-BC-DATA /NBCDIN/ BNDYDF 
DQG CLOSDIN CLOSURE-DATA-IN /CLOSUR/ BNDYDF 
DQG CLOSURE CLOSURE /CLOSUR/ BNDYDF 
DQG COORDS-GEN PANEL-CORNER-COORDS Dynamic BNDYDF 
DQG CNTRLPT CONTROL-PT-SPEC /CPGEOM/ BNDYDF 
DQG CTLDExt4AP CONTROL-PT-SPEC Dynamic BNDYDF 
DQG INDCTLMP CONTROL-PT-SPEC Dynamic BNDYDF 
DQG NETMAP NETWK-SPEC /NETWK/ BNDYDF 
DQG SINGMAP SINGULARITY-MAP /SINGLR/ BNDYDF 
DQG SINGMAP SINGULARITY-SPEC Dynamic BNDYDF 
DQG SPECIALIS SPECIAL-POINTS /SPECPT/ BNDYDF 
DQG XCLASSSD CLASS-S-BC-DATA /XBCDIN/ BNDYDF 

4-C.7 



Overl ay (5,0) .---------. 

DATABASE MAP NAME DATASET-NAME COMMON BLOCK SUBROUTINE 

DQG ABUTMENT ABUTMENT-SPEC /ABUT/ SAEDGS 
DQG ABUTMENT ABUTMENT-SPEC /ABUT/ SPLTPR 
DQG COORDS-GEN PANEL-CORNER-CORDS Dynamic SAEDGS 
DQG COORDS-GEN PANEL-CORNER-CORDS Dynamic SPLINR 
DQG DSPLINE B-SPLINE-DOUBLET /SPLINE/ SAEDGS 
DQG DSPLINE B-SPLINE-DOUBLET /SPLINE/ SPLINR 
DQG EDGEPTS EDGE-POINT-COORDS Dynamic SAEDGS 
DQG EDGEpts EDGE-POINT-CORDS Dynamic SPLINR 
DQG GAP-PANEL GAPPANEL /GAPAN/ SPLINR 
DQG INTSPLMP INTERCOR-SPLINE Dynamic SAEDGS 
DQG INTSPLMP INTERCOR-SPLINE Dynamic SPLINR 
DQG NETMAP NETWK-SPEC /NETWK/ SAEDGS 
DQG NETMAP NETWK-SPEC /NETWK/ SPLINR 
DQG SCPGMAP SINGULARITY-MAP /SENGLR/ SAEDGS 
DQG SLPGMAP SINGULARITY-MAP /SENGLR/ SPLINR 
DQG SPECALPT SPECIAL-POINTS /SPECPT/ SPLINR 
DQG SPLINE-DBL B-SPLINE-DOUBLET Dynamic SAEDGS 
DQG SPLINE-DBL B-SPLINE-DOUBLET Dynamic SPLINR 
DQG SPLINE-SRC B-SPLINE-SOURCE SPLItJR 
DQG SSPLINE B-SPLINE-SOURCE SPLINR 

Overlay (6,0) 

DATABASE MAP NAME DATASET-NAME COMMON BLOCK SUBROUTINE 

DQG COORDS-GEP PANEL-CORNER-COORDS . Dynamic PANDEF 
DQG CORNCOORDS PANEL-CORNER-COORDS /COORDS/ PANDEF 
DQG GAPFILE GAP-FILE Dynamic PANDEF 
DQG GAPPANEL GAP-PANEL /GAPANL/ PANDEF 
DQG MAGPSPEC MAG-PANEL-SPEC /PANEl/ PANDEF 

/SPLINE/ 
DQG MDGPSPEC MDG-PANEL-SPEC /PANEL/ PANDEF 

/FFM/ 
DQG NETMAP NETWK-SPEC /NETWK/ PANDEF 
DQG PANSINF PANEL-SING /SPLINE/ PANDEF 
DQG PANSPEC PANEL-SPEC /FFM/ PANDEF 
DQG SPLINE-DBL B-SPLINE-DOUBLET Dynamic PANDEF 
DQG SPLINE-SRL B-SPLINE-SOURCE Dynamic PANDEF 

/PANEL/ 
/SPLINE/ 

Overlay (7,0) 

DATABASE MAP NAME DATASET-NAME COMMON BLOCK SUBROUTINE 

DQG BCOUTDATA BNDRY-CONDN-SPEC Dynamic PBCDAT 
DQG CTLOUTDATA BNDRY-CONDN-SPEC Dynamic PCPDAT 
DQG DBHEADER DATA-BASE-HEADER Dynamic SUMMRY 
DQG GLOB-DYN GLOBAL /GLOBAL,Dynamic SUMMRY 
DQG NETMAP NETWK-SPEC /NETWK/ SUMMRY ~ 
DQG SPECIALPT SPECIAL-POINTS /SPECPT/ SUMMRY 

4-C.8 



· /", 
Table 4-C.3 Data Flow for DQG 

Third Form 

Overlay (1,0) 

COMMON BLOCK DATABASE ~1AP NAME DATASET-NAME SUBROUTINE 

local MEC RUNOPT MACRO-OPTIONS OPENER 
/RUINDS/ MEC IDS DATA-BASE-HEADE OPENER 

/ABUT/ DIP USABIN USER-ABUT DIPDAT 
/COORDS/ DIP PAN-COR-PT PANEL-COORDS DIPDAT 
Dynamic DIP PRINT-OPT GLOBAL-PRINTS DIPDAT 
/GENBCD/ DIP DIPCLOSDAT CLOS-COND BNDYIN 
/GENBCD/ DIP TVECTCOEFF TANG-VEC BNDYIN 
/GENBCD/ DIP CGBCMP COEF-GEN-BC BNDYIN 
/GLOBAL/ DIP GLOBAL-IN GLOBAL DIPDAT 
/NETBDC/ DIP NETBCD NETWK-BDC BNDYIN 
/NETWK/ DIP NET~1AP NETWK-SPEC DIPDAT 

/ABUT/ DQG USABUAT USER-ABUt DIPDAT 
Dynamic DQG COORDS-GEN PANEL-CORNER-COORDS DIPDAT 
/CLOSUR/ DQG CLOSDIN CLOSURE-DATA-IN BNDYIN 
/GLOBAL/~Dynamic DQG GLOB-DYN GLOBAL DIPDAT 
/NBCDIN/ DQG CLASS CLASS-S-BC-DATA BNYDIN 

~ /NETWK/ DQG NETMAP NETWK-SPEC DIPDAT 
/NISCDIN/ DQG BCDATIN NETWK-BNDRY-CONDN-IN BNDYIN 

Overlay (2,0) 

COMMON BLOCK DATABASE MAP NAI4E DATASET-NAME SUBROUTINE 

Dynamic DQG CORNCOORDS PANEL-CORNER-COORDS MAPB 
Dynamic DQG EDGOTS EDGE-POINT-COORDS MAPB 
Dynamic DQG FCNCORDS FINE-GRID-COORDS MAPB 
Dynamic DQG SINGSPEC SINGULARITY-SPEC MAPB 
/CPGEor4/ DQG CNTRLPS CONTROL-PT-SPEC MAPB 
/NETWK/ DQG NETMAP NETWK-SPEC MAPB 
/SINCLR/ DQG SINGMAP SINGULARITY-MAP MAPB 
/SINGLR/ DQG SINGSPC SINGULARITY-SPEC MAPB 

4-C.9 



Overlay (3,0) 

COMMON BLOCK DATABASE MAP NA~IE DATASET-NAME SUBROUTINE 

/ABUT/ DQG ABUTMENT ABUTMENT-SPEC EDGECP 
/ABUT/ DQG ESABUTMNT EMPTY-SPACE-ABUTMENTS EDGDEF 
/ABUT/ DQG IABUTMAP I-ABUT EDGDEF 
/ABUT/ .DQG USABUT USER-ABUT EDGDEF 
Dynamic DQG ABUTMENTS ABUTMENT-KEYS ABUTMNT 
Dynamic DQG COORDS-GEN PANEL-CORNER-COORDS ABUTMNT 
Dynamic DQG CTLDEXMAP CONTROL-PT-SPEC ZHLOC 
Dynamic DQG CTLSPECDYN CONTROL-PT-SPEC ADCPSG 
Dynamic DQG EDGPTS EDGE-POINT-COORDS EDGDEF 
Dynamic DQG GAPSIZE GAP-SIZE EDGDEF 
Dynamic DQG NETWKS NETWK-SPEC EDGDEF 
Dynamic DQG SINGSPEC SINGULARITY~SPEC EDGDEF 
/EXPAND/ DQG EXPABUT EXPANDED-ABUTMENT EDGDEF 
/GAPANL/ DQG GAPPANEL GAP-PANEL GAPPNL 
/LIST / DQG SEARCHLIST SEARCH-LIST EDGDEF 
Local DQG XHLOCCP EXTRA-HYPO-LOC XHLOC 
/MATCHD/ DQG CONNECTION INTERS ECTI ON MATCH 
/NETWK/ DQG NETMAP NETWK-SPEC EDGDEF 
/SPECPT/ DQG SPECIALPT SPECIAL-POINTS EDGDEF 
/SINGLR/ DQG SINGMAP SINGULARITY-MAP EDGDEF 
/SINGLR/ DQG SItJGSPC SINGULARITY-SPEC EDGDEF 

Overl ay (4,0) 

COMr~ON BLOCK DATABASE MAP NAI·1E DATASET-NAME SUBROUTINE 

/BCDOUT/ DQG BNDRY BNDRY-CONDY-SPEC BNDYDR 
/BCDOUT/ DQG BPOINT B-POINTER BNDYDF 
/CLOSUR/ DQG CLOSURE CLOSURE BNDYDF 
/CLOSUR/ DQG CLOSDIN CLOSURE-DATA-IN BNDYDF 
/CPGEOM/ DQG CNTRLPT CONTROL-PT-SPEC BNDYDF 
Dynamic DQG CTLDEXMAP CONTROL-PT-SPEC BNDYDF 
Dynamic DQG INDCTLMP CONTROL-PT-SPEC BNDYDF 
Dynamic DQG COORDS-GEN PANEL-CORNER-COORDS BNDYDF 
Dynamic DQG SINGr>1AP SINGULARITY-SPEC BNDYDF 
/NBCDIN/ DQG BCDATIP NETWK-BNDRY-CONDY-IY BNDLYDF 
/NBCDIN/ DQG CLASS5 CLASS-5-BC-DATA BNDYDF 
/NETWK/ DQG NETMAP NETWK-SPEC BNOYOF 
/SINGLR/ OQG SINGMAP SINGULARITY-MAP BNOYOF 
/SPECPT/ OQG SPECIALIS SPECIAL-POINTS BNOYOF 
/XBCOIN/ DQG XCLASS50 CLASS-S-BC-OATA BNOYDF 

4-C.10 



1'""', 
Overlay (5,0) 

COMt40N BLOCK DATABASE MAP NAME DATASET-NAME SUBROUTINE 

/ABUT/ DQG ABUTMENT ABUTMENT-SPEC SAEDGS 
/ABUT/ DQG ABUTMENT ABUTMENT-SPEC SPLTPR 
Dynamic DQG COORDS-GEN PANEL-CORNER-COORDS SAEDGS 
Dynamic DQG COORDS-GEN PANEL-CORNER-COORDS SPLINR 
Dynamic DQG SPLINE-SCR B-SPLINE-SOURCE SPLINR 
Dynamic DQG SPLINE-DBL B-SPLINE-DOUBLET SPLINR 
Dynamic DQG SPLINE-DJL B-SPLINE-DOUBLET SAEDGS 
Dynamic DQG EDGPTS EDGE-POINT-COORDS SAEDGS 
Dynamfc DQG EDGPTS EDGE-POINT-COORDS SPLINR 
Dynamic DQG INTSPLMP INTERCOR-SPLINE SAEDGS 
~namic DQG INTSPLMP INTERCOR-SPLINE SPLINR 

GAPAN/ DQG GAP-PANEL GAPPANEL SPLINR 
/NETWK/ DQG NETMAP NETWK-SPEC SAEDGS 
/NETWK/ DQG NETMAP NETWK-SPEC SPLINR 
/SENGLR/ DQG SCPGMAP SINGULARITY-MAP SAEDGS 
/SENGLR/ DQG SLPGMAP SINGULARITY-MAP SPLINR 
/SPECPT/ DQG SPECALPT SPECIAL-POINTS SPLINR 
/SPLINE/ DQG SSPLINE B-SPLINE-SOURCE SPLINR 
/SPLINE/ DQG DSPLINE B-SPLINE-DOUBLET SAEDGS 
/SPLINE/ DQG DSPLINE B-SPLINE-DOUBLET SPLINR 

Overl ay (6,0) 

r--' COMMON BLOCK DATABASE MAP NAt4E DATASET-NAME SUBROUTINE 

/COORDS/ DQG CORNCOORDS PANEL-CORNER-COORDS PANDEF 
Dynamic DQG COORDS-GET PANEL-CORNER-COORDS PANDEF 
Dynamic DQG GAPFILE GAP-FILE PANDEF 
Dynamic DQG SPLINE-DBL B-SPLINE-DOUBLET PANDEF 
Dynamic DQG SPLINE-SRL B-SPLINE-SOURCE PANDEF 
/FFM/ DQG MDGPSPEC MDG-PANEL-SPEC PANDEF 
/FFM/ DQG PANSPEC PANEL-SPEC PANDEF 
/GAPANL/ DQG GAPPANEL GAP-PANEL PANDEF 
/NETWK/ DQG NETMAP NETWK-SPEC PANDEF 
/PANEL/ 
/PANEL/ DQG MAGPSPEC MAG-PANEL-SPEC PANDEF 
/PANEL/ DQG MDGPSPEC MDG-PANEL-SPEC PANDEF 
/SPLINE/ DQG MAGPSPEC MAG-PANEL-SPEC PANDEF 
/SPLINE/ DQG PANSING PANEL-SING PANDEF 
/SPLINE/ 

Overl ay (7,0) 

COMMON BLOCK DATABASE MAP NAME DATASET-NAME SUBROUTINE 

Dynamic DQG BCOUTDATA BNDRY-CONDN-SPEC PBCDAT 
Dynamic DQG CTLOUTDATA BNDRY-CONDN-SPEC PCPDAT 
Dynamic DQG DB HEADER DATA-BASE-HEADER SUMMRY 
/GLOBAL/Dynamic DQG GLOB-DYN GLOBAL SUMMRY 
/NETWK/ DQG NETWK NETWK-SPEC SUMMRY 

f /SPECPT/ DQG SPECIALPT SPECIAL-POINTS SUMt4RY 

4-C.11 



APPENDIX 4-0 MASTER DEFINITION 

The data base master definition listing of the DQG module has been 
deleted from this document. It is produced from the PAN AIR tape during 
installation. 

4-0.1 



APPENDIX 4-E 

ERROR MESSAGES IN DQG 

The following pages list the messages that accompany all diagnosed 
errors in DQG. Section 8. of the PAN AIR User's Manual (Reference 2) 
discusses interpretation of the messages and suggests causes and remedies. 

4-E.l 



Page Missing in 

Original Document 



PROGRAM OPENER 

******** FATAL ERROR 
RUN,PROBLEM, AND USER IDS NOT FOUND 
ON THE MEC DATABASE 

SUBROUTINE DIPDAT 

******** ERROR 
NO NETWORKS DEFINED 

******** ERROR 
ZERO LENGTH ABUTMENT 

USER ABUTMENT INDEX 
NETWORK EDGE 

1 1 
******** ERROR 

3 
START PT 

3 

INVALID SOURCE/DOUBLET TYPE FROM DIP 
NETWORK UPPER-WING 
SOURCE TYPE 1 DOUBLET TYPE 9 

SUBROUTINE NETDEF 

******** FATAL ERROR 
1 COLUMN OR 1 ROW SOURCE DESIGN II 
NETWORK ENCOUNTERED. NETWORK NO = 4 

r' EXECUTION WILL BE TERMINATED. 

END PT 
3 

******** THE FATAL ERROR LIMIT OF 10 WAS EXCEEDED. 
EXECUTION WILL BE TERMINATED 

SUBROUTINE DFEDGE 

******** FATAL ERROR 
NETWORK 3 COLUMN 1 OF CORNER 
POINTS NOT AVAILABLE ON DATABASE. 

SUBROUTINE EDGCHK 

******** FATAL ERROR 
NETWORK (UPPER-WING) EDGE 3 
SOURCE DESIGN I NETWORK CAN NOT HAVE A COLLAPSED EDGE. 

******** FATAL ERROR 
NETWORK (UPPER-WING) EDGE 3 
SOURCE DESIGN II NETWORK CAN NOT HAVE A COLLAPSED EDGE. 

******** FATAL ERROR 
NETWORK (UPPER-WING ) EDGE 4 
AVERAGE PANEL LENGTH EXCEEDS TOLERANCE 
BUT THE MINIMUM DOES NOT. THE EDGE 
CANNOT BE COLLAPSED. 

******** FATAL ERROR 
TWO ADJACENT EDGES HAVE ZERO LENGTH. 
NETWORK UPPER-WING EDGES 1 2 

4-E.3 



SUBROUTINE SNGPAN 

******** FATAL ERROR 
SINGULARITY TYPE NOT FOUND FOR NETWORK 3 

SUBROUTINE TRICHK 

******** FATAL ERROR 
INTERIOR PANEL IS TRIANGULAR 
NETWORK UPPER-WING PANEL COLUMN 

******** FATAL ERROR 
ZERO DENOMINATOR FOR ASPECT RATIO OF 
NETWORK UPPER-WING PANEL COLUMN 

******** FATAL ERROR 
ASPECT RATIO = 0.6934E+06 
NETWORK UPPER-WING PANEL COLUMN 

* * * * WARNING 
ASPECT RATIO = 0.6394E+04 
NETWORK UPPER-WING PANEL COLUMN 

SUBROUTINE SEARCH 

******** ERROR 
ERRONEOUS USER ABUTMENT DATA 
OVERLAPPING ABUTMENTS 

NETWORK UPPER-WING 
OVERLAP FROM COLUMN 
TO COLUMN 

SUBROUTINE EDGLST 

******** WARNING 
TOO MANY NEARBY NETWORK EDGES 
SOME ABUTMENTS MAY BE MISSED 

NETWORK FIN 

PROGRAM PRABUT 

******** ERROR 

EDGE 
3 ROW 
7 ROW 

EDGE 1 

5 AND ROW 

1 AND ROW 

3 AND ROW 

3 AND ROW 

1 
1 

3 

INSUFFICIENT CORE MEMORY FOR AUTOMATIC ABUTMENT SEARCH 
NUMBER OF EXTRA CORE MEMORY NEEDED 738 
OR APPROXMATELY 2000 OCTAL 

******** ERROR 
ERROR IN REQUESTING BLANK COMMON IN SUB PRABUT 
ERROR NUMBER 2 

SUBROUTINE USEABT 

******** ERROR 
ERRONEOUS USER ABUTMENT DATA 

USER ABUTMENT NUMBER 3 
NETWORK EDGE START-X START-Y 

1 5 1 1 
2 3 7 1 

4-E.4 

END-X 
7 
7 

2 

6 

8 

9 

END-Y 
1 
7 



******** ERROR 
NETWORK EDGES TO FAR APART FOR ABUTMENT 

USER ABUTMENT NUMBER 4 
NETWORK EDGE START-X START-Y END-X END-Y 

1 1 1 1 3 1 
5 1 6 1 1 1 
2 TH NETWORK EDGE IN LIST GT 1.357E+15 
FROM FIRST NETWORK EDGE IN LIST 

******** ERROR 
KUTTA TANGENT IS NOT PERPENDICULAR TO PLANE-OF-SYMMETRY NORMAL 
NETWORK EDGE DQGCP POS 

3 4 37 1 
******** ERROR 

ABUTMENT POINTS NOT ON NETWORK EDGE 
USER ABUTMENT NUMBER 7 

NETWORK EDGE START-X START-Y END-X END-Y 
3 1 3 3 5 7 

NUMBER OF ROWS IN NETWORK = 5 
NUMBER OF COLUMNS IN NETWORK = 7 

******** ERROR 
ERRONEOUS USER ABUTMENT DATA 
ZERO LENGTH ABUTMENT 

USER ABUTMENT NUMBER 8 
NETWORK EDGE START-X START-Y END-X END-Y 

7 2 5 1 5 1 
******** ERROR 

ERRONEOUS USER ABUTMENT DATA 
COLLAPSED EDGE IN ABUTMENT 

USER ABUTMENT NUMBER 
NETWORK EDGE START-X 

1 5 1 
237 

ZERO LENGTH ABUTMENT 

SUBROUTINE ABXPND 

******** ERROR 

3 
. START-Y 

1 
1 

TOO MANY NETWORK EDGES IN AN ABUTMENT 
THIS MAY ARISE EITHER FROM HAVING TOO 
MANY NETWORK EDGES COMING TOGETHER IN 
A SINGLE ABUTMENT OR FROM THE SAME 
NETWORK EDGES TAKING PART IN TOO MANY 
ABUTMENTS. 

NETWORK EDGE 
1 1 
2 1 
3 2 
4 1 
5 ... 

oJ 

6 4 
7 1 
8 4 
9 1 

10 1 
11 2 

END-X 
7 
7 

END-Y 
1 
7 

4-E.5 



SUBROUTINE CHECK 

******** ERROR 
UPDATABLE NETWORK EDGE ABUTTING 
A NONUPDATABLE NETWORK EDGE 

ABUTMENT INDEX 3 
NETWORK EDGE START-X 

1 1 1 
233 

UPDATABLE FtAG 1 
******** WARNING 

START-Y 
1 
3 

o 

UPDATABLE NETWORK EDGE ABUTTING 
A NONUPDATABLE NETWORK EDGE 

ABUTMENT INDEX 3 
NETWORK EDGE START-X 

1 1 1 
233 

UPDATABLE FLAG 1 
******** WARNING 

START-Y 
1 
3 

o 

END-X 
5 
1 

END-X 
5 
1 

MORE THAN TWO NETWORKS IN SMOOTH ABUTMENT. 
SMOOTH ABUTMENT TREATED AS NORMAL ABUTMENT. 

ABUTMENT INDEX 4 
NETWORK EDGE START-X 

******** WARNING 

124 
2 1 1 
325 

START-Y 
1 
1 
1 

END-X 
4 
4 
5 

SMOOTH ABUTMENT DEFINED WITH DESIGN NETWORK 
SMOOTH ABUTMENT TREATED AS NORMAL ABUTMENT. 

ABUTMENT INDEX 7 
NETWORK EDGE START-X 

4 1 1 
5 1 6 

START-Y 
1 
1 

******** ERROR 
ERRONEOUS ABUT~IENT DATA 
EDGE OUT OF RANGE 

ABUTMENT INDEX 
NETWORK EDGE 

3 5 
4 1 

8 
START-X 

3 
1 

START-Y 
3 
1 

******** ERROR 
MORE THAN ONE MATCHING EDGE IN ABUTMENT 

ABUTMENT INDEX 9 
NETWORK EDGE START-X 

5 1 1 
611 

START-Y 
1 
1 

******** WARNING 

4-E.6 

MATCHING EDGE ABUTS A PLANE OF SYMMETRY. 
RESULTS DEPEND UPON THE CONFIGURATION. 
THE AIC MATRIX MAY BE UNDER CONSTRAINED, 
OVER-CONSTRAINED, SINGULAR OR REASONABLY 
CORRECT. OTHER ERRORS MAY BE TRIGGERED 
BUT PROCESSING WILL CONTINUE AND A 
SOLUTION WILL BE ATTEMPTED 

DOUBLET MATCHING IMPOSED AT ABUTMENT. 

END-X 
6 
1 

END-X 
1 
3 

END-X 
7 
3 

END-Y 
1 
1 

END-Y 
1 
1 

END-Y 
5 
1 
5 

END-Y 
1 
1 

END-Y 
3 
1 

END-Y 
1 
1 



******** WARNING 
NETWORK HAS TOO FEW PANELS FOR Sr~OOTH ABUTMENT 

ABUTMENT INDEX 9 
NETWORK EDGE START-X 

5 1 1 
6 1 1 

INDEX OF SMALL NETWORK 
******** WARNING 

5 

START-Y 
1 
1 

VELOCITY OPTIONS NOT COMPATIBLE 
ABUTMENT INDEX 

NETWORK EDGE 
5 1 
6 1 

START-X 
1 
1 

VELOCITY COMP METHODS 

SUBROUTINE CHKPOS 

******** ERROR 

1 

START-Y 
1 
1 

2 

NETWORK ENCOUNTERED WHICH PARTIALLY LIES 
ON A PLANE OF SYMMETRY. 

END-X 
7 
3 

END-X 
7 
3 

NETWORK PLANER-BODY 
NUMBER OF POINTS OFF P-O-S 
NUMBER OF POINTS ON P-O-S 

PLANE OF SYMMETRY 
20 

10 
******** WARNING 

NETWORK ENCOUNTERED WHICH PARTIALLY LIES 
ON A PLANE OF SYMMETRY. 

NETWORK PLANER-BODY 
NUMBER OF POINTS OFF P-O-S 
NUMBER OF POINTS ON P-O-S 

PLANE OF SYMMETRY 
20 

10 

SUBROUTINE CONABT 

******** ERROR 
TOO MANY NETWORKS IN ABUTMENT 

NETWORK EDGE START-X 

******** WARNING 

111 
2 1 6 
314 
4 1 1 
5 1 7 
618 

AUTOMATIC ABUTMENT SEARCH FINDS 
EMPTY SPACE ABUTMENT IN MIDDLE OF 
NETWORK EDGE. CHECK EMPTY SPACE 
ABUTMENT DESCRIPTIONS IF USER 
DID NOT SPECIFY THE ABUTMENT. 

NETWORK EDGE START-X 
111 

START-Y 
1 
1 
1 
1 
1 
1 

START-Y 
1 

END-X 
3 
1 
1 
5 
1 
1 

END-X 
5 

END-Y 
1 
1 

END-Y 
1 
1 

END-Y 
1 
1 
1 
1 
1 
1 

END-Y 
1 

4-E.7 



SUBROUTINE GAPSIZE 

******** ERROR 
PROGRAM ERROR. ZERO LENGTH ABUTMENT. 

ABUTMENT NUMBER 1 
NETWORK EDGE START-X 

. 1 1 1 
223 

SUBROUTINE ABASGN 

START-Y 
1 
1 

END-X 
1 
3 

******** ERROR 
NO MATCHING ASSIGNMENT POSSIBLE 

INTERSECTION NUMBER 10 
ABUTMENT INDEX 33 

NETWORK EDGE START-X 
1 1 1 
2 1 8 

CORNER POINT MAP INDEX 73 

START-Y 
1 
1 

NETWORK EDGE START-X START-Y 
1 2 8 1 

SUBROUTINE ASSIGN 

END-X 
8 
1 

END-X 

******** ERROR 
ONLY ONE ABUTMENT IN AN INTERSECTION 

INTERSECTION NUMBER 3 
WITH ABUTMENTS 

2 
******** ERROR 

NORMAL VECTOR NOT PERPENDICULAR TO P-O-S 
FOR A NETWORK THAT LIES ON P-O-S 

NETWORK 3 COLUMN 1 ROW 1 
NORMAL VECTOR 8. 782E-01 O.OOOE+OO O.OOOE+OO 
V DOT N O.OOOE+OO 

******** ERROR 
INSUFFICIENT NUMBER OF CORNER POINTS ASSIGNED 
TO IMPOSE DOUBLET MATCHING. 
INTERSECTION NUMBER 6 
NUMBER ASSIGNED 1 
NUMBER REQUIRED 2 
WITH ABUTMENTS 

14 4 7 
A PROGRAM ERROR HAS OCCURRED DQG IS ABORTED. 

******** WARNING 

4-E.8 

INSUFFICIENT NUMBER OF CORNER POINTS ASSIGNED 
TO IMPOSE DOUBLET MATCHING. 
INTERSECTION NUMBER 7 
NUMBER ASSIGNED 1 
NUMBER REQUIRED 2 
WITH ABUTMENTS 

2005 6 1002 
SEE TABLE 8-17 OF PAN AIR USERIIS MANUAL. 

END-Y 
1 
4 

END-Y 
1 
1 

END-Y 



******** ERROR 
TOO MANY ABUTMENTS IN AN INTERSECTION 
INTERSECTION NUMBER 11 
WITH ABUTMENTS 

1 2 2003 2004 6 7 2008 

SUBROUTINE EMATCH 

******** ERROR 
MORE THAN ONE MATCHING EDGE IN ABUTMENT 

ABUTMENT 3 
NUMBER OF MATCHING EDGES 
EDGE POINTERS 1 

NETWORK EDGE START-X 
1 1 1 
2 1 1 

******** WARNING 

2 
·2 

START-Y 
1 
1 

NO DOUBLET MATCHING AT NETWORK EDGE 
ABUTMENT INDEX 9 

NETWORK EDGE START-X 
10 4 1 
11 2 3 

SUBROUTINE INTRSC 

******** ERROR 

START-Y 
1 
1 

END-X 
7 
6 

END-X 
1 
3 

t4ISSING ABUTMENTS IN PILOT CODE CONNECTION 
FOR CORNER POINT ON NETWORK 9 COLUMN 
CORNER POINT LABEL 9001011 ABUTMENTS 4 

SUBROUTINE NTRLST 

******** ERROR 
TOO MANY ABUTMENTS INTERSECT 
INTERSECTION NUMBER 5 

ABUTMENT CP CP 

******** ERROR 

112 
2 2 3 
334 
434 

30 53 2 
31 1 3 

SUBROUTINE GAPPNL 

PROGRAM ERROR. ZERO LENGTH ABUTMENT. 
ABUTMENT NUMBER 1 

NETWORK EDGE START-X 
1 1 1 
2 1 1 

START-Y 
1 
1 

END-X 
1 
3 

9 11 

END-Y 
1 
1 

END-Y 
7 
7 

ROW 
14 

END-Y 
1 
1 

17 21 

11 

4-E.9 



SUBROUTINE DEFPNL 

******** ERROR 
FACTOR FOR GAP PANEL .GT. 1.0 
NUMERATOR= 1.OOOE+OO DENOMINATOR= 1.OOOE-01 

ABUTMENTS INDEX= "5 
POINT INDEX= 13 
NETWORK LOOP INDEX= 1 
T12 ARRAY INDEX= 7 

T( 1,1) ARRAY 
O.OOOEOO 1.000E-Ol 1.OOOE+OO 

T(I,2)ARRAY 
O.OOOE+OO 1.000E+01 1.000E+OO 

T12 (I) ARRAY 
O.OOOE+OO 1.000E-01 1.000E+OO 1.000E+Ol 1.000E+OO 
******** ERROR 

PROGRAM ERROR 
ABNORMAL LOOP TERMINATION 

ABUTMENT INDEX= 4 
POINT INDEX= 1 
NETWORK LOOP INDEX= 2 

T( 1,1) ARRAY 
O.OOOE+OO 1.000E+OO 

T( I ,2) ARRAY 
O.OOOE+OO O.OOOE+OO 

T12 (I) ARRAY 
O.OOOE+OO O.OOOE+OO O.OOOE+OO 1.000E+OO 

T12 ARRAY INDEX= 8 

SUBROUTINE POSPNL 

******** WARNING 
GAP FILLING PANELS REQUIRED AT 
ABUTMENT WITH NETWORK EDGE AND 
TWO PLANES OF SYMMETRY. THIS 
SITUATION IS BEYOND CURRENT 
CAPABILITIES OF DQG. 

SITUATION OCCURS FOR ABUTMENT 7 

SUBROUTINE ASGNU 

******** ERROR 

4-E.10 

~tACH INCLINED PANEL AND/OR SUBPANEL 
NETWORK FIN 
PANEL COLUMN 3 
PANEL ROW 6 
NORMAL-CONORMAL INNER PRODUCT 1.378E-13 



******** ERROR 
VANISHINGLY SMALL INNER AND OUTER SUBPANELS 

NETWORK WING 
EDGE 2 
CORNER PT COLUMN 8 
CORNER PT ROW 1 
SUBPANEL NUMBER 2 
PT 1.000E-11 2.000E-11 

O.OOOE 00 O. 
O. O. 

******** ERROR 

3.000E-11 
O. 
O. 

NON-CONVEX PANEL WITH CORNER POINT 
CLOSE TO PANEL CENTER POINT. 

NETWORK WING 
EDGE 3 
CORNER PT COLUMN 
CORNER PT ROW 
SUBPANEL NUMBER 
2+SKEW(l)+SKEW(2) 

SUBROUTINE CCPGEO 

******** ERROR 

5 
3 
3 

1.000E-03 

TANGENT VECTOR PROJECTION TO PANEL 

1.000E-11 
0.000E-11 
O. 

(' IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE. 
NETWORK WING 
EDGE 4 
CORNER PT COLUMN 1 
CORNER PT ROW 7 
SUBPANEL 4 
TANGENT VECTOR UPPER 

******** ERROR 
TANGENT VECTOR MAGNITUDE TOO SMALL 

NETWORK WING 
EDGE 1 
CORNER PT COLUMN 3 
CORNER PT ROW 1 
SUBPANEL 1 
TANGENT VECTOR RHS 

SUBROUTINE CENTCP 

******** ERROR 
TANGENT VECTOR PROJECTION TO PANEL 
IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE 

NETWORK UPPER-WING 
PANEL COLUMN 3 
PANEL ROW 2 
USER CLASS _ 
TANGENT VECTOR UPPER 

2.000E-11 
1.000E-11 
O. 

4-E.11 



SUBROUTINE CHOOSE 

******** ERROR 
TANGENT VECTOR MAGNITUDE TOO SMALL 

NETWORK LOWER-WING 
PANEL COLUMN 4 
PANEL ROW 1 
USER CLASS 
TANGENT VECTOR AVERAGE 

******** ERROR 
INSUFFICIENT NUMBER OF USER-SPECIFIED BOUNDARY CONDITIONS 

NETWORK UPPER-WING 
PANEL COLUMN 3 
PANEL ROW 1 
TOTAL NUMBER OF BOUNDARY CONDITIONS REQUIRED 2 

******** WARNING 
INSUFFICIENT NUMBER OF USER-SPECIFIED BOUNDARY CONDITIONS 
. PROGRAr.1 WILL ADD BOUNDARY CONDITION OF ZERO 

PERTUBATION MASS FLUX. IF THIS BOUNDARY 
CONDITION IS UNSATISFACTORY, THE USER MUST ADD 
A BOUNDARY CONDITION FOR THIS PANEL BY 
INVOKING CLASS FIVE BOUNDARY CONDITIONS INPUT 
TO MODULE DIP FOR THIS NETWORK. IF THIS IS 
A WAKE NETWORK, NO USER ACTION IS ADVISED. 
IF THIS NETWORK LIES ON A PLANE OF SYMMETRY. 
BE SURE AT LEAST ONE BOUNDARY CONDITION IS 
OF THE FORM NORMAL MASS FLUX, POTENTIAL OR 
TANGENTIAL VELOCITY (ALL AVERAGE QUANTITIES). 
NETWORK RIGHT-WAKE 
PANEL COLUMN 1 
PANEL ROW 1 
TOTAL NUMBER OF BOUNDARY CONDITIONS REQUIRED 2 

SUBROUTINE ECPGEO 

******** ERROR 
TANGENT VECTOR PROJECTION TO PANEL 
IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE 

NETWORK MID-WING 
CORNER PT COLUMN 3 
CORNER PT ROW 1 
SUBPANEL NUMBER 5 
TANGENT VECTOR DIFFERENCE 

******** ERROR 

4-E.12 

TANGENT VECTOR MAGNITUDE TOO SMALL 
NETWORK MIDWING 
CORNER PT COLUMN 5 
CORNER PT ROW 1 
SUBPANEL NUMBER 5 
TANGENT VECTOR DIFFERENCE 



.r 

SUBROUTINE GETBC 

******** ERROR . 
NO USER-SPECIFIED BOUNDARY CONDITIONS 
NETWORK OUTER-WING 
FINE GRID COLUMN INDEX 2 
FINE GRID ROW INDEX 3 

SUBROUTINE SPLTRN 

******** ERROR 
INCORRECT SELECTION OF XI-ETA VECTORS. 
PROGRAM ERROR 

XI 
O.OOOE+OO 
O. 
O. 

ETA ZETA 
1.414E-01 O.OOOE+OO 
3.73SE-01 O. 
O. O. 

SUBROUTINE CPCSEL 

******** ERROR 
PROGRAM ERROR. 

POINT 
3. 786E+01 
4.138E+OO 
1 .791 E+01 

PO 
3.681E+01 
3.147E+OO 
1.790E+01 

VECTOR 
1.0S0E+ 
9.990E-
1.000E-

POINT NUMBER S 6 4 CORNER PT T-VALUE-1.368E-Ol 

SUBROUTINE PTSFIL 

******** ERROR 
ERRONEOUS ABUTMENT DESCRIPTION 

ABUTMENT ARRAY 1 S 1 

SUBROUTINE SNGFIL 

******** ERROR 
ERRONEOUS ABUTMENT DESCRIPTION 

ABUTMENT ARRAY 1 S 1 

SUBROUTINE CPDSGN 

******** ERROR 
PROGRAM/DATA ERROR. 
ZERO DENOMINATOR FOR CORNER POINT WEIGHT 
IN DOUBLET DESIGN EDGE SPLINE. 

NETWORK MID-WING 
EDGE 4 
CORNER POINT NUMBER 1 
DISTANCES TO ADJACENT EDGE MIDPOINTS 

1. 472E-21 
4.216E-21 
S.688E-21 

1 7 

1 7 1 

4-E.13 



SUBROUTINE NTEDGA 

******** ERROR 
PROGRAM ERROR. 
INCORRECT CALLING ARGUMENT FOR EDGE INDEX 

NETWORK UPPER-TAIL 
EDGE 7 

SUBROUTINE ONDFIT 

******** ERROR 
PROGRAM ERROR 
SINGULAR ONE DIMENSIONAL FIT 

NETWORK NUMBER 3 
LATTICE INDEX-X 4 
LATTICE INDEX-Y 6 

SUBROUTINE POINT 

******** ERROR 
REQUIRED POINT COORDINATE NOT IN CORE 

NETWORK INDEX 7 
LATTICE INDEX-X 8 
LATTICE INDEX-Y 6 

COLUMNS IN CORE 
4 5 6 7 8 

SUBROUTINE SPLA 

******** ERROR 
SINGULAR LEAST SQUARES FIT 

NETWORK WING-TIP 
LATTICE INDEX-X 7 
LATTICE INDEX-Y 3 

DEVIATION FROM UNITY 1.337E+OO 
******** WARNING 

POOR LEAST SQUARES FIT. 
NETWORK WING-TIP 
LATTICE INDEX-X 7 
LATTICE INDEX-Y 5 

DEVIATION FROM UNITY 5.369E-07 

SUBROUTINE SSP13 

******** ERROR 

4-E.14 

SINGULAR LEAST SQUARES FIT 
NETWORK LOWER-WING 
LATTICE INDEX-X 2 
LATTICE INDEX-Y 3 

CHISQUARE= 2.471E+l0 



******** WARNING 
POOR LEAST SQUARES FIT. 

NETWORK LOWER-WING 
LATTICE INDEX-X 1 
LATTICE INDEX-Y 4 

CHISQUARE= 4.149E+02 

SUBROUTINE WAKGAP 

******** ERROR 
ERROR IN CALLING ARGUMENTS 
WAKE SPLINE CALL FOR NON-WAKE NETWORK 

NETWORK PRE-WAKE-\HNG-EDGE 
DOUBLET TY.PE DA 

SUBROUTINE CBLFFM 

******** ERROR 
SINGULAR INVERSE FOR SUBPANEL XFM MATRIX 
DUE TO INVALID MACH NU~1BER 
ONE tHNUS MACH NUMBER SQUARED = 3.791 E-16 

SUBROUTINE DBLFFM 

******** ERROR 
SINGULAR INVERSE FOR SUBPANEL XFM MATRIX 
DUE TO INVALID MACH NUMBER 
ONE MINUS MACH NUMBER SQUARED = 3.799E-16 

SUBROUTINE PANGEO 

******** ERROR 
MACH-INCLINED PANEL DISCOVERED 

NETWORK UPPER-PLATE 
PANEL COLUMN 3 
PANEL ROW 5 

******** WARNING 
CRITICALLY INCLINED PANEL DISCOVERED 

NETWORK UPPER-PLATE 
PANEL COLUMN 3 
PANEL ROW 6 
ANGLE WITH RESPECT TO MACH CONE = -3.697E-03 

******** WARNING 
NON-CONVEX PANEL DISCOVERED 

NETWORK UPPER-PLATE 
PANEL COLUMN 7 
PANEL ROW 3 

******** WARNING 
NEARLY NON-CONVEX PANEL DISCOVERED 

NETWORK 
PANEL COLUMN 7 
PANEL ROW 4 

4-E.15 



******** WARNING 
SUBPANEL AREA SET TO ZERO (BY PANGEO), SUBPANEL = 3 

NETWORK RIGHT-TOP-WING 
PANEL COLUNN 2 
PANEL ROW 2 

SUBROUTINE PANSIZ 

******** ERROR 
PANEL SIZE VANISHES 
NETWORK WING 
EDGE 3 
PANEL INDEX ALONG EDGE 6 
(CLOCKWISE DIRECTION) 

******** WARNING 
GAP SIZE EXCEEDS PANEL SIZE 
NETWORK BODY 
EDGE 1 
PANEL INDEX ALONG EDGE 9 

GAPSIZEjPANEL SIZE = 3.691E+00 

SUBROUTINE PANSUB 

******** ERROR 
LEAST SQUARES ERROR IN PANEL SUBSPLINE 
NETWORK BODY 
PANEL COLUMN 9 
PANEL ROW 6 

******** WARNING 
POOR LEAST SQUARES FIT IN PANEL SUBSPLINE 

NETWORK BODY 
PANEL COLUMN 7 
PANEL ROW 6 

SUBROUTINE SPLINM 

******** ERROR 
PANEL DEPENDENT ON TOO MANY PARAMETERS 

NETWORK MID-BODY 
PANEL COLUr~N 1 
PANEL ROW 3 
NUMBER OF SOURCE PARAMETERS = 10 
NUMBER OF DOUBLET PARAMETERS = 22 

******** ERROR 
SINGULAR SOURCE SUB PANEL SPLINE MATRIX 

NETWORK MID-BODY 
PANEL COLUr~N 1 
PANEL ROW 4 
SUBPANEL NUMBER 5 

******** ERROR 

4-E.16 

SINGULAR DOUBLET SUBPANEL SPLINE MATRIX 
NETWORK MID-BODY 
PANEL COLUMN 5 
PANEL ROW . 8 
SUBPANEL NUMBER 6 



,-...., 

SUBROUTINE SRCFFM 

******** ERROR 
SINGULAR INVERSE FOR MATRIX 
DUE TO INVALID MACH NUMBER. 
ONE MINUS MACH NUMBER SQUARED = 6.425E-18 

SUBROUTINE SUBGEO 

******** ERROR 
MACH INCLINED SUBPANEL DISCOVERED 

NET\~ORK TAIL 
PANEL COLUMN 9 
PANEL ROW 3 
SUBPANEL INDEX 7 

******** WARNING 
CRITICALLY INCLINED SUBPANEL DISCOVERED 

NETWORK TAIL 
PANEL COLUMN 6 
PANEL ROW 3 
SUBPANEL INDEX 1 
ANGLE WITH RESPECT TO MACH CONE = -3.769E-04 

4-E. 17 



APPENDIX 4-F 

ADDITIONAL DIAGNOSTIC OUTPUT 

During maintenance activities, additional diagnostic output may be 
desired from DQG. This may be to investigate code errors or to better 
understand the analysis of a particularly complex configuration by tailoring 
the output for that configuration. If the DEFINE directive is available with 
the UPDATE program then DQG can be instrumented with additional output code in 
an efficient and straightforward manner. The redundancies of adding output 
code in several routines can be reduced and the original code can also be left 
unaffected. The-general approach is outlined below. 

First, all changes to the DQG program 1 ibrary shoul d be surrounded by an 
IF directive as shown below. 

*IF DEF,DIAGNOS 

(additional output code) 

*ENDIF 

When DQG is updated prior to compilation with *DEFINE DIAGNOS, the output code 
will be instrumented~ If DQG is updated without the DEFINE directive, the 
compiled code remains the same. 

Second, two special COMDECKs are called from every routine in DQG. They 
are·DECLAR and ENDECL. Changes (enclosed by IF-ENDIF directives) to these 
common blocks will be propagated to every DQG routine that is recompiled. 
This assumes that the DEFINE directive was used. Only specification 
statements should be placed in DECLAR. ENDECL may contain any data statements 
followed by executable statements. The executable statements at the end of 
ENDECL will be executed immediately upon entry to the subroutine. As an 
additional aid the name of each subroutine is data loaded into the local 
variable SUBNAM. 

4-F.l 



APPENDIX 4-G 

SAMPLE OUTPUT FROM DQG 

An example and a discussion of the output from DQG is contained in the 
PAN AIR User's Manual, Section 8 (Reference 2). 

4-G.l 



APPENDIX 4-H 

INDEXING SCHEMES IN DQG 

4-H.l 



Page Missing in 

Original Document 



4-H.0 Introduction 

Indexing schemes are a basic part of DQG. Data organization and pattern 
recognition or identification are its essence. Most algorithms in OQG depend 
upon the availability of one or several indexing systems. 

This section describes the important indexing schemes used in DQG. 

4-H.l The Panel. 

The basic geometrical unit in PAN AIR is the panel. A panel (shown-in 
Figure 4-H.l) is an arbitrarily shaped quadrilateral. It is defined by its 
four corner points. These are indexed in a counter clockwise sense (when 
vi ewed from above the upper surface) as shm'/n in the fi gure. Five addit i ona 1 
derived points are indexed. They are the four edge mid-points of the panel 
and the center point of the panel. The set of nine points define eight 
triangular subpanels. The subpanels are indexed as shown in Figure 4-H.2. 
Figure 4-H.3 shows the numbering scheme for the points in the subpanel. These 
indexing schemes are used primarily in the sixth overlay of DQG. 

4-H.2 The Network. 

Collections of panels make up a network. Networks are defined by a set.of 
rectangularly indexed corner points. Figure 4-H.4 shows the upper surface of 
a network and the manner in which the previously discussed panel indexing fits 
into the network. 

The location of a corner point in the network is defined by a pair of 
coarse grid lattice indices (Figure 4-H.5). These are a pair of indices which 
indicate the position of the point in terms of a two dimensional lattice of 
points. -

Adding edge midpoints and center points to the panels in a network defines 
the fine grid of points (Figure 4-H.6). These are referenced by the fine grid 
lattice indices. These are similar to the coarse grid lattice indices. Note 
that center points have (even, even) lattice indices, column edge midpoints 
have (even, odd) lattice indices, row edge midpoints have (odd, even) lattice 
indices, and corner panels have (odd, odd) indices in the fine grid lattice 

coordinate system. In fact, if (IC' JC) are the coarse grid lattice indices 
of a corner point, the fine grid indices of the point are (21 -1, 2J -1). On 
the perimeter of the neblOrk, the corner poi nts are also refe~red toCby a 
sequential point index in a counterclockwise sense. Figure 4-H.7 illustrates 
the edge indexing. Subroutines LATEDG and.EDGLAT are used to transform ~oarse 
grid lattice indices to sequential edge indices (LATEDG) and vice versa 
(EDGLAT). There is also a lattice indexing system for panels. Figure 4-H.8 
shows the panel lattice indices of panels in the network. This lattice 
indexing system is used mostly for internal processing. Error or warning 
messages sometimes list panel column and panel row as an aid in identifying 
where in the network the problem has occurred. These column and row indices 
correspond to the panel lattice indexing coordinate system. 

4-H.3 



4-H.3 Control Points. 

Control points are located at every panel center pOint, at every edge 
midpoint on a network edge, and at every corner point on a network edge which 
is either a start point or an end point of an abutment. These last points 
include at least the four network corner points. 

Starting with the first network in the processing sequence, the control 
points at panel centers are indexed first. Then the first corner point on the 
first edge is assigned an,index followed by an assignment to every edge 
midpoint on the edge. This proceeds around the net\'1ork in a counterclockwise 
direction. After all networks have been processed, any additional control 
points which were added because an abutment began or ended in the middle of an 
edge receive an index. Figure 4-H.9 illustrates the indexing scheme. 

4-H.4 Singularity Parameters. 

Singularity parameters (AS, AD) are located at different places in a 
network depending on the source and doublet type of the network. The scheme 
used for assigning a global index to singularity parameters follows the 
general scheme of the control point indexing (see Appendix 4-H, Section 
4-H.3). The varying locations of singularity parameters introduces some 
complications. See PAN AIR Theory Document, Section 0.1 (Reference 1). 

The process of indexing singularity parameters is synonomous with creating 
the SINGULARITY-MAP and SINGULARITY-SPEC datasets in xhe DQG database. These 
datasets (see Appendix 4-0) contain information about where in the network the ,~ 
singularity lies, whether it is a source or a doublet parameter and whether it 
is a known singularity.' 

The general approach is to loop over panels and assign an index first to a 
source parameter (if any) and then to a doublet parameter (if any). Any 
singularity parameters that are on an edge of the network are not indexed at 
this time. After the loop on panels ends, singularity parameters on the edges 
are indexed. First doublet parameters on the four edges are indexed in a 
counter clockwise sense. Then source parameters are indexed. 

In Figure 4-H.14 it is clear that two singularity parameters are assigned 
to each center point in the netHork since there are two indices associated 
with each center point in the network. There is only one singularity 
parameter located at the edge midpoints on the perimeter of the network and 
only one parameter at each of the four network corner points. By examining 
Table 4-H.l we can see that singularity parameters 1 and 2 are source and 
doublet parameters respectively, which (from Figure 4-H.14) are located at the 
center point of the panel in the lower left corner of the network. 

Figures 4-H.I0 to 4-H.28 illustrate the indexing scheme for all 
combinations of networks. (Since singularities locations for Doublet Forward 
Weighted networks are identical to those of Doublet Analysis networks separate 
figures are not given for doublet forward weighted networks.) Tables 4-H.l to 
4-H.12 label the indices as source or doublet for the dual networks in Figures 
4-H.14 to 4-H.28. 

4-H.4 



4-H.5 Some Useful Conversions. 

Several different indexing schemes can be e~ployed to describe the same 
quantity. Often a need arises to convert from one indexing system to 
another. This section provides a list of a number of algorithms which define 
these conversions: 

Coarse grid lattice indices denoted by (Ic,Jc ) to fine grid lattice indices 

(Ic' Jc) • (2I c-l, 2J c-l) 

Panel lattice, panel point to fine grid lattice indices 

(Ip' Jp), Np • (2I p-l, 2J p-l) + (Ix(Np)', Iy(Np)) 

where the panel index and the corresponding lattice index within the panel 
(Ix(Np),Iy(N p)) may have the following values 

Np Ix Iy Np Ix Iy 
1 0 0 5 1 0 
2 2 0 '6 2 1 
3 2 2 7 1 2 
4 0 2 8 0 1 

'9 1 1 

Coarse grid indices to 
Figures 4-H.5 and 4-H.7) 

sequential counter clockwise edge index (Refer to 

(I c ' Jc) • Ic 
J 
NC_I +1 
N~-J~+1 

Edge 1 
Edge 2 
Edge 3 
Edge 4 

where Nc = number of corner point columns and 
NR = number of corner point rows. 

4-H.5 



Table 4-H.1 Source/Doublet Parameters for 
Source Analysis/Doublet Analysis Network (Figure 4-H.14) 

Index SID Index SID Index SID 

1 S 36 D 71 D 
2 D 37 S 72 D 
3 S 38 D 73 D 
4 D 39 S 74 D 
5 S 40 D 75 D 
6 D 41 S 76 D 
7 S 42 D 77 D 
8 U 43 S 78 D 
9 S 44 D 79 D 

10 D 45 S 80 D 
11 S 46 D 81 D 
12 D 47 S 82 D 
13 S 48 D 
14 D 49 S 
15 S 50 D 
16 D 51 S 0 
17 S 52 D 
18 D 53 S 
19 S 54 D 
20 D 55 S 
21 S 56 D 
22 D 57 D 
23 S 58 D 
24 D 59 D 
25 S 60 D 
26 D 61 D 
27 S 62 D 
28 D 63 D 
29 S 64 D 
30 D 65 D 
31 S 66 I) 

32 D 67 D 
33 S 68 D 
34 D 69 D 
35 S 70 D 

~. 

4-H.6 



Table 4-H.2 Source/Doublet Parameters for 
Source Design I/Doublet Analysis NeblOrk (Figure 4-H.15) 

Index SID Index SID Index SID 

1 D- 36 S 71 D 
2 0 37 0 72 D 
3 D 38 S 73 S 
4 D 39 D 74 S 
5 D 40 0 75 S 
6 S 41 S 76 S 
7 D 42 D 77 S 
8 S 43 S 78 S 
9 D 44 D 79 S 

10 S 45 S 80 S 
11 D 46 D 81 S 
12 0 47 D 82 S 
13 S 48 0 83 S 
14 0 49 D 84 S 
15 S 50 D 85 S 

,~ 
16 D 51 D 86 S 
17 S 52 D 87 S 
18 0 53 D 88 S 
19 'D 54 D 89 S 
20 S 55 D 90 S 
21 D 56 0 91 S 
22 S 57 D 92 S 
23 D 58 D 93 S 
24 S 59 D 94 S 
25 D 60 0 
26 D 61 0 
27 S 62 0 
28 D 63 D 
29 S 64 0 
30 D 65 D 
31 S 66 0 
32 0 67 D 
33 D 68 0 
34 S 69 D 
35 D 70 D 

4-H.7 



Table 4-H.3 Source/Doublet Parameters for 
Source Analysis/Ooublet Design I Network (Figure 4-H.16) 

Index SID Index SID 

1 S 36 S 
2 S 37 D 
3 S 38 S 
4 S 39 D 
5 S 40 S 
6 S 41 S 
7 D 42 D 
8 S 43 S 
9 D 44 D 

10 S 45 S 
11 D 46 D 
12 S 47 D 
13 S 48 D 
14 D 49 D 
15 S 50 D 
16 D 51 D 
17 S 52 D .-.., 
18 A 53 D 
19 S 54 D 
20 S 55 D 
21 D 56 D 
22 S 57 D 
23 0 58 D 
24 S 59 D 
25 D 60 D 
26 S 61 D 
27 S 62 D 
28 D 63 D 
29 S 64 D 
30 D 65 D 
31 S 66 D 
32 D 67 0 
33 S 68 D 
34 S 69 D 
35 D 70 D 

4-H.8 



Table 4-H.4 Source/Doublet Parameters for 
Source Design I/Doublet Design I Network (Figure 4-H.17) 

Index SID Index SID Index SID 

1 S 36 D 71 S 
2 D 37 D 72 S 
3 S 38 D 73 S 
4 0 39 D 74 S 
5 S 40 D 75 S 
6 D 41 D 76 S 
7 S 42 D 77 S 
8 0 43 0 78 S 
9 S 44 0 79 S 

10 D 45 D 80 S 
11 S 46 D 81 S' 
12 D 47 D 82 S 
13 S 48 D 
14 D 49 0 
15 S 50 D 
16 D 51 0 
17 S 52 0 
18 D 53- 0 
19 S 54 0 
20 D 55 . 0 
21 S 56 0 
22 D 57 D 
23 S 58 D 
24 D 59 D 
25 S 60 D 
26 0 61 S 
27 S 62 S 
28 0 63 S 
29 S 64 S 
30 D 65 S 
31 S 66 S 
32 0 67 S 
33 S 68 S 
34 0 69 S 
35 S 70 S 

4-H.9 



Index 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33-
34 
35 

4-H.10 

Table 4-H.5 Source/Doublet Parameters for 
Source Analysis/Doublet Wake I Net\fork (Figure 4-H.20) 

SID Index SID 

S 36 0 
S 37 0 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
D 
D 
0 
D 
D 
0 
D 

~\ 



Index 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

( 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Table 4-H.6 Source/Doublet Parameters for 
Source Analysis/Doublet Wake II Network (Figure 4-H.21) 

SID 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
D 

4-H.11 



Index 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

4-H.12 

Table 4-H.7 Source/Doublet Parameters for 
Source Design I/Doublet Wake I Network (Figure 4-H.22r 

SID 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
D 
D 
D 
D 
o 
D 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

Index 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

SID 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 



Index 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Table 4-H.8 Source/Doublet Parameters for 
Source Design I/Doublet Wake II Network (Figure 4-H.23) 

S/D. 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

·S 
o 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

Index 

36 
37 
38 
39 
40 
41 

SID 

S 
S 
S 
S 
S 
S 

4-H.13 



Table 4-H.9 Source/Doublet Parameters for ---------, 
Source Design II/Doublet Analysis (Figure 4-H.25) 

Index SID Index SID Index SID 

1 D 36 D 71 D 
2 S 37 S 72 D 
3 D 38 D 73 D 
4 S 39 S 74 D 
5 D 40 D 75 D 
6 S 41 S 76 S 
7 D 42 D 77 S 
8 D 43 D 78 S 
9 S 44 S 79 S 

10 D 45 D 80 S 
11 S 46 S 81 S 
12 D 47 D 82 S 
13 S 48 S 83 S 
14 D 49 D 84 S 
15 D 50 D 85 .S 
16 S 51 D 86 S 
17 D 52 U 87 S 
18 S 53 D 88 S 
19 D 54 D 89 S 
20 S 55 D 
21 D 56 D 
22 D 57 D 0 
23 S 58 D 
24 D 59 D 
25 S 60 D 
26 D 61 D 
27 S 62 0 
28 D 63 D 
29 D 64 D 
30 S 65 D 
31 D 66 D 
32 S 67 D 
33 D 68 D 
34 S 69 D 
35 D 70 D 

4-H.14 



Table 4-H.I0 Source/Uoublet Parameter for 
/'""""' Source Design II/Doublet Design I Network (Figure 4-H.26) 

Index SID Index SID Index SID 

1 S 36 S 71 S 
2 S 37 D 72 S 
3 S 38 S 73 S 
4 S 39 D 74 S 
5 D 40 0 75 S 
6 S 41 0 76 S 
7 D 42 D 77 S 
8 S 43 D 
9 D 44 D 

10 S 45 D 
11 D 46 D 
12 S 47 D 
13 D 48 D 
14 S 49 D 
15 D 50 D 
16 S 51 D 
17 D 52 D 
18 S 53 D 
19 D 54 U 
20 S 55 D 
21 D 56 D 

( 
22 S 57 i) 

23 D 58 D 
24· S 59 D 
25 D 60 D 
26 S 61 D 
27 D 62 D 
28 S 63 D 
29 0 64 S 
30 S 65 S 
31 D 66 S 
32 S· 67 S 
33 D 68 S 
34 S 69 S 
35 D 70 S 

4-H.15 



Index 

1 
2 
3 
4 
5 
6 
7 . 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

4-H.16 

Table 4-H.11 Source/Doublet Parameters for 
Source Design II/Doublet Wake I (Figure 4-H.27) 

S/L) 

S 
S 
S 
S 
S 

.S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
D 
D 
D 
D 
D 
D 
S 
S 
S 
S 
S 

Index 

36 
37 
38 

SID 

S 
S 
S 

.~ 



Index 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Table 4-H.12 Source/Doublet Parameters for 
Source Design II/Doublet Wake II (Figure 4-H.28) 

SID 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
D 
S 
S 
S 
S 
S 
S 
S 
S 

4-H.17 



4 

Edge 4 8 

1 

4-H.18 

Edge 3 

9 
o 

Edge 1 

4-H.l - The Panel 

3 

Edge 2 

2 



4-H.2 - The Subpane1s 

4-H.19 



4-H.20 4-H.3 - Indexing of Subpanel Paints 



....... 
x 
OJ 

"'C 
c::: ...... 

M(Coluinn Index) 

Edge 3 

Edge 2 

Edge 1 

Fi gure 4-H. 4 - A Network 

4-H.21 



( 1 ,5) 

..-.. 
>< 
OJ 
-0 
C ...... 

( 1 , 1 ) 

r-----r--~ (8,5 ) 

(5,1) 
(8,1) 

M(Column Index) 

Figure 4-H.5 - Coarse Grid Lattice Indices (M,N) 

4-H.22 



-X 
OJ 

"'0 
s::: ...... 
~ 
o 
0:: -

( 1 , 1 ) --e---'--
(15,1) 

lL. 
:z: 

MF(Column Index} 

Figure 4-H.6 - Fine Grid Lattice Indices (MFN F) 

4-H.23 



Edge Index 
+-

Edge 3 

8 7 6 5 
1~---+----~--~~ 

2 

Edge 4 

Edge Index 
+ 

4-H.24 

~-----4----4----+----~4 

Edge 1 

Edge Index 
-+ 

Figure 4-H.7 - Indexing at Edge Points 

Edge 2 

t 
Edge Index 



x 
OJ 
-0 
C -3 o 
0:: -Co 

(1, 4) 

(1,1) 

:z: L....------+-

Mp(column Index) 

Figure 4-H.B - Panel Lattice Indices (M N ) P P 

4-H.2S 



-X 
OJ 

"'0 
C .... 
~ o 
0::: -:z: 

50 49 48 

51 4 

54 1 

29. 30 

M(Column Index) 

5 

31 

9 

32 

13 

33 

-r--.;;.4 4~,....-.....:4...:::.3_ 4 2 
24 28 

"---.... 37 
36 

Figure 4-H.9 -control Point Indexing 

4-H.26 



.-.. 
>< 
CIJ 

" s:: .... 

4 8 

M"(Column Index} 

Figure 4-H.I0· _ Indexing of Singularity Parameters A~ on a 
Source Analysis, Doublet-Null Networks 

4-H.27 



-x 
Q) 
-c 
c ...... 
3 o 
c::: -z 

50 49 48 47 

4 8 51 

54 1 
5 

2 9 '--~3 0-""'--

M(Column Index) 

16 

15 

9 13 

32 33 

44 

20 24 

19 

43 

---.... 37 36 

Figure 4-H.ll - Indexing of Singularity Parameters A~ on 
Source Null, Doublet Analysis Networks 

4-H.28 



---x 
(l) 
-0 
c: ...... 
3 
o 

0::: ---Z 

3 7r-_....::3:.p:6 __ .:.;3 5::.-_~3~4 

38 

~--"'26 

M(Column Index) 

Figure 4-H.12 _ Indexing of Singularity Parameters A~ on 
Source Design I, Doublet Null Net~ork 

4-H.29 



38 37 

39 

40 
Matching 

Edge 

42 

19 

---x 
ClJ 

"'0 
C --
3 
0 
~ -z 

M(Column 

Matching Edge 

36 35 

32 

12 15 

20 
21 22 6 

Index) 

Figure 4-H.13 - Indexing of Singularity Parameters A~ for a 1 

Source Null, Doub 1 et Des i gn I Network 

4-H.30 

,~ 



77 76 

Figure 4-H.14 

75 

-,---,-7.;;..2 -r--="":- 7 0 

~_3_1_,_32~r3~9~,~4~O~~~~~~69 

Indexing of Singularity Parameters A ~ and.\ ~ on a Source 11' 

Analysis Doublet Analysis Network. Odd Indices Between 
1 and 55 are Source Parameters. Even Indices Between 2 
and 56 and all Indices Between 57 and 82 are Doublet 
Parameters. 

4-H.3l 



4-H.32 

68,91 67 90 66 89 65 88 

....... 
X 
QJ 
-c 
s:: --

69 4 

1 

4 7 , 7 3'""-:4-":---7-J.4~ 

M(Column Index) 

5 
12 

75 50 

Figure 4-H.15 _ Indexing of Singularity Parameters A~ and A~ on a ~ 
Source Design I, Doublet Analysis Network 



Matching 
Edge 

...-
x 
Q) 

"'C 
C ...... 

66 65 63 

67 4 17 

70 1 
5 

47"----4-L8-

M(Column Index) 

Matching Edge 

31 
32 

19 
12 

50 

60 

39
38 

----...54 
53 

Figure 4-H.16 Indexing of Singularity Parameters A~ and A~ for Source 

Analysis Doublet Design I Networks 

4-H.33 



Matching Edge 

56,79 55 78 54 77 53 76 

57 

8 
58 ~~~ __ ~2~3~~~~~~~~ 

Matching 
Edge 

60 

37 
61 

----x 
Q) 

-0 
C ...... 
3 
0 
0::: -z: 

M(Column 

38 
62 39 40 43 

63 64 67 

Index) 

44,68 

Figure 4-H.17 Indexing of Singularity Parameters A~ and ~~for 
Source Design I, Doublet Design I Networks 

~ 



....... 
X 
<V 
-c 
c: ..... 
3 
o 

0::: 
--' 
Z 

Matching Edge 

1 

M(Column Index) 

Figure 4-H.18 Indexing of Singularity Parameter A~ for 
Source Null, Doublet Wake I Network 

4-H.35 



4-H.36 

-X 
OJ 
-c 
c ...... 
3 
o 
0:: ---Z 

M(Column Index) 

Figure 4-H.19 

Matching Edge 

Indexing of Singularity Parameters A~ for 1 

Source Null, Doublet Wake II Networks 



/' 
I 

..-. 
X 
<IJ 
~ 
t: .... 
~ 
0 

ex:: 
----z: 

Matching Edge 

36 35 34 

16 20 
_.....;;3=1~---=~_ 

I 29 
24 

15 19 

1 5 9 13 

M(Column Index) 

Figure 4-H.20 Indexing of Singularity Parameters A~ and A~ for 
Source Analysis, Doublet Wake I Network 

4-H.37 



29r----r----~----~ 

Matching 
Edge 

-X 
OJ 
-0 
s:: 

>-4 

~ 
0 a:: -z 

4-H.38 

1 5 9 

M(Column Ind~x) 

Figure 4-H.21 Indexing of Singularity Parameters A~ and A~ for 
Source Analysis, Doublet Wake II Network 

,-..... , 



,-.. 
x 
OJ 

"'C 
t: ...... 
~ 
o 
0:: 

:z 

43r-___ 4T2~ __ ~4rl----~40~ 

3 

44 

Matching Edge 

----.1:19,32 

M(Column Index) 

Figure 4-H.22 Indexing Singularity Parameters A~ and A~ for 
Source Design I, Doublet Wake I Network 

4-H.39 



4-H.40 

--->< 
Q) 
~ 
c ...... 
~ o 
ex: 
z: . 

38r-----~3r7---------~36~--~3~5 

39 

"",---..lo27 

Matching Edge 

M(Column Index) 

~igure 4-H.23 Indexing of Singularity Parameters A~ and A~ for 
Source Design I and Doublet Wake II Networks 



11 Matching Edge 

!\ I-___ ....... ~ 
"(Col .. Iftdex) 

Figure 4-H.24 _ Indexing of Singularity Parameters A~ on a Source 
Design II. Doublet-Null Network Matching Edge 

4-H.41 



70,89 

72 

1 

51,76 

11 
!\ '-----.... 

"(Col .. IRdex) 

8 

1~::-...:..,.~~_63 

~~ry--r~r-~,-~~~62 

15 

53,78 

Matching Edge 

59 

58 

Figure 4-H.25 _ Indexing of Singularity Parameter. l~ and ~ on a Source 
Design II, Doublet Analysis Network ~ 

4-H.42 



.... ;.'a_--. --. 

77 58 76 57 75 

Matching Edge 

63 

40 
41,64 

43,66 

-)( Matching Edge 
QJ 
-0 
C -3: 
0 
0:: -z: 

M(Col urnn Index) 

Figure 4-H.26 _ Indexing of Singularity Parameters A~ and A~ on a Source 
Design II. Doublet Design I Network 

4-H.43 



Matching Edge 
28,37 

20 
\----f--~~-J--.-J 4 

F1gure 4-H.27 _ Index1ng of Singular1ty Parameters ~~ and ~ on a sourf'\ 
Design II, Doublet Wake I Network 

4-H.44 



/~ 

i 

r_
( 

5 

1 
-)I( • "0 
c: -:. 

\ 
~ -Z 

t 

'f(CO, .... IRdex) 

Figure 4-H.28 _ Indexing of Singularity Parameters A~ and A~ on a Source , 1 

Design II, Doublet Wake II Network 
4-H.45 



APPENDIX 4-1 

AUTOMATIC ABUTMENT SEARCH 

4-1.1 



Page Missing in 

Original Document 



4-1.1 General Discussion. 

DQG offers an option to the user that greatly simplifies the tedious job 
of specifying abutments, that is, describing which network edges meet. DQG 
will search the configuration geometry for places where the distance between 
network edges is less than some specified tolerance distance and will define 
abutments there. This appendix describes the process which DQG 'employs to 
identify abutments. The automatic abutment search is performed in the (3,1) 
and (3,2) overlays of DQG. 

Figure 4-1.1 shows a configuration consisting of five networks. There are 
two kinds of abutments: network edge abutments and empty space abutments. 
Network edges which meet other network edges or planes of symmetry are called 
network. edge abutments. Empty space abutments are those places where a 
network edge does not meet another network edge or plane of symmetry. In the 
figure there are six network edge abutments (Al through A6) and eight empty 
space abutments (El through E8). 

The automatic definition of abutments occurs in three stages. First, all 
relations of the form "network A, edge N from point B to point C lies near 
network D, edge P" are established. These are called pairwise abutment 
descriptions. In the second stage, all such descriptions for one network edge 
are examined and a list of all network edges which a particular segment of the 
one edge lies near is compiled. This is called the expanded abutment 
description. The final process consists of contracting the expanded 
description. In this procedure, start and end points of different network 
edges in the abutment are defined consistently and the abutment assembly is 
transferred to an output array (the WEABUT or 1ESABT array for network or 
e~pty space abutments) and written as the ABUTMENT-SPEC or EMPTY-SPACE-ABUT 
data sets. 

The user has the option of completely specifying all abutments or 
specifying part of them and allowing OQG to find the rest or of allowing OQG 
to find them all. Any abutments specified by the user are not disturbed by 
the automatic search. 

4-1.2 Data Representations. 

An understanding of the content and structure of certain arrays is 
required to understand the manipulations of the automatic abutment search. In 
this section the arrays are defined. 

The IABUT(8) array contans the pairwise abutment description. The first 
six entries define the edge segment (as in IESABT). The seventh and eighth 
entries are. the network and edge of the other network which the segment lies 
near. 

The IXPAND array contains the expanded abutment description. This is a 
list of all network edges which lie near one another. It is closely related 
to the abutment description in the array WEABUT (see below), except that it 
might contain several network abutments. It is dimensioned 10 by 6. The first 
index ranges over network edge segments which take part in an 

4-1.3 



abutment. The values of the second index indicate (1) network index, (2) edge .~ 
index, (3) and (4) start point column and row indices (coarse grid lattice 
indices) and (5) and (6) stop point column and row indices (coarse grid 
lattice indices). This structure is similar to that of the array WEABUT (see 
below). 

The WEABUT array is a 5 by 6 array which contains the abutment description 
for network abutments, (that is , abutments which involve two or more network 
edges, or one network edge and a plane of symmetry). A maximum of five 
network edge segments are permitted in the abutment. The first index of the 
array ranges over the network edge segments in the abutment. The second index 
ranges from 1 to 6 and describes the network edge segmenet. WEABUT(I,l) 
contains the network index of the Ith network in the abutment,WEABUT(I,2) 
contains the edge index, WEABUT(I~3) and WEABUT(I,4) contain the coarse grid 
column and row i~dices of the start point of the edge segment, and WEABUT(I,5) 
and WEABUT(I,6) contain the coarse grid column and row indices of the end 
point of the edge segment. 

ISRCH is called the search list. It describes the portion of a particular 
network edge which has not been defined by the user to form an abutment. It 
is a two dimensional array which is dimensioned 20 by 4. The first index 
ranges over individual edge segments along a single network edge (a network 
edge may take part in up to twenty separate network or empty space 
abutments). The second index ranges from 1 to 4 and defines the column and 
row indices of the start and of the end point of the segment respectively. 

LISTAB is a vector of dimension 20. It is a list of the pairwise 
abutments in which a particular network edge takes part. This array is used 
for diagnostic purposes. It is not essential to the automatic abutment searCh. 

LISTCP is a list of the columns and rows of the start and end points of 
the pairwise.abutment segments in which a particular network edge takes part. 
It is dimensioned 20 by 4. The first index ranges over edge segments on the 
edge and the second index ranges over column and row indices of the start and 
end point each edge segment. 

SEQCP is a two dimensional array dimensioned 40 by 2. It contains the 
same data as in LISTCP except that it is sequenced in increasing coarse grid 
lattice index order. 

ILIST is a list of all network edges which lie near one another. It is a 
two dimensional array, 10 by 2. ILIST(I,l) is the network index of the Ith 
network edge segment fn the abutment and ILIST(I,2) is the edge index of the 
edge segment. 

MSHARY is. a two dimensional array dimensioned 2 by lOa. It contains the 
mesh size of each network in the configuration. 

EGLNTH is a two dimensional array dimensioned 4 by 100. It contains the 
edge length of each of the 4 edges of the networks in the configuration. 

BLANK is a blank common array used to stoFe all of the edge coordinates. 
Its dimension is variable and is dependent on the configuration. 

LPT is a vector of length 401. Its first element contains a zero. The 
remaining elements contains, for each network edge, a cumulative count of the 
number of edge points whose coordinates are stored in the blank common array. 

4-1.4 



4-1.3 Program Execution. 
,/""""'-

In the (3,1) overlay of DQG program, program PRABUT calls subroutine 
USEABT to define any user-provided abutments. At the end of this process 
USEABT calls SEARCH to define the search list for abutments (Array ISRCH). 
PRABUT then reads into memory the edge coordinates of all networks and PRABUT 
sets up a bookkeeping vector, LPT, to keep track of the storage location of 
the edge coordinates. Finally PRABUT calls subroutine NETABT, which 
constructs the pairwise abutment arrays. 

For each network edge a list is made of all network edges which are not so 
far away that they are unlikely to take part in an abutment with the given 
edge. This is done in subroutine EDGLST. A maximum distance is defined equal 
to the larger of the edge length of the network whose pairwise abutments are 
being constructed (the reference network edge) and the edge length of the 
network being examined. Then if a point on the reference edge is closer to 
either the first or last point on the network edge under examination than the 
maximum distance, the edge under examination is added to the edge list. 

When all network edges have been examined, the pairwise abutment arrays 
are constructed for the reference edge. For each point on the reference edge 
which is also in the search list, (ISRCH), the minimum distance to each line 
segment (segment between two successive corner points on the edge) on the edge 
of a network in the edge list is computed. If this distance is less than the 
global tolerance distance, it means a pairwise abutment is found. The 
reference network, edge and coarse lattice indices are added to the IABUT 
arrays as well as the network and edge index of the edge under examination. 
This begins the pairwise abutment. 

A similar computation is made for the next point on reference edge. If it 
is also close to a line segment, the point is defined as the end point of the 
pairwise abutment. This extends the pairwise abutment. 

The extensions continue until there are no more points on the reference 
edge or until there is a point on the reference edge which is not close enough 
to the edge under examination. In either of these cases this signals the 
termination of the pairwise abutment. A check is made to assure there are at 
least two distinct. corner pOints in the IABUT array and it is written to the 
data base. 

The process continues over all network edges in the edge list and for each 
network edge in the configuration. Note that collapsed edges are never used ' 
in the automatic abutment search. 

After the pairwise abutments are defined, they are expanded in subroutine 
ABXPND in the (3,2) overlay. For each network edge a list is made of all the 
pairwise abutments in which it appears as the reference network (array 
ABLIST). At the same time the network and edge which the segment lies near 
(IABUT(7) and IABUT(8)) are added to the array LSTNET. The start and end 
point lattice indices are transferred to the array LISTCP. These are 
sequenced in increasing lattice index without duplication in the SEQCP array. 
Now a determination is made as to which of the network edges in the LSTNET 
array all lie near which of the line segments of the reference network edge. 
The successive entries in the SEQCP array define edge segments which lie near 

( a common set· of network edges. 

4-1.5 



The average of two successive indices in SEQCP are computed. Then the ~ 
average indices are compared with the start and end points in LISTCP. If the 
average lies within the start/end interval then the corresponding network edge 
in NETLST lies near the edge segment defined by the successive entries in 
SEQCP. The network and edge are added to the ILIST array and the edge segment 
data is transferred to an array JXPND. After all entries in LISTCP are 
examined, the reference network edge is added to the ILIST array. The entries 
in ILIST are sequenced by the network edge constant. ILIST is transferred to 
an array called IKEY. This is used as a key set to get any pre-existing 
expanded abutment data. If the data is found, the new data in JXPND is added 
to the expanded abutment data and the information is written to the disk. If 
no data is present, this defines a new expanded abutment. Th~ new key array 
is written to the data base as the ABUT-KEYS data and the new expanded 
abutment data is written to the EXPANDED-ABUTMENT data set. 

The process continues until all "network edges in the configuration have 
been processed. 

At the end of subroutine ABXPND, all of the edge segments of every network 
edge which appears in a single abutment should be contained in some 
EXPANDED-ABUTMENT element set. The only remaining tasks are to identify start 
and end points of the edge segments in a consistent fashion and, for the rare 
case shown in Figure 4-1.3, separate the two abutments which occur on common 
edge segments. These are performed in CONABT. 

In subroutine CONABT an expanded abutment description is read from the 
disk. A single network edge from the IXPAND array is chosen to establish the 
start and end points of the abutment. This edge is parameterized (see PAN" AIR ~ 
Theory Document, Appendix F, Section F.6 (Reference 1)) and the coordinates of 
the points 1/4 and 3/4 of way along the edge are computed. Also a reference 
distance is defined as the maximum of twice the global tolerance distance and 
one tenth of the distance between th one-quarter and three-quarter points. 
Then each other network edge in the expanded abutment is parameterized and the 
distance from the 1/4 and 3/4 points of the first edge to the 1/4 and 3/4 
points of the other edge. If both the 1/4-1/4 and 3/4-3/4 distances are less 
than the reference distance or if both the 1/4-3/4 and 3/4-1/4 distances are 
less than the reference distance, the network edge is transferred to the 
WEABUT array and written to the data base. If neither condition is satisfied, 
the other edge is skipped and the rest of the edges in the expanded 
description are checked. 

After all expanded abutments are processed, a call is again made to 
subroutine SEARCH. This again scans all abutments and writes to the DQG data 
base all those network edges which do not take part in an abutment. These are 
used in subroutine MTABUT to define empty space abutments. 

4-1.6 



4-1.4 An Example 

Figure 4-1.2 shows a configuration which will be used to illustrate the 
operations described in the previous section. 

Before searching for pairwise abutments the program PRABUT determines that 
there is sufficient core memory available to store the coordinates of all the 
edge points. After reading the coordinates of an edge PRABUT stores in array 
LPT the cumulative number of edge points which have been read into memory. 
The edges are read in order of network number and edge number. Using the 
array LPT the program may keep track of the storage locations of the edge 
point coordinates. 

Assume that no abutments have been defined by the user. The automatic 
abutment search will then be executed for the 'whole configuration. The search 
for pairwise abutments begins with the first edge of the first network. The 
configuration is sufficiently small that all network edges are close enough 
together to be considered for an abutment with the first edge of network one. 
Thus all edges in the configuration are searched for pairwise abutments. The 
first network edge which lies within the global tolerance distance of the 
first point on edge 1 of network 1 is network 4 edge 3. This causes the first 
entries to be made in the IABUT array. The network edge and start point 
column and row indices are listed in IABUT(l), IABUT(2), IABUT(3) and IABUT(4) 
respectively. The network and edge which lie near the reference network edge 
(network 1 edge 1), namely network 4 edge 3, is stored in IABUT (7) and 
IABUT(8) respecitvely. The end point column and row indices of the pairwise 
abutment (IABUT(5) and IABUT(6) are set equal to the start point indices. The 
IABUT array then looks like: 

1 = 
IABUT(I) = 

1, 2, 3, 4, 5, 6, 7, 
1, 1, 1, 1, 1, 1, 4, 
I I I I . . 

8 
3) 
!-Edge index 

I (other network) . . 
Network index~----------! 

(ref network) 
!----Network index 

(other network) 

Edge index (ref network)---. 

Col index, start pt-----------. 

Row index, start pt--------------. 

-------Row index, last pt 

!----------Col index, last pt 

Then the (2,1) point (that is, column 2 and row 1) of network 1 is 
exami ned. It too 1 i es near edge 3 of network 4. 'Thus the end pont is 
redefined (IABUT(5)=2 and IABUT(6)=1) and the IABUT array now looks like: 

I = 1, 2, 3, 4, 5, 6, 7, 8 
1 AB UT ( I) = ( 1, 1, 1, 1, 2, 1, 4, 3 ) 

The process continues and the end point is redefined until the last point 
on edge 1 of network 1 is reached. At this point the search stops momentarily 
and the IABUT array is written to the DQG database as dataset I-ABUT with a 
key which is a cumulative index of the number of pairwise abutments 
discovered, beginning with one. The rest of the network edges are processed 
in a similar fashion. At the end of program PRABUT, there are fourteen 

4-1.7 



element sets in the I-ABUT dataset. The contents of the I-ABUT dataset after 
the end of PRABUT execution are summarized in Table 4-1.1. Note that the 
fourth pairwise abutment involves the fourth edge of network 1 with the first 
plane of symmetry. (Planes of symmetry are indicated by a negative network 
index.) Note that the start and end points in Table 4-1.1 are the coarse grid 
lattice indices of the points on the network edges (see Appendix 4-H of this 
manual ). 

After all the pairwise abutments have been defined, the expanded abutment 
list is generated. A loop over network edges defines each network edge in 
turn as a reference network edge. Then each pairwise abutment is examined to 
see if the reference network edge is in the IABUT array that defines the 
pairwise abutment (i.e., that the reference network edge is in IABUT(l) and 
IABUT(2}}. For each of these pairwise abutment, the other network edge' 
(entries IABUT(7) and IABUT(8}} identifiers are extracted and added to the 
LSTNET array. The start and end points of the reference edge are recorded in 
array LISTCP. To illustrate the process, consider network 2 edge 4 as the 
reference network edge in the example introduced above. Examination of Table 
4-1.1 shows that network 2 edge 4 appears as the entry in IABUT(l} and 
IABUT(2} in three pairwise abutments. In the first network 2 edge 4 from 
point (1,3) to (1,6) lies near network 1 edge 2. This defines LSTNET(l,l )=1 
and LSTNET(1,2}=2 and LISTCP(l,l} = (1,3,1,6). The second pairwise abutment 
in which network 2 edge 4 takes part states that points (l,l) to (1,6) lie 
near network 3 edge 2. Thus ~STNET(2,1)=3 and LSTNET(2,2}=2 and LISTCP(2,1} = 
(1,1,1,6). Finally the third pairwise abutment that the reference edge 
appears in states that points (l,l) to (1,3) lie near network 4 edge 2. Thus 
LSTNET(3,1 }=4 and LSTNET(3,2}=2 with LISTCP(3,1) = (1,1,1,3). 

After all pairwise abutments have been examined the points in LISTCP are 
rearranged in increasing lattice index order. The order of the points after 
the rearrangement is: 

(1,1) 
(1,1) 
(1,3) 
(1,3 ) 
(l ,6) 
(l ,6) 

Duplicate entries in the list are deleted as the list is moved into the 
array SEQCP. The results of these operations are summarized by the contents 
of the arrays LSTNET, LISTCP and SEQCP in Table 4-1.2. 

After the indices are copied into SEQCP, the average of each pair of 
successive indices is computed. This is listed as "AVERAGE" in the SEQCP 
portion of Table 4-1.2. Now the expanded abutment description is assembled. 
For each of the entries in the arr~y LISTCP, if the average index of the two 
adjacent values of SEQCP lies between the start and end points in LISTCP, the 
corresponding network and edge indicas of the array LSTNET are added to the 
array ILIST. For the first set of average values we have (Table 4-1.2) 
(1,2). Comparing this with entries in LISTCP we see the point does not lie 
between the start and end points of the first entry (that is between (1,3) and 
(1,6», but it does lie between the second and third entries (namely (1,1) to 
(1,6) and (1,1), to (1,3) respectively). Thus the corresponding network and 
edge indices (network 3, edge 2 and network 4 edge 2) are added to the ILIST 

4-1.8 



array. After all entries in LISTCP have been examined for a particular 
average value, the reference network is added to the array ILIST. Then the 
entries in ILIST are resequenced in increasing 'network and edge index order. 
This result is shown in Table 4-1.3. 

The sequenced ILIST array is used as a key set for the expanded abutment 
data which is contained in the EXP-ABUT dataset. An attempt to read the data 
with that particular key set is made. If no data is found, the expanded 
abutment data is defined from the reference network edge (network 2 edge 4) 
and from the entries in SEQCP which defined the average value (namely (1,1) 
and (1,3)). Thus the array IXPAND(l,I) = (2,4,1,1,1,3). The number of edges 
in the expanded abutment is set to one and the data is written to the EXP-ABUT 
dataset with a key set equal to (24,32,42). (Note that the network and edge 
data from ILIST are combined into one index for each network edge by 
multiplying the network index by 10 and adding the edge index.) 

If the expanded abutment description is already found on the database, the 
number of edges in the expanded abutment is increased by one and the network 
edge and start and end corner point data is added to the existing IXPAND 
array. Then the data is written to the database. 

This proceeds until all networks and edges have been defined as the 
reference edge in a pairwise abutment. At the end of the subroutine ABXPND, 
the EXP-ABUT dataset contains the five element sets described in Table 4-1.4 
which are addressed by the key set as indicated in the same table. The reader 
who desires a full comprehension of these steps is urged to work through the 
rest 'of the problem by setting up the LSTNET, LISTCP, SEQCP and ILIST arrays 
for each network edge in this simplified configuration and thus verify Table 
4-1.4. ' 

Finally subroutine CONABT reads in the expanded abutment data and from it 
defines the abutment description. The last network edge segments description 
which is not a plane of symmetry is chosen to establish the start and end 
points of the abutment. This is referred to in the code as the reference 
network edge. The network, edge, start and stop indices are copied into an 
intermediate storage array called TWEBUT and the refenence network index in 
the array IXPAND is set to zero so that this edge will not be selected again 
in an attempt to define another abutment. Then the subroutine C13QTR finds 
the coordinates of the points one quarter and three quarters along the edge of 
the reference segment. This is accomplished by parameterizing the edge 
segment (see PAN AIR Theory Document, Section 6 of Appendix F (Reference 1)), 
and then finding the successive corner points whose parameterizations span 
0.25 and 0.75. The coordinates of the point on the line segment between these 
points are then computed in an obvious fashion (by interpolation). The 
quarter three-quarter point coordinates are used to assure that the start and 
end pOints of each network edge are appropriately mated to the start and end 
points of the reference edge. 

After these coordinates are defined, each edge segement in the expanded 
abutment description other than the reference edge is examined. The distances 
between the quarter point of the reference edge and the quarter point of the 
segment under examination, between the three quarter point and the quarter 
pOint, between the quarter point and the three quarter point and the quarter 
point and finally between the three quarter point and the three quarter point 
are computed and compared with a reference distance~ The reference distance 

4-1.9 



is the larger of twice the global tolerance distance and one tenth of the ~. 
distance between the quarter point and the three quarter point of the 
reference edge. If both the distances between the two quarter points and the 
two three-quarter points is less than the reference distance, then the segment 
under examination is copied into the TWEBUT array without interchanging the 
start and end points. If the distances between the quarter point of one side 
and the three quarter point of the other and vice-versa are less than the 
reference distance then the data is copied into the TWEBUT array but the start 
and end indices are interchanged. If neither condition holds, the edge 
segment under examination does not form an abutment with the reference edge • 
. (This occurs in the configuration illustrated in 4-I.3.) After all edge 
segmen~s have been considered, the data stored in the TWEBUT array is copied 
to the WEABUT array and the abutment description is written to the DQG 
database. 

In the example discussed above, the reference edge segment in CONABT is 
network 4 edge 2 from point (3,1) to (3,3). In this case the other to edge 
segments in the expanded abutment lie sufficiently close to the reference edge 
that they are included in the final abutment description. Table 4-I.5 
contains the abutment descriptions for the configuration as they would appear 
at the conclusion of the (3,2) overlay of DQG •. 

The information presented here covers the basic operations of the 
automatic abutment search. Any additional information will be obtained by 
examining the code itself. Having understood the discussion in this appendix 
the code should be easy to comprehend. 

4-I.10 



Table 4-1.1 1ABUT Array 
,r----, 

Network Edge Start End Network Edge 
(Col, Row) (Col,Row) 

1 1 (1,1) (3,1 ) 4 3 
1 2 (3,1) (3,3) 3 2 
1 2 (3,1) (3,3) 2 4 
1 4 (1 ,1 ) (1,3 ) -1 0 
2 4 (1,3 ) (1,6) 1 2 
2 4 (l ,1 ) (l,6) 3 2 
2 4 (1 ,1 ) (1,3) 4 2 
3 2 (1 ,2) (l ,3) 1 2 
3 2 (1 ,1 ) (1,3 ) 2 4 
3 2 (1,1) (1,2 ) 4 2 
4 2 (3,1) (3,3) 2 4 
4 2 (3,1) (3,3) 3 2 
4 3 (3,3) (1,3) 1 1 
4 4 (3,1) (1,1) -1 0 

(~ 

4-1.11 



Table. 4-1.2 Generation of Expanded Abutments for network 2 edge 4 

LSTNET ( 1 ,J ) 

I/J 1 2 
1 ! 1 2 
2 ! 3 2 
3 ! 4 2 

SEQCP(I,J) 

I/J 1 2 
1 ! 1 1 
2 ! 1 3 
3 ! 1 6 

ILIST( I,J) 

I/J 1 2 , 3 2 
2 . 4 2 
3 I 2 4 . 

4-1.12 

AVERAGE 
(l ,2) 
(l,4) 

LISTCP( I,J) 

I/J 1 2 3 4 
1 1 3 1 6 
2 . 1 1 1 6 
3 I 1 1 1 3 . 

Table 4-1.3 The ILIST array 

ILIST(I,J) After Sequencing 

I/J 1 2 
124 
232 
342 

IXPAND = (2, 4, 1,1, 1, 3) 



.--- Table 4-1.4 lXPAND Arrays 

Element Set Key Set Network Edge Start End 

(Col, Row) (Col, Row) 
1 (11 ,43) 1 1 (l ,1 ) (3,1) 

4 3 (3,3) (l ,3) 

2 (12,24,32) 1 2 (3,1) (3,3) 
2 4 (1 ,3) (l ,1 ) 
3 2 (l ,2) (l ,3) 

3 (-10,14) -1 ° (0,0) (O,O~ 
1 4 (l ,1 ) (1,3 

4 (24,32,42) 2 4 (l,1) (l ,3) 
3 2 (l ,1 ) (l ,2) 
4 2 (3,1) (3,3) 

5 (-10,44) -1 ° (0,0) (0,0) 
4 4 (l ,3) (1,1) 

4-1.13 



Table 4-1.5 Final Abutment Description ~. 

Network Abutments 
Abutment Network Edge Start Point End Point 

(Col, Row) (Col, Row) 

1 1 1 (1 ,1 ) (3,1 ) 
4 3 (1,3) (3,3) 

2 2 4 (6,1) (3,1) 
3 2 (l,3) (1,2 ) 
1 2 (3,3) (3,1) 

3 2 4 (l,l)- (3,1) 
3 2 (1 ,1 ) (2,1 ) 
4 2 (3,1 ) (3,3) 

4 1 4 (3,1 ) (1 ,1 ) 
-1 ° (O,O) (O,O) 

5 4 4 (3,1 ) (1 ,1 ) 
-1 ° (O,O) (O,O) 

Empty Space Abutments 

1 1 3 (3,3) (1 ,3 ~ 
2 2 1 (1 ,1 ) (3,1 ~. 

3 2 2 (3,1 ) (3,6) 
4 2 3 (1,6 ) (3,6) 
5 3 1 (1 ,1 ) (3'1) 
6 3 4 (1,3 ) (1 ,1 ) 
7 4 -1 (1 ,1 ) (3,1) 

4-1.14 



Figure 4-1.1_ Sample COnfiguration IllUstrating Abutments 

4-I.15 



~ 

Figure 4-1.2 - COnfiguration for Example DIscuSsed In Paragraph 4-1., 
4-I.16 



2 

Keyset: 1 1 
1 1 
2 3 
2 3 

IXPAND. 1 1 (I, 1) (3,1) 
2 3 (5,3) (6,3) 
1 1 ( 6,1 ) ( 7 ,1 ) 
2 3 (I, 3) (2,3) 

Al 1 1. (1,.1) (3,1) A2 1 1 (6,1) (7,1) 2 3 (1,3) (2,3) 2 3 (5,3) (6,3) 

Figure 4-1.3 -A.5pecial Case Treated Correctly by Subroutine CONABT 

4-I.17 



APPENDIX 4-J 

ABUTMENT INTERSECTION SEARCH 

4-J.l 



Page Missing in 

Original Document 



4-J.1 General Discussion. 

In the PAN AIR system the continuity of doublet strength accross network 
boundaries can be met under those conditions specified in PAN AIR Theory 
Document, Section 4 of Appendix F (Reference 1). This is achieved through the 
introduction of matching boundary conditions. One of the most difficult 
problems which had to be solved in DQG was the determination of how to impose 
these conditions at abutment intersections. 

An abutment (see Appendix 4-1) is a place along which two network edges 
meet (see Figure 4-J.1). An abutment intersection is the region where 
abutments come together (Figures 4-J.2, 4-J.3 and 4-J.4). The matching 
condition at the intersection means the doublet strengths at the two adjacent 
corner points on the abutting network edges are equal to one another. 

The PAN AIR Theory Document, Appendix F, Section F.5 (Reference 1), shows 
that if N abutments come together at an intersection and N-1 corner points are 
assigned to match doublet strength, then this is a necessary and sufficient 
condition to assure doublet continuity at the intersection without redundant 
equations if the correct N-1 corner points are assigned. 

The problem faced by DQG is to select the correct N-1 corner points 
subject to the following conditions: 

(1) Some corner points on design or wake networks are IImatching ll points, 
i.e., they must be chosen for matching boundary conditions. 

(2) Some corner points on some networks are IInon-matchingll points which 
must not be used to match doublet strength. 

(3) The selection of corner points to receive matching conditions shall 
not cause a redundant system of equations. 

(4) At collapsed edges of networks, at most one of the two corner points 
can be used for matching doublet strength. 

(5) Doublet strength must be continuous across a plane of symmetry at 
corner points that lie on the plane of symmetry and doublet strength at a 
corner point lying on an empty space abutment must be matched to zero. 

(6) A corner point can be assigned to at most one abutment and each 
abutment can receive at most one corner point. 

The PAN AIR Theory Document, Appendix F, Section F.5 (Reference 1) 
introduces a graphical abstraction which summarizes the geometrical 
situation. Figures 4-J.3 and 4-J.4 provide some additional examples of 
certain geometric configurations and Figure 4-J.5 a, band c provide the 
corresponding graphical equivalents. The reduction of the geometrical 
configuration to its graphical equivalent and the use of an algorithm from 
graph theory yields the solution to the problem. The (3,4) overlay of DQG 
performs the operations which result in the solution to the problem. 

4-J.3 



4-J.2 Solution to a Problem in Graph Theory 

A graph is a collection of pOints called nodes connected by a set of lines 
called branches. See Figure 4-J.6. An irreducible subgraph is the set of all 
nodes which are connected by some set of branches to any other node in the set 
(Figure 4-J.7). The problem of graph theory is to find all irreducible 
subgraphs of a given graph. 

The solution is accomplished in a very ingenious fashion. First all 
branches and nodes are assigned an index. See Figure 4-J.8. Then all 
connections are enumerated. A connection is a list of a branch and the two 
nodes which match its end points. Table 4-J.1 lists the connections in Figure 
4-J.8. Now the connection list is sorted in the following particular fashion. 

A table is constructed which has its columns labeled by connection index 
and whose rows are labeled by node index (Table 4-J.2). The leftmost column 
is filled with zeroes to initialize the table. For each connection the rows 
corresponding to the nodes in the previous connection column are examined. 

If both contain zero, the connection defines a new subgraph. New entries 
in the connection columns are made with an integer labeling the new subgraph 
for the two new nodes. All other nodes' entries are carried over without 
change. This occurs for the first four connections in Table 4-J.2. 

The first connection in Table 4-J.1 has branch 1 connecting node 2 with 
node 3. The initial column in the sorting table contains only zero entries 
corresponding to node 2 and node 3 (Table 4-J.2), so the next column in the 
table. (labelled by the index of the first connection, namely 1), is the same 
as the previous column except that in the row corresponding to node 2 and node 
3 there is a 1 entered. This indicates that nodes 2 and 3 belong to the first 
irreducible subgraph. A similar process generates columns labelled 2, 3 and 4 
in Table 4-J.2. 

When the fifth connecton in Table 4-J.l is examined (branch 9 connecting 
node 2 and node 5), it is discovered that there is a non-zero entry already 
for node 2. Now something different happens. 

If one entry contains zero while the other contains an integer labeling a 
subgraph, the connection extends the existing subgraph. The zero is replaced 
by the index of the sub graph and all other indices are copied from the 
previous column. In the example of Figure 4-J.8, this situation arises for 
connections 5, 6, 7, 8, 10, 12, and 13. 

For connection 5 in Table 4-J.2, node 5 has a zero entry in the previous 
column while node 2 has an entry equal to 1. So in the column for connection 
5, node 5 receives an entry equal to 1 and all other indices are copied over 
without change. 

If both entries contain non-zero but different indices, the two subgraphs 
are connected to one another. All entries containing one subgraph index are 
changed to the other. For consistency, we always change the larger index. 
All other entries are carried over without change. Connection 9 in Table 
4-J.1consists of branch 4 connecting nodes 10 and 11. In Table 4-J.2 the 
column labelled 8 has a 3 in row 10 and a 2 in row 11. Thus connection 9 
causes subgraph 3 and subgraph 2 to be connected. In column 9 of Table 4-J.2, 

4-J.4 



all 113 1 s11 in column 8 are changed to 112 1 s11 and the remaining entries are 
copied directly. This situation occurs both for connection 9 and connection 
14. 

If both entries contain the same non-zero subgraph index, a closed loop 
has been discovered, i.e., a subgraph which connects to itself. This 
situation arises for connection 11. 

Connection 11 of Table 4-J.1 consists of branch 8 connecting node 3 and 
node 4. In the column labelled 10 in Table 4-J.2, both row 3 and 4 contain 
the same entry 11111. Thus connection 11 causes a closed loop to be formed in 
the irreducible subgraph with index Ill'" This is noted at the bottom of the 
table. 

When all connections have been processed, the entries in the final column 
define the irreducible subgraphs of the problem. In Table 4-J.2, the last 
column has entries with 11111 and 11211 in them. Thus there are two irreducible 
subgraphs in the example (see Figure 4-J.8). The first contains nodes 1, 2, 
3, 4, S, 6, 7 and 8 and the second contains noded 9, 10, 11, 12, 13, 14 and 
lS. The first subgraph contains a closed loop. Thus we have found through 
the use of an algorithm that Figure 4-J.8 contains two irreducible subgraphs, 
one of whch has a closed loop, a conclusion which is obvious from examination 
of the fi gure. 

4-J.3 Application to Abutment Intersection Problem. 

r--. The solution to the problem in graph theory can be applied to the abutment 
intersection problem by identifying abutment intersections with irreducible 
subgraphs, abutments with nodes, and corner points with branches. The details 
of the graphical representation of an abutment intersection are given in 
Appendix F, Section F.S.l of the PAN AIR Theory Document (reference 1), and we 
shall not discuss it here any further. 

4-J.3.1 Data Representations. 

In this section we describe the data storage arrays and their meanings. 

IABUTS (300) is an array which contains the index of the abutment. This 
index is modified if the abutment is an abutment with a plane of symmetry 
(IABUTS = 2,000 + abutment index) or an empty space abutment (IABUTS = 1,000 + 
abutment index). 

ICPMAP (S,600) contains information about where a corner point at the 
start or end of an abutment is located as well as a flag indicating its 
special properties: 

ICPMAP(l,I) = Network index 
ICPMAP(2,I) = Edge index 
ICPMAP(3,I) = Coarse grid lattice indices of point (column) 
ICPMAP(4,I) = Coarse grid lattice indices of point (row) 
ICPMAP(S,I) = +1 if matching point ° normal unspecified point 

-1 if non-matching point 

4-J.S 



ICPMAP(I,J) thus indexes all network corner points in the problem (the 
J-index of ICPMAP is a global corner point index) and describes where they are 
(the I-index of ICPMAP). 

CONNCT (3,600) defines the connection between two corner points by an 
abutment. 

CONNCT(l,I) = Abutment index 
CONNCT(2,I) = Global corner point index of one corner point 
CONNCT(3,I) = Global corner point index of other corner point 

For an abutment with two network edges, there is only one connection at 
the start and one at the end of the abutment. If there are N network edges 
and planes of symmetry in the abutment, there are N(N-1)/2 connections. If 
one of the edges is a plane of symmetry, this is a special case. The plane of 
symmetry corner point index is defined conventionally to be zero. An abutment 
with empty space is another special case. It has only one corenr point in its 
connection. In this case the single corner point index is listed as both 
nodes in the connection. 

The connection list is sequenced in a special order. First, all 
connections which have one or more corner points which are matching pOints 
appear in the list. Then all connections with empty space abutments appear. 
Finally, all remaining connections are sequenced by the greater of the two 
"downstream parameters" of the two corner points. (The downstream parameter 
is a measure of whether the point is upstream or downstream of the network 
interior. It is defined as 

~ ,.. 
V • Co 

D = 
V 

where Co is the compressibility vector and \lis the vector from the corner 
point to the diagonally opposite panel-corner point if the corner point is a 
network corner point. If the corner point is an extra control point added by 
DQG then V is the vector from the corner point to the next interior 
panel-corner point on the same column or row. 

This sequencing of connections is to assure that connections with matching 
corner points will not be the ones that will be found to form a closed loop. 
They will tend to create new subgraphs rather than extend existing ones. By 
the same token, the more upstream corner points will tend to form additions to 
subgraphs which will not form closed loops. This means that more upstream 
corner points will be selected to impose matching conditions for the network, 
a situation which is empirically preferred for stabiity reasons when solving 
design problems. See PAN AIR Theory Document, Appendix F, Section F.4 
(Reference 1). 

On collapsed edges of a network, special consideration is required. 
Collapsed edges do not appear as an abutment. For this reason the procedures 
to be described would find for the example in Figure 4-J.9 that abutment A1 
corner point C1 did not take part in any abutment intersections, while 
abutments A2 and A3 along with corner points C2, C3, and C4 were 
part of an intersection. 

4-J.6 



To allow the addition of abutment Al to the intersection, the contents 
of the array CONNCT are modified. All nodes which are indexed by the global 
index of the last corner point on the collapsed edge (in a counter clockwise 
sense around the edge) are changed to -1 x the global index of the first 
corner point on the collapsed edge. At the same time in array CECPN (600) 
(initialized to zero) the entry under the global index of the first point is 
set equal to the global index of the last point on the edge. 

This will allow the procedure to find Al connected to A2 and A3. The 
negative value for the node index flags the corner point to indicate that if 
the node in the connection is selected for a matching assignment, the 
alternate reference (the last point on the edge, obtained from array CECPN) is 
the true location for the matching assignment. 

CPLST (600) is an array which is used as the table constructed in Section 
4-J.2. It is initialized to zero. At the end of the procedure, each entry in 
the array contains an index of the abutment intersection (subgraph) to which 
the corner point belongs. 

PCCT (3,600) is an integer array which contains information compliment to 
CONNECT. PCCT defines the connection between two abutments by a corner point. 

PCCT(l, I) = 

PCCT(2. I) = 

PCCT(3,I) = 

corner point location for Ith corner point. It contains 
network number times 1,00fr,000 plus column number times 
1000 plus row number of the corner point. 

abutment index for one of the two abutments connected to 
the Ith corner point. 

abutment index for the other abutment connected to the 
Ith corner pOint. 

ABTSYM(300) is an integer array that contains the abutment tangent symmetry 
descriptor. Its value may range from 0 to 3. 

ABTSYM(I) = 0 
ABTSYM(I) = 1 
ABTSYM(I) = 2 
ABTSYM(I) = 3 

if abutment I lies away from both POS 
if abutment I lies in first POS 
if abutment I lies in second POS 
if abutment I lies in both POS 

NETDBT(lOO) contains the network doublet type for each network in the 
configuration. 

After all abutment intersections are found, the matching assignments must 
be made. In the process of performing the assignment, some additional arrays 
are used. These arrays contain information concerning a particular abutment 
intersection. 

ABCPCP (3,30) contains all the connections which make up anyone abutment 
intersection (subgraph). These are stored on the disk keyed by intersection 
(subgraph) number. If a connection establishes a closed loop, then the 
abutment index in the connection description ABCPCP (1, K) is multiplied by 
-1. Thus a negative abutment index in the connection list of an abutment 
intersection indicates that the intersection has a closed loop. 

4-J.7 



CPLIST (60) contains the global corner point index of all corner points in 
the abutment intersection. As corner points are assigned matching conditions, 
the value of the location which held the global index of the point is set to 
zero. This removes it from consideration in future assignments. 

ABLIST (30) contains the modified abutment indices (see description of the 
IABUTS array) of all abutments in the intersection. 

LNOD(15) CONTAINS THE ABUTMENT TANGENT STATUS EXTRACTED FROM ABTSYM for 
the abutments which meet at the abutment intersection. 

PNOD(15) contains the abutment indices. These indicies may be positive or 
negative integers. The sign indicates the direction of the abutment. A 
positive sign indicates that the abutment points away from the abutment 
intersection and a negative sign indicates that the abutment points toward the 
abutment intersection. 

PQ(2,30) is a list of pairs of abutments. The indices of the two 
abutments adjacent to Ith corner point are contained in PQ(l,I) and PQ(2,I). 

KSEG(30) is the doublet matching status of corner points. 

KSEG(I) = 0 
KSEG(I) = 1 
KSEG(I) = 2 
KSEG(I) = 3 
KSEG(I) = 4 
KSEG(I) = 5 

Ith corner point is on a source alone network 
not used 
doublet network but no control point for matching 
reserved for plane of symmetry 
regular corner control point 
matching corner control point 

LSEG(30) indicates whether corner point lies in a plane of symmetry. 

LSEG(I) = 0 
LSEG(I) = +1 
LSEG(I) = ~2 

Ith corner point not in any POS 
Ith corner point in first POS 
Ith corner point in second POS 

Positive sign indicates that the network normal is parallel to the POS normal 
and negative sign indicates that the normals are anti-parallel. 

WSEG(30) contains the upstream downstream parameters of corner points 

NFGSEG(30) is set up to help maintenance programmers to diagnose errors. 
NEGSEG(I) contains network number times 1,000,000 plus column number times 
1000 plus row number of Ith corner point in an abutment intersection. 

4-J.3.2 Program Execution. 

The assignment of matching conditions at abutment intersections occurs in 
two steps. First all abutment intersections are found and written to the data 
base (subroutine INTRSC). Then each intersection is assigned matching 
conditions (subroutine ASSIGN). 

4-J.8 



4-J.3.2.1 Abutment Intersections. 

Figure 4-J.10 illustrates the process which finds all abutment 
intersections in the configuration. Subroutine INTRSC reads abutment data and 
from it constructs the IABUTS, ICPMAP, CPMAP, PCCT and CONNCT arrays. 
Subroutine COLCPT modifies entries in CONNCT if there are collapsed network 
edges and generates array CECPN. Then subroutine NTRLST performs an analysis 
of entries in CONNCT similar to that presented in Section 4-J.2; and defines 
abutment intersections. These are written onto the DQG data base in data set 
INTERSECTION. 

4-J.3.2.2 Matching Assignments. 

Figure 4-J.11 illustrates the subroutines and data flow which occur in the 
process of assigning matching conditions at abutment intersections. 
Subroutine ASSIGN reads the intersection data from the data base and fills 
arr~ ABCPCP with it. From this data the arrays ABLIST, CPLIST, LNOD, PNOD, 
PQ, KSEG, LSEG, WSEG and NFGSEG are then created. Subroutine ABTINT, which is 
a PAN AIR library routine, examines the graph of the abutment intersection and 
assigns corner points to abutments for doublet matching. If there are N 
abutments in the intersections, N-1 corner points must be assigned to insure 
doublet matching at the intersection. See PAN AIR Theory Document, Appendix 
F, Section F.5 (Reference 1) for a discussion of this important point. 

The indices of the matching corner points and the indices of the 
associated abutments are passed to subroutine ABASGN. ABASGN obtains the 
abutment data and checks ICPMAP(I,ICP) (where ICP is the corner point index), 
I = 1, 3 and 4 for agreement with the network and coarse grid lattice indices 
of the start or end point in an edge segment in the abutment. If the point is 
found in the Nth network edge in the abutment, the flag in the array DSVMCH 
(part of the abutment data) corresponding to doublet corner point matching for 
start or end points (DSVMCH(I,2,1) and DSVMCH(I,3,1) respectively) is set 
equal to N. Then the abutment data is replaced on the data base, the number 
of assignments made is incremented and the routine returns. In this w~ all 
corner points where doublet matching is to occur are labelled in the abutment 
description. Later in the (3,5) overlay, subroutine MATCHPT reads the 
abutment data and copies these matching flags into the SPECIAL-POINTS dataset 
for use in the (4,0) overlay of DQG where the matching boundary conditions are 
actually imposed. 

Matching assignments for abutment intersections lying on one or more 
planes of symmetry present additional complications. PAN AIR takes the 
approach to treat each symmetry condition as a separate problem. Therefore, 
whether a matching condition should be assigned at a corner control point 
lying on a plane of symmetry depends on the symmetry condition and which plane 
of symmetry the control point lies. For corner control points lying on a 
plane of symmetry the matching assignments described in the last paragraph are 
made for each symmetry condition. The matching pointers for Ith symmetry 
condition is stored in DSVMCH(I,2,1) and DSVMCH(I,3,1) for start and end 
corner points. 

For corner points not lying on a plane of symmetry and for edge interior 
control points the matching boundary conditions are independent of symmetry 
condition and therefore, matching pointers are needed only for the first 
symmetry condition. 

4-J.9 



4-J.3.3 An Example. 

Figure 4-J.12 shows a configuration for which we present a detailed 
example of the operations discussed in this section. Tables 4-J.3 and 4-J.4 
contain the abutment data. The abutments are labeled in Figure 4-J.13. (The 
configuration contains a collapsed edge (network 4), plane of symmetry 
abutments, a matching edge, and a non-matching edge. This example will 
illustrate nearly all features of the program.) 

From the data in Tables 4-J.3 and 4-J.4 we construct the IABUTS arrays and 
the ICPMAP arrays shown in Table 4-J.S and 4-J.6. Note that the empty space 
abutments· entry in the IABUT array is the empty space abutment index plus 
1,000. Also note the offset of 2,000 added to the plane of symmetry abutments. 

Figure 4-J.14 shows the index assigned to each corner ~oint and abutment. 
These indices correspond to the columns labelled index in Table 4-J.6 and 
4-J.S respectively. 

Table 4-J.7 contains the connection description. Note that first in the 
connection list appears the connections with matching corner points. The 
entry (0 ° 0) in the connection array separates the matching connections from 
the empty space connections (connection index 3), and the empty space 
connections from all the other connections (connection index 20). The 
connections at the end of the list are sequenced by downstream"parameter. 
Then subroutine COLCPT finds that edge 3 of network 4 collapsed. Thus 
connection number 18 is changed from (14, 20, 20) to (14,-10,-10). The 
reference to corner point number 20 appears in array CECPN. 

The search procedure begins in NTRLST. Table 4-J.8 describes the 
transition of the array CPLST as the connections are examined for subgraph 
formations. This data is similar to Table 4-J.2 discussed in section 4-J.2. 
Table 4-J.9 contains the resulting intersection data. Note that a closed loop 
is discovered at connections numbers 23 and 29 for the first intersection and 
at connection number 33 for the eighth intersection. Note also that several 
intersections (13, 12, 10, and 6) are discovered to be connected to another 
intersection (1, 10, 8, and 3 respectively) as the intersection search 
proceeds. . 

At the conclusion of the search, the DQG data set INTERSECTION contains 
the same data as Table 4-J.9. Thus there are ten abutment intersections is 
the example of Figure 4-J.12. One of them has two closed loops (intersection 
1) formed by abutments 3 and 4, and another has one closed loop (intersection 
8) formed by abutment 3. 

After the intersections are defined, doublet matching assignments are 
made. Subroutine ASSIGN is called. This subroutine reads the intersection 
data and sets up the data which describe the directed graph corresponding to 
the abutment intersection. Subroutine ABTINT is called to make the matching 
assignments for each abutment intersection. ABTINT returns the array NODSEG. 
If the Ith element of NODSEG is less than or equal to zero then the Ith corner 
point in CPLIST is not used for matching. However, if the Ith element of 
NODSEG is a positive integer P then the Ith corner point in CPLIST is used to 
match doublet across Pth abutment in PNOD. Each pair of matching corner point 
and the corresponding abutment is passed to subroutine ABASGN which updates 
the matching assignment on the DQG database. 

4-J.10 



In this discussion we will only examine the assignment process for the 
first intersection. The arrays PNOD, CPLIST and PQ for this intersection are 
shown in Tables 4-J.10 and 4-J.11, together with the associated network 
numbers. The direction of the abutments are shown by arrows in Figure 4-J.15. 

The array NODSEG as outputed by subroutine ABTINT is given in Table 
4-J.12. The first element contains 3. Therefore, the first corner point in 
CPLIST, corner point number 10, is selected to match across the abutment 
contained in the third element of PNOD or abutment number 14. The abutment 
index is then used by ABASGN to read the abutment data. The corner point 
index is used along with the array ICPMAP to determine whether the matching 
corner point is the start point or the end point of the abutment. In this 
case the lattice indices of corner point number 10 does not correspond to the 
lattice indices of either the start pOint or the end point. But corner point 
number 10 is on a collapsed edge (as indicated by a negative sign in abutment 
intersection data and array PCCT). Therefore, array CECPM contains an 
alternate corner point number which is 20. Corner point number 20 turns out 
to be the end point of abutment number 14. The matching pointer is then set 
to the appropriate control point and the abutment data is updated on the 
database. 

This process continues until all matching pointers are set. Notice that 
the fourth element of NODSEG contains a zero. This means that the fourth 
corner point in CPLIST, corner point number 12, does not have a matching 
boundary condition. Processing of this abutment intersection is therefore 
skipped to the fifth element in NODSEG. 

Figure 4-J.15 shows the doublet matching assignments after all 
intersections have been processed. Note that no assignment is made for points 
11 and 16 since they are "no matching" points. Also no matching assignment is 
made for point 1-2 since if it were assigned to either abutment 3 or 4, it 
would produce a redundant set of equations for matching at the first 
intersection. 

Thus all abutment intersections have been identified and matching 
assignments have been made without producing a redundent set of constraints 
and without missing an assignment. Later in the third overlay in subroutine 
MATCHPT of the (3,6) overlay, the matching flags are read from the abutment 
data and transferred to the SPECIAL-POINTS dataset. This dataset is read by 
the (4,0) overlay of DQG where the presence of a matching flag produces a DQG 
generated boundary condition of doublet matching. The (4,0) overlay then 
selects from among the user-defined boundary conditions and the DQG-defined 
boundary conditions to determine what constraints are actually imposed at the 
control points (see Appendix 4-M). 

4-J.11 



Table 4-J.1 Connections in the graphs of Figure 4-J.8 (see 
Section 4-J.2) 

Cumulative Index Branch Node Node 

1 1 2 3 
2 3 13 14 
3 5 9 10 
4 12 7 8 
5 9 2 5 
6 11 14 15 
7 10 12 13 
8 13 11 12 
9 4 10 11 

10 7 4 5 
11 8 4 3 
12 6 7 6 
13 14 1 2 
14 2 5 6 

4-J.12 



Table 4-J.2 Sorting table whose generation determines the number 
of irreducible subgraphs in a graph (see Section 4-J.2). 

Connnection Index 
Node 0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

o 000 0 0 0 000 0 

01111111111 

01111111111 

o 0 0 0 0 0 000 0 1 

00000111111 

o 000 0 0 000 0 0 

00004444444 

00004444444 

o 0 0 3 3 3 333 2 2 

o 0 0 3 3 3 3 332 

o 0 000 0 0 022 

o 0 0 000 0 2 2 2 

00222 2 222 2 

o 0 2 2 2 2 222 2 

o 0 0 0 0 0 2 222 

2 

2 

2 

2 

2 

2 

o 
1 

1 

1 

1 

o 

4 

4 

2 

2 

2 

2 

2 

2 

2 

C 
1 
o 
s 
e 
d 

L 
o 
o 
p 

o 1 

1 1 

1 1 

1 1 

1 1 

4 4 

4 4 

4 4 

2 2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

4-J.13 



Table 4-J.3 .~ 

Network Edge Abutments for the example in Figure 4-J.12. 
This example is discussed in Section 4-J.3.3. 

1 Network Edge Start End 
1 2 (3,1 ) (3,3) 
2 4 (1 ,1 ) (1,3) 

2 Network Edge Start End 
2 1 (1,1) (3,1 ) 
3 3 (1,3) (3,3) 

3 Network Edge Start End 
3 4 (1 ,1 ) (1 ,3~ 
4 2 (3,1) (3,3 
5 . 2 (3,1 ) (3,3) 

4 Network Edge Start End 
5 3 (1,3) (3,3) 
1 1 (1,1) (3,1 ) 

5 Network Edge Start End 
1 4 (1,3) (1,1) 

-1 0 

6 Network Edge Start End 
5 4 (1,3) (1,1) ,--...., 

-1 0 

4-J.14 



Table 4-J.4 
Empty Space Abutments for the example in Figure 4-J.13. 

The example is discussed in section 4-J.3.3. 

Empty Space 
Abutment 
Index Network Edge Start End 

1 1 3 (3,3) (1,3) 

2 2 3 (3,3) (1,3) 

3 2 2 (1,3) (3,3) 

4 3 2 (1,3) (3,3) 

5 3 1 (1,1) (3,1) 

6 5 1 (1 ,1 ) (3,1 ) 

7 4 1 (1,1) (3,1) 

8 4 4 (1,3) (1,1) 

4-J.15 



Table 4-J.5 
IABUTS Array for the example of Figure 4-J.12 and 4-J.13. 

The example is discussed in Section 4-J.3.3. 

Index Array 

1 1 

2 2 

3 3 

4 4 

5 2005 

6 2006 

7 1001 

8 1002 

9 1003 

10 1004 

11 ·1005 

12 1006 

13 1007 

14 1008 

4-J.16 



Table 4-J.6 
ICPMAP array for the example in Figure 4-J.12 and 4-J.13. 

The example is discussed in Seeton 4-J.3.3. 

Start/stop 
Index Network Edge Point Matching Flag CPMAP 

(Col, Row) 
1 1 2 (3,1) 0 0.51 

2 1 2 (3,3) 0 -0.51 

3 2 4 (1 ,1 ) 0 -0.70 

4 2 4 (1,3) 0 0.71 

5 2 1 (3,1 ) 0 0.72 

6 3 3 (1,3) 1 -0.66 

7 3 3 (3,3) 1 -0.66 

8 3 4 (1,1) 0 0.65 

9 4 2 (3,1) 0 0.56 

10 4 2 (3,3) a -0.88 r---
11 5 2 (3,1) -1 0.42 

12 5 2 (3,3) a -0.46 

13 5 3 (1,3) 0 -0.44 

14 1 1 (1,1) 0 0.51 

15 1 4 (1,3) 0 -0.51 

16 5 4 (1 ,1 ) -1 0.42 

17 2 3 (3,3) a -0.70 

18 3 2 (3,1) a 0.65 

19 4 1 (1 ,1) 0 0.57 

20 4 4 (1,3) 0 -0.88 

.~ 

4-J.17 



Table 4-J.7 The list of Connections for the example of Figure 4-J.12 
The example is discussed in Section 4-J.3.3. 

Connection CONNCT Array CONNCT Array CONNCT Array 
Index (Initial) (After Sequencing) (After COLCPT Execution) 

A Cp Cp A Cp Cp A Cp Cp 
1 2 3 6 2 3 6 2 3 6 
2 2 5 7 2 5 7 2 5 7 
3 0 a 0 a a a a a a 
4 7 2 2 7 2 2 7 2 2 
5 7 15 15 7 15 15 7 15 15 
6 8 17 17 8 17 17 8 17 17 
7 8 4 4 8 4 4 8 4 4 
8 9 5 5 9 5 5 9 5 5 
9 9 17 17 9 17 17 9 17 17 

10 10 7 7 10 7 7 10 7 7 
11 10 18 18 10 18 18 10 18 18 
12 11 8 8 11 8 8 11 8 8 
13 11 18 18 11 18 18 11 18 18 
14 12 16 16 12 16 16 12 16 16 
15 12 11 11 12 11 11 12 11 11 
16 13 19 19 13 19 19 13 19 19 
17 13 9 9 13 9 9 13 9 9 
18 14 20 20 14 20 20 14 -10 -10 
19 14 19 19 14 19 19 14 19 19 
20 a a a a a a a a a 
21 1 1 3 3 6 10 3 6 10 0 
22 1 2 4 3 6 12 3 6 12 
23 3 8 9 3 10 12 3 10 12 
24 3 8 11 6 13 13 6 13 13 
25 3 6 10 6 16 16 6 16 16 
26 3 6 12 1 1 3 1 1 3 
27 3 9 11 4 13 14 4 13 14 
28 3 10 12 5 15 15 5 15 15 
29 4 13 14 4 12 1 4 12 1 
30 4 12 1 5 14 14 5 14 14 
31 5 15 15 3 9 11 3 9 11 
32 5 14 14 3 8 9 3 8 9 
33 6 13 13 3 8 11 3 8 11 
34 6 16 16 1 2 4 1 2 4 

CECPN Array 

CECPN( 1) = 0 I ;. 10 I = 1,20 
CECPN (1 0) = 20 

4-J.18 



') 
Tab·I ... -~-J.8 -) 

Transition of array CPLST during abutment intersection search in subroutine 
NTRLST for example of Figure 4-J.12. The example is discussed 

in Section 4-J.3.3. 

Connection Index 

Corner 
Point 
Index Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

1 0 1 1 1 1 1 1 1 1 1 
2 0 3 3 333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 0 666 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
5 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
6 0 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 0 22222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
9 0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 8 8 8 

10 0 131313 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
11 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 8 8 
12 0 1 1 1 1 1 1 1 1 1 1 1 1 8 
13 0 14 14 14 14 14 14 14 14 14 14 14 
14 0 14 14 14 14 14 14 14 14 
15 0 4 4 444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
16 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
17 0 555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
18 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
19 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 
20 0 C C C 

1 1 1 
0 0 0 

s s s 
e e e 
d d d 

L L L 
0 0 0 
0 0 0 

""" p p P I 
c.. . 
...... 
\0 



Table 4-J.9 
Abutment Intersections in example of Figure 4-J.12. 

The example is discussed in Section 4-J.3.3 

Intersection Connections Intersection Connections 
Index Index 
1 2 3 6 8 11 8 8 

3 0 10 3 8 9 
14 -10 -10 12 11 11 
3 6 12 3 9 11 

-3 10 12 13 9 9 
1 1 3 -3 8 11 

-4 12 1 

2 2 5 7 9 12 16 16 
10 7 7 6 16 16 
9 5 5 

10 Appended to 8 

3 7 2 2 11 13 19 19 
8 4 4 14 19 19 
1 2 4 

12 Appended to 10 

4 7 15 15 13 Appended to 1 
5 15 15 

.......-..\ 
5 8 17 17 14 6 13 13 

9 17 17 4 13 14 
5 14 14 

6 Appended to 3 

7 10 18 18 
11 18 18 

4-J.20 



Table 4-J.10 PNOD Array for First Intersection 

INDEX PNOD(INDEX) 

1 -2 
2 -3 
3 14 
4 -1 
5 4 

Table 4-J.11 Corner Point and Abutment Arrays for First Intersections 

After Sequencing by 
Downstream Parameter 

Index CPLIST(INDEX) PQ(l , INDEX) PQ(2,INDEX) NFGSEG(INDEX) 

1 10 -3 14 4003003 
2 3 -2 -1 2001001 
3 6 -2 -3 3001 003 
4 12 4 -3 5003003 
5 1 -1 4 1003001 

Table 4-J.12 NODSEG Array for First Intersection 

INDEX NODSEG(INDEX) 
1 3 
2 1 
3 2 
4 0 
5 4 

4-J.21 



,,-..,. 

4_J.ZZ 



N2 Nt 

C~ ~C=t========~A4 ~==============~C~x~ Xc 

N • Network 
A • Abutment 

N3 

C • Corner Point 

3 4 

at Abutment Intersection 

N4 

Figure 4~.2 Example of an Abutment Intersection 

4-J.23 



~ -- ---------
: 2 

" 1', ~2 
n1 : ~ , 

, 1 , 

7 

-, r------
// 
, I 

11 
/I 
/I 

f 

A2 

Fi gure 4-J. 3 An Abutment" In tersecti on wi th 6 Abutments 

A· 
3 

Figure 4-J.4 Another Abutment Intersection with 4 Abutments 

4-J.24 



A2 
C2 Al 

a. 

C3 
C1 

A3 '" 
C4 

A4 
~ 

Paths discussed 
in the Text 

b. 

c. 

Figure 4~.5 Line Segment and Point Diagrams Corresponding to 
Three Abutment Intersections 

4-J.2S 



Figure 4-J.6 An Example of a Graph 

I 

Figure 4-J.7 Illustration of Irreducible Subgraphs 

4-J.26 



• • 

a) The Unlabeled Graph 

1 

6 
14 15 

11.----10 

b) Labeling of Nodes 

3 

1 

12 

c) Labeling of Branches 

Figure 4-J.B ASsignoent of an Index to All Branc~es and Nodes of a Grap~ 4-J.27 
• I 



C 3 

Figure 4-J.9 Abutment Intersections at Collapsed Edges of Networks. Without 
special processing the intersection of abutments Al with A2 and 
A3 would be missed. The special processing is described in ~ 

4-J.28 Section 4-J.3 



OQG: 
ABUTMENT-SPEC INTRSC /MATCHD/ 
EMPTY-SPACE 

-ABUT 
IABUTS 
ICPNAP 
CPMAP 

CONNCT 

OQG: 
COLCPT CECPM 

NETWK-SPEC 

CPLST 

NTRLST 

OQG: 
INTERSECTION 

Fig u r e 4-J. 10 Oata Flow and Program Operation for 
Intersection Construction 

4-J.29 



DQG 
INTERSECTION 

DQG: 
ABUTMENT-SPEC t-----IIN 
EMPTY-SPACE· 

-ABUT 

Fi gure 4-J .11 

4-J.30 .' 

ASSIGN 

ABTINT 

ABASGN 

-"-_ IABUTS _-feop. ... 

_,,"-_ ICPMAP - ....... -f 
_-1--- CPMAP 
--1--- CECPM 

~-I-_ABCPCP 

'-4-- ABLIST 
""'''''--. CPLIST -~I-+"" 

DQG: 
ABUTMENT-SPEC 

EMPTY-SPACE 
-~BUT 

Data Flow and Program Operation for 
Matching Assignment 



~ 
I 

PI ane of 
SYmmetry 

/ 

Figure 4-J.12 COnflguratlo.n for EXample of 
Abutment InterSection Search 

Flow Direction 

4-J.31 



4-J.32 
Flgure.4_J .13 Abutment. In EXample COnfiguration 



-

Figure ~J ?14 Abutment and Corner Point Indexing 

4-J.33 



Figure 4-J.15 Doublet Matching Assignments at the Conclusion of the Abutment 
Intersection Analysis at the End of the (3,4) Overlay of DQG. 

4-J.34 



r" 
I APPENDIX 4-K 

OUTER SPLINE CONSTRUCTION 

~. 
I 

4-K.l 

I 
~ 
I' 
I 
I 



Page Missing in 

Original Document 



r 

4-K.O Introduction 

The fifth overlay of DQG computes the ESP] vectors (see PAN AIR Theory 
Document, Appendix I (Reference 1» at every corner pOint, center point and 
edge mid-point in all of the networks of the configuration. These vectors 
define source and doublet strength at the nine defining points of any 
particular panel in a network in terms of the singularity parameters located 
in that network, or, (in the case of a smooth abutment) in terms of 
singularity parameters located in an adjacent network. In the sixth overlay 
of DQG these spline vectors are 
used to assemble the spline matrices ([8S] and [8D] matrices). For source 
analysis networks the [8

S] matrix is computed separately. It does not use a 
unique ESP] vector for each grid point and therefore does not impose source 
continuity across panel boundaries. Also in the 

sixth overl~ the subpane1 spline matrices ([SPSPLS] and [SPSPLD]) are 
computed from the panel geometry. 

Source and doublet strengths over the surface of a network are defined by 
a complicated series of spline operations which are discussed from a 
theoretical point of view in the PAN AIR Theory Document, Appendix I 
(Reference 1). The fifth and part of the sixth overlays of DQG compute the 
splines in several steps • 

. This appendix discusses mainly the calculation of the outer spline vectors 
[SpS] and [SpD]. Section 4-K.l also discusses, however, how the outer spline 
vectors are assembled to form the spline matrix for a panel. The coding of 
the subpanel spline construction is straightforward and its implementation is 
not discussed. 

Appendix 4-K.l discusses some general concepts and also discusses how the 
outer spline vectors ESP] are assembled into the spline matrix for a panel. 
Appendix 4-K.2 discusses the computation of doublet splines on network edges. 
Appendix 4-K.3 discusses the computation of doublet splines in network 
interiors. Appendix 4-K.4 discusses the construction of source spline vectors. 

The concepts presented in this appendix are difficult. The readers are 
encouraged to study the PAN AIR Theory Document, Appendix I (Reference 1), 
where a more detailed discussion is given, in order to gain a more complete 
understanding of this appendix. 

4-K.3 



4-K.l General Concepts 

Before discussing the splining operations further, it is useful to 
introduce some definitions of items which will be referred to throughout the 
succeeding sections. 

A spline vector is an one dimensional array with a dimension between one 
to twenty possible components. Its inner product with a vector consisting of 
values of singularity parameters in the vicinity of a point gives the value of 
singularity strength at that point. Associated with a spline vector is an 
index vector with the same dimension whose components are the singularity 
parameter indices (see Appendix 4-H) of the surrounding points. 

A unit spline vector is usually defined for each point where a singularity 
parameter is located. It is a vector of dimension one with its component 
equal to unity and with its associated index vector equal to the index of the 
singularity parameter located at the point. 

The splining process takes values of source or doublet strength at 
discrete surrounding points and defines the source or doublet strength at the 
point whose singularity strength is required as a linear combination of the 
strengths at the surrounding points. The coefficients of the linear 
combination are determined from a least squares fit (see PAN AIR Theory 
Document, Appendix I, (Reference 1». Splines are sometimes computed to 
surrounding points whose doublet strength is not due to one singularity 
parameter but is itself another spline vector. The process of computing the 
spline vector which includes this more general case is called accumulating the 
spline vector. 

·Subroutine VECUNV performs the accumulation of the spline vectors. The 
input to the subroutine includes the number of surrounding points to which the 
spline is being performed, a spline vector for each of the surrounding points 
(usually of dimension one), an index vector for each singularity parameter 
(discussed below), the dimension of each spline vector and the set of 
coefficients from the least squares fit. The output consists. of a spline 
vector, its dimension and an index vector for the spline vector. The index 
vector associated with a particular spline vector tells which singularity 
parameter to use to determine the value of singularity strength at the point. 
An example should clarify this concept. 

Suppose that we have a spline vector ESP] = (0.3, 0.25, 0.8) with an index 
vector [ISP] = (23, 45, 21). The index vector means that the value of 
singularity strength at the point which the spline vector refers to is 0.3 
multiplied by the value of singularity parameter number 23 plus 0.25 times the 
value of singularity parameter 45 plus 0.8 times the value of singularity 
parameter 21. Of course the values of the singularity parameters are not 
known until the AIC matrix has been inverted and applied to the right hand 
side in module RHS. Thus, it is necessar,y to maintain the list of index 
vectors to keep track of which singularity values to use to evaluate the 
singularity strength at an arbitrar,y point. 

The problem to be solved in the abstract is the determination of the union 
of a set of vectors lying in separate but possibly overlapping subspaces. For 
example, if we have the three vectors: 

4-K.4 



LX.J = (2, 0, O) 

LXY J = (I, 4, O) 

LXZ J = (1; 0, 2) 

Instead of the above representation each vector is separated into two 
vectors. One contains the non-zero components of the original vector; the 
other indicates which components are non-zero. Therefore, the above vectors 
are represented by: 

LX J = (2) 

lXYJ = (1, 4) 

LXIJ = (1, 2) 

where "X", lIylI, or "l" indicates the corresponding component is non-zero. 

The construction of the union vector [R] consists of the linear 
combination: 

LRJ = Cl~XJ + C2L XY J + C3(Xlj 

This is called the accumulation of the vectors. This union vector is 
constructed by examining the index of each component of each input spline 
vector in order to see if it already exists in the union vector. If it 
already exists in the union vector then the coefficient associated with the 
input vector is multiplied by the component of the vector and the result is 
added to the existing component of the union vector. If it does not exist in 
the union vector, a new component is added to the union vector and the 
coefficient times the component is added to the new component of the union 
vector. In the example discussed above the union vector [R] initially looks 
like: 

with 

After processing the vector ~XYJ the union vector LRJ looks like: 

with 

Finally after the third vector is processed the union vector looks like: 

~RJ = (2Cl + C2 + C3, 4C2, 2C3) with LIRJ = ("X", "y", IIZIl) 

Thus the union vector is as we would have expected if we had kept all the 
components of the vectors lXJ, LXYJ and LXI~ and simply performed vector 
addition. 

The construction of the spline matrix ([8S] and [8D]) from the spline 
vectors (LSpSJ and LSpD~) in subroutine VECUNM is similar to the process of 
accumulating spline vectors except.that the separate entries do not get added 
together, but rather are used to define a separate row of a matrix. An entry 
whose index does not appear in the matrix causes a new column to be added to 
the matrix. 8y special convention the last row of the matrix is used to 

4-K.5 



define the indices of the singularity parameters. Using the data in the 
previous example, the spline matrix [B] constructed from the LX J , LXY J and 
LXZj vectors is defined in the following steps. First, after processing the 
first vector LX J , the matrix is a 1 x 1 matrix of the form: 

[B) = [.2] 
II XII 

Then after processing vector LXY J , the matrix gets an additional column: 

[B] - G :] 

Finally after the LXZj vector is processed, the matrix becomes: 

2 0 0 

[B] = 1 4 0 

1 0 2 

IIXIl lIyll IIZIl 

Note that zeroes fill out columns of previous rows when a new column is 
created. The process is accomplished by subroutine VECUNM in the (6,0) 
overlay of DQG. . 

4-K.l.l Local Coordinate Tranformations for Splining 

The spline computations define variation of source or doublet strength 
over a two dimensional surface. Networks and panels do not have to be flat, 
however. One needs to define a coordinate transformation from the three 
dimensional space to the two dimensional surface on which subpanels are 
defined. Since the value of a spline vector at a point depends on the 
distances to the surrounding singularity parameters it is essential to define 
the coordinate transformation in a manner that approximately preserves the 
distance between two points. 

This kind of coordinate transformation is required for all spline 
calculations at interior points of networks and on the coarse edge of smooth 
abutments. This is done in subroutines XIETAV, SPLTRN and LOC2D in the fifth 
overlay of DQG. 

The relative two dimensional coordinate variation is defined in two 
stages. First a local coordinate system is defined with its origin at the 
point whose spline vector is required. The coordinate axes are defined in a 
manner to be described. They consist in general of a skewed set of two 
dimensional coordinates that lie in some local average plane of the network 
and a third component which is prependicular to the local plane. Subroutine 
XIETAV computes these vectors for most doublet splines and for all source 
splines. Subroutine LOC2D computes these vectors for smooth abutment doublet 
splines. ~, 

4-K.6 



Having defined the local coordinate system, the three dimensional 
coordinates of the singularity parameter are transformed into two dimensional 
coordinates by transforming to the local plane coordinate system, truncating 
the coordinate normal to the local plane, and scaling the remaining two 
coordinates so that if a point lies a certain three dimensional distance from 
the origin, the two dimensional distance computed from the scaled two 
dimensional coordinates is the same as the three dimensional distance. This 
is done in subroutine SPLTRN. 

The skewed axes of the local coordinate system are defined by defining two 
vectors from the four fine grid points adjacent to the point at which the 
spline vector is required. If the fine grid lattice indices of the point are 
(I,J), a vector XI is defined from point (I-1,J) to (I+1,J) and a vector ETA 
is defined from point (I,J-1) to (I,J+1). If the 1+1 or J±l points do not lie 
on the network, the lattice index I or J is used instead. These two vectors 
are not normalized to unit magnitude. A vector along the third coordinate 
axis::ZETA, is defined by the cross product of XI and ETA. The vector ZETA is 
defined as 

{ZETA) = 
{XI} X {ETA} 

SQRT (ASS ({XI} X {ETA})**3/2) 

The coordinate transformation of a point P, is then defined as described 
in the PAN AIR Theory Document, Appendix I, Section 1.1.2.3 (Reference 1). 

4.K.1.2 Spline Computations 

The computation of the spline involves three steps. The first is the 
selection of surrounding points to which the spline is performed. The second 
is the computation of a least squares fit to the surrounding points using a 
particular function. The final step is the accumulation of terms to define 
the spline vector at the required point. This first step is discussed in 
sections 4-K.2 and 4-K.3. The last step has been discussed in the previous 
section. The computation of the least squares fit is straight forward in most 
respects. This section discusses these straightforward concepts. 

The particular funciton which is used in the fit depends on the 
singularity type of the spline. For example, a bilinear function of the form 

S = a + bx + cy + dxy 

is used for source splines. For doublets, a quadratic function 

D = a + bx + cy + (1/2)dx**2 + exy + (1/2)fy**2 

is used. The number of points to be fit, the x and y coordinates of the 
points to be fit, a weight for each point to be fit and the information about 
what functional form to use are provided as inpout to subroutine CQLSF of 
PALIB, the PAN AIR Library (see Section 12 of this Manual). The weighting of 
each point is determined as discussed in the PAN AIR Theory Document Appendix 

( I(Reference 1). Certain points are assigned to be fit exactly. Sy 
convention, any point with a weight greater than 1. is fit exactly. The 
operations of CQLSF are discussed fully in Section 12 of this document. 

4-K.7 



4-K.2 Doublet Edge Splines 

With regard to doublet splines there are four types of edges in PAN AIR: 
smooth edges, analysis edges, design edges and wake edges. Smooth edges 
define doublet distributions which have continuous derivatives across network 
boundaries. They are discussed in Section 4-K.2.l. Analysis edges are 
discussed in Section 4-K.2.2 and design edges in 4-K.2.3. These edges differ 
in the locations of their singularity parameters. There are two types of wake 
edges. The first, Wake I, is identical to analysis edges. Wake II edges are 
simply a constant distribution of doublet strength all along the edge. Wake 
II edges are discussed in Section 4-K.2.4. 

4-K.2.1 Smooth Edge Splines 

Smooth edge splines achieve approximate continuity of doublet derivative 
across network edges by defining spline vectors at points on the network edges 
which depend on doublet parameters in both networks. Only doublet analysis 
networks are permitted to take part in smooth abutments. All of the 
singularity parameters at edge midpoints on the two network edges are declared 
"null" and are not used in computing the smooth edge sp1 ines. Only 
singularities located at the panel centers (and at the corner points on the 
edges which mark the start and end of the smooth abutment) are used for 
defining spline vectors. 

Figure 4-K.1 illustrates the situation at a typical smooth edge. One of 
the two network edges is declared the coarse edge, i.e., the one with fewest 
panels. Spline vectors for the panel corner points along the network edge and 
for the edge midpoints along the network edge are computed for the coarse edge 
in terms of singularity parameters located at center points in both networks. 
The other edge (the fine edge) then has spline vectors defined for it at each 
of its corner points and edge midpoints in terms of the spline vectors already 
computed at three adjacent points on the coarse edge. 

Section 4-K.2.l.l discusses some data structures used in performing the 
calculations. Section 4-K.2.1.2 describes how the spline vectors on the 
coarse edge are computed and Section 4-K.2.1.3 discusses how the spline 
vectors for the finer edge are computed. 

4-K.2.l.1 Data Storage for Smooth Abutment Splines 

Program SAEDGS, the (5,1) overlay of DQG, controls the computation of 
smooth edge splines. The first operation it performs is the storage of 
coordinates of corner point on and near the edges of the smooth abutment. 
These are stored in array CORPT (I,J,K). For K = 1 to 3, this array contains 
the coordinates of the first three rows (or columns) of corner points adjacent 
and parallel to the coarse edge. For K = 4 and 5, it contains the corner 
points on and adjacent to the fine edge (see Figure 4-K.2). 

The second operation is performed by SNGFIL. This subroutine stores the 
singularity indices of the center points required for the fitting procedures. 
SINGDX(I,l) and SINGDX(I,2) contain the singularity indices of the two center 
point rows adjacent to the coarse edge. SINGDX(I,3) contains the indices of 
singularities adjacent to the fine edge. See Figure 4-K.2. 

After storing this data, SAEDGS calls subroutine PARMSA. This subroutine 

4-K.8 



,........, 
I parameterizes both edges in the abutments. See PAN AIR Theory Documents, 

Appendix F, Section F.6 (Reference 1). 

4-K.2.1.2 Coarse Edge Splines 

The coarse edge spline is controlled by subroutine COARSP. First COARSP 
defines unit spline vectors (see section 4-K.l) at the start and end points. 
Then it computes spline vectors for all corner points on the coarse edge 
(except the start and end points). Figure 4-K.3 illustrates the surrounding 
points which are used in the spline calculations. If one of the required 
points run beyond the start or end point of the abutment, then the start or 
end corner point is used in its place. The points in the other network which 
are used in the fit are the two center points adjacent to the corner point on 
the fine edge which is closest to the point whose spline vector is required 
(see Figure 4-K.3). Four points are fit exactly: the two points on the finer 
network and the two closest center pOints on the coarse edge. 

After the corner point splines are computed, the splines for the edge
midpoints are computed. Figure 4-K.4 shows the points selected for fitting on 
ed~e midpoint. To find the points on the finer edge, for each adjacent corner 
pOlnt on the coarse edge the closest corner point on the fine edge is found. 
Then for each center point adjacent to the corner point on the fine edge, the 
one most distant from the edge midpoint is used for the fit. Three points are 
fit exactly. For the first and last edge midpoint, the point selection runs 
outside of the start or end of the smooth abutment. In place of the point in 
the first row, the start or end point of the abutment is used. The point in 
the second row is simply omitted from the fit. 

Subroutines SALSQC and SALSQE select the surrounding points for the corner 
points and edge midpoints. The process of selection means that the spline 
vector at that point (in this case all unit spline vectors) is stored in the 
array BSPL and INDX (coefficient and singularity index), the coordinate of the 
point is stored in COORD, a local two dimensional coordination system is 
defined by LOC2D and the coordinates of the selected points are transformed 
into the local coordinate system. Finally an upstream weighing factor is 
defined for those points which are part of the least squares fit. This 
information is stored in common block /LSQ/. 

A library subroutine CQLSF is used to compute the solution: the 
coeffi ci ent correspondi ng to each poi nt whi ch is ·fi t (see Secti on 4-K.l. 5). 
Then subroutine VECUNV multiplies each spline vector by its coefficient and 
accumulates the product into array BSPLIN. After the spline vector is 
accumulated by VECUNV, it is written to the DQG data base with a key set 
consisting of the network index of the coarse network and the fine grid 
lattice indices of the point which has been splined (see Section 4-H.2). 

In addition, a second data set is written to the DQG data base. This 
contains an alternate spline vector for use when computing spline vectors for 
interior points close to the smooth edge. Figure 4-K.5 illustrates points 
which would use one of the corner points or edge midpoints on a smooth edge 
for the calculation of its spline vector. If the spline vector for the point 
on the smooth edge were used, panels in the vicinity of the interior point 
would depend on too many doublet parameters. (The Partitioned Random Column 
Method employed in module MAG for the Influence Coefficient matrix 
construction assumes that panels depend on at most thirty-one singularity 

4-K.9 



parameters. See Section 5 of this document.) The alternate spline vector for 
the point on the smooth edge is the spline vector of the closer of the two 
center points in the fine network which were used to define the original 
spline vector for the point on the edge. The alternate spline vector data set 
includes the coordinates of the center point on the fine edge. Section 4-K.3 
describes the splining procedures on the network interior. 

4-K.2.1.3 Fine Edge Splines 

After all spline vectors on the coarse edge have been computed, subroutine 
FINESP computes spline vectors for points on the fine edge in terms of those 
on the coarse edge. For each point on the fine edge, two adjacent corner 
points on the coarse edge are found whose parameterizations span the 
parameterization of the point on the fine edge (Figure 4-K.6). The spline 
vectors of these two points and of the edge midpoint between them are used to 
construct the spline vector for the point on the fine edge. A one dimensional 
quadratic fit is made to the three points on the edge by subroutine Q1DFIT. 
This yields a set of three solution coefficients which are used to scale the 
spline vectors for the three points on the coarse edge. The result is 
accumulated by VECUNV to form the spline vector for the point. 

An alternate spline vector (see Section 4-K.2.1.2) is written for each 
point on the fine edge. The alternate point' is the center point of the panel 
on the coarse edge whose points'were used to define the spline vector for the 
fine edge point (see Figure 4-K.6). 

4-K.2.2 Analysis Edge Splines 

Analysis edges have a singularity parameter located at edge midpoints of 
network edge segments and at the start and end points of the edge segment. 
(An edge segment is that portion of a network edge which takes part in a 
single abutment. It can be as small as one panel (two corner points) or as 
1 arge as the whol e network edge.) See Fi gure 4-K. 7. 

The spline procedure is relatively simple. A unit spline vector is 
written for the start and end corner points of the segment. Then a spline 
vector is constructed for each other corner point in the segment. This spline 
vector is con~tructed from the singularity parameters located at the two 
adjoining edge 'midpoints. If d1 and d2 are the distances to the two edge 
midpoints (Figure 4-K.8), the spline vector and its index vector are: 

B = (d2 ,dl ) 
d1 +d2 dl+d2 

I = (1 1, 12) 

(11 and 12 are the singularity indices of the edge midpoints.) 

After spline vectors are written for all the corner points on the edge 
segment, the edge midpoint spline vectors are constructed. The spline vectors 
for the two corner points adjacent to the edge midpoint are read from the data 
base and a unit spline vector is defined for the singularity parameter located 
at the edge midpoint. The three spline vectors are accumulated with 
coefficients of 1/4, 1/4, and 1/2 for the two corner points and the edge 
midpoint respectively. This defines the spline vector for the edge midpoint. 
Thus the spline vectors at corner points depend on two singularity parameters 

4-K.10 



and the spline vectors at edge midpoints depend on three singularity 
parameters (see Figure 4-K.8). 

If a network edge collapses to a point, an alternate procedure is 
employed. The unit spline vector for the first corner point on the collapsed 
edge (in a counterclockwise sense) is read from the data base and is written 
as the spline vector for every point on the collapsed edge. Figure 4-K.9 
illustrates which point is used for the unit spline vector. 

There is one subtle matter regarding analysis edge splines. This has to 
do with the relationship between the lattice index system of labeling points 
and the sequential, counterclockwise sense, manner of numbering points on the 
edge. The edge segment is described by the coarse grid lattice indices of its 
start and end points. These may be in an increasing lattice index direction 
or a decreasing lattice index directon from start to end. The coordinates of 
the corner points on the edge are stored in counterclockwise sense sequential 
order. Thus both the fine grid lattice index of the corner point and the 
counterclockwise sequential index of the point are passed to subroutine CPANAL. 

Within CPANAL is an array IADJEM which, when added to the lattice indices 
for the corner point, gives the lattice indices of the edge midpoint next to 
the corner point in a clockwise sense. The first edge midpoint coordinates in 
the distance calculation are those for the edge midpoint just before the 
corner point, i.e., the point next to the corner point in a clockwise sense. 

Thus the point selection proceeds in a counterclockwise direction starting 
with the most clockwise point. This procedure is necessary so that the 
singularity indices for the edge midpoint are assigned to the right component 
of the spline vector. 

Figure 4-K.10 illustrates the order in which the edge midpoint singularity 
indices are obtained for points on the four edges. 

4-K.2.3 Design Edge Splines 

Design edges have a singularity parameter located at every corner point on 
the edge segment (Figure 4-K.11). The spline procedure for design edges is a 
bit more involved than that for analysis edges. This is necessary for reasons 
of stability (see PAN AIR Theory Document, Appendix I (Reference 1)}. 

Unit spline vectors are defined for the start and end points of the 
segment. Then the edge segment is parameterized (see PAN AIR Theory Document, 
Section 6 of Appendix F.6 (Reference 1)}. Then an intermediate spline vector 
is computed for each edge midpoint in the segment. The intermediate spline 
vector is called the gamma vector (see PAN AIR Theory Document, Section 1.4 of 
Appendix I (Reference 1)}. It is computed by performing a one dimensional 
quadratic fit to the four singularity parameters located at the four adjacent 
corner points on the edge (see Figure 4-K.12). If an edge midpoint is too 
close to the start or end point of the segment, then only three parameters are 
used in the fit. The two closest points to the edge midpoint are fix 
exactly. The end points (when they exist) are fit in a least squares sense. 
The weights defined for the extreme points are from the same upstream weighing 
algorithm described in the PAN AIR Theory Document, Section 1.2.4 of Appendix 
I (Reference 1), with the origin defined to be the coordinate of the edge 
midpoint. 

4-K.11 



After the intennediate spline vectors have been written to the data base, .. ~. 
spline vectors for corner points are defined in a manner similar to the 
definition for analysis edges except that instead of using singularity 
parameters at edge midpoints in the spline, the intennediate spline vectors at 
the edge midpoints are used. Finally, after all corner point spline vectors 
have been written to the data base, the intennediate spline vectors at each 
edge midpoint is replaced by the "true" edge midpoint spline vector which is 
calculated in a fashion similar to the analysis edge spline. It is the 
accumulation of 1/4 times the spline vector for each adjacent corner point and 
1/2 times the intennediate spline vector at the edge midpoint. 

This design edge spline has not been proven to be stable (see PAN AIR 
Theory Document, Appendix I (Reference 1». For this reason an alternate 
sp1ining technique has been defined within DQG by means of the DEFINE option 
of UPDATE (see Section 4-E). If a *DEFINE RESERV is inserted in an UPDATE and 
compilation of DQG, subroutines NTEDGD and CPDSGN will be modified so that the 
intennediate edge midpoint spline vector will become the final spline vector 
and unit spline vectors will be written for each corner point on the edge. 

If this version of design splines is used, it should ony be employed for 
problems where any network edge which meets a design edge has the same 
paneling density. 

4-K.2.4 Wake Edge Splines 

There are two types of wake networks in PAN AIR. The first, WAKE I, has 
singularity parameters located on one edge called the matching edge. The. 
locations of the singularity parameters is the same as for an analysis edge. 
The construction of spline vectors for this edge proceeds in the same fashion 
as in Section 4-K.2.2. The second kind of wake network, WAKE II, has a single 
singularity parameter located at one of the four network corner points. The 
edge for which that point is the first corner point in a counterclockwise 
sense is called a matching edge. A unit spline vector is defined for the 
corner point with the singularity parameter and the same unit spline vector is 
written for each corner point and edge midpoint on the matching edge. This 
defines a constant doublet strength along the edge. 

4-K.3 Doublet Splines for Network Interiors 

4-K.3.1 Analysis and Design Network 

Figures 4-K.13 to 4-K.18 illustrate the general pattern of point selection 
for the interior of analysis and design networks. Figures 4-K.19 to 4-K.24 
illustrate how the point selection proceeds if the required point is not on 
the network, that is, if skipping the required number of steps in the column 
and row index directions moves a point on or over the edge of the network. 

A single procedure was developed to handle the point selection for all of 
these cases. It makes use of the fine grid lattice indices of points in the 
network (see Section 4-H). The different cases are handled by passing to the 
subroutine DATANL different values of arguments. 

The arguments are: ISH(2), a set of "shift" lattice indices; LIMXY(2), a 
pair of limits in the X and Y lattice directions; OVF(2), a set of pointers to 
be used in the case that the lattice indices overflow or underflow; MAXXY(2), 

4-K.12 



the limits of the fine grid lattice indices for the network; andLATXY(2), the 
fine grid lattice indices of the point whose spline vector is required. 

A reference point lattice index is defined as the vector sum of the 
lattice indices of the point "whose spline is required with the array ISH. (It 
does not matter if this point is off the network.) See Figure 4-K.2S. A loop 
on I and J is set up from 1 to LIMXY(l) and from 1 to LIMXY(2) respectively. 
Lattice indices of the surrounding point are defined as: 

LATX = IREF(l) + 2*(1-1) 
LATY = IREF(2) + 2*(J-l) 

. 
If the loop indices are 1 or LIMXY(l) (for I), or 1 or LIMXY(2) (for J), 

the point is skipped. No spline data is defined for it. Otherwise, the LATX 
and LATY variables are passed to LSQDAT which generates the spline vector at 
that point, its index vector and the coordinate of the point. 

If the variables LATX and LATY are less than one (underflow) or greater 
than MAXXY(l) or MAXXY(2) respectively (overflow), they are set to either 1 or 
MAXXY(l) or MAXXY(2). The overflow (OVF(l) or OVF(2» is added to the lattice 
indices. In some cases, if a pOint overflows it is omitted from the fit. 
This is indicated in Figures 4-K.14 to 4-K.24. If both loop indices are not 
equal to 1 and not equal to LIMXY, the point is defined to be fit exactly. 

Table 4-K.l defines the correct values for the arrays ISH, OVF and LIMXY 
in the six cases. The reader is urged to verify that the values yield the 
required set of pOints in the various situations. 

Several exceptions are introduced to the procedure for handling some 
special cases. 

If an edge of a design network collapses, the splines for center points in 
the column or row adjacent to the collapsed edge will be singular since two 
identical points are fit exactly. For this reason, if a point is the second 
point on a collapsed edge, no exact constraint is defined for this point. 
(Identical pOints may appear in the least squares portion of the fit without 
difficulty. ) 

If the fitting procedure were followed for one column or one row network, 
the spline would also be singular for simple geometries since all points would 
lie on two straight lines. Additional points are added to the spline to 
prevent this (see Figure 4-K.26). 

If a point on the network edge which is selected as one of the surrounding 
points and that point is part of a smooth abutment, then alternate spline 
vector data are read from the data base. These alternate data defines a 
spline vector and coordinate of a point on the other network with which the 
smooth abutment is formed (see Section 4-K.2.1.3). If this procedure were not 
followed, panels near the smooth edge would depend upon too many singularity 
parameters (I 31) for the Partitioned Random Column method in the MAG module 
to functi on. 

4-K.3.2 Wake Networks 

Wake networks have constant doublet strength in a direction perpendicular 
to the matching edge. Thus for each point on the matching edge, the spline 

4-K.13 



vector is read from the DQG data base. Then for every point in the column 
(row) perpendicular to the matching edge row (column), the spline vector for 
the edge point is written with a key set containing the fine grid lattice 
indices (see Appendix 4-H) of the interior point. 

4-K.4 Source Spline Point Selection 

Selection of points for source splines is much simpler than the doublet 
procedures. Figure 4-K.27 illustrates the points selected for source analysis 
network splines. Point selection is similar to that in Section 4-K.3. A 
reference point is defined by shifting the lattice indices of the point whose 
spline is requir~d. Then spline vectors for the four surrounding points are 
obtained for the fit. Note that if any of the points overflow or underflow, 
the reference point is shifted so that all of the points are on the network. 
Spline vectors for source analysis networks are defined for corner points and 
center points. 

One panel column or one panel row networks are a special case. Splines 
are constructed from the two nearest center points. In this case the source 
strength is a linear instead of bilinear function. See Figure 4-K.28. Source 
design I networks have singularity parameters located at ever,y corner point. 
Unit spline vectors are written for every corner point. Spline vectors for 
center points are defined to be of length four with equal amplitudes of 1/4, 
and index vector consisting of the four singularity parameter indices at each 
corner of the panel. 

Source design II networks have singularity parameters located at panel 
edge midpoints. One panel column or one panel row networks are not allowed as r'\ 

Source design II networks. Spline vectors for center points are of length two 
and each component has an amplitude of 1/2. The spline vectors for edge 
midpoints located on panel edges transverse to the matching edge are defined 
by the four surrounding singularity parameters. Figure 4.K-29 shows the 
pattern of point selection for the spline vectors of a source design II 
network. 

4-K.14 



ISH 

LIMXY 

OVF 

Table 4-K.l Values for arrays ISH, LIMXY and OVF. 
These are used to select surrounding singularity parameters for 
design and analysis networks and for the varouts types of points 

for which splines are computed • 

•••••••••••• Analysis ••••••••••• • •••••••••• Design •••••••••••• 

Column Row Column Row 
Corner Edge Edge Center Edge Edge 

Midpt Midpt Midpt Midpt 
. 

(-3, -3) (-2, -3) (-3, -2) (-3, -3) (-3, -2) (-2, -3) 

(4, 4) ( 3, 4) ( 4, 3) (4, 4) (4, 3) (3, 4) 

(1, 1) (0, 1) (1, 0) (0, 0) (0, 0) (0, 0) 

4-K.1S 



• 

• 
Start Points 

of Abutment .. 

• • • 

4-K.16 

. 
• • • • 

• • • • 

• • • • • • • • 

Figure 4-K.l Singularity Parameters Used 
for Smooth Abutment Spline Calculations 

• 

. ~ Stop POlnts 

of Abutment 



K=3 

K=2 

K=l 

K=4 

• 

K=5 

Coarse Edge Network 

I~ 

• 

. 
• • • • • 

• • • • • 

• • • • • • • • • 

Fine Edge Network 

• Singularity Parameter Stored in Array SINGDX(I,J) 

o Corner Points Stored in Array CORPT(I,J,K) 

SINGDX(I,2) 

SINGOX(I.l) 

• SINGDX(I,3) 

Figure 4-K.2 storage at Corner Point Coordinates 
and Singularity Parameter Indices 

4-K.17 



4-K.lS 

. 

• ® ® • • 

~ f!J l!J ® • 

~ 
Closest Corner Point on Fine Edge 

Ii) I!I • • • • • • • • • • 

a Point for Ex ct a Fit 
o Point for lease Squares Fit 
x Point for which Spline is to be Computed 

Figure 4-K.3 Surrounding Singularities for Corner Point Spline 
Computation on Smooth Edge 



Adjacent Corner Point /j I 
/ . 

• .\ ® f • 

• ® \ liJ I ® • 

Closest Corner Point to Adjacent Corner Point 

• • • • • 

Most Distant Center Points Adjacent to Closest Corner Point 

o Point for Exact Fit 
o Point for Least Squares Fit 
x Point for which Spline Vector is to be Computed 

Figure 4-K.4 Surrounding Singularities for Edge 
Midpoint SpJine Computation on Smooth Edge 

4-K.19 



. 

• • • • • 

• Iii • I!J • 
.... -, V' " V 

10' 

• • • • • • • • • • • • 

8 Interior Point which Uses Alternate Spline Vector 
o Point Chosen for Spline if Edge is Not Smooth 
o Location of Point Used as Alternate Spline Vector 

Figure 4-K.S Alternate Spline Vector Selection 

4-K.20 



• • • • • 
C\ 

• • ( • _f:~ • 
,..k' ~ 

t " .~ ~ 
\ 

• • • 
I~~ 

• • • • 1\ • 1\ • 

• Point for which Spline Vector is Required 
a Poi nt Used for Quadrati c Fi t 

a Point Used for Alternate Spline Vector 

Fi gure 4-K. 6 Point Selection for Alte-rnate Spline Vectors 

4-K.21 



Start End 

-

Figure 4-~7 Location of Doublet Parameters on an Analysis Edge 

Figure 4-K~8 Dependence Qf Spline Vectors for Analysis Edges 
on Surrounding,Singularity Parameters 

4-K.22 

• 



Corner Poi nt 
if Edge 4 ~ 
Collapses 

Edge 4 

\ 
Corner Point 
if Edge 1 
Collapses 

Edge 3 

Edge 1 

Corner Point 
if Edge 3 
COllapsey 

Edge 2 

Corn er Point 
dge 2 

ollapses 
if E 

C 

Figure 4-K.9 Unit Spline Point for Collapsed Network Edge 

4-K.23 



Edge 3 

2 1 

1 

Edge 4 

1 2 2 

1 

1 2 

• 
Edge 1 

Increasing lattice index direction 

4-K.24 

Figure 4-K.I0 Sequence of Edge Midpoint Selection 
for Splining Corne~ Points on Analysis Edges 

f 
Edge 2 



I---
t-- - -

Figure 4-K.l1 Singularity Parameter Location~ 
for Design Edges of Networks 

-

Figu~e 4-K.12 Singularity Parameters for Intermediate 
Spline Vector Construction 

4-K.25 



Row r 

Column ~ 

• Point where spline vector is re"quired 

8 Point for exact fit 
x Point for least squares fit 

Figure 4-K.13 

4-K.26 

Surrounding Point Locations for Corner Splines 

for Doublet Analysis Network 



ROW-, 

Column ~ 

• Point where spline vector is required 

8 Point for exact fit 
x Point for least squaresfit 

,-_ Figure 4-K.14 Surrounding Point Locations for Column Edge Midpoint 
Splines of Doublet Analysis Network 4-K.27 



Row r 

Co 1 umn ---to 

• Point where spline vector is required 

s Point for exact fit 
x Point for least squares fit 

Figure 4-K.15 Surrounding Point Locations for Row Edge Midpoint Splines. 
for Doublet Analysis Network ~ 

4-K.28 



Row r 

Column ~ 

• Point where spline vector is required 

& Point for exact fit 
x Point for least squares fit 

Figure 4-K.16 Surrounding Point Locations for Corner Point Splines 

for Doublet Design I Networks 

4-K.29 



Row t 

Column _ 

• Point where spline vector is required 

e Point fit exactly 
)It Poi nt fi tin 1 eas t squares sense 

Figure 4-K.17 Surrounding Point Locations for Row Edge Midpoint Splines 
for Doub 1 et Des i gn I Networks " 

4-K.30 



Rowi 

• Point where spline vector is required 

a Point fit exactly 
x Point fit in least squares sense 

- -- --- .-------_ .. _ ...... 

Figure 4-K.18 Surrounding Point Locations for Column Edge 
Midpoint Splines for Doublet Design I Networks 

4-K.31 



Row r 

I -----,-- --
I 
I 

- - - - - -1- - - - -

Omit 
x 

-- ----"----
:/ 
, x 

I 
I 

x x 

® ® 

® ®. 

-- ----:----- : /: x J : 

I I x I I , !.- 1 ______ -.l __ o!"j~ __ , ________ ~------
------,---- I 

I I J I I 
, I I I 
I I I I 

Col UlIII--+ 

Figure 4-K.19 Point Selection for Corner Point Near Edge, 
~An aJ-y sistte.twQ.r.k Om tt 

4-K.32 



r 

I 
J _____ L ___ _ 
J 
I 
I 
I 
I 
I 
I ------T----

------1'-- ---
I 

I 
1 
I 

x 

® 

-------f- - --: /1, 

x 

(~) x 

1 x I x I 

ROW[ -----~-- ---~- - ----r~-om~:. __ :- --- ----~ -- ---
I I 
I I 

Column---+-

Figure 4-K.20 Point Selection for Row Edge Midpoint Near Edge, 
Analysis Network 

4-K.33 



, 
I _____ 1.. ___ _ 
I 
I 
I 
I 

I 
------T---~ 

I Omit 
I. 
I x 
I 
I 

~----- ... ----: / 
I x 

I 

x 

® x 

® x 

------.-.1- - --
f I I I I 

Row r 
I 

: I x I I 
_____ ~-----~------~--- ____ L _____ __ ~ ____ _ 

I I I 
I I I 
I I I 
I Column--+-

Figure 4-K.21 Point Selection for Column Edge Midpoint Near Edge~ 
Analysis Network 

4-K.34 

." 

I 



.r 

- --- - _L --- -- -+------+------f.-------4-----• I 
I 
I 
I 
I 
I - ---- -7---- -+-----+-----f-------4----
I 
I 
t 

------~-(i1~----(iII)~---............. ------+----
I 

• I 

V\ ------ r --~~i'~---(~r..liI!if-----......; ... :--------f:------
Ro~ i -----~-----.. -----.... --- ____ L - - - -- --T-- ---

I I I I I 
I I I I 
I I I 
I Col UITUl---+ 

Figure 4-K.22 Point Selection for Center Point Near Edge, 
Design Network 

4-K.35 



Rowf 

, 
I 

- - - - _L -- ---I------I------f-------t----I 
I 
I 
I 

I 
------T-~--

I 
I. 
I 
I 

------~- ---... ----4~---......j~-----_t----

~----~--------+---------~-----~ --------1- - ---4 

I I C I 

-----L----L----l------L----- --J-~---
I I I : 
I I : I 
I I 
I Column--+ 

Figure 4-K.23 Point Selection for Row Edge Midpoint,Near Edge, 
Design Network 

4-K.36 



l 
I 

- - - - ~J. -- --4-----+-----+-.;....-----f-----I 
I 
I 
I 
I 
I 
I - ---- -T---- -+----..... -----;~------r----
I 
I. 
I 

:~ ------~- - -~4)~---~-----Ir_-----_t----

----~-_4- - - -.. ----.... -----f-------+-----
I 
I I 

. I 

I 
: I I . I 

L. t- ___ L - - - - - -- T -- --------,-,-----r------ ----
I I I 

I 
I 

Column-

I I 
I I 

Figure 4-K.24 Point Selection for Column Edge Midpoint Near Edge, 
Design Network 

4-K.37 



Rowj 

4-K.38 

/-/ / ///// //// // // ///./ 

~ x x / 

V ~ / 

V ~ 
/ 
/ x x x x / 

/ 
/ 
/ 

V V / 

/ )( ; 
~ / 

x x 
/ 
./ 

~fertnc! / 

x x ~ V PoiRt 
V//// '////./ //// "/7// V///~ 

Column -

Figure 4-K.2S Illustration of Operation. of Algorithm which Selects 
Surrounding Points for Spl ine Computations 



,.. C\ \ 
x Omit 

'<WI' -
X X X )( 

~ t:::lI. -/ 
-

x )( Omi t 

® Extra Points for One Col umn/One Row Network Spl ine· 

Figure 4-K.26 Surrounding Point Locations for One Row Network 

4-K.39 



Row 1 
)C-

4-K.40 

x 

x X" / 
x / " 
x 

Column _ 

Figure 4-K.27 Surrounding Points for 
Source Analysis Spline Computation 

,~ 

,'\ 



x 

t Source constant in this direction 

Figure.4-K.28 Source Spline Point Selected for 
One Column/Row Networks 

4-K.41 



4-K.42 

.~ 
• 

t 

Row r 

~, 
/ 

~ ~ 
~. 

~ ~ 
Matching edge 

Column .. 

Figure 4-K.29 Surrounding Points for Source Design II 
Spline Computation 



APPENDIX 4-L 

GAP FILLING PANELS 

4-L.l 



Page Missing in 

Original Document 



4-L.O Introduction 

Gap filling panels are automatically added at any abutment where the 
distance between network edges in the abutment exceeds the user specified 
tolerance distance (unless the user indicates that they are not to be used as 
discussed in the PAN AIR User's Manual, Section 7 (Reference 2». Figure 
4-L.l illustrates the situation. A theoretical discussion of gap filling 
panels occurs in the PAN AIR Theory Document, Appendix F, Section F.6 
(Reference 1). 

4-L.l Gap Panel Construction 

Construction of gap filling panels begins with the identification of one 
network edge as the most densely paneled. This is the reference edge. This 
edge is then parameterized (see PAN AIR Theory Document, Appendix F, Section 
F.6 (Reference 1». Next a loop is set up over all other network edges in the 
abutment. The other edge is parameterized and the two parameterizations are 
merged and sequenced in ascending order. 

For example, one sequence of parameterizations might be 

0, 0.1, 0.2, 0.3, 0.4, 0.8, 1.0 

and the other might be 

0.,0.15,0.23,0.3,0.41,0.8,0.9,1.0 

After merging and sequencing the new sequence becomes 

0.,0.,0.1,0.15,0.2,0.23,0.3,0.3,0.4,0.41,0.8,0.8, 0.9, 1.0,1.0 

The merged sequenced array of parameterizations is used to generate the 
gap filling panels. Each successive pair of entries in the array are used to 
define two coordinates on each of the two edges. 

For example, for parameterizations 0.4 and 0.41 in the example above, the 
coordinates of a point 0.4 along the length of the first segment is computed 
and another 0.41 along the way of the first segment. This is also done for 
the other network edge. These four points become the four corner points of 
the gap filling panel. 

The edge lengths of the panel edges are computed. If all edges are larger 
than the tolerance distance, the .remaining gap panel data is computed (see 
below). If only one edge is short, the corner points of the short edge are 
redefined so that they are exactly the same point and a flag is set indicating 
the panel is triangular. 

If more than one edge is short, the panel is omitted from the problem: no 
IIGAP-PANEL II data set is written to the DQG data base. 

A gap filling panel is assigned to a panel on each network edge other than 
the reference edge if the network edge contains two corner points of the gap 
filling panel. 

4-L.3 



Some care must be taken in the definition of gap filling panel to assure that .~ 
its normal points in the same general direction as the panels along the 
network edge. 

The data provided for gap filling panels are the corner points, edge 
midpoints, and center point coordinates of the gap filling panel, the network 
and panel to which it is assigned, the parameterizations of the two corner 
points and edge midpoints of both the gap filling panel and the network panel 
to which the gap panel belongs, and a flag indicating whether a panel is 
triangular. 

For abutments with a plane of symmetry, a different construction procedure 
is used. The corner points of the gap filling panel are defined as the two 
corner points of the panel on the network edge and the orthogonal projection 
of the two points to the plane of symmetry. 

The spline vectors for the gap filling panel are defined from the spline 
vectors at the corner point and edge midpoint of the panel to which the gap 
filling panel is assigned. A quadratic function along the panel edge is 
defined which fits the parameterizations of its corner points and edge 
midpoints. This function is evaluated at the parameterizations of three gap 
filling panel points (that is, the two corner points and the edge midpoint 
between them). The coefficients from this evaluation are used to accumulate a 
spline vector (see Section 4-K.l) for each of the three gap filling panel 
points on the edge. The same spline vectors are written for the two 
additional points perpendicular to the edge of the panel to which the gap 
panel belongs. See Figure 4-L.2. 

The gap filling panel data set is keyed by a cumulative index counting the 
number of gap filling panels. The spline vectors are keyed by a dummY network 
index which is the cumulative gap filling panel index, and by dummy lattice 
indices (see Figure 4-L.2). The effect is as though the gap panel were a one 
panel network. When panel data is computed for the gap filling panels, the 
data is written with a keyset of zero for the network index, and the 
cumulative gap panel index and the number one for the panel lattice indices. 
A dummY IINETWORK-SPEC II data set is also written for gap filling panels. It 
treats them as a single 1 X N panel network where N is the number of gap 
filling panels. 

One special feature concerning triangular gap filling panels should be 
noted. If the collapsed edge of a gap filling panel is on the edge opposite 
the network to which the gap panel belongs, the spline vector generation will 
in general produce a multiple valued doublet strength at the collapsed edge. 
To avoid this disastrous situation, if any gap filling panels have this 
property, they are ignored, that is they are discarded as if they had more 
than two short edges. The effect on the doublet strength of this action has 
not been investigated. See Figure 4-L.3. 

4-L.4 



Network 1 

• Gap Filling 
Panels 

-I 
Tolerance 

Network. 2 

No gap filling panels are added here because the panels have two 
edges which are shorter than the tolerance distance. . 

Figure 4-L.l Addition of Gap Filling Panels to an Abutment 

4-L.5 



1,2) 

(I,!) 

(2,3) 

(2,2) 
° 

(2, 1.) 

Network 1 

Gap Filling Panel 

(3,1) 

Network 2 

.Pane1 Points which generate spline fo~ gap fi1 ing panel 

°O
X} Spline vecta~s for gap panel poirits 

Figure 4-L.2 Indexing of points in a gap filling panel for use 
defining gap filling panel spline vectors 

4-L.6 



Network 1 

Network 2 

Figure 4-L.3 Excluded Special Case of Multiple Valued Doublet Strength 
for Gap Filling Panel 

Doublet strength is constant along lines between networks. Thus if doublet 
doublet strength at the three points on network 2 are not equal, they give 
rise to an infinite derivative of doublet strength at the intersection 
point on network 1. In general the strength at the points on network 2 
are equal. 

4-L.7 



APPENDIX 4-M 

SELECTION OF BOUNDARY CONDITIONS 

4-M.l 



Page Missing in 

Original Document 



.r 

4-M.O Introducti on 

The fourth overlay of DQG selects the appropriate bounda~ conditions to 
be imposed at each control point. The control points fall into three 
categories. Center control points are control points which lie at panel 
centers. Edge interior control points (refered to as edge control points) are 
those network edge control points which also lie on panel edge midpoints. The 
remaining control points are refered to as corner control points. They 
include network corner control points and the additional control points added 
by DQG to impose doublet matching at certain abutment intersections. 

The algorithm used to assign boundary conditions depends on the control 
point type. Sections 4-M.1, 4-M.2 and 4-M.3 discuss the boundary condition 
assignments for center, edge and corner control points respectively. The 
boundary conditions may be subdivided into three groups: user specified, 
degenerate and DQG assigned. It is assumed here that the reader is familiar 
with the discussion of the formulation of the different boundary conditions 
found in Appendix H of the PAN AIR Theory Document (Reference 1). The 
assignment of user specified boundary conditions depends on a hierarchy. The 
implementation of the user specified bounda~ condition hierarchy will be 
discussed in section 4-M.4. 

Before any boundary condition is assigned the number of bounda~ 
conditions that need to be imposed at each type of control point is 
determined. Program BNDYDF first counts the number of null boundary 
conditions at a control point. Bounda~ conditions will need to be imposed to 
bring the total number (including null boundary conditions) to at least two. 

4-M.1 Selection of Boundary Conditions at Center Control Points 

The selection of boundary conditions of center control points is made in a 
straight-forward manner in subroutine CNCPBC. User specified boundary 
conditions are assigned for each control pOint first. If the network lies in 
a plane of symmetry then degenerate boundary conditions replace the user 
specified bounda~ conditions. An anti symmetric boundary condition is 
replaced by a degenerate doublet boundary condition and a degenerate source 
replaces a symmetric boundary condition. 

4-M.2 Selection of Boundary Conditions at Edge Interior Control Points 

The boundary condition selection at edge control points is considerably 
more complicated than at center control points. The complications arise 
because a network edge may be in a plane of symmetry, on a plane of symmetry, 
on both planes of symmetry, or-on neither planes of symmet~. The various 
pos~ites are explained in Appendix H of the PAN AIR Theo~ Document 
(Reference 1). A sequence of subroutines is used to assign boundary 
conditions at edge points. Subroutine EDGECP reads the input boundary 
condition data, obtains the geometric data, initializes the output arrays and 
then calls subroutine ASGNBC. This subroutine prepares the user specified, 
matching and degenerate boundary conditions. DEGOUT determines if the 
assigned bounda~ conditions in the output array has the appropriate symmetry 
type. If it is not appropriate then it is replaced by a degenerate boundary 
condition. 

4-M.3 



For network edge and corner control points only one boundary conditon is 
normally required. The symmetry type of this boundary condition is determined 
by the network singularity type. It may happen that the first boundar,y 
condition specified by the user has a different symmetry type. In this case 
DEGOUT swaps the order of the user specified boundary condition in order to 
assign the boundar,y condition with the same symmetry type as the needed 
boundary condition. 

4-M.3 Processing of Boundary Conditions at Corner Control Points 

The most complex aspect of the corner point boundary condition assignment 
is the assignment of boundary conditions to insure doublet matching. The 
matching assignments are made in subroutines ASSIGN and ABTINT in the third 
overlay of DQG. At the end of the third overlay the matching information is 
written to the SPECIAL-POINTS data set in subroutine MTCHPT. The fourth 
overlay reads SPECIAL-POINTS data and interprets the matching data, assigns 
matching conditions and then writes out BNDRY-CONDN-SPEC data. This section 
describes how the matching data in the SPECIAL-POINTS data set is used to 
generate matching boundar,y conditions. 

Arrays MCHCRP(20:4:2) and KSPPOS(20) in the SPECIAL-POINTS data set 
contain the information needed to assign matching conditions. The array 
KSPPOS(I) contains a value between 0 and 3. The value 0 indicates that the 
Ith special point is not on any plane of symmetry. Values of 1, 2 and 3 
indicates that the special point is on the first, second and both p1ane(s) of 
symmetry respectively. The first index of MCHCRP refers to the special 
point. The second index refers to the symmetr,y condition. The third index 
refers to singularity type, 1 implying doublet and 2 implying source, although 
source matching cannot occur at corner pOints in PAN AIR. (Vorticity matching 
is also not imposed at corner points in PAN AIR.) Pointer spaces are provided 
to facilitate future modifications. If MCHCRP(I,J,l) contains 1 it means that 
the Ith special point of an edge E is to be used for doublet matching across 
the abutment in which edge E takes part. Furthermore if KSPPOS(I) is nonzero 
then the matching condition is aSSigned only for the Jth symmetry condition. 
However if KSPPOS(I) were zero (the Ith corner point is not on any plane of 
symmetry) then the assignment of the boundar,y conbdition would be independant 
of symmetr,y condition and if MCHCRP(I,l,l) contains 1 then the matching 
condition would be assigned to all symmetry conditions. The SPECIAL-POINTS 
dataset is keyed on network edges. A network corner point is defined by two 
edges. Therefore the matching condition at a corner point may be used to 
match doublet strength across either edge. In the fourth overlay of DQG 
subroutine EDGECP inspects the SPECIAL-POINTS data from the two adjacent edges 
and combines the matching flags to define a single matching flag, IMTCH. Then 
whenever IMTCH is not zero a matching boundar,y condition is assigned instead 
of a user specified boundary condition. 

4-M.4 User Specified Boundary Conditions 

The general form of the boundar,y condition equation as stated in the PAN 
AIR Theory Document, Appendix H (Reference 1) includes perturbation terms of 
average normal mass flux, average potential, tangential average velocity, 
difference normal mass flux (source), difference potential (doublet), and 
tangential difference velocity (doublet gradient). The coefficients of most 

4-M.4 



of these terms vanish for the typical case. 

For most problems the user specifies two boundar,y conditions for every 
center control point. They may be specified in any order. Points on the 
network edge usually receive only one boundary condition. For simplicity, the 
user may specify the same two boundary conditions for the edge points as for 
the center points. DQG must select one of the boundary conditions to impose 
at the edge points. 

Although the boundary conditions can be specified in any order, DQG must 
assign them according to a particular hierarchy. This hierarchy .is: 

1. difference potential (doublet) 
2. average potential 
3. average normal mass flux 
4. tangential average velocity 
5. tangential difference velocity (doublet gradient) 
6. difference normal mass flux (source) 
7. anything else 

The procedure DQG uses to determine where the boundary conditions fit in 
the hierarchy merits some discussion. There are ten possible coefficients in 
the general boundary condition equation. A vector of length ten is defined 
(selection vector, SELVEC). Each component corresponds to one of the 
coefficients in the general BC equation. The vector is initialized to zero. 
For each coefficient which does not vanish the corresponding component of the 

~ vector is set to unity. The correspondence between the components of SELVEC 
and the boundary condition coefficient is listed below: 

Component 

1 coefficient of average normal mass flux 
2 coefficient of average potential 
3 x component of tangent vector for average velocity 
4 y component of tangent vector for average velocity 
5 z component of tangent vector for average velocity 
6 coefficient of difference normal mass flux (source) 
7 coefficient of difference potential (doublet) 
8 x component of tangent vector for difference velocity (doublet gradient) 
9 y component of tangent vector for difference velocity (doublet gradient) 

10 z component of tangent vector for difference velocity (doublet gradient) 

An array of projection vectors SVP(10,2,6) is defined. The first index 
varies over the components of the selection vector. The last index is over 
the six hierarchical categories. The middle index defines two complementary 
vectors. For example, SVP(I,l,l) = (0,0,0,0,0,0,1,0,0,0) 

SVP(I,2,l) = (1,1,1,1,1,1,0,1,1,1) 

This indicates (SVP(I,l,l» that the seventh coefficient of difference 
potential (doublet) does not vanish and (SVP(I,2,1) all other coefficients 
vanish. 

4-M.5 



Note that a boundary condition specifying doublet gives 

SVP(I,l,l) • SELVEC(I) = 1 

and 

SVP(I,2,1) • SELVEC(I) = 0 

The other five vectors SVP are defined in a similar fashion to allow 
specification of the hierarchical position of the boundary condition. 

If the user boundary conditions do not fit in the six categories, they are 
used in the order the user has defined. 

4-M.6 



5.0 MAG MODULE 

The primary function of the MAG module is to generate the MAK database 
which contains in particular the following three datasets • . 
(1) The AIC-MATRIX dataset giving the aerodynamic influence coefficient matrix 

[AIC] for each symmetry condition required by the user's problem 
formulation. 

(2) The IC-MATRICES dataset contai.!ling t.!te"influence coefficients that 
describe the dependence of ~, v or w·n at selected control points upon 
the configuration's global singularity parameters. 

(3) The MAG-PANEL-DATA dataset containing the essential panel data needed by 
the FOP module of PAN AIR. 

These three datasets constitute the principal outputs from MAG. We. begin 
this maintenance document for MAG by presenting a complete table of contents, 
listing the topics discussed. 

5.1 



TABLE OF CONTENTS 

5.0 MAG Module 5.1 

5.4 

5.4 
5.7 
5.9 

5.1 Introduction 

5.1.1 
5.1.2 
5.1.3 

Formulation 1, Morino's Method 
Formulation 2, Hess' Method 
Definitions of Influence Coefficients 

5.2 MAG Overview 5.13 

5.2.1 Purpose of MAG 5.13 
5.2.1.1 The Principal Datasets, AIC-MATRIX and 

IC-MATRICES 5.13 
5.2.1.2 The Principal Dataset MAG-PANEL-DATA 5.18 
5.2.1.3 The Auxiliary Datasets DATA-BASE-HEADER 

and SYMMETRY 5.18 
5.2.1.4 The Auxiliary Datasets COlMAP, COlMAP-

INVERSE and COlMAP-BUlK 5.18 
5.2.1.5 The Auxiliary Datasets ROWMAP, ROWMAP-

INVERSE and ROWMAP-BUlK 5.19 
5.2.1.6 The Matching Condition Datasets 5.19 
5.2.1.7 The PANEL-GROUP Dataset 5.20 

5.2.2 MAG Input/Output Data 5.21 
5.2.3 Data Base Interfaces 5.22 

5.3 Module Descriptions 5.23 

5.3.1 Overall Structure 5.23 
5.3.2 Overlay Descriptions 5.23 

5.3.2.1 MAG10, Overlay (1,0) 5.23 
5.3.2.2 MAG20, Overlay (2,0) 5.25 

5.3.3 MAG Databases 5.26 
5.3.3.1 PANDTA Database: Random Access to Minimal 

Panel Data 5.27 
5.3.3.2 FPDQ Database: Sequential Access to 

Minimal Panel Data 5.28 
5.3.3.3 ICTP Database: Sequential File Storage of 

the Influence Coefficients for a Control 
Point Block 5.28 

5.3.4 Data Flow 5.31 

5.4 lower level Functions 5.32 

5.32 
5.36 
5.37 

5.2 

5.4.1 
5.4.2 
5.4.3 

Functional Decomposition 
Functional Decomposition for the PIVC Subassembly 
Subroutine Descriptions 

.~ 



r 

TABLE OF CONTENTS (cont.) 

5.5 Figures 5.39 

5.1 Data Base Relationships 5.39 
5.2 Overall Program Structure Diagram, Including PIVC 

Subassembly 5.40 
5.3 Sublibraries Used by MAG 5.41 
5.4 Data Flow Diagram for MAG Giving Data Activity by Map 

Name 5.42 
5.5 List of All Map and File Names 5.43 

Appendices 

5-A Programming Aids: Extraction Programs for MAG 

5-A.1 

5-A.2 
5-A.3 

FDPRNT: Extract Subroutine Functional 
Decompositions 
SDPRNT: Extract Subroutine Descriptions 
MDPRNT: Generate an Indexed Listing of a Master 
Definition 

5-B Data Base Communications Charts 

5-C Dynamic Memory Management and Program Limit Parameters 

5-D The PIVC Subassembly 

5-E Panel Defining Quantities in MAG 

5-F Printed Output and Programming Aids 

5-F.1 
5-F.2 

Print Flag Controlled Output 
Error Conditions Detected by MAG 

5-G Handling Closure Boundary Conditions in MAG 

5-H Alternative Problem Formulations 

5-H.1 
5-H.2 
5-H.3 

Formulation 3, The Modified Morino Method 
Formulation 4, The Direct Velocity Formulation 
Summary of the Four Formulations 

5-A.1 

5-A.2 
5-A.6 

5-A.1O 

5-B.1 

5-C.1 

5-0.1 

5-E.1 

5-F.1 

5-F.1 
5-F.4 

5-G.1 

5-H.1 

5-H.1 
5-H.3 
5-H.5 

5.3 



5.1 INTRODUCTION 

Within the general context of numerical methods for the solution of 
partial differential equations, the method which PAN AIR uses to solve the 
potential flow equation is the method of collocation applied to a boundary 
integral equation. In order to understand how MAG fits in to this general 
scheme, it is useful to consider the formulation of a specific problem. 

Consider the figure below which summarizes the essential aspects of the 
problem of incompressible potential flow about a sphere, B. We will consider 

.... ~(p) - - - -.... UQJ Total Velodty • V • Ucu + v • Ucu + v tIJ 

::: Perturbation Velodty • v • vtIJ .... .... .... .... Continuity: v. v • v 2 '" • 0 , -" - - " c:;;.. Impermeable Surface: V. n • (Ucu + v). n • 0 

two different methods of formulating this problem as a boundary integral 
equation. The principle difference between these two formulations is the way 
in which they define _ interior to the sphere. Since _ in the interior of the 
sphere is of no interest anyway, each formulation can be regarded as being 
equally legitimate, at least from a theoretical point of view. 

5.1.1 Formulation 1, Morino's Method [~ • 0 inside B] 

Here we set _(p) • 0 for PeB. Consequently, by the uniqueness theorem 
for the solution of laplace's equation, V_ • 0 for all peB, and in 
particular, (a_/an)p_ • o. (p_ is a point on the boundary of B. just inside 

B). It is also true, obviously, that ~(p_) • O. In view of the definitions 
of source a and doublet p, 

a • (a_/an)p - (a_/an)p (5.1.1) 
+ -

11 • Cls)p+ - (lS)p_ (5.1.2) 

we find that 
a • (a,s/an)p+ (5.1.3) 

11 • (~lp+ (5.1.4) 

The value of (a_/an)p+ can be obtained directly from the impermeable surface 
-A 

boundary condition, (V.n)-. 0: 
p+ 

5.4 

, . "-,,. 



Thus, 

(5.1.5) 

and a is determined. 

At this point we need to invoke the integral representation formula for 
~, Green's third identity' (cf. theory document, eqn. (3.2.7) with ~ = l/R). 
Evaluating it at p+ and p_, we get 

~(P:t) = [- ~v IS a(q) '" (p,q) dSq + k fJIl(ql (a ~ /anq) dSqJ -+ (5.1.6) 
. as as Pt 

Averaging these two expressions, we obtain a representation formula for ~avg: 

i [,s(j)+) + ,s(pJJ = [- ivfJa ~ dSq + ivfJIl ~n dSq ] (5.1.7) 
aB as avg 

Now ,s(p_) = a and ~(p+) = Il. Using these facts in (5.1.7) and rearranging, we 
obtain the Fredholm integral equation of the second kind for Il: 

~llrP)-(}vJJIl.n dSq ) = (-}v)JallldSq) (5.1.8) 
as avg. as avg 

We put the integral involving a on the right hand side because a is known 
from the boundary condition data (cf. eqn. (5.1.5». 

The numerical solution of (5.1.8) by the method of collocation requires 
the evaluation of the source potential ~s and the doub~et potential ,sO' 

,ss (p) = (-}v IS a (CO 
. as 

+ (p,q) dSq) 
avg 

(5.1.9) 

~O(p) = ( }v ffll(Cj) (a~- /anq) dSq) 
. - as avg 

(5.1.10) 

where the singularity distributions a and Il are assumed to have finite 
dimensional representations of the form 

N 
a(q) = ~ sI (q) AI 

1:1 

N 
Il (q) = ~ mI nf) AI 

1:1 

(5.1.11a) 

(5.1.11b) 

5.5 



The basis functions sl' ml are independent of the solution and, in PAN 
AIR, are defined by the module DQG. The global singularity parameters AI 
are either of "source type" or "doublet type". This fact is expressed 
formally by the implications: 

. sl is not the zero function -+ ml = 0 

ml is not the zero functi on -+ sl = 0 

(5.1.12a) 

(5.1.12b) 

In the current problem, the source parameters will all be known (since a is 
known) and the doublet parameters will all be unknown until they are 
determined by the application of the collocation conditions. 

If we agree that the N~ unknown doublet parameters appear first in 
{ A I} , followed by the Na known source parameters, then we observe that 

N~ equations in the N~ unknown values of AI can be obtained by 
evaluating equation (5.1.8) at N~ points, called control points and denoted 
by PI' I = 1, ••• ,N~. Performing this evaluation, one obtains the 
collocation conditions, 

(5.1.13) 

where 
(5.1.14) 

(5.1.15) 

The evaluation of the integrals appearing in (5.1.14-15) is discussed in 
appendix J of the Theory Document. In particular, the procedures necessary to 
obtain the average value integrals are discussed in appendix J.8. 

We note in passing that the matrix elements AIJ are called aeroqynamic 
influence coefficients, or AIC's for short. In actual practice, some of the 
equations in (5.1.13) are replaced by doublet matching conditions of the form: 

n 

k:1 sk [~(P) I network k] = 0 . (5.1.16) 

where p is a doublet matching point and the numbers sk take on the values 
%1. For a detailed discussion of doublet matching along network abutments and 
at abutment intersections, see appendices B.3 and F of the theory document. 
In any event, we eventually obtain a system of equations of the form (5.1.13) 
which we solve to obtain the previously unknown singularity parameters, 

5.6 



AJ, J=l, ••• N~. Once all of the singularity parameters are known, a and· 
~ are completely known from the representation formulas {S.l.ll}. From these, 
~ is determined by equation {S.1.6} so that the problem is effectively solved. 

S.1.2 Formulation 2, Hess' Method [~ = a on aB] 

In this method, we do not actually specify what ~ is inside B, but 
rather define it indirectly· by choosing the doublet strength to be identically 
zero. Thus, we assume that~ can be represented by a source distribution by 
the equation 

~{p} = - kIf a(q} 1/1 {p,q} dSq {S.l.17} 
vaB 

This expression may be differentiated to give values of {~n} at p+ and p_: 

{aMan} .. = -i- n{p}.SS a{q} Vq 1/1 {p:I:,q} dSq {S.1.lS} 
P:l: 'tv aB 

Evaluating the average and difference of {a~/an)p:l:' we find 

{a~/an)p - (a~/an)p = a{p) 
+ -

} [{a~/an)p + (aPlan)p ] = k n(p).[ff a{q) 
+ - aB 

Combining these, we may eliminate {a~/an)p_ to obtain 

Vq 1/1 {p,q} dSq] 
avg 

{a~/an)-+p = i aCin +}. A{p).[JI a{q) Vq 1/1 (p, q) dS ] (S.1.l9) 
+ v aBo q avg 

The boundary condition (v.n)p = a may now be imposed to obtain 
+ 

substituting this into (S.l.l9), we again obtain a Fredholm integral equation 
of the second kind, 

i a{p) + k n{p). (If a{q) Vq 1/1 (p, q) dSq) 
+ ,.. 

= -Uaa .n (S.l.20) 
v aB avg 

In this formulation, the N source parameters are the basic unknowns 
a 

and are determined by imposing the integral equation at N control points 
a 

PI and solving the resultant system of linear equations. Using the usual 
representation formula (cf. S.l.lla), we obtain the linear system 

(S.l.2l) 

where 

5.7 



(S.1.22) 

(S.1.23 ) 

As before, the determination of all the singularity parameters provides us 
with a complete representation for a and, by way of equation (S.1.17), a 
representation for /J. . 

Before moving on to the definitions of influence coefficients, we point 
out that the two formulations given here do not exhaust the possible 
formulations of the problem. In Appendix H, we discuss two other formulations: 

(1) A modified Morino formulation is presented in which total ~ is set 
equal to zero in the sphere interior (~L = 0). Thi s 
formulation has the advantage that no source IC's are required at 
all (a = 0). 

(2) A formulation in which both boundary conditions: 

(a) !L = 0 

(b) v.A = 0 

(lower surface perturbation stagnation) 
(direct velocity boundary condition) 

are imposed explicitly, so-that both source and doublet parameters 
are unknowns in the problem. While this formulation is more 
costly, it produces better answers near the stagnation point on 
the surface of B. 

In addition to discussing these other two formulations, appendix H also 
explicitly states and compares the integral equations corresponding to each of 
the four formulations. 

The main purpose of studying these various formulations of the same 
potential flow problem 1s to emphasize the fact that in PAN AIR, problem 
formulation is the task of the program user. In particular we wish to point 
out that the fundamental integral representation formula (cf. eqn. (S.1.6»: 

.!. If [-aiR + II ~.V(1/R)] dSq 
IC sno p 

is not an integral equation. Rather, the PAN AIR user implicitly uses this 
representation formula to help describe to the program the integral equation 
that he needs to solve. While it is true that Class I boundary conditions 
provide a convenient means of obtaining a standard formulation (essentially 
Morino's formulation), it should not be forgotten that many other formulations 
are possible and can be employed with PAN AIR. In particular, all four 
formulations of potential flow around a sphere described here and in Appendix 
H can be employed using PAN AIR. The function of PAN AIR is to perform the 
many and complex tasks of problem analysis and numerical solution once the 
user has formulated his problem. 

5.8 



5.1.3 Definitions of Influence Coefficients 

Having described these two formulations of the problem of flow about a 
sphere, we have provided the background needed to motivate the definitions of 
the potential and velocity influence coefficients that MAG computes. The 
potential influence coefficients at a control point p, motivated by the 
integral expressions appearing in (5.1.14) and (5.1.15), are defined by the 
formulas 

4»IC3n» = -(~ If s J (q) '" ("cr, p) dSq) 
aB avg 

4»IC~ (in = (~fImJ(q) n(q). B Vq "'(q, p) dSq) 
aB avg 

where '" is the general kernel function, 

{ 

1/[- - - -]1/2 q - p, q - p 

o 

and /( is given by 

{ 
4,.. subsoni c flow 

/( = 2,.. supersoni c flow 

(5.1.24) 

(5.1.25) 

(5.1.26) 

(5.1.27) 

and Bis the dual metric which, in the compressibility axis coordinate system, 
takes the form 

o 
1 

o 

2 2 
S8 = 1 - Mao (5.1.28) 

Because each global singularity parameter AJ is either a source or a doublet 
parameter, only one of 4»IC5 and 4»IC3 can be nonzero. Thus, no information is 
lost by defining 4»ICJ by 

With these definitions, the value of [~(P)]avg is given by 

[.6(p)]avg = ~ 4»ICJ (p) AJ 
J=1 

(5.1.29) 

(5.1.30 ) 

The coefficients AIJ and bI of eqns. (5.1.14-15) (Morino's formulation) 
r-. are given in terms of these potential influence coefficients by 

5.9 



(5.1.14)1 

(5.1.15)1 

By substituting these expressions into (5.1.13) and using (5.1.30), we can 
recover the original condition, (5.1.8). Ooi~g the substitution, one has 

Rearranging, 
N N N +N 

1\1 -+ \1 0-+ \1a 5 
2" I mJ(PI) AJ = I cl»ICJ (PI) AJ + ~\ cl»ICJ (i)I) AJ J=l J=l J=N +1 

N 
= I cl»ICJ ('PI) AJ 

J=l 

\1 

Invoking (5.1.30) and the representation formula for \1 (5.1.11b), we find 

(5.1.31 ) 

which is clearly equivalent to (5.1.8) evaluated at PI. 

The integral expression appe'aring in (5.1.22) motivates the definition 
of source velocity influence coefficients (VIC1s), viz., 

(5.1.32) 

-5 -+ 
It is clear that VICJ (p) is the average, above and below the singularity 

surface, of the expression*: 

*The calculation goes as follows: 

Vp [- ! ffSJ (en v (q,p) d5q] = - } Sf SJ (q) ( Vp '" (q,p» d5q 

= (- }) [[sJ (q) [(-1) Vq '" (q;;;)] d5q 

where we use the identity Vq '" = - Vp '" • 

5.10 



Vp [- } IS SJ (Cil "'(q,p) dSq] 
aB 

where the expression in square brackets bears an obvious relationship to the 
definition (5.1.24) of source potential influence coefficients. Given this 
fact, one is motivated to define doublet velocity influence coefficients by 
averaging the expression 

Vp [} If m
J 

(q) n(q). B V q (q,p) dSq] 
aB 

= - } JJmJ «l> nCei). B Vq Vq + (q,p) dSq 

above and below the singularity surface. 

This leads to the definition, 

m~ (p) = (- } SImJ(q) I1nn. B Vq Vq '" (q,p) dSq)avg 
aB 

(5.1.33) 

When the doublet basis functions mJ are continuous interior to a network 
of panels, the line vortex integration by parts may be performed on the 
integral appearing in (5.1.33) to yield (cf. Appendix B.3, theory document)· 

(p) = (~ If(n x Vq mJ ) x (B Vq '" ) dSq)avg 
aB 

+ } I mJ (B Vq '" ) x dr 
network 

(5.1.34 ) 

boundaries 

The right hand side of this expression consists of two parts, a surface 
integral called the "regular part" and a line integral called the "line 
vortex" part. When doublet matching is imposed along the network boundaries, 
the individual network contributions to the line vortex terms all cancel and 
may thus be discarded., In the instance of supersonic flow this is essential, 
since the line vortex integ·rals diverge at any point on the Mach cone which 
emanates from a kink in a network boundary. The only situation in which PAN 
AIR is designed to include the line vortex terms in the evaluation of V1C~ is 
when the following conditions are satisfied*: 

(i) the flow is subsonic (M= < 1) 
(ii) the user has specified the particular network edge to be a "no 

doublet edge matching" edge. 

The last type of influence coefficients, the normal mass flux Ie's are 
defined in terms of the velocity influence coefficients and the panel normal 
at the control point, n(p), by the expressions 

*Note: No line vortex terms have been implemented in version 3.0, although the 
needed interfaces for them have been included in MAG. 

5.11 



WIC~ (in = nep). B V!(~j on 
WIC~ eil) = nep). B m~ <in 

Here, B denotes the usual dual metric matrix ecf. Appendix E, PAN AIR Theory 
Document) • 

5.12 



5.2 MAG Overview 

5.2.1 Purpose of MAG 

The module MAG (Matrix Generator) performs three primary tasks in the 
PAN AIR system. It generates-

(i) the AIC-MATRIX dataset of the MAK database, (this dataset contains 
an AIC matrix for each required symmetry condition), 

(ii) the IC-~~TRICES dataset of the MAK database, (this dataset 
contains potential, velocity or normal mass flux influence 
coefficients as requested by the program user), 

(iii) the MAG-PANEL-DATA dataset of the MAK database that is 
subsequently transcribed by MDG to the MDG database for subsequent 
use by FOP. 

In addition to these three principal datasets, MAG generates a number of 
other datasets that aid in the use of these three principal datasets. These 
other datasets include 

DATA-BASE-HEADER 
SYMMETRY 

COlMAP 
COlMAP-INVERSE 
COlMAP-BUlK 

ROWMAP 
ROWMAP-INVERSE 
ROWMAP-BUlK 

} 

} 

} 

Contain global information. 

Contain the connection between 
DQG and MAG singularity parameter 
indices. 

Contain control point information, 
the connection between DQG and MAG 
control point indices. 

Three other small datasets are also written to the MAK database to help 
in the analysis of program errors, should they occur. These are 

SOURCE-MATCHING } 
DOUBLET-MATCHING 
VORTICITY-MATCHING 

PANEL-GROUP 

Contain a thorough analysis 
of all matching conditions. 

Contains panel grouping information. 

These datasets are also used by MAG in the actual generation of AIC's and IC's. 

In the short discussions of these datasets that follow, we will first 
treat the principal datasets and following this, the auxiliary datasets. 

5.2.1.1 The Principal Datasets, AIC-MATRIX and IC-MATRICES 

The first of the two principle datasets generated by MAG contains AIC's, 
that is, aerodynamic influence coefficients. Each row of an AIC matrix 
describes the dependency of an imposed boundary condition upon the known and 
unknown singularity parameters, 1K and 1u that together represent a and ~ 

,-- on the configuration's singularity surface. Thus the ith imposed boundary 
condition generates the AIC equation 

5.13 



~ICU,i.J AU + LAICK,i.J"!K = bi (5.2.1) 

The precise way by which the various types of boundary conditions generate AIC 
rows is described in detail in appendix K of the theory document. Aggregating 
all of the AIC conditions .into a single matrix equation, we obtain 

(5.2.2) 

Here, AICU will be square provided the number of imposed boundary conditions 
equals the dimension of AU' When this happens (it is a fatal program error 
if it does not occur) we obtain the standard linear system 

(5.2.3) 

In PAN AIR, RMS performs the L-U factorization of AICu while RHS computes "!K' 
forms the right h~nd_side of (5.2.3) and performs forward and backward substi
tution to solve for AU' 

The second principle dataset generated by MAG, IC-MATRICES, gives the "! 
dependency of -A (average potential), VA (average velocity) or (wn)A (average 
normal mass flux) at selected control points. 

These dependencies are expressed in the equation, 

= L [-~~-J (5.2.4) 

The coefficient matrix on the right is called the integral IC matrix for the 
control point and is denoted [lCA]. (Here, the subscript "A" is used to 
connote "average".) The computations for L~IC.J and [VIC] are described in 
detail in appendices J and K of the theory document, appendix J giving the 
details of the panel influence coefficient (PIC) computations and appendix K 
describing how PIC's are assembled to get L~IC.J and [VIC]. The scalar normal 
mass flux IC's are defined by and can be computed from the formula: 

AT 
LWIC..I = no Bo [VIC] 

where ~o denotes the surface normal at the control point (reference 
coordinates) and Bo denotes the standard dual metric in reference 
coordinates (cf. theory document, eqn. E.3.9). 

An AIC row associated with a general boundary condition of the form 

-

(5.2.5) 

+ cD~ + to. V~ + aD a = b (5.2.6) 
is readily computed from a control point's integral IC matrix [ICA] and its 

5.14 



singularity IC matrix [ICo]' defined implicitly by the relation 

11 (p) 

v I1{P) = (S.2.7) 

(The subscript "0" in ICO is used to connote "differoence".) Using these, one 
finds that an AIC row is defined by 

(S.2.B) 

Although eqn. (S.2.B) expresses correctly the evaluation of L..AIC...J in a 
formal sense, in actual practice MAG proceeds slightly differently so as 
to reduce processing costs. First note that not all_rows of [ICA] may be 
required to evaluate equation (S.2.B). Thus if cA' tA or aA is 
identically zero, the evaluation of the corresponding rows of [ICA] is not 
needed and may be suppressed. Another way cost can be reduced is by noting -that if tA = 0, then 

- T [ V I C ] -T 1\ T L..tA' aA...J -WIC- = (tA + aAnoBo) [VIC] 

eliminatinj the need to explicitly compute · ... WIC...l. Finally we note that 
because I1{P) and VI1(p) can depend on at most 2S doublet parameters, and a(p) 
can depend on at most 10 source parameters, there is no need to form [ICo] 
explicitly. Rather, its contribution is simply added in to the AIC row for 
the few entries of L..AIC~ that are actually affected. 

It is appropriate to point out in this discussion of the principal 
datasets computed by MAG, that not all of the AIC rows are of the form 
(S.2.B). In particular, three types of matching conditions (source, doublet 
and velocity jump) and a closure condition can arise. The matching 
conditions, which are imposed along abutments, have the forms: . 

source matching: 

doublet matching: 

L sk 
edges Ek 
of abutment A 

L 

velocity jump matching: 
(vorticity matching) 

L 
edges Ek 
of abutment A 

(S.2.9) 

(S.2.10) 

In these equations (more fully developed in Appendices B.3, F.4, F.S, H.2, K.1 
and K.6 of the theory document), we have used the following notation: 

S.lS 



~ 

Pk 

denotes an edge of some network Nk participating in 
abutment A. 

denotes a point on edge Ek in network Nk at which the 
matching condition is being imposed. Note that all of the 
points Pk are essentially coincident. 

denotes the orientation of edge Ek relative to the 
intrinsic orientation of the abutment A. sk==1. 

in the velocity jump matching condition, describes the 
directisn of the component of velocity to be matched. The 
vector t points downstream along a wake surface. In She 
normal case that edge 1 is the wake's matching edge, t is 
calculated as the local column direction at the control 
pOint. 

denote the normal and conormal on network Nk at Pk. 

When the singularity distributions are expressed in terms of the problem's 
singularity parameters, as in equations (5.1.11), the matching conditions 
(5.2.9) (5.2.10) and (5.2.11) define AIC rows in the usual way. 

A closure condition can be expressed formally by the equation: 

~ Ak [aA,k~k· wA(Pk) + aO,k a(Pk)] = b 
panel center 
control points 

(5.2.12) 

Here, the sum extends over panel center control points Pk in some row or 
column of panels in a network. Ak denotes the area of the panel in which 
Pk lies and aA k' aO k and b are coefficients provided by the user. , , ~ 

Again, this equation generates a row in an AIC matrix when a(Pk) and 
Ak.WA(Pk)·are expressed in terms of i. Note that from equation (5.2.4) 

"k· wA (Pk) = (wn) A (Pk) = L.WIC.Jht
k 

i 

As a consequence, when a network has associated with it closure boundary 
conditions, the control points of that network are processed in such an order 
that the effect of the normal mass flux influence coefficients JWIC~ can be 
included into a "closure AIC buffer" as the different ",WIC ... vectors are 
computed. The handling of closure thus induces a significant amount of 
complexity in the structure of MAG. For more details see Appendix 5-G. 

The careful reader of this document will notice that nothing has been 
said up to this point about the impact of configuration symmetry upon the 
operation of MAG. In fact, as a consequence of the extensive analysis worked 
out in Appendices F.5, Hand K of the PAN AIR theory document, the actual 
mechanics of handling symmetry are fairly simple. The main points to remember 
are the following: 
5.16 



(I) The AIC equation is formulated separately for each symmetry 
condition. Thus, for each of the four possible symmetrized 
potentials aij , MAG has the job of computing the matrix AIC ij 

in the symmetrized AIC equations 

[AIC
ij

] 1ij 
= [AIC~j, AIC~j] {~~~} 

1\1J 
AK 

= bij (no summation 
over i and j) 

(S.2.l3) 

Because the problem is separately formulated for each symmetry 
condition, we find that subroutines SDMTCH and MATCH must treat 
each symmetry condition separately when they analyze a matching 
condition imposed at a corner or extra control point (ITYPCP = 3 
or 4) lying on a plane of symmetry (KSYMCP ~ Ole (See Appendix 
F.S of the theory document for a full discussion of the impact of 
symmetry upon doublet matching at an abutment intersection.) 

(2) When the various images of a control point (pij) are calculated 
in DINFLU, special care is required if the control point lies in 
either the first or the second plane of symmetry (ISYMCP ~ O}.--In 
accordance with the rules worked out in Appendix K of the theory 
document (cf. pg. K.5-5, algorithm AI), one does the following 

plies.!!!. 1st P-O-S: set p-j = p+j 

plies in 2nd P-O-S: set pi- = pi+ 

Thus, if a control point is recognized as lying in a plane of 
symmetry, the reflection process is suppressed when we compute the 
control pointls reflection with respect to the P-O-S in which it 
lies. 

(3) When in subroutines QNFCAL and PIFCAL, the program determines 
whether or not the control point image under consideration lies 
directly on a particular panel or subpanel, care is taken that 
whenever the c.p. lies in the first (second) plane of symmetry, 
the same determination is made for p-j (resp. pi-) as for 
p+j (resp. ~-). As in (2) above, this is done in accordance 
with the rules developed in the theory document, Appendix K.S, 
algorithm AI. 

(4) Whenever an AIC row is constructed for a control point lying in a 
plane of symmetry, all integral ICls (~IC, VIC or WIC) are 
effectively multiplied by (1/2) before their contribution is added 
in to the AIC row. (See GENAIC for such closure AIC rows and 
GENBC for ordinary AIC rows.) This factor is included in 
accordance with the rules worked out in Appendices K.3 and K.6 of 
the theory document. 

S.17 



Aside from the complications required to implement these four points, the 
handling of cases with symmetry is pretty much the same as the handling of 
cases without symmetry. 

5.2.1.2 The Principal Dataset MAG-PANEL-DATA 

Because the streamline and off-body point processor FOP uses an 
influence coefficient subassembly that is a slight modification of the PIVC 
subassembly in MAG, most of the minimal panel defining quantities (cf. the 
PANDTA random file) are saved on the MAK database on the MAG-PANEL-DATA 
dataset. These data are subsequently transcribed to the MDG database for 
later use by FOP. The only items of the PANDTA minimal panel defining 
quantities that are not saved are the panel group Singularity parameter index 
vectors IISF, IIDF. ----

5.2.1.3 The Auxiliary Datasets DATA-BASE-HEADER and SYMMETRY 

The dataset DATA-BASE-HEADER contains the usual information identifying 
the run and indicating the final condition of the database, "COMPLETE" or not • 

. The dataset SYMMETRY contains global information concerning the symmetry 
conditions that were treated and various counts of control points, AIC rows 
and singularity parameters. 

5.2.1.4 The Auxiliary Datasets COLMAP, COLMAP-INVERSE and COLMAP-BULK 

Because it is necessary for MAG to suppress null singularity parameters 
and otherwise reorder the singularities in the following order (the range of 
the MAG indices is given in parentheses), 

Known, nonupdatable (1-10000) 

Known, updatable (10001-20000) 

Unknown, nonupdatable (20001-30000) 

Unknown, updatable (30001-40000) 

various column map datasets are constructed to provide downstream modules with 
the information correlating the MAG and DQG singularity indexing schemes. The 
functions of these maps are illustrated below: 

MAG singularity index COLMAP DQG singularity index • 

DQG singularity index COLMAP MAG singularity index .. 
INVERSE 

DQG singularity index COLMAP • MAG singularity index 
BULK 

The dataset COLMAP (respectively COLMAP-INVERSE) contains a dataset entry for 
each MAG singularity parameter (respectively non-null DQG singularity 
parameter). In addition, these datasets give slngularity type (a or ~), 
location (network, panel and point on panel), updatability type and whether or 
5.18 



not it is "known". The last dataset, COLMAP-BULK, provides a single array 
JSPDQG(l:NSPDQG) giving, for each DQG singularity index, the corresponding MAG 
singularity index. If the DQG singularity numbered IDQG is null, then 
JSPDQG(IDQG) = O. 

5.2.1.5 The Auxiliary Datasets ROWMAP. ROWMAP-INVERSE and ROWMAP-BULK 

These datasets provide the relationships between the DQG control point 
indexing scheme and the MAG control point indexing scheme. The basic idea of 
the MAG control point indexing scheme is to put nonupdatable control points 
first (indexed 1-10000) followed by updatable control points (indexed 
10001-20000). Control points that have neither an AIC row nor an IC matrix 
associated with them are excluded from the list of MAG control points. Within 
each major group of control points (updatable/nonupdatable), the control 
points are ordered by network with extra control points included at the end of 
each network's set. If a network has closure boundary conditions associated 
with it, special care is taken (in CONBLK) with the ordering of that network's 
control points so as to minimize the 1-0 activity in GENAIC associated with 
managing the AIC/closure buffer. 

The various functions of the control point maps are illustrated below: 

MAG control point index ROWMAP • DQG control point index 

DQG control point index ROWMAP MAG control point index • 
INVERSE 

DQG control point index ROWMAP MAG control pOint index ~ 

BULK 

The dataset ROWMAP (resp. ROWMAP-INVERSE) contains a dataset entry for each 
MAG control point index (resp., for each DQG control point that is also a MAG 
control point: see remarks above). In addition these datasets give the 
control point's network location and position in space, information describing 
the effect of a control point's IC's on any closure boundary condition, the 
control point's "control point block index" and "row partition index" (used in 
organizing the computation of influence coefficients), as well as a variety of 
other information used in computing and saving the AIC's associated with a 
control point. 

The last of these control point map datasets, ROWMAP-BULK contains a 
single array JCPMAP(l:NCPDQG) giving, for each DQG control point index, the 
corresponding MAG control point index. If no such MAG control point index 
exists, then JCPMAP(ICPDQG) = O. 

5.2.1.6 The Matching Condition Datasets 

If a control point has any matching AIC conditions associated with it, 
this fact is recorded by MAG in both the ROWMAP and ROWMAP-INVERSE datasets. 
These conditions have the general form (compare with equations (5.2.9), 
(5.2.10), (5.2.11)): 

5.19 



2 
edges Ek (5.2.14) 
of abutment A 

where the generic function g(p) may invol ve a(p), ~(jn or (t'.l1v)(Pk). The 
evaluation of g(Pkl can be expressed in terms of the global singularity 
parameters vector x by the equation 

.... 
gICk A 

L ..J 

For example if we are dealing with doublet matching., the entries of QIC are 
given by 

LQICkJ J = TI\J (Pk) 

Because the source and doublet distribution on a panel depends upon at most 35 
global AJI S , the row vectors 9ICk are quite simple and can be efficiently 
stored in a packed format giving the nonzeroes of eIC k plus the 
corresponding indexing information. In subroutine SDMTCH, each matching 
condition associated with a control point is analyzed and the nonzero entries 
of each eIC k are evaluated along with the associated MAG singularity 
parameter indices. This information is then saved on the appropriate 
II-MATCHING II dataset along with the numbers sk and some indexing· 
information. These data are then accessed by subroutine MATCH to construct 
full AIC rows during AIC generation. 

5.2.1.7 The PANEL-GROUP Dataset 

The PANEL-GROUP dataset is used mainly for local purposes in MAG to help 
organize the computation of influence coefficients. It is included on the MAK 
database principally as a debugging tool to help the maintenance programmer, 
should any problems occur during processing. 

In MAG, all of the panels of the configuration are aggregated into panel 
groups, updatable and nonupdatable panels being placed in separate panel 
groups. A panel group is any collection of panels such that the outer splines 
for all of these panels depend upon < MXING(=160) global singularity 
parameters AJ. Some care is exercised to minimize the number of panel 
groups generated (cf. subroutine PANIJ, called by PANGRP) so that 1-0 costs 
associated with activity on the ICTP database can be minimized. 

The actual information contained on the PANEL-GROUP database includes 
the following 

5.20 

o the number of global singularity parameters associated with the 
group (~MXING = 160) 

o a list of the MAG singularity parameter indices of these global 
singularity parameters 



o the number of panels in the panel group and a list of these 
panels, including the network identifier (i.e. the key to many DQG 
datasets: NETID = NETORD(K) where K is the network index) and the 
row and column indices of each panel 

5.2.2 MAG Input/Output Data 

The overall organization of data input to MAG and output from MAG is 
illustrated by Fig. 5.1. This figure also shows the internal communication of 
temporary databases PANDTA, FPDQ and ICTP used internally by MAG*. 

Most of the input to MAG comes from DQG with DIP providing only the 
print flags and MEC providing the IC update flag and various information relat
ing to system communication. The information provided by DQG falls into rough
ly three classes: global data, boundary condition and control point data, and 
panel data. The actual map names and DQG datasets used are listed below. 

Class 

Global 

B.C. and 
C.P. data 

Dataset 

GLOBAL 
NETWK-SPEC 
SINGULARITY-SPEC 

BNDRY-CONDN-SPEC 
BNDRY-CONDN-SPEC 
CLOSURE 

EXTRA-HYPO-lOC 

SPECIAL-POINTS 

Panel data MAG-PANEL-SPEC 

MaE Name 

GLOBAL 
NETWK 
SNGSPC 

BNDRY 
CNTRQ 
CLOSE 

EXHYlO 

SPCPT 

PANSPEC 

Notes 

Principally b.c. coefficients 
Control point description 
Closure coefficients and c.p. 
1 ists 
Main source of matching 
information 
Used to help find extra control 
points 

DQG writes a panel dataset 
especially for MAG 

As noted in section 5.2.1, the principal output from MAG consists of the 
AIC-MATRIX, the IC-MATRICES and the MAG-PANEL-DATA datasets. That part of 
AIC-MATRIX corresponding to unknown singularities (AICU) is read by RMS and 
factored. The portion of AIC-MATRIX corresponding to known singularities 
(AICK) is used by RHS to form a right hand side (cf. equation (5.2.3)). RHS 
then uses the factored AICU matrix as provided by ru~s to solve for XU. 

*These temporary "databases" (they are actually Fortran files) contain the 
following data 

PANDTA - A random file for storage of minimal panel defining quantities 
FPDQ - Sequential files for storage of minimal panel defining 

quantities for nonupdatable (FPDQNU) and updatable (FPDQUP) 
panels 

ICTP - A set of 12 sequential files used for temporary storage of 
influence coefficients, [ICA]. File names are of the 
form ICTP01, ICTP02, ••• ICTP12. 

5.21 



The IC-MATRICES"dataset is used by MDG to evaluate ~, v and w.n at various 
points on the network surfaces for subsequent use by the post-processors, PDP, 
COP and PPP. The MAG-PANEL-DATA dataset is transcribed by MDG to the MDG 
database for subsequent use by FOP, the streamline and off-body point 
processor. 

In addition to these principal output datasets, the COlMAP and 
COlMAP-INVERSE datasets are used by RMS, RHS and MDG to establish the 
connection between MAG and DQG singularity parameter indices. Similarly the 
ROW MAP and ROWMAP-INVERSE datasets provide the relationship between MAG and 
DQG control point indices. Finally the SYMMETRY dataset provides global 
information relating to the execution of MAG that includes the following: 

o Indicators describing which of the various symmetry conditions of 
~ (i.e. 6SS , ~AS, ~, ~SA) are nonzero 

o Flow symmetry flags 

o Counts of MAG control pOints, updatable and nonupdatable 

o Counts of MAG singularity parameters, known and unknown, updatable 
and nonupdatable 

o Counts of AIC rows, updatable and nonupdatable 

5.2.3 Data Base Interfaces 

As noted in Section (5.2.2) above, MAGis communication with external 
components of the PAN AIR system by way of the various databases is summarized 
in Fig. 5.1. Note that during an IC update run, MAG updates an existing MAK 
database, a process that requires some reading and rewr1tlng of the MAK 
database. 

MAGis communication with the three internal temporary databases, 
summarized in Fig. 5.1, is discussed in some detail in Section (5.3.3) which 
gives additional information concerning the internal databases. 

5.22 



5.3 MODULE DESCRIPTIONS 

The main overlays and their structure are described in this section 
along with a description of MAGis internal databases. 

5.3.1 Overall Structure 

Fig. 5.2 illustrates the overall structure of the MAG module. The 
execution of the program proceeds roughly from top to bottom and from left to 
right, following the usual order for the traversal of a tree. The first 
overlay of the program (MAG10) performs problem setup while the second overlay 
(MAG20) performs actual IC and AlC generation. In the second overlay, the 
three components CBSET, ICTEMP and GENAIC are executed repeatedly in that 
order, once for each control point block. In Fig. 5.3, various internal 
library routines are classified and listed. Assuming that the appropriate 
common block environment has been established, these library routines can be 
called from any place in MAG. 

5.3.2 Overlay Descriptions 

The main overlay of f4AG performs some initialization of some common 
blocks (via LOCKDATA), opens the random file PANDTA for minimal panel defining 
quantities, invokes MAG10 to perform some setup functions, invokes MAG20 to 
perform the actual IC ·and AIC generation and terminates execution with a call 
to MAGFIN. 

5.3.2.1 MAG10, Overlay (1.0) 

MAG10, the setup overlay of MAG, invokes the following routines in the 
order given to perform their required functions. 

OPENDB: OPENDB opens the MEC, DIP, DQG and MAK databases, establishing all of 
the SDMS maps used throughout the remainder of the program. OPENDB then reads 
DQG's GLOBAL and NETWK-SPEC datasets, establishing global information 
concerning the whole flow configuration. (OPENDB also opens and maps the MAGX 
and MAGY temporary databases. Although these are not currently implemented, 
MAGX would be a replacement for the ICTPxx set of files for temporary storage 
of ICls and MAGY would be a replacement for the collection of files PANDTA, 
FPDQNU, FPDQUP used for storage of minimal panel data.) 

BLOCK: BLOCK performs some checking of input data, establishes global 
constants (e.g. w) and then defines some global parameters and arrays relating 
to Mach number, compressibility axis orientation and configuration symmetry 
conditions. 

COL~mp: COLMAP generates the MAG indexing system of all of the non-null DQG 
singularity parameters. If the user has requested it via input print options, 
COLMAP generates schematic maps of MAG and DQG singularity parameter indices. 

PANGRP: PANGRP defines the panel groups according to the following 
conslderations: 

(i) Updatable and nonupdatable panels go into different groups. 

5.23 



(ii) No panel group may have more than MXING singularity parameters 
associated with it (cf. the parameter MXING = 160). 

As each panel is included in some panel group, its panel data is read from the 
MAG-PANEL-SPEC.DQG dataset, cleaned up by MGPAND, transformed into a minimal 
packet of data by PAKPQF, and saved on various files. During this process, DQG 
singularity parameter indices are transformed into MAG singularity parameter 
indices, and these in turn are turned into panel grout sin~ularity parameter 
indices, numbers between 1 and 160 (MXING). The map NDGR from panel group 
s.p. lndices to MAG s.p. indices is also generated and saved on the PANEL-GROUP 
dataset, along with a list of all the panels in each panel group. Finally it 
should be noted that PANGRP generates the MAG-PANEL-DATA dataset on the MAK 
database. 

CONBLK: CONBLK defines the control point block data structure that describes 
the organization for the processing of control points. The rules for 
construction of control point blocks are as follows: 

5.24 

(i) Let NCNSYM denote the number of symmetry conditions under 
consideration in the current PAN-AIR run. 

(ii) Let MXRCPB denote the maximum number of rows per control point 
block •. This number, nominally set equal to 100, is related to the 
amount of scratch memory available to subroutine ICTEMP in the 
second overlay. (A buffer of size MXRCPB*MXING = 100*160 = 16,000 
is used there.) 

(iii) Let MXRP denote the maximum number of IC rows that may be 
associated with a row partition. MXRP is defined by subroutine 
BLOCK and is related to the amount of scratch memory available in 
subroutine GENAIC. 

(iv) Let MXCPBK denote the maximum number of control points per control 
point block. This is set to 150 by LOCKDATA, and must be 
consistent with the memory allocation for the array WCB in 
/CPBLK/. The value of 150, somewhat larger than MXRCPB = 100, is 
used because control pOints that require matching AIC rows to be 
computed may actually have no IC rows associated with them, (e.g., 
matching control points). --

(v) Given these definitions for the important parameters, CONBLK calls 
PROCP to include a control point into a control point block while 
observing the following rules: 

(a) Updatable and nonupdatable control points are not mixed in 
the same block. 

(b) The total number of IC rows per control point block = NCNSYM 
* (Sum of the IC rows for each control point) 
must be < MXRCPB. 

(c) No more then MXCPBK control pOints in a control point block. 



A row partition is a subset of a control point block that contains 
the IC's for a set of control points but only one symmetry 
condition. Additional conditions associated with control point 
row partitions include: 

(d) The number of IC rows associated with a row partition must 
Qe less than or equal to MXRP. 

(e) NCNSYM*(The number of row partitions in a control point block) 
must be less than or equal to MXICTP (= 12), the number of 
sequential files associated with the ICTPxx database. 

In the process of defining the control point blocks and row partitions, PROCP 
also defines the ROWMAP and ROWMAP-INVERSE data structures and saves crucial 
information needed for the complete processing of closure control points by 
CLSROW. In this way, when all of the control points of a network have been 
processed by PROCP, subroutine CLSROW updates the ROWMAP and ROWMAP-INVERSE 
datasets to include closure information for any control points whose IC's 
affect a closure condition. 

5.3.2.2 MAG 20 , Overlay (2,0) 

MAG20, the IC and AIC generation overlay of MAG, performs dynamic alloca
tion of memory for the second overlay and~ for each control point block, invokes 
the following routines in the order given to perform their required functions. 

CBSET: For each control point in the control point block, CBSET generates an 
11 word packet of data containing the information about the control point 
needed by ICTEMP. 

ICTEMP: ICTEMP computes the total influence of the configuration on the 
current control point block and writes this data to the ICTP database. The 
organization of ICTEMP is as follows: 

For each panel group in the configuration [updatable groups only on an 
update run if the control point block is nonupdatable] 

For each panel in the panel group 

Read the panel data from a sequential file (FPDQNU or FPDQUP), 
unpack it and extend it 

For each control point in the current control point block 

Unpack the control point's data packet and determine if any 
IC's are needed 

If IC's are needed, invoke PIVC to compute the panel on 
control point influences for all symmetry conditions and 
include them in the RIC influence coefficient buffer for 
the panel group on control point block influence 

end, loop on control points 

end, loop on panels 

5.25 



Using WRICT, write the panel group on control point block influences 
to the ICTP temporary database, the data for each control point row 
partition going to a separate file. 

end loop on panel groups 

GENAIC: For each control point block, GENAIC generates the appropriate 
contrlbutions to the AIC-MATRIX and IC-MATRICES datasets. The organization of 
GENAIC is as follows: 

For each symmetry condition of interest 

For each row partition 

Compute the number of rows in the row partition (NICPRT) 

Read in from the ICTP database and aggregate the influence of 
all panel groups on the current row partition/symmetry condition 
combination. 

For each control point in the row partition 

Get the panel data for the panel on which the control point 
lies 

Using the aggregate influence coefficients, [ICA], 
generate any nonclosure AIC rows associated with the 
control point and write them to the AIC-MATRIX dataset 

Include the effect of the current control point's IC's on 
any closure AIC row, taking care that the closure AIC 
buffer is properly managed. 

end loop on control pOints 

end loop on row partitions 

end loop on symmetry conditions 

If the closure AIC buffer is nonempty, write it out to the AIC-MATRIX 
dataset. 

5.3.3 MAG Databases 

The principal output of MAG, the MAK database, has already been described 
in some detail in section (5.2.1). The SDMS master definition of this 
database is included on the PAN AIR delivery tape. A short program (MDPRNT) 
that generates an indexed listing of a master definition is listed in Appendix 
5-A. 

In the process of constructing MAG, it has been found convenient to define 
and implement three temporary "databases", each of which is nothing more than 
a specific set of files designated for a specific purpose. The main 
characteristics of these databases are outlined below. 

5.26 



Database File Names File Organization Data 

PANDTA 6LPANDTA random (READMS/WRITMS) Minimal panel data 

FPDQ 6LFPDQNU, seq. (BUFFERIN/OUT) Minimal panel data 
6LFPDQUP 

ICTP 6LICTP01 seq. (BUFFERIN/OUT) Panel group on 
6LICTP02 control point block 

influence 
• • • coefficients 

6LICTP12 

In the sUbsections that follow we will discuss separately each of these 
IIdatabases li • 

Before going into this discussion, one final remark is appropriate 
concerning temporary databases in MAG. Since it is possible that at some 
future time the computing centers will reduce the high cost penalty associated 
with the use of random 1-0 as compared with sequential 1-0, master definitions 
have been created for two temporary SDMS databases, MAGX and MAGY that could 
be used to replace the temporary databases discussed here. The master 
definitions for these databases may be found on the PAN AIR delivery tape 

MAGX (IC-TEMP) 
MAGY (PANEL-DATA) 

would replace ICTP 
would replace both PANDTA and FPDQ 

5.3.3.1 PANDTA Database: Random Access to Minimal Panel Data 

The random file PANDTA, opened in program MAG, is defined in subroutine 
PANGRP and used in those parts of the code where it is necessary to have 
random access to the panel data. These places include SDMTCH where the 
various matching conditions are analyzed and GENAIC where boundary conditions 
are imposed. 

The file PANDTA is a standard random file accessed using the READMS/WRITMS 
package (available on both CDC and CRAY). A specific record of PANDTA, 
containing the minimal panel defining quantities for a specific panel, is 
accessed using the global panel index IPNDEX associated with the panel. The 
computation of this index in two cases of interest is illustrated below. 

Case 1: network index = K, panel row index = IPAN, panel column index = JPAN 
IPNDEX = IPAN + (JPAN-1)*NROWNT(K) + NPNCUM(K) 

Case 2: network id = KNET, panel row index = IPAN, panel column index = JPAN 
set K = NETINV(KNET) and proceed as in Case 1 
note: If K = NETINV(KNET), then KNET = NETORD(K) 

The actual data stored on PANDTA for each panel includes all those panel 
defining quantities that would be expensive or impossible to recompute lion the 
flyll. The resulting data packet of 256 words is about 8 times smaller than 
the corresponding panel defining quantities dataset record of version 1.0 of 
PANAIR. The decision to include a particular data item in the data packet was 
based on a 115 microsecond tradeoffll. That is, after an analysis of a number 

5.27 



of computing center charging algorithms, and taking into consideration the 
program's size and file buffer sizes, it was determined that it is cost 
effective to regenerate any data items for which the cost is less than 5 ~s 
per word on a CDC 7600 or Cyber 760 computer. 

We conclude our discussion of PANDTA by listing all of the items contained 
in a data packet 

Panel location 
Source outer splines 
Source MAG s.p. indices 
Source panel group s.p. indices 
Doublet outer splines 
Doublet MAG s.p. indices 
Doublet panel group s.p. indices 
Panel geometry 
Skew transformation and parameters 
Line vortex flags 
Data for farfield test 
Panel a/~ type 
Index of collapsed side 
Index describing half panel cut 
(s,t) parameters for regeneration of 

half-panel ~ splines 
panel diameter 
sgn(~5.~0)' used in supersonic 

influence coefficients 
. subinclined/superinclined indices 

KNETNR, ICOLNR, IROWNR 
ASTS 
IISMAG, INS 
IISF 
ASTD 
IIDMAG, IND 
IIDF 
CP, EN, NCONVX, AREAQ 
AQ, C1, C2, C3, CTEST 
LVTERM 
RFMIN, QDLTF, PWF, PXF, DIAMF 
ITS 
ICS 
I~N 
STRC 

DIAMF, DIAM 
SGXF 

lIN 

5.3.3.2 FPDQ Database: Sequential Access to Minimal Panel Data 

When it is reasonable to do so, as in the panel influence coefficient 
generation in subroutine ICTEMP, it is more efficient to access the panel data 
from a sequential file than from a random file. For this reason, the FPDQ 
database was created. This database consists of two sequential files, FPDQNU 
containing nonupdatable panel data and FPDQUP containing updatable panel 
data. The actual data associated with each panel is exactly the same as the 
data contained on PANOTA. The organization of the data is different, however, 
in that FPDQNU and FPOQUP are buffered sequential files, each buffer 
containing 256 word panel data packets for 8 panels. The panel data is stored 
on these files in precisely the order it is required by ICTEMP as ICTEMP 
computes the influence of all the panel groups on a particular control point 
block. 

5.3.3.3 ICTP Database: Sequential File Storage of the Influence 
Coefficients for a Control Point Block 

The ICTP database is a set of 12 sequential files used for the storage 
of the influence coefficients for a control point block. In this section we 
will discuss both the structure and the construction of this database. 

The structure of the database: To illustrate the structure of the 
database, we wl11 consider the construction of ICTP for a run in which there 
are two active symmetry conditions (as and ~A, say) and for a control 
5.28 



point block having 5 row partitions for each symmetry condition. Thus, there 
are 10 (which is <12) total row partitions for the control point block. The 
number of IC rows-for each of these row partitions is given by the vector: 

[RK] = [9, 12, 9, 11, 9, 9, 12, 9, 11, 9] (5.3.1) 

Note that the last five row partitions (corresponding to aA) have the same 
number of rows as the first five (corresponding to ~S). Note also that the 
total number of rows in the control point block is given by: 

9 + 12 + 9 + • • • + 9 + 11 + 9 = 100 (5.3.2) 

satisfying the restriction that a control point block have (~100) IC rows 
associated with it. 

The construction of the ICTP database for a c.p. block is performed in 
overlay 2 as follows: 

Rewind all units ICTP01, ••• ICTP12 (MAG20) 

For each panel group in the configuration (ICTEMP) 

Compute the influence of the panel group on the control point 
block (ICTEMP/PIVC) 

Place the current panel group·s influence on the ICTP database as 
follows (ICTEMP/WRICT): 

For each row partition number K, with RK rows do: 

Write the RK rows of the IC buffer associated with row 
partition K to unit ICTP K, being careful to include global 
MAG singularity parameter indices for the current panel group 

end, loop on row partitions 

end loop on panel groups 

In order to be even more explicit about the structure of the ICTP 
database, we consider a control point block having two IC row partitions as 
follows 

The panel group will be assumed to have global singularity parameters 
associated with it with indices given by 

[INDGRP] = [20004, 20001, 20005, 2, 20002, 20006, 20003, 1] 

(5.3.3) 

(5.3.4) 

To facilitate the disk ouput of data in WRICT, the panel group on control 
point influences are stored transposed in memory, and are given by the array 

5.29 



3.12 3.56 5.98 6.91 20004 
2.14 7.23 7.95 8.73 20001 
2.52 6.13 7.21 4.31 20005 
1.31 4.35 6.31 6.14 2 

[RIC] = 7.23 6.39 7.12 5.14 , 20002 
6.48 9.25 8.64 6.15 20006 
7.23 4.27 6.31 5.21 20003 
6.31 3.26 5.76 6.36 1 (5.3.5) , J \, ,. I ,. 

row partition No. 1 No. 2 Associated MAG 
s.p. indices 

These influence coefficients for the panel group and the control point block 
are written to the ICTP databases by performing the following writes to the 
two sequential files, ICTP01 and ICTP02. 

20004 3.12 3.56 
20001 2.14 7.23 
20005 2.52 6.13 

2 1.31 4.35 
20002 7.23 6.39 -ICTP01 (5.3.6) 
20006 6.48 9.25 
20003 7.23 4.27 

1 6.31 3.26 

20004 5.98 6.91 
20001 7.95 8.73 
20005 7.2l 4.31 

2 6.31 6.14 
20002 7.12 5.14 -ICTP02 (5.3.7) 
20006 8.64 6.15 
20003 6.31 5.21 

1 5.76 6.36 

To continue this example and further illuminate the nature of ICTP, 
suppose further that the problem under consideration has exactly two panel 
groups associated with it. We will assume that the record described by 
(5.3.6) above is the first record written to ICTP01 and that the second is 
given by 

20008 2.42 8.71 
20004 4.31 6.54 

3 7.25 4.74 
20007 6.41 5.92 -ICTP01 (5.3.8) 
20002 1.72 6.81 
20006 6.37 5.41 

2 9.21 3.69 

To get the full influence on row partition No.1, one then aggregates the 
arrays appearing in (5.3.6) and (5.3.8) to obtain 

5.30 

~, 



1 
2 
3 

20001 
20002 
20003 
20004 
20005 
20006 
20007 
20008 

6.31 
10.52 
7.25 
2.14 
8.95 
7.23 
7.43 
2.52 

12.85 
6.41 
2.42 

3.26 
8.04 
4.74 
7.23 

13.20 
4.27 

10.10 
6.13 

14.66 
5.92 
8.71 

= influence of whole configuration on 
first control point row partition 

(5.3.9) 

This aggregation task corresponds to what is done in subroutine GENAIC during 
the IC aggregation phase. 

5.3.4 Data Flow 

The internal data communication in MAG is summarized in Fig. 5.4. This 
diagram, which is a truncated version of the overall program structure diagram 
Fig. 5.2, describes all database activity by map name (for SDMS datasets) or 
file name (for temporary internal databases). The correlation between the map 
names noted in Fig. 5.4 and the actual datasets is given by Fig. 5.5. The 
actual nature of the data flow activity is indicated in Fig. 5.4 by an I (for 
input), 0 (for output), S (for setup: open or rewind), C (for close) or R 
(for release) preceeding the map name. For example, I:MECHED indicates that 
the map MECHED is used to input data from the MEC dataset DATA-SASE-HEADER. 

5.31 



5.4 LOWER LEVEL FUNCTIONS 

5.4.1 Function Decomposition 

In this section we present a functional decomposition summary that 
describes roughly the activities of the routines appearing in Fig. 5.2, MAGis 
overall program structure diagram. This functional decomposition summary will 
consist of two parts, one part for the overall program organization and a 
second part for the PIVC subassembly used to evaluate panel influence 
coefficients. In Appendix 5-A we provide a listing of a simple program FOPRNT 
that generates a more detailed printout of subroutine functional 
decompositions extracted from the code itself. 

Functional Decomposition for MAG, upper level routines MAG [0,0] 

A. 

B. 

5.32 

Perform standard program initialization (including BLOCKDATA), 
initialize sor~s, and open the random file PANOTA. 

Invoke overlay [1,0], program MAG10, to perform all preliminary 
analysis needed to achieve efficient computation of influence 
coefficients. 

[ISOMS] 
[OPENMS] 

[MAG10] 

BA Open data bases, define all SOMS maps and initialize the [OPENOB] 
following global data. 

- Run identifiers 
- IC update flag 
- MAG print flags 
- network counts, network identifiers, network dimensions, 

plus other basic network data 
- singularity parameter and control point counts 
- basic symmetry information 
- gap filling panel count 
- basic compressibility axis data and Mach number 
- counts for singularity parameters and control points 

BB Double check consistency of compressibility axis and [BLOCK] 
symmetry information, expand upon compressibility axis 
and symmetry data and initialize global constants. 
Compute the maximum row partition size based upon the 
available scratch memory in GENAIC. 

BC Define MAG singularity parameter indices for all non-null [COLMAP] 
DQG singularity parameters, generating the datasets 
COLMAP, COLMAP-INVERSE and COLMAP-BULK. The OQG S.p.I S 
are assigned MAG s.p. indices in accordance with the 
numbering scheme: 

Partition No. 

1 
2 
3 
4 

Type 

known, nonupdatable 
known, updatable 
unknown, nonupdatable 
unknown, updatable 

MAG s.p. index range 

1 - 10000 
10001 - 20000 
20001 - 30000 
30001 - 40000 



On an update run, care is taken to ensure consistency of 
MAG s.p. indices. Printed singularity parameter maps will 
be produced if they have been requested. 

BD Define the panel groups to be used during the PIC and [PANGRP] 
AIC generation. A panel group consists exclusively of 
either updatable or nonupdatable panels. Taken together, 
all of the outer splines for the panels in a group depend 
upon < MXING global singularity parameters. The panel 
groupTng is performed by processing each network of the 
configuration (including the gap-filling IInetwork ll

) in 
such a way as to minimize the number of groups (cf. PANIJ). 
For each network, do the following: 

BOA Proceeding in an appropriate order through the [PANIJ] 
panels of a network, include each panel in a panel 
group of appropriate type, creating new panel groups 
as needed. 

BOB Update the list of singularity parameters for the 
current panel group, keeping track of each global 
s.p. index and the corresponding group s.p. index. 
Generate the group s.p. indices (IISF, IIDF) 
corresponding to the global s.p. indices (IISMAG, 
IIDMAG) associated with the panel's outer splines. 

BDC Generate for each panel a full set of panel defin- [MGPAND] 
ing quantities, expanding upon the panel data 
transmitted from DQG. 

BOCA Generate the essential near field data that [NEARDT] 
was not transmitted from DQG. This includes 
skewness parameters and the associated coordi-
nate transformation along with the quasi near 
field panel cut strategy (ISQN) and the asso-
ciated (s*, t*) values for computing half panel 
splines (cf. Appendix 1.3, theory document). By 
extending all near field panel data via a call to 
PSDDQG, ensure that nothing unexpected happens in 
Overlay 2. 

BDCB Generate the essential far field data that [FARDT] 
was not transmitted from DQG. This includes 
especially the parameters (PXF, PWF, SGXF and 
QDLTF) used in the rapid far field test. By 
extending all far field data with calls to 
FFDQGX, RACOF and XCOF, ensure that nothing 
unexpected happens in Overlay 2. 

BDCC Save panel data on MAG-PANEL-DATA for subsequent 
use by MDG and FOP. 

5.33 



BDCD Pack up a very minimal set of panel defining 
quantities (256 words per panel) saving them 
on the random file PANDTA and buffering them 
out to either FPDQNU (non-updatable panel) or 
FPDQUP (updatable panel). 

[PAKPQF] 
[PAKAST] 

BE Define the control point blocks and row partitions to be [CONBLK] 
used during PIC and AIC generation. As one proceeds, MAG 
c.p. indices are assigned to each control point that is 
recognized as a MAG c.p. During this processing the ROWMAP, 
ROWMAP-INVERSE and ROWMAP-BULK datasets are defined and/or 
updated. Processing is performed on a network by network 
basis. 

BEA For each control point in a network (processed in an [PROCP] 
order designed to minimize 1-0 activity on the 
closure AIC buffer), read the control point's 
defining quantities and determine if it should be a 
MAG control point. If so, do the following: 

BEAA Analyze any matching conditions associated [SDMTCH] 
with the control point, handling each symmetry 
condition separately for corner and extra 
control points on a plane of symmetry. 

BEAAA Eval~ate the dependencies of a, ~ 
and t.t.v for eachc.p. in a match
ing condition, producing an entry 
on one of the datasets: SOURCE
MATCHING, DOUBLET-MATCHING or 
VORTICITY-MATCHING. 

BEAB Save closure information if appropriate. 

BEAC Perform data checking of c.p. data and then write 
out information to the ROWMAP and ROWMAP-INVERSE 
datasets. 

[GRAD] 

BEB If appropriate, place closure condition coefficients [CLSROW] 
(aA, aD, AIC row index and updatability flag, 
sYlIIDetry conditions indicator) inappropriate places 
on the ROWMAP and ROWMAP-INVERSE datasets. 

BEC For each network, generate maps of MAG c.p. indices 
and AIC row indices. 

BED If requested, generate reports summarizing control [DRWMAP] 
point and boundary condition information. 

C. Invoke overlay [2,0], program MAG20, to perform evaluation of [MAG20] 
influence coefficients. The processing is performed by control 

5.34 

point blocks. After packing into WCB some minimal control point 
defining information for the current c.p. block, MAG20 generates 
the IC's and AIC's for the current block as follows. 



CA For each panel group, the influence of all the panels [ICTEMP] 
upon the current c.p. block is calculated and written to 

CB 

the ICTPxx database, the information for each row partition/ 
symmetry combination being written to a different file. 
This is accomplished as follows. 

I 

CAB for each panel in the current panel group, the [PIVC] 
minimal panel data is obtained from the appropriate 
sequential file (FPDQNU or FPDQUP), unpacked by UPKPQF 
and extended by FFDQGX. Then, for each control point 
in the current c.p. block, the influence of the current 
panel on each control point is calculated by PIVC and 
included in the panel group/c.p. block IC buffer. 

CAC When the influences of all the panels in the [WRICT] 
current group have been calculated, the panel group/ 
c.p. block IC buffer is written out to the ICTPxx 
database. Care is taken to include corresponding 
global singularity parameter information. Note that 
each file in the ICTPxx database contains all the 
panel group influences for precisely one row partition/ 
symmetry condition combination. 

Once the influence of the whole configuration upon the [GENAIC] 
current c.p. block has been calculated and saved on ICTPxx, 
the program proceeds to generate the IC's and AIC's for all 
of the control points in the current block. This is done 
as follows. For each row partition/symmetry condition com
bination, all of the influence coefficients are read from 
the appropriate file on the ICTPxx database and then aggre-
gated. Then, for each control point in the row partition, 
the following tasks are performed. 

CBA 

CBB 

CBC 

The control point's boundary condition information 
and other defining quantities are placed in the 
appropr~ate common regions. 

The dependencies of a, ~ and V~ are evaluated for the 
control point's hypothetical location. 

The AIC rows (for the current c.p. and symmetry 
condition) corresponding to general [GENBC], 
singularity specification [GENBC] and matching 
[MATCH] boundary conditions are calculated and 
written to the AIC-MATRIX dataset. 

CBD Place any user requested influence coefficients on 
the IC-MATRICES dataset. 

CBE Include the effect of the current c.p.'s influence 
coefficients on any closure condition. Much care 
must be taken with the management of the closure AIC 
buffer both here and when the processing of the 
current c.p. block is completed. 

[CBMOVE] 

[GRAD] 

[GENBC], 
[MATCH] 

5.35 



5.4.2 Functional Decomposition for the PIVC Subassembly 

The purpose of PIVC is to compute and add in to the panel group/c.p. 
block IC buffer the influence of a given panel upon all symmetry conditions of 
a particular control point. 

A. Calculate all required images of the basic c.p., taking special [DINFLU] 
care when the c.p. lies in a plane of symmetry, and determine 
the method of PIC calculation for each c.p. image. 

B. If necessary, extend the panel defining quantities to permit [PSDDQ5] 
quasi-near field evaluation (i.e. type 5, using QNFCAL). 

C. Invoke IC to organize the calculation of the panel influences. [IC] 
IC achieves its purpose as follows. 

5.36 

CA For each image of the control point, select the appropriate 
method of calculation and use it. The choices are: 

CAA Monopole far field evaluation. (type 1) 

CAB Dipole far field evaluation. (type 2) 

CAC Quadruple far field evaluation. (type 3) 

CAD Quasi far field evaluation, involving one 
call to NFTPIC. (type 4) 

[FFPIC] 

[FFPIC] 

[FFPIC] 

[QFFCAL] 

CAE Quasi near field evaluation, involving two [QNFCAL]~' 
calls to NFTPIC. Note that this method is always 
considered if the influence test has indicated a 
near field (PIFCAL) should be used. Note further 
that this method may fail to give adequate answers 
so that PIFCAL is then required. (type 5) 

CAF True 8 subpanel near field evaluation involving 
8 calls to NFTPIC. (type 6) 

Once the panel influences have been calculated for the 
current c.p. image, line vortex terms could be included. 

[PIFCAL] 

At present, line vortex terms are not implemented in PAN AIR. 
However allowance has been included for their future inclusion 
by providing the following control logic: 

CAG Subroutine LINVOR would select a near or a far field 
evaluation procedure for line vortex terms. The near 
field procedure performed by NFLVT would be essentially 
the procedure described in Appendix J.10 of the theory 
document. The far field procedure performed by FFLVT 
would implement a combination of the ideas in Appendix 
J.g and J.I0 of the theory document. 



CAH Once the full influence of a panel on a c.p. image has 
been calculated, the influence is added (with appropriate 
sign) into the various panel on c.p. symmetry condition 
accumulators. 

CAl When accumulators containing the influence of the panel on 
the c.p. symmetry conditions are complete, the outer spline 
matrices are applied and the results are aggregated in to 
the appropriate places in the panel group/c.p. block 
influence buffer. 

5.4.3 Subroutine Descriptions . 
In Appendix 5-A we provide a listing of a simple program SDPRNT that 

generates a printout of subroutine descriptions extracted from the code itself. 

5.37 



Page Missing in 

Original Document 



1. Run identification, IC update flag and data base directory information 
(this last item via CHPADB). 

2. Print options. 

3. Boundary condition and control pOint data, including closure information. 
Global information. 
Data for matching conditions. 
Panel defining data. 
Singularity parameter information. 

4. Random access to a minimal set of panel defining quantities (created in 
PANGRP, accessed in SDr4TCH and GENAIC). 

5. Sequential access to a minimal set of panel defining quantities, file 
FPDQNU for nonupdatable panels, file FPDQUP for updatable panels (created 
by PANGRP, accessed by ICTEMP). 

6. A set of twelve sequential files is used for efficient temporary storage 
of panel group on control point block influence information. File names 
are ICTP01, ICTP02, ••• ICTP12. 

7. Principal data written are the [AIC] matrix (AIC-MATRIX) and the control 
point ~, v and w.fi influence coefficients (IC-MATRICES). Also, the 
dataset MAG-PANEL-DATA. 

8. That part of the AIC-MATRIX dataset corresponding to unknown singularities, 
rue ([AICu], cf. equation (5.2.2), maintenance doc.). 

9. That part of the AIC-MATRIX dataset corresponding to known singularities, 
t K, ([AICKl, cf. equation (5.2.2), maintenance doc.). 

10. The IC-MATRICES, [ICA], (cf. equation (5.2.4), maintenance doc.). Also, 
MAG-PANEL-DATA for subsequent usage by FOP. 

Figure 5.1 - Data Base Relationships 

5.39 



U1 . 
~ 
Q 

MAG/LOCKDATA (0,0) 

1--- I 
MAG10 (1,0) MAG20 (2,0) 

I I I I I I 
OPENDB BLOCK COLMAP PANGRP CONBLK ICTEMP GENAIC 

I I ,--4,--, , I . 
PROCP 1~~~w_~~~J !ill9 L~~~_~~_~:~:_~~:~_ PANIJ MGPAND PAKPQF 

.-L, I 
NEARDT FARDT PAKAST 

---------------------
NFTPIC 

I I - -- I I 
SUBSBI SUPSBI SUPSPI/AICSUP 

SDMTCH 

I 
GRAD 

DINFLU IC 
I 

I~-' -. I 
FFPIC QFFCAL QNFCAL PIFCAL LINVOR INDADD 

I I I. I 
(NFTPIC) (NFTPIC) (NFTPIC) ~ 

FFLVT NFLVT I 

I ,-----------------------------------" 

) 

---------------------
NFTPIC sub-subassembly PIVC subassembly 

Figure 5.2 - Overall Program Structure Diagram, 
Including PIVC Subassembly 

) ) 



01 

+:0 ..... 

') 

IMAG • CMPAXS I 
(Inner products and 
compressibility scaling) 

ACIP xT I Co I Y 
ADIP xr I Bo I Y 

-+T -+ [-+ -+] CPIP x Co Y = x,y 
-+T -+ 1-+ -+) DCIP x Bo Y = x,y 

CSCALl Yj +- Co Yj 

CSCAL2 Yj +- B 0 Yj 

I MAG.PDRGEN I 
(Panel defining quantities 
regeneration) 

PAKPQF Pack panel data 
PAKAST Pack splines 

UPKPQF Upack panel data 
UPKAST Unpack splines 
XBPOSH (PAL!B) project 

in X 
RCSLOC (PALIB) A -+ A 
CCALN (PALIB) Cij 
RACOF 
XCOF 

PSDDQG 
PSDDQ5 

RCSLOC 

(PALlB) RA(3,5) 
(PALlB) QA(6,9) 

Quasi-ne~r field data 

[MAG .JOBTRM I 
(Job termination and 
error handling) 

) 

DBABT SDMS recovery 
MAGERR fatal error 
MAGFIN terminate job 
MAGMSG print msg, post fatal 

I MAG.IOPACK I 
(Sequential and AIC 1-0) 

RDAIC Read and Write 
WRAIC from AIC ds 
REBUF Read and Write 
WRBUF from local seq. 

I MAG.CPDATA I 
file 

(Packing and unpacking of 
c.p. data for a c.p. block) 

CBMOVE extract c.p. data 
CBSET pack c.p. data 
CPINFO Calc. NE= ~ IECP 

I ~1AG.PIVCI 
(PIVC Subassembly) 

flag 

PIVC Panel on c.p. images influence 
DINFLU Influence Test 
IC Organize PIC calculation 

FFPIC monopole, dipole, 
quadrupole 

BIQUAD 
TCOF 

PSDDQ6 

(PALlB) H-+Aa a 
(PALlB) h~a'as ~a'at ~a) 
(PALIB) coeff (B,B' ,C) 
Near field data 

QFFCAL (NFTPIC) quasi far field 
QNFCAL (NFTPIC) quasi near

field 
PIFCAL (NFTPIC) near field 
LINVOR linear vortex organizer 

FFLVT far field stub GTALAM 
PDQSUB 

(PALIB) K parmameters 
(PALIB) RR, QQ, PP NFLVT near field stub 

INDADD accumulate PIC's in 
group on block buffer 

Figure 5.3 Sublibraries used by MAG 

IMAG.PIVC.NFTPIC I 
(NFTPIC sub-subassembly) 
NFTPIC Organize flat panel 

near field computation 
SUBSBI M CXI < 1 
SUPSBI MCXI > 1, subinclined 
SUBSPI MCXI > 1, superinclined 

AICSUP 
(PALlB.PDRGEN I 
(Panel Defining quantities 
regeneration, PALIB) 
RCSLOC A -+ A 
XBPOSH project in X 

) 

CCALN Cij= If ~ i-I nj -1 dt dn 
RACOF RA (3,5) 
XCOF QA (6,9) 
BIQUAD (~, ~ s' ~ t) a a, a, 
TCOF coeff (Bi Bf C) 
PDQSUB RR, QQ, PP 
GTALAM IC parameters 

IPALlB.GENERAL I 
XFERA copy an array 
MUL3X3 (3x3)(3xn) matrix multo 
ZERO zero an array 
PIW4, UNPIW4 pack, unpack 4/word 
OUTLIN, OUTVEC, OUTMAT, OUTMXV 

free field output pkg 
SRCHOL search ordered list 
SORTAK sort IA keeping KEY in synch 
VMUL y ax-+ 
CROSS c = a x b 
VADD 1 = x + ~ 
SHLSRT sort int!ger Array 
NRPTHP min {"Q-Qo": Q E HI 

-+ -+ -+ RRAAX Y = A x+y 
MXMACA C +- C + A*B 



U1 . 
~ 
N 

OPENDB 
J 

BLOCK 

MAG/LOCKDATA 
I 

Isc : PANDT~J rC!nd II 
I J-- ----.-.- J I 

MAG10 (1,0) MAG20 (2,0) MAGFIN 
I 

0: SYMMETRY C:MAGY (db) 

COLMAP 
i 

I :SNGSPC 
10:COLMAP 
o :COLINV 
o :COL-BULK 

PANGRP CONBLK 

I:NETWK 
I:SPCPT 
O:ROW-BULK 

C:MAK (db) 
C:DQG (db) 
R:FPDQxx (seq) 
R:PANDTA (seq) 

___ "-___ ,R:ICTPxx (seq) 
I 

GENAIC ICTEMP 
I 

I :BNDRY 
I :ICTPxx (seq) 
I :PANDTA (rand) 
o : IC 

SC:MEC (db) 
SC:DIP (db) 
S :DQG (db) 
S :MAK (db) 
S :MAGX (db) 
S :MAGY (db) 
I :MECHED 

I:PANSPEC 
O:PANGRP 
O:MAG-PAN 
O:PANDTA (rand) 
O:FPDQxx (seq) WRICT I 10:AIC (closure update) 

I :MACRO 
I :GLOPRT PANIJ MGPAND 
I :GLOBAL 
I :NETWK ~ 

NEARDT FARDT 

I = input (read) 
o = output (write) 
S = setup (open or rewind) 
C = close. 
R = return or release 

, 

PAKPQF PROCP CLSROW 
I_I 

I :CNTRQ I :CLOSE 
IO:ROWINV IO:ROWINV 

PAKAST I 0 : ROWMAP 0: ROWMAP 
I 

SDMTCH 
1 

I:EXHYLO 
I:PANDTA (rand) 
O:SCR-MTCH 
O:DBL-MTCH 
O:VOR-MTCH 

DRWMAP 
-.L 

I:ROWMAP 
I:BNDRY 

I 
GRAD 

, 

GENBC 

O:AIC 
(general, 
sing. spec.) 

I 

MATCH 

I:SRC-MTCH 
I:DBL-MTCH 
I:VOR-MTCH 
O:AIC 

(matching) I 

o The panel data is placed on the ordinary FORTRAN files PANDTA (random), and FPDQNU, FPDQUP (sequential) 
o ICrpxx denotes a set of 12 sequential files used for temporary storage of IC'S 
o The correlation between map name and dataset name is given in the following figure 
o File names are followed by (rand), (seq) indicating random or sequential organization 
o Database names are followed by (db), all other items are map names 

) 
Figure 5.4 - Data Flow Diagram for MAG Giving Data Activity by Map Name 

) ) 



U1 . 
~ w 

) 

Map or 
file name 
Ate 
BNDRY 
CLOSE 
CNTRQ 
COLINV 
COlMAP 
COL-BULK 
DBl-MTCH 
EXHYlO 
FPDQNU (seq) 

FPDQUP (seq) 

GLOBAL 
GlOPRT 
IC 
ICTPxx (seq) 
MACRO 
MAG-PAN 
MAKHED 
MECHED 
NETWK 
PANDTA (rand) 

PANGRP 
PANSPEC 
ROWINV 

ROWMAP 

ROW-BULK 
SNGSPC 
SPCPT 
SRC-MTCH 
SYMTRY 
VOR-MTCH 

Data
base 
'R'AK 
DQG 
OQG 
OQG 
MAK 
MAK 
MAK 
MAK 
DQG 
FPOQ 

FPDQ 

DQG 
DIP 
MAK 
ICTP 
MEC 
MAK 
MAK 
MEC 
DQG 
PANDTA 

MAK 
DQG 
MAK 

MAK 

MAK 
DQG 
DQG 
MAK 
MAK 
MAK 

Dataset 
name 
Ale-MATRIX 
BNDRY-CONDN-SPEC 
CLOSURE 
BNDRY-CONDN-SPEC 
COlMAP-INVERSE 
COlMAP 
COlMAP-BUlK 
DOUBLET-MATCHING 
EXTRA-HYPO-lOC 
(minimal defining 
quantities) 
(minimal defining 
quantities) 
GLOBAL 
GLOBAL-PRINTS 
IC-MATRICES 
(IC temp. storage) 
MAC RO-OPTI ONS 
MAG-PANEL-DATA 
DATA-BASE-HEADER 
DATA-BASE-HEADER 
NETWK-SPEC 
(random access, 
min. panel data) 
PANEL-GROUP 
MAG-PANEL-SPEC 
ROWMAP-INVERSE 

ROWMAP 

ROWMAP-BUlK 
SINGULARITY SPEC 
SPECIAL-POINTS 
SOURCE-MATCHING 
SYMMETRY 
VORTICITY-MATCHING 

Remarks 
and notes 

~) 

) 

Written in GENBC, MATCH; written and updated in GENAIC (closure) 
Printed in DRWMAP, used in GENAIC and below (see CNTRQ) 
Read in ClSROW to help include closure info on ROWMAP, ROWINV 
Read in PROCP to help create ROWMAP, ROWINV, ROW-BULK 
Written by COlMAP 
Read by COlMAP for data checking during update, written by COlMAP 
Written by COlMAP, data used by PANGRP 
Written by SDMTCH, used by MATCH 
Read by SDMTCH to help create DBl-MTCH, SRC-MTCH, VOR-MTCH 
Nonupdatable panels: Buffered and written by PANGRP, read by 
ICTEMP 
Updatable panels: Buffered and written by PANGRP, read by 
ICTEMP 
Global data, read in OPENDB, used everywhere 
MAG print flags, read in OPENDB 
Written by GENAIC 
For each c.p. block, written by ICTEMP/WRICT, read by GENAIC 
IC update flag read in OPENDB 
Written by PANGRP for transcription by MDG, used in FOP 
Written by MAGFIN as part of program termination 
Run identifiers read by OPENDB 
Read in OPENDB to create nw table, in CONBlK for extra nw info 
Written by PANGRP, read by SDMTCH and GENAIC 

Written by PANGRP, read by ICTEMP 
Read by PANGRP 
Read (for data checking) by PROCP, written by PROCP, updated by 
ClSROW 
Written by PROCP, updated by ClSROW, printed in D~WMAP, read by 
MAG20 
Written by CONBlK 
Read by COlMAP 
Read by CONBlK to find extra control points 
Written by SDMTCH, used by MATCH 
Written by MAGlO at the end of problem setup 
Written by SDMTCH, used by MATCH 

Figure 5.5 - list of all Map and File Names 



APPENDIX 5-A 

PROGRAMMING AIDS: EXTRACTION PROGRAMS FOR MAG 

As noted in the main text of this section, we list here three standalone 
programs that are used to generate useful printfiles for the maintenance 
programmer. The listings provided include both the code and the short job 
control record that has been used on the BCS Cyber system. The job control 
record will have to be modified in order for these job decks to be executed at 
an alternative site. The decks provided here perform the following functions. 

FDPRNT: This program reads a full SOURCE file for the ~"G program and 
extracts the functional decompositions for each subroutine. When all 
functional decompositions have been extracted, a sequential index and an 
alphabetical index are generated and written to the output file, FDLIST. 

SDPRNT: This program reads a full SOURCE file for the MAG program and 
extracts the subroutine descriptions for each subroutine. This listing, which 
is significantly shorter than the listing generated by FDPRNT, has generated 
for it both a sequential and an alphabetical index. 

MDPRNT: This program generates an indexed listing for an SDMS master 
definition file. This program may be used to generate a useful listing for 
any master definition file. It is particularly recommended for working with 
long master definitions such as those of the DQG and MAK databases. 

All of the source code listed in this section has been included on the 
version 3.0 delivery tape. 

5-A.l 



U1 
I 
~ . 
N 

." 
C 
"0 
:;c 
:z 
~ ..... 
..... 
o 
...... 
~ 

...... 

) 

FDPRNT,TSO,P02,CH130000. 
USER,*. HIKE EPTON/773-940S/3N-Pl 
ATTACH,OLDPL=HAGPL21/UN=QPSHDSE. 
UPDATE,P,D,C,F,S. ' 
REWIND, SOURCE. 
FTN,OPT=2,R=3. 
LGO,SOURCE. 
REPLACE,TAPE2=FDLIST. 
EXIT, U. 
REPLACE,OUTPUTmFDOUT. 
DAYFILE,FDDAY. 
REPLACE,FDDAY. 
=== EOR === 
*10 GETEH 
"cC HAG. FFDQGX 

EOR === 
PROGRAM FDPRNT (TAPEl,TAPE2.INPUT.OUTPUT.TAPESaINRUT.TAPE6=OUTPUT) 
INTEGER BUF(eO) 

C 

C 

C 
C 

C 

C 

X , DECK(eO), DCKSUH(eO,200), DCKPAG(200) 
X , NAHEDK(200), KEY(200) 

LOGICAL WRITE, ~EWPAG 

NCARD = 0 
NWRIT = 0 
NPAGE = 0 
NLINE = 0 
NDECK = 0 
JDECK = 0 

100 CONTINUE 
READ (1 120) BUF 

120 FORHAT feOAl) . 
IF ( EOF(I) ) 1000,IS0 

ISO CONTINUE 
NCARD = NCARD + 1 
WRITE = .FALSE •. 

IDECK = 0 
IF ( BUF(I).EQ.IH* 

X BUF(2).EQ.IHD 
X BUF(3).EQ.IHE 
X BUF(4).EQ.IHC 
X BUF(S).EQ.IHK 
X 

.AND. 

.AND. 

.AND. 

.AND. 

IF IDECK.NE.O JDECK m 1 
IF JDECK.EQ.O GO TO 100 

IDECK = 1 
DON'T PROCESS UNTIL FIRST *DECK IS 
ENCOUNTERED . 

IF IDECK.NE.O WRITE = .TRUE. 

) ) 



') ') \ ) 

IF BUF(l) .EQ.IHC .AND. 
X BUF(2).EQ.IHN 
X ) WRITE" .TRUE. 

C 
IF BUFCl) .Eg.IHC • AND. 

X BUF(2).E .IHF 
X ) WRITE = .TRUE. 

C 
IF BUF(l) .EQ.IHC • AND. 

X BUF(2) .EQ.IHD 
X ) WRITE = • TRUE. 

C 
IF BUF(l) .EQ.IHC .AND. 

X BUF(2).EQ.IHP 
X ) WRITE = • TRUE. 

C 
IF BUF(l) .EQ.IHC .AND. 

X BUF(2).EQ.~HH 
X WRITE" .TRUE. 

." C 
c IF BUF Cl) • EQ.IHC • AND. -a X BUF (2).EQ.IHR :;:c 
z X WRITE = .TRUE. 
-i C ........ IF BUF(l) .Eg.IHC .AND. 
N X BUF(2).E .IHF .AND. 
0 

X BUF(3).EQ.~HH 
-t) X ) WRITE" .TRUE. 
-'=" 

C 
IF BUF (l) • Eg.IHC .AND. 

X BUF(2).E .IHF .AND. 
X BUF(3).EQ.~HT 
X ) WRITE = • TRUE. 

C 
IF ( .NOT. WRITE) GO TO 100 
NWRIT = NWRIT + 1 
NEWPAG= .FALSE. 
IF ( IDECK.NE.O .OR. HOD(NLINE.58).EQ.0 ) NEWPAG" .TRUE. 
IF ( IDECK.EQ.O ) GO TO 200 

NDECK = NDECK + 1 
CALL XFERA (BUF.DECK.80) 
CALL XFERA (BUF.DCKSUH(I.NDECK).80) 
DCKPAG(NDECK) a NPAGE + 1 

200 CONTINUE 
C 

IF ( .NOT. NEWPAG ) GO TO 300 
NPAGE = NPAGE + 1 
NLINE .. 0 

U1 
WRITE (2.6001) DECK. NPAGE 

.J) I 6001 FORHAT ClHI.80AI.IOX. "PAGE". 15 
~ . 
W 



U1 
I 

):>0 . ... 

." 
o 
"'C 
;;0 
:z 
-i 

....... 
w 
o ...... ... 
....... 

) 

C 

C 
C 
C 

300 CONTINUE 
NLINE = NLINE + 1 

WRITE (2,6000) BUF 
6000 FORHAT (lX,80A1) 

GO TO 100 

1000 CONTINUE 
WRITE (2,6003) 

6003 FORHAT (lU1,1I INDEX OF SUBROUTINE FUNCTIONAL DECOMPOSITIONS 
X (IN THE ORDER TUEY APPEAR) II , II) 

6004 FORHAT (lU1,1I ALPHABETICAL INDEX OF SUBROUTINE FUNCTIONAL DE 
XCOMPOSITIONS " , II) 

DO 1100 IDECK = 1 NDECK . 
WRITE (2 r6002J (DCKSUM(I,IDECK),1=7,20), DCKPAG(IDECK) 

6002 FORHAT (8X,lqA1, II. • • • • • • • • • • • • •• 

X ,14) 
1100 CONTINUE 

C 
C 
C 

WRITE (2,6004) 
DO 1120 IDECK = l,NDECK 

CALL PACKNM ( DCKSUM(7,IDECK), NAMEDK(IDECK) ) 
1120 CONTINUE 

CALL ISUELL (NDECK, NAMEDK, KEY) 
DO 1150 1 = l,NDECK 

IDECK = KEY(l) 
WRITE (2,6002) (DCKSUM(I,IDECK),1=7,20), DCKPAG(IDECK) 

1150 CONTINUE 
C 
C 
C 

" 

WRITE (6 1200) NCARD,NWRIT 
1200 FORHAT (1'1 TOTAL NUMBER OF CARDS: II, 16,11 CARDS EXTRACTED:", 16) 

STOP 

C 

END 
SUBROUTINE XFERA (A,B,N) 
DIMENSION A(l),B(l) 
DO 10 I = l,N 

10 B(I) = AU) 
RETURN 
END 
SUBROUTINE PACKNM ( ICU, lCU) 
DIMENSION ICU(10) 
DIMENSION IOUT(8) 

ENCODE (8,6000,IOUT) (ICH(I),1-1,8) 

) ) 



U1 
I 
~ . 
U1 

') 

" c 
-c 
;;0 
:z 
-t 
...... 

""" 0 ..... 

""" 

) 

6000 FORHAT (8Al) 

C 
C 
C 
CC 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

CC 
C 
C 

C 

C 

JCH IOUT(I) 
RETURN 
END 
SUBROUTINE ISHELL (N,A,KEY) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * ***PURPOSE*** * 
* * * * * * 

ISHELL SORTS AN INTEGER ARRAY A(N) USING THE SHELL SORT 
ALGORITHM. (CF. JULY 1958, CACM, AN ARTICLE BY DONALD M. 
SHELL). . 

'i( 
'i( 

* 'i( 
'i( 
,'( 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

INTEGER A(N), KEY(N), ASV 
* * * INITIALIZE THE ARRAY KEY CONTAINING ORIGINAL ADDRESSES 'i( 

* * IF ( N.LE.O ) RETURN 
DO 10 I = l,N 

10 KEY(I) I 
M = N 

100 CONTINUE 
M = M/2 
IF ( M.LE.O ) RETURN 
JMAX = N - M 
DO 200 J a l,JMAX 
IA J 
lAP = IA + M 

150 IF ( A(IA) .LE. A(IAP) ) GO TO 200 
ASV = A(IA) 
A(IA) = A(IAP) 
A (IAP) = ASV 

ASV KEY(IA) 
KEY(IA) = KEY (lAP) 
KEY(IAP)= ASV 

lAP 
IA 
IF( 

200 CONTINUE 
GO TO 100 
END 

IA 
IA - M 

IA.GT.O ) GO TO 150 

) 



I " 'I 

U1 
I 

:ta 
0'1 

c.n 
C 
"lJ 
;0 
:z 
-i 
.-.. 
...... 
o 
-t, 

-1=>0 

-..-

) 

SDPRNT,TsO P02,CH130000. 
USER,*. HiKE EPTON/773-940s/3N-P1 
ATTACH,OLDPL=KAGPL21/UN=QPSHDSE. 
UPDATE,P,D,C,F,S. 
REWIND, SOURCE. 
FTN,OPT=2,R=3. 
LGO SOURCE. 
REPLACE,TAPE2=SDLIST. 
EXIT,U. 
REPLACE,OUTPUT=SDOUT. 
DAYFILE,SDDAY. 
REPLACE,SDDAY. 
=== EOR === 
*10 GETEH 
*C KAG.FFDQGX 
==== EOR === 

. PROGRAM SDPRNT (TAPE1,TAPE2,INPUT,OUTPUT,TAPEs=INPUT,TAPE6=OUTPUT) 
INTEGER BUF(SO) 

C 

C 

C 

C 

X , DECK(SO), DCKSUH(SO,200), DCKPAG(200) 
X· , NAMEDK(200), KEY(200) 

LOGICAL WRITE, NEWPAG 

NCARD = 0 
NWRIT = 0 
NPAGE = 0 
NLINE '" 0 
NDECK = 0 

100 CONTINUE' 
READ (1 120) BUF 

120 FORKAT tSOA1) , 
IF ( EOF(l) ) 1000,150 

150 CONTINUE 
NCARD = NCARD + 1 
WRITE = • FALSE. 

IDECK == 0 
IF ( BUF(1).EQ.1H* 

X BUF(2).EQ.1HD 
X BUF(3).EQ.1HE 
X BUF(4).EQ.1HC 

.AND. 

.AND. 

.AND. 

.AND. 
X BUF(s).EQ.1HK 
X ) IDECK = 1 

IDECK.NE.O ) WRITE'" .TRUE. IF 

IF 
X 
X 

BUF(1).EQ.1HC .AND. 
BUF(2).EQ.1HN 

IF BUF(1).EQ.1HC .AND. 
X BUF(2).EQ.1HP 

) WRITE == .TRUE. 

) ,) 



U1 
I 
~ . ..... 

OJ 

V) 
C 
"'C 
;c 
:z 
-i -
N 

o 
-+i 

.&:>0 

....... 

C 

') 

X.AND.BUF(3).NE.1I1E 
X ) WRITE = • TRUE. 

IF ( .NOT. WRITE) GO TO 100 
NWRIT = NWRIT + 1 
NEWPAG= • FALSE. 
IF ( MOD(NLINE,58).EQ.0 ) NEWPAG = .TRUE. 
IF ( MOD(NLINE,58).Gt.48 .AND. IDECK.NE.O ) NEWPAG = .TRUE. 
IF ( IDECK.EQ.O ) GO TO 200 

NDECK = NDECK + 1 
CALL XFERA (BUF.DECK,80) 
CALL XFERA (BUF,DCKSUM(I,NDECK),80) 
DCKPAG(NDECK) = NPAGE + 1 

200 CONTINUE 
C 

C 

C 
C 
C 

IF ( .NOT. NEWPAG ) GO TO 300 
NPAGE = NPAGE + 1 
NLINE = O' ° 

WRITE (2,6001) NPAGE 
6001 FORMAT ClH1,60X,10X,"PAGE",I5 ,f) 

300 CONTINUE 
NLINE = NLINE + 1 

IF ( IDECK.NE.O ) WRITE (2,6006) 
6006 FORMAT (" ") 

IF ( IDECK.NE.O ) GO TO 100 
WRITE (2,6000) BUF 

6000 FORMAT (IX,80Al) 
GO TO 100 

1000 CONTINUE 
WRITE (2,6003) 

6003 FORMAT (IHl," INDEX OF SUBROUTINE DESCRIPTIONS" 
X " (IN THE ORDER TilEY APPEAR) " /I ) 

6004 FORMAT (IHI
J
" ALPHABETICAL iNDEX OF SUBROUTINE DESCRIPTIONS" 

X , /I 
DO 1100 IDECK = 1 NDECK 

WRITE (2,6002J (DCKSUM(I,IDECK),I=7,20), DCKPAG(IDECK) 
6002 FORMAT (8X, 14Al, ". • • • • • • • • • • • • • • . 

X ,14) 
1100 CONTINUE 

C 
C 
C 

WRITE (2,6004) 
DO 1120 IDECK = I,NDECK 

CALL PACKNM ( DCKSUM(7,IDECK), NAMEDK(IDECK) ) 
1120 CONTINUE 

" 

) 



U1 
I 
~ . 
co 

VI 
t:J 
"t:l 
;0 
:z 
-I ..... 
w 
o ..... 
~ 

-... 

) 

CALL ISHELL (NDECK, NAHEDK, KEY) 
DO 1150 J = l,NDECK 

IDECK = KEY(J) 
WRITE (2,6002) (DCKSUM(I,IDECK),1=7,20), DCKPAG(IDECK) 

1150 CONTINUE C . 
C 
C 

C 

WRITE (6 1200) NCARD,NWRIT 
1200 FORMAT (Ill TOTAL NUMBER OF CARDS:",16," CARDS EXTRACTED:",16) 

STOP , 
END 
SUBROUTINE XFERA (A,B,N) 
DIMENSION A(l),B(l) 
DO 10 I = l,N 

10 BC!) = AU) 
RETURN 
END 
SUBROUTINE PACKNM ( ICH, JCH) 
DIMENSION ICH(10) 
DIMENSION IOUT(8) 

ENCODE (8,6000,IOUT) (ICH(I),I=l,8) 
6000 FORMAT (8Al) 

JCH a 10UT(1) 
RETURN 
END 
SUBROUTINE ISHELL (N,A,KEY) 

C 
C 
C 
CC 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

CC 
C 
C 

* * * PUR P 0 S E * * * 
ISHELL SORTS AN INTEGER ARRAY A(N) USING THE SHELL SORT 
ALGORITHM.(CF. JULY 1958, CACM, AN ARTICLE BY DONALD M. 
SHELL). 

1, 
,IC 

* * 1, 
,'c 

* 

* * * * * * * * .* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

INTEGER A(N), KEY(N), ASV 
* * INITIALIZE THE ARRAY KEY CONTAINING ORIGINAL ADDRESSES 
* IF ( N.LE.O ) RETURN 
DO 10 I liN· 

10 KEYC!) 
M = N 

) 

,', 
* 1, 

) 



U1 
I 

)::0 . 
\0 

') 

VI 
C 
"'C 
;;0 
:z 
-I 
,... 

. -"" 
o 
-fa 

.. -"" 
...... 

C 

C 

100 CONTINUE 
M = M/2 
IF ( M.LE.O ) RETURN 
JHAX = N - M 
DO 200 J = 1,JHAX 
IA J. 
lAP IA + M 

150 IF ( A(IA) .LE. A(IAP) ) GO TO 200 
ASV = A(IA) 
A(IA) A(IAP) 
A(IAP) = ASV 

ASV = KEY(IA) 
KEY(IA) KEY (lAP) 
KEY(IAP)= ASV 

lAP 
IA 
IF ( 

200 CONTINUE 
GO TO 100 
END 

= IA 
= IA - M 

IA.GT.O ) GO TO 150 

') ) 



01 
I 

):0 . ...... 
o 

~ 
"Q 
:;;0 
:z 
-i -...... 
o ...., 
eN 

) 

HDPRNT.TlO.P04.CH150000. 
USER.*. MIKE EPTON/773-9405/3N-Pl 
FTN,R=3.0PT=2 • 
GET,A=MDMAK. 
LGO A. 
REPLACE,OUTPUT=MDOUT. 
EXIT.U. 
COST,LO=F. 
DAYFILE,HDDAY. 
REPLACE.HDDAY. 

EOR === 
PROGRAM HDPRNT (INPUT. OUTPUT. TAPE5=INPUT. TAPE6=OUTPUT) 
INTEGER BUF(90). CHAR. DOL. DUF(90), DUFBLK(90) . 
INTEGER NPAGE(200)t TITLE(a.200) 
INTEGER NAMEDS(200J, KEY(200) 

C 

C 

C 

C 

C 

C 

DATA DOL/lH$/ 
DATA NL/57/ 
DO 7000 J = 1.90 

7000 DUF(J) = lH . 

LINE '" 0 
IPG - 0 
NDS a 0 

1 CONTINUE 
READ (5,2) BUF 

2 FORMAT ,90A1) 
IF ( EOF(5) ) 950,3 

3 CONTINUE 
LOOK FOR WORD "DATASET" 

DO 10 J ... 1
j

84 
JSV = 
IF ( BUF(J).EQ.DOL ) GO TO 30 

IF (BUF(J ) .EQ. lHE 
N.AND.BUF(J+1) .EQ. 1HN 
D.AND.BUF(J+2) .EQ. 1HD ) GO TO 30 

JSAVE .. J 
IF (BUF(J ) 

A.AND.BUF(J+l) 
T .AND. BUF(J+2) 
A.AND.BUF(J+3) 
S.AND. BUF(J+4) 
E.AND.BUF(J+5) 
T .AND. BUF(J+6) 

10 CONTINUE 
GO TO 30 

.EQ. 

.EQ. 

.EQ. 

.EQ. 

.EQ. 

.EQ. 

.EQ. 

1HD 
lHA 
lHT 
1HA 
lHS 
1HE 
1HT GO TO 20 

20 CONTINUE 
FOUND IT. SET LINE = 52, SET DUF 

) ) 



U1 
I 

:J::a 
• ..... ..... 

'') 

3: 
C 
"1:1 
:::c :z 
-t -
N 

o 
-f) 

w 
....... 

C 

C 

C 

LINE = NL 
DO 15 J = 1.90 
DUFBLK(J) = BUF(J) 

') 

IF ( BUF(J).EQ. 1H ) DUFBLK(J) 1HA 
15 DUF(J) = BUF(J) 

INDNAH .. JSAVE + 7 
JBEG .. INDNAH 
JFIN = JBEG + 23 
DO 17 J = JBEG JFIN 

IF ( DUF(JJ· .EQ. 1H ) GO TO 17 
INDNAH .. J 
GO TO 18 

17 CONTINUE 
18 CONTINUE 

INDLST INDNAH + 23 
NOS NOS + 1 
ENCODE (24.16. TITLE(I,NDS» (DUF{J) ,J=INDNAH, INDL~T) 

16 FORHAT (24AI) 
ENCODE ( 8.19.NAHEDS(NDS» (DUFBLK(J).J=INDNAH.INDLST) 

19 FORHAT (8AI) 
NPAGE(NDS) = IPG + 1 

30 CONTINUE 
LINE .. LINE + 1 
IF ( LINE.GT.NL ) LINE = 1 
IF ( LINE.EQ.1 ) IPG = IPG + 1 
IF ( LlNE.EQ.l ) WRITE (6.6001) (DUF(K).K=I,72). IPG 
WRITE (6,6002) BUF 
GO TO 1 

950 CONTINUE 
WRITE (6.6003) 
DO 960 K = I.NDS 

960 WRITE (6.6004) (TITLE(I,K).I=I.3), NPAGE(K) 
C 
C 
C 

C 

CALL ISHELL (NOS, NAHEDS. KEY) 
WRITE (6,6006) 
DO 980 IK = I.NDS 

K = KEY(IK) 
WRITE (6,6005) (TITLE<I,K) ,1=1,3), NPAGE(K) 

980 CONTINUE 
STOP 

6001 FORHAT (1H1, 4X, 72Al, 23X. "PAGE". IS, f) 
6002 FOR HAT (5X,90A1) 
6003 FORHAT (IHl." DATASETS IN THE ORDER THEY ARE DECLARED II 

X , II ) ... 

) 



U1 
I 
~ . ..... 
N 

3: c 
-a 
;;tI 
:z 
-I 

w 
0 
-t) 

w 
' ....... 

) 

6004 FORHAT (5X,3A10," 
6005 FORHAT (5X,3A10," 

••• ",15) 
••• ",15) 

6006 FORHAT UH1," DATASETS IN ALPHABETICAL ORDER II 

X ,1/) 

C 
C 
C 
CC 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

CC 
C 
C 

C 

C 

END 
SUBROUTINE ISHELL (N,A,KEY) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * PUR P 0 S E * * * 

ISHELL SORTS AN INTEGER ARRAY A(N) USING THE SHELL SORT 
ALGORITHH.(CF. JULY 1958, CACH, AN ARTICLE BY 'DONALD H. 
SHELL). 

l't 
,'c 

* * l'c 

* * 1c 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

INTEGER A(N), KEY(N), ASV 
* * * INITIALIZE TIlE ARRAY KEY CONTAINING ORIGINAL ADDRESSES * 
* '* IF ( N.LE.O ) RETURN 
DO 10 I = 1,N 

10 KEY(I) os I 
H '" N 

100 CONTINUE 
H .. H/2 
IF ( H.LE.O ) RETURN 
JHAX = N - H 
DO 200 J .. 1,JHM 
IA = J 
lAP IA + H 

150 IF ( A(IA) .LE. A(IAP) ) GO TO 200 
ASV os A(IA) 
A(IA) A(IAP) 
A(IAP) .. ASV 

ASV .. KEY(IA) 
KEY(IA) .. KEY (lAP) 
KEY(IAP)= ASV 

lAP 
IA 
IF ( 

200 CONTINUE 
GO TO 100 
END 

IA 
IA - H 

IA.GT.O ) GO TO 150 

) ') 



APPENDIX 5-B 

DATA BASE COMMUNICATIONS CHART 

The Data Base Communications Chart for the SDMS databases is presented in 
three forms. Each form is alphabetized by columns, from left to right. The 
first form has a column order of Data Base, Dataset Name, Map Name, Common 
Block, and Program/Subroutine. The second form has a column order of Data 
Base, Map Name, Dataset Name, Common Block, and Program/Subroutine. The third 
form has a column order of Common Block, Data Base, Map Name, Dataset Name, 
and Program/Subroutine. Thus a person can get a cross reference on a data 
element by knowing either the Dataset name, Map Name or Common Block name. 
Note that the map IIAIC II which is accessed directly only by the 1-0 interface 
routines RDAIC and WRAIC, is listed as being referenced by GENAIC, GENBC and 
MATCH, which are the routines that use these 1-0 interface routines. 

5-B.1 



FIRST FORM /'. 

DATA COMMON PROGRAM! 
BASE DATASET NAME MAP NAME BLOCK SUBROUTINE --
DIP GLOBAL-PRINTS GLOPRT Dynamic OPENDB 

DQG BNDRY-CONDN-SPEC BNDRY Dynamic DRWMAP, 
[fBCDATA/J GENAIC 
[/CNTRQ/] 

DQG BNDRY-CONDN-SPEC CNTRQ Dynamic PROCP 
[fCNTRQ/] 

DQG CLOSURE CLOSE Dynamic CLSROW 

DQG EXTRA-HYPO-LOC EXHYLO Dynamic SDMTCH 

DQG GLOBAL GLOBAL /MAGNUM! OPENDB 
/MAGGlO/ 
/SYMTRY/ 
Dynamic 

DQG MAG-PANEL-SPEC PANSPEC Dynamic PANGRP 
[/DQGPMJ/J 

DQG NETWK-SPEC NETWK Dynamic OPENDB 
[fMAGNUM/J CONBLK 

DQG SINGULARITY-SPEC SNGSPC Dynamic COlMAP 

DQG SPECIAL-POINTS SPCPT Dynamic CONBlK 

MAK AIC-MATRIX AIC Dynamic GENAIC 
GENBC 
MATCH 

MAK COlMAP COlMAP Dynamic COlMAP 

MAK COLMAP-BULK COL-BULK Dynamic COlMAP 

MAK COlMAP-INVERSE COLINV Dynamic COlMAP 

MAK DATA-BASE-HEADER MAKHED Dynamic MAGFIN 
[fRUNIDS/J 

MAK DOUBLET-MATCHING DBL-MTCH Dynamic SDMTCH, 
MATCH 

MAK IC-MATRICES IC Dynamic GENAIC 

5-B.2 



FIRST FORM (CONT.) 

DATA COMMON PROGRAM/ 
BASE DATASET NAME MAP NAME BLOCK SUBROUTINE 

MAK MAG-PANEL-DATA MAG-PAN /PANDF/ PANGRP 
/PANDQ/ 

MAK PANEL-GROUP PANGRP Dynamic PANGRP 
ICTEMP 

MAK ROWMAP ROWMAP Dynamic PROCP 
[/CNTRQ/J CLSROW 

DRWMAP 
MAG20 

MAK ROWMAP-BULK ROW-BULK Dynamic CONBLK 

MAK ROWMAP-INVERSE ROWINV Dynamic PROCP 
[/CNTRQ/] CLSROW 

MAK SOURCE-MATCHING SRC-MTCH Dynamic SDMTCH 
MATCH 

MAK SYMMETRY SYMTRY /SYMTRY/ MAG10 
/MAGNUM/ 

MAK VORTICITY-MATCHING VOR-MTCH Dynamic SDMTCH 
MATCH 

MEC DATA-BASE-HEADER MECHED /RUNIDS/ OPENDB 

~1EC MACRO-OPTI ONS MACRO /MAGNUM/ OPEN DB 

5-B.3 



SECOND FORM ~, 

DATA COMMON PROGRAM/ 
BASE MAP NAME DATASET NAME BLOCK SUBROUTINE --
DIP GlOPRT GLOBAL-PRINTS Dynamic OPENDB 

DQG BNDRY BNDRY-CONDN-SPEC Dynamic o RWMAP, 
[fBCDATA/] GENAIC 
[fCNTRQ/] 

DQG CLOSE CLOSURE Dynamic ClSROW 

DQG CNTRQ BNDRY-CONDN-SPEC Dynamic PROCP 
[fCNTRQ/] 

DQG EXHYlO EXTRA-HYPO-lOC Dynamic SDMTCH 

DQG GLOBAL GLOBAL /MAGNUM/ OPENDB 
/MAGGlO/ 
/SYMTRY/ 
Dynamic 

DQG PAN SPEC MAG-PANEL-SPEC Dynamic PANGRP 
[fDQGPANf] 

DQG NETWK NETWK-SPEC Dynamic OPENDB 
[fMAGNUMf] CONBlK 

DQG SNGSPC SINGULARITY-SPEC Dynamic COlMAP 

DQG SPCPT SPECIAL-POINTS Dynamic CONBlK 

MAK AIC AIC-MATRIX Dynamic GENAIC 
GENBC 
MATCH 

MAK COL-BULK COlMAP-BUlK Dynamic COlMAP 

MAK COLINV COlMAP-INVERSE Dynamic COlMAP 

MAK COl~.AP COlMAP Dynamic COlMAP 

MAK DBl-MTCH DOUBLET-MATCHING Dynamic SDMTCH, 
MATCH 

MAK IC IC-MATRICES Dynamic GENAIC 

MAK MAG-PAN MAG-PANEL-DATA /PANDF/ PANGRP 
/PANDQ/ 

5-B.4 



SECOND FORM (CONT.) 

DATA COMMON PROGRAM/ 
BASE MAP NAME DATASET NAME BLOCK SUBROUTINE 

MAK MAKHED DATA-BASE-HEADER Dynamic MAGFIN 
[f RUN IDS!J 

MAK PANGRP PANEL-GROUP Dynamic PANGRP 
ICTEMP 

MAK ROW-BULK ROWMAP-BULK Dynamic CONBLK 

MAK ROWINV ROWMAP-INVERSE Dynamic PROCP 
[fCNTRQ!J CLSROW 

MAK ROWMAP ROWMAP Dynamic PROCP 
[fCNTRQ/J CLSROW 

DRWMAP 
MAG20 

MAK SRC-tfTCH SOURCE-MATCHING Dynamic SDMTCH 
MATCH 

MAK SYMTRY SYMMETRY /SYMTRY/ MAG10 
~ 

/MAGNUM/ 

MAK VOR-MTCH . VORTICITY -MATCHING Dynamic SDMTCH 
MATCH 

MEC MACRO MACRO-OPTIONS /MAGNUM/ OPENDB 

MEC MECHED DATA-BASE-HEADER /RUNIDS/ OPENDB 

5-B.5 



THIRD FORM 

COMMON DATA PROGRAM/ 
BLOCK BASE MAP NAME DATASET NAME SUBROUTINE 

Dynamic DQG BNDRY BNDRY-CONDN-SPEC DRWMAP, 
[fBCDATA/] GENAIC 
[fCNTRQ/] 

Dynamic DQG CNTRQ BNDRY-CONDN-SPEC PROCP 
[fCNTRQ/J 

Dynamic MAK ROWINV ROWMAP-INVERSE PROCP 
E/CNTRQ/J CLSROW 

Dynamic MAK ROWMAP ROWMAP PROCP 
E/CNTRQ/J CLSROW 

o RWMAP 
MAG20 

Dynamic 
[fDQGPANI] 

DQG PANSPEC MAG-PANEL-SPEC PANGRP 

/MAGNUM/ DQG GLOBAL GLOBAL OPENDB 
/MAGGLO/ 
/SYMTRY/ 
Dynamic 

Dynamic DQG NETWK NET\~K-SPEC OPENDB 
[/MAGNUM/] CONBLK 

/MAGNUM/ MAK SYMTRY SYMMETRY MAGIO 
/SYMTRY / 

/MAGNUM/ MEC MACRO MACRO-OPTIONS OPENDB 

/PANDF/ MAK It1AG-PAN MAG-PANEL-DATA PANGRP 
/PANDQ/ 

Dynamic MAK MAKHED DATA-BASE-HEADER MAGFIN 
[fRUNIDSI] 

/RUNIDS/ MEC MECHED DATA-BASE-HEADER OPENDB 

Dynamic DIP GLOPRT GLOBAL-PRINTS OPENDB 

Dynamic DQG CLOSE CLOSURE CLSROW 

Dynamic DQG EXHYLO EXTRA-HYPO-LOC SDMTCH 

Dynamic DQG SNGSPC SINGULARITY-SPEC COLMAP 

Dynamic DQG SPCPT SPECIAL-POINTS CONBLK 
1-.., 

5-B.6 



~ THIRD FORM (CONT.) I 

COMMON DATA PROGRAM/ 
BLOCK BASE MAP NAME DATASET NAME SUBROUTINE 

Dynamic MAK AIC AIC-MATRIX GENAIC 
GENBC 
MATCH 

Dynamic MAK COL-BULK COLMAP-BULK COLMAP 

Dynamic MAK COLINV COLMAP-INVERSE COLMAP 

Dynamic MAK COLMAP COLMAP COLMAP 

Dynamic MAK DBL-MTCH DOUBLET-MATCHING SDMTCH, 
MATCH 

Dynamic MAK IC IC-MATRICES GENAIC 

Dynamic MAK PANGRP PANEL-GROUP PANGRP 
ICTEMP 

Dynamic MAK ROW-BULK ROWMAP-BULK CONBLK 

Dynamic MAK SRC-MTCH SOURCE-MATCHING SDMTCH 
r- MATCH 

Dynamic MAK VOR-MTCH VORTICITY-MATCHING SDMTCH 
MATCH 

5-B.7 



r". 
I APPENDIX 5-C 

DYNAMIC ~'EMORY MANAGEMENT AND PROGRAM LIMIT PARAMETERS 

Some care was taken in the design and construction of MAG to allow certain 
critical parameters to be increased as larger computers become available. On 
the follm'ling two pages (5-C.2 and 5-C.3), these parameters are listed 
together with their values (sometimes a formula), their description, where 
they are defined and the common block where they reside. In addition, notes 
are given describing the parts of the program that need to be changed if any 
particular parameter is altered. Notice that in preparing these charts, (and 
occasionally in other parts of this document as well), we have used the 
abbreviations "C.p." for control point, IIS.p." for singularity parameter, and 
"nwll for network. 

At the present writing (October 1984), the program is being run on various 
models of CRAY computers for which the following increases in critical 
parameters would be desirable and suitable. 

MXING 
MXCB 
MXRCPB 
MXCPBK 
MXDYlO 
~4XDY21 
MXDY22 
PANMAX 

384 
500 
150 
200 

50,000 
75,000 
7q,000 
4,801 

On the page following the summary of critical parameters, we present 
figures describing the allocation of scratch memory by programs MAG10, which 
organizes phases (l,A), (l,B) and (l,C) of the execution (problem setup) and 
MAG20, which organizes phases (2,A) and (2,B) of the execution (IC calculation 
and aggregation, AIC generation). Notice that the scratch common block 
/DYNAM/, containing the scratch work array W, is separately declared each time 
it is needed and not generated by a COMDECK call. In the memory maps 
presented on page 5-C.4, the various scratch array lengths appear inside the 
boxes, the array addresses (in W, /DYNAM/) appear to the right of the 
corresponding box and the array name for the given phase of processing is 
given in brackets below the array address. 

5-C.1 



Cri ti cal 
Parameters 

NSING 

MXING 

MXFGRD 

NPDQBF 

MXRWCL 

MXCB 
NCPDQG 
MXRCPB 

MXRP 

MXCPBK 

MXPSRC 

MXPDBL 

MXDY10 
MXDY21 
~1XDY22 
MXPGP 
MXHYLO 

MXICTP 

~1XNET 
MXNWID 
NPANBF 

PAN~1AX 

PANWPR 

NWCB 

5-C.2 

Value Description Where Defined 

NMBRSP(3) Total no. of DQG s.p. parameters 

160 Max # of s.p. IS associated w panel 
group. Also max # of panels in a 
group. 

max [(2 t~k-l )(2Nk-l)] Max # of pts in any nwls fine 
k grid 

2048 Sequential file buffer size for panel 
data 

200 Maximum no. of rows or columns in any 
network 

250 Maximum # of c.p. blocks 
NMBRCP(4) Total no. of DQG control points 
100 Max # of IC rows associated w a 

c.~. block 
[(MXDY22-MXING-2* SINGl7(NSING+MXING)] 

Maximum number of IC rows allowed 
in a control point row partition 

150 Maximum # of C.p.I S in a c.p. block 

10 

25 

40,000 
42,000 
42,000 
100 
10 

12 

100 
200 
8 

3001 

256 

11 

Max # of source parameter [BS] may 
depend upon 

Max # of doublet parameters [BD] may 
depend upon 

Scratch memory for execution of MAG10 
Scratch memory for execution of ICTEMP 
Scratch memory for execution of GENAIC 
Max # of panel groups 
Max # of points involved in any given 
matching condition 
Maximum # of files on the ICTPxx db 

Maximum # of networks 
Maximum value for a network id 
Number of panels' data stored in 
a sequential file buffer for FPDQNU 
or,FPDQUP 
Maximum number of panels + 1, the 
size of the index array for file 
PANDTA 
Number of words per panel for the 
minimal panel data packet 
Number of words per c.p. for the c.p. 
data packet 

OPENDB 

LOCKDATA 

OPENDB 

LOCKDATA 

[ockDATA 

LOCKDATA 
OPENDB 
LOCKDATA 

BLOCK 

LOCKDATA 

LOCKDATA 

LOCKDATA 

[OCR DATA 
LOCKDATA 
LOCKDATA 
LOCKDATA 
LoCRDATA 

LOCKDATA 

[OCKDATA 

LOCKDATA 

LOCKDATA 

LOCKDATA 



,-..... 
I 

Common 
Block 

/NAGtlUM/ 

/MAGPRM/ 

/MAGNUM/ 

/SQFPDQ/ 

lMAGPRM/ 

/MAGPRM/ 
/MAGNUM/ 
/MAGPRt4/ 

/MAGPRMf 

/MAGPRM/ 

/MAGPR~1/ 

/MAGPRM/ 

/MAGPRIV 
/~1AGPRM/ 
/14AGPRM/ 
/MAGPRM/ 
/MAGPRM/ 

/MAGPRM/ 

/SQFPDQ/ 

/PINDEX/ 

/PINDEX/ 

/MAGPRM/ 

Notes 

Arrays of this length are dynamically allocated throughout 
MAG 
Arrays of this length are dynamically allocated throughout 
MAG 

Used to allocate space for fine grid maps in COLMAP and 
CONBLK 
All sequential file buffers are dynamically allocated (2 in 
PANGRP, 1 in ICTEMP) 
Used to al locate the NeL closure data array 1n CUNBLK 

cf. NCBSZ, /MAGNUM/ 
Used to allocate JCPMAP, calculated by CONBLK 
Main impact of this parameter is on the size of RIC, phase 
2,A 
Determ1ned by the amount of memory 1n phase 2,B. Th1ngs 
should be arranged, if possible, so that MXRP*MXICTP~XRCPB 

cf. WCB,/CPBLK/. Exceeds MXRCPB because some C.p.I S have 
no IC rows 
cf. PANGRP: arrays IISD, LOCSD, IISF, IISMAG, ASTS, ASTSF, 
BS. Also, see PAKPQF, UPKPQF. Arrays SG (SDMTCH); SG, SGH 
(GENAIC) 

cf. PANGRP: arrays IISD, LOCSD, IIDF, lIDMAG, ASTD, ASTDF, 
BD. Also, see PAKPQF, UPKPQF. Arrays AMU, DMU 
( SDMTCH ); AMU, DMU, Af4UH, DMUH (GENAl C) 
cf. w, /DYNAMf, MAGIO. 
cf. W, /DYNAM/, MAG20. 
cf. W, /DYNAM/, MAG20. 
cf. NGRPSP, NGRPPA, /MAGNUM/. 
see arrays SIGNX, SPBIAS (MATCH); SPBIAS, SIGNX, XHYLO, 
KNETX, ICOLX, IROWX, MSUBPX (SDMTCH) 
cf. the list of file names ICTPSQ(l:MXICTP) in LOCKDATA. 
Should be a multiple of 4, > 12 
cf. NETORD, NROWNT, NCOLNT,~PNCUM, /MAGNUM/ 
cf. NETINZ, NETINV(1:200},/MAGNUM/ 
Always make sure that NPANBF*PANWPR = NPDQBF 

cf. PANDEX, /PINDEX/. 

cf. PANGRP, array PQF; cf. SDMTCH, array PQF. 

cf. WCB, /CPBLK/ 

5-C.3 



I.A [COL~IAP] 

.- LCOLMP 
NSlNG [lCOLMP] 

..- LSNGPK 
NSlNG [lSNGPK] 

~ L~1APFN 
MXFGRD [MAPFN] 

2,A [ICTEI4P] 

.. LRIC 
(MXRCPB+l}*~IXING [RIC] 

~lAGlO Dynamic All ocati on 

1,B [PANGRP] 

NSlNG 

2*MXlNG 

2*MXlNG 

2*MXlNG 

2*~IXlNG 

2*MXlNG 

2*MXING 

2*NPDQBF 

LCOLMP 
.. [lCOLMP,lMAGSP] 

.. LNDGRP 
[lNDGRP] 

_ LNDSRT 
[lNDSRT] 

.. LNDLOC 
[INDLOC] 

.. LKNTGP 
[KNETGP] 

.. LIRWGP 
[lROWGP] 

.. LICLGP 
[lCOLGP] 

.. LPDQ 
[WPDQ] 

~IAG20 Dynamic Allocation 

2,B [GENAIC] 

MXRP*NSING 

.. LKNETG 

1,C [CONBLK] 

"LCOLMP 
NSlNG 

+-

5*MXRWCL .. 
2*(MXCB+l} 

+-
NCPDQG 

~ 
r>1XRWCL .. 
MXRWCL .. 
MXRWCL 

+-
3*MXFGRD 

.. LSIC 
[RIC] 

- LBIC 

[ ICOL~1P] 

LNCL 
[NCL] 

LMAGCB 
[~IAGCB] 

LJCPMP 
[JCPMAP] 

LICLCP 
[lCLCP] 

LAA 
[AA] 

LAD 
[AD] 

LCPAIC 
[KCPAIC] 

MXING [KNETGP] (MXRP+l}*(MXING) [IBlC,BIC] 

.. LROWGP .. LAIC 
MXING [IROWGP] NSlNG [AlC] 

.. LCOLGP .. LAlCCL 
MXlNG [lCOLGP] NSlNG [AlCK] 

.. LPDQ 
NPDQBF [WPDQ] 

5-C.4 



APPENDIX 5-D 

THE PIVC SUBASSEMBLY 

The PIVC subassembly, which adds the influence of a given panel upon a 
particular control point into a group on block IC buffer, lies at the very 
heart of MAG. This package of subroutines performs the evaluation of panel 
influence coefficients described in detail in appendix J of the theory 
document. In this appendix we describe the operation and overall structure of 
the package with a special emphasis on the more arcane attributes of its 
operation. 

The basic tree structure for the PIVC subassembly has been outlined in 
figure 5.2 (see the lower right hand corner). On the last page of this 
appendix (5-D.7) we have reproduced this structure and have added remarks 
describing the function of each element. 

The basic data that are input to the PIVC subassembly are: 

(i) The principal image of the control point (ZCP) plus its 
associated data (/CNTRQ/). 

( i1) The panel defining quantities read from the FPDQxx database and 
unpacked by UPKPQF. These include all data required for far 
field and quasi far field computations (INFLU= 1,2,3,4), but 
exclude some of the data required for quasi-near field or near 
field computations (INFLU=5,6). The "data flags" INDQNF and 
INDQRP were set to .FALSE. by UPKPQF when the current panel's 
data were read in, and are subsequently set to .TRUE. only when 
the corresponding data are required and regenerated with a call 
to PSDDQ5 or PSDDQ6. 

(iii) A partially completed group-on-block IC buffer, AIC, together 
with pointers (LAIC) that give the starting column indices in 
the buffer associated with each symmetry condition of the 
control point. 

Given these data PIVC begins its task by calling DINFLU to evaluate all 
geometric images of the control point* and PIC computation indices for each 
image (N.B. l=monopole, 2=dipole, 3=quadrupole, 4=quasi-far, 5=quasi-near, 
6=near field). If any PIC computation indices have the values 5 or 6 
(quasi-near or near field values), subroutine PSDDQ5 is called to generate 
quasi-nea~ field data and that fact is recorded in INDQNF. (Note that type 6 
data for a true near field computation are not immediately generated. This is 
because, even when DINFLU recommends a type 6 PIC computation, subroutine IC 
always first attempts a type 5 computation before deciding that a type 6 is 
necessary.) Having regenerated any required type 5 data, PIVC then zeroes out 
PIC buffers for all required symmetry conditions and proceeds to call 
subroutine IC. 

*Remark: For control points lying in a plane of symmetry, special care is 
taken in DINFLU not to reflect those points in their plane of symmetry. (cf. 
algorithm AI, appendix K.5, Theory Document.) 

5-0.1 



Subroutine IC invokes lower level PIC routines to perform the actual .~ 
computation of the influence of a panel upon a control point image. In this 
process there are four main areas where there is some subtlety in the code. 
We describe each of them. 

(1) The velocity influence coefficients required from subroutine FFPIC 
are, in the language of appendix K of the theory document, (cf. p. K.6-2), 

Rij V~(Rijp, mil 

~~ Rij ~(Rijp, mI ) (5.D.l) 

Because FFPIC works mainly in the mean panel IS local coordinate system, the 
velocity influence coefficients most readily computed would be denoted 

(5.D.2) 

where the prime (I) indicates that these VIC's are given in the local 
coordinate system. The basis functions {~a' a=I,2,3} and {~8' 8= 1, ••• ,6} 

are the starrdard polynomial basis functions L1, ~ , n, ••• n2/2.J used for 
the representation of the approximate source and doublet distributions in the 
far field. The way in which ~a are used to construct approximations to sI and 
mI is easily described and is given, in the language of appendix 1.3 of the ~ 

theory document by, 

lx3 3x5 S 5xNS 1XNS 
91 [PSPLS] [B ] - s (5.D.3) 

L aJ L IJ 
lx6 6x9 o 9xNo 1xNo 

~ [PSPLO] [B ] = m (5.D.4) 
L 8J L IJ 

with the following matrix-FORTRAN variable connections 

S [PSPL ] = RA, [BS] = ASTS, [PSPLS] [BS] = ASTSF (5.0.5) 

[PSPLD] = QA, [BD] = ASTD, [PSPLD] [BD] = ASTDF (5.0.6) 

The primed VIC's are transformed to reference coordinates using the 
reference to local transformation AS (cf. appendix E.3 of the Theory Document) 
for subpanels 5 through 8: 

-;!Q i j... T ~Q i j ... 
Va(R p, ~a) = AS(J Va(R p, Pal (5.0.7) 

yQ(Rij"'P, J. ) = AT(¥(Rij ... P J.) (5 D 8) 
~ P8 5 ~ , P8 • • 

The required results may thus be obtained by forming the following quantities, 
as indicated. 

5-D.2 



(Rij AT) [J ~(Rij-+p (J)] 
5 a 'a 

(5.0.9) 

(Rij AT) [~Q(Rij-+p (J)] 
5 I.l 'a (5.0.10) 

('~T Rij AT) [J ~(Rijp (J )] 
p 5 a 'a (5.0.11) 

("~; Rij A~) [~~(Rijp, (Ja)] (5.0.12) 

Thus, when transforming velocity PIC's out of local coordinates, FFPIC applies 
the matrix Rij A~ (= RATF(*,i,j), see FFOQGX). Further, when generating 
normal mass flux PIC's, FFPIC multiplies on the left by the vector: 

L.ARNUJ = v; [R
ij A~] = [A5 R

ij 
vp]T (5.0.13) 

(2) The quasi far field evaluation of PIC's (QFFCAL) is very similar to 
the far field evaluation except that NFTPIC (the near field PIC routine) is 
used to evaluate the PIC's in local coordinates. Having computed the PIC's in 
local coordinates, NFTPIC then returns the following quantities, (where the 
vector L.ZNUJ and the 3x3 array [ART] are passed through the calling sequence) 

(5.0.14) 

[ART] [J ~(Rijp, (J )], etc. 
a a 

(5.0.15) 

By comparing these with the expressions appearing in (5.0.9-12) above, we see 
that the correct choices for ~ZNU~ and [ART] are: 

(= RATF(*, i,j» (5.0.16) 

(= ZNUCP, see /CNTRQ/) (5.0.17) 

(3) The calculation of quasi-near and near field PIC's by QNFCAL and 
PIFCAL requires evaluation of expressions of the form, 

R
ij L AT 'Ok " k 

SPSPLS [J V (R1J~ (J )] 
k k a p, a ay (5.0.18) 

k,a 

-+T R i j L T 'Ok" !Ilk)] SPSPLS A [J V (R lJp vp k k a ' a ay (5.0.19) 

k,a 

with similar expressions for doublet influence coefficients. Here, the sum 
with respect to k extends over subpanels k for which the reference to local 

r transformation is Ak and having subpanel basis functions {(J~} • The 

5-0.3 



symbol SPSPLS denotes the source subpanel (or half-panel) spline matrix. In '--', 
the actual operation of the code, we loop over the subpanels, calculating for 
each and accumulating into an array, the quantities 

t { . ~ (A~ [J k ~~k(Rij.ji. -~)] SPSPL~y)} (5.0.201 

t {~ ([v! R
ij

] A~ [Jk ~~k(R!jji. ~~I] SPSPL~J} (5.0.211 

Thus the k-th call to NFTPIC is made with .... ZNU.J and [ART] given by 

LZNU J 
.... T Rij (cf. calculation of RNU in IC) (5.0.22) = vp 

[ART] = t\ (5.0.23) 

Further, when the loop over subpanels is complete, Rij must still be applied 
to the velocity influence coefficients (as distinguished from the normal mass 
flux IC's), the quantities expressed by (5.0.20). 

(4) Whenever some of the PIC computations are types 1 through 4 for some 
control images and types 5 or 6 for other control point images, the far field 
or quasi far field PIC's must be re-expressed in terms of the 5 panel source 
and 9 panel doublet parameters before they are accumulated. This 
transformation, accomplished with the help of the panel splines PSPL (=RA) and 
PSPLD (=QA), is necessary because ASTS and ASTD (rather than ASTSF and ASTDF) 
will be used to express the symmetrized PIC's in terms of global singularity 
parameters. (The code that applies PSPLS and PSPLD to panel influence 
coefficients directly follows the calls to FFPIC and QFFCAL in IC.) 

The preceeding discussion summarizes the main fine pOints of subroutine 
IC. Once the PIC's for a given control point image have been calculated, they 
are added/subtracted into the accumulators for the required symmetry 
conditions. 

When all control point images have been processed, the influence of the 
panel on each control point symmetry condition is complete. Subroutine IC is 
now prepared to add these PIC's into the panel group on control point block IC 
buffer, applying an outer spline matrix as it proceeds. The figure below 
demonstrates the inclusion of the source PIC's for the 1st symmetry condition 
into the IC buffer. To simplify the example we assume that ASTS depends on 
only 3 global source parameters. Defining 

5-D.4 

c
1

] = [PICS]4x5 [ASTS]5x3 
1 s t symmetry 
condition 

(5.0.24) 



we see in figure 5-0.1 (see p. 5-0.6) that aI' b1 and C1 are added into rows 
IISF(I), IISF(2) and IISF(3) of AIC, starting in column LAIC(I). Similarly, 
the second symmetry condition PIC's are added into the same set of rows 
starting with column LAIC(2), and so on. 

5-0.5 



1 2 

x 
x 
x 

· · 

x 

x 

x 

· · x 
x 

t 
, 

INOGRP 

LAIC(1 ) 

l 

.-.T a1 
xxxx 

'-'T b1 
xxxx 

.-.T c1 
xxxx 

• 
1st 
"SS 
9S 

Global s.p. 

I , 

LAIC(2) 

l 

.-.T a2 
xxx x 

'-'T b2 xxxx 

.-.T c2 
xxxx 

• 
2nd 
"AS 
9S 

I 
, 

LAIC(3) 

! 

.-.T a3 
xxxx 

'-'T b3 
xxxx 

.-.T c3 
xxxx 

• 
3rd 
"AA 
~ 

I \ 

indices ICls for various symmetry conditions 
associated 
with this 
panel group. 

LAIC(4) 

! 

.-.T a4 
xxxx 

'-'T b4 
xxxx 

.-.T c4 
xxxx 

• 
4th 
"SA 
~ 

AIC = Panel Group on Control Point Block IC Buffer 

, 

.. 

.. I ISF( 1) 

• II SF (2) 

• II SF (3) 

symmetry 
condition 

Figure 5-0.1 Inclusion of Panel Influence Coefficients in the 
Panel Group on Control Point Block IC Buffer 

5-0.6 



9 
Organize the calculation and 
inclusion of PIC's for all 
symmetry conditions of a 
control point. Handles 
evaluation of type 5 data. 

Evaluate control point images 
and calculate PIC computation 
method for the various control 
point images 

Organize the looping over 
control point images, 
accumulating PIC's into 
symmetry condition buffers. 
By calls to INDADD, includes 
symmetrized PIC's into the IC 
buffer 

Far field 
PIC evalu
ation 

I SUBSBI I 
Moo < 1 

Quasi far field Quasi nea~ field 
PIC evaluation PIC evaluation 

(2 hal f panel) 

! 
(NFTPIC) (NFTPIC) 

Flat panel, near field 
PIC evaluation 

Near field 
PIC evaluation 
(8 subpanel) 

I 
(NFTPIC) 

I 
ISUPSBI! !SUPSPI/AICSUP 

Moo > 1 
Subinclined 

Moo > 1 
Superinclined 

Figure 5-D.2 Tree Diagram for the PIVC Subassembly 

Apply outer
splines and 
accumulate 
data into 
the IC 
buffer. 

5-D.7 



APPENDIX 5-E 

PANEL DEFINING QUANTITIES IN MAG 

Much care is taken in MAG to minimize run cost (both CPU and 1-0) by means 
of careful handling of the panel defining quantities. In this appendix we 
discuss where the various panel defining quantities come from and how the 
concept of data regeneration is implemented in MAG. 

The basic observations which motivated the way in \'ihich panel defining 
quantities were handled were the following: 

(i) Disk 1-0, especially random 1-0, tends to be quite expensive. 
Version 1.0 of MAG was unacceptably inefficient with respect to its 
use of 1-0, mainly because DQG's PANEL-SPEC dataset was far larger 
than necessary. 

(ii) Many of the panel defining quantities used in PAN AIR are "soft" 
quantities in the sense that they can be quickly regenerated from 
other panel defining quantities much more cheaply than they can be 
read from disk. On the other hand, some of the quantities are very 
"hard", in the sense that they can be regenerated only with a large 
amount of work. During the design and coding of MAG, an element or 
an array of panel defining quantities was judged to be "soft" if it 
could be regenerated at an average cost of under 5 ~sec per word on a 
CDC 7600. This tradeoff criterion was developed from a careful 
examination of various data center charge algorithm.s combined with ii 
good understanding of the execution environment of the program. 

As a consequence of these observations a set of hard panel defining quantities 
was identified that was as small as possible, consistent with the 5 ~sec 
tradeoff. When this had been done, the volume of hard quantities was about 
270 words/panel. Now since a CDC 7600 handles random 1-0 much more 
efficiently when record sizes are a multiple of 64, the "hard" quantities were 
reduced to just below 256 by identifying as soft an array (CF) that slightly 
violated the tradeoff criterion. Having defined the "hard" panel data, a set 
of routines PAKPQF and UPKPQF were constructed that respectively create and 
subsequently unravel a 256 word panel data packet. Once this data packet has 
been created (by PANGRP's call to PAKPQF), it is written out to the random 
file PANDTA (for random access by SD~1TCH and GENAIC) and also to the FPDQxx 
set of buffered sequential files (for sequential access by ICTEMP). 

The common block definition charts at the end of this appendix describe 
the provenance of each entry in the four panel defining quantity common 
blocks, (/PANDQ/, /PANDF/, /PANDQX/, /PANDFX/). For the hard panel data in 
/PANDQ/ and /PANDF/, either the source in /DQGPAN/ (read from DQG's 
MAG-PANEL-SPEC dataset) is indicated or else the routine in MAG that generates 
the data is listed. The basic organizational idea for these common blocks is 
that /PANDQ/ and /PANDF/ contain the hard panel data (exceptions: ASTSF, 
ASTDF) while /PANDFX/ contains soft far field data regenerated by calls from 
UPKPQF to CCALN and FFDQGX, and /PANDQX/ contains soft near field data 
regenerated with calls to XCOF, RACOF, PSDDQ5 and PSDDQ6. 

5-E.1 



VI /PANDQ/ definition 
I 
~ Definition Notes w.r.t. PANGRP def., Subsequent Notes w.r.t. . 
N PANDTA Variable in PANGRP related value in DQGPAN Definition subsequent definition 

X KNETNR MGPAND /DQGPAN/:NWKID . UPKPQF 
X ICOLNR MGPAND /DQGPAN/:IClPAN UPKPQF 
X I ROWNR MGPAND /DQGPAN/:IRWPAN UPKDQF 
X ITS MGPAND ITS=1 (if 0)+2 (if ~) UPKPQF 
X ICS MGPAND index of collapsed side. UPKPQF 

Compared to ICSPAN 
in /DQGPAN/. 

X ISQN NEARDT defines 1/2 panel cut UPKPQF X INS MGPAND /DQGPAN/: (IDS/6) UPKPQF 
X IND 14GPAND /DQGP~N/:A(IDD/10) UPKPQF 
X lIN MGPAND sgn t nk, nk} UPKPQF 
X IISMAG PANGRP /DQGPAN/:BS(6,*) UPKPQF I plus IMAGSP UPKPQF reformats slightly X IIDMAG PANGRP /DQGPAN/:BD(10,*) UPKPQF the PANDTA data 

plus IMAGSP 
X CP MGPAND /DQGPAN/:PC UPKPQF 
X EN MGPAND /DQGPAN/:RN UPKPQF 
X AQ NEARDT Skewed coord. transform UPKPQF 
X C1 NEARDT I Skewness UPKPQF 
X C2 NEARDT parameters UPKPQF 
X C3 NEARDT UPKPQF 
X CTEST NEARDT used in QNF test, QNFCAl UPKPQF 
X DIAM MGPAND /DQGPAN/:PDIAM UPKPQF 
X AREAQ NGPAND /DQGPAN/:SBAREA(9) UPKPQF 
X ASTS MGPAND /OQGPAN/:BS(1:5,1:INS) UPKPQF) unpacked by UPKAST X ASTD MGPAND /DQGPAN/:BD(1:9,1:IND) UPKPQF (sparse storage) 
X STAlAt4 UEARDT not used not used 
X STRC NEARDT (s*,t*) for QNF splines UPKPQF 

X : This variable is saved on the PANOlA dataset. 

) ) ) 



\Jl 
I 

t>1 
• 
lAl 

') ') 

/PANDF/ definition 

Definition Notes w.r.t PANGRP def., Subsequent 
PANDTA Variable in PANGRP related value in DQGPAN Definition 

* KNETF MGPAND /PANDQ/:KNETNR UPKPQF 
* ICOLF MGPAND /PANDQ/:ICOLNR UPKPQF 
* IROWF MGPAND /PANDQ/:IROWNR UPKPQF 
* INSF MGPAND /PANDQ/:INS UPKPQF 
* IN[lF MGPAND /PAtJDQ/: I ND UPKPQF 
* ITSF MGPAND /PANDQ/: ITS UPKPQF 
* ICSF MGPAND /PANDQ/: ICS UPKPQF 
* CPFZ MGPAND /PANDQ/:CP(1:3,9) UPKPQF 
* CPF . MGPAND /PANDQ/:CP(1:3,1:4) UPKPQF 
* ENCF MGPAND /PANDQ/:EN(1:3,5) UPKPQF 
X RFMIN MGPAND min (IIN(K) IIN(K)~O) UPKPQF 
X QDLTF FARDT} used for rapid influence UPKPQF 
X PWF FARDT test, supersonic flows UPKPQF 
X PXF FARDT (MCXl > 1) UPKPQF 
X DIAMF MGPAND /PANDQ/:DIAM UPKPQF 
X SGXF FARDT sgn(~5·eo) UPKPQF 

ASTSF MGPAND [RA][ASTS] UPKPQF 
ASTOF MGPAND [QA] [ASTO] UPKPQF 

X IISF PANGRP panel group indices, a UPKPQF 
X IIDF PANGRP panel group indices, ~ UPKPQF 
X NCONVX MGPAND /DQGPAN/:NOTCVX UPKPQF 
X LVTERM MGPAND /DQGPAN/:LVFLAG UPKPQF 

X This variable is saved on the PANDTA dataset. 

* : This variable is saved under a different name on the PANDTA dataset. 

) 

Notes w.r.t. 
subsequent definition 

/PANDQ/:KNETNR 
/PANDQ/:ICOLNR 
/PANDQ/:IROWNR 
/PANDQ/:INS 
/PANDQ/:IND 
/PANDQ/: ITS 
/PANDQ/:ICS 
/PANDQ/:CP(1:3,9) 
/PANDQ/:CP(1:3,1:4) 
/PANDQ/:EN(1:3,5) 

calculated: [RA][ASTS] 
calculated: [QA][ASTD] 

5-E.3 



U1 
I 

(T1 . 
.po 

/PANDQX/ definition 

Data Notes w.r.t. 
Type Variable Regeneration regeneration 

Far-field QA XC OF doublet panel spline 
RA RACOF source panel spline 

Quasi-near QK PSDDQ5 doublet half panel spline 
RK PSDDQ5 source half panel spline 
PK PSDDQ5 half Rane1 local coordinates 
SGX PSDDQ5 sgn ( i' co) 
AJ PSDDQ5 J k area jacobian I 
AR PSDDQ5 reference to local transformations, RCSLOC 

Ak 

ART PSDDQ5 AT 
k 

Near QQ PSDDQ6 (C1, C2) -. (ALAM) via GTALAM, 
(ALAM) -. (QQ) via PDQSUB 

RR PSDDQ6 Source sub panel splines 
PP PSDDQ6 Sub panel local coordinates 

Remarks: (1) XCOF [QA = PSPLD], RACOF [RA=PSPLS] are called from UPKPQF 
(2) PSDDQ5 is called from PIVC 
(3) PSDDQ6 is called from IC 

) ) 

Theory Document 
Reference 

1.3.1 
1.3.1 
1.3.2 
1.3.2 

E 

E 

1.2.3 

1.2.2 

) 



U'1 
I 

ITI 

U1 

) ') 

/PANDFX/ definition 

Data Notes w.r.t. 
Type Variable Regeneration regeneration 

Far-field HM FFDQGX calculated from CF 
HBM FFDQGX calculated from CF 
RQFF FFDQGX mean panel, projected in X, expressed in 

X (compressibility coordinates) 
AF FFDQGX (ENCF) -+- (AF) via RCSLOC 
AJF FFDQGX (ENCF) -+- (AJF) via RCSLOC 
RF FFDQGX (ENCF) -+- (RF) via RCSLOC 
RADF FFDQGX .5*DIAMF 
PF FFDQGX mean panel, projected in X , expressed in 

local coordinates 
CF CCALN Cij = If ~i-l n 

j-l d~ dn, 
always calculated by CCALN 

RATF FFDQGX Rij • AT (n.b. RATF(*,I,l) is AFT) 
LVORTX FFDQGX line vortex flag for whole panel 
QLVT FFDQGX line vortex inner splines 

Remark: CCALN [CF = Cij ] and FFDQGX are called from UPKPQF 

) 

Theory Document 
Reference 

1.4.1, J.9 
1.4.1, J. 9 

E 
E 
E 

1.4.3 

K.2 

5-E.5 



APPENDIX 5-F 

PRINTED OUTPUT AND PROGRAMMING AIDS 

In this appendix we describe the printout and print control features 
included in the MAG program. Most of the printout from MAG is principally of 
interest to the maintenance programmer trying to track down the source of a 
problem. In addition to providing a fairly comprehensive picture of the 
analysis performed by MAG, the printout from MAG has proved to be quite 
helpful in tracking down errors in the user's problem specification and in 
DOG's analysis of that specification. 

In the subsections that follow, we will describe the printout from MAG 
according to the following classification scheme: 

(1) Printout controlled by MAGis internal print flags. (cf. common block 
/WFLAGS/ defined by OPENDB using dataset GLOBAL-PRINTS from the DIP 
database) 

(2) A summary of the error conditions detected by MAG 

5.F.1 Print Flag Controlled Output 

Each of the descriptions that follow is headed with the following 
information 

o the name of the internal print flag (in /WFLAGS/) that controls the 
particular printout 

o the index of the print flag in the array ~lAG-PRINTS (DIP database) 
that turns on each internal print flag, enclosed in brackets: [2] 

o the program elements in MAG that refer to the internal print flag 

o a one-line description of the printout 

WDFALT, [1], (MAG, COLMAP, MAG20) 
High level problem and processing statistics, timing information 

MAG prints the following information: 

(1) Source and doublet PIC counts for each type of PIC computation method 
(e.g. near field, far field, etc.) 

(2) A summary of the volume of I-a for each of nearly 30 categories of I-a. 
This information includes estimates of the volume (in words) of 1-0 for 
each category along with the apparent number of I-a requests. Because the 
operating system buffers most I-a operations, the actual number of I-a 
requests is generally somewhat lower than the apparent number, which is 
computed by counting the number of calls to 1-0 routines (e.g. READ, 
WRITE, REBUF, WRBUF, ESGET, ESPOR). In figure 5-F.1 we have produced an 

5-F.1 



index describing for each category of I-a its general nature, its map orr--, 
file name and the name of the routines requesting the I-a. 

(3) CPU totals for PIC evaluation and AIC assembly 

(4) Counts for general, matching and closure boundary conditions for each 
symmetry condition. 

COlMAP prints the number of (MAG) singularity parameters in the four 
categories: (1) known, nonupdatable, (2) known, updatable, (3) unknown, 
nonupdatable, (4) unknown, updatable. 

MAG20 prints a running summary of the c.p. block processing together with the 
corresponding CPU time. 

WCMMAP, [1], (MAG10, MAG20) 
Absolute octal addresses of dynamic memory 

As a supplement to the program load map, MAG prints the absolute octal 
addresses of all of the arrays allocated from the dynamic memory buffer 
(common block /OYNAM/). 

[2], (ORWMAP) 
of ROWMApls information about each MAG control oint 

For each MAG control point, the following information is printed. The label 
in brackets is the label appearing at the top of each page on the printout. 

[IUPOCP] 
[IMAGCP] 
[IOQGCP] 
[IBlKCP] 
[IRPTCP] 
[KNETCP] 
[IROWCP] 
[ICOlCP] 
[MSUBCP] 
[I ROW] 
[ICOl] 
[IN-paS-FLAG] 
[ON-paS-FLAG] 
[NUlLIN] 
[IPCP] 
[NTCHAR] 
[IORWCP] 
[ONST] 
[IUPOCl] 
[IORWCl] 

5-F.2 

Control point updatability type (O=nonupdatable, l=updatable) 
MAG control point index 
OQG control point index 
C.p.I S block index 
C.p.I S row partition index 
network identifier 
panel row index 
panel column index describe control point location 
subpanel index 
fine grid row index 
fine grid column index 
1 - in first pas, 2 - in second pas, otherwise a 
1 - on first pas only, ~- on second pas only, 3 - on both 
a - no AIC rows for this c.p.~ 1 - at least 1 AIC row 
IC row counts for required ~, v and w.n ICls 
Number of AIC rows for this c.p. 
AIC row indices for this c.p. 
Control point type (l=center), (2=edge), (3=corner), (4=extra) 
Updatability type of affected closure c.p. 
AIC row index of affected closure boundary condition 

,.-...., 



[lSYMCL] 

[ZCP] 
[ICHAR] 

[IPDPBC] 

Index of symmetry conditions for affected closure conditions 
(bit vector) 
Control point location, reference coordinates 
Characteristics for b.c.ls, all symmetry conditions, 1st and 
2nd b.c. 
PDP IC row counts for ~, v and w.A ICls required in post 
processing 

WBClST, [2], (DRWMAP) 
Summary of boundary condition information for each AIC row 

For each AIC row, the following information is printed. The full printout is 
repeated for each symmetry condition of interest. The data headers are listed 
in brackets. 

[ROW] 
[BC TYPE] 
[CH] 
[CPI:MAG] 
[CPI:DQG] 
[U]" 
[R] 
[A/A:WN] 
[CIA: PIH] 

[T/A:V/A] 
[A/D:SG] 
[C/D:MU] 
[T /D: Dt1U] 
[ClS/ROW] 
[A/A:WN] 
[A/D:SG] 

AlC row index 
Boundary condition type (e.g. GENERAL, SNG-SPEC etc.)' 
Boundary condition character index (1 .. GENERAL, etc.) 
MAG c.p. index 
DQG c.p. index 
Updatability type [O=nonupdatable, 1=updatable] 
1"first b.c., 2 .. second b.c., (for this c.p.) 
aA, coefficient of (w.A)A 
cA' coefficient of (~)A 
tA, coefficient of (v)A 
aD' coefficient of cr 
cO' coefficient of ~ 
..... 
to' coeffi ci ent of v ~ 
AlC row index of affected closure condition (negative if first) 
aA,k' coefficient of Ak(W.A)k in affected closure condition 
aO,k' coefficient of Ak(cr)k in affected closure condition 

Singularity parameter maps are printed giving a schematic description of both 
the MAG and the DQG singularity parameter indices. For each point on the fine 
grid matrix for each network, the MAG and the OQG source and doublet indices 
are printed. 

5-F.3 



[3], (CONBLK) 
oint and AIC rna s 

For each network a fine grid matrix map is printed giving the following 
information: 

o DQG c.p. index 
o MAG c.p. index 
o first boundary condition AIC row number 
o second boundary condition AIC row number 

WGENRL, [4], (OPENDB, BLOCK) 
Generally useful information 

OPENDB prints some global information about the whole configuration that is 
useful, but poorly formatted. BLOCK prints information relevant to the 
calculation of MXRP of /MAGPRM/. 

Includes the bulk column mapping array ICOLMP/lMAGSP, giving the DQG ~ MAG 
singularity parameter index mapping. 

Includes all information written to the PANEL-GROUP dataset. 

WCNBLK, [4], (CONBLK) 
CONBLK processing summary· 

Includes the bulk control point mapping array JCPMAP giving the DQG ~ MAG 
c.p. index mapping. 

5.F.2 Error Conditions Detected by MAG 

A summary of all error conditions detected by MAG has been generated, and 
presented in figure 5-F.2, by extracting from the code all calls to 
subrouti nes MAGERR and r~AGMSG. The format of the calls to each of these is 
identical: the name of the subroutine generating the error message followed 
by the error message itself (up to 40 characters). Calls to ~'AGERR are 

5-F.4 



immediately fatal while calls to MAGMSG are temporarily ignored, causing fatal 
error termination at the end of the execution of MAGIO. 

Occassionally some extra information is printed out along with the error 
message to help explain the cause of the problem. If the particular error is 
extremely uncommon, it will probably be necessary to refer to the code to 
interpret· this printout. 

5-F.5 



MAP or 
filename 

1. ICTPxx 
2. ICTPxx 
3. IC [1] 
4. IC [2-4] 
5. IC [5] 

6. AIC 
7. AIC 
8. AIC 
9. 
10. FPDQxx 

11. PANDTA (random) 
12. 
13. 
14. PANDTA (random) 
15. ROWMAP, ROWINV 

16. ROWr~AP, ROW I NV 
17. ROWMAP 
18. PAN SPEC 
19. PANDTA (random) 
20. FPDQxx 

21. BNDRY, CNTRQ 
22. BNORY 
23. EXHYLO 
24. 
25. PANGRP 

26. SRC/DBL/VOR-MTCH 
27. SRC/DBL/VOR-MTCH 
28. 
29. 
30. 

Activity 
R=read 
W=write 

W 
R 
W 
W 
W 

W 
R 
W 

R 

R 

R 
W 

R 
R 
R 
W 
W 

R 
R 
R 

R 

W 
R 

* Codes describing nature of data 

Subroutines 

WRICT 
GENAIC 
GENAIC 
GENAIC 
GENAIC 

GENBC, MATCH 
GENAIC 
GENAIC 

ICTEMP 

GENAIC 

SDMTCH 
CLSROW, PROCP 

CLSROW, PROCP, DRWMAP 
NAG20 
PANGRP 
PANGRP 
PANGRP 

DRWMAP, PROCP 
GENAIC 
SDMTCH 

ICTEMP 

SDMTCH 
r~TCH 

-IC Influence coefficients ( ~IC, VIC or WIC) 
AIC Entries in the [AIC] matrix 
PDQ Panel defining quantities 
CP Control point and/or boundary condition data 
MATCH Information relating to matching conditions 

Figure 5-F.1 Index to Summary of Substantial 1-0 
5-F.6 

Nature(*) 
of data 

IC 
IC 
IC (IS) 
IC (v) -") IC (w.n 

AIC 
AIC (closure) 
AIC (closure) 

PDQ 

PDQ 

PDQ 
CP 

CP 
CP 
PDQ 
PDQ 
PDQ 

CP 
CP 
MATCH 

MATCH 
r~ATCH 



) ) ) 

,",-/,*""*1(,/,-/,,,/,*,":.* .. ",,,;,( 43 MAGERR 
MAG CALL MAGERR ("MAG","TERMINATED DUE TO ACCUHlILATED ERRORS ") MAG 175 

DBABT CALL MAGERR ("DBABT","FATAL SDHS ERROR DETECTED ") DBABT 54 
"T1 
-I. lIPKPQF IF L-1 .GT. PANWPR ) CALL MAGERR ("lIPKPQF" lIPKPQF 140 lC 
s:: X ,"PANEL OATA OVERFLOW ") UPKPQF 141 
"'1 UPKPQF IF L.NE.2 ) CALL MAGERR ('UPKPQF' 841024 1 CD 

X ,'L.NE.2, PACKED PANEL DATA OUT OF SYNCII ' ) 841024 2 
01 MAG10 IF NERR .NE. 0 ) CALL MAGERR ("HAG10 " MAG10 247 • "T1 1 ,"SOHS WRITE ERROR, DB = MAG, HAP = SYHTRY") MAG10 248 . MAGlO CALL MAGERR ("MAGlO", "SCRATCH WORKING ARRAY TOO SMALL ") MAGlO 251 N 

BLOCK IF ( MXRP .LT. 5 ) CALL MAGERR ("BLOCK" BLOCK 273 
m X ,"HAX ROW PARTITION IS LESS THAN 5 ") BLOCK 274 
"'1 CLSROW IF ( NERR .NE. 0 ) CALL MAGERR ("CLSROW" CLSROW 170 "'1 
0 1 ,"SOHS READ ERROR, DB = DQG, HAP CLOSE ") CLSROW 171 
"'1 CLSROW CALL MAGERR ( CLSROW' 841024 41 
('") X ,'HIN. MAG CP INDEX .GT. 20000, SEE JCPMAP') 841024 42 
0 CLSROW IF NERR .NE. 0 ) CALL MAGERR ("CLSROW" CLSROW 206 ::3 
0. 1 ,"SONS REAO ERROR, DB = HAG, HAP = ROWINV ") CLSROW 207 
-I. CLSROW IF NERR .NE. 0 ) CALL HAGERR ("CLSROW" CLSROW 238 rt-
-I. 1 ,"SOMS WRITE ERROR, DB = HAG, MAP ROWINV") CLSROW 239 
0 CLSROW IF NERR .NE. 0 ) CALL HAGERR ("CLSROW" CLSROW 249 ::3 1 ,"SOHS WRITE ERROR, OB = HAG, MAP ROWMAP") CLSROW 250 VI 

0 COLMAP IF ( NERR .NE. 0 ) CALL MAGERR ("COLMAP" COLHAP 181 
CD 1 ,"SDHS REAO ERROR, OB = OQG, MAP = SNGSPC ") COLHAP 182 
rt- COLMAP IF NERR .NE. 0 ) CALL HAGERR ("COLMAP" COLHAP 215 CD 1 ,"SDMS WRITE ERROR,· OB = MAG, MAP COLMAP") COLMAP 216 n 
rt- COLMAP IF NERR .NE. 0 ) CAl.L MAGERR ("COLMAP" COLHAP 219 CD 1 ,"SOMS WRITE ERROR, OB = MAG, MAP COLINV") COLMAP 220 0. 

CT COLMAP IF NERR .NE. 0 ) CALL MAGERR ("COLMAP" COLMAP 226 
'< 1 ,"SOMS REAO ERROR DB = MAG, MAP = COLMAP ") COLMAP 227 
3: COLMAP IF NERR .NE. 0 CALL MAGERR ("COLHAp /, COLMAP 248 
» 1 l."SDMS WRITE ERROR, DB = MAG, MAP=COL-BULK") COLMAP 249 
G'> CONBLK IF NERR .NE. 0 CAL MAGERR ("CONBLK" CONBLK 253 

1 ,"SDMS REAO ERROR OB OQG, NAP NETWK ") CONBLK 254 
CONBLK IF NERR .NE. 0 CALL MAGERR ("CONBl.K" CONBLK 309 

-0 1 ,"SOMS READ ERROR DB OQG, MAP SPCPT ") CONBLK 310 
QJ CONBLK IF NERR .NE. 0 CALL HAGERR ("CONBLK" CONBLK 395 to 1 ,"SONS WRITE ERROR, DB = MAG, MAP=ROW-BULK") CONBLK 396 CD 

...... DRWMAP IF NERR .NE. 0 CALL MAGERR ("ORWMAP" ORWMAP 185 
1 ,"SOMS READ ERROR DB MAG, MAP = ROWHAP ") DRWMAP 186 

0 DRWMAP IF NERR .NE. 0 CALL MAGERR ("DRWMAP" DRWMAP 194 -t, 1 ,"SDMS REAO ERROR DB DQG, MAP BNDRY II) ORWMAP 195 
eN ORWMAP IF NERR .NE. 0 CALL MAGERR (IIDRWMAP/, ORWMAP 248 

1 ,"SOMS READ ERROR~ DB = MAG, MAP ROWNAP ") ORWMAP 249 
DnWMAP IF NERR .NE. 0 CALL MAGERR ("ORWMAP' ORWMAP 255 

1 ,"SOMS READ ERROR, DB = DQG, MAP BNDRY ") DRWMAP 256 
01 OPENDB IF IRO.NE.O ) CALL MAGERR ("OPENDB" 820428 35 • "T1 . 
....... 



U1 
I X ,"DIP DATABASE IS DEFECTIVE ") 820428 36 ." 

OPENDB IF IRO .NE. 0 CALL MAGERR ("OPENDB" OPENDB 187 (X) 1 ,"DQG DATABASE IS DEFECTIVE ") OPENDB 188 OPENDB IF IRO .NE. 0 CALL MAGERR ("OPENDB" OPENDB 194 1 ,"MAG DATABASE IS DEFECTIVE ") OPENDB 195 
." OPENDB IF IRO .NE. 0 CALL MAGERR ("OPENDB" OPENDB 199 ..... 1 ,"MAGX DATABASE IS DEFECTIVE ") OPENDB 200 to OPENDB IF IRO .NE. 0 CALL MAGERR ("OPENDB" OPENDB 207 c 

1 ,"MAGY DATABASE IS DEFECTIVE ") OPENDB 20B -s 
CD OPENDB IF NERR .NE. 0 CALL MAGERR ("OPENDB" OPENDB 561 
U'1 1 ,"SDMS READ ERROR~ DB = DQG, MAP'" GLOBAL ") OPENDB 562 I , OPENDB IF NERR .NE. 0 CALL MAGERR ("OPENDB' OPENDB 585 ." 

1 ,"SDMS WRITE ERROR, DB = D?G, MAP = NETWK ") OPENDB 5B6 . 
N OPENDB IF KNET.LT.l .OR. KNET. GT. 200 ) CALL MAGERR "OPENDB" OPENDB 587 1 ,"NETWORK-ORDER VALUE IS OUT OF RANGE ") OPENDB 58B 
rrI OPENDB IF KNET. LT.l .OR. KNET.GT.200 ) CALL MAGERR ('OPENDB' 841024 7B -s X 'NETWORK ID OUTSIDE RANGE OF (1,200) , ) 841024 79 -s PAKPQF IF NPQF .GT. PANWPR J CALL HAGERR (IIPAKP~FII PAKPQF 141 0 
-s X ,"PANEL DATA BUFFER XCEEDS LIMIT ") PAKPQF 142 
('"') PANGRP IF ( NERR .NE. 0 ) CALL HAGERR ("PANGRP" PANGRP 24B 
0 1 ,"SDMS READ ERROR, DB = DQG, HAP'" PANSPEC") PANGRP 249 ::s PANGRP IF INS.GT.I0 .OR. IND.GT.25) CALL HAGERR ('PANGRP' 841024 B2 c.. 

X , 'INS.GT.I0 OR IND.GT.25: TOO MANY SP-S ' ) 841024 B3 ..... 
c-t PANGRP IF ( NERR .NE. 0 ) CALL HAGERR ("PANGRP" PANGRP 334 ..... 

1 , "SDMS WRITE ERROR, DB = MAG, HAP = PANGRp lI ) PANGRP 335 0 
::s PANGRP IF NPQF.GT.NPAKFF ) CALL HAGERR ('PANGRP' B41024 B4 Vl 

X ,'PANEL DATA PACKET (NPQF) EXCEEDS NPAKFF ') 841024 B5 0 PANGRP IF LWPDQ+NPQF-l .GT. NPDQ ) CALL HAGERR ('PANGRP' B41024 B6 CD X ,'PANEL DATA BUFFER EXCEEDS ALLOCATION ') 841024 87 c-t 
CD PANGRP IF IPNDEX+l .GT. PANHAX ) CALL MAGERR ("PANGRP" PANGRP 413 n X ,"CONFIGURATION HAS HORE THAN 3000 PANELS") CRAY 128 c-t 
CD PANGRP IF ( NERR .NE. 0 ) CALL HAGERR ("PANGRP" ' PANGRP 457 c.. 

1 L"SDHS WRITE ERROR, DB = HAG, HAP = PANGRp II ) PANGRP 458 tT PROCP IF NERR .NE. 0 CAL HAGERR ("PROCP " PROCP 290 ~ 1 L"SDHS READ ERROR~ DB .. DQG, HAP '", CNTRQ ") PROCP 291 
~ PROCP IF NERR .NE. 0 CAL HAGERR ("pROCP , PROCP 473 en 1 ,"SDHS READ ERROR~ DB '" HAG, MAP'" ROWINV ") PROCP 474 PROCP IF NERR .NE. 0 CALL MAGERR ("PROCP , PROCP 505 1 ,"SDHS WRITE ERROR, DB HAG, HAP ROWHAp lI ) PROCP 506 

"'0 PROCP IF NERR .NE. 0 CALL HAGERR ("PROCP " PROCP 516 
QJ 1 ,"SDMS WRITE ERROR, DB = HAG, HAP ROWINV") PROCP 517 I.C SDHTCII IF NERR .NE. 0 ) CALL HAGERR ("SDHTCII" SDHTCH 245 CD 1 ,"SDHS WRITE ERROR, DB=HAG, HAP=SRC-HTCH II) SOHTCH 246 N SDHTCII IF NERR .NE. 0 ) CALL HAGERR ("SDHTCH" SDHTCH 312 
0 1 ,"SDHS WRITE ERROR, DB=HAG, HAP=DBL-HTCII II) SDHTCII 313 -+. HAG20 X CALL HAGERR ('HAG20' B41024 91 w X ,'DYNAMIC CH NEEDED(L21,L22) EXCEEDS LIHIT') 841024 92 HAG20 IF NERR .NE. 0 ) CALL HAGERR ("HAG20" HAG20 267 1 ,"SDMS READ ERROR, DB = HAG, HAP = ROWHAP ") HAG20 26B CBSET CALL HAGERR ('CBSET' B41024 95 

) ) ) 



U1 
I 
-n 
~ 

-n 
-'. 
lC 
c: 
-s 
CJ) 

U1 
I 
." 

N 

rn 
-s 
-s 
a 
-s 
("") 
a 
::s 
0.. 
-'. 
rt 
-'. 
a 
::s 
VI 

CJ 
CJ) 
rt 
CJ) 
n 
rt 
CJ) 

') 

GENAIC 

GENAIC 

GENAIC 

GENAIC 

GENAIC 

GENBC 

GENBC 

GENBC 

ICTEHP 

HATCH 

RDAIC 

RDAIC 

WRAIC 

WRICT 

0.. ************** 
~ HAGI0 
3: 
:l=> 
(j") 

-0 
III 
to 
CJ) 

W 

a 
-;, 

w 

COLHAP 

COLNAP 

PAKAST 

SDHTCH 

SDHTCH 

SDHTCH 

45 

X 
IF 

X 
IF 

X 
IF 

1 
IF 

1 

X 

X 

X 

X 
IF 

1 
IF 

1 

X 
IF 

1 
IF 

1 
IF 

X 

'') 

,'PACK+UNPACK DOES NOT GIVE ORIGINAL DATA') 
JTP.GT.HXICTP ) CALL HAGERR ('GENAIC' 

,'ATTEHPT TO USE HORE THAN HXICTP FILES 
ICP2.LT.ICPl ) CALL HAGERR ('GENAIC' 

, ) 
,'EHPTY ROW PARTITION DETECTED 

NERR .NE. 0 ) CALL HAGERR (IIGENAIC" 
, ) 

. ,"SOHS READ ERROR~ DB = DQG. HAP BNDRY ") 
NERR .NE. 0 ) CALL HAGERR ("GENAIC' 

"SDHS WRITE ERROR, DB = HAG. HAP" IC ") 
IF IPCP(2).EQ.0 J CALL HAGERR ('GENAIC' 

l'CLOSURE BC: NEITHER V NOR W.N IC-S THERE') 
IF IPCP(2) .EQ.O J CALL HAGERR ('GENBC' . 

J
'GENERAL BC: V IC-S NOT HERE FOR T.V TERH') 

IF IPCP(2).EQ.0 CALL HAGERR ('GENBC' 

IF J
'GENERAL Be: V ANO WN IC-S ABSENT FOR W.N') 

IPCP(I).EQ.O CALL HAGERR ('GENBC' 
,'GENERAL BC: PHI IC-S ABSENT PHI TERH 

NERR .NE. 0 ) CALL HAGERR ("ICTEHP" 
, ) 

."SOHS READ ERROR~ DB = HAG. HAP = PANGRP ") 
( NERR • NE. 0 ) CALL HAGERR ("HATCII ' 

,"SDHS READ ERROR. DB=HAG HAP=SRC/DBL-HTCH") 
CALL HAGERR (IIRDAIC" 

."AIC PARTITION WAS THE WRONG SIZE ") 
NERR .NE. 0 CALL HAGERR ("RDAIC II 

."SDHS READ ERROR~ DB = HAG. HAP = AIC 
NERR .NE. 0 CALL HAGERR ("WRAIC ' 

") 

."SDHS WRITE ERROR, DB = HAG. HAP = AIC ") 
JTP.GT.HXICTP CALL HAGERR ('WRICT 

• 'ATTEHPT TO USE HORE THAN HXICTP FILES , ) 

NAGHSG 
CALL HAGHSG ('HAGI0' 

X ,'IHBALANCE BETWEEN S.P. AND B.C. COUNTS ') 
CALL HAGHSG ("COLHAP" 

1 ."HAG UPOATABLE S.P. INOEX INCONSISTENCY ") 
CALL HAGHSG ('COLHAP' 

X .'BAD NETWORK 10 DETECTED ') 
CALL HAGHSG ("PAKAST" 

1 ,"BUFFER OVERFLOW ") 
CALL HAGHSG ("SOHTCH/S" 

1 ."SOHS READ ERROR. DB OQG. HAP EXHYLO ") 
CALL HAGHSG ("SOHTCH/D" 

1 ,"SOHS READ ERROR. DB DQG. NAP EXHYLO ") 
CALL NAGHSG ("SOHTcn" 

1 ,"TOO HANY S.P.-S INVOLVED IN HATCHING ") 

841024 96 
841024 97 
841024 98 
841024 99 
841024 100 
GENAIC 377 
GENAIC 378 
GENAIC 463 
GENAIC 464 
841024 101 
841024 102 
841024 103 
841024 104 
841024 105 
841024 106 
841024 107 
841024 108 
ICTEHP 217 
ICTEHP 218 
HATCH 126 
HATCH 127 
ROAIC 98 
RDAIC 99 
RDAIC 101 
ROAIC 102 
WRAIC 88 
WRAIC 89 
841024 109 
841024 110 

841024 15 
841024 16 
COLHAP 234 
COLNAP 235 
841024 66 
841024 67 
PAKAST 112 
PAKAST 113 
SDHTCH 205 
SOHTCII 206 
SOHTCH 272 
SDHTCH 273 
SOHTCH 321 
SOHTCII 322 

) 



APPENDIX S-G 

HANDLING CLOSURE B.C.ls IN MAG 

The design capability in PAN AIR needs to be able to impose a special 
class of non-local boundary condition, called the closure condition.· The 
precise form of the AIC constraint induced by this boundary condition is given 
in the PAN AIR theory document by equation (K.1.2S) when there is no symmetry 
in the problem, and by equations (K.6.45-46), (K.6.48-49) and (K.6.SS-58) when 
symmetry is present. For the purpose of the present discussion, we reproduce 
here equation (K.1.2S) for the case of no symmetry. 

L Ak {aA,k n~ [Bo] [VICk] + aD,k L 1, ~k' TlkJ [SPSPL~] [B~]} ). 

panels 
Pk 

= b 
(S.G.l) 

Here the sum extends over the panels Pk in a row or column of a network. The 
other symbols in this equation have the meanings: 

= 
= 

= 

= 

= 

= 

= 

[SPSPL~] = 

= 

= 
b = 

area of panel Pk (AREAQ) 

the coefficient of (w.n}k in the closure condition (AACLCP) 

the panel normal at the panel center control point Pk on panel Pk ([Bo]Ak = ZNUCP) 

the dual metric matrix in reference coordinates 
(cf. app. E, theory document) 

the 3xN velocity influence matrix for control point Pk 
(stored in RIC) 
the coefficient of (o}k in the closure condition (ADCLCP) 

the local coordinates of PklS hypothetical location 
(not recessed) 

the source subpanel spline matrix for the subpanel on which 
Pk lies 

the SxN (extended) source outer spline matrix for panel Pk 
the vector of global singularity parameters 
a user specified value 

!Jote that by virtue of equation (S.2.S) of this section that the combination 
n~ [Bo] [VICk] could be replaced by LWICkJ when only normal mass flux ICls 
are computed for Pk. 

The main difficulty that must be dealt with to handle this equation is the 
fact that the velocity influence coefficients [VIC k] are not necessarily saved 

S-G.1 



on any file after they have been generated (in GENAIC) and used to compute AIC 
rows for Pk. Thus, unless some special care is taken, the information 
required to generate a closure AIC row will not all be available when it is 
needed. 

To deal with this situation, subroutine GENAIC has some very special logic 
to perform asynchronous management of a closure-AIC buffer, AICK. The basic 
idea is to add in to AICK the individual contributions from each control point 
Pk as the various [VIC k] matrices become available. In order to implement 
this idea, we must know, for each control point Pk the following information 
that MAG stores on the ROWMAP dataset: 

(i) The AIC row number of the closure condition that is affected by Pk 
[I IDRWCL I] 

(ii) The symmetry conditions for which Pk makes a contribution to a 
closure condition [LSYMCL] 

(iii) The updatability type for any affected closure condition [IUPDCL] 
(iv) Whether or not control point Pk has the smallest MAG control point 

index of all the MAG control points influencing a particular closure 
condition. (IDRWCL<O if Pk has the smallest MAG c.p. index.) 

Associated with the AICK buffer, subroutine GENAIC keeps track of the 
following "AICK identifiers" 

(a) the closure AIC row number [INDRWK] 

(b) the closure AIC row·s symmetry condition [ISYMK] 

(c) the closure AIC row·s updatability type [IUPCPK] 

These three items are the keys to the record in the Ale-MATRIX dataset to 
which the closure AIC row will eventually be written. In fact, during the 
actual construction of the AIC closure row, partial sums of equation (5.G.l) 
may be written to and read from this record several times. 

The actual management of the closure AIC buffer is then handled as 
follows. As GENAIC is called to process each control point block, it begins 
by setting the "AICK identifiers" to impossible values (e.g. symmetry 
condition 0) to indicate that AICK is empty. Next, whenever a matrix [VICk] 
is generated for a control point Pk and that control point influences a closure 
condition [IDRWCL ~ 0], GENAIC prepares to include the effect of [VICk] into 
the AIC closure condition. This is done as follows 

(1) If the "AICK identifiers" disagree with those associated with Pk and 
the current symmetry condition, the AICK buffer must be written to 
the AIC-MATRIX dataset (provided AICK is not empty) and the AICK 
buffer reset. Next, the AICK identifiers are set equal to 
(\IDRWCL\ , ISYM, IUPDCL). Then, if Pk is the first c.p. to 

5-G.2 

influence AICK, we set AICK=O. Otherwise AICK is read from the 
AIC-MATRIX dataset using the AICK identifiers. 



(2) I~e are now ready to include Pk's contribution into AICK. First the 
[VIC] contribution is included as follows 

AICK- AICK + (f.Ak·aA,k) WICk (5.G.2) 
(WIC's available) 

or -..T AICK- AICK + (f.Ak·aA,k) \l k [VIC k] (5.G.3) 

(VIC's available) 

The factor f is included here to account for the effect of networks 
that lie in a plane of symmetry. We have 

f 
if the network lies in a P-O-S 

(5.G.4) 
if the network does not lie in a P-O-S 

(3) Next we include the source term in AICK. This is done by using the 
arrays SGH and IISMAG which give the nonzero entries and the 
corresponding locations of the expression 

(5.G.5) 

The inclusion is performed in a fairly obvious fashion. No special 
handling of control points lying in a plane of symmetry is required. 

(4) When GENAIC is finished with the processing of a control point block, 
it writes the AICK buffer out to the AIC-MATRIX dataset using as keys 
the AICK identifiers. 

Some final remarks are in order concerning the treatment of closure. 

First it should be clear that the volume of 1-0 on the AIC-MATRIX dataset 
could be quite high if the "AICK identifiers" changed each time a control 
point contribution was added in to AICK. In order to minimize the 1-0 
activity, subroutine CONBLK sees to it that the control points are processed 
in the correct order. If a network's closure conditions involve sums over 
network columns, then the control points are processed by columns; if the sums 
are over network rows, the control points are processed by rows. 

The second set of remarks we wish to make concerns the generation of 
closure information for the ROWMAP dataset. This is done as follows. As 
CONBLK processes the control points of each network, PROCP records the 
following information relating to each control point that has a closure 
condition 

(1) network identifier } 

(2) DQG control point index 

(3) Updatability type 

keys to the CLOSURE dataset 

5-G.3 



(4) MAGis AlC row index for the closure condition 

(5) The symmetry conditions having a closure condition 

Next, when all of the control points in the network have been processed by 
PROCP, subroutine CONBLK invokes CLSROW to process each closure condition, 
updating the ROWMAP and ROWMAP-lNVERSE datasets by adding the following 
information: 

(1) The coefficients aA,k and aD,k (cf. eqn. S.G.1) obtained from DOGls 
CLOSURE dataset 

(2) The updatability type of the closure condition 

(3) MAGis AlC row index for the closure condition, multiplied by (-1) if 
ROWMApls control point has the smallest MAG c.p. index of all C.p.I S 
affecting the closure condition 

(4) The symmetry conditions having a closure condition 

5-G.4 



APPENDIX 5-H 

ALTERNATE PROBLH1 FORMULATIONS 

As promised at the end of section (5.1.2), we now take up the discussion 
of alternate integral equation formulations for the problem of incompressible 
potential flow about a sphere. This appendix will consist of three parts: 

(i) a discussion of the modified r'lorino, doublet alone formulation, 

(ii) a discussion of the direct velocity formulation, 

(iii) a summary of all four formulations treated in this document, 
comparing and contrasting the relative merits of each. 

5-H.1 Formulation 3, The Modified Morino Method 

[4> = 0 inside B] 

This formulation, which leads to an identically zero source strength, 
chooses the flow interior to B to be total stagnation. That is, we assume . - ... --
that interior to B the total veloclty V = 0: 

for points 
... 
P € int(B) (5.H.1) 

... 
. ~ Nm'l since Uoo satisfies the relation, 

... 
Uoo = Vp 4>00 (5.H.2) 

... -+ 
4>00 = Uoo • p (5.H.3) 

we find that the total potential 4> defined by 

4> = 4>00 + () (5.H.4) 

must sati sfy 
... 

V4> = V = 0 for points ... P € int(B) (5.H.5) 

As a trivial consequence of equation (5.H.5), we find that 4> must be 
constant interior to B. The actual value of the constant is immaterial so 
that we take it to be zero: 

4> s 0 for points p € int(B) (5.H.6) 

Having determined that 4> is identically zero inside B, we can now 
obtain some relations for the source and doublet strength on aB, the boundary 
of B. We have for a: 

a = 

5-H.1 



since cl»oo is continuous across aBo Using equation (S.H.4) this becomes, .. ~ 

C1 = ( a cl» / a n }p - (a cl» / an) p . 
+ -

Now, since cl» == 0 interior to B, V cl» =- 0 there as well and we obtain 

C1 = (a cl» / an) = ( n. V cl» ) - = ( ~ • V )- = 0 ( S • H • 7) 
p+ p+ p+ 

Here we have used equation (S.H.S) together with the boundary condition 
(n.v}p+ = 0 (see the figure on p. S.4). The relation for the doublet 

strength that we require is derived: 

Il = 

= 2 cll oo + 2(~('p) }avg 

(by definition) 

( si nce cl» 00 is conti nuous) 

(by S.H.4) 

(since (cl»)- = O} 
p-

(S.H.8) 
We now invoke the representation theorem (cf. eqn. (S.1.6}) with C1 set equal 
to zero to obtain 

r:l(p) = ~1T SI Il (n.vq ", }dSq 
aB 

(S.H.9) 

Denoting the average·value, above and below aB, of the integral appearing on 
the right with the subscript "avg," we write 

(9SCp»avg = 4 (9S(p+) + IrS(P-)} = (}1T If ll(h.Vq", }dSq ) (S.H.lO) 
aB avg 

substituting this result into (S.H.8) and rearranging slightly we obtain the 
required integral equation, 

i Il(p) - (}1T If Il(~' Vq '" )dSq) = cll oo 
aB avg 

(S.H.ll ) 

The integral equation (S.H.ll) is readily transformed into an AIC equation of 
the usual form (cf. equation (S.1.13» by assuming a finite dimensional 
representation for Il (cf. eqn. (S.l.llb}) 

N 
Il (q) = I mJ (q) AJ 

J=l 

S-H.2 



and then evaluating equation (5.H.11) at N collocation points (i.e. control 
points), PI' One obtains 

N 

L AIJ AJ = bI (5.H.12) 
J=1 

where 
(5.H.13) 

(5.H.14) 

5-H.2 Formulation 4, The Direct Velocity Formulation 

Here, as in the Morino formulation, we assume that the perturbation 
potential is identically zero inside B. In contrast with the Morino 
formulation, however, we leave the source distribution as an unknown and 
explicitly impose the impermeable surface boundary condition, (V.n)p+ = o. 

To see how this works, observe that the condition 

inside B 

implies as well that ~ satisfies 

Writing the representation formula for ~ in the form 

(II ~ n.vq dSq \~ 
aB )p,avg 

We obtain from equations (5.H.16) and (5.H.17) the result 

t ~Cp) = (tHp»avg = - t (Sf a I/J dSq\-+ 
aB ) p,avg 

+ h (If ~ n.vq I/J dSq) -+ 
aB . p,avg 

Note that this integral equation is essentially identical to the 
equation (5.1.8) obtained for the Morino formulation. 

(5.H.15) 

(5.H.16) 

(5.H.17) 

(5.H.18) 
integral 

Our next task will be to obtain a second integral equation by combining 
the imRermeable surface condition with the fundamental representation formula 
for v(p), equation (B.3.9) of the theory document. Assuming that doublet 

5-H.3 



matching is performed, we may discard the line vortex term and rewrite ~, 
equation (B.3.9) in the following form, appropriate to the present context: 

(v(p» avg = [-k Sf a(q) Vq til dSq + k If (fIX VI!) x Vq til dSq] .... 
aB aB p,avg 

(5.H.19) 

Next, we write the impermeable surface boundary condition in the form 

o = (v.n).... = Uex)' ~(j)) + n . v(p+) 
p+ 

= Uex), n(in + t nCp).[(V(P+) - v(pJJ + ~ n(p).[v(p+) + v(pJJ 

= Uex),~ + } a + ~(p). (vep) )avg 
(5.H.20) 

Substituting (5.H.19) into this then yields our second integral equation: 

This integral equation* in combination with (5.H.18) constitutes a pair of 
dual integral equations for the unknown functions a(q) and I!(q). 

We write out pair of equations (5.H.18) and (5.H.21) in the form: 

~ Il + !n SSa til dSq -k SfI!Ctf) n(q). Vq tIIdSq = 0 
aB aB 

} a + k If ani) n<ln . Vq til dSq + -k Sf (n x V I!) X V til dSq • n(in = 
.... 1\ .... - Uex) • n(p) 

aB aB (5.H.22) 

* It is worthwhile pointing out that equation (5.H.21), which can be written 
in shorthand form as 

1 "( .... ) ........ 2 a + n p • (v(p»avg = - U ex) " .... } • n(p (A) 

could be replaced by 
2n(p} • (v(p})avg = - Uex) • n(p} (B) 

the difference between these two equations being the quantity 

" .... ="' 1 "-+(-+ n • (V(P/}avg - 2 a = n • v p_) 
Equation (A) is preferred over equation (B), however, because it has better 
numerical properties. 

5-H.4 



r'" In writing down equation (5.H.22) in this form we have adopted the convention 
that all integrals are to be interpreted as average value integrals, above and 
below aBo It can be shown that this constitutes an Hermitian system of 
integral equations having the form 

. .r-

2 

L ff b (p) 
a 

(5.H.23) 

8:1 aB 

with 

(5.H.24) 

Of the four formulations studied in this section, only this one leads to an 
Hermitian integral equation or system of integral equations. 

5-H.3 Summary of Four Formulations 

In this section we write down in one place the integral equations on aB 
obtained from each of the four methods of formulation that have been studied. 
In what follows, all integral expressions are to be interpretted as being 
averaged, above and below aB 

[1J Morino's formulation 

1 -) 1 SI ~ ~(q) '" dSq = 
1 Sf a '" dSq "2" ~(p -'fir • Vq -LT; (5.H.25) 

aB aB 
where a(q) = - U<X) 

1\ _) • n(q 

[2J Hess' formulation (~ = 0) 

} an)) 1 1\-+) +4iT n(p • Sf aCq) Vq '" dS - • ~ (i)) q = - U<X) (5.H.26) 
aB 

[3J Modified Morino formulation (a = 0) 

1 -) 1 "2" ~(p - 4iT If ~ ~(q) • Vq '" dSq = clI<X) (il) (5.H.27) 

aB 

[4J Direct Velocity formul ation 

1 1 If a '" dSq 
1 ff ~ A(q) • Vq '" dSq a '2" ~ + 4iT -4iT = (S.H.28a) 

aB aB 

}a + ~7f SJa(q) non. Vq"'dSq + !7f SS(n XV~) xV"'dSq • n(i)) = 
- 1\-+ 

-U<X) .n(p) 
aB aB (5.H.28b) 

5-H.5 



First we must emphasize that a (resp. ~) for one formulation is not the same 
as a (resp. ~) for another formulation. Other appropriate remarks are: 

(1) Both of the Morino formulations [1] and [3] lead to the same AIC 
matrix. (Compare equation (5.1.14) to (5.H.13) to observe this.) 
However, the modified Morino formulation is less expensive because it 
requires no source influence coefficients. 

(2) The general folklore relating to these various formulations suggests 
that in terms of solution quality, [4] is best, [1] is second best, 
[3] third best and [2] is the least accurate. In particular, Hess' 
formulation, because it does not allow doublet wake sheets, cannot be 
used for lifting configurations. 

(3) In terms of cost, method [2] is least expensive followed by [3], [1] 
and [4] in that order. 

(4) All of these integral equations are Fredholm integral equations of 
the second kind. This is all to the good, since Fredholm integral 
equations of the first kind are notorious for leading to poorly 
conditioned matrix equations. Second kind integral equations on the 
other hand usually lead to fairly well conditioned matrix equations. 
This is especially true when, as in PAN AIR, the integral kernels are 
singular. 

(5) The direct velocity formulation [4] leads to an Hermitian system of 
integral equations. This fact helps explain the excellent numerical 
properties of this method of formulation. 

5-H.6 



6.0 REAL MATRIX SOLVER (RMS) MODULE 

6.1 INTRODUCTION 

The RMS module solves large systems of linear equations. Most of the 
subroutines used by RMS reside on the PAN AIR library (PALIB). 

(1) Decompose the square matrix [AIC] into [L] and [R] plus pivoting 
tenns [Pl. 

[AIC] = [L] ([P][R]) 

where, 

[AIC] is the Aerodynamic Influence Coefficient matrix 
[L] is the lower-triangle matrix 
[R] is the upper-triangle matrix 
[P] represents pivot tenns 

(2) Perform the forward and backward substitutions with [L] and [R] plus 
the right-hand-side constraints matrix, [RHS], to find the lambda 
solutions [A]. 

The matrix [AIC] is generated in the PAN AIR module MAG and the matrix [RHS] 
is generated in the module RHS. The primary function of the RMS module is to 
perfonn the decomposition of the AIC matrices. The forward and backward 
substitution will be done in the latter stages of RHS. The subroutine that 
RMS uses to decompose [AIC] is called RMSD and resides on PALIB. For 
efficiency's sake, the subroutines operate on matrices in blocked 
(partitioned) fonnat. To interface with the other modules of PAN AIR, the RMS 
module perfonns the following steps: 

(1) Block the partition of AIC matrix corresponding to the unknown 
singularity parameters (it was generated in rows by the MAG module). 

(2) Decompose the "unknown" AIC matrix into [L], [R], and [Pl. 

(3) RMS, during an update run, uses a restart capability of ~4SD by 
setting the restart row and column submatrix indices to point to the 
first submatrix not previously decomposed. If [AIC] consists of k by 
k submatrices, then the restart index must be set to k+1. 

The module also generates a pennanent RMS data base for the storage of the 
decomposed matrix. The [L] and [R] matrices replace the [AIC] matrix while 
the pivot tenns [P] are stored on the RMS data base. 

A temporary data base, RMST, is used for internal data storage. 

6.1 



6.2 RtvlS OVERVIEW 

6.2.1 Purpose of RNS 

The Real Matrix Solver (RNS) is a module of the PAN AIR System. RMS will 
block and decompose the AIC matrices that were generated in the MAG module. 

6.2.2 RI·1S Output Data 

RMS prints only error diagnostics information when SOt·1S errors and matrix 
singularity errors occur. Appendix 6-E lists the possible RtvlS error 
diagnostics. 

6.2.3 Data Base Interfaces 

RMS reads input data from data bases created by MEC and ~lAG. The t4EC data 
base provides data base names, account numbers, data base status, date of 
creation, and other similar information. The MAK data base created by the t1AG 
module contains the unknown AIC matrices. RMS creates a single data base 
during its execution. The decomposed AIC matrices are always stored on the 
RMS data base and later used in the RHS module. Also, the RMS data base is 
used as input during a RMS update run. In addition, RMS uses a temporary data 
base RMST. The RMS and RMST data base master definition is described in 
Appendix 6-0. 

6.3 MODULE DESCRIPTION 

The main overlays and their subroutines are briefly summarized in this 
section. The RMS functional decomposition is shown in Appendix 6-B and a 
chart of the subroutine tree structure is presented in Appendix 6-A. 

6.3.1 Overall Structure 

Figure 6.1 illustrates the top level structure of the module RMS. The 
functional decomposition of all overlays and their subprograms is given in 
Appendix 6-B. 

6.3.2 Overlay Descriptions 

A summary description of each overlay of the module RMS is given in the 
following paragraphs. 

6.3.2.1 RMS Overlay (O,O) 

The top level overlay (0,0) of RMS initializes the data bases and controls 
access to the 3 primary overlays. 

6.2 



6.3.2.2 R~1SINT Overlay (1,0) 

Checks the status of data bases and initializes the COMMON BLOCK variables 
used in the matrix process. 

6.3.1.3 BLOCKA Overlay (2,0) 

The RMS subroutines from Rt·lSLIB operate on the AIC matrices in blocked 
partitioned format and all matrices must be stored as a direct data set on RMS 
data base (Figure 6.2). The BLOCKA module will block, by rows, the AIC 
matrices which were generated in the MAG module. In order to accomplish this, 
there must be a scratch array buffer of length at least long enough to hold 
any 3 submatrices required for the RMS decomposition process. The size of the 
buffer is preset to 30,000. If larger blocks are desired, the user must 
redimension blank common and data load the new length into labeled common 
/BCLEN/. 

The blocking of the AIC matrices is accomplished by calling subroutine BLOCK 
for each non-updatable and/or updatable partition. 

6.3.2.4 DCONPO Overlay (3,0) 

The subroutine RMSD from RMSLIB is called to decompose the non-updatable 
and/or updatable partitions of the AIC matrices which were generated in 
BLOCKA. In order to accomplish this there must be in core, a scratch array at 
least long enough to hold any 3 submatrices produced from BLOCKA. The size of 
the buffer area is preset to 30,000 [decimal], the same as in BLOCKA. 

Subroutine Rt<lSD is called to decompose the AIC matrix into the product [L], 
[R], and generates the pivoting information matrix [P]. The [L] and [R] 
matrices are the lower-triangular and the upper-triangular matrices which 
replace the blocked AIC submatrices on the RMS data base after the 
decomposition process. 

The following process takes place during an AIC update run after the 
decomposed AIC matrices are saved on the data base in an original run through 
the PAN AIR system. 

Original Run 

o Decomposition of the AIC blocked submatrices. 

o The [L], [R], and [P] submatrices are saved on the RMS data base. 

Update Run 

o Retrieve the [L]. [R]. and [P] submatrices from the original run from 
the RMS data base. 

o Restart the initial problem by setting the index key to point to the 
first submatrix not previously decomposed. 

o The [L], [R], and [P] submatrices produced from the original run or 
update run will be saved on the RMS data base. 

6.3 



6.3.3 Rr~s Da ta Ba se 

The Master Definitions of the data bases RNS and RI4ST are given in Appendix 
6-0. 

6.3.4 R~IS Interfaces 

Figure 6.3 summarizes the internal and external data interfaces between the 
RMS module and the RI·tS, t4EC, and MAK data bases. The RI'1S data base is used by 
the module RHS. RMS uses the RMS data base as input of the decomposed AIC 
matrices created in a previous run during an Update Run. 

6.3.5 Data Flow 

Figures 6.4 through 6.6 illustrate the data flow for the major sections of RMS. 
Detailed data flow information can be found by consulting these figures, 
Appendix 6-C (Data Base Communication Chart), and the glossaries of the 
program/subroutines which are of interest. 

6.4 LOWER LEVEL FUNCTIONS 

6.4.1 Functional Decomposition 

See Appendix 6-B for a description of the RMS decomposition. 

6.4.2 Subroutine Descriptions 

6.4.2.1 BLKGEN 

Submodule BLKGEN generates RMS blocking information for the non-updatable 
and/or updatable partitions of the AIC matrices. 

The core storage in Blank Common area available for use as scratch array for 
temporary data storage is calculated using REQFL from PALIB. The blocking 
information parameters are calculated for the updatable and/or non-updatable 
AIC submatrix block sizes and are saved on the RMS data base. 

During an AIC update run, the submatrix block and decomposition restart 
location is calculated. The blocking information from the previous run stored 
on RMS data base is read and the blocking information is calculated for the 
additional row/column updates. Finally, all blocking information is saved on 
the RMS data base. 

6.4.2.2 BLOCK 

Submodule BLOCK converts a matrix stored as rows into a matrix stored by 
blocks. The basic processing steps in blocking matrices is done in a two step 
operation. In the first step, the matrix is read by rows, and written on a 
temporary data base by rectangular blocks in subroutine RECBLK. In the second 
step, enough rectangular blocks are read to form larger blocked submatrices 
and written out on the RMS data base for later processing. These steps are 
repeated until all rows of the AIC matrices are processed. 

6.4 

/~. 



6.4.2.3 RECBLK 

Submodule RECBLK produces enough rectangular blocks to produce larger blocks 
by reading (a row at a time) the AIC matrices from the MAK data base created 
in the t1AG module. These rectangular blocks are merged to form a larger 
blocked rectangular matrix. Finally, the blocked rectangular matrix is 
sub-divided into smaller column blocks and written out onto the RMS temporary 
data base. This process is repeated until all rows of the AIC matrix are 
processed. 

6.4.2.4 SQBLK 

Submodule SQBLK reads enough rectangular blocks from the RMS temporary data 
base produced in RECBLK to form square block submatrices. The blocked 
submatrices are written onto the RMS data base for later processing in module 
OCOMPO. This process is repeated until all rectangular submatrices are read 
and processed. 

6.4.2.5 RMSD 

Decomposes the blocked AIC submatrices formed in SQBLK and stored on the RMS 
data base into [L], [R], and [P]. 

6.5 



DB info 
Unknown 

AIC data 

----.----- -
~ 

OVERLAY (1,0) 
RMSINT 

Check Data Bases 
and Initialize 
Common Blocks 

UPDATE RUN 

RMS 
Top Level 

Overlay (0,0) 
Initialize 

and Ca 11 other 
Overlays 

OVERLAY (2,0) 
BLOCKA 

Block the Unknown 
AIC Matric.es 

R IS -

Blocked 
AIC 

, ubma tri ce 

r I 

Figure 6.1 - Top Level Structure of RMS 

6.6 

, 
OVERLAY (3,0) 

DCOMPO 

Decompose 
the AIC Matrices -~ 



RMS r---. 
-... 

r-

BLKGEN 

Generates 
Blocking 

OVERLAY (2,0) 
BLOCKA 

Block [AIC] 

Information 

MAK I-+-

RECBLK 

Rectangular 
Blocking Process 

BLOCK 

Blocks 
[AIC] 

, 
RMS SQBLK " 

t==========tV "'----J 

Squa re 

v 
Blocking Process 

RMST 

Figure 6.2 - Structure of (2,0) Overlay of RMS 

6.7 



MEC 

MAG 

6.8 

RMS 

4 

RMS 

RMST 

Data Base Directory Information 
Unknown AIC Matrix by Rows 
Decomposed AlC Matrix 

RMS 

Temporary Storage for Blocks of Submatrices 

Figure 6.3 - Data Base Relationships 

RHS 



/l ., 
OVERLAY(1,O) 

MEC 

.J J DATA-BASE-HEADER RMSINT 
MACRO-OPT.IONS 

Figure 6.4 - Structure and Data Flow of (1,0) Overlay 

6.9 



r , 
~ 

f , 
MAK ~ 

RMS I-
J OVERLAY (2,0) AIC-BLOCK 

PIV-BLOCK \J J 
I 

BLOCKA 

RMS t--

J J 

BLKGEN 
BLOCK- INFO BLOCK-INFO 

r 

BLOCK 
SYMMETRY 
AIC-UNKNOWN 

r , 
RMST RECBLK 

REC-BLOCK 
J J 

SQBlK 

Figure 6.5 - Structure and Data Flow of (2.0) Overlay 

6.10 



( OVERLAY (3,0) I 
RMS RMS 

DCOMPO 
\ \j 

Decomposed 
Matrix 

Figure 6.6 - Structure and Data Flow of (3,0) Overlay 

6.11 



APPENDIX 6-A TREE STRUCTURE 

The tree structure diagram of the RMS module has been deleted from this 
document. It is, however, available on the installation tape. 

6-A.l 



APPENDIX 6-B 
RNS FUNCTIONAL DECOt~POSITION 

6-B.1 



Page Missing in 

Original Document 



A Initialization of Rt,IS Execution [Overlay (0,0)] (RI4S) 
A Initialize Printout (PRGBEG) 
B Initialization of SDMS for Execution (ISDMS) 

C Check Data Base(s) and Initialize Common Blocks 
[Overlay (1,0)] (RMSINT) 

A Open Data Base MEC (DBOPEN) 
B Get Data-Base-Header (ESGET) 
C Check Data-Base-Locati on of ~IAK, RMS, and Rl1ST (CHPADB) 
D Close Data Base MEC (DBCLOS) 

B Blocks the Unknown AIC Matrices [Overlay (2,0)] (BLOCKA) 
A Open Data Bases MAK and RMS (PAOPEN) 
B Generates Rt4S Blocking Information for Non-Updatable 

and Updatable Partitions (BLKGEN) 
A Determines Core Storage Available (REQFL) 
B Get Previous AIC Blocking Information from the RMS Data 

Base (ESGET) 
C Determine AIC Block Sizes 

A Calculates Maximum Block Size for [AIC] 
B Determines Size of All [AIC] Non-Update Blocks 
C Determines Size of All [AIC] Update Blocks 

D Calculate Restart Location and Total Problem Size 
E Generate [AIC] Blocking Information on RMS Data Base 

A Place [AIC] Blocking Information on RMS Data Base (ESPUT) 
B Replace [AIC] Blocking Information on RMS Data Base (ESREP) 

F Gets Previous [AIC] Blocking Information Frqm the RMS 
Data Base (ESGET) 

G Determines RHS Block Sizes (For RHS Module) 
A Calculates Maximum Block Size for RHS Blocks 

(For RHS r10dule) 
B Error Test (For RHS Module) 
C Determines Size of RHS Blocks (For RHS t40dule) 

C Performs Blocking of AIC Matrices 
A Blocks Non-Updatable (Upper-Left) Portion of AIC (BLOCK) 
B Blocks Updatable (Upper-Right) Portion of [AIC] (BLOCK) 
C Blocks Updatable (Lm'ler-Left) Portion of [AIC] (BLOCK) 
D Blocks Updatable (Lower-Right Portion of [AIC] (BLOCK) 
A Open Temporary Data Base RMST (PAOPEN) 
B Form Enough Rectangular Blocks to Form Submatrices (RECBLK) 

A Computes Number of Rectangles Per Block 
B Distributes the Number of Rows in Current Block 
C Gets a Matrix Row (ESGET) 
D Writes Rectangular Row Partition onto Data Base RI·1ST (ESPUTR) 

C Forrn Row of Square Blocks From the Rectangular Blocks (SQBLK) 

6-B.3 



A Read Blocked Column of Rectangular Matrices 
B Write Submatrix onto Data Base 
D Close and Return Data Base RMST (PACLOS) 

D Close Data Base NAK and RI'~S (PACLOS) 
C Decomposes the AlC Matrices [Overlay (3,U)] (DECOMPO) 

A Open Data Base RNS (PAOPEN) 
B Decomposes the Non-Updatable (Upper-Left) Portion of 

[AlC] (RMSD) 
C Decomposes the Updatable Portions of [AlC] (RMSD) 
D Write Data Base Header Data Set (ESPUT) 
E Close Data Base Rr~S (PACLOS) 

D Terminal Program Execution and Printout (PRGEND) 

6-B.4 



APPENDIX 6-C 
DATA BASE COMMUNICATION CHARTS 

The Data Base Communications Chart is presented in three forms. Each form is 
alphabetized by columns, from left to right. The first form has a column 
order of Data Base, Dataset Name, Map Name, Common Block, and 
Program/Subroutine. The second form has a column order of Data Base, Map 
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has 
a column order of Common Block, Data Base, r'lap Name, Dataset Name, and 
Program/Subroutine. Thus a person can get a cross reference on a data element 
by knowing either the Dataset Name, r~ap Name or Common Block name. 

6-C.l 



Page Missing in 

Original Document 



FIRST FORM 

DATA COMr~ON PROGRAM/ 
BASE DATA SET -NA~lE MAP NAME BLOCK SUBROUTINE 

MEC DATA-BASE-HEADER MECHDR /RUNIDS/ RMSINT 

MEC MACRO-OPTIONS UPDATE /BLKINF/ RMSINT 

I~AK AIC-UNKNOWN AICUNK /BLKINF/ BLOCKA 

MAK SYt~METRY SYM /BLKINF/ BLOCKA 

RMS AIC-BLOCK AICBLK Dynamic DCOMPO 

RMS BLOCK-INFO BUN /BLKINF/ BLKGEN 

RMS PIV-MAT PIV/·1AT Dynamic* OCaMPO 

RMST REC-BLOCK RECMAT o . * ynamlc BLOCK 

RMST REC-BLOCK RECMAT2 o . * ynamlc BLOCK 

SECOND-FORM 

DATA COMNON PROGRAM/ 
BASE ~lAP-NAME ilATA-SET -tJAII1E BLOCK SUBROUTINE 

MEC MECHDR DATA-BASE-HEADER /RmHDS/ RMSINT 

MEC UPDATE I-lACRO-OPTI ONS /BLKINF/ Rf'tISINT 

MAK AICUNK AIC-UNKNOWN /BLKINF/ BLOCKA 

MAK SYM SYl4METRY /BLKINF/ BLOCKA 

RMS AICBLK AIC-BLOCK Dynamic OCaMPO 

RMS SUN BLOCK-INFO /BLKINF/ BLKGEN 

R~1S PIVMAT PIV-~IAT o . * ynamlc DCOMPO 

RMST RECl4AT REC-BLOCK o . * ynamlc BLOCK 

RMST RECt1AT2 REC-BLOCK o . * ynamlc BLOCK 

6-C.3 



THIRD-FORI~ ----
COMf~ON DATA PROGRANj 
BLOCK BASE MAP-NAME DATA SET NA~lE SUBROUTINE ---
/RUNIDS/ MEC ~iECHDR DATA-BASE-HEADER RMSINT 

/BLKINF/ MEC UPDATE ~1ACRO-OPT IONS RMSINT 

/BLKINF/ MAK AICUNK AIC-UNKNOWN BLOCKA 

/BLKINF/ MAL Sn1 SnlNETRY BLOCKS 

Dynamic RMS AICBLK AIC-BLOCK DCOMPO 

/BLKINF/ RMS BUN BLOCK-INFO BLKGEN 

Dynamic* RMS PIVMAT PIV-NAT OCaMPO 

o . * ynamlc RSMT RECMAT REC-BLOCK BLOCK 

Dynamic* ~IST RECMAT2 REC-BLOCK BLOCK 

* Dynamic mapping of the dataset is used, thus requiring no common block 
storage. See Section 13 of this document. 

6-C.4 



APPENDIX 6-D MASTER DEFINITION 

The data base master definition listing of the DIP module has been deleted 
from this document. It is produced from the PAN AIR tape during installation. 

6-D.1 



APPENDIX 6-E 
RMS ERROR MESSAGES 

6-E.1 



Page Missing in 

Original Document 



The follow; ng ; sal; st of the RMS error d; agnost; c messages by overl ay. 

o RMS - OVERLAY (0,0) 
ERROR IN MODULE ERRMOD 

where, ERRt~OD is RMSINT, BLOCKA, or DCor·1PO. 

o R~ISINT - OVERLAY (1,0) 
******* NERR = IS COUNT OF FATAL ERRORS FROM RNSINT. 

o BLOCKA - OVERLAY (2,0) 
******** ERROR IN ~10DULE ERRMOD 

where, ERRMOD ;s BLKGEN, BLOCK(UL), BLOCK(UR), BLOCK(LL), or 
BLOCK(LR) 

o BLKGEN 

Note: UL designates Upper Left partition of AIC, 
UR designates Upper Right partition of AIC, 
LL designates Lower Left partition of AIC, 
LR designates Lower Right partition of AIC. 

******** FATAL ERROR IN BLKGEN ******** 
CORE NOT LARGE ENOUGH TO HOLD ONE COLUIvlN OF RIGHT -HAND-SIDE r~ATRIX. 

o DCOMPO - OVERLAY (3,0) 
1. ******** ABNOR~1AL ERROR EXIT FOR NON-UPDATE DECOMPOSITION RUN 

FOR AIC MATRIX IMAGE. 
~ 2. ******** ABNORMAL ERROR EXIT FOR UPDATE DECOMPOSITION RUN 

FOR AIC MATRIX IMAGE. 
3. ERROR CODE IS IERR 

WHERE, I~ -1 SCRATCH ARRAY IS NOT LONG ENOUGH TO PROCESS 
SOLUTION. 

= -2 IMPLIES FAILURE IN SDMS. 
= K IMPLIES SOLUTION APPEARS SINGULAR AT ROW K. 

All other RMS error diagnostics are written from the RMSLIB 
subprograms during execution. 

6-E.3 



7.0 RIGHT HAND SIDE (RHS) MODULE 

7.1 INTRODUCTION 

The primary function of the RHS module is to find the unknown singularity 
parameters Aun of the linear system 

[AIC] [~:n] = [RHS] 

from a decomposed AIC matrix, [AIC], the known singularity parameter, matrix, 
[An], and the right-hand-side constraints matrix, [RHS]. Related tasks 
include the generation of the right-hand-side matrix, [RHS], and the 
forward/backward substitition using the decomposed AIC matrix. 

The module also generates a permanent data base, RHS, for the minimal data 
generator module MDG. This data base contains all the known and unknown 
singularity parameters A. 

Two temporary data bases, RHSX and RMST, are used for internal data 
storage. 

7.2 RHS OVERVIEW 

7.2.1 Purpose of RHS 

The PAN AIR system was created to find the pressures, forces and 
velocities of a flow around an arbitrary body. The problem is reduced to 
finding the solution of a large linear system of equations: 

[AIC] [A] = [RHS] 

where [AIC] is a matrix of aerodynamic influence coefficients, [RHS] is a 
matrix of right-hand-side constraints and [A] is the singularity vector which 
may contain known and unknown parameters. 

The RHS module constructs the [RHS] matrix and uses forward and backward 
sUbstitution in conjunction with a decomposed [AIC] matrix from the RHS module 
to find the unknown portion of the singularity vector [A]' More detail of the 
process is given in Paragraph 7.3. 

7.2.2 RHS Input/Output Data 

7.2.2.1 Output 

Very little printed output is given by the module RHS. What does occur is 
error diagnostic information if an error is encountered. A message is printed 
at the end of execution indicating the number of errors, if any. 

7.2.3 Data Base Interfaces 

The module RHS creates one data base, RHS, for MDG and two temporary data 
bases, RHSX and RMST, for internal storage. The data bases from DIP, DQG, 
MEC, RMS and MAG are used for required input data. Figure 7.1 illustrates the 
relationships between RHS and all used data bases. 

7.1 



The input data from MEC, DIP, DQG, MAG and RMS are used by RHS. The MEC 
data base furnishes names, account numbers, status and related information for 
all the data bases. The DIP data base gives user option and constraint data. 
The DQG data base furnished constraint and global data. Finally, the RMS data 
base has available the decomposed AIC matrix. 

The two temporary data bases, RHSX and RMST, are used for internal 
storage. The data base RHSX stores the DIP constraint data while RMST 
contains the blocking information for the AlC matrix. 

The RHS permanent data base contains several sets of data. The symmetry 
information, the RHS right-hand-side matrix, the on-set flow vector for each 
control point, the inverse value of the partition of the AIC matrix 
corresponding to the known singularities and the values of all singularities 
in row or column format. 

7.3 MODULE DESCRIPTION 

The linear system of the PAN AIR problem can be placed into the parition 
form 

where [AIC nn ] is a diagonal submatrix corresponding to the known singularities 

[An]' [AIC un AIC uu ] is the partition of the aerodynamic influence coefficient 
matrix corresponding to the unknown singularites [A un ]' [RHSn] is the 
submatrix of right-hand-side constraints corresponding to the known 
singularities and [RHSu] is the submatrix of the right-hand-side constraints 
corresponding to the unknown singularities. With minimal effort, the linear 
system can be put into the form: 

[AIC nn ] [An] [RHSn] 

[AIC uu ] [Au] = [RHSu] - [AIC un ] [An] 

It is this latter form with which RHS is concerned. 

7.3.1 Overall Structure 

(7.3.1) 

(7.3.2) 

Figure 7.2 illustrates the structure of the module RHS. The top level 
overlay (0,0) RHSPRG initializes the data bases and controls access to the 
other five overlays. The functional decomposition of all the overlays and 
their subprograms is given in Appendix 7-B. See also Appendix L of the Theory 
Document (Reference 1) for theoretical details. 

7.2 



7.3.2 Overlay Descriptions 

7.3.2.1 OPENDB Overlay (1,0) 

The program initializes the data bases used by RHS and creates the data 
base maps which set up correspondence between the data base variables and the 
program variables. Figure 7.3 illustrates the overall program executiori of 
OPENDB. 

The DIP constraints data is also read from its data base and converted to 
a form usable by RHS. The restructured data is placed on the temporary data 
base RHSX. 

7.3.2.2 PBCAD Overlay (2,0) 

The primary purpose of the second overlay is to compute the 
right-hand-side constraint matrix, [RHS u] (the right-hand-side of equation 
(5.7.26) of the Theory Document, Reference 1) corresponding to unknown 
singularities AU. In this process, the onset flows are calculated. The data 
is then saved on the RHS permanent data base. Figure 7.4 illustrates the 
overall data transfer. 

7.3.2.3 RHSC Overlay (3,0) 

The thi rd overl ay serves as a controll er for three sub-overl ays, KNOWN, 
TRANSF and KWNCTR. Figure 7.5 shoHs the overall execution process of the 
three sub-overlays. 

7.3.2.4 KNmm Overlay (3,1) 

The calculation of the right-hand-side constraint matrix [RHSn] (which 
constitute the extreme right-most terms in equation (5.7.17) of the Theory 
Document (Reference 1)) for the known singularity parameters occurs in overlay 
(3,1). It also finds the known singularities from the known diagonal matrix, 
[01] occurring in the same equation. The data is stored on the RHS data base. 

7.3.2.5 TRANSF Overlay (3,2) 

The second level overlay (3,2) symmetrizes and transforms the known 
singularities from row to column format. The data is stored on the RHS data 
base. 

7.3.2.6 KWtJCTR Overlay (3,3) 

The second level overlay (3,3) finds the right-hand-side constraint matrix 
[RHSu]' for the unknown singularities and then subtracts off the contribution 
[AICun ] due to the known singularities. That is, it computes the complete 
right-hand-side of equation (5.7.17) of the Theory Document (Reference 1). 

7.3 



7.3.2.7 RHSOLV Overlay (4,0) 

The fourth overlay solves the system of equations (7.3.2) for the unknown 
singularities An using forward and backward substitution on the decomposed 
matrix [AICu]' Figure 7.6 indicates the interaction between the program and 
the affected data bases. 

7.3.2.8 RHSD Overlay (5,0) 

The last overlay gives a report on execution, either successful or 
unsuccessful. Figure 7.7 indicates the interaction between the program and 
data base. 

7.3.3 RHS Data Bases 

The master definitions of the data bases RHS and RHSX are given in 
Appendix 7-0. 

7.3.4 RHS Interfaces 

Figure 7.1 summarizes the internal and external data interfaces between 
modules and their data bases. 

The interrelationship (functional decomposition) between all overlays and 
subroutines is given in Appendix 7-B. 

7.3.4.1 Internal Interfaces 

The RHSX temporary data base is used as a scratch file for the 
right-hand-sides constraint and singularity data. 

7.3.4.2 External Interfaces 

The input data is obtained from the MEC, DIP, DQG, MAK and RMS data 
bases. The MEC data base furnishes data base names, accounts, status and 
other related information for all data bases. The DIP data base introduces 
the user options affecting RHS and the constraint data used for constructing 
the right-hand-side constraints. The DQG data base supplies control point 
data. The MAK data base provides the unknown singularity portion of the 
aerodynamic influence coefficient matrix. Finally, the Rr~S data base provides 
the decomposed known singularity portion of the aerodynamic influence 
coefficient matrix. 

The output data, consisting of the right-hand-side constraints and 
singularity data, is stored on the RHS data base. This data is used by the 
MDG module. 

7.3.5 Data Flow 

The execution of RHS has already been discussed to some extent in 
Paragraph 7.1 and Figure 7.1. A somewhat different picture to the exact 
sequence is given in Figures 7.2 through 7.6. With the information given 
previously, the figures should be self explanatory. 

7.4 



7.4 LOWER LEVEL FUNCTIONS 

7.4.1 Functional Decomposition 

See Appendix 7-B for a description of the RHS decomposition. 

7.4.2 Subroutine Descriptions 

BLKGEN 
Generates RHS blocking information for non-updateable and updateable 
partitions. 

BLOCK 
------Converts a matrix stored by rows into a matrix stored by blocks. 

CENTER 

CNSTR 

Arranges the looping sequence for processing center control points. 
See Appendix 7-E. 

------Initializes the constraints conditions of all the different RHS 
solutions for general boundary conditions. 

CNSTRT 
Initializes the constraints conditions of all the different RHS 
solutions for boundary conditions which define a known singularity 
parameter. 

COLl~NZ 
Converts RHS solution matrix LAMBDAS from blocks to columns of 
non-updateable and updateable singularity parameters. 

CPINFO 
Initializes the control point data, including boundary conditions, 
image locations and normals. 

DIPCTS 
The constraints data in DIP is in the user input format. RHS 
requires the constraint conditions for each control point. This 
subroutine pre-processes the DIP data and stores the results on RHSX 
data base. 

DIPFUL 

EDGE 

Reads the constraint data, that is, the coefficients of equation 
(H.3.25) of the Theory Document (Reference I), from the DIP data base 
into a holding array and orders them according to the control 
points. See Appendix 7-D. 

Arranges the looping sequence for processing edge control points. 
See Appendix 7-D. 

7.5 



7.6 

~1APS 
-- Defines all the required SDMS maps. 

NETSP 
--Gets netwk-spec and special-points datasets from DQG. 

NEWCST 
Transfers new constraints data from a holding array to the output 
array. See Appendix 7-D. 

PRNCST 

PREP 

Adds the most recently computed constraints data to the RHSX data 
set. See Appendix 7-D. 

Defines constraints dataset, the closure boundary condition edge and 
the constraints that are required from DIP. See Appendix 7-D. 

RECBLK 
Reads a matrix stored by rows and writes it in rectangular blocks. 

RHSVEC 
Generates the onset flow vector and computes the right-hand-side from 
the user-input parameters. It is also used in MAG.C for generating 
right-hand-side vectors for known singularities. RHSVEC computes the 
left-hand-side of equation (H.3.25) of the Theory Document (Reference 
1). 

SLNDAT 
Initializes /NUM/ and /SYM/ and generates solution-data. 

SNGINF 
Initializes the information on the known singualrity, its image 
locations and normals. 

SPECIL 

SQBLK 

Arranges the looping sequence for processing special control points. 
See Appendix 7-D. 

--Reads a matrix stored by rectangular blocks and writes it by square 
blocks. 

SY~1KWN 
Symmetrizes known singularities and forms partial columns of the 
symmetrized singularities. 



MEC 

DIP 

DQG 

MAG 

RMS 

RHS 

6 

CD - Data Base Directory Infonnation 
® - Input Options and Constraints 
G:>- Global Data and Constraints 

® 

G)- Partition of AIC Matri xfor Unknown Singularities 
® - Decomposed AIC Matrix 
@- DIP Constraints Data 
(i) - Blocking Infonnation for the AIC Matrix 
@- The Known and Unknown Sigularities for the MDG Module 

Figure 7.1 - Data Bas~ Relationships 

MDG 

7.7 



~ MEC::::::: < DIP ~ i<: DQG ;: I<:: MAK :> 
Control 

Constant Point AIC DB Info 

RHS TOP LEVEL 
RHSPRG 

OVERLAY (0,0) 

Data Data ....... __ ........ ........ ........ Data..." ....... ...... 
'~ ____ ~'~ __ ~+T~ ____ ~' 

Initializes 
and Call Other 

Overlays 

+ 
OVERLAY (1,0) 

OPENDB 

-Open Data 
Bases 

-Process DIP 
Constraint 
Data 

r< RMS ~ 
DIP Con
straint 

, . 
OVERLAY (2,0) 

PBC AD 

Right Hand 
Side 

Constraints 
(Unknown) 

-

I 

+ 
OVERLAY (3,0) 

RHSC 

Controls 
Sub-Overlays 

• 
OVERLAY (4,0) 

RHSOLV 

Finds 
r+ Unknown 

Singularities .... 

~RMS :> <: MAK ;;; 
AIC 

(Known) 

Ut:=1I1-

posed 
AIC 

....... Matri~ 
....... --

....... Data __ t 
-L-__ ~~----~~, t 

OVERLAY (3,1) 
KNOWN 

Right Hand 
Side 

Constraints 
( Known) 

Overlay (3,2) 
TRANSF 

Synmetrizes 
Unknown 

Singularities 

OVERLAY (3,3) 
KWNCTR 

Calculates 
the Known 

Singularities 

~ RHS ;:; 
--~~!NGU~~~~~~~----------~ 

(KNOWN & 
~----------------~~~KNO~\~------------------------~ 

T 
MDG 

7.8 Figure 7.2 - Structure and Data Flow of RHS 

OVERLAY (5,0) 
RHSD 

Sunmary 
Execution 

Data 

Execution 
_ Status J 

-



-

,r--

OPENDB 

Overlay(l,O) 

Subroutine 

MAPS 

f' DQG 
, 

GLOBAL I 
\J J 
I' DIP 1 

GLOBAL 
V J 

I' "' MAK 

\J 
SYMMETRY 

J 

" DIP: 
, 

Constraints t---
\J Data J 

" 
, 

SDMS 

\J 
MAPS 

J 

Subroutine 

SLNDAT 

Subroutine 
DIPeTS, 
Constraints t-----.I 
Transcriber 

r RHS 

SOLUTION-DATA 
\J 

"RHSX: , 
Constraints 1 

\J Constraints' J 

Figure 7.3 - Structure and Data Flow for Overlay (1,0) 

, 
J 

7.9 



7.10 

RHSX: 
CONSTRAINTS 1 
CONSTRAINTS 

MAK: 

AlC Data 

PBCAD 

Overlay (2,0) 

RHS: 
RHS-UNKNOWN 
ONSET-FLOW 

Figure 7.4 - Structure and Data Flow for Overlay (2,0) 



RHSC 
Overlay (3,0) 

RHSX 

Cons tra i nts 1 
Constraints KNOWN 

Overlay (3,1) 
MAK: 

COLMAP & 
OWMAP-lNVERSE 

lRANSF 

Overlay (3,2) 

RHS: 
RHS-UNKNOWN 

MAK: 

AlC-KNOWN 

KWNCTR 

Overlay (3,3) 

RHS: 
AlC-DIAGONAL 

RHS-KNOWN 

RMS: 

RHS-UPDATED 

Figure 7.5 - Structure and Data Flow for Overlay (3,0) 

7.11 



7.12 

RHS: 
RHS - UPDATED 

PIV-MAT 

RMS: 

AIC-BLOCKS 

RH SOLV 

Overlay (4,0) 

RHS: 
BLOCK-INFO 

LAM-MAT 
LAMBDA-KNOWN 

Figure 7.6 - Structure and Data Flow for Overlay (4,0) 



RHSD " RHS: 
, 

Overlay (5,0) DATA-BASE-
\j HEADER J 

Figure 7.7 - Structure and Data Flow for Overlay (5,0) 

7.13 



"r" 

APPENDIX 7-A TREE STRUCTURE OF RHS 

The tree structure diagram of the RMS module has been deleted from this 
document. It is, however, available on the installation tape. 

7-A.l 



APPENDIX 7-8 FUNCTIONAL DECOMPOSITION 

The functional decomposition of the RHS module is presented here. The 
decomposition labels given in the order of their execution and therefore may 
not be alphabetic. 

7-B.1 



Page Missing in 

Original Document 



Open data bases and initialize (OPENDB) [OVERLAY (l,O)J 

A. Check the condition of the data bases and generate SDMS maps (MAPS) 
A. Open MEC data base and define SDMS maps for MEC 

(DBOPEN/DSNAP /SVr~AP /ENDMAP) 
B. Initialize /RUNIDS/ (ESGET) 
C. Check data base conditions (CHPADB) 
D. Close MEC data base (DBCLOS) 
E. Open DQG data base and define SDMS maps 

(PAOPEN/DSMAP /SVMAP /DVr4AP /ENDMAP) 
F. Open MAK data base and define SDf4S maps 

(PAOPEN/DSMAP /SVMAP /DV~IAP /ENDMAP) 
G. Open RHS and RHSX data bases and define SDMS maps 

(PAOPEN/DS~IAP /SVr'IAP /DVr,IAP /ENDMAP) 
H. Open DIP data base and define SDMS maps 

(PAOPEN/DS~1AP /SVMAP /DVrv1AP /ENDt·IAP) 

B. Initialize global data and generate solution data set (SLNDAT) 
A. Get global data set (ESGET) 
B. Initialize /NUI4/ and /SYN/ (ESGET/CAB) 
C. Get solution data set from DIP (ESGET) 
D. Generate entry to RHS solution data (ESPOR) 

C. Pre-process constraints data (DIPCTS) 
A. Get network data from DIP (ESGET) 
B. . Get network-spec data set from DIP (ESGET) 
C. Initialize constraints value 
D. Write to constraints -1 data set (ESPOR) 
E. Write to constraints -2 data set (ESPOR) 
F. Get DQG network-spec and special points data sets (ESGET) 
G. Get networks bulk data control data set from DIP (ESGET) 
H. Process full constraints transcriber (DIPFUL) 

A. Pre-process DIP constraints (PREP) 
A. Write to constraints -1 data set (ESPOR) 
B. Initialize edge condition (ZERO) 
C. Define a point on the edge 
D. Get DQG boundary condition data set (ESGET) 
E. Initialize edge condition to closure 
F. Initialize mapping information (ZERO) 
G. Define mapping information (ZERO) 

B. Define term 
C. Initialize smear condition 
D. Define column number 
E. Get DIP constraints data (ESGET) 
F. Process center control points (CENTER) 

A. Convert to five lattice index 
B. Define solution - ID 
C. Process constraints (PRCNST) 

A. Define boundary condition number 
B. Zero the constraints array (ZERO) 
C. Get the current constraints -2 data set 

(ESGET) 

7-8.3 



7-B.4 

D. Get new constraints data (NEWCST) 
A. Define length of constraint term 
B. Define constraints value 
C. Set constraints array 
D. Get tangent vector from DQG boundary 

condition data set (ESGET) 
E. Replace the current constraints -2 data set 

(ESPOR) 
G. Process edge control points (EDGE) 

A. Define solution - ID 
B. Define the number of control points involved 
C. Define fine lattice indices 
D. Process constraints (PRCNST) 

H. Process special control points (SPECIL) 
A. Define lattice indices 
B. Define solution - ID 
C. Process constraints (PRCNST) 

A. Define boundary condition number 
B. Zero the constraints ARRAY 
C. Get the current constraints -2 data set 

(ESGET) 
D. Get new constaints data (NEWCST) 

A. Define length of constraint term 
B. Define constraints value 
C. Set constraints array 
D. Get tangent vector from DQG boundary 

condition data set (ESGET) 
E. Replace the current constraints -2 data set 

(ESPOR) 
G. Process edge control points (EDGE) 

A. Define solution - 10 
B. Define the number of control points involved 
C. Define fine lattice indices 
D. Process constraints (PRCNST) 

H. Process special control points (SPECIL) 
A. Define lattice indices 
B. Define solution - 10 
C. Process constraints (PRCNST) 



Produce boundary condition analysis data corresponding to unknown singular
ities (PBCAD) [Overlay (2,0)J 

A. Get velocity vector information and number of right-hand-sides (ESGET) 

B. Define partition type and start and end indices of control points in 
the partition 

C. Initialize control point and boundary condition information (CPINFO) 
A. Get row map data set (ESGET) 
B. Get boundary condition spec data set (ESGET) 
C. Calculate image control point and normal vector (IMAGE) 
E. Get B-pointer data set 

D. Zero the RHS solution (ZERO) 

E. Initialize constraints (CNSTR) 
A. Get constraints 1 data set (ESGET) 
B. Define new lattice indices 
C. Set lattice indices as default 
D. Get constraints 2 data set (ESGET) 

F. Initialize constriants 

G. Compute right-hand-side vector (RHSVEC) 
A. Calculate onset flo'w 
B. Calculate right-hand-side 
C. Set right-hand-side to zero 

H. Store local onset flow (ESPOR) 

J. Write to RHS-unknown data set (ESPOR) 

7-8.5 



Solve for known singularities (KNOWN) [Overlay (3,1)] 

A. Initialize 
A. Get velocity vector information and number of RHS (ESGET) 
B. Start VARDIM (STARTR) 
C. Set up blank common storage for known-AIC diagonal (INITIR) 

B. Define partition type and the start and end indices of known 
singularities in the partition 

C. Initialize singularity and boundary condition information (SNGINF) 
A. Get colmap data set (ESGET) 
B. Get singularity-spec data set and initialize B-pointer (ESGET) 
C. Convert panel indices to fine grid lattice indices 
D. Get boundary-condition-spec data set (ESGET) 
E. Calculate image normal and coordiates (IMAGE) 

D. Initialize constraint information (CNSTRT) 
A. Get constraints -1 data set (ESGET) 
B. Define new lattice indices 
C. Set lattice indices as default 
D. Get constraints -2 data set (ESGET) 

E. Initialize the constraint conditions (ZERO) 

F. Compute right-hand-side vector (RHSVEC) 
A. Calculate onset flow 
B. Calculate right-hand-side 
C. Set right-hand-side to zero 

H. Generate entry to RHS-KUmm data set (ESPOR) 

I. Solve for known singularities (CAD) 

J. Generate entry to SING-KNOWN data set (ESPOR) 

K. Accumulate to AIC-diagonal 

L. Enter into AIC-diagonal data set (ESPOR) 

t·1. Delete blank common storage (DELETR) 

7-B.6 



Transform rows of known singularities into columns and symmetrize (TRANSF) 
[Overl ay (3,2)] 

A. Start VARDIM (STARTR) 

B. Find out the core memory available and the number of rows that can be 
fit in core (REQFL) 

C. Set up blank common storage (INITIR) 

D. Define partition type 

E. Symmetrize the known singularities and form partial columns (SYMKWN) 
A. Initialize partition information 
B. Zero the matrix (ZERO) 
C. Read in a row of SING-KNOWN data set (ESGET) 
D. Increment-counter 
E. Transfer solution to the symmetrized matrix (XFERA) 
F. Symmetrize the known singularities (CAPDB) 
G. Form partial column of known singularities 
H. Generate entry to lambda-part data set (DESPUT) 

F. Delete blank common storage (DELETR) 

G. Set up blank common for a column of known singularities (INITIR) 

H. Initialize partition information and counter 

I. Read a partition of lambda-part data set (DESGET) 

J. Increment counter 

K. Generate entry to lambda-known data set (ESPOR) 

L. Delete blank common storage (DELETR) 

7-B.7 



Update and generate RHS with contribution from known singularities (KWNCTR) 
[Overlay (3,3)] 

A. Define SDl4S maps for matrix multiplication (DS~lAP/SVMAP/DVMAP/END~1AP) 

B. Start VARDm (STARTR) 

C. Define partition type 

D. Define map information 

E. Generate known singu1aritiy contribution (MULTI) 

F. Define the row number in each partition 

G. Get accumulated contribution to RHS( ESGET) 

H. Form the row of known singularity contribution (ESGET) 
I. Update RHS sol uti on vector (CAMB) 

J. Generate entry to data set (ESPOR) 

K. Close RHSX data base (PACLOS) 

7-B.8 



Solve for right-hand-side (RHSOLV) [Overlay (4,O)] 

A. Open RMS and RHS data bases and define maps (PAOPEN/DSMAP/ 
Dvr~AP /ENDt~AP) 

B. Read the right-hand-side matrix information (ESGET) 

C. Determine block sizes for RHS (BLKGEN) 
A. Determine core storage available (REQFL) 
B. Get previous AIC blocking info from RMS data base (ESGET) 
C. Determine AIC block size 
D. Calculate restart location and total problem size 
E. Place AIC blocking info on RMS data base (ESPUT/ESREP) 
G. Determine RHS block sizes 

D. Writ~ blocking information onto RHS data base (ESPOR) 

E. Open temporary data base RHSX and define map for blocked RHS 
(PAOPEN/DSMAP /DVr4AP /ENDI~AP) 

F. Perform the blocking of RHS (BLOCK) 
A. Open temporary data base RMST and define maps 

(PAOPEN/DSMAP/DVMAP/ENDMAP) 
B. Form rectangular subblocks (RECBLK) 

A. Compute number of rectangles per block 
B. Distribute the number of rows in current block 
C. Get a matrix row (£SGET) 
D. Write rectangular row partition onto data base RMST (ESPOR) 

C. Form row of blocks (SQBLK) 
A. Read blocked column of rectangular matrix (ESGET) 
B. Write submatrix onto data base (DESPUT/DESREP) 

G. Solve the system of equations via forward and backward substitution 
(RMSFB) 

H. Convert the blocked solution matrix to columns (COLMNZ) 
A. Read a block and append to array containing column of blocks 

(DESGET) 
B. Write a column of non-updateable lambdas (ESPUT) 
C. Read a block and append to array (DESGET) 
D. l~rite a column of updateable lambdas (ESPOR) 

I. Clos~ and return data base RHSX (PACLOS) 

J. Close RMST data base (PACLOS) 

7-B.9 



Close data bases (RHSE) [Overlay (5,0)] 

A. Set condition parameter of RHS data base to 'COMPLETE ' , if successful 
execution and to I FATAL I otherwise 

B. \~rite I DATA-BASE-HEADER I dataset (ESPOR) 

C. Close DIP, DQG, MAK and RHS data bases (PACLOS) 

7-B.1O 



~ 
I 

APPENDIX 7-C RHS DATA BASE COMMUNICATION CHART 

The Data Base Communications Chart is presented here in three forms. Each 
form is alphabetized by columns, from left to right. The first form has a 
column order of Data Base, Dataset Name, Map Name, Common Block, and 
Program/Subroutine. The second form has a column order of Data Base, Map 
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has 
a column order of Common Block, Data Base, Map Name, Dataset Name, and 
Program/Subroutine. Thus a person can get a cross reference on a data element 
by knowing either the Dataset Name, Map Name or Common Block name. 

7-C.l 



Page Missing in 

Original Document 



FIRST FORM 

Cor~MON PROGRAM/ 
DATA BASE DATASET -NA~lE MAP-NAME BLOCK* SUBROUTINE 

DIP CLOS-COND DIPCLS Dynamic MAPS 
DIP CLOS-COND DIPCLS /FILDIP/ MAPS 
DIP COEFF-GEN-BC DIPGBC Dynamic tvlAPS 
DIP COEFF-GEN-BC DIPGBC /FILDIP/ MAPS 
DIP GLOBAL NETDATA Dynamic ivlAPS 
DIP GLOBAL SOLDATA Dynamic f4APS 
DIP LOCAL-FLOW DIPLFW Dynamic MAPS 
DIP LOCAL-FLOW DIPLFW /FILDIP/ MAPS 
DIP NETWK-BDC NETWKBD Dynamic MAPS 
DIP NETWK-SPEC NETWKSP Dynamic t>'IAPS 
DIP SPEC-FLOW DIPSFW Dynamic MAPS 
DIP SPEC-FLOW DIPSFW /FILDIP/ MAPS 

DQG B-POINTER BPOINT Dynamic MAPS 
DQG BNDRY-CONDN-SPEC EnJDRY Dynamic MAPS 
DQG BNDRY-CONDN-SPEC DIPTNG Dynamic i-1APS 
DQG GLOBAL GLOBAL /NUM/ MAPS 
DQG GLOBAL GLOBAL /sn1j MAPS 
DQG GLOBAL ROTATE Dynamic MAPS 
DQG IIETWK-SPEC NETWK Dynamic t'IAPS 
DQG SINGULARITY-SPEC . SNGSPC Dynamic MAPS 
DQG SPECIAL-POINTS SPECPT Dynamic NAPS 

MAK AIC-KNOWN AICKWN Dynamic MAPS 
~lAK AIC-KNOUN MATRXA Dynamic KWNCTR 
MAK AIC-KNOWN MATRXA ICPUP,ISNGUP,IPOS KWNCTR 
NAK COLMAP COLl Dynamic MAPS 
NAK ROWMAP ROWl Dynamic MAPS 
MAK ROW~1AP- INVERSE Ro\~INl Dynamic MAPS 
IvlAK SYMMETRY Sym Dynamic MAPS 
MAK SYMMETRY SYfvll /NUrv MAPS 
MAK SYMMETRY SYNl /SY~I/ 14APS 

I~EC DATA-BASE-HEADER NECHED /RUNIDS/ I-lAPS 

RHS AIC-DIAGONAL AICDIA Dynamic MAPS 
RHS DATA-BASE-HEADER RHSHED Dynamic MAPS 
RHS LAMBDA-KNOWN U'1BKWN Dynamic tvlAPS 
RHS LAMBDA-KNOWN t4ATRXB Dynamic K~JNCTR 
RHS LAMBDA-KNOWN tMTRXB IROWUP ,JPOS KlmCTR 
RUS LAt~-MAT LAMBLIC Dynamic RHSOLV 
RHS LAM-t<1AT LAMBLIC Ii'IAG RHSOLV 
RHS LAr4BDA-UNKNOWN LAMUNK IMAG RHSOLV 
RHS ONSET-FLOW ONSET Dynamic nAPS 
RHS PIV-MAT PIVMAT IPOS RHSOLV 
RHS RHS-UNKNOWN RHSUNK Dynamic t."APS 
RHS RHS-UPDATED RHSUPT Dynamic t-1APS 
RIiS RHS-KNOWN RHSKWN Dynamic JYIAPS 
RHS SINE-KNOWN SNGKWN Dynamic r·1APS 
RHS SOLUTION-DATA SOLDAT Dynamic MAPS 

7-C.3 



~ 

COMMON PROGRAM/ 
DATA BASE DATASET-NAME MAP-NAME BLOCK* SUBROUTINE 

RHS BLOCK-INFO BLRHS /BLKINF/ RHSOLV 
RHS BLOCK-INFO BLRHS NAICS RHSOLV 
RHS PIV-I'1AT PIvr~AT Dynamic RHSOLV 
RHS RHS-UNKNOWN RHSUNKX Dynamic RHSOLV 
RHS RHS-UlJKNOWN RHSUNKX Ifv1AGE, !UP RHSOLV 
RHS SOLUTION-DATA RHSIZE /CPOS/ RHSOLV 
RHS SOLUTION-DATA RHSIZE NRHS RHSOLV 

RHSX CONSTRAINTS! CNSTR! Dynamic NAPS 
RHSX CUNSTRAINTS2 CNSTIU Dynamic MAPS 
RHSX LAMBDA-PART LMDPRT Dynamic I·IAPS 
RHSX NATRIX-C MATRXC Dynamic 14APS 
RHSX RHS-MATRIX RHSBLIC Dynamic MAPS 

RI1S AIC-BLOCKS AICBLK Dynamic RHSOLV 
RMS AIC-BLOCKS AICBLK IPOS RHSOLV 
RMS BLOCK-INFO BUN F. P. BLKGEN 
RMS REC-BLOCK RECNAT Dynamic BLOCK 
RI4S REC-BLOCK REC~IAT2 Dynamic BLOCK 

7-C.4 



SECOND FORM 

COMNON PROGRAM/ 
DATA BASE MAP-NA~lE DATASET-NAME BLOCK* SUBROUTINE 

DIP DIPCLS CLOS-COND Dynamic MAPS 
DIP DIPCLS CLOS-COND /FILDIP/ 14APS 
DIP DIPGBC COEFF-GEN-oC Dynamic 1-1APS 
DIP DIPGBC COEFF-GEN-BC /FILDIP/ HAPS 
DIP DIPLFW LOCAL-FLOW Dynamic 1·1APS 
DIP DIPLFW LOCAL-FLOW /FILDIP / NAPS 
DIP DIPSFW SPEC-FLOW Dynamic MAPS 
DIP DIPSFW SPEC-FLOW /FILDIP/ I'IAPS 
DIP NETDATA GLOBAL Dynamic MAPS 
DIP NETWKBD NETHK-BDC Dynamic NAPS 
DIP NETWKSP NETWK-SPEC Dynamic 14APS 
DIP SOLDATA GLOBAL Dynamic MAPS 

DOG BNDRY BNDRY -CONDi.J-SPEC Dynamic 1·IAPS 
DOG BPOINT B-POINTER Dynamic MAPS 
DOG DIPTNG BNDRY-CONDN-SPEC Dynamic 14APS 
DQG GLOBAL GLOBAL /NUM/ 1·1APS 
DOG GLOBAL GLOBAL /SY~1/ MAPS 
DOG NETWK NETWK-SPEC Dynamic MAPS 
DOG ROTATE GLOBAL Dynamic 14APS 
DOG SNGSPC SINGULARITY-SPEC Dynamic MAPS 
DOG SPECPT SPECIAL-POINTS Dynamic ~1APS 

MAK AICKWN AIC-KNOWN Dynamic ~lAPS 
jvlAK COLl COLNAP Dynamic f1APS 
IflAK MATRXA AIC-KNOWN Dynamic KWNCTR 
MAK 14ATRXA AIC-KNOWN ICPUP,ISNGUP,IPOS KWNCTR 
MAK ROWINl ROWI,IAP- INVERSE Dynamic MAPS 
MAK ROWl ROWI,IAP Dynamic j.1APS 
MAK SYMl SYf4~lETRY Dynamic MAPS 
MAK SYMl SYMNETRY /NUM/ l,lAPS 
MAK SYMl SYMtwlETRY /SYM/ 1·1APS 

MEC MECHED DATA-BASE-HEADER /RUNIDS/ MAPS 

RHS AICDIA AIC-DIAGONAL Dynamic t1APS 
RHS BLRHS BLOCK-INFO /BLKINF/ RHSOLV 
RHS BLRHS BLOCK-INFO NAICS RHSOLV 
RHS LANBLIC LAf4-r4AT Dynamic RHSOLV 
RHS LAI4BLIC LAM-MAT INAG RHSOLV 
RHS LAI4UNK LAI4BDA-UIJKNOWtJ IrItAG RHSOLV 
RHS Ll4BKWN LAHBDA-KNOWN Dynamic NAPS 
RHS MATRXB LAMBDA-KNUWN Dynamic KWNCTR 
RHS MATRXB LAI4BDA-KNOWN IROWUP,JPOS KWNCTR 
RHS ONSET ONSET-FLOW Dynamic ~lAPS 
RHS PIVMAT PIV-MAT Dynamic RHSOLV 
RHS PIVf.lAT PIV-NAT IPOS RHSOLV 
RHS RHSHED DATA-SASE-HEADER Dynamic MAPS 
RHS RHSIZE SOLUTION-DATA /CPOS/ RHSOLV 
RHS RHSIZE SOLUTION-DATA NRHS RHSOLV 

7-C.5 



COMMON PROGRAM/ ~, 

DATA BASE ~1AP-NAME DATASET-NAME BLOCK* SUBROUTINE 

RHS RHSKWN RHS-KNOWN Dynamic NAPS 
RHS RHSUNK RHS-UNKNOWN Dynamic MAPS 
RHS RHSUNKX RHS-UNKNOWN Dynamic RHSOLV 
RHS RHSUNKX RHS-UNKNOWN IMAGE. !UP RHSOLV 
RHS RHSUPT RHS-UPDATED Dynamic t-1APS 
RHS SNGKWN SINE-KNOWN Dynamic NAPS 
RHS SOLDAT SOLUTION-DATA Dynamic MAPS 

RHSX CNSTRl CONSTRAINTSl Dynamic ~lAPS 

RHSX CNSTRl CONSTRAIIHS2 Dynamic I·IAPS 
RHSX U~DPRT LAfv1BDA-PART Dynamic f4APS 
RHSX MATRXC MATRIX-C Dynamic MAPS 
RHSX RHSBLIC RHS-f1ATRIX Dynamic MAPS 

RfvlS AICBLK AIC-BLOCKS Dynamic RHSOLV 
RMS AICBLK AIC-BLOCKS IPOS RHSOLV 
Rl1S BUN BLOCK-INFO F. P. BLKGEN 
RMS RECMAT REC-BLOCK Dynamic BLOCK 
RMS RECMAT2 REC-BLOCK Dynamic BLOCK 

7-C.6 



-- ~ .-~--

r THIRD FORH 

COMMON DATA PROGRAM/ 
BLOCK* BASE ftIAP-NAftIE DATASET-NANE SUBROUTINE 

Dynamic DIP DIPCLS CLOS-COND ~1APS 
Dynamic DIP DIPGBC COEFF-GEN-BC NAPS 
Dynamic DIP DIPLFW LOCAL-FLOW ~fAPS 
DIPamic DIP DIPSFW SPEC-FLOW t4APS 
Dynamic DIP NETDATA GLOBAL MAPS 
Dynamic DIP NETWKBD NETWK-BDC MAPS 
Dynamic DIP NETWKSP t~ETWK-SPEC MAPS 
Dynamic DIP SOLDATA GLOBAL r~APS 
/FILDIP/ DIP OIPCLS CLOS-COND MAPS 
/FILDIP/ DIP DIPGBC COEFF-GEN-BC MAPS 
/FILDIP/ DIP DIPLFW LOCAL-FLOW ~tAPS 
/FILDIP/ DIP DIPSFW SPEC-FLOW MAPS 

Dynamic DQG BNDRY BNDRY-CONDN-SPEC MAPS 
Dynamic DQG BPOINT B-POINTER MAPS 
Dynamic DQG DIPTNG BNDRY-CONDN-SPEC MAPS 
Dynamic DQG NETWK NETWK-SPEC MAPS 
Dynamic DQG ROTATE GLOBAL MAPS 
Dynamic DQG SNGSPC SINGULARITY-SPEC MAPS 
Dynamic DQG SPECPT SPECIAL-POINTS t4APS 
/NUM/ DQG GLOBAL GLOBAL MAPS 
/SYl4/ DQG GLOBAL GLOBAL t-IAPS 

Dynamic MAK AICKWN AIC-KNOWN MAPS 
Dynamic MAK COLl COLMAP MAPS 
Dynamic MAl< MATRXA AIC-KNOWN KWNCTR 
Dynamic MAK ROWINl ROWMAP-INVERSE MAPS 
Dynamic MAK ROWl ROWt~AP MAPS 
Dynamic t4AK SYMl SYMMETRY 1·1APS 
ICPUP,ISNGUP,IPOS MAK MATRXA AIC-KNOWN KWNCTR 
/NUrv MAK SYMl SYMMETRY MAPS 
/SYM/ MAK SYMl SYMMETRY MAPS 

/RUNIDS/ MEC MECHED DATA-BASE-HEADER MAPS 

Dynamic RHS AICDIA AIC-DIAGONAL fvlAPS 
Dynamic RHS LAr~BLIC LAM-~1AT RHSOLV 
Dynamic RHS LNBKWN LAMBDA-KNOWN MAPS 
Dynamic RHS MATRXB LAf.lBDA-KNOWN KWNCTR 
Dynamic RHS ONSET ONSET-FLOW MAPS 
Dynamic RHS RHSHED DATA-BASE-HEADER 11APS 
Dynamic RHS RHSKWN RHS-KNOWN NAPS 
Dynalil;c RHS RHSUNK RHS-UNKNOWN r~APS 
Dynamic RHS RHSUPT RHS-UPDATED MAPS 
Dynamic RHS SNGKWN SINE-KNOWN MAPS 
Dynamic RHS SOLDAT SOLUTION-DATA MAPS 
mAG RHS LAiVlBLIC LAM-MAT RHSOLV 
IMAG RHS LAf.1UNK LAMBDA-UNKNOWN RHSOLV 
IPOS RHS PIVMAT PIV-MAT RHSOLV 

7-C.7 



CQI·lt10tJ DATA PROGRAjvJf 
BLOCK* BASE HAP -NAr1E DATASET -NArlE SUBROUTINE 

IROHUP,JPOS RHS ,,1ATRXB LAIIBDA-KNOIm K'wNCTR 
/BLKINF/ RHS BLRHS BLOCK-INFO RHSOLV 
/CPOS/ RHS RHSIZE SOLUTION-DATA RHSOLV 
Dynamic RHS PIVNAT PIV-IIAT RHSOLV 
Dynamic RHS RHSUNI\X RHS-UNKNOWJ RHSOLV 
mAGE, IUP RHS RHSUNKX RHS-UNKNOIJN RHSOLV 
rlAICS RHS BLRHS BLOCK-INFO RHSOLV 
NRHS RHS RHSIZE SOLUTION-DATA RHSOLV 

Dynamic RHSX CNSTR1 COIJSTRAINTSI 1;IAPS 
Dynamic RHSX CNSTRI CONSTRAINTS2 ~iAPS 
Dynamic RHSX LMDPRT LAt'IBDA- PART MAPS 
Dynamic RHSX r·1ATRXC MATRIX-C 1·1APS 
Dynamic RHSX RHSBLIC RHS-MATRIX MAPS 

Dynami c RNS AICBLK AIC-BLOCKS RHSOLV 
Dynamic RMS RECNAT REC-BLOCK BLOCK 
Dynamic RMS RECi'tIAT2 REC-BLOCK BLOCK 
F. P. RMS BLIN BLOCK-INFO BLKGEN 
IPOS RNS AICBLK AIC-BLOCKS RHSOLV 

* If dynamic mapping is used for some 9r all of the elements of a dataset, 
thus requiring no common block storage, it is indicated as such. See 
section 13 of this document for details of dynamic mapping. 

7-C.8 



APPENDIX 7-D DATA BASE MASTER DEFINITIONS 

The data base master definition listing of the DIP module has been deleted 
from this document. It is produced from the PAN AIR tape during installation. 

7-D.1 



APPENDIX 7-E THE DIP FULL CONSTRAINTS TRANSCRIBER 

r. 

7-E.1 



Page Missing in 

Original Document 



The full constraints transcriber takes the user-input boundary condition 
data on the DIP data base, where it is stored in a fashion suitable for the 
fairly arbitrary input format, and stores it on the RHSXdata base in a form 
suitable for use by RHS. The controlling routine for the constraints 
transcription in general is DIPCST. If the boundary conditions for a network 
are "Class 1" (that is, internal stagnation on thin impermeable surface), 
DIPCTS computes the appropriate constraints and writes them to the CNSTR2 data 
set (as well as writing a flag to the CNSTRI data set that the boundary 
condition is network-wide). 

If the boundary conditions are not class 1, DIPCTS calls DIPFUL, which 
then controls the writing of the CNSTR data sets for that network. DIPFUL 
first calls PREP, which finds out from DQG and DIP precisely which constraint 
coefficients supplied by DIP are residing on the data base (and therefore not 
necessarily zero). Certain constraints (b~, bT, and bN of equation (H.3.25) 
of the Theory Document) reside on the COEF-GEN-BC data set of the DIP data 
base. The constraint bo resides on the DIP SPEC-FLOW data set, (but on the 
CLOS-COND data set if a closure condition is involved) while tT resides on the 
DQG BOUNDARY-COtJD-SPEC data set. The local onset flow aU i (cf., equation 
(H.3.22) of the Theory Document (Reference 1) comes from the DIP LOCAL-FLOW 
data set. 

Next, DIPFUL loops on each of the possible constraints. It reads the 
appropriate constraints data, which may be smeared by DIP over all control 
points on an edge, or over a column of panel center control points, into 
/FILDIP/. The appropriate subroutjne (CENTER for panel center control points, 
EDGE for edge control points, and SPECIL for special control pOints) loops 
over all points in the column or edge, computing their fine grid lattice 
indices, and then calling PRCNST to process the constraints data for that 
particular control point. 

PRCNST then reads the CNSTR2 data set for that control point into /CSTDIP/. 
At this point in the computation, that data set contains those constraint 
coefficients which have been processed so far, while the rest are zero 
(initially, all constraints are set to zero). PRCNST then calls NEWCST, which 
transfers the value of the constraint under consideration from the holding 
array in /FILDIP/ into /CSTDIP/. PRNCST then writes out /CSTDIP/, which has 
one non-zero entry fewer than before, onto CNSTR2 data set. 

It may occur that boundary conditions are not class 1, yet no constraints 
are reported by DIP because the user-input contributions to the right-hand-side 
is zero. In that case, no CNSTR2 data set is written, and it's ~bsence in the 
second or third overlay (subroutine CNSTR or CNSTRT) is assumed to mean that 
all constraint values are zero. A warning message to that effect is then 
printed out once for each network. 

7-E.3 



APPENDIX 7-F THE UPDATE CAPABILITY 

In case of either an IC update or a solution update (terms defined in 
Section 7.2.3 of the User's Manual, Reference 2), the old RHS data base is not 
used, but rather an entirely new RHS data base is created. Two restrictions 
on the user result from the operation of RHS during update runs. The first is 
the rather obvious one that the RHS data base designated by the user must not 
exist before the execution of RHS. The second arises from the fact that DQG 
is generally not re-run in a solution update, while RHS obtains the 
right-hand-side tangent vectors tT from the DQG data base. Thus, a solution 
update which involves changing the tangent vector tT is not permissible 
unless DQG is re-run as well. 

7-F.l 



8.0 MINIMAL DATA GENERATOR (MDG) MODULE 

8.1 INTRODUCTION 

The function of the ~1DG module is to compute average singularity values 
and perturbation flow quantities at control and grid points. These are 
interpolated from the singularity values at singularity locations (panel 
center points and/or network edge midpoints). Singularity values include 
source and doublet values. The perturbation flow quantities include the 
average potential, average normal mass flux and average velocity. Data used 
by post processing modules CDP, FOP and PDP is stored on the MDG permanent 
data base. Three temporary data bases are used by tvlDG for intermediate data. 

8.2 MDG OVERVIEW 

8.2.1 Purpose of MDG 

The tvlDG module copies global data from DIP, network, and panel geometry 
data from DQG, and solution data from RHS to the MDG data base. MDG 
multiplies the IC (Influence Coefficient) matrices by the singularity matrices 
and unsymmetrizes the results as flow quantities at control points. Separate 
singularities are formed at grid points and control points. Complete control 
point flow quantities are formed from the values produced in multiplying the 
IC matrices, if they exist, or from the boundary condition values if the IC 
matrix did not exist for the control point. Potential splines are computed, 
sirniliar to the doublet analysis splines. From values at the control points, 
the potential splines produce average potential, normal mass flux, and average 
velocity at grid points. 

8.2.2 MDG Input/Output Data 

8.2.2.1 Input 

The input data required by the MDG module comes from 1'1EC, DIP, DQG, r,IAK, 
and RHS data bases. The MEC data base furnishes names, account numbers, 
status, and related information for all data bases. The DIP data base 
provides global data. The DQG data base provides network, panel geometry, 
control point, boundary condition, and spl ining data to MDG. The t,IAK data 
base contains the IC matrices and directory to translate the MAG control point 
indices to DQG control point indices. The RHS data base contains the 
singularities stored in columns by solutions, and in rows or partial row 
blocks stored by singularity index, and a directory to translate RHS 
singularity indices to DQG global singularity indices. It also contains 
partitioning and symmetry information needed in performing the post 
multiplication of the ICls and singularities, unsymmetrizing, and for 
unblocking the unknown singularities. 

8.2.2.2 Output 

Three temporary data bases are created during execution of ~1DG. The 
MDGF data base is created and used throughout MDG processing. It contains the 
error data set, control and grid point information for each panel, blocked 
singularity data at grid points, blocked control point flow quantity data, and 
potential spline data. The r~DGM data base is used to form temporary 
singularity products, then released when the unsymmetrized blocked product is 

8.1 



formed on the MDGC data base. The r~DGrvl data base is used again to store the 
blocked grid flow quantity data produced from the control point values and the 
potential splines. The t·1DGC data base contains the intermediate IC values at 
control points in blocks and the singularities at control points both blocked 
by images and solutions. It is released after all permanent control point 
data has been created, and block control point data is on the MDGF data base. 

The MDG permanent data base contains several data sets. These include global, 
network, solution data, and control point geometry, control point data, grid 
point geometry, and grid point data. 

Very 1 i ttl e pri nted output is gi ven by the ~1DG modu1 e. CPU usage is reported 
at the end of each overlay of MDG. If any errors occur during execution of 
t4DG, error messages are pri nted as encountered and a summary of these errors 
is listed at the completion of ~1DG. For an error free ~IDG run, a comment is 
printed stating that the MDG module was successfully completed. 

8.2.3 Data Base Interface 

The MDG module creates a permanent data base named f4DG for use by the 
PDP (Point Data Processor), the COP (Configuration Data Processor) and the FOP 
(Field Data Processor) modules. NDG also creates three temporary data bases 
named t4DGC, fvtDGF, and MDGH which are used for storing intermediate data. The 
external input to MDG is from MEC, DIP, DQG, MAK and RHS data bases. Figure 
8.1 illustrates the re1 ati onshi p between ~IDG and these data bases. 

8.3. MODULE DESCRIPTION 

The rvtDG modu1 e consi sts of seven mai n over1 ays. A short descripti on of 
these overlays follows. A tree diagram (Appendix 8-A) relates all overlays 
and their subroutines. 

The main function of r.1DG is to calculate the values of average 
potential, average normal mass flux and average velocity at control points and 
at grid points. As described in Appendix M of the PAN AIR Theory Document 
(Ref. 1), these flow quantities are related in a linear fashion to the 
singularity values coming from the module RHS. Hence, a matrix product of the 
form [IC]· A is used to find each of these values. Here [IC] is the 
matrix expressing the linear relationship. It is computed by the f'iIAG 
module. A is a vector of singularity values computed by the RHS module. 

The above matrix multiplication gives the potential (~), normal mass 
flux (w • n) and velocity (va) only at the center of each panel and/or at 
the midpoint along a network edge. Values at the grid pOints and the actual 
control points (displaced sl ightly by the DQG module) must also be found. The 
MDG module interpolates these values to find the corresponding value of 
potential, mass flux and velocity using quadratic splines at the actual 
control and grid point locations. The spline coefficients are calculated by 
vari ous methods. Refer to Secti on I. 2 of the PAN AIR Theory Document 
(Reference 1) for more details on these methods. 

8.2 



8.3.1 Overall Structure 

The main overlays of MDG are briefly summarized in this paragraph. The 
top level r'IOG program, overlay (0,0), initializes the program variables. It 
calls each of the seven overlays into execution in a sequence. If a fatal 
error occurs during execution of any overlay, a skip is made to overlay (7,0) 
named EASY which summarizes the errors. The overall structure of the t4DG 
module is illustrated in Fig. 8.1. The t:IDG functional decomposition and the 
tree structure diagram are presented in Appendices 8-B and 8-A respectively. 

8.3.2 Overlay Descriptions 

8.3.2.1 (1,0) Overlay (OPDBI) 

The program opens and checks all data bases to be used by MDG. If the 
data bases are usable, MDG processing begins. The MDGX GLOBAL, SOLUTION-DATA, 
and NET~ORK-SPEC datasets of the temporary data base MDGX are created from 
data on the DIP data base, the DQG data base and RHS SOLUTION dataset. For 
each network, panel points data is determined. This consists of the control 
points and grid point data set for each panel. For each panel, geometry data 
is obtained from the DQG PANEL-SPEC dataset and written to the MDG CP-GEOM and 
GP-GEOM datasets. The panel points data is obtained from the DQG 
CONTROL-POI NT-SPEC and SPECIAL-POINTS datasets. More details are given in 
Appendix 8-F under the panel points library routines and Appendix 8-G panel 
points library usage. The PANEL-POINTS dataset is written to the MDGF 
temporary dataset for use in the down stream overlays (3,0), (4,0), and 
(6,0). Figure 8.2 illustrates the execution and data flow for overlay (~,O). 

8.3.2.2 (2,0) Overlay (PMPY) 

This overlay stores singularities by blocks of images and solutions to 
be used as input to the (3,0) overlay. The known singularities are available 
in rows already unsymmetri zed from the RHS S ING-KNmm dataset and stored on 
the ~1DGC data base, BLOCKED-LANBDA dataset. The unknown singularities are 
created in blocks of maximum size, 100 singularity rows by 10 solution 
columns. A separate direct dataset BLOCKED-LN~BDA-MATRIX from RHS contains 
information about the size and partitioning of these blocks. These blocks are 
converted to unsymmetrized rows by writing partial rows onto a temporary 
dataset ROW-BLOCK-LAt1BDA dataset. They are read back into core to form full 
rows which ar~ reblocked into blocks for a single singularity row for images 
and solutions, and placed the same BLOCKED-LAMBDA dataset created for known 
singularities. The MAG singularity indices are converted to DQG global 
singularity indices used as keys. Figure 8.3 illustrates the execution and 
data- flow for overlay (2,0). 

8.3.2.3 (3,0) Overlay (SNGCP) 

The third overlay converts BLOCKED-LM4BDA singularities at singularity 
locations to values at panel grid points and at the control point locations. 
The DQG B-SPLINE-SOURCE and B-SPLINE-DOUBLET datasets contain the continuous 
splines vectors for a single grid point. The splines are stored as two 
arrays, an index array which points to the singularity locations needed to 
compute the singularity at the grid point, and a second array of weights to be 
applied to the corresponding singularity values at singularity locations. The 
absolute values of the spline weights lie in the range from ° to 1, where a 

8.3 



value 1 represents an infinite weight. For doublet grid points a spline 
vector exists for all grid point locations. For sources, spline vectors exist 
only at the four panel corner points and the panel center point. To compute 
source values at the edge midpoints the 5 panel source grid point values are 
used in conjunction with the sub panel splines. With this splining a set of 
library routines, called the table manager, is used to store the values at 
singularity locations, so that multiple accesses to the disk are reduced for 
the same singularity values required by different splines, or for computing a 
value at a grid pOint which has already been computed for an adjacent panel. 
When the table is full the least recently used values are deleted from the 
table. The table manager is described in Appendix 8-F under the table manager 
library routines and Appendix 8-G under the table manager library usage. 
Values at control points are calculated using the 5 or 9 grid point values 
obtained from the spline vectors for each panel. The computation converts the 
reference coordinates to local coordinates by application of the the reference 
to local coordinate transformation from the DQG PANEL-SPEC dataset. 
Multipling the local coordinates by the sub panel spline produces coefficients 
which are multiplied by the 5 or 9 grid point values to give a value of the 
singularity strength at the control point. Figure 8.4 illustrates the 
execution and data flow for overlya (3,0). 

8.3.2.4 (4,0) Overlay (AQCP) 

Values of average potential, average normal mass flux, and the three 
components of the average velocity will be referred to as flow quantities. 
Potential and mass flux can be calculated from either the IC (Influence 
Coefficient) matrices or from the boundary conditions imposed by the user. 
Average velocity can only be calculated from the IC matrix. The IC matrix for 
the average normal mass flux is the dot product of the VIC (Velocity Influence 
Coefficient) matrix and the conormal at the control point. The storage of IC 
matrices is known to MDG through the PDP parameter written by DQG on the 
BOUNDARY-COND dataset. For each network the availability of the IC matrices 
in the MAK data base is also known from the method-of-velocity-computation 
variable. The PDP parameter determines if the flow quantity for each control 
point is obtained from the IC-matrix value or from the boundary condition 
data. In processing, the network data is read and a loop over panel is 
executed reading the MDGC PANEL-POINTS dataset to determine the control 
points within each panel. For each control point the BNDRY-CONDN-SPEC data 
is read to determine if the boundary condition data or the IC-matrix data will 
be used as the value of the flow quantities at the control point. If the IC 
data is used, the IC matrix is read together with singularity data, is post 
multiplied, and unsymmetrized. If it is needed for any flow quantity, the 
RHS-UNKNOWN values are read in and unsymmetrized. The control point 
singularities are read from the CP-LM4BDA dataset for storage on the CP-DATA 
dataset and possibly for calculating the values of the boundary condition used 
in computing a flow quantity. The potential and mass flux computations are 
essentially parallel. Both have special cases to check for stagnation 
boundary conditions, in addition to a general boundary condition calulation 
using the RHS values. For cases where the IC matrix exists, these values are 
read di rectly from the IC-t-IATRICES dataset. A 11 flow quanti ti es and 
singularities are blocked by images and solutions on the CP-BLOCK dataset for 
use in splining with the potential splines in the (6,0) overlay. Figure 8.5 
illustrates the execution and data flow for overlay (4,0). 

8.4 



8.3.2.5 (5,0) Overlay (BPSV) 

Potential splines are created on network edges first. If an edge of a 
network collapses, all points along the edge take on the value of the spline 
at the network corner. A general algorithm is used to compute network edge 
splines. On the interior all center point splines are unit splines weighted 
infinitely to the center control point value. For interior corners and edge 
midpoints another algorithm is applied which uses values from surrounding 
center control point values. The weights applied to these values are 
determined by doing a constrained least squares fit on the spline vector. 
Figure 8.6 illustrates the execution and data flow for overlay (5,0). 

8.3.2.6 (6,0) Overlay (GPQTY) 

This overlay obtains average flow quantities on the fine grid. All 
data for a given network is assembled in memory. A spline data structure 
which can extend data from the grid of panel center control points to the 
course grid is built. It is an outer spline and is constructed in a fashion 
similar to the continuous source analysis splines. That technique is 
described in Appendix I of reference 1. The normal mass flux, velocity and 
potential for control points is retrieved from the MDG database. The spline 
data structure is used to spread normal mass flux and velocity over the entire 
fine grid. The BP-SPLINE-VEGTOR dataset is used to spread the potential over 
the fine grid. The normal mass flux and potential may be computed by 
stagnation if it is requested. The fine grid data is written to the MDG 
database. Also the normal mass flux and velocity at edge control points are 
revised to conform to grid point values. Figure 8.7 illustrates the execution 
and data flow for overlay (6,0). 

8.3.2.7 (7,0) Overlay (EASY) 

If any fatal errors have occurred during the run of MDG, an error 
summary is printed reading the MDGF ERROR dataset created by the library 
subroutine SDMSRR for fatal SDMS errors or from the (4,0) overlay if a 
boundary condition value cannot be calculated. The SDMS error processing is 
described in Appendix 8-G under SuMS error library usage. The condition of 
the MDG data base is written on the DATA-BASE-HEADER dataset of ffjDG. Figure 
8.8 illustrates the execution and data flow for overlay (7,0). 

8.3.2 MDG Data Bases 

The master definitions for the MDG, MDGC, MDGF, and MDGM data bases are 
given in Appendix 8-0. 

8.3.4 MDG Interfaces 

Figure 8.1 sun~arizes the internal and external data interfaces between 
MDG and other PANAIR modules (data bases). 

8.3.4.1 External Interfaces 

MDG receives its input data from the MEG, DQG, MAG (MAK data base), and 
RHS modules. The MEG data base furnishes data base names, accounts, and 
status information for all data bases. The DQG data base provides global, 
network, panel geometry, control point, boundary condition, special points, 

8.5 



and spline data. RHS furnishes the solution data (also available from DQG), 
singularity data, right hand side constraints, and columns maps to convert 
from the r4AG indices to the DQG singularity indices. From f~AG comes the IC 
matricies, symmetry data, and the row map to convert MAG indices to DQG 
control point indices. 

The output data consists of the MDG data base used by FOP, PDP and COP 
modules. It contains global, network, solution, control point geometry, grid 
point geometry and the solution data for control and grid points. The 
geometry data consists of coordinates, normal and tangent vectors, subpanel 
splines for doublets, and moment matrices. The solution data consists of 
average potential, average normal mass flux, sometimes average velocity, and 
the source and doublet singularities. 

8.3.4.2 Internal Interfaces 

The ~1DGF data base is used to keep track of fatal errors duri ng the f4DG 
run. In (1,0) overlay panel points data is generated and stored for use in 
the (3,0), (4,0), and (6,0) overlays. In the (3,0) overlay the grid point 
singularities are blocked and added to the GP-LAMBDA dataset on MDGF. In the 
(4,0) overlay the CP-BLOCK-DATA dataset is created on MDGF. The BP-SPLINE 
dataset is written to MDGF in the (5,0) overlay and read by the (6,0) 
overlay. If fatal errors o.ccurred during the run the r,1DGF ERROR dataset is 
read by the (7,0) overlay to produce the error summary. 

The MDGM data base is used for reblocking the unknown singularities in 
the (2,0) overlay. The r,1DGM data base is returned at the end of the (2,0) 
overlay. It is used again in the (6,0) overlay to create the temporary 
blocked grid point data from the final GP-DATA on the MDG data base is created. 

The MDGC data base is created in the (2,0) overlay. It contains the 
BLOCKED-LN1BDA singularities which are read by the (4,0) and (3,0) overlays. 
HDGC is returned at the end of the (4,0) overlay. 

8.3.5 Data Flow 

The flow of data for each 1·1DG overl ay can be found by consulting 
Figures 8.2 thru 8.8, Appendix 8-C and the glossaries of the 
program/subroutines. 

8.4 LOWER LEVEL FUNCTIONS 

This section describes the general structure and purpose of the 
subroutines used in MDG. 

8.4.1 Functional Decomposition 

See Appendix 8-B for a description of the MDG Functional Decomposition. 

8.4.2 Subroutine Descriptions 

ANALP Computes potential splines for each grid point of a network. 

8.6 



AQCP Forms control point data for each point for average potential, mass 
flux, average velocity (if available), singularities, and local onset 
flow. 

BCDAT Obtains boundary condition data if required. 

BLKS Forms blocked lambdas from RHS known singularities which are already 
unsymmetrized. 

BLUKSG Forms blocked unsymmetrized lambdas from RHS unknown singularities. 

BPSV Forms potential splines (BP-SPLINES) similar to doublet analysis 
splines for values taken from surrounding control points instead of 
singularity locations. 

CI'IPDSV Computes doublet singularity value from 9 panel grid point singularity 
values using local coordinates and subpanel splines. 

CNPSSV Comput~s source singularity value from 5 panel grid point source 
singularity values using local coordinates and sub panel splines. 

CQt.1SRC Computes panel point val ues for a panel located either at the end of a 
single row or column network or at a network corner. 

CPCALC Computes flow values at control points from IC, Lambda matrix 
multiplication, and unsymmetrizes the values. 

CPFOCE Computes control point flow data on collapsed edges. 

CPFDSS Computes control point flow data on smooth abutment segments. 

CPPED2 Computes panel points on edge 2 of network. 

CPPED4 Computes panel points on edge 4 of network. 

CPPE13 Computes panel points on edges 1 and 3 of network in para11 el 
single column case. 

for 

CPPE14 Computes panel points on edges 1 and 4 of neblOrk in para 11 e 1 for 
single row case. 

CPPINT Computes panel points i nteri or to a panel 

CSCP Forms values of the singularity at control point locations for each 
control point in panel. 

CSSGP Applies B splines to calculate singularities at grid points from 
surrounding singularity values. 

DATPOT Provides data for analysis splines to perform constrained least squares 
fit. 

DCPGPS Determines control points and grid point sets from DQG data. 

8.7 



DFSKWC Defines the transformation from the reference coordinate system to a 
skewed coordinate system associated with a fine grid point. 

DGPTL Defines grid point table location of array GPLOC which stores the 9 
defining grid pointers to singularity data. 

DINGPS Determines interior grid point set. 

DTNGPS Defines interior grid point set for the default grid point set 
consisting of panel points 1, 5, 8, 9. 

DPANCP Defines panel control points by searching along a specified network 
edge for a given panel and the network edge. 

DPBSGP Defines panel B-sp1ine grid points. 

DQGSNG Determines the DQG global singularity indices for a block of unknown 
singularities using the MIC column map. 

EASY Provides error and accounting summary for MDG run, printing a list of 
fatal errors if any occured, and writing MDG data base status informa
tion to the t4DG data base 

EDGECP Revises the velocity and mornal mass flux at edge control points to 
conform to grid point values. 

FCPDAT Forms control point dataset from the DQG contro1-pt-spec dataset. 

FCPGPG Forms control point and grid point geometry datasets. 

FGLDAT Forms f4DG global dataset • 

FORNET Forms t4DG network spec dataset. 

FSAGP Forms singularity values at grid points for values not already 
calculated, using the BP-splines and vectors of singularity values at 
surrounding locations. 

FSGVEC Forms singularity matrix from singularity vectors for each solution and 
image. 

FSPSVC Forms subpanel spline vector 

FSTBAD Adds deleted table entry to free space table. 

FSTBDL Removes last free space to be used as location for table add. 

GETSPT Reads the DQG special points data set into special points common block. 

GPQTY Applies potential splines to compute flow quantity values at grid 
points, stores potential, mass flux, velocities, and singularities at 
grid points for each panel point set. 

ICALC Computes and unsymmetrizes flow quantity values at control points using 
the IC matrices. 

8.8 



INITCB Initializes the common blocks /SOLLST/,/SYMM/ reading the RHS solution 
dataset and forming the MDG solution dataset. 

LATINO Transforms course panel grid points which exist at panel corner points 
for any panel points into its corresponding fine grid point lattice. 

LOCORD Computes local coordinates of a point given its coordinates in the 
reference coordinate system together with the sub panel number in which 
the point lies. The appropriate reference to local coordinate 
transformation is applied to compute the local coordinate. 

LSQPOT Defines the coordinate of a point used in the construction of the least 
squares spline and defines the index of the singularity parameter or 
control point located there. 

MCPDAT Moves control point data obtained from the DQG control-pt-spec dataset 
to the MDG /CPDAT/ common block. 

NETEDG Calculates spline vectors for network edges and corner points. 

NETGEN Assembles the network geometry data. 

OBPHI Obtains potential values for each control point for all RHS solutions 
and images from either the boundary conditions, stagnation conditions 
or the PHIIC matrix. 

OBVA Obtains average velocity values for three components of velocity from 
the product of the VIC and unsymmetrized singularity values and 
computes the normal mass flux from the velocity values at each control 
point where the VIC is defined. 

OBVANC Obtains va dot nc values at each control point for all RHS-solution 
and images from either the boundary conditions, stagnation conditions, 
or from the IC matrix. 

OPCKDB Opens all data bases and checks their status through calls to CHKDB 

OPDBI Checks data bases, initializes common blocks, forms network data, forms 
panel point data sets for control and grid point geometry, and closes 
data bases. 

OPDBM Defines maps used in t~DG third overlay, opens and closes data bases. 

PMPY Unsymmetrizes and blocks.known and unknown singularity va~ues. These 
are read from the RHS data base datasets SING-KNOWN and LAM-I<1AT. After 
processing, they are written to the MDGC BLOCKED-LAMBDA temporary 
dataset. 

POINT Determines the coordinates of any point from its fine grid point 
lattice. 

PTSKWC Computes the skewed local coordinates of a point. 

PUTPPT Writes panel points dataset to data base from common blocks 
/CPDAT/,/GPSET/. 

8.9 



RHSVAL Obtains and unsymmetrizes RHS unknown lambda values from RHS data base. 

RNDITM Reads network data and initializes table manager routines. 

RPI Reads panel data information. 

SCOLPP Computes panel points data for a single column network. 

SDMSRR Processes SDMS errors occuring during MDG execution by writing error 
message, setting fatal error flag and writing an error data set for 
final error summary. 

SNGCGP Computes singularity at control and grid points from values at 
surrounding locations. 

SPANCP Searches network edge to see if extra control points exist. 

SPLAP Performs least squares fit to determine spline vector for a specified 
point in an analysis network. 

SPLCP Computes mesh point spline data. 

SPLCPV Evaluates a single entry in the spline data structure. 

SPLCPW Computes upstream weighting factors for spline construction. 

SPLCPX Constructs a spline data structure to spread center control point data 
to the fine grid. The spline data structure is similar to the 
continuous source analysis splines built by the Defining Quantities 
Generator (DQG) module in subroutine ANALS. This is an outer spline 
which is described in section I of reference 1. 

SPLTRN Transforms three-dimensional coordinates of singularity or control 
point into the local two-dimensional coordinate system for least 
squares fit. 

SROWPP Computes panel points data for a single column network. 

STCPV Stores control point flow and singularity data for each solution and 
image on NDG CP-DATA dataset. 

STGP Stores grid point data generated using potential splines for each image 
and solution for all flow types. 

STOGPS Stores blocks of grid points singularities for output in the (6,0) 
overlay where blocks are formed by images and solutions for each grid 
point set. 

TBADD Adds new entry to table by searching for its location in the key table 
and returning the location in the table of the added data. 

TBDELT From least recently used (LRU) counter, determine the LRU entry and add 
this as the new freespace entry. 

8.10 



T8INIT Initialize the table manager by clearing entries when called with 
appropriate arguments, or initialize individual tables for later 
processing. 

TBSRCH Finds location of entry in table by comparing key value input against 
values in key table. If entry is not found, a value of -1 is returned 
as the location. 

UNIPOT Computes a spline vector of unit length for each control point index 
and writes it to the BP-SPLINE dataset. 

USFIMG Unsymmetrizes singularities at singularity locations for 4 images and 
blocks them by images and solutions. 

USTH1G Unsymmertizes singularities at singluarity locations for 2 images and 
blocks them by images and solutions. 

VECUNV Computes BP spline vector at a grid point from values at surrounding 
control pOint locations. 

VSPREP Spread the panel center (or panel center control point) data to the 
whole fine grid. 

VSPRET Spreads the panel center velocity data to the whole fine grid. 

WNSPRD Spreads the panel center normal mass flux data to the whole fine grid. 

WRBL For use in unblocking LAt~MAT matrices of singularities -the partial 
rows are fonned for each row in a block of rows and temporarily written 
to the data base. 

WTLSQ Computes weighting factors for least squares fit. 

XPSPEC Extends the panel specifications data read from the MDG-PANEL-SPEC 
dataset on the DQG database. 

XIETAV Computes XI and ETA vectors which define the local two-dimensional 
coordinate system. 

8.11 



Page Missing in 

Original Document 



') ') ) 

"'" 
,... .... 

MEC DQG RHS MAK 
.... 

DIP 
MDG (0,0) 

,It 

f 
'1 -' I' , Y 

MDG (1,0) MDG (2,0) MDG (3,0) MDG (4,0) MDG (5,0) MDG (6,0) MDG (7,0) 

. 
I ' , t • t ~ I 

i , , , 
.- .... .... 

Error 
MDGF . MDGM MDGC ~ MDGM Summary 

.... -
MDG 

, ~ 
ex> . ..... 
w 

PDP COP FOP 

Figure 8.1 - Data Base Relationships 



MDG 
Overlay (1,0) 

~ 

PROGRAM OPDBI 

{ , 
Header Data Sets Subroutine 

H DQG, RHS, DIP, OPCKDB 
\ 

MAK, MEC J 

f' \ 
Subroutine 

/'\ " ~ DIP GLOBAL MDG GLOBAL 
FGLDAT 

\) \) ) 

/\ 
RHS 

'\ 
Subroutine 

'\ MDG '\ 
~ 

SOLUTION-DATA INITCB SOLUTION-DATA 
\J J \J ) 

1\ '\ f\ \ 
DQG Subroutine M DG 

.~ 

NETWK-SPEC FORNET NETWORK-SPEC 
\J J \.) J 

/\ \ f\ \ 
DQG Subroutine MDGF 

f+ CONTROL-POINT-
DCPGPS PANEL-POINTS 

\) SPEC ) \) ) 
I .. 

(\ \ /\ \ MDGF Subroutine 
... MDG CP-GEOM 

PANEL-POINTS FCPGPG 
\J \J J 

/\ \ ('\ , 
DQG 

~ MDG GP-GEOM 
PANEL-SPEC 

\) J \) ) 

Figure 8.2 - Execution and Data Flow of Overlay (I,O) 
8.14 . 



MDG 
Overlay (2,0) 

PROGRAM PMPY . 

. MAK' 

ROWMAP SYMMETRY 

RHS 

SING-KNOWN 

MAK COlMAP 

Rii"s BLOCK-INFO 

RHS 

lAMBDA-UNKNOWN 

MAK COlMAP 

MDGF ERROR 

MDGC 
BlKS 

BLOCKED-lAMBDA 

MDGM 

OW-BLOCK-MATRIX 

MDGC 

BLOCKED-lAMBDA 

Figure 8.3 -Execution and Data Flow of Overlay (2,0) 

8.15 



MDG 
~ 

Overlay (3,0) 
PROGRAM SNGCGP 

~ OPDBM 

(' \ 

~ DQG NETWK-SPEC ~ R~DITM .. ~ 

\) 

r, , 
- DQG PANEL-SPEC ~ RPI ~ 

\J ) 

V ~. 

(\ 
'V-MDGF 

~ 

~ 

PANEL-POINTS 
\J J CSSGP 

V \ \1 MDGC -.. , , 
BLOCKED-LAMBDA 

\) ) 
~ STOGPS ~ MDGF GP-LAMBDA 

\) 

r, \ 

--- CSCP ~ MDGC C.P-LAMBDA 

\J J 

Figure 8.4 -Execution and Data Flow of Overlay (3,0) .~ 

8.16 



~ 

r-
I 

MDG I '\ " Overlay (4,0) r, '\ MDGF 

PROGRAM AQCP DQG ERROR 
) '- NETWK-SPEC \) 

- \ j ) ~ 

" 
, 

" -- MDGF -
PANEL-POINTS 

"\ ) j 

" , 
~ubroutine ~ubroutinE .. DQG 

~ 
BCDAT -"" RHSVAL - t- -

BNDRY-COND-SPEC 
\) ) V 

" 
, 

MDGC - t-
CP-LAMBDA 

\) ) . , 
... : 

f' 
MAK 

l-
ROWMAP-INVERSE 

\) 
f'. " MDGC 

IC-LAMBDA 

\J ) S ubrouti ne 

~ OBPHI .~ (, " . MAK , - ROWMAP ~ MDGF 
\) SYMMETRY ) 

Subrouti ne_ ... 
ERROR ~ --OBVA 

f\ " 
j 

.. MAK 
IC-MATRIX ~\ Subrouti'ne 

\) ~ OBVANC 

f' , 
RHS f' V LAMBDA- KNOWN ~ubroutine 

MDGF 

\J 
LAMBDA-UNKNOWN ~ STCPV ~ CP-BLOCK-DATA 

\) 

Figure 8.5 - Execution and Data Flow of Overlay (4,0) 
8.17 

"\ 

) 



MDG 
Overlay (5,0) 

PROGRAM BPSV 

ETWK-SPEC 

DQG 
CONTROL-PT-SPEC 
PANEL-CORNER-COORD 

ANEL-CORNER-COORD 

ONTROL-PT-SPEC 

DQG 

CONTROL-PT-SPEC 

QG 
ONTROL-PT -SPEC 

AVALP 

NETEDG 

SLAP 

UNIPOT 

SLAP 

MDGF 

ERROR 

MDGF 

BP-SPLINE-VECTO 

DGF 

P - S P LIN E - VECTOR 

DGF 

P -SP LI NE - VECTOR 

8.18·:Figure 8.6 -Execution and Data Flow of Overlay (5,0) 

. ". 



') ') ) 

() NETW~SPEC I 
MDG .. OVERLAY(6,O) ~ 

PROGRAM GPQTY 

~l DQG DG-PANEL-SPEC 1 ~r 
..... ...... NETGEM ... 

I ~ 

) MDGF 
j PANEL-POINTS 

" o CP~~TA I ... 
........ CPFLOW 

U 

VSPRED 

~, 

" MDGF 
I GP-LAMBDA 

..... J) MDG -- STGP 
~ J BP-SPLINE-VECTOR .... \ . .J GP-DATA 

" 
EDGECP L.I .J MDG .. ...-\. CP-DATA 

FIGURE 8.7 - EXECUTION AND DATA FLOW OF OVERLAY (6,0) 

00 . 
....... 
1.0 



8.20 

MDGF 
ERROR 

MDG 
Overl ay (7,0) 

PROGRAM EASY 

Error 
Summary 

MDG 

DATA-BASE-HEADE 

Figure 8.8 -Execution and Data Flow of Overlay (7,0) 



APPENDIX a-A TREE STRUCTURE 

The tree structure diagram of the 14DG module has been deleted from thi s 
document. It is, however, available on the installation tape. 

a-A.! 



APPENDIX 8-B MDG FUNCTIONAL DECOMPOSITION 

The functional decomposition of the r~DG module is presented here. The 
decomposition labels are given in the order of their execution and therefore 
may not be alphabetic. 

8-B.1 



Page Missing in 

Original Document 



A. Form global data, initialize global common block and process network 
control point and grid point (OPDBI) Overlay (1,0) 
A. Open and Check Data Bases (OPCKDB) 
B. Form Global Data (FGLDAT) 

A. Read Global Data 
B. Form Network Li st Data 
C. Put MDG Global Data 
D. Compute Reflection Matricies 

C. Initialize Global Common Blocks (INITCB) 
A. Extract Solution Data from RHS Data Base 
B. Form /SOLLST{ Common Block 
C. Write t~DG So ution Data 

D. Form Network Data (FORNST) 
A. Read DQG NETWK-SPEC dataset 
B. Form MDG NETWK-SPEC dataset 
C. Put r~DG NETWK-SPEC dataset 

E. Determine Control Points and Grid Points Set (DCPGPS) 
A. Compute Panel Points Edges 1 and 3 (CPPE13) 

A. Get Special Points 
C. Initialize CP, GPSET Count 
D. Define Interior Grid Point Set (DINGPS) 
B. Check for CP on Midpoint of Edge 4 (FCPDAT) 
E. Define Panel Control Points (CPANCP) 
F. Define Grid Point Set 2 
G. Put Panel Point (PUTPPP) 

B. Compute Panel Points Edge 2 (CPPED3) 
H. Compute Panel Points on First Panel 
A. Get Special Points (GETSPT) 
B. Initialize CP GPSET Count 
C. Define Interior Grid Point Set (DINGPS) 
D. Define Panel Control Points (DPANCP) 
E. Define Grid Point Set 2 PTS 2,6 
F. Put Panel Points (PUTPPP) 
G. Compute Single Row/Col Panel Points (COMSPC) 

C. Compute Panel Points Edge 4 (CPPED4) 
A. Get Special Points (GETSPT) 
B. Initialize CP GPSET Count 
C. Define Interior Grid Point Set (DINGPS) 
D. Define Panel Control Points (DPANCP) 
E. Put Panel Points (PUTPPT) 

D. Compute Panel Points Interior (CPPINT) 
A. Define Interior Grid Point Set (DINOPS) 
B. Form Control Point Data (FCPDAT) 
C. Put Panel Points (PUTPPT) 

E. Compute Single Row Panel Points (SROWPP) 
A. Compute Single Row/Col Panel Points (COMSRC) 
B. Compute Single Ro\'I/Col Panel Points (CO!4RRC) 
C. Get Special Points Edge 1, Edge 3 (GETSPT) 

8-B.3 



D. Initial ize CP, GEPSET Count .~ 
E.Compute Panel Points Edge 1, 3 

A. Define Interior Grid Point Set (DINGPP) 
B. Define Panel Control Points (DPANCP) 
C. Define Grid Points Set 2, PTS 4,7 
D. Put Panel Points (PUTPPT) 

F. For Last Column Compute the Panel Points (OMSRC) 
F. Compute Single Col Panel Points (SCOLPP) 

A. Compute Panel Points on First Row Panel (COMSRC) 
B. Compute Panel Points on First Column Panel(COMSRC) 
C. Get Special Points Edge 2, Edge 4 (GETSPT) 
D. Initialize CP, GPSET Count 
E. Compute Panel Points Edges 2 and 4 (CPPE24) 

A. Define Interior Grid Point Set (DINGPS) 
B. Define Panel Control Points (DPANCP) 
C. Define Grid Point Set 2, PTS 2,6 
D. Put Panel Points (PUTPPT) 

F. Compute Single Row/Col Panel Points (COMSRC) 

F. Form Control Point and Grid Point Geometry (FCPGPG) 
A. Get Panel Data 

A. Get DQG PANEL-SPEC Data 
B. Get MDG PANEL-POINTS 

B. Add Data to CP-GEOH 
A. Determine if GRIDPT is a Control Point 
B. r~ove Data from /CPDAT / 
C. r·10ve Data from /PANDAT / 

C. Write CP-GEOM 
A. Form Key 
B. Put GP-GEOM 

D. Define CP-GEOM Data 
A. Define GP-COORDINATES 

A. Determine Offset in Panel Coordinates 
B. Move Panel Coord to /GPGEOM/ Coordinates 
C. Store Grid Point Sequence 

E. Write GP-GEOM 
A. Form Key from 1st Grid Point 
B. Put GP-GEor~ 

G. Close Data Base 

B. Read, Unsymmetrize, and Block Singularity Values(LM1BDA) Overlay (2,0) 
A. Define Maps and Read Matrix Information 

A. Open Data Base and Define Maps 
A. Define Maps for MIC Data Base 
B. Define Maps for RHS Data Base 
C. Define Maps for MDGC Data Base 
D. Define Maps for MDGF Data Base 
E. Define Maps for MDGM Data BAse 

B. Read ~IAG Symmetry 
A. Get MIC Symmetry 
B. Form /SYMM/ 
C. Form /MAGPAR/ 

8-B.4 



C. Unsymmetrize and Block LAMBDAS 
A. Block LN1BDAS from KNOWN-SINGULARITIES (BLKS) 

A. Determine Singularity Index 
A. Determine Update Type 
B. Set Update Type to Non-Updatable 
C. Set Update Type to Updatable 
D. Get COL-MAP 

B. Get RHS SING-KNOWN 
C. Form Blocked LANBDA (KNOWN) 

A. Determine Block Offset 
B. Move Unsymmetrized Images 
C. Determine Number of Solutions Per Block 
D. Define Number of Images 
E. Define BLOCK-SIZE 
F. Put Blocked LAMBDA 

B. Re-B1ock LAMBDAS from UNKNOWN-SINGULARITIES (BLUKSG) 
A. Get BLOCK-RHS-INFO 
B. Determine DQG-SING-INDEXES (DQGSNG) 

A. Determine BLock Row Start 
B. Determine ROW-NUr4, Update Type 

A. Form Global ROW-NO 
B. Define Row No. Non-Updatable 
C. Define Update Type 
D. Define Row No. Updatable 
E. Define Update Type 

C. Get ~lAG COL-MAP 
D. Store DQG SING-INDEX 

C. Unsymmetri ze LN'IBDA-~IATRIX Blocks 
A. Get LAMBDA MATRIX IMAGE 1 
B. Unsymmetrize Two Images (USTIMG) 

A. ~1ove ARRLAN to ARRLPP, ARRLPM, ARRLMP 
B. Read LAMBDA-~1ATRIX HiAGE 2 
C. Unsymmetrize 1st (PP) Image 
D. Substract ARRLAH from ARRU4P and Divi de 
E. Subtract ARRLM~ from ARRLPM and Divide by Two 

D. Unsymmetrize Four Images (USFU1G) 
A. Move ARRLMvl to ARRLPP, ARRLAM, ARRLMP, ARRLMf1 
B. Get LAMBDA-MATRIX 
C. Compute Images 

C. f40ve ARRLAM to ARRPP 
D. Write ROW-BLOCK-LAMBDA (URBL) 

A. f·love ARRLPP to RBLAMB 
B. Move ARRLN4 to RBLAMB 
C. Move ARRLf.1P to RBLAMB 
D. Move ARRL~IM to RBLAMB 
E. Move ARRLPM to RBLAMB 
F. Form ICE 
G. Put ROW-BLOCK-LAMBDA 

E. Form ROW-ARRAY from Row Blocks 
A. Get ROW-BLOCK-LAMBDA 
B. Determine Offset in Row Array 
C. Move ROW-BLOCK to ROW-ARRAY 

8-B.5 



F. Re-block and Output BLOCKED-LAfvlBDA dataset 
A. Determine ROW-ARRAY Offset 
B. Form BLOCKED-LAMBDA Data 
C. Form Key Set and State Values 
D. Put BLOCKED-LAMBDA dataset 

C. Obtain Singularities at Control and Grid Points (SNGCGP) Overlay (3,0) 

8-B.6 

A. Open Data Bases and Define Maps (OPDBM) 
A. Open Data Bases MDGC, ~IDG, MDGF, DQG 
B. Define Nap Sequence 

B. Read Network Data and Initialize Table Manager (RNDITM) 
A. Get DQG NETWK-SPEC Data 
B. Determine ROU-COL Information 
C. Determine Network Type and Panel Grid Points 

A. Determine Network Type 
B. Define Network Corners 
C. Define Panel B-SPLINE Grid Points (DPBSGP) 

A. Define GP Set for Doublet Network 
B. Define Number of Grid Points to be 9 
C. Put Corner Points in GP Set for Source Network 
D. Put Panel Center Grid Points in GP Set for Source 

Network 
E. Define Number of Grid Points to be 5 

D. Initialize Table Manager 
A. Form Calling Argument for S-ARRAY 
B. Initialize Table for S-ARRAY (TBINIT) 
C. Form Calling Argument for GP-ARRAY 
D. Initialize Table for GP-ARRAY (TBINIT) 

C. Read Panel Information (RPI) 
A. Get DQG PANEL-SPEC DATA 
B. Get PANEL-POINTS DATA 

D. Compute Singularities at Spline Grid Points (CSSGP) 
A. Initialize for Singularity Type 

A. Define Source Grid Points 
B. Define Doublet Grid Points 
C. Define Last Singularity Type 

B. Check if Singularity Grid Point in Table 
A. Form Key Values for Table 
B. Search Table for Grid Point Value (TBSRCH) 

C. Get B-SPLINE Data Set 
A. Get B-SPLINE Source 
B. Get B-SPLINE Doublet 

D. Form Singularity at Grid Points (FSAGP) 
A. Search for SING-INDEX in Table 
B. Read BLOCKED-LAMBDA 
C. Add Arrays to Table 
D. Form Singularity Vector (FSGVEC) 

A. Initialize Singularity Vector to Zero (ZERO) 
B. Define SNG-VECTOR Entry 

Eo f.'lu1tiply Spl ine and Singul arity Vectors 
F. Store Grid Point Values in Table 

E. Define Grid Point Table Location (DGPTL) 
A. Define Singularity Location in GP-ARRAY Table 
B. Define Panel Grid Point ,~ 
C. Define Last Source Grid Point 
D. Define Last Source GP-ARRAY Location 



F. Form Sub panel Spline Vector (FSPSVC) 
A. Determine Table Location 
B. r40ve Table Values to Singularity Vector 

E. Store Grid Point Singularities (STOGPS) 
A. Search for Grid Point 

A. Set FONND False 
B. Set FOUND True 
C. Define GP-ARRAY Location 

B. Compute GP from Subpanel Spline SPSPL 
A. Determine Subpanel of Grid Point 
B. Compute Local Coordinates 
C. Compute Source GP-VALUE (CMPSSV) 
D. Add Computed Grid Singularities to Table (TBADD) 

C. Format GP-LAMBDA 
A. Initialize SRC, DBLT Strengths to Zero 
C. Get Offset in LAMBDA and GP-ARRAYS 
D. Define Source Strength 
E. Move GP-ARRAY to SRC-LAr~BDA 
F. Define Doublet Strength 
G. Move GP-ARRAY to DBLT-LAMBDA 

E. Get and Replace GP-LAtvtBDA 
A. Get GP-LANBDA (ESGET) 
B. Replace GP-LAMBDA (ESGET) 

D. Put GP-LAMBDA (ESPUT) 
F. Compute Singularities at Control Points (CSCP) 

A. Compute Local Control Point Coordinates (LOCORD) 
A. Define Matrix Lengths 
B. Translate Reference Coordinate by SUBPAN Origin 
C. Multiply A-Matrix With Translated Reference 

Coordinates (CAB) 
B. Compute Source Control Point Values (CMPSSV) 
C. Compute Doublet Control Poi nt Values (Ct>'IPDSV) 
D. Store CP-LAMBDA 

A. Form Key Values 
B. Compute Singularity Lengths 

A. Get CP-LAMBDA (ESGET) 
B. Replace CP-LANBDA (ESREP) 

C. Put CP-LAMBDA (ESPUT) 

D. Obtain Average Quantities at Control Points (AQCP) 
A. Open Data Bases and Define Maps 

A. Open Data Bases (DBOPEN) 
B. Define Maps 

B. Read Network and Panel Data 
A. Read NETWORK-SPEC Data (ESGET) 
B. Read Panel Points Data (ESGET) 

C. Get Boundary Condition Data (BCDAT) 
A. Get DQG BNDRY -CotJD-SPEC-DATA (ESGET) 
B. Get mc ROW-MAP-INVERSE (ESGET) 
C. Determine RHS-VLAUE (RHSVAL) 

A. Initialize Right Hand Side Values (ZERO) 
B. Get f'IAG Row '·1ap (ESGET) 
C. GEt RHS-UNKBOW (ESGET) 
D. Move RHS Values to BCVALU 

8-B.7 



8-B.8 

E. Symmetrize RHS-Values 
A. Define Scale Factor 
B. Initialize Unsymmetrized Array to Zero 
C. Compute Unsymmetrized Values 
D. Replace Unsymmetrized Value in BCVALU 

D. Set Fatal Error 
A. Print Fat~l Error Message 
B. Write Fatal Error Message 

E. Get CP-LM4BDA Data 
A. Initialize Singularities to Zero 
B. Get Singularities of Each Type 

D. Obtain PHI-AVE Quantities (OBPHI) 
A. Compute PHI-AVE for Stagnation BC 

A. PHI-AVE by UPPER SURFACE ANALYSIS 
B. PHI-AVE by LOW SURFACE ANALYSIS 

B. Calculate PHI from BC 
A. Check if PHI is Available from Non-Stagnation Boundary 

Condition 
A. Check Boundary Condition for Zero Entries 
B. Set B.C. Flag 

B. Decrement Boundary COndition 
C. Get PHI from B.C. 
D. Print Fatal Error Message 
E. Write Fatal Error Mess~ge 

C. Compute PHI from IC Matrix (ICALC) 
E. Obtain VA, VANC, from VIC (OBVA) 

A. Compute RHS Ind~x 
B. Compute Velocity from IC Matrix (ICALC) 

F. Obtain VANC Only (OBVANC) 
A. Compute VANC for Stagnation 

A. Compute VANC by Upper Surface Analysis 
B. Compute VANC by Lower Surface Analysis 

B. Calculate VANC from BC 
A. Check if VANC is Available from Non-Stagnation 

Boundary Conditions 
A. Check Boundary Condition for Zero Entries 
B. Set B.C. Flag 

B. Decrement Boundary Condition 
C. Get VANC from B.C. 
D. Print Fatal Error Message 
E. Write Fatal Error Message 

C. Get IC-LAMBDA 
A. Compute RHS Index 
B. Compute VANC from IC r~atri x 

G. Store Control Point Values (STCPV) 
B. Get ONSET-FLOW RHS-DB 
C. Form CP-DATA 
D. Put CP-DATA (ESPUT) 



E. Form CP-BLOCK-DATA 
A. Put PHI CP-BLOCK-DATA (ESPUT) 
B. Put WANC CP-BLOCK-DATA (ESPUT) 
C. Put VA-X CP-BLOCK-DATA (ESPUT) 
D. Put VA-Y CP-BLOCK-DATA (ESPUT) 
E. Put VA-Z CP-BLOCK-DATA (ESPUT) 

I. Compute Control Point Flow Data on Smooth Abutment Segments (CPFDSS) 
A. Set up Data on Segment Length 
B. Initialize Arrays 
C. Get Control Point Data and DQG Spline Vector (ESGET) 
D. Find Control Point Index Which Corresponds to Singularity 

Parameter Index 
E. Write Fatal Error Message 
C. Get Control Point Block Data (ESGET) 
F. Accumulate Data to Output Arrays 
G. Write Block Data for Null Control Point on Edge of Smooth 

Abutment (ESPUT) 
J. Compute Control Point Flow Data on Collapsed Edges (CPFDCE) 

A. Define Lattice Indices 1st Point 
B. Define Lattice Increments 
C. Get Control Point Index 
D. Clear Flow Data Array 
E. Get Blocked Row Data for 1st Point 
F. Get Control Point Index Edge Midpoint 
G. Write Flow Data for Null Control Point 

H. Close Data Bases (PACLOS) 

8-B.9 



E. Compute BP Spline Vectors (BPN) Overlay (5,0) ~~ 
A. Open Database and Define Maps (PAOPEN/DSMAP/SVMAP/ENDMAP) 

8-B.10 

B. Get NETWK-SPEC Data (ESGET) 
C. Compute Doublet Analysis Potential Spline (ANALP) 

A. Initialize BP-SPLINE Data 
B. Calculate Network Edge Spline Vectors (NETEDG) 

A. Compute Lattice Indices for First Corner Point (LATINO) 
A. Get CONTROL-PT-SPEC Data 
B. Define Unit Values 
C. r~ove Control Poi nt Data 

B. Compute Spline Vector for First Corner Point (SPLAP) 
A. Compute LSQ Data for Surrounding Points (DATPOT) 

A. Initialize 
A. Initialize Number of Points 
B. Initialize Reference Point 

B. Define Lattice Indicees 
A. Compute Lattice Indices for Point 
B. Determine New Lattice Indices 

C. Increment Counter 
D. Define LSQ Data for Point (LSQPOT) 

A. Get CONTROL-PT-SPEC 
B. Define Unit Values 
C. Move Control Point Data 

F. Define XI, ETA and ZETA Vectors lXIETAV) 
A. Define Lattice Coordinates of Point 
B. Compute Coordinate of Point 
C. Define XI and ETA Vectors 
D. Define ZETA Vector 

B. Compute Magnitude of ZETA Vector 
C. Normalize ZNAQ by Taking Fourth 

Root 
D. Normalize ZETA Vector 
E. Define Zero Vector 

G. Compute Coordinate Transformation (SPLTRN) 
A. Define Vector from Two Points 
B. Define XIBAR Component 
C. Define ETABAR Component 
D. Define ZETBAR Component 
E. Define Factor for Scaling Two 

Dimensional Coordinate 
A. Define Unit Factor 
B. Defing Factor 

F. Define Two Dimensional Coordinate 
G. Program Error in Selection of XI and 

ETA Vectors 
A. Increment Error Count 
B. Take Error Exit 
C. Print Messages 

H. Compute Weights (WTLSQ) 
A. Define Vector from Origin to Point 
B. Compute Weight 
D. Compute Two Dimensional Radius Squared 
E. Normalize Weight 
F. Define Constrained Quadratic Least 

Squares 



B. Perform Constrained Quadratic Least Squares Fit 
(CQLSF) 

C. Spline Error 
A. Increment Error 
B. Take Error Exit 
C. Print Messages 
D. Clear Spline Vector 

D. Print Warning Messages 
E. Accumulate Spline Vector Contributions (VECUNV) 

A. Initialize Index Array 
A. Take Error Exit 

E. Define New Component of Union Vector 
A. Increment Numer of Components 
B. Take Error Exit 
C. Define Union Vector (ESPUT) 

C. Compute Lattice Indices 
D. Write BP-SPLINE-VECTOR 
F. Compute Lattice Indices of Column Edge Midpoint 

(Corner) (LATINO) 
G. Compute Spline Vector Row Edge Midpoint (SPLAP) 

C. Compute Unit Potential Spline Vector 
A. Compute Lattice Indices of Center Point 
B. Form Unit BP-SPLINE (UNIPOT) 

D. Get Arrays of Corner and Edge Midpoints 
B. Copy Columns Two Through Five into Columns One Through 

Four 
C. Get Next Column of Corner Points 

F. Compute Spline Vector for Corner Point (SPLAPO 
D. Print Fatal Error ~essage 
E. Write Error Data Set 

A. Form Error Information 
B. Put ttlDGF Error Data 
C. Take Fatal Error Exit 

F. Obtain Average Data at Grid Points (Overlay (6,0)) 
A. Open Data Base and Define Maps 

A. Open Data Bases 
B. Define Maps 

B. Get Network Specification Data 
C. Determine BC Stagnation Option 
D. Assemble Network Geometry Data (NETGEM) 

A. Initialize 
B. Get Panel Points Geometry Data from MDGF 
C. Form Grid of Panel Center Control Points 
D. Form Fine Grid Geometry Data for Network 
E. Compute Spline Data for Entire Network (SPLCP) 

A. Define Fine Grid Dimensions 
B. Define Spline Vectors for Mesh Points 
C. Adjust Splines for Edge Mesh Points Along any 

Coll apsed Edges 
D. Evaluate Panel Center Spline Vectors 

8-B.ll 



G. 

8-B.12 

E. Assemble Flow Data for Center Control Points (CPFLOW) 
A. Initialize 
B. Get Flow Data for Center Control Points from ~mG 
C. Store VIC Velocity Components and Normal Perturbation Mass 

Flux 
D. Read Potential Data from Edge and Additional. Control Points 

F. Compute Flow Data at Grid Points (VSPRED) 
A. Spread IJormal Mass Flux Data (WNSPRD) 
B. Spread Velocity Data (VSPRET) 

G. Compute and Store Average Flow Data at Grid Points (STGP) 
A. Initialize 
B. Form Grid Point Set Sequence 
C. Get Singularity Values for Grid Points in the Set 
D. Assemble Singularity Data for Grid Points 
E. Compute Averae Perturbation Potential and Normal Mass Flux 

for the Grid Points 
A. Determine Fine Grid Rowand Column Indicies 
B. Get BP-Spline Vectors from NDGF 
C. Compute Potential Using Spline Vectors 
D. Compute Potenti a 1 and Norma 1 ~1ass Fl ux for Lower 

Surface Stagnation Solution 
C. Compute Potential and Normal Nass Flux for Upper 

Surface Stagnation Solution 
F. Assemble VIC Velocity Data for Grid Points 

H. Compute Flow Data at Edge Control Points (EDGECP) 
A. Form and Initialize Loop Control Table 
B. Get Loop Control Parameters from Table 
C. Read Edge Control Point Data from ('lDG 
D. Compute VIC Velocity and Normal Mass Flux from 

Corresponding Grid Point Values 
E. Store Control Point Data in MDG 

I. Close Data Bases 
Print Error and Accounting Information (Overlay (7,0)) (EASY) 
A. Read Error Dataset (ESGET) 
B. Print Error Summary 
C. Formulate Accounting Summary 
D. Print Accounting Summary 
E. Write Accounting Summary 

B. Write DB-HEADER 
C. Close and Release MOGF-DB (PAClOS) 
D. Close MDG-DB (PACLOS) 



APPEtJDIX 8-C 

DATA BASE Cor~MUNICATIONS CHART 

The Data Base Communications Chart is presented in three forms. Each form is 
alphabetized by columns, from left to right. The first form has a column 
order of Data Base, Dataset Name, r·1ap Name, Common Block, and 
Program/Subroutine. The second form has a column order of the Data Base, Map 
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has 
a column order of Common Block, Data Base, Map Name, Dataset Name, and 
Program/Subroutine. Thus a person can get a cross reference on a data element 
by knowing either the Dataset Name, Map Name or Common Block name. 

a-C.l 



Page Missing in 

Original Document 



FIRST FORM 

Overlay (1,0) 

COM~ION PROGRAM/ 
DATA BASE DATASET NAME MAP NAME BLOCK SUBROUTINE 

DIP GLOBAL GLOBAL /GLOBDT/ OPCKDB 
DQG CONTROL-PT-SPEC CPSPEC Dynamic* OPCKDB 
DQG GLOBAL GLODQG /GLOBDT/ OPCKDB 
DQG ~1DG-PANEL-SPEC PANELS /GPGEOM/ OPCKDB 

/PAtJDAT / 
DQG NETWK-SPEC NETWK /NETDAT/ OPCKDB 

Dynamic* 
DQG PANEL-SPEC PANELS /PANDAT/ OPCKDB 

Dynamic* 
DQG SPECIAL-POINTS SPECPT Dynamic* OPCKDB 
MAK MAG-PANEL-DATA MAG-PAN /PANPKW/ OPCKDB 
r~AK SYNMETRY MAGSY/"~t /SYf4MET / OPCKDB 
MDG CP-GEor~ CPFGEOM /CPGEO~I/ OPCKDB 
MDG GLOBAL GLOBMD /GLOBDT/ OPCKDB 

Dynamic* 
l·lOG GLOBAL GLOBMID /NETLST/ OPCKDB 
I'IOG GP-GEOM GPGEOM /GPGEOM/ OPCKDB 
1,1OG MAG-PANEL-DATA ~IDGPAN /PANPKW/ OPCKDB 
~1DG NETWORK-SPEC NETWKS Dynamic* OPCKDB 
MDG SOLUTION-DATA t4DGSOL /SOLLID/ OPCKDB 
MDGF ERROR ERR /MDGERR/ OPCKDB 
MDGF PANEL-POINTS PANPTS /CPDAT/ OPCKDB 

/GPSET/ 
Dynamic* 

RHS SOLUTION-DATA SOLDAT /SOLLID/ INITCB 
/SOLLST/ 

Overlay (2,0) 

COMMON PROGRAM/ 
DATA BASE DATASET NAME ~IAP NAME BLOCKS SUBROUTINE 

t4DGC BLOCKED-LAf.lBDA BLKLA/'\ /BLKLAM/ PNPY 
Dynamic* 

MDGC IC-LANBDA ICLAMB /I CLAM/ Pt4PY 
Dynamic* 

NDGC ERROR ERR /MDGERR/ PI·tPY 
MDGM ROW-BLOCK-MATRIX RBLMAT /BLA~1B/ P/ViPY 

Dynamic* 
MAK COLMAPO COL3 Dynam;c* PNPY 
~IAK SYMMETRY SY~IMAP /SYHMET/ PMPY 
RHS BLOCK-INFO BLRHIN /BLKIFO/ P/vlPY 
RHS LAM-MAT LAfvlMAP Dynamic* PMPY 
RHS LAt4B DA-KNOWN LAMKWN /~1AGAP/ PMPY 

Dynamic* 
RHS LAMBDA-UNKNOWN LAMUNK /NAGAR/ PMPY 

8-C.3 



Overlay (3,0) 

COMr~ON PROGRAM/ 
DATA BASE DATASET NAME MAP NAME BLOCKS SUBROUTINE 

DQG NETWK-SPEC NETWK /NETDAT/ OPDBM 
Dynamic* 

DQG PANEL-SPEC PANELS /PANDAT/ OPDBM 
Dynamic* 

DQG CONTROL-PT-SPEC CPSPEC Dynamic* OPDBH 
DQG B-SPLINE-DOUBLET SPLINE /BSPLIN/ OPDBM 

Dynamic* 
DQG B-SPLINE-SOURCE SSPLINE /BSPLIN/ OPDBM 

Dynamic* 
14DGC CP-LAMBDA CPLMB /CPLAr~B/ OPDBN 

Dynamic* 
~1DGC BLOCKED-LANBDA BLKLAM /LAMBLK/ OPDB!~ 

Dynamic* 
MDGF PANEL-POINTS PANPTS /CPDAT/ OPDBN 

/GPSET/ 
Dynamic* 

MDGF GP-LAMBDA GPLA~l /GPBLAM/ OPDB~l 
Dynamic* 

Overlay (4,0) 

COMMON PROGRAM/ 
DATA BASE DATASET NAME MAP NA~lE BLOCK SUBROUTINE 

DQG NETWK-SPEC NETWK /NETDAT/ AQCP 
Dynamic* 

DQG BNDRY-CONDN-SPEC BNDRY /BCVALU/ AQCP 
Dynamic* 

MDG CP-DATA CPDATA /DATACP/ AQCP 
MDG CP-DATA CPDATA Dynamic* AQCP 
MDGC CP-LAMBDA CPLMB Dynamic* AQCP 
NDGF PANEL-POINTS PANPTS /CPDAT/ AQCP 

/GPSET/ 
Dynamic* 

MDGF ERROR ERR /MDGERR/ AQCP 
MDGF CP-BLOCK-DATA CPBLKD Dynamic* AQCP 
NAK IC-t4ATRICES ICMAT /MAGPAR/ AQCP 

Dynamic* 
AQCP 

~1AK ROWMAP-INVERSE ROWIN3 Dynamic* AQCP 
MAK ROWMAP ROW3 Dynamic* AQCP 
RHS SING-KNOWN SNGKWN Dynamic* AQCP 
RHS LAr~BDA-UNKNOWN LAMUNK Dynamic* AQCP 
RHS RHS-KNOUN SKWN Dynamic* AQCP 
RHS RHS-UNKNOWI~ SUNK Dynamic* ACQP 
RHS ONSET-FLOW RHSOSF Dynamic* AQCP 

8-C.4 



,--'. 

DATA BASE 

DQG 
DQG 
DQG 

MDGF 
MDGF 

DATA BASE 

DQG 

DQG 

fvlDG 

('<jDG 

r..,DGF 

MDGF 

MDGF 
tmGF 

t1DGF 

DATA BASE 

MDG 
MDGF 

Over 1 ay (5 , 0 ) 

DATASETNAME ~IAP NA(v(E 

CONTROL-PT-SPEC CPSPEC 
PANEL-CORNER-COORDS COORDS-GEN 
NETWK-SPEC NETWK 

ERROR ERR 
B-SPLINE-VECTOR BPSVEC 

Overlay (6,0) 

DATASET NAME fvlAP NAME 

MDG-PANEL-SPEC PANELS 

NETWK-SPEC NETWK 

CP-DATA CPDATA 

GP-DATA GPDATA 

PANEL-POINTS PANPTS 

BP-SPLINE-VECTOR SPSVEC 

CP-BLOCK-DATA CBBLKD 
GP-LAfvlBDA GPLAt<1 

ERROR ERR 

Overlay (7,0) 

DATASET-NAME MAP NAME 

DATA-BASE-HEADER DBHEAD 
ERROR ERR 

CONMON 
BLOCK 

Dynamic* 
Dynamic* 
/NETDAT/ 
Dynamic* 

/MDGERR/ 
/BPSPL/ 

COMMON 
BLOCK 

/GPSET/ 
Dynamic* 
/NETDAT/ 
Dynamic* 
/DATACP/ 
Dynamic* 

/DATGP/ 
Dynamic* 

/CPDAT/ 
/GPSET/ 
Dynamic* 
/BPSPL/ 
Dynamic* 
Dynamic* 
/GPBLAM/ 
Dynamic* 
/t·1DGERR/ 

COfvlNON 
BLOCK 

/RUNID/ 
/t1DGERR/ 

PROGRAM/ 
SUBROUTINE 

BPSV 
BPSV 
BPSV 

BPSV 
BPSV 

PROGRAM/ 
SUBROUTINE 

GPQTY 

GPQTY 

GPQTY 

GPQTY 

GPQTY 

GPQTY 

GPQTY 
GPQTY 

GPQTY 

PROGRAr..,/ 
SUBROUTINE 

EASY 
EASY 

a-c.s 



SECOND FORM ~, 

Overlay (1,0) 

COMt·i0N PROGRAM/ 
DATA BASE MAP NAME DATASET NAI'4E BLOCK SUBROUTINE 

DIP GLOBAL GLOBAL /GLOBDT/ OPCKDB 
DQG CPSPEC CONTROL-PT-SPEC Dynamic* OPCKDB 
DQG GLODQG GLOBAL /GLOBDT/ OPCKDB 
DQG NETWK NETWK-SPEC /NETDAT/ OPCKDB 

Dynamic* 
DQG PANELS t4DG-PANEL-SPEC /PANDAT/ OPCKDB 

/GPGEOM/ 
DQG SPECPT SPECIAL-POINTS Dynamic* OPCKDB 
MAK MAG-PAN r'4AG-PANEL-DATA /PANPKW/ OPCKDB 
MAK MAGSYfvlM SYMMETRY /Syr,lMET/ OPCKDB 
MDG CPFGEOM CP-GEON /CPGEOM/ OPCKDB 
~lDG GLOBfvlD GLOBAL /GLOBDT/ OPCKDB 

Dynamic* 
MDG GLOBtUD GLOBAL /NETLST/ OPCKDB 
NDG GPGEOM GP-GEQt·l /GPGEOM/ OPCKDB 
MDG NETWKS NETWORK-SPEC Dynamic* OPCKDB 
MDG MDGPAN f4AG-PANEL-DATA /PANPKW/ OPCKDB 
MDG tflDGSOL SOLUTION-DATA /SOLLID/ OPCKDB 
MDGF ERR ERROR /MDGERR/ OPCKDI3 
~1DGF PANPTS PANEL-POINTS /CPDAT/ OPCKDB 

/GPSET/ 
Dynamic* 

RHS SOLDAT SOLUTION-DATA /SOLLID/ INITCB 
/SOLLST/ 

Overlay (2,0) 

COMMON PROGRAN/ 
DATA BASE ~1AP NAME DATASET NAME BLOCKS SUBROUTINE 

MDGC BLKLAM BLOCKED-LAMBDA /BLKLAM/ PMPY 
Dynamic* 

MDGC ICLAMB IC-LAMBDA /ICLAM/ PMPY 
Dynamic* 

NDGC ERR ERROR /NDGERR/ PMPY 
~1DGM RBLMAT ROU-BLOCK-IIIATRIX /BLAMB/ PMPY 

Dynamic* 
MAK COL3 COLMAPO Dynamic* PMPY 
~1AK Syt·l~1AP SYMMETRY /SYMMET/ PI'IPY 
RHS BLRHIN BLOCK-INFO /BLKIFO/ Pf·IPY 
RHS LAMI..,AP LAtvl-MAT Dynamic* PMPY 
RHS LANKWN LAMBDA-KNOWN /MAGAP/ PMPY 

Dynamic* 
RHS LAf~UNK LAMBDA-UNKNOWN /MAGAR/ P~lPY 

8-C.6 



r', 
Over 1 ay (3 , 0 ) 

COMMON PROGRAI~/ 
DATA BASE MAP NAME DATASET NAME BLOCKS SUBROUTINE 

DQG NETWK NETWK-SPEC /NETDAT/ OPDBM 
Dynamic* 

DQG PANELS PANEL-SPEC /PANDAT/ OPDBM 
Dynamic* 

DQG CPSPEC CONTROL-PT-SPEC Dynamic* OPDBM 
DQG SPLINE B-SPLINE-DOUBLET /BSPLIN/ OPDBM 

Dynamic* 
DQG SSPLINE B-SPLINE-SOURCE /BSPLIN/ OPDBM 

Dynamic* 
14DGC CPLMB CP-LAIvlBDA /CPLAMB/ OPDBM 

MDGC BLKLAM BLOCKED-LAMBDA 
Dynamic* 
/LAlvtBLK/ OPDBlv! 
Dynamic* 

t4DGF PANPTS PANEL-POINTS /CPDAT/ OPDBM 
/GPSET/ 
Dynamic* 

MDGF GPLAM GP-LAMBDA /GPBLAM/ OPDBM 
Dynamic* 

Overl ay (4,0) 

COMMON PROGRAfvl/ 
DATA BASE f4AP NAME DATASET NAME BLOCK SUBROUTINE 

DQG NETWK NETWK-SPEC /NETDAT/ AQCP 
Dynamic* 

DQG BNDRY BNDRY-CONDN-SPEC /BCVALU/ AQCP 
Dynamic* 

~1DG CPDATA CP-DATA /DATACP/ AQCP 
f1DG CPDATA CP-DATA Dynamic* AQCP 

NDGC CPU4B CP-LAMBDA Dynamic* AQCP 

MDGF PANPTS PANEL-POINTS /CPDAT/ AQCP 
/GPSET/ 
Dynamic* 

MDGF ERR ERROR /MDGERR/ AQCP 
~tDGF CPBLKD CP-BLOCK-DATA Dynamic* AQCP 
MAK ICMAT IC-~lATRICES /MAGPAR/ AQCP 

Dynamic* 
UPDCPKNUKICT AQCP 

MAK ROWIN3 ROW!i(AP-INVERSE Dynamic* AQCP 
MAK ROH3 ROWlvlAP Dynamic* AQCP 

RHS SNGKWN SING-KNUHN Dynamic* AQCP 
RHS LM1UNK LAlvtBDA-UNKNOWN Dynamic* AQCP 
RHS SKWN RHS-KNOWN Dynamic* AQCP 

,r- RHS SUNK RHS-UNKNOWN Dynamic* ACQP 
RHS RHSOSF ONSET-FLOW Dynamic* AQCP 

a-C.7 



DATA BASE 

DQG 
DQG 
DQG 

NDGF 
MDGF 

DATA BASE 

DQG 

DQG 

MDG 

MDG 

MDGF 

t~DGF 

t~DGF 
NDGF 

MDGF 

DATA BASE 

MDG 
MDGF 

a-c.a 

MAP NAME 

CPSPEC 
COORDS-GEN 
NETWK 

ERR 
BPSVEC 

MAP NAME 

NETWK 

PANELS 

CPDATA 

GPDATA 

PANPTS 

SPSVEC 

CBBLKD 
GPLAt~ 

ERR 

MAP NA~lE 

DB HEAD 
ERR 

Overla,l (5,0) 

COMMON 
DATASETNAME BLOCK 

CONTROL-PT-SPEC Dynamic* 
PANEL-CORNER-COORDS Dynamic* 
NETWK-SPEC 

ERROR 
B-SPLINE-VECTOR 

Overl ay (6,0) 

DATASET NAME 

NETWK-SPEC 

MDG-PANEL-SPEC 

CP-DATA 

GP-DATA 

PANEL-POINTS 

BP-SPLINE-VECTOR 

CP-BLOCK-DATA 
GP-LAr~BDA 

ERROR 

Overlay (7,0) 

DATASET-NAME 

DATA-BASE-HEADER 
ERROR 

/NETDAT/ 
Dynamic* 

/MDGERR/ 
/BPSPL/ 

COMMON 
BLOCK 

/NETDAT/ 
Dynamic* 
/GPSET/ 
Dynamic* 
/DATACP/ 
Dynamic* 

/DATGP/ 
Dynamic* 

/CPDAT/ 
/GPSET/ 
Dynamic* 
/BPSPL/ 
Dynamic* 
Dynamic* 
/GPBLAt-1/ 
Dynamic* 
/IvlDGERR/ 

COMMOIJ 
BLOCK 

/RUNID/ 
/MDGERR/ 

PROGRAtV 
SUBROUTINE 

BPSV 
BPSV 
BPSV 

BPSV 
BPSV 

PROGRAM/ 
SUBROUTINE 

GPQTY 

GPQTY 

GPQTY 

GPQTY 

GPQTY 

GPQTY 

GPQTY 
GPQTY 

GPQTY 

PROGRAtV 
SUBROUTINE 

EASY 
EASY 

,~ 



THIRD FORM 

Overl ay (1,0 ) 

COMMON PROGRAM/ 
BLOCK DATA BASE NAP NANE DATASET NAME SUBROUTINE 

/GLOBDT/ DIP GLOBAL GLOBAL OPCKDB 
/GLOBDT/ DQG GLODQG GLOBAL OPCKDB 
/GPGEOW DQG PANELS r~DG-PANEL-SPEC OPCKDB 
Dynamic* DQG CPSPEC CONTROL-PT-SPEC OPCKDB 
/NETDAT/ DQG NETWK NETHK-SPEC OPCKDB 
Dynamic* 
/PANDAT/ DQG PANELS MDG-PANEL-SPEC OPCKDB 
Dynamic* DQG SPECPT SPECIAL-POINTS OPCKDB 
/PANPKW/ MAK I1AG-PAN I~AG-PANEL-DATA OPCKDB 
/PANPKW/ MAK MAGSntM SYr~METRY OPCKDB 
/CPGEmv MDG CPFGEOM CP-GEOM OPCKDB 
/GLOBDT/ t4DG GLOBMD GLOBAL OPCKDB 
Dynamic* 
/NETLST/ MDG GLOBMID GLOBAL OPCKDB 
/PANPKW/ MDG MDGPAN "lAG-PANEL-DATA OPCKDB 
/GPGEor~/ MDG GPGEOM GP-GEOM OPCKDB 
Dynamic* ~tDG NETWKS NETWORK-SPEC OPCKDB 
/SOLLID/ '~DG r~DGSOL SOLUTION-DATA OPCKDB 

~ /MDGERR/ tlDGF ERR ERROR OPCKDB 
/CPDAT/ MDGF PANPTS PANEL-POINTS OPCKDB 
/GPSET/ 
Dynamic* 
/SOLLID/ RHS SOLDAT SOLUTION-DATA !IUTCB 
/SOLLST/ 

Overl ay (2,0) 

COt~MON PROGRAM/ 
BLOCKS DATA BASE MAP NAr~E DATASET NAME SUBROUTINE 

/BLKLAM/ MDGC BLKLAi·l BLOCKED-LAMBDA P'~PY 
Dynamic* 
/ICLAM/ ~1DGC ICLAMB IC-LAMBDA PIIIPY 
Dynamic* 
/t·1DGERR/ r~DGC ERR ERROR PI~PY 

/BLAMB/ MDGM RBLr4AT ROW-BLOCK-NATRIX PMPY 
Dynamic* 

Dynamic* MAK COL3 COLl,IAPO Pi<1PY 
/SYf~MET / t4AK SYI'lMAP SYttlMETRY pr1PY 

/BLKIFO/ RHS BLRHIN BLOCK-HJFO PMPY 
Dynamic* RHS LAMMAP LAI~-MAT Pl4PY 
/MAGAP/ RHS LAt'lKWN LAMBDA-KNmJN PMPY 
Dynamic* 
/MAGAR/ RHS LAMUNK LAMBDA-UNKNOWN P~IPY 

a-c.g 



Overlay (3,0) 

COMMOtJ PROGRAM/ 
BLOCKS DATA BASE MAP NM1E DATASET NAr~E SUBROUTINE 

/NETDAT/ DQG NETWK NETWK-SPEC OPDBM 
Dynami c* 
/PANDAT/ DQG PANELS PANEL-SPEC OPDBrvt 
Dynamic* 
Dynamic* DQG CPSPEC COtHROL-PT -SPEC OPDBM 
/BSPLIN/ DQG SPLINE B-SPLINE-DOUBLET OPDBIv1 
Dynamic* 
/BSPLIN/ DQG SSPLINE B-SPLINE-SOURCE OPDBr~ 

Dynamic* 

/CPLAMB/ MDGC CPLMB CP-LAMBDA OPDBM 
Dynamic* 
/LAMBLK/ MDGC BLKLAN BLOCKED-LANBDA OPDBM 
Dynamic* 

/CPDAT/ MDGF PANPTS PANEL-POINTS OPDBM 
/GPSET/ 
Dynamic* 
/GPI3LAtV I'1DGF GPLAM GP-LAMBDA OPDBM 
Dynamic* 

Over 1 ay (4 ,0 ) 

COMMOIJ PROGRAt<1/ 
BLOCK DATA BASE t<1AP NAt<IE DATASET NAME SUBROUTINE 

/NETDAT/ DQG NETWK NETWK-SPEC AQCP 
Dynamic* 
/BCVALU/ DQG BNDRY BNDRY-CONDN-SPEC AQCP 
Dynamic* 
/DATACP/ MDG CPDATA CP-DATA AQCP 
Dynamic* MDG CPDATA CP-DATA AQCP 

Dynamic* r~DGC CPLMB CP-LAI·lBDA AQCP 

/CPDAT/ ~1DGF PANPTS PANEL-POINTS AQCP 
/GPSET/ 
Dynamic* 
/~1DGERR/ NDGF ERR ERROR AQCP 
Dynamic* t1DGF CPBLKD CP-BLOCK-DATA AQCP 
/t'IAGPAR/ 14AK ICMAT IC-~1ATRICES AQCP 
Dynamic* 
UPDCPKNUKICT AQCP 
Dynamic* MJ'.K ROWIN3 ROWMAP-INVERSE AQCP 
Dynamic* r·1AK ROW3 ROWMAP AQCP 
Dynamic* RHS SNGKWN SING-KNOWN AQCP 
Dynal!lic* RHS LANUNK LAMBDA-UNKNOWN AQCP 
Dynamic* RHS SKWN RHS-KNOWN AQCP 
Dynamic* RHS SUNK RHS-UNKNOWN ACQP 
Dynamic* RHS RHSOSF ONSET-FLOW AQCP 

8-C.lO 



r 

Over 1 ay (5 , 0 ) 

COI~MON PROGRAfvI/ 
BLOCK DATA BASE f~AP NANE DATASETNAfvlE SUBROUTINE 

Dynamic* DQG CPSPEC CONTROL-PT-SPEC BPSV 
Dynamic* DQG COORDS-GEN PANEL-CORNER-COORDS BPSV 
/NETDAT/ DQG NETWK NETWK-SPEC BPSV 
Dynamic* 

/MDGERR/ MDGF ERR ERROR BPSV 
/BPSPL/ MDGF BPSVEC B-SPLINE-VECTOR BPSV 

Overlay (6,0) 

Cor~MON PROGRAM/ 
BLOCK DATA BASE r~AP NAME DATASET NAME SUBROUTINE 

/DATACP/ r,tOG 
Dynamic* 

CPDATA CP-DATA GPQTY 

/GPSET/ DQG MDG-PANEL-SPEC PANELS GPQTY 
Dynamic* 
/NETDAT/ DQG NETWK NETWK-SPEC GPQTY 
Dynamic* 

/DATGP/ fvlDG GPDATA GP-DATA GPQTY 
Dynamic* 

/CPDAT/ MDGF PANPTS PANEL-POINTS GPQTY 
/GPSET/ 
Dynamic* 
/BPSPL/ MDGF SPSVEC BP-SPLINE-VECTOR GPQTY 
Dynamic* 
Dynamic* f4DGF CBBLKD CP-BLOCK-DATA GPQTY 
/GPBLAM/ MDGF GPLAM GP-LAI~BDA GPQTY 
Dynamic* 
/~IDGERR/ r~DGF ERR ERROR GPQTY 

Overlay (7,0) 

Cor~MON PROGRAM/ 
BLOCK DATA BASE MAP NAME DATASET-NAME SUBROUTINE 

/RUNID/ ~1DG DBHEAD DATA-BASE-HEADER EASY 
/11DGERR/ MDGF ERR ERROR EASY 

* Dynamic mapping is used for some or all elements of a dataset thus 
requiring no common block storage. See section 13 of this document for 
details of dynamic mapping. 

a-C.ll 



APPENDIX 8-0 MASTER DEFINITION 

The data base master definition listing of the MUG module has been deleted 
from this document. It is produced from the PAN AIR tape during installation. 

8-0.1 



APPENDIX 8-E SYMMETRIZATION 

8-E.l 



Page Missing in 

Original Document 



The PAN AIR Theory Document (Reference 1) shows how the cost of 
solutions to the potential flow problem can be significantly reduced in the 
case that the configuration (and/or flow) is symmetric about some plane called 
a plane of symmetry (POS). When flow symmetry exists, the singularity 
parameters provided by RHS and the IC matricies provided by MAG are linear 
combinations of values on either side of the plane of symmetry. However, for 
the evaluation of the pressures, forces, and moments on the configuration by 
module PDP and COP, it is necessary to use the values of singularity 
parameters and flow quantities at the actual points on the configuration. 
This process of obtaining the values of parameters at the points from the 
linear combinations of parameters (symmetrized parameters) is referred to as 
unsymmetrization. A general algorithm for unsymmetrizing 1, 2 or 4 distinct 
images is given. • 

The known singularities from RHS are already unsymmetrized. Quantities 
unsymmetrized by MDG are the unknown singularities stored on the RHS data base 
and the symmetrized flow quantity values obtained by multiplying symmetrized 
singularities by symmetrized IC matrix values. The latter flow quantities are 
potential, normal mass flux, and average velocity. The unsymmetrized 
quantities stored by MDG have not been scaled in sign when reflected across 
the POS. 

There are potentially four quadrants defined by up to two planes of 
symmetry. (For visualization consider the x-z plane as the first POS and the 
x-y plane as the second POS.) If no POS exists, or there is no flow asymmetry 
with respect to either POS then there is only one distinct image. If flow 

r-' asymmetry exists with respect to only one POS then there are two distinct 
images. If flow asymmetry exists with respect to both POS, four distinct 
images exist. 

MDG stores data on the CP-DATA and GP-DATA datasets by distinct images 
and solutions. However, throughout its internal processing, unsymmetrized 
quantities are stored in blocks, by images, for each solution with a maximum 
of 36 quantities per block; for one distinct image up to 36 solutions, for two 
distinct images up to 18 solutions, and for four distinct images up to 9 
solutions, respectively for each block of data. 

8-E.3 



8-E.4 

The general algorithm is as follows: 

Data Definition: 

U unsymmetrized quantities indexed by distinct image and 
solution 

F scale factor equal to 1/2 raised to the number of planes of 
symmetry 

S symmetrized quantities indexed by distinct image and solution 

SIGN a four by four matrix defined as 

SIGN(I ,J) = 1 if 1=1 or J=l or I+J=6 
= -1 otherwise 

Execution sequence: 

Initialize U to zero 

For each distinct image I do 

For each solution K do 

For each distinct image J do 

Retrieve S(J,K) 

U(I,K) = U(I,K) + F * SIGN(I,J) * S(J,K) 

Enddo on distinct image J 

Enddo on solution K 

Enddo on distinct image I 



APPENDIX 8-F MDG LIBRARY FUNCTIONAL DECOMPOSITION 

This functional decomposition of the subprograms, which are used in 
different levels of the MDG module, is presented here. These subprograms are 
used only in the MDG module of the PAN AIR system and, so, physically reside 
in the module. 

8-F.l 



Page Missing in 

Original Document 



CMPDSV 

A. 
C. 
D. 

CMPSSV 

ICALC 

A. 
B. 
C. 

A. 
B. 
C. 
D. 
E. 
F. 
G. 
H. 

MDG Library - General 

Compute Doublet Singularity 

Multiply Sub panel Doublet Spline and Singularity Vector 
Compute MY 
Store Doublet Singularity 

Compute Source Singularity Value 

Multiply Sub panel Source Spline and Singularity Vector 
Compute Source Singularity at Point 
Store Source Singularity 

Compute IC Values at Control Point 

Clear Result Array (ZERO) 
Define Updatability and Known Indicies for Partition 
Get Pointer of IC Row 
Define Pointer to Singularity Vector 
Get Partition of Singularities 
Compute Inner Product of IC Rowand Singularity Vector 
Accumulate Contribution to Result Array and Unsymmetrize 
Fatal Error/IC Rowand Singularity Vector 

8-F.3 



8-F.4 

TBADD 

A. 
B. 
C. 
D. 
E. 
F. 

TBDELT 

A. 
B. 
C. 
D. 

TBINIT 

A. 
B. 
C. 
D. 
E. 
F. 

TBSRCH 

FSTBAD 

A. 
B. 
C. 
D. 
E. 

A. 
B. 
C. 
D. 
E. 
F. 
G. 
H. 

MDG Library - Table Manager 

Add to Table 

Determine Table Number 
Increment REF-COUNT 
Get Free Space Table 
Add Entry to Table 
Add Key to Table Data 
Print Errors 

Delete Least Recently Used from Table 

Initialize Smallest 
Set Smallest 
Delete Key Table Entry 
~10ve Key Up One 

Initialize Table ~1anager for Table 

Edit Inputs 
Define Key Table and Initialize Ref-Count 
Initialize Number of Table Entries 
Initialize Free Space Table 
Print Error Message 
Set Error Return Code 

Search Table for Entry 

Determine Table Number 
Determine Number of Table Entries 
Set Not Found 
Binary Search on Key Entries 
Print Errors 

Free Space Table Add 

Initialize Merge Flag 
Check for Merge 
Increment Block Count 
Increment Number of Free Space Sets 
Change Last Location 
Define New Free Space Lac, NUM-BLKS = 1 
Merge Blocks of Free Space 
Define Free Space Block 



FSTBDL 

DPANCP 

DINGPS 

FCPDAT 

GETSPT 

A. 
B. 
C. 
D. 
E. 

A. 
B. 
C. 
D. 
E. 

A. 
B. 
C. 
D. 
E. 
F. 

A. 
B. 
C. 
D. 

A. 
B. 
C. 
D. 

MCPDAT 

A. 
B. 
C. 
D. 
E. 

MDG Library - Table Manager 

Free Space Table Delete 

Define Free Space Location 
Define Last Location 
Decrement BLOCK-COUNT 
Decrement NUM-LOCS 
Define Last Location 

Define Panel Control Points 

Define PANEL POINTS 
Search of Panel Corner Points (SPANCP) 
Form Control Point Data for Corner Points (FCPDAT) 
Form Control Point Data for Edge Midpoint (FCPDAT) 
Form Control Point Data for Center Point (FCPDAT) 

Define Interior Grid Point Set 

Set IPNROW equal to PANEL-ROW 
Set IPNCOL equal to PANEL-COL 
Set number of GPSETS to one 
Set number of points in set to four 
Define grid point set 1 points 1,S,8,9 
Define panel fine grid point 

Form Control Point Data 

Define CP Lattice Key 
Get CONTROL-PT-SPEC DATA (ESGET) 
Move Data to /CPDAT/ 
Take SDMSRR 

Get SPECIAL-POINTS 

Form Key 
Get Special Points (ESGET) 
Get Special Points (ESGET) 
Take SDMS Error Exit (SDMSRR) 

Move Data to /MCPDAT/ 

Increment CP Count 
Move Sub panel Number 
Move CP+INDEX 
Move CP-COORDS 
Move Panel Points Number to CPANPT 

8-F.S 



8-F.6 

PUTPPT 

A. 
B. 

SPANCP 

A. 
B. 
C. 

SDMSRR 

A. 
B. 
C. 
D. 
E. 
F. 
G. 

MDG Library - Table Manager 

Put Panel Points 

Form Key 
Put Panel Points (ESPUT) 

Search for Panel Corner on Edge 

Set Flag and Initialize 
Determine Row/Col Parameters 
Compare Points 

SDMS Error Exit 

Set Fatal Flag 
Increment Fatal Error Count 
Print Fatal Error Diagnostic 
Form MDGERR Data 
Form Non-Fatal MDG Error Data 
Increment Total Error Count 
Put MDGF-ERROR Data (ESPUT) 



APPENDIX 8-G MDG LIBRARY USAGE 

8-G.l 



Page Missing in 

Original Document 



8-G.l Panel Points Library Usage 

In order to determine the control points and grid point sets for each panel in 
a network, a separate set of routines were written in the MDG (1 ,O) overlay 
for use in the MDG (3,0), (4,0), and (6,0) overlays by reading the ~IDGF data 
base PANEL-POINTS dataset. These routines consist of both general and special 
purpose applications to generate panel points data for different network 
configurations. The general routines define the default grid point set (panel 
points l,5,8,9) as shown below: 

4-----7-----3 
I I 

8 9 6 

1-----5-----2 

These routines also process control point data from the DQG CONTROL-SPEC 
dataset, getting special points from DQG for a network edge, moving the 
control point data to the output buffer, executing an SDMS ESPUT of the panel 
points data, searching for special points on an edge, getting center control 
point data, and computing the panel points for a single panel network, single 
row or column network. Other routines handle special cases such as single row 
or single column network, calculating the control points for parallel edges 
simultaneously, or the case for networks consisting of two panel rows or 
columns. The control point data for each panel is contained on the /CPDAT/ 
common block and consists of the number of control points contained in the 

,~ panel, the DQG control point index, the control point coordinates, the 
subpanel number of the control point, the panel point number, the fine grid 
row lattice, and column lattice of each control point. The grid point data 
contains: the fine grid lattices of the first panel point in each grid point 
set used as key values for grid point data stored in the overlays (3,0) and 
(6,0). It also contains the number of grid point sets, the number of grid 
points in each grid point set and the panel point numbers of the grid points 
in the sequence. 

8-G.3 



8-G.2 Table Manager Library Usage 

The table manager is a family of programs designed to provide an in-core 
storage of data associated with splining operations in the MDG (3,0) and (6,0) 
overlays (although it is more general in its implementation). Use of the 
table manager is started by a call to TBINIT with arguments (1,1,1,0). This 
clears out previous table information and initializes the table manager to 
begin processing. For each table used subsequent calls to TBINIT are made 
telling the name of the table, number of entries to be contained in the table 
(must be less than maximum allowable, or an error occurs), number of keys 
required to retrieve an item from the table (maximum of 5 allowed), and size 
of a cell in the table (maximum size is 36).' Because of the fixed dimensions 
of the common block arrays used in the table manager only two tables are 
allowed. This is the maximum currently used by MDG. After initialization the 
tables are considered empty and reference counts are set to zero. Hereafter, 
each addition (TBADD call) or search for an entry in the table (TBSRCH) 
increments the global reference count of the entry if found. This count 
determines the least recently used entries for the table which will be deleted 
when the table is full. The actual tables of data are stored by the user and 
passed to the table manager as a formal parameters in calls to TBADD and 
TBSRCH. Data in the table is stored through the TBADD routine and is not 
moved which in the table, except by the user, or through deletion when the 
table is full. In order to search for an entry in the table a key table is 
kept in sorted order by ascending keys. Each time an add is made the entry 
point of the table data is returned as the formal parameter ILOC. This is the 
same entry returned on a call to TBSRCH, but ILOC is equal to -1 if the entry 
is not found in the table. When the table is full the table manager 
internally calls TBDELT from TBADD which searches through all reference counts 
until the smallest value is found. Another internal call to FSTDBL deletes 
this entry from the key table (KEYTBL common block) and a call to FSTBAD is 
made adding the location of the newly deleted item as the new free space 
location (FREESP common block). In its current implementation only one item 
is deleted when the table is full, but the FSTDBL routine is designed to 
accommodate multiple deletions from the table which would be more efficient 
when a large number of table entries are initialized. When entries are added 
to or deleted from the key table, the length of the table or equivalently the 
number of entries in the table is updated. The common blockTBDAT has global 
information formed in the call to TBINIT about the key size, cell size, and 
maximum number of entries. 

8-G.3 SDMS Error Processing 

In MDG after each call to a data base using the SDMS calls ESGET, ESPUT, 
ESREP, DESGET, DESPUT, a check is made on the value of NERR in common block 
SDMSER which reflects the status of the SDMS call. If the status reflects a 
fatal error for further MDG processing, SDMSRR is called passing to it the 
value of NERR, the number of keys used in the SDMS call and their values, and 
an MDG assigned map number, the location in the program from which the call is 
made, and which overlay the call is being made from. SDMSRR increments the 
count of fatal errors contained in NFERR and sets FATAL true in the FATAL 
common block. SDMSRR writes a record on the error dataset with the 
information passed to it through the formal parameter list. In the last MDG 
overlay (7,0) the ERROR dataset is read and a summary of errors is printed. 

8-G.4 



9.0 POINT DATA PROCESSOR (PDP) t40DULE 

9.1 INTRODUCTION 

The PDP module is a post processor of the PAN AIR system. It presumes 
the existence of a solution to the potential flow problem and computes 
perturbation and total surface flow quantities from these data. 

Data bases from three PAN AIR modules are required to run PDP. These 
are the MEC (Module Execution Control), DIP (Data Input Processor) and the MDG 
(Minimal Data Generator) data bases. The MEC data base contains locationa1 
information of all data bases, the DIP data base. describes the surface flow 
options selected by user and the MDG data base provides PDP the configuration 
geometry and the solution data. 

The PDP module consists of a top level program which calls three main 
overlays. The first overlay checks the status of all data bases required by 
PDP and processes network specifications and global data. The second overlay 
computes average and difference velocities at each control and grid point of 
the selected networks and writes these data in a temporary data base. The 
third overlay reads these data to compute velocities, mass flux, pressure 
coefficients and local Mach numbers on selected surfaces (upper, lower, upper 
minus lower, lower minus upper and average). The computed data is printed out 
and/or stored in the PDP data base depending upon user selections. 

Details of computation of surface flow quantities is given in Section N 
of the PAN AIR Theory Document (Reference 1). The structure and format of the 
user input data for surface flow properties computation is described in 
Section 7.6.1 of the PAN AIR User's Manual (Reference 2). 

9.2 PDP OVERVIEW 

9.2.1 Purpose of PDP 

PDP computes perturbation and total mass flux, velocity, potential and 
pressures and local ~lach numbers at user selected point types (panel center, 
edge midpoint, and additional control points, fine grid points and points 
arbitrarily defined by user) and surfaces. The pressures and local Mach 
numbers are computed for isentropic, linear, second order, reduced second 
order and slender body approximations, depending upon user selection. 

9.2.2 PDP Input/Output Data 

9.2.2.1 Input 

Input data to PDP module comes from the MEG, DIP and MDG data bases. 
The MEC data base provides data base names, account number under which each 
data base resides on disk, date of creation and the status of the data bases, 
whether complete or incomplete. The DIP data base provides the user selected 
options for the PDP module. These options include the total number of cases 
of options for PDP, networks, solutions velocity computation and correction 
methods to be used and the pressure rules selected. 

The MDG module provides PDP with network geometry, source and doublet 
~ singularity strengths, perturbation potential, pertubation normal mass flux 

9. 1 



and perturbation velocity computed from the IC (Influence Coefficient) 
matrices. The geometry data consists of network specifications, coordinates 
of panel control and grid points and doublet spline matrices for subpanels. 
The potential, velocity· and mass flux data provided by MDG are the average 
values. 

9.2.2.2 Output 

The surface flow properties (velocities, mass flux, pressure 
coefficients, local Mach numbers, etc.) computed by PDP for control, grid and 
arbitrary points are printed and/or stored in the PDP permanent data base for 
later retrieval by the PPP module. Selection of each item in the output data, 
whether it should be printed and/or stored in the data base or not to be 
computed, is controlled by user specifications residing on the DIP data base. 

The printed output consists of an estimate on disk storage required for 
the PDP run, a summary of global options, a list of computation options 
selected by the user for each case, surface flow properties data selected for 
printing for each velocity computation method, velocity correction scheme and 
surface selected by the user. 

The PDP permanent data base provides global data, user options for each 
case, network specifications for the configuration and surface flow properties 
for control and grid points of the selected networks. Computed flow data for 
arbitrary points are only printed out and not stored in the PDP data base. 

9.2.3 Data Base Interfaces 

The MEC, DIP and MDG data bases provide input data to the PDP module. 
The MEC data base gives the name, account number, date of creation and other 
locational information for each data base. The DIP data base provides the 
user options for PDP. The MDG data base provides the global data, solution 
information, network geometry data, singulatities and perturbation values for 
velocity, potential and normal mass flux for control and grid points. 

PDP creates a temporary data base named PDPT which saves intermediate 
data computed in the second overlay COMVEL for use in the third overlay 
FLPROP. This temporary data base contains average and difference perturbation 
velocities and gradients of doublet strength as computed in COMVEL along with 
the minimal set of data for control and/or grid points obtained from the MDG 
data base. 

Figure 9.1 illustrates the relationships between PDP and all used data 
bases. 

9.3 MODULE DESCRIPTION 

9.3.1 Overall Structure 

The main overlays and their subroutines are briefly summarized in this 
paragraph. The functional decomposition of PDP is given in Appendix 9-B and a 
subroutine tree structure diagram is presented in Appendix 9-A. Figure 9.2 
illustrates the top level structure of the PDP module. 

9.2 



9.3.2 Overlay Descriptions 

A summary description of each overlay of the PDP module is given in the 
following paragraphs. 

9.3.2.1 PDP - Over1 ay (0,0) 

The top level overlay (Figure 9.3) of PDP initializes program variables, 
data bases and controls access to the three primary overlays. 

It calls Overlay OPDBI to check the status of DIP and MDG data bases, and 
defines the necessary data base maps. Then for each case of use,r requested 
options, the module calls into execution the two overlays COMVEL and FLPROP in 
that order. After processing the last case of options, it writes the 
DATA-BASE-HEADER dataset of the PDP data base, if generated. 

9.3.2.2 OPDBI Overlay (1,0) 

The second level overlay OPDBI (Figure 9.4) reads the MEC data base to 
retrieve run and problem identification (RID and PID). It checks the DIP and 
MDG data bases for completeness and if found unusable, returns a fatal error 
flag to the main overlay for end of execution. If the DIP and MDG data bases 
are found complete, OPDBI processes global data and network specifications 
from the MDG data base and user options from the DIP data base. It generates 
the PDP data base (if selected by user) and writes GLOBAL abd NETWK-SPEC 
datasets. While processing the user option cases, OPDBI estimates the disk 
storage requirements for each case and prints cut this information along with 
the total for the run. 

9.3.2.3 COf~VEL Overlay (2,0) 

The second overlay COMVEL (Figure 9.5) computes the gradients of 
perturbation potential and doublet strength and then the perturbation average 
and difference velocities at each control and grid point from a minimal set of 
data from the MDG data base. Details of velocity computation can be found in 
Section N.l of the PAN AIR Theory Document (Reference 1). The computations 
are performed panel by panel along each column of a network selected by user. 
This is done for each distinct image, i.e., across a plane of configuration 
symmetry with asymmetric flow (see description of input record G4 in Section 7 
of Reference 2). The gradient of the perturbation potential and the average 
velocity are computed only if the boundary condition method of velocity 
computation is selected by user. If the user selects the VIC (Velocity 
Influence Coefficient method), the average velocity at each point of a panel 
is obtained from the MDG data base. 

COMVEL stores the computed data along with singularity values, 
perturbation potential, perturbation normal mass flux, etc., as obtained from 
the MDG data base in the PDPT temporary data base. 

9.3.2.4 FLPROP Overlay (3,0) 

The third level overlay FLPROP (Figure 9.6) prints global and surface flow 
options data, defines all necessary maps for PDP data base, calls program 
PANPTS (Overlay 3,1) to compute surface flow data at control and grid points 

9.3 



and calls program ARBPTS (Overlay 3,2) to compute these data at arbitrary 
points. 

9.3.2.4.1 PANPTS Overlay (3,1) 

This secondary overlay PANPTS (Figure 9.7) retrieves the velocity data from 
PDPT data base and computes the perturbation and total surface flow quantities 
for each surface selected by the user (UPPER, LOWER, UPLO, LOUP and AVERAGE). 
Table 9.1 lists these data items. All vector components in the table ar~ in 
the reference axis system. 

From the perturbation average and difference velocities for each point of 
a panel, PANPTS computes the perturbation and total velocities for each 
selected surface, corrects these by the user selected correction schemes (SAl, 
SA2 or NONE, see records SF10b and Gll, Section N.3 of Reference 1) and then 
uses the velocities in computing perturbation, total and total normal mass 
flux, pressure coefficients and local Mach numbers for isentropic," linear, 
second order, reduced second order and slender body rules (see Section N.4.2 
of Reference 1). 

These data are printed and/or stored in the PDP data base depending upon 
user selections. 

9.3.2.4.2 ARBPTS Overlay (3,2) 

The secondary overlay ARBPTS processes points arbitrarily defined by the user 
by provi di ng the net\'1ork i dentifi cati on, panel row and column i ndi ces and 
coordinates. Program ARBPTS reads these data from DIP data base dataset 
'ARBITRARY~POINTS'. For each arbitrary point, the program assembles the 
geometry and flow data for the grid points of the specified panel by accessing 
the PDP data base. The given point is then projected onto the panel surface 
and the index of the subpanel where the projected point lies, is computed. 
The surface flow quantities are then computed at the point by linear 
extrapolation of the values at the three grid points forming the subpanel. 
The computed flow data, the user specified coordinates and the program 
computed coordinates are then printed out. 

9.3.3 PDP Data Bases 

A permanent data base named PDP is created by the module if selected by 
the user. PDP also creates a temporary data base named PDPT for intermediate 
storage of data. The Master Definitions of PDP and PDPT data bases are 
described in Appendix 9-D. 

9.3.4 PDP Interfaces 

9.3.4.1 System Interfaces 

The PDP module is accessed through MEC by user control cards and a system 
procedure file generated by ~1EC. This interface is described in Sections 1.0 
and 2.0 of this document. 

9.3.4.2 External Interfaces 

The MEC, DIP and MDG data bases are the source of input data for the PDP 
module. The PDP permanent data base, if generated, is used by the PPP module. 

9.4 



9.3.4.3 Internal Interfaces 

The PDPT temporary data base is used by PDP as a scratch file for storing 
intermediate data. 

The interface between the overlays and subprograms is defined by a tree 
structure diagram in Appendix 9-A. 

9.3.5 Data Flow 

During execution, data flows between programs, subprograms and the data 
bases. Figure 9.2 depicts this activity. Subprograms may also communicate 
with each other by using labelled common or subroutine formal parameters. 
Information concerning data flow in this manner can be found by consulting the 
glossaries of the subprograms which are of interest. Section 1, Paragraph 1.4 
of this document can be consulted for more detailed information of the use of 
the tools available for analysis of data flow. Also, Appendix 9-C has been 
included to aid analysis of data flow between PDP and its data bases. 

9.4 LOWER LEVEL FUNCTIONS 

The following paragraphs present the functional decompositions 
(hierarchial structure) of the overlays and their subprograms and purposes of 
each subprogram. 

9.4.1 Functional Decomposition 

See Appendix 9-B for a description of the PDP functional decomposition. 
! Section 1, Paragraph 1.4.1 of .this document can be'consulted for information 

on the use of the functional decomposition. 

9.4.2 Subroutine Descriptions 

ANALOP 
Analyzes a case of user options to find disk storage requirement. 

ANALYZ 
Reads GLOBAL and options data from DIP data base and analyzes all the 
user option cases. 

ARBFLO 
Computes flow quantities at an arbitrary point by calling subroutine 
EXTPLT. 

CMPORG 
Defines origin of a give subpanel and translates the coordinates of a 
point in the subpanel to the subpanel coordinate system. 

CPGPFL 
Computes flow properties at control ar.1 grid points and prints out 
the data and/or stores the data on PDP data base. 

9.5 



9.6 

CPVEL 
Computes average and difference velocities at control points. 

DATAGP 
Determines what grid point sets (singularity data from MDG) need to 
be in core and then assembles the the data by calling subroutine 
RDGPDT 

DATMOV 
Transfers grid point geometry and velocity data from common block 
/PANBLK/ to /GPDATA/. 

EDGFLO 
Processes control points (edge midpoint and additional) on network 
edges for computing surface flow properties. 

EDGVEL 
Processes control points (edge midpoint and additional) on network 
edges for computing average and difference velocities. 

EXTPLT 
Computes a flow quantity (either vector or scalar) at an arbitrary 
point by linear extrapolation of the values at the vertices of the 
sub panel where it lies. 

FNDSUB 
Projects an arbitrary point onto the given panel, determines the 
subpanel where the point lies and then computes the subpanel unit 
normal vectdr and its area. 

FLXSRF 
Computes perturbation, total and total normal mass flux on selected 
surfaces. 

GEOGP 
--Determines what grid point sets (geometry data from f,1DG data base) 

need to be in core and then assembles the data by calling subroutine 
RDGPGM. 

GPGEOM 

GPVEL 

Computes additional grid point geomtry data needed by PDP. These 
include normal and conormal vectors and doublet subpanel spline 
matrices. 

Computes the average and difference velocities at grid points of 
panels. 

KAPVEC 
Computes the KAPPA vectors (a 9 by 3 matrix) given the subpanel index 
and the skewness parameters for subpanel vertices. 



LAYOUT 
Prints out a summary of the global and case options data selected by 
user. 

LOADVL 
Loads computed surface flow quantities into common blocks for 
convenience in printing or storing in the PDP data base. Common 
blocks /PNTCTL/ is used for data to be printed and /FLQNT/ for data 
to be stored. 

MAPDIP . 
Defi nes all SOI·1S maps for DIP data base datasets needed by PDP. 

MAP t,1D G 
Defines all SDMS maps for MDG data base datasets needed by PDP. 

MAP OPT 
Defines all SDMS maps for the PDP temporary data base (PDPT). 

MAP PDP 
Defines all SDMS maps for all PDP data base datasets. 

NETFLO 
Processes control and grid points data from the PDPT data base for 
networks except for edge control points in order to compute pressures 
and other surface flow data. 

PANSRF 
Assembles the geometry and flow data for the nine grid points of a 
·panel by reading the PDP dataset IFLOW-QUANT I• 

PDPGEN 
Generates the PDP data base and writes network specifications data 
(dataset NETWK-SPEC) and global data (dataset GLOBAL). 

PNTHDR 
Prints output header lines (run identification, problem 
identification, user identification, etc.). 

PNTRPT 
Prints report on user selected surface flow quantities from data in 
common block /PNTCTL/. 

PNTSUB 
Prints subheader lines for identification of point type, network, 
solution, image, velocity computation and correction method, and 
pressure computation options. 

PTGEOM 
Computes normal and conormal vectors at a point on a subpanel and the 
inner product of the normal and the transpose of the conormal vectors. 

PTLSRF 
Computes perturbation and total potential at a point on a surface. 

9.7 



9.8 

RDCPVL 
Reads control point data from the PDP temporary data base dataset 
CP-VEL into common block /CPDATA/. 

RDGPDT 
Reads grid point velocity and singularity data from the f~DG data base 
dataset GP-DATA into common block /GPDATA/. 

RDGPGf~ 

Reads grid point geometry data from f~DG data base dataset GP-GEOM 
. into common block /GPDATA/. 

RDGPVL 

RDSRF 

Reads grid point velocity data from PDP temporary data base (PDPT) 
dataset GP-VEL into common block /GPDATA/. 

Reads and processes user options data for a case from the DIP dataset 
SURF-FLOW. 

REFMAT 
Computes matrix for transformation from reference axis to sub panel 
local coordinate system. 

REQPNT 
Prints estimate on disk storage requirements for the PDP run. 

RESGP ~ 
Restores grid point data from common block /PANBLK/ into /GPDATA/ for 
a panel. 

RESTORE 
Restores surface flow quantities (velocity, mass flux, pressures, 
local Mach numbers, etc.) from common block /TEMPQN/ into /PNTCTL/. 

SAl COR 
Computes stagnation to ambient velocity correction by the first 
method (see Section N.3.l of Reference 1). 

SUBSPL 
Computes doublet subpanel spline matrix for a subpanel. 

TRNMAT 
Computes transformation matrix from the reference axis to another 
coordinate system (e.g., where the X axis is the uniform onset flow 
di recti on). 

VELCOR 
Computes SAl and SA2 velocity corrections (see Section N.3 of 
Reference 1). 

VELSRF 
Computes perturbation and total velocities on a surface. 



VORCTY 
Computes the corti city angle for a wake surface. 

9.9 



DIP 
Index* 

2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
6 
7 
7 
7 
8 
8 
8 
9 

10 
11 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
14 
14 
14 
15 

16 
16 
17 
18 
19 

TABLE 9.1 - List of Surface Flow Quantities 

Headings 
x 
Y 
Z 
PWX 
PI~Y 
PWZ 
WX 
WY 
WZ 
W~IAG 
WN 
PYX 
PVY 
PVZ 
VX 
VY 
VZ 
VMAG 
PHI 
PHIT 
~1LISEN 
r~LLINE 
MLSECO 
r~LREDU 
MLSLEN 
CPISEN 
CPLINE 
CPSECO 
CPREDU 
CPSLEN 
GMUX 
GMUY 
GMUZ 
PSI 

SINGS 
SINGD 
SPDMAX 
SPDCRT 
CPVAC . 
CPCISN 
CPCLIN 
CPCSO 
CPCRSO 
CPCSB 

Quantity 
Point, x-coordinate 
Point, y-coordinate 
Point, z-coordinate 
Perturbation mass flux, x-component 
Perturbation mass flux, y-component 
Perturbation mass flux, z-component 
Total mass flux, x-component 
Total mass flux, y-component 
Total mass flux, z-component 
Total mass flux, magnitude 
Total mass flux, normal component 
Perturbation velocity, x-component 
Perturbation velocity, y-component 
Perturbation velocity, z-component 
Total velocity, x-component 
Total velocity, y-component 
Total velocity, z-component 
Total velocity, magnitude 
Perturbation potential 
Total potenti al 
Local Mach number, isentropic 
Local Mach number, linear 
Local Mach number, second-order 
Local Mach number, reduced second-order 
Local Mach number, slender body 
Pressure coefficient, isentropic 
Pressure coefficient, linear 
Pressure coefficient, second-order 
Pressure coefficient, reduced second-order 
Pressure coefficient, slender body 
Doublet strength gradient, x-component 
Doublet strength gradient, y-component 
Doublet strength gradient, z-component 
Angle between average velocity and surface vorticity 
vectors (degrees) 
Singularity strength, source 
Singularity strength, doublet 
Maximum total speed 
Critical speed 
Pressure coefficient, vacuum 
Critical pressure coefficient, isentropic 
Critical pressure coefficient, linear 
Critical pressure coefficient, second order 
Critical pressure coefficient, reduced second order 
Critical pressure coefficient, slender body 

* See a description of user input record SF10 in Section 7 of the PAN AIR 
User's Manual (Ref. 2). The last five parameters in this table (the 
critical pressure coefficients) are not user selectable; instead, the PDP 
modules computes and prints these (except for arbitrary pOints) for 
subsonic flow if the corresponding pressure rules are selected by the user. 

9.10 



MEC MEC 

CD 

,.-

DIP DIP 
@ 

PDP 

G) ® 

- -
MDG MDG PDPT 

Q) - Data base directory information 
® - User input surface flow options 

® 
PDP PPP 

CD - Global, network specification, control and grid point 
geometry and singularity data 

QD - Control and grid point velocities, singularities, 
perturbation potential, and geometry data 

CD - Global and netwo~k specification data and surface 
flow quantities 

Figure 9.1 - Data Base Relationships 

9.11 



OPDBI 

Overlay(1,O) 

Open data bases 
Analyze options 

DIP MEC 

Input 
options 

Data base 
~ n f 0 rflla:. -

tl0n 

I 
Disk storage 

requirements 

I 
1 

PDP 

Overlay(O,O) 

Initialize and 
ca 11 other Overl ays 

COMVEL 

Overlay(2,O) 

compute Average 
and difference 

. velocities 

MDG 

: ~eometry 
~e-locitfec 
sin g lt1 1I.r:; 

,t,~ 

FLPROP 

Overlay(3,O) 

compute surface 
flow properties 

PDPT 

Global geometry 
~-i ngu-l a.r-

itie~ 

1 

MDG 

Network 
geometry 

PDP 

Surface 
flow 

~uantities 

Surface flow 
properties ---

L 

Figure 9.2 - PDP Structure and Data Interfaces 

9.12 



r 

Program PDP 
Overlay (0,0) 

Subroutine 

RDSRF 

DIP 

SURF-FLOW 

/ 
PDP 

Figure 9.3 - Structure and Data Flow of Overlay (0,0) 

( 

9.13 



( '\ 
MEC 

DATA-BASE-HEADER 
\ .\ 

MDG 
GLOBAl, 

SOLUTION-DATA 

DIP 
SURF-FLOW 

(\ 

\) 

(\ 

- OPDBI 

Overlay(1,O) 

... Subroutine 
~ ANALYZ 

r, 
MDG 

:-I 
1t NETWK-SPEC 

fIIIII 
\) 

Subroutine 
PDPGEN r-

'\ 
PDP 

\ GLOBAL-FLO-PROP _ \) 'W ~ GLOBAl, NETWK-SP:-' 

Subroutine V ) . 
I 

MDG 
NETWK-

SPEC 

9:14 

, 
Subroutine 

ANALOP 
Subroutine 

REQPNT 

,,, 

MAPPPP 

Estimated r-
Di!:k Storage f-

Requirements ____ 

1 

Figure 9.4 - Structure and Data Flow of Overlay(l,O) 



Program 
COMVEL 

Overlay(2,O) 

Subroutine 
EDGVEL 

MDG 
GP-GEOM 

MDG 
GP-DATA 

1 

MDG . 

NETWK-SPEC 
CP-GEOM 

Subroutine 
GPVEL 

Figure 9.5 - Structure and Data Flow of Overlay(2,O) 

9.15 

Subroutine 
CPVEL 



(" 
MDG 

NETWK-SPEC 
\) 

,It 

Subroutine 

NETFLO 

Subroutine 
RDGPVL 

PDPT 
GP-VEL 

) 

Subroutine 

RDCPVL 

PDPT 
CP-VEL 

-.. 
• 

~------------~~~ f\, 
Program 
FLPROP 

Overlay(3,O) 

Program 
PANPTS 

Overlay(3,1) ~ 

\ ) 

PDP 

SURF-OPTIONS 

Program 

ARBPTS 
OverlaY(3,2) 

) 

r-----1~ MDG L-____ ~------~ 

NEn~K- , 

,. . 

SPEC 

" 

Subroutine 
EDGFLO 

Subroutine 
CPGPFL 

, 

PDP 
fLOW-QUAN 

Subroutine 
RDCPVL 

PDPT 
CP-VEL 

Subroutine 
PANSRF 

PDP 
F!.OW-

QUANT 

9.16 
FiQure 9.6 - Structure and Data Flow of Overlay (3,0) 



APPENDIX 9-A TREE STRUCTURE 

The tree structure diagram of the PDP module has been deleted from this 
document. It is, however, available on the installation tape. 

9-A. 1 



APPENDIX 9-B PDP FUNCTIONAL DECOMPOSITION 

The functional decomposition of the PDP module is presented here. The 
decomposition labels are given in the order of their execution and therefore 

-may not be alphabetic. 

9-B.l 



Page Missing in 

Original Document 



H Initiate Program Execution 
A Initialize variables 
B Initiate program start (PRGBEG) 
C Initiate SDMS (ISDMS) 

A Check data bases and initialize - Overlay (1,0) Program OPDBI 
A Open MEC data base (DBOPEN) 
B Get run identification information 

A Define MEC header dataset map (DSMAP, SVMAP, ENDMAP) 
B Get MEC header dataset (ESGET) 

C Check data bases required by PDP 
A . Check DIP data base (CHPADB) 
B Check MDG data base (CHPADB) 
C Generate PDPT data base (CHPADB) 

o Open data bases and define SDMS maps 
A Open DIP and MDG data bases (PAOPEN) 
B Define SDMS maps for DIP datasets (MAPDIP) 
C Define SDMS maps for MDG data base (MAPMDG) 
o Analyze and print resource requirements (ANALYZ) 

F Check and generate PDP data base, write "GLOBAL" and "NETWK-SPEC" 
datasets (PDPGEN) 

G Close DIP and MDG data bases (PACLOS) 
H Close MEC data base (DBCLOS) 

I Open DIP, MDG and PDP data bases and defined needed SDMS maps 
A Open DIP, MDG 
B Define needed DIP maps (MAPDIP) 
C Define needed MDG maps (MAPMDG) 
D Open PDP data base (PAOPEN) 

B 
A Read and analyze surface flow options data (RDSRF) 

A Read DIP dataset "SURF-FLOW" (ESGET) 
B Determine image list for each network 
C Determine velocity computation options selected 
D Determine velocity correction options selected 
E Form PDP option-index vector 

A Get from reference table the start and end position of an 
item in the index vector 

B Flags these word appropriately (0,1,2, or 3) 
C Determine flags to indicate print and data base storage 
D Flag local Mach number option elements, if selected 

F Find number of surfaces selected 
B Open PDPT data base (PAOPEN) 
C Define SDMS maps for PDPT data base (MAPDPT) 

C Compute average and difference velocities at points - Overlay (2,0) -
Program CorvtVEL 
A Analyze point types selected 
B Get network data 

A Get index and ID 
BRead MDG dataset "NETWORK-SPEC" (ESGET) 

C Process edge control points, if selected (EDGVEL) 
o Get geometry data from MDG data base 

A Read control point geometry data (ESGET) 
B Get grid point geometry data (GEOGP) 

9-B.3 



E 

F 

9-8.4 

Get singularity and velocity data for point 
A Get for grid points (DATAGP) 
B Get for control points from HOG data base (ESGET) 
Compute and write the average and difference velocity data to PDPT 
data base 
A Form grid pOints in panel (GPVEL) 

A Assemble data for the grid points 
B Compute additional geometry data required (GPGEOM) 
C Compute subpanel local coordinates for a point (CMPORG) 
D Assemble the perturbation potential and doublet strength 

matrix for the panel (PANMAT) 
E Compute and accumulate average velocity by the boundary 

condition method for all subpanels where the point lies 
A Compute gradient of potential at point (COMGRD) 
B Compute the first terms of the equation for average 

velocity (CAB) 
C Compute and accumulate average velocity at the point 

for the subpanel 
F Compute and accumulate difference velocity at the point for 

all subpanels where the point lies 
A Compute gradient of doublet strength (COMGRD) 
B Compute the first terms of equation (CAB) 
C Compute and accumulate difference velocity at point 

for the subpanel 
G Compute average (for all subpanels where the point lies) of 

the velocities 
H Compute gradient of doublet strength in reference axis (CAB) 
I Write grid point data onto PDPT dataset "GP-VEL" 

B Compute average and difference velocities at center control 
points and write to PDPT data base dataset (CPVEL) 
A Compute additional geometry data for the control point 

A Compute conormal and inner product of normal and 
transpose of cornormal vectors (PTGEOM) 
A Initialize error code to zero 
B Compute conormal vector (CAB) 
C Compute sub/super inclination of subpanel (VIP) 
o Increment error count, if any 
E Compute inner product of normal and transpose of 

conormal vectors (CAB) 
B Compute transformation matrix for subpanel local to 

reference axis (REFMAT) 
A Compute unit V vector 

A Compute vector cross product of unit normal 
and compressibility vector (CROSS) 

B Normalize V vector (UNIVEC) 
C Define new V vector if normal vector is 

parallel to compressibility vector 
o Normalize V vector 

B Compute unit vector U perpendicular to V and 
normal vectors (CROSS) . 

C Compute first term of matrix 
A Find scale factor 
B Compute unsealed first column (CAB) 
C Scale and form first column (CAB) 



D Compute second column of matrix 
A Find scale factor 
B Compute unscaled column 
C Scale and form second column 

E Compute third column of matrix 
A Find column factor 
B Compute, scale and form third column 

F Error exi t 
C Define sub panel local coordinate system and tranform 

point coordinates in reference axis to subpanel local 
system (Cr~PORG) 

B Compute first part of the first term for equations defining 
average and difference velocities 

C 

D 

E 

Form doublet strength matrix (9xl) for panel (PANtMT) 
A Determine column, row and point number 
B Get average perturbation potential and doublet 

strength values for point 
C Form elements of matrix 
Compute average perturbation velocity by the boundary 
condition method 
A Compute gradient of potential (COMGRD) 
B Compute first term of equation (CAB) 
C Compute the three components of velocity 
Compute perturbation difference velocity at the point 
A Compute gradient of doublet strength at point (CAB) 
B Compute first term of the difference velocity equation 

F 
G 

(CAB) 
C Compute the three components of velocity 
Compute gradient of doublet strength in reference axis 
Reflect coordinates, velocities, gradients of doublet 
strength and normal vector for image (IMAGE) 

H Write computed data to PDPT data base dataset CP-VEL (ESPUT) 

D Compute surface flow properties data - Overlay (3,0), Program FLPROP 
A Print global and surface flow case option data (LAYOUT) 
B Define SDMS maps for PDP dataset FLOW-QUANT and write SURF-OPTIONS 

datasets 
A Define SDMS maps (DSMAP, SVMAP, ENDMAP) 
B Write SURF-OPTIONS dataset for this case (ESPUT) 

C Compute constant quantities dependent on solution only 
o Compute flow properties at panel points - Overlay (3,1), Program 

PANPTS 
A Get network index 
B Get network specifi cati ons data from t~DG data base (ESGET) 
C Compute flow properties at network edges (EDGVEL) 

A Form and initialize loop control table 
B Get loop control parameters from table for the edge 
C Get and process velocity data for control point from 

PDPT data base (RDCPVL) 
D Compute and output flow quantities at the point on edge 

(CPGPFL) 
A Select average perturbation velocity at point (B.C. or 

VIC) 
B Compute perturbation and total potential on surface 

(PTLSRF) 

9-B.5 



9-6.6 

C Compute perturbation and total velocities on surface 
(VELSRF) 

D Compute mass flux (perturbation, total and total 
normal) on surface 

E Compute velocity correction (SAl and SA2) (VELCOR) 
A Compute perturbation velocity component in the 

compressibility axis direction (VIP) 
6 Compute SAl (stagnation to ambient correction number 

one) 
A Compute mass flux along compressibility direction 
B Compute correction to velocity (SAl COR) 

C Compute SA2 correction (stagnation to ambient 
correction number 2) 
A Multiply perturbation mass flux by the ratio of 

perturbation velocity and perturbation mass flux 
magnitudes to get total velocity 

B Compute correction to velocity 
F Compute local Mach numbers and pressure coefficients 

(COMPRS) 
A Compute perturbation and local incremental onset flow 

velocities along user preferred direction 
B Compute maximum and critical speed and total velocity 
C Compute pressure coefficients 

A for isentropic rule 
B for second order rule 
C for reduced second order rule 
o for slender body rule 
E for linear rule 

o Compute local Mach numbers 
A for isentropic and second order rules 
B for reduced second order rule 
C for slender body rule 
D for linear rule 

G Save the computed flow quantities for the point on the 
upper and lower surfaces in common block /TEMPQN/ 

H Restore the computed flow quantities for the point to 
common block /COMPQN/ and compute vorticity angle 
A Restore data 
B Compute total mass flux and magnitudes of total 

velocity and total mass flux (VIP) 
C Compute vorticity (VORCTY) 

I Load flow quantities data into print and data base buffers 
(common blocks /PNTCTL/ and /FLQNT/) (LOAOVL) 

J Produce printed output (PNTRPT) 
A Initialize program variables 
B Prepare and print header lines for new page of output, 

if necessary (PNTSUB) 
C Print flow quantities data from common block /PNTCTL/ 
o Save the indices for the current sclution, network, 

image and point type 
K Write flow quantities data to PDP data base dataset 

FLOW-QUANT, if data base storage is selected (ESPUT) 
D Compute flow properties for the network points (except on edges) 

(NETFLO) 
A Determine row and column indices for grid points in panel 



B 

C 
D 

E 

A 
B 
C 

D 

E 

F 

G 

H 

I 

J 

Read and process grid point data from PDPT data base 
dataset GP-VEL (RDPVL) 
Determine rm'/ and column indices for control point 
Read and process control point data from PDPT dataset 
CP-VEL (RDCPVL) . 
Compute and output flow quantities at the points (CPGPFL) 

Select average perturbation velocity at point (B.C. or VIC) 
Compute perturbation and total potential on surface (PTLSRF) 
Compute perturbation and total velocities on surface 
(VELSRF) 
Compute mass flux (perturbation, total and total normal) on 
surface 
Compute velocity correction (SAl and SA2) (VELCOR) 
A Compute perturbation velocity component in the 

compressibility axis direction (VIP) 
B Compute SAl (Stagnation to Ambient correction number 

one) 
A- Compute mass flux along compressibility direction 
B Compute correction to velocity (SA1COR) 

C Compute SA2 correction 
A Multiply perturbation mass flux by the ratio of 

perturbation velocity and perturbation mass flux 
magnitudes to get total velocity 

B Compute correction to velocity 
Compute local Mach numbers and pressure coefficients 
(COMPRS) 
A Compute perturbation and local incremental onset flow 

velocities along user preferred direction 
B Compute maximum and critical speed and total velocity 
C Compute pressure coefficients 

A for isentropic rule 
B for second order rule 
C for reduced second order rule 
D for slender body rule 
E for linear rule 

D Compute local Mach numbers 
A for isentropic and second order rules 
B for reduced second order rule 
C for slender body rule 
D for liear rule 

Save the computed flow quantities for the point on the 
upper and lower surfaces in common block (TEMPQN) 
Restore the computed flow quantities for the point to 
common block /Cor~PQN/ and compute vorticity angle 
A Restore data 
B Compute total mass flux and magnitudes of total 

velocity and total mass flux (VIP) 
C Compute vorticity (VORCTY) 
Load flow quantities data into print and data base buffers 
(common blocks /PNTCTL/ and /FLQNT/) (LOADVL) 
Produce printed output (PNTRPT) 
A Initialize program variables 
B Prepare and print header lines for new page of output, 

if necessary (PNTSUB) 

9-B.7 



E 

F 

E 

C 
D 

Print flow quantities data from common block /PNTCTL/ 
Save the indices for current sol ution, netvlOrk, image 
and point type 

K Write flow quantities data to PDP data base dataset 
FLOW-QUANT, if data base storage is selected (ESPUT) 

Compute flow properties at arbitrary points - Overlay (3,2), 
Program ARBPTS 
A Define map for DIP dataset IARBITRARY-POINTS 1

, if 

B 

C 

D 

E 
F 

G 

first-time execution 
Get arbitrary points specification data (ESGET) from DIP 
data base 
Get network dimensions ~ata from MDG dataset INETWK-SPEC 1 

(ESGET) 
Assemble flow data from PDP data base for given panel where 
the arbitrary point may lie (PANSRF) 
A Initialize data arrays to zeroes (ZERO) 
B Compute fine grid row and column indices for needed 

grid data blocks 
C - Read dataset I FLOW-QUANT I of PDP data base for a grid 

block (ESGET) 
D Compute panel unit normal vector 
Save network and panel row and column indices 
Determine subpane1 where the arbitrary point lies (FNDSUB) 
A Initialize error code to zero 
B Compute projection of point on panel surface 
C Compute parameters needed to determine the subpane1 

D 
E 

number 
Compute subpanel index 
Assemble coordinates of the subpane1 vertices and 
compute subpane1 unit normal vector 

F If point lies outside panel, set error code to 1. 
Compute and print flow properties at the arbitrary point 
(ARBFLO) 
A Initialize print and data base arrays 
B Compute flow quantities at point by linear 

C 

D 

extrapolation of the values at the subpanel vertices 
(EXTPLT) 
Load computed data into print and data base arrays 
(LOADVL) 
Print computed flow data for the arbitrary point 
(PNTRPT) 

Close and return temporary data base, PDPT (PACLOS) 

Initiate end of program execution 
A Close DIP and MDG data bases, write PDP header dataset 

DATA-BASE-HEADER and close PDP data base (PACLOS) 
B Announce end of execution (PRGEND) 

9-6.8 



APPENDIX 9-C DATA BASE COMMUNICATIONS CHART 

The Data Base Communications Chart is presented in three forms. Each form 
is alphabetized by columns, from left to right. The first form has a column 
order of Data Base, Dataset Name, t~ap Name, Common Block, and 
Program/Subroutine. The second form has a column order of Data Base, Map 
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has 
a column order of Common Block, Data Base, !·1ap Name, Dataset Name, and 
Program/Subroutine. Thus a person can get a cross reference on a data element 
by knowing either the Dataset Name, Map Name or Common Block name. 

9-C.l 



Page Missing in 

Original Document 



FIRST FORr~ 

DATA COMr~ON PROGAtV 
BASE DATASET NAME MAP NAME BlOCK* SUBROUTINE 
lITP ARBITRARY-POINTS DIPARBPT /ARBGEOj MAPDIP 

ARBPTS 

DIP GLOBAL-FLO-PROP DIPGlBFl jPDGlOBj MAPDIP 
RDSRF 

DIP SURF-FLOW DIPSRFOP jPDOPTj MAPDIP 
RDSRF 

r~EC DATA-BASE-HEADER MECMAP jRUNIDSj OPDBI 

r~DG CP-DATA MDGCPDAT jCPDATAj MAPMDG 
COMVEl 
EDGVEl 

MDG CP-GEOM MDGCPGEM jCPDATAj MAPMDG 
COMVEL 
EDGVEL 

t1DG GLOBAL MDGGLOBl jPDGlOBj MAPMDG 
ANAlYZ 

r~DG GP-DATA MDGGPDAT jGPDATAj MAPMDG 
RDGPDT 

'·1DG GP-GEor~ r~DGGPGEM jGPDATAj MApr~DG 

RDGPGM 
r~DG NETWORK-SPEC MDGNETMP jNETSPCj t~API·1DG 

ANALYZ 
COMVEL 
PANPTS 
ARBPTS 

PDP DATA-BASE-HEADER PDPHDR jRUNIDSj MAPPDP 
FLPROP 

PDP FLOW-QUANT FlQNTr~AP jFlQtH j I~APPDP 

FLPROP 
CPGPPL 
PANSRF 

PDP GLOBAL GlOBMAP jPDGlOBj MAPPDP 
PDPGEN 

PDP NETWK-SPEC NETMAP jNETSPCj I~APPDP 

PDPGEN 
PDP SURF -OPTIONS OPTNMAP jPDOPTj MAPPDP 

FlPROP 

PDPT CP-VEL CPVEl jCPDATAj MAPDPT 
RDCPVl 
CPVEL 

PDPT CP-VEL GPVEL jGPDATAj MAPDPT 
GPVEl 

/""' 

9-C.3 



SECOND FORM 

DATA . COMr'lON PROGAM/ 
BASE I~AP NA~lE DATASET NAt~E BlOCK* SUBROUTINE 
1JTp- DlpARBpT ARBIfRARY-POINTS fARBGEO/ r~APDIP 

ARBPTS 

DIP DIPGlBFl GLOBAL-FLO-PROP /PDGlOB/ ~IAPDIP 

RDSRF 

DIP DIPSRFOP SURF-FLOW /PDOPT/ t~APDIP. 
RDSRF 

MEC MECr~AP DATA-BASE-HEADER . /RUNIDS/ OPDBI 

f~DG MDGCPDAT CP-DATA /CPDATA/ MAPMDG 
CONVEl 
EDGVEl 

MDG MDGCPGEM CP-GEOM /CPDATA/ MAPMDG 
COMVEl 
EDGVEl 

MDG ~1DGGlOBl GLOBAL /PDGlOB/ t'1API~DG 
ANALYZ 

11DG ~1DGGPDAT GP-DATA /GPDATA/ ~IAPI~DG 
RDGPDT 

t~DG MDGGPGEM GP-GEO~1 /GPDATAj MAPMOG 
ROGPGM 

HOG ~1DGNEnlp NETWORK-SPEC /NETSPC/ MApr~DG 
ANAlYZ 
CO~lVEl 
PANPTS 
ARBPTS 

PDP PDPHDR DATA-BASE-HEADER /RUNIDS/ MAPPOP 
FLPROP 

PDP FlQNTMAP FlOH-QUANT /FLQNT/ MAPPDP 
FlPROP 
CPGPPL 
PANSRF 

PDP GLOBr~AP GLOBAL /PDGLOB/ MAPPDP 
PDPGEN 

PDP NETMAP NETWK-SPEC /NETSPC/ MAPPDP 
PDPGEN 

PDP OPTNMAP SURF-OPTIONS /PDOPT/ MAPPOP 
FLPROP 

PDPT CPVEl CP-VEL /CPDATA/ MAPDPT 
RDCPVl 
CPVEL 

POPT GPVEL CP-VEL /GPDATA/ r~APDPT 
GPVEL 

9-C.4 



THIRD FORM 

COMt~ON DATA PROGRAM/ 
BLOCK* BASE MAP NAt~E DATASET NAt~E SUBROUTINE 
/ARBGEO/ mr DlpARBPT ARBITRARY-POINTS MAPDIP 

ARBPTS 

/CPDATA/ MDG MDGCPDAT CP-DATA MAPMDG 
COMVEL 

. EDGVEL 
/CPDATA/ MDG MDGCPGEM CP-GEOM MAPMDG 

COMVEL 
EDGVEL 

/CPDATA/ PDPT CPVEL CP-VEL MAPDPT 
RDCPVL 
CPVEL 

/FLQNT/ PDP FLQNTMAP FLOW-QUANT MAPPDP 
FLPROP 
CPGPPL 
PANSRF 

/GPDATA/ MDG MDGGPDAT GP-DATA MAPMDG 
RDGPDT 

/GPDATA/ MDG MDGGPGEM GP-GEOM MAPMDG 
RDGPGM 

/GPDATA/ PDPT GPVEL CP-VEL MAPDPT 
GPVEL 

/NETSPC/ MDG MDGNETMP NETWORK-SPEC t1APMDG 
ANALYZ 
COMVEL 
PANPTS· 
ARBPTS 

/NETSPC/ PDP NETI~AP NETWK-SPEC MAPPDP 
PDPGEN 

/PDGLOB/ DIP DIPGLBFL GLOBAL-FLO-PROP HAPDIP 
RDSRF 

/PDGLOB/ MDG MDGGLOBL GLOBAL MAPMDG 
ANALYZ 

/PDGLOB/ PDP GLOBMAP GLOBAL MAPPDP 
PDPGEN 

/PDOPT/ DIP DIPSRFOP SURF-FLOW MAPDIP 
RDSRF 

/PDOPT/ PDP OPTNMAP SURF-OPTIONS MAPPDP 
FLPROP 

/RUNIDS/ MEC MECMAP DATA-BASE-HEADER OPDBI 

/RUNIDS/ PDP PDPHDR DATA-BASE-HEADER MAP PDP 
FLPROP 

*Dynamic mapping (see Section 13 of this document for details) is used for all 
or some of the keys for each data set, tnus requiring no common block storage 

("" for the keys. 

9-C.S 



APPENDIX 9-0 MASTER DEFINITION 

The data base master definition listing of the PDP module has been deleted 
from this document. It is produced from the PAN AIR tape during installation. 

9-0.1 



10.0 CONFIGURATION DATA PROCESSOR (COP) MODULE 

10.1 INTRODUCTION 

The COP module is a post procesor for the PAN AIR system. It presumes 
the existence of a solution to the potential flow problem and converts the 
data· describing that solution into forces and moments. The module may compute 
added mass coefficients instead of forces and moments. 

Data bases from three PAN AIR modules are required to run COP. These 
are the Module Execution Control (MEC) data base, which controls the sequence 
of module execution, the DATA Input Procesor (DIP) data base, which desribes 
the force and moment options desired by the user, and the Minimal Data 
Generator (MDG) data base. The MDG data base provides input data for the 
forces and moment computations. Output from COP, in the form of the COP data 
base, is used by the Print Plot Processor (PPP) module. 

The COP module consists of a top level program which calls four main 
overlays to compute forces and moments. The first overlay checks the status 
of all the data bases required by COP and analyzes the global data. The 
second overlay computes forces and moments for a particular case. The third 
overlay computes the component of the force on a thin surface due to the 
infinite velocity at the leading edge. The fourth overlay transforms the 
forces and moment data from the reference axis system to the selected axis 
systems', and wri tes the resu1 ts on the COP data base and/or on the output 
listings. The fifth overlay computes and displays added mass coefficients. 
It may be executed instead of the second, third and fourth overlays. The 
results can be accumulated ove~ sets of user op~ions, called cases. 

10.2 COP OVERVIEW 

10.2. 1 Purpose of COP 

Given an existing solution, COP will compute forces and moments or added 
mass coefficients on portions of a configuration, transform these according to 
user requests, and print or store in the data base the transformed results. 

10.2.2 COP Input/Output Data 

The COP module requires access to the data bases brom three PAN AIR 
modules in order to execute. These are the MEC, the DIP and the HOG data 
bases. 

The MEC data base provides run, problem and user identification in 
addition to current data base identification. 

The DIP data base provides user problem descriptions of global flow 
properties and user requests for surface force and moments. 

The MDG data base provides global data, network specificiations, control 
point data, control point geometry, grid point data, grid point geometry and 
solution data. 

10.1 



COP output data consists of printed output and the COP permanent data base 
which is used by the Print Plot Processor (PPP) module. Output data is 
controlled by user specifications which reside on the DIP data base. The 
printed output may provide a summary of user options, resource estimates, user 
requested results and errors and diagnostics. The COP permanent data base 
provides case options, network specifications, edge force coefficients, and 
force and moment coefficients for panels, networks, configuration and network 
edges. Added mass coefficients for selected portions of the configuration may 
also reside on the data base. 

10.2.3 Data Base Interface 

The COP module creates a temporary data base which saves data computed in 
the second overlay COPMPFM and the third overlay LEDGF. The third overlay 
reads doublet strengths from the temporary data base. The fourth overlay 
GENOUT accesses the temporary data base in order to produce the fi na1 output. 
The temporary data base provides force and moment coefficients, edge forces 
and moments, panel areas, and doublet strength. 

10.3 MODULE DESCRIPTION 

10.3.1 Overall Structure 

The high level module design is described in this paragraph. The lower 
level subroutines are described in Paragraph 10.4. The functional 
decomposition of COP is illustrated in Appendix 10-B. The overall structure 
of COP is depicted in Figure 10.1. 

10.3.2 Overlay Descriptions 

10.3.2.1 COP Overlay (0,0) 

The top level overlay initializes the data base and other program 
parameters. It calls overlay OPOSI, to check the satus of the data bases and 
to initialize global data, and defines the necessary data base maps. Then, to 
compute forces and moments for each case of user requested options, the module 
call s the three over1 ays CO~lPFr~, LEDGF AND GENOUT. The forces and moments for 
the reference coordi nate system are computed i n COMPFr~. Edge forces are 
computed in LEDGF. The overlay GENOUT transforms the forces and moments data 
to user requested axis systems and writes the information on the COP data base 
and the output file. To compute and display added mass coefficients, the 
module calls the fifth overlay AMCOEF. 

10.3.2.2 OPDBI Overlay (1,0) 

The second level overlay OPDBI (Figure 10.2) reads the MEC data base to 
retrieve run and data base identification. It checks th~ data bases for 
completeness. Then the module reads global data from the DIP and MDG data 
bases, and it calculates parameters required to reflect input configurations 
across planes of symmetry. 

10.2 



10.3.2.3 Cor~PFM Overlay (2,0) 

The second level overlay COMPFM (Figure 10.3) computes forces and moments 
from minimal data from the HOG data base and stores the results on the COP 
temporary data base. The computations are performed panel by panel along a 
given column. The minimal data for a particular panel is assembled from four 
data sets which are keyed by the panel's four corner points. 

10.3.2.4 LEDGF Overlay (3,0) 

The second level overlay LEDGF (Figure 10.4) computes edge forces and 
moments from minimal data from the MDG data base and stores the results on the 
COP temporary data base. The computations are performed panel by panel along 
a given edge. The panel corner point geometry is extrapolated from the fine 
grid geometry. 

10.3.2.5 GENOUT Overlay (4,0) 

The second level overlay GENOUT (Figure 10.5) prints out the computed 
forces and moments data and stores the data in the COP data base for later 
retrieval. For each panel, the forces and moments are retrieved from the COP 
temporary data base and transformed into the requested axis systems. The 
results are written to the COP permanent data base and the line printer. This 
is also done for forces calculated along the edge. 

10.3.2.6 AMCOEF Overlay (5,0) . 

The second level overlay AMCOEF (Figure 10.6) computes and djsplays added 
mass coefficients. The computations are performed for an individual panel and 
displayed for sums of panels as selected by the user. Displayed coefficients 
are printed or written to the COP permanent data base. 

10.3.3 COP Data Base 

The permanent data base COP is created by COP for used by the Print Plot 
Processor (PPP) module. The Master Definition is described in Appendix 10-0. 

10.3.4 COP Interfaces 

10.3.4.1 System Interfaces 

The COP module is assessed by user control cards or a procedure file 
generated by the MEC module. 

10.3.4.2 External Interfaces 

The MEC data base, the DIP data base and the MDG data base are input 
vehicles for the COP module. The COP permanent data base and the output 
listing are the output vehicles for COP. 

10.3 



10.3.4.3 Internal Interfaces 

. The interfaces between the overlays and the subprograms is defined by a 
tree structure diagram in Appendix 10-A. 

10.3.5 Data Flow 

The flow of execution is depicted in Figures 10.7 and 10.8. During 
execution, data flows between subprogram and data bases. Figures 10.7 and 
10.8 depict this activity. Subprograms may also communicate with each other 
by using labeled common or formal parameters. Information concerning data 
flow in this manner can be found by consulting the glossaries of the 
subprograms which are of interest. Section 1, Paragraph 1.4 of this document 
can be consulted for more detailed information of the use of the tools 
available for analysis of data flow. Also, Appendix 10-C has been included to 
aid analysis of data flow between CDP and its data bases. 

10.4 LOWER LEVEL FUNCTIONS 

The following paragraphs present the functional decompositions 
(hierarchial structure) of the overlays and their subprograms and give the 
purpose of each subroutine. 

10.4.1 Functional Decomposition 

See Appendix 10-B for a description of the CDP functional decomposition. 
Section 1, paragraph 1.4.1 of this document can be consulted for more detailed 
information of the use of functional decompo~ition. 

10.4.2 Subroutine Descriptions 

The subroutines used in the CDP module which do not reside on the PALlB 
1 ibrary or the SD~IS 1 ibrary are described below. A1 so refer to the tree 
structure in Appendix 10-A. 

10.4 

AlNVERS 

Computes the inverse of the coefficient matrix (A matrix) used in 
velocity calculations. 

ANALYZ 

Reads and sets up global data. 

ASPADA 

Assembles geometry and surface flow data for a particular panel. 



BCXFER 

Transfers data from blank common to a local storage area. 

BLOCK 

Assembles four 3 x 3 matrices into a single 6 x 6 matrix. 

CASEPG 

Writes the case summary page. 

CEFDIR 

Computes a unit vector in the direction of the edge force. 

CELPAR 

Computes the edge limit parameter which is a measure of the degree of 
singularity of the velocities at the panel column edge. 

CEPRDB 

Accumulates and stores the edge forces and moments. 

CFIGAM 

Computes the added mass coefficients for a configuration •. 

COLAM 

Computes the added mass coefficients for a column of panels. 

COMPRS 

Computes selected pressure coefficients and local Mach numbers for a 
point on a specified surface. 

CORREC 

Determines a correction factor to be used for edge force calculations. 

CPAGEQ 

Computes various panel quantities which are functions of geometry. 

CPPRDB 

Accumulates panel forces and moments and generates the COP data bases 
and printed output. 

10.5 



lO.6 

FLOCHK 

Checks the doublet distribution near the edges of networks to see if 
they follow patterns established for the 2-D flat plate cases from 
which edge force corrections have been developed. 

GENFM 

Computes force and moment coefficients in the reference axis system. 

GLOBPG 

Writes the global summary page. 

INTAM 

Performs the surface integration required to compute added mass 
coefficients for a panel. 

LOADBC 

Assembles data from the MDG module in blank common arrays. The data is 
sufficient to compute added mass coefficients for a column of panels. 

MAPCDP 

Defines selected SDMS maps for the CDP data base. 

MAPCDT 

Defines selected SDMS maps for the CDT data base. 

MAPDIP 

Defines selected SDMS maps for the DIP data base. 

MAPMDG 

Defines selected SDMS maps for the MDG data base. 

NETWAM 

Computes added mass coefficients for a network. 

OUTPAM 

Outputs added mass coefficients to the OUTPUT file or the COP permanent 
data base. 

PANLA~1 

Computes added mass coefficients for a panel. 



r-
I 

PNTGLOB 

Prints COP global data. 

PNTHDR 

Prints COP report header. 

PNTOPT 

Prints the COP case options data as the first page for each case. 

PNTRPT 

Prints forces and moments data for panels, columns, networks, 
configurations and edges. 

PNTSUB 

Prints a new page of the report. 

PRlNAtvI 

Prints added mass coefficients on the OUTPUT file. 

PVEL 

Computes perturbation velocities for the specified surface. 

RCASFM 

Reads and analyzes options for the current case. 

REFLAM 

Adjusts added mass coefficients for a panel to correspond to the 
correct image. 

REFLFr~ 

Reflects a force and its corresponding moment about given planes of 
symmetry. 

SAlCOR 

Computes the SAl correction on velocity. 

SCALAt~ 

Scales added mass coefficients. 

10.7 



10.8 

SPACER 

Characterizes panel spacing used near a network edge. 

TRANAM 

Translates the added mass coefficients of a panel to alternative axis 
systems. 

TRNMAT 

Computes the transformation matrices for moving from the reference axis 
system to a user requested axis system. 

TRNSFM 

Transforms the force and moment data for a particular panel to a user 
selected axis system. 

UNLDBC . 

Retrieves the MDG data from blank common arrays which is required to 
compute added mass coefficients for a panel. 

VELCOR 

Computes user selected corrections on velocity. 

VELOC 

Computes difference and average panel velocities. 

XFERBC 

Transfers data from a local storage array to a blank common array. 



L 
U-
...J 
U- -
L.U 
c:: 

~ 
e 
L 
Cl.. 
<C 
L 

Cl.. ..... 
e 
Cl.. 
<C 
L 

Cl.. 
e 
U 

Q.. 

e 
W 
Cl.. 
<C 
L 

l-
e 
w 
Cl.. 
<C 
:E: 

:E: 
U-- V1 
<C 
u 
c:: 

I 

-

10.9 

J 

-e 
o -

c.. 
e 
u 

..... 
o -



-0 

...... 

>, 
ta 
.-
~ 
CU 
> 

0 

QJ 

s.. 
~ 

1<J 
U 
~ - N 

co >-
0 

-I 

c.. 
ex: 

0 
z 
ex: 

s.. 
1<J 
In 

/""'\ 
c.. 
0 
U 

N 

0 
...... 
CU 
s.. 
~ 
Cl 

.,... 
u.. 



..... 
a 
..... ..... 

) 

ASPADA 

AINVERS 

) ) 

COMPFM 

. 

VELOC GENFM 

PVEL VELCOR COMPRS 

SAICOR 

Figure 10.3 - COP Structure Overlay (2.0) 



...... 
o 
...... 
N 

) 

CEFDIR CELPAR 

LEDGF 

CORREC CPAGEQ FLOCHK SPACER 

Figure 10.4 - COP Structure Overlay (3,0) 

) ) 



.... 
a 
.... 
w 

y' 

PNTGLOB 

PNTHDR 

) 

GENOUT 

TRNMAT PNTOPT CPPRDB 

TRNSFM PNTRPT 

PNTSUB 

Figure 10.5 - COP Structure Overlay (4,0) 

) 

CEPRDB PNTRPT 

PNTRPT PNTSUB 

PNTSUB 



..... 
a 
..... 
~ 

) 

Figure 10.6 - COP Structure Overlay (5,0) 

) ) 



DATA-BASE-HEADER -1 OPOBI 

~LOBAL-FLOW-PROP 
DIP SURF-FAM 

MDG GLOBAL 

SURF-FAM 
DIP GLOBAL 

MDG NETWORK-SPEC 

GP-GEOM 
MDG CP-DATA 

GP-DATA 

GP-GEOM 
MDG CP-GEOM 

CP-DATA 
PANEL-D"IF-VELOC CDT PANEL-GEOMETRY " 

CDT FORCE-MOM-COEFF 
PANEL-AREAS 

CDT LEAD-EDGE-FORCE 

__ Data Flow 

........ Execution Flow 

.. 

.. I 

.. 

.. I 

.. I 
I 

... 1 

~ 
, 

... J 
l 

... 1 
- I 

, 
ANAL YZ I 

, , , 
~---------------------------------------------------------, , 

RCASFM I 
, , , , 

t PANEL-GEOMETRY 
COMPFM l FORCE-MOM-COEFF CDT 

j PANEL-AREAS 
, PANEL-DIF-VELOC 
i 

I LEAD-EDGE-FORCE ... CDT LEDGF 
I . , 

GENOUT CASE-OPTIONS CDP 
NETWK-SPEC , 

I PAN E L - FOR C E - MOM E NT ..... CDP CPPRDB I N ETWK- FORC E -MOMENT -
t 

t 
I LEAD-EDGE-COEFF CDP CEPRDB ... 
I NET-FOR-MOM-EDGE 

t 

GENOUT CONFIG-FORCES CDP 

I REPEAT IF MORE CASES .. ~----------.. ----------.---------------------------.-----
c~p I DATABASE-HEADER -tP J 

Figure 10.7 - Data Execution Flow for Forces and Moments 

10.15 



110. 

MEC DATA-BASE-HEADEij. 

GLOBAL-FLOW-PROP 
DIP SURF-FAM I .. 

MDG I 
GLOBAL 

SURF-FAM 
DIP GLOBAL I II 

MDG I 
NETWORK-SPEC 

GP-GEOM .. 
MDG GP-DATA 

--- DATA FLOW 
............. EXECUTION FLOW 

OPDIBI 

t 

ANALYZ 

I 
I 
I 
I 
I 

~----------------------------------------.--------~-... I 
I 
I 
I 
I , 

-
RCASFM 

I 
I 
I 

, 
AMCOEF 

I 
I 
I 
I 

CASE-OPTIONS 
NETWK-SPEC II 

ADDED-MASS-COEF-
DATA 

! REPEAT IF MORE CASES 

CDP 

1 ______________________________________ • ___ • ____________ _ 

I 
I 
I 
I 
I 

t 

CDP DATA-BASE-HEADEll 
r CDP 

Figure 10.8 - Data Execution Flow for Added Mass Coefficients ~ 

10.16 



APPENDIX lO-A TREE STRUCTURE 

The tree structure diagram of the COP moule has been deleted from this 
document. It is, however, available on the installation tape. 

1 O-A. 1 



APPENDIX 10-B FUNCTIONAL DECOMPOSITION 

The functional decomposition of the COP module is presented here. The 
decomposition labels are given in the order of their execution and therefore 
may not be alphabetic. 

1 O-B. 1 



Page Missing in 

Original Document 



A Initiate Program Execution 
A In it i ali ze 
B Initiate Program Start 
C Initiate SDMS 

B Overlay (1,0), Program OPDBI - Check Databases and Initialize Global Data 

C 

A Open MEC Database 
B Get Run Identification Information 

A Define MEC Header Map 
B Get MEC Header Dataset 

C Check Databases Required by COP 
A Check DIP Database 
B Check MDG Database 
C Check COP Temporary Database 

o Open Databases and Define SDMS Maps 
A Open DIP and MDG Databases 

. B MAPDIP - Define SDMS Maps for DIP Datasets (see label CB) 
C MAPMDG - Define SDr~S MAps for r~DG Datasets (see label CC) 

E ANALYZ - Analyze Datasets and Setup Global Data 
A Initial ize 
B Read Global Data 
C Determine Database/Print Option 

A Obtain DIP Option Data 
B Set COP Print Flag 
C Set COP Database Flag 

o Check Permanent COP Databases 
E Form the Image Index Array 

A Initialize 
B Set Images 2, 3, 4 Equivalent to. Image 1 
C Set Image 2 Equivalent to Image 1 and Set Image 3 

Equivalent to Image 4 
o Set Image 3 Equivalent to Image 2 and Set Image 4 

Equivalent to Image 1 
E Set Image 2 Equivalent to Image 1 
F Set Image 4 Equivalent to Image 1 

F Compute transformation Matrix for Images 
A Compute for First and Second Quadrants 
B Get Third Reflection Matrix 

F Close DIP and MDG Databases 

Open 
A 
B 

C 

Databases and Define SDMS Maps 
Open DIP and MDG Databases 
MAPDIP - Define DIP Maps 
A Initial ize 
B Select Maps for DIP Database Datasets 

A Define Global Flow Properties Map 
B Define Surface Forces and Moments 
C Define Case Map 
o Define Global Solution Number Map 

MAPMDG - Define MDG Maps 
A Initialize 
B Select Maps for MDG Database Datasets 

A Define GLobal Map 
B Define Network Specifications Map 

Map 

10-B.3 



C Defi ne Control Poi nt Geometry t~ap 

D Define Grid Point Geometry Map 
E Define Control Point Data Map 
F Define Grid Point Data Map 
G Define Solution Map 
H Define Grid Point COordinates Map 
I Define Control Point Geometry Sub Map 
J Define Control Point Data Sub Map 

o Open CDP Permanent Database 
E MAPCDP - Define SDMS Maps for COP Datasets 

A -Define Map for Dataset CASE-OPTIONS 
A Define Map Name 
B Define Static Maps for Keys and Elements 
C End Map Definition 

B Define Map for Dataset NETWK-SPEC 
A Define Map Name 
B Define Combination Static and Dynamic Map for Keys and 

Elements 
C End Mapping 

C Define Map for Dataset PANEL-FORCE-MOMENT 
A Define Map Name 
B Define Static Map for Keys and Elements 
C End Mapping 

D Define Map for Dataset LEAD-EDGE-COEFF 
A Define Map Name 
B Define Combination Static and Dynamic r~aps for Keys and 

Elements 
C End r~apping 

E Define Map for Dataset NETWORK-FORCE-ELEMENT 
A Define Map Name . 
B Define Combination Static and Dynamic Maps for Keys and 

Elements 
C End r·1appi ng 

F Define Map for Dataset CONFIG-FORCES 
A Define Map Name 
B Define Combination Static and Dynamic Maps for Keys and 

Elements 
C End Mapping 

G Define Map for Dataset NET-FOR-MOM-EDGE 
A Define Map Name 
B Define Combination Static and Dynamic Maps for Keys and 

Elements 
C End Mapping 

-H Define Map for Dataset DATA-BASE-HEADER 
A Define Map Name 
B Define Combination Static and Dynamic ~1aps for Keys and 

Elements 
C End ~lapping 

o Read Forces and r~oments Opti ons and Prepare Temporary Database 
A RCASFM - Read Forces and Moments Options for Case and Analyze 

Requirements 
A Initialize 
B Read Surface Forces and Moments Data on DIP 
C Get Global Solution List 
o Set Edge Force Flag 

1 O-B. 4 



B 
C 

E Rearrange Data in Vectors 
A Arrange Pressure Rule Requests 
B Generate Print Request Vector 
C Generate Database Request Vector 
o Generate Axis System Vectors 
E Generate Computation Options Vectors 

F Print Output Requirements for this Case 
A Print Options Selected 
B Estimate Resources 

A Read Network Data and Options 
B Print Resource Estimates 

Open COP Temporary Database 
MAPCDT - Define SDMS Maps for COPT Datasets 
A Define Map for Dataset FORCE-MOM-COEFF 

A Define Map Name 
B Defi ne Stati c r~ap for Keys and El ements 
C End r~appi ng 

B Define Map for Dataset LEAD-EDGE-FORCE 
A Define Map Name 
B Define Static Map for Keys and Elements 
C End Mapping 

C Define Maps for Dataset PANEL-AREAS 
A Define Map Name 
B Defi ne Stati c r~ap for Keys and El ements 
C End Mapping 

E Define Map for Dataset DATABASE-HEADER 
A Define Map Name 
B Define Static Map for Keys and Elements 
C End r~appi ng 

E Overlay (2,0), Program COMPFM - Compute Forces and Moments for the RCS 
A Initialize for the Current Case 
B Obtain Network Images, Options and Data 

A Decipher Network Images 
B Read Network DAta and Options 

C Get Geometry and Minimal Data 
A Construct Key Sets 
B Read Grid Point Geometry Dataset 
C ASPADA - Assemble Panel Geometry and Data 

A Initialize 
B Assemble Vector for Grid Point Correspondence 
C Assemble Grid Point Geometry for 1st Solution 

A Assmeble Doublet Strength Integral Vector 
B Assemble Grid Point Doublet Integrals 

A Assemble Doublet Far Field Integral 
B Assemble Doublet Dipole Moment Integral 
C Assmeble Normal Cross Product Moment Integral 

C Compute Panel Cono~al Vectors 
o AINVERS - Compute A for Velocity Calculation 

A Initialize 
A Zero Local Storage 
B Set Flags for Triangular Panel 

B Form A Matrix 
C ~lodi fy Conorma 1 
o Form A-l 

1 O-B. 5 



1 O-B. 6 

E Reset A-l for Triangular Panel 
F Compute Panel Area and Volume Flow 

D Assemble Grid Point Minimal Data 
A Assmble Mass Flux 
B Assemble Doublet Singularity 
C Assemble Source Singularity 
D Assemble Potential 
E Assemble Average Velocities 

D Obtain Minimal Data for this Solution 
A Read Grid Point MDG Database Dataset 
B Get Local Onset Flow from MDG Dataset 
C ASPADA - Assemble Panel r~inimal Data (see label ECC) 

E Compute Panel Velocities 
A VELOC - Compute Difference Velocities 

A Initialize 
B Compute Velocities at Panel Corner Points 
C . Compute Velocities at Edge ~lidpoints 
D Compute Velocities at Panel Center 
E Reset Velcoity for a Collapsed Edge 

B VELOC - Compute Average Velocities (see label EEA) 
C Write Doublet to CDT-DB 
D Write Edge Midpoints to CDT-DB 

F GENFM - Generate Forces and Moments 
A Initialize 

A Zero Local Storage 
B Set Constants 
C Set Requested Surface Indicator 
D PVEL - Computer Perturbation Velocity 

A Compute Velocity on Upper Surface 
B Compute Velocity on Lower Surface 

E Compute Corrected Velocity 
A Compute the Magnitude of Local Onset Flow 
B Compute Total Velocity 
C Compute the Magnitude of Total Velocity 
D Compute the Total Mass Flux 
E Compute the Magnitude of Total Mass Flux 
F VELCOR - Perform the Velocity Correction 

A Compute the Component of Perturbation 
Velocity in the Freestream Velocity Direction 

B Compute SAl Correction 
A SAl COR - Compute Correction to Total 

Velocity by Newton's Method 
A Compute Constant Quantities 
B Set X-Component of Total Velocity 
C Compute Increment to X-Component 

of Velocity by Newton's Method 
D Compute New Value of Total Velocity 
E Repeat Iteration 
F Branch Out to Loop 
G Generate Informative Message 
H Correct X-Component of Total 

Velocity 
B Compute Correction to X-Component of 

Perturbation Velocity 
C Compute Magnitude of Total Velocity 



B 

A Compute Corrected Velocity by Method 1 
(t~ul i tply Perturbati on ~lass Fl ux by the 
Ratio of Perturbation Velocity and 
Perturbation Mass Flux) 

B Compute Corrected Vel oci ty by f~ethod 2 
A Compute Ratio of Densities (Local 

to Freestream) 
B Compute Velocity Correction 

(Multiply Perturbation Mass Flux 
by Ratio of Densities) 

Compute Upper and Lower Force and Moment 
A Compute Surface Mass Flux 
B Compute f.1omentum Transfer Terms 

A Compute Momentum Flux 
B Compute Momentum Transfer Term for Force 
C Compute f1lomentum Transfer Tenn for f,10ment 

A Compute -Term Under Summation 
B Cross Summati on Term \'Ii th Momentum Fl ux 
C Combine Terms 

C Compute Pressure Coefficient 
A Get Grid Point Geometry and Velocity 
B Compute Total Velocity 
C Compute ~lagnitude of Total Velocity 
o COMPRS - Perform Pressure Coefficient Computation 

A Compute Perturbation and Local Incremental 
Onset Flow Velocities Along User Preferred 
Di recti on 
A Save Uniform Onset Flow Vector and 

Magnitude 
B Save Compressibility Vector and 

f1agni tude 
C Transfonn Perturbation Velocity 
o Transform Local Incremental Onset Flow 

Vel oci ty 
E Transform Uniform Onset Flow Velocity 
F Find DLTAE and DLTAE2 

B Compute Maximum and Critical Speed and Total 
Velocity, Squares of Perturbation and Local 
Incremental Onset Flow Velocities 
A Compute Maximum Speed 
B Compute Critical Speed 

C Compute Pressure Coefficients 
A Compute for Isentropic Approximation 

A Compute Pressure Coefficient in 
Flow 

B Compute Pressure Coefficient at 
Vacuum Condition 

B Compute for Second Order Approximation 
A Compute CPSO 
B Compute Corresponding Pressure 

Coefficient at Vacuum Condition 
C Compute for Reduced Second Order 

A Compute Pressure Coefficient in 
Flow 

1 O-B. 7 



G 
H 

B Compute Corresponding Pressure 
Coefficient at Vacuum Condition 

D Compute for Slender Body Approximations 
A Compute Pressure Co~fficient in 

Flow 
B Compute Pressure Coefficient at 

Vacuum Condition 
E Compute for Linear Approximation 

A Compute Pressure Coefficient in 
Flow 

B Compute Pressure Coefficient at 
Vacuum Condition 

D Compute Local Mach Numbers 
A Compute for Isentropic Approximation 
B Compute for Reduced Second Order 
C Compute for Slender Body Approximation 
D ~ompute for Linear Approximation 

E Retrieve Pressure Coefficients 
D Compute Pressure Terms 

A Compute Pressure Terms for Force 
B Compute Pressure Terms for Moment 

A Compute First Term 
B Compute Second Term 
C Combine Pressure Terms in ~loment Coefficient 

E Compute Surface Force and Moment 
C Compute Force and Moment for Requested Surface 

A Combine Force and Moment from Current Surface 
B REFLEM - Refl ect Force and I~oment 

A In it i ali ze 
A Compute Scaling Constant 
B Retrieve Input Image Force and Moment 

B Get Force and ~loment from Previ ous Image 
C Transform Force to Next Image 
D Compute Moment Under Current Reflection 

A Compute Second Term 
B Compute Third Term 
C Combine All Terms 

E Return Transformed Force and t~oment 
Store Forces and Moments on CDPT 
Rearrange Data for Next Panel in Column 

F Overlay (3,0), Program LEDGF - Compute Leading Edge Forces 
A Edge Preparation 

A Check for Valid Edge Request· 
B Analyze Panel Spacing and Required Corrections 

A Assemble Geometry Required to Check Spacing 
B SPACER - Check Panel Spacing 
C CORREC - Compute Correction Factor 

B Get Geometry for Panel 
C CPAGEQ - Compute Associated Geometric Quantities 

A Assemble Panel Geometry 
B Compute Edge Length and Edge Tangent 
C Compute Panel Normal 
D Compute Edge Normal 
E Get Edge Midpoint 

1 O-B. 8 



D Get Doublet Strength 
E Perform Computations 

A CEFDIR - Compute Edge Force Direction 
B CELPAR - Compute Edge Parameter 
C Compute Edge Force Magnitude 
D Compute Edge Force and Moment 

F Write Edge Force a"nd Noment to Temporary Database 

G Overlay (4,0), Program GENOUT - Transform to Requested Axis Systems and 
Write Forces and Moments on CDP Database and Output File 
A Initialize 

A Set Constants 
B Zero Network Accumulated Data 
C PNTGLOB - Print CDP Global Data 

A PNTHDR - Print Header Lines 
A Increment Output Page Number by One 
B Write First Output Line - Program Announcement 
C Write Second Line - Problem Identification 
D Write Third Line - Run Identification 
E Write Fourth Line - User Identification 
F Initialize Line Count Appropriately 

B Print Networks Information 
C Print Solution Information 
D Print Symmetry Information 
E Print Mach Number, CALPHA and CBETA 

A Print Mach Number 
B Compute CALPHA and CBETA 
C Print CALPHA and CBETA 

D PNTOPT - Print.CDP Case - Options Data 
A Print Page Header 
B Print Number of Networks, Velcoity Options and Surface 

Se 1 ecti on Da ta 
C Print Information on Selected Axis Systems 
D Print Global Reference Values 
E Print Local Reference Values 
F Print Solution Information 

E Write CDP Case Options 
B TRNMAT - Compute Transformati on r·latri ces for Sel ected Axi s Systems 

A Initialize Transformation Matrix to Zeroes 
B Get Index for the Axis from the List 
C Compute Matric Constant Terms 

A Use Angle of Attack and Sideslip 
B Use Input Euler Angles 
C Perform Computation 

D Compute First Column of Matrix 
E Compute Second Columne of Matrix 
F Compute Third Columne of Matrix 

C Write Network Specification Dataset 
D CPPRDB - Compute Panel Forces and Moments and Produce Print and 

Database Output 
A Initi al i ze 

A Zero Local Storage 
B Get Panel Areas 
C Include Any Edge Forces 

10-B.9 



E 

1 0-B.1 0 

B Read Forces and r~oment Data for the Panel in the Reference Axi s 
System from the COPT Database 

C TRNSFM - Transform Forces and r~oments 
A Transform Panel Forces and Moments and Store in Temporary 

Arrays TEMPF and TEt~PM 
B Restore to PANFOR and PAN~lor'l Arrays 

o Accumulate Forc~s and Moments Data 
E PNTRPT - Print Panel Forces and Moments 

A PNTSUB - Print New Page of Report 
A Increment Output Page Number by 1 
B Write Standard COP Header 
C Write Header for Network, Solution, Image 

Identification, etc. 
o Print Subheaders for Report 
E Save Solution, Network, Image Indices 

B Prepare Option Names and Data 
A Process Option Names For Printing 
B Scale Forces and Moments 

C Print Forces and Moments Data 
A Print Individual Panel Data 
B Print Column Sum Data 
C Print NeblOrk Sum Data 
o Print Configuration Sum DAta 
E Print Panel Edge Data 
F Print Network Edge Data 
G Print Accumulated Data 

o Save the Solution, Network, Image and Option Indices 
F Store Panel Forces and Moments in the COP Database 

A SCALFM.- Scale Forces and Moments To Be Written 
B Write Data 

G Output Column Sum of Forces and Moments Data 
A Get Accumulated Data 
B PNTRPT - Print Column Sum (see label GDE) 
C Store Columne Sum in COP Database 

A SCALFM - Sca1 e Forces and r~oments To Be Wri tten 
B Write Data 

H Accumu1 ate Forces and r~oments Data for Network 
I Output Network Sum of Forces and Moments 

A Get Accumulated Data for Network 
B PNTRPT - Print Network Sum (see label GDE) 
C Output Network Sum to CDP Database 

A SCALFM - Scale Forces and Moments To Be Written 
B Write Data 

CEPRDB - Compute and Store Edge Forces and Moments . 
A Obtain Edge Flag 
B Zero Edge Arrays 
C Get Number of Panels 
D Read Edge Forces and Moments 
E Transform Edge Results 
F Accumulate Edge Results 
G PNTRPT - Print Edge Forces and Moments for Panel (see label GDE) 
H Store Panel Edge Forces and Moments on Database 

A SCALFM - Scal e Forces and r~oments To Be Wri tten 
B Write Data 



I PNTRPT - Print Total Edge Forces and Moments (see label GDE) 
J Store Total Edge Forces and Moments on Database 

A SCALFM - Scale Forces and Moments To Be Written 
B Write Data 

F Output Configuration Sum 
A PNTRPT - Print Configuration Sum (see label GDE) 
B Store Configuration Sum on Database· 

A SCALFM - Scale Forces and Moments To Be Written 
B Write Data 

G Output Accumulation Sum 
A PNTRPT - Print Accumulation Sum (see 1ab1e GDE) 
B Store Accumulation Sum on Database 

A SCALFM - Scale Forces and Moments To Be Written 
B Write Data 

H Return and Close CDPT Database 

I Close DIP, MDG and COP Database 

J End Program 
K Overlay (5,0) Program AMCPEF - Compute Added Mass Coefficients 

A Initialize 
A GLOBPG - Write Global Summary Page 
B Zero Accumulation Total 
C Initiate Blank Common 

B CFIGAM - Compute Configuration Total 
A CASEPG - Write Case Summary Page 
B Write Case Options Dataset 
C Zero Conf.i gurati on Total . 
o Write Network Specifications Dataset 
E NETWA11 - Compute Network Total 

A I n it i ali ze 
A Zero Network Total 
B Set Blank Common Array Dimensions 
C Add Array to Blank Common 

B LOADBC - Load Blank Common with MDG Data 
A Store Geometry Data in Blank Common 

A Set Fine Grid Keys 
B Get Geometry Data 
C XFERBC - Store Moment Matrices in Blank Common 
o XFERBC - Store Panel Center in Blank Commen 

B Store Solution Data in Blank Common 
A Retrieve Panel Lower Grid Point Sets 
B Retrieve Panel Upper Grid Point Sets 
C Realign Grid Point Sets 
o XFERBC - Move Data to Blank Common 
E Shift Grid Point Data 

C COLAM - Compute Column Total 
A Zero Column Total 
B PANLAM - Compute Panel Coefficients 

A UNLDBC - Unload Data from Blank Common 
A BCXFER - Retrieve Geometry Data 
B BCXFER - Retrieve Solution Data 
C Align Solution Data 

10-B.11 



B INTAM - Perform Integration 
A Initialize 
B Compute Surface Potential 
C Compute Surface Matrices 
D Add Surface I~atri x Contri buti on 

C REFLAM - Reflect Coefficients 
A Compute Refl~ction Constants 
B Perform Added Mass Reflection 

D TRANAr~ - Translate Coefficients 
A Compute Transformation Matrices 
B Translate Coefficients to New Axis System 

E SCALAM - Scale Coefficients 
F OUTPAM - Output Panel Total 

A PRINAM - Print Added Mass Coefficients 
B Write Added Mass Coefficients 

C Increment Column Total 
D OUTPAN - Output Col umn Total 

A PRINAM - Point Added Mass Coefficients 
B Write Added Mass Coefficients 

D Increment Network Total 
E Delete Array from Blank Common 
F OUTPAM - Output Network Total 

A PRINAM - Print Added t~ass Coefficients 
B Write Added Mass Coefficients 

F Increment Configuration Total 
G OUTPAM - Output Configuration Total 

A PRINAM - Pri nt Added I·lass Coeffi ci ent 
B Write Added Mass Coefficients 

C Increment Accumulation Total 
D OUTPAM - Output Accumulation Total 

A PRINAt<1 - Pri nt Added Mass Coeffi ci ents 
B Write Added Mass Coefficients 

1 O-B. 12 



APPENDIX lO-C DATA BASE COMMUNICATIONS CHART 

The data base communications chart is presented in three forms. The first 
form has a column order of Data Base, Dataset Name, Map Name, Common Block, 
and Program/Subroutine. The second form has a column order of Data Base, Map 
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has 
a column order of Common Block, Data Base, r~ap Name, Dataset Name, "and 
Program/Subroutine. Thus a person can get a cross reference on a data element 
by knowing either the Dataset Name, Map Name or Common Block. 

1 O-C. 1 



Page Missing in 

Original Document 



FIRST FORM 

DATA 
BASE DATASET NAME r~AP NAME 

COP ADDED-MASS-COEF-DATA AD Dt·1ASSCO 

COP CASE-OPTIOtJS OPTNMAP 

COP DATABASE-HEADER DRMAP 

COP CONFIG-FORCES CONFIMAP 

COP PANEL-FORCE-MOMENT PANEU1AP 

COP LEAD-EDGE-COEFF EDGEr'lAP 

COP NETWK-SPEC NETSPCr·1AP 

COP NETWORK-FORCE-MOMENT NETWKt~AP 

COPT FORCE-MOM-COEFF COEFFI~AP 

C0fv1~10N BLOCK 

/KEYLIST / 

/CASES/ 

/SOLS/ 

/NETWK/ 

/ACCUM/ 

/RUNIDS/ 

/CASES/ 

/ACCUW 

dynamic 

/CASES/ 

/NETWK/ 

/LEGEOf~/ 

/AACUrv 

/PANDAT/ 

/CASES/ 

dynami c 

/CASES/ 

/NETWK/ 

/CASES/ 

/ACCUM/ 

/FMACCU/ 

/CASES/ 

/LEGEOM/ 

/ACCUM/ 

/PANDAT/ 

PROGRAH/ 
SUBROUTINE 

OUTPAM 

RCASFM 

COP 

GENOUT 

CPPRDB 

CEPRDB 

GEtJOUT 

CPPRDB 

COMPFM 

10-C.3 



DATA PROGRAM/ 
BASE DATASET-NAME r~AP-NAME Cot1MON-BLOCK SUBROUTINE --- --
COPT LEAD-EDGE-FORCE EDGEMAPT /CASESI LEDGF 

/EDGSINI 

dynamic* 

COPT PANEL-AREAS AREAMAP /CASESI COMPFf.l 

/PANDAT/ 

COPT PANEL-DIF-VELOC VELD~lAP dynami c* COMPFr~ 

LEDGF 

COPT PANEL-GEOMETRY PAGE0I1AP dynami c* CO~1PFM 

LEDGF 

DIP GLOBAL GLOBNVMRHS ICASES/ RCASFt1 

DIP GLOBAL-FLaW-PROP GLOBALPRO ICASES/ ANALYZ 

DIP SURF-FAM CASEMAP ICASES/ ·ANALYZ 

/ACCUM/ 

DIP SURF-FAM SURFAN ICASESI RCASFM 

/SOLSI 

/ACCUr~/ 

/NETWKI 

MDG GLOBAL MDGGLOBAL /NETWKI ANALYZ 

MDG NETWORK-SPEC NETSPEC /NETWK/ RCASFfvl 

MDG CP-GEOM CPGEOM dynamic* 

lO-C.4 



DATA 

BASE· DATASET-NAME t1AP-NAt~E 

MDG CP-GEor~ GPGEDt·1 

t~DG CP-DATA CPDATA 

MDG GP-DATA GPDATA 

t·1DG SOLUTION-DATA SOLDATA 

t~DG GP-GEOfvl GPCOORDS 
f" 

NDG CP-GEOM CPCOORDS 

11DG CP-DATA CON DATA 

CDt~~10N-BLOCK 

ICASESI 

IPGEDtV 

IGLOBALI 

ICASESI 

dynamic* 

ICASESI 

Ir~INDAT I 

IGLOBAL/ 

IPGE0I11 

ISOLSI 

IPGEor~1 

ILEGEO~1/ 

ICASESI 

ILEGEOM/ 

ICASES/ 

/GLOBAL/ 

/CPVEL/ 

PROGRAMI 

SUBROUTINE 

COMPFM 

CDt~PFt~ 

COMPFM 

LEDGF 

LEDGF 

LEDGF 

1 O-C. 5 



DATA 
BASE 

CDP 

CDP 

CDP 

COP 

CDP 

CDP 

CDP 

COP 

1 O-C. 6 

MAP NAME 

ADDMASSCO 

OPTNMAP 

DRr~AP 

CONFIMAP 

PANELMAP 

EDGEMAP 

NETSPCMAP 

NETWKMAP 

SECOND FORM 

DATASET-NAME 

ADDED-MASS-COEF-DATA 

CASE-OPTIONS 

DATABASE-HEADER 

CONFIG-FORCES 

PANEL-FORCE-MOMENT 

LEAD-EDGE-COEFF 

NETWK-SPEC 

NET\WRK-FORCE-MOMENT 

COMMON 
BLOCK 

/KEYLIST / 

dynamiC 

/CASES/ 

/SOLS/ 

/NETWK/ 

/ACCUM/ 

/RUN IDS/ 

/CASES/ 

/ACCUt'1/ 

dynami c* 

/CASES/ 

/NETWK/ 

/LEGEOM/ 

/AACUM/ 

/PANDAT/ 

/CASES/ 

dynamic* 

/CASES/ 

/NETWK/ 

/CASES/ 

/ACCUtV 

/Ft4ACCU/ 

PROGRAr~/ 
SUBROUTINE 

OUTPAM 

RCASFt~ 

CDP 

GENOUT 

CPPRDB 

CEPRDB 

GENOUT 

CPPRDB 

.~ 



(' 

DATA 

BASE 

COPT 

COPT 

COPT 

CDPT 

COPT 

DIP 

DIP 

DIP 

DIP 

MDG 

~lAP NAME 

COEFFt1AP 

EDGE~~APT 

AREAf1AP 

VELDt~AP 

PAGEOMAP 

GLOBNVMRHS 

GLOBAL PRO 

CASEMAP 

SURFAM 

MDGGLOBAL 

OAT ASH -NAt-1E 

FORCE-NOt1-COEFF 

LEAD-EDGE-FORCE 

PANEL-AREAS 

PANEL-DIF-VELOC 

PANEL-GEOMETRY 

GLOBAL 

GLOBAL-FLOW-PROP 

SURF-FAM 

SURF -F At>1 

GLOBAL 

COt~t10N 

BLOCK 

/CASES/ 

/LEGEOM/ 

/ACCUM/ 

/PANDAT/ 

/CASES/ 

/EDGSIN/ 

dynamic* 

/CASES/ 

/PANDAT/ 

dynami c* 

dynamic* 

/CASES/ 

/CASES/ 

/CASES/ 

/Accurv 

/CASES/ 

/SOLS/ 

/ACCUt.v 

/NHWK/ 

/NETWK/ 

PROGRAtV 

SUBROUTINE 

Cm~PFM 

LEDGF 

COMPFM 

COMPFM 

LEDGF 

CO~1PFM 

LEDGF 

RCASFr~ 

ANALYZ 

ANALYZ 

RCASFM 

ANALYZ 

1 o-c. 7 



DATA 

BASE 

r~DG 

MDG 

r~DG 

MDG 

~1DG 

'·lOG 

r~DG 

MDG 

MUG 

1 O-C. 8 

MAP NAME· DATASET -NA~1E 

NETSPEC NETWORK-SPEC 

CPGEOf'l CP-GEOM 

GPGEOM CP-GEOM 

CPDATA CP-DATA 

GPDATA GP-DATA 

SOLDATA SOLUTION-DATA 

GPCOORDS GP-GEOM 

CPCOORDS CP-GEOM 

CONDATA CP-DATA 

Cor~MOtJ 

BLOCK 

/NETWK/ 

dynamic* 

/CASES/ 

/PGEOM/ 

/GLOBAL/ 

/CASES/ 

dynamic* 

/CASES/ 

/MINDAT / 

/GLOBAL/ 

/PGEO~1/ 

/SOLS/ 

/PGEOIV 

/LEGEOt<1/ 

/CASES/ 

/LEGEoro1j 

/CASES/ 

/GLOBAL/ 

/CPVEL/ 

PROGRAt1j 

SUBROUTINE 

RCASH1 

cm1PFM 

Cot~PFr~ 

Cor~PFM 

LEDGF 

LEDGF 

LEDGF 

"\ 



THIRD FORM 
~ 
I COMMON DATA PROGRAM/ 

BLOCK BASE MAP NAr~E DATASET NA~1E SUBROUTINE 

/KEYLIST / CDP ADDED-MASS-COEF-DATA ADDI~ASSCO OUTPA/,I 

/CASES/ COP CASE -OPTI ONS OPTNr~AP RCASFt1 

/SOLS/ 

/NETWK/ 

/ACCUI~/ 

/RUNIDS/ COP DATABASE-HEADER DRr~AP COP 

/CASES/ COP CONFIG-FORCES CONFmAP GENOUT 

/ACCUM/ 

dynamic* 

/CASES/ COP PANEL-FORCE-MOMENT PANELMAP CPPRDB 

/NETWK/ 

/LEGEOIV 

/AACUI4/ 

/PANDAT/ 

/CASES/ COP LEAD-EDGE-COEFF EDGEI~AP CEPROB 

dynami c* 

/CASES/ COP NETWK-SPEC NETSPCMAP GENOUT 

/NETWK/ 

/CASES/ . COP NETWORK-FORCE-MOMEN NETWK~IAPT CPPROB 

/ACCUM/ 

/FMACCU/ 

/CASES/ COPT FORCE-t1Ot·I-COEFF COEFFMAP COMPn1 

/LEGEOW 

/ ACCUI1/ 

/PANOAT/ 
r" 

10-C.9 



COMt10N DATA PROGRft1.1! 
BLOCK BASE MAP NAt~E DATASET NAt~E SUBROUTINE ~ 

/CASES/ CDPT LEAD-EDGE-FORCE EDGEMAPT LEDGF 

/EDGSIN/ 

dynamic* 

/CASES/ CDPT PANEL-AREAS AREAMAP COt1PFt~ 

/PANDAT/ 

dynamic* CDPT PANEL-DIF-VELOC VELDMAP CO~lPFM 

LEDGF 

dynamic* CDPT PANEL-GEOMETRY PAGEor~AP CO~lPFM 

LEDGF 

/CASES/ DIP GLOBAL GLOBNVt·1RHS RCASFt1 

/CASES/ DIP GLOBAL-FLOW-PROP GLOBAL PRO ANALYZ 

/CASES/ DIP SURF-FAM CASE~lAP ANALYZ 

/ACCUI·1j 

/CASES/ DIP SURF-FAM SURF AJ.l RCASFt1 

/SOLS/ 

/ACCUM/ 

/NETWK/ 

/NETWK/ ~1DG GLOBAL MDGGLOBAL ANALYZ 

/NETWK/' ~1DG NETWORK-SPEC NETSPEC RCASFM 

dynamic* MDG CP-GEO~1 CPGEOM 

/CASES/ MDG CP-GEOM GPGEOM COMPFI~ 

/PGEOM/ 

/GLOBAL/ MDG CP-DATA CPDATA COMPFM 

lO-C.10 



COMt~ON DATA 

BLOCK BASE 

/CASES/ 

dynamic* 

/CASES/ MDG 

/MINDAT/ 

/GLOBAL/ 

/PGEor'1! 

/SOLS/ r~DG 

/PGEOt1/ MDG 

/LEGEor~/ 

/CASES/ IvlOG 

/LEGEOI·1/ 

/CASES/ MDG 

/GLOBAL/ 

/CPVEL/ 

r~AP NAr~E 

GP-DATA 

SOLUTION-DATA 

GP-GEOM 

CP-GE0I1 

CP-DATA 

DATASET NAr~E 

GPDATA 

SOLDATA 

GPCOORDS 

CPCOORDS 

CON DATA 

PROGRAM/ 

SUBROUTINE 

COt1PFM 

LEDGF 

LEDGF 

LEDGF 

* Dynamic mapping of the dataset is used for all or some of the dataset 

elements, thus requiring no common block storage for these elements. See 

Section 13 of this document for details of dynamic mapping. 

10-C." 



. r 

APPENDIX 10-0 MASTER DEFINTION 

The data base master definition listings of the COP module has been 
deleted from this document. These are produced from the PAN AIR tape during 
installation • 

10-0.1 



11.0 PRINT PLOT PROCESSOR (PPP) MODULE 

11.1 INTRODUCTION 

The scope of the PPP module has changed since the conception of PAN 
AIR. Originally, PPP was to generate all of the PAN AIR printed and plotted 
output. Now, however, each of the PAN AIR modules produces its own 'printed 
output while cycling through its calculations. This reduces the amount of 
information \'/hich must be saved for later processing. 

PPP functions as a simple editor, extracting user selected data from the 
PAN AIR data bases and reformatting the information for convenience in 
preparing plot files of PAN AIR results. 

PPP provides a running account of the module progress in the form of Run 
Name descriptors to identify the type of options executed and label on the 
plot files for DQG, PDP and CDP data. The plot file formats are described in 
Appendices E, F, and G for geometry plot file, point data plot file and" 
configuration forces and moments data plot file respectively. Tables 11.2 and 
11.3 give the lists of the parameter names for point data and configuration 
forces and moments data. Also, a major function of identifying point data and 
configuration data are accomplished by creating parameter name list headings 
for the selected data items on the plot files as given in Tables 11.2 and 11.3 
respecti vely. 

11.2 PPP OVERVIE~ 

In order to prepare the plot files of geometry data from the DQG data 
base," point data from the PDP data base and the configuration forces and 
moments data from the CDP data base, the fo11o\'ling steps are performed: 

Step 1. User Data Selection Process 

In describing the problem the user selects from a limited menu of PAN 
AIR data falling in three categories (see Section 7.0 of the PAN AIR USER1S 
Document, Ref. 2 for details): 

Geometry da ta 

Poi nt data -

Network panel corner points as input by the user 
(and sometimes slightly modified by DQG) in 
modul e GEor~PR. 

Pressures and velocities to be plotted"against 
columns/rows of network control or grid points in 
POINTP. 

(NOTE: The current program allows only the center 
control point type to be selected by columns) 

Configuration data- Forces and moments over panels, panel rows/columns, 
networks, and configurations - groups of networks to 
be plotted against solution parameter in module CONFIG. 

(NOTE: The current program allows only configuration 
data to be selected by columns) 

11 .1 



Step 2. Prepare Geometry Plot File (Corner Points) 

For geometry data the user specifies the problem to be considered (this is 
equivalent to specifying the DQG data base name from which the geometry will 
be read) and the list of networks to be processed. Geometry plot file format 
preparation is accomplished in module GEOMPR. A description of geometry plot 
file is also shown in Appendix 11-E. 

Step 3. Prepare Point Data Selection Plot File (Pressures and Velocities) 

With point data, the user may want to consider more classifications of 
data to indicate the problem (PDP data base name) plus the cases, solutions, 
and networks to be processed. In addition, for each network a choice of 
plotting. by panel rows or columns may be made (default = columns). 

Given the above choices, PPP will extract data for all images, velocity 
computation options, and velocity corrections. Also, PPP selection options of 
data items placed on the data base (per point, by PDP) will be processed. 

The data for plotting along a column/row of panels will include results at 
all of the column's/row's center control points, plus the two control points 
falling on the network edges at the ends of the column/row. Optionally, the 
results will be plotted at the network (fine) grid points. Point data plot 
file format preparation is accomplished in module POINTP. A description of 
point data plot file is shown in Appendix ll-F. 

Step 4. Prepare Configuration Data Selection Plot File (Forces and Moments) 

. Configuration data selection is similar to point data. Again, the user 
may want to indicate the problem (COP data base name) plus the cases, 
solutions, and networks to be processed. In addition, configurations (groups 
of networks) may be specified. Configuration data plot file format 
preparation is accomplished in module CONFIG. A description of configuration 
data plot file is shown in Appendix ll-G. 

The current PPP version restricts the geometry data, point data and 
configuration data to ·be accessed from only one data base each. If further 
plot data from other data bases are desired, then PPP module will have to be 
rerun. This will limit the capability of intermixing data from different data 
bases in the same run. 

11.2.1 Purpose of PPP 

The Print Plot Processor (PPP) is a module of the PAN AIR system. Its 
purpose is to prepare plot data files for geometry, point data and 
configuration data that were generated in DQG, PDP and COP modules as shown in 
Appendices 11-E, 11-F and 11-G respectively. 

11.2.2 PPP Input/Output Data 

11.2.2.1 Input 

11.2 

Inputs into PPP are fetched from the following data bases, 

DIP User selections of PPP options. 



MEC Data Base names, account numbers, data base status, date of execution 
-and other similar information. 

PDP User selected point data. 
COP User selected configuration data. 
DOG User selected network geometry data. 

11.2.2.2 Output 

Printed outputs and/or plot files as shown in Appendices ll-E, ll-F, and 
ll-G are produced from PPP with the following information, 

o User selected geometry data from DOG data base on a disk file named FT09. 
o User selected point data from PDP data base on a disk file named FT10. 
o User selected configuration data from COP data base on a disk file named 

FTll. 

The only necessary restrictions on the preparation of plot files is that 
the user have enough disk/file space to store the data generated for 
plotting. See Table 11.1 for the maximum problem limits allowable by PPP. 
Also, the problem sizes for a typical run are shown. 

Appendix 11-0 lists the possible PPP error diagnostics. 

If a printout of the outputs stored on the plot files are desired, then it 
is necessary to copy the information stored on the temporary disk file to the 
print output file by Job Control Cards as follows, 

REWINO(ON=FT09) 
REWIND(ON=FT10) 
REWIND(ON=FT11 ) 
LS(FT09) 
LS(FT10) 
LS(FTll) 

where, 

FT09 contains Geometry Data, FT10 contains Point Data, 
FTll contains Configuration Data, and 
LS is a PAN AIR JCL procedure on dataset PAPROCS 

11.2.3 Data Base Interfaces 

The data bases from MEC and DIP are always required as input. The data 
base(s) from DOG, PDP, and COP are selected by user options and are used as 
input data. 

11.3 MODULE DESCRIPTION 

The main overlays and its subroutines are briefly summarized in this 
paragraph. The PPP functional decomposition is shown in Appendix ll-B. A 
chart of the subroutine tree structure is presented in Appendix ll-A. 

11.3.1 Overall Structure 

Figure 11.1 illustrates the top level structure of the PPP module. 

11.3 



11.3.2 Overlay Descriptions 

11.3.2.1" PPP Overlay (0,0) 

The top level overlay (0,0) PPP initializes and controls access to the 4 
primary overl ays. 

11.3.2.2 PPPINT (Overlay 1,0) 

Module PPPINT checks the status of the DIP, DQG, PDP and CDP data bases. 
The PPP selection options are initialized in a common block with data from the 
DIP module. Figure 11.2 shows the structure and data flow of overlay (1,0). 

11.3.2.3 GEO~'PR (Overlay 2,0) 

Module GEOMPR gets geometry data from the DQG data base and calls 
subroutine GEOPLT to prepare geometry plot file (FT09). The network panel 
corner points data are processed in subroutine CORPTS. Figure 11.3 shows the 
structure and data flow of overlay (2,0). 

11.3.2.4 POINTP (Overlay 3,0) 

Module POINTP processes and prepares point data plot file (FT10). MAPPDP 
is called to perform SDf~S mappings of PDP data sets. Subroutine LAYOUT is 
called to store global data, run identification data and surface flO\oJ quantity 
options in common blocks. The preparation and formatting of the point data 
plot file is processed in PNTPLT. Subroutine PTYP23 is called to process 
point type 2 for network edges and point type 3 for additional control points 
data. Subroutine PTYP14 is called to process point type 1 for panel center 
control point and point type 4 for grid points data. Figure 11.4 shows the 
structure and data flow of overlay (3,0). 

11.3.2.5 CONFIG (Overlay 4,0) 

Module CONFIG gets forces and moments on portions of a configuration from 
the CDP data base according to user requests and prepares a configuration data 
plot file (FTll). For each user defined case, the module loops over all 
selected solutions. The SDMS mappings for DIP and CDP data sets are processed 
in subroutines MAPDIP and MAPCDP. The forces and moments options are read in 
subroutine RCASFM and the case options are stored in a common block. 
Subroutine GENOUT is called to prepare the plot file for the configuration 
options data for panel sums in PANLSM, column sums in PCOLSM, netHork sums in" 
PNETSM, configuration sums and accumulation sums. Figure 11.5 shows the 
structure and data flow of overlay (4,0). 

11.3.3 PPP Data Base 

There is no data base created in PPP. The data base communications chart 
is shown in Appendix 11-C. 

11.3.4 PPP Interfaces 

Figure 11.6 summarizes the external data interfaces between the PPP module 
and the MEC, DIP, DQG, PDP and CDP databases. 

11.4 



11.3.5 PPP Data Flow 

Figures 11.2 thru 11.5 illustrate the data flow for the major sections of 
PPP. 

11.4 LOWER LEVEL FUNCTIONS 

11.4.1 Functional Decompositions 

Functional decompositions are shown in Appendix ll-B and the tree 
structure is given in Appendix ll-A. 

11.4.2 Subroutine Descriptions 

BLKDAT 

The Block Data subprogram initializes the items in labeled common used for 
print/plot purposes for DOG, PDP and CDP data. 

CDPARM 

Prepares CDP parameter name headings for selected options of forces and 
moments, pressure rules and axes systems. In addition, the first heading 
line consists of solution number, magnitude of uniform onset flow 
velocity, alpha and beta values. 

CORPTS 

Reads geometry corner pOints data from DOG-DB and writes it onto the plot 
file FT09. 

CRUNAM 

Prepares COP run names for configuration options data. 

DPRINT 

Writes DOG geometry network identifications onto plot file FT09. 

EDGTAB 

Computes table for additi~nal control points and edge data for PDP data. 

GENOUT 

Prepares the forces and moments data to be stored on the COP configuration 
plot file FTll. 

GEOPLT 

Prepares DOG geometry plot file of corner point data for all selected 
networks. 

11.5 



HEADPR 

Print out page header information including page count for DQG, PDP and 
CDP data. 

HEADR 

Writes DQG geometry plot header information onto the plot file FT09. 

LAYOUT 

Stores PDP global data with appropriate headers for the first time. It 
also stores the surface options data for all subsequent calls. 

LINDX 

Locates the starting and ending indices for row or column loops for PDP 
point type center, edge, additional and grid (i.e. point types 1, 2, 3, 
and 4, respectively). 

LOADVL 

Loads computed PDP flow quantities data into buffer arrays to be stored on 
the plot file FT10. 

fMPCDP 

Defines SDMS maps for CDP data base data sets CASE-OPTIONS, NETWK-SPEC, 
PANEL-FORCE-f~OMENT, LEAD-EDGE-COEFF, NETHORK-FORcE-r~or~ENT, CONFIG-FORCES, 
NET-FOR-MOM-EDGE, and DATA-BASE-HEADER. 

MAPDIP 

Defines SDMS maps on DIP data base for data sets GLOBAL-FLOW-PROP, 
SURF-FAM, GLOBAL and CONFIG-PRINT-PLOT for COP data. 

t~APPDP 

Defines SDMS maps on PDP database for data sets GLOBAL, NETWK-SPEC, 
SURF-OPTIONS, FLOW-QUANT, and DATA-BASE-HEADER for PDP data. 

ONSETF 

Computes the magnitude of uniform onset f10~ velocity, alpha and beta 
values for a solution for COP data. 

PANLSM 

11.6 

Prepares panel sums for forces and moments plot data to be stored on COP 
plot fi 1 e FTl1. 



PCOLSM 

Prepares column sum for forces and moments plot data to be stored on COP 
plot fil e FTll. 

PLTDAT 

Prepares panel forces and moments data to be stored on the COP 
configuration plot file FTll. 

PLTFIL 

Stores surface flow quantiti es data onto PDP plot fi 1 e FT10.. The surface 
flow data is loaded into the arrays by calling LOADVL. 

PLTHDC 

Writes COP header information of problem, run and user identifications 
onto plot file FTll. 

PLTHDR 

Stores PDP plot headers on plot file FT10. 

PLTHED 

Writes headers for COP data on the configuration plot file FTll. 

PLTOPT 

Prepares COP case options data as the first page of each case. 

PLTRPT 

Prepares COP plot file data for forces and moments for panels and the 
total for columns, networks, and configuration. 

PLTSUB 

Writes header for pressure and velocity selections onto PDP plot file FT10. 

PNETSH 

Prepares COP panel network sums for forces and moments plot data for the 
axes and pressure rules selected. 

PNTGLOB 

Prints global data for COP data. 

11. 7 



PNTPLT 

Reads data from PDP data base and stores it onto plot file FT10. 

PPPROC 

The network, solution and case data are written out on the print and/or 
plot file. 

PRUNAf·1 

Produces point data run names to be put on the PDP plot file FT10 to 
identify point data type. 

PTYP14 

Processes PDP point type 1 for panel center control point and point type 4 
for grid points data. 

PTYP23 

Processes PDP point type 2 for network edges and point type 3 for 
additional control points data. 

RCASH1 

Reads and analyzes COP user options for current case data. Also, the 
solution list is prepared. 

STUFF 

11.8 

Processes all selected PDP flow quantities data and saves these in array 
named FLQDAT. 



TABLE 11.1 - ~laximum and Typical Counts on Problem Options 

MAXIMur'l NUMBER TYPICAL NU~1BER 
PLOT DATA ITEM/OPTION (PROBLEM SIZES) (PROBLEt-I SIZES) 

DQG Data Base(s) 1 1 
Networks 100 30 
Panels 2000 400 

PDP Data Base(s) 1 1 
Cases 100 20 
Solutions 200 20 
Network Selections 400 50 
Array Types 4 1 
Parameter Li st 39 20 
Surface Selections 5 2 
Sel. Vel. Compo 2 1 
Compo Option Press 1 1 
Velocity Correction 3 2 
CP Options 5 2 

COP Data Base(s) 1 1 
Cases 100 20 
Solutions 200 20 

.~ Surface Configuration 400 40 
Axi s Systems 4 2 
Data Base Options 9000 2200 

o Panels 2000 1000 
o Columns, etc. 250 100 

Surface Selection 1 1 
Sel. Vel. Comp 2 1 
Compo Option Press 1 1 
Velocity Correction 3 2 
CP Options 5 2 
Parameter Lists 124 30 

11. 9 



DIP 
Index* 

2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
6 
7 
7 
7 
8 
8 
8 
9 

10 
11 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
14 
14 
14 
15 

16 
16 
17 
18 
19 

Headings 

x 
Y 
Z 
PWX 
PWY 
PWZ 
WX 
WY 
WZ 
WMAG 
WN 
PYX 
PVY 
PVZ 
VX 
VY 
VZ 
V~lAG 
PHI 
PHIT 
MLISEN . 
r~LLINE 
MLSECO 
MLREDU 
MLSLEN 
CPISEN 
CPLINE 
CPSECO 
CPREDU 
CPSLEN 
GMUX 
G1vlUY 
Gr,lUZ 
PSI 

SINGS 
SINGD 
SPDfvlAX 
SPDCRT 
CPVAC 

TABLE 11.2 - PDP Parameter Name list 

Quantity 

Point, x-coordinate 
Point, y-coordinate 
Point, z-coordinate 
Perturbation mass flux, x-component 
Perturbation mass flux, y-component 
Perturbation mass flux, z-component 
Total mass flux, x-component 
Total mass flux, y-component 
Total mass flux, z-component 
Total mass flux, magnitude 
Total mass flux, normal component 
Perturbation velocity, x-component 
Perturbation velocity, y-component 
Perturbation velocity, z-component 
Total velocity, x-component 
Total velocity, y-component 
Total velocity, z-component 
Total velocity, magnitude 
Perturbation potential 
Total potential 
Local Mach number, isentropic 
Local Mach number, linear 
Local Mach number, second-order 
Local Mach number, reduced second-order 
Local Mach number, slender body 
Pressure coefficient, isentropic 
Pressure coefficient, linear 
Pressure coefficient, second-order 
Pressure coefficient, reduced second-order 
Pressure coefficient, slender body 
Doublet strength gradient, x-component 
Doublet strength gradient, y-component 
Doublet strength gradient, z-co~ponent 
Angle, between average velocity and surface vorticity 
vectors (degrees) 
Singularity strength, source 
Singularity strength, doublet 
Maximum total speed 
Critical speed 
Pressure coefficient, vacuum 

* See a description of user input record SF10 in Section 7 of the PAN AIR 
USER'S MANUAL (Ref. 2). 

11 .10 



Character COP 
Positions Headings 

1 and 2 FX 
(Forces FY 

and FZ 
Moments) MX 

fv\Y 
HZ 

3-5 ISE 
( C P Ru 1 e s ) LI N 

SEC 
REO 
SLE 

6-7 
(Axis 
Systems) 

RC 
HA 
BA 
SA 

TABLE 11.3 - COP Parameter Name List 

Quantity 

Force component in X 
" " " Y 
II II II Z 

Moment component in X 
II II II Y 
II II II Z 

Isentropic 
Li near 
Second-order 
Reduced second-order 
Slender body 

direction 
II 

II 

di recti on 
II 

II 

Referenc.e coordi nate system 
Wing axis system 
Body axi s system 
Stability axis system 

11.11 



Page Missing in 

Original Document 



-) 

p;J Global 
Data 8 Info 

, , . I . I , 
I . I • I , I . I . I . I . I . I , 

I . . , , I , I , I , I , I 
• I 
• I 
• I 
, I 

" 

OVERLAY (1,0) 
PPPINT 

Check Data Bases 

and Initialize 

.------. Data Flow 
____ Program Execution Flow 

~ 
~ 

~ 

w 

) 

PPP 
TOP LEVEL 

UUll -

Geom. 
OVERLAY (O,O) 

Da ta Initialize and 
, Call other , 

Overlays , , , . , , . 

I Point 
Data 

I 
I 

I 
I 

I 

.kll.f.: 
Can fig 

.... 
Data 

• I • · • · • · · , 
I 
I , , I , I 

. . , . , . 
y : 

... , , , 
\ , , 

I' 
I 

I 

/ 
I 

I 

• · • · · · · • • ,/ 

OVERLAY (2,O) OVERLAY (3.0) OVERLAY (4.0) 
CONFIG GEOMPR POINTP 

Process 
Configuration 

, 

Process 
Geometry Plot 

File Information 

Process Point 
Data Plot File 

Information 
Data Plot File 

Information 

, , 

" .-, 
" 

, , , , , ,.. 

Printed 

Geometry. Poi nt 
and 

Con fig u rat i o·n 
Data 

'. .. 
'. . . . , . . , , . 

Figure 11.1 - TOP Level Structure of PPP 

'. , , 
'. . , . 

'. . . 

, , , , , 

, , 

/'/ 

) 

~ 

G1 oba 1 
Data 
, ,-, , , , , 

-
, , 



11.14 

MEC 

DIP 

DQG 

PDP 

CDP 

DATA-BASE-HEADER 

~------------------,.. • • • • · · · • · • 
-------------------------------~ 

GLOBAL-DB-OUTPUT 

----------------------------------1 

· -t · · · · · · 

· · · , 
---------------------------------1 

· , · I 
I , · I · · · · -----------------------------------1 

OVERLAY (1,0) 

PPPINT 

Figure 11.2 - Structure and Data Flow of Overlay (1,0) 



f' 
, 

DIP 
~-------------------------i 
GEOM-PRINT-PLOT: 

\ J ) ~----...... _----' OVERLAY (2.0) 
GEOMPR 

DQG 

.--· · · • · • · · ----------------------------~ GLOBAL 

~----------. GEOPLT 
NETWK-SPEC 

----------------------------------~ PANEL-CORNER-COORDS 
CORPTS 

Figure 11.3 - Structure and Data Flow of Overlay (2,0) 

11.15 



DIP 

PDP 

11.16 

---------.------------------~ 
POINT-PRINT-PLOT L._ 

GLOBAL 
SURF-OPTIONS 
NETWK-SPEC 
DATA-BASE-HEADER 

.--
I 

OVERLAY (3,0) 

POINTP 
I 
I 
I 
I 
I 
I 
I , 

~-------------------JI-
FLOW-QUANT 

--------------------JI-FLOW-QUANT 

PTYP23 

PTYP14 

Figure 11.4 - Structure and Data Flow of Overlay (3,0) 0 



~ , 

DIP 

COP 

GLOBAL 
GLOBAL-FLOW-PROP 
SURE-FAM 
C-ONFi-tr':P-R-iNT-:-prO-~ 

OVERLAY (4,0) 
CON FIG 

--------------------------------SURF-FAM 
GLOBAL 

----------------.-----._----------------
CASE-OPTIONS 
DATA-BASE-HE~DER 

~----------------------~ CASE-OPTIONS 
NETWK-SPEC 
CON FIG-FORCES 

RCASFM 

GENOUT 

Figure 11.5 - Structure and Data Flow of Overlay (4,0) 
11.17 



MEC 
Module 

... "'''' .. 

~ ________ { MO~C } •• 

1--____ --' """~ . -8IP "'" DIP 
Module 

OQG 
Module 

f----------~ 0 B -'" f'2'\ """ ........ \V "" .......... "" .. ...... , 

-----------rn--------d2:~~·:::· 
'----"""--' . 0. ...... . 

~ ~ _.--_ ............... ,/ 
PDP 

Module ~--------~. ~ ... / 

"--M-OCd-Ou-Pl-e---'----·---m···· ...... ••• ... 

(2) Data Base Directory Information 

(2) PPP Selection Information 

~ Geometry Data 

CD Point Data 

~ Configuration Data 

PPP 

MODULE 

Figure 11.6 - External Data Inferfaces 

11.18 

-. · • • · 

,r"\ 



APPENDIX ll-A TREE STRUCTURE 

The tree structure of the PPP moudle has been deleted from this document. 
It is, however, available on the installation tape. 

ll-A.l 



APPENDIX 11-8 PPP FUNCTIONAL DECOMPOSITION 

The functional decomposition of the PPP module is presented here. The 
decomposition labels are given in the order of their execution and therefore 
may not be alphabetic. 

11-8. 1 



Page Missing in 

Original Document 



A Initialization and control of PPP Execution [Overlay O,OJ (PPP). 
A Initialize printout (PRGBEG). 
B Initialization of SDMS for Execution (ISDMS). 
C Check Data Base(s) and initialize [Overlay l,OJ (PPPINT). 

A Initialization. 
B Open MEC Data base (SOSLIB/OBOPEN). 
C Get data base header information (SDSLIB/ESGET). 
o Check data base location (PALIB/CHPAOB). 

A Check DIP. 
B Check DQG. 
C Check PDP. 
o Check COP. 

E Open DIP data bases (SDSLIB/PAOPEN). 
F Get global PPP information from DIP (SDSLIB/ESGET). 
G Close MEC data base (SDSLIB/DBCLOS). 

B Process geometry data [Overlay 2,OJ (GEOt~PR). 
A Open DIP data base (SDSLIB/PAOPEN). 

A Open DQG data base (SOSLIB/PAOPEN). 
B Define mappings for OQG data base. 

B Process and prepare geometry plot file. 
A Get geometry specifications from DIP data base (SOSLIB/ESGET). 
B Setup MAP for Global data set for DOG data base (SOSLIB/SVMAP). 
C Setup ~1AP for Network specs for DQG data base (SDSLlB/SV!'1AP /OSMAP). 
o Get Global geometry data from DQG-DB (SDSLIB/ESGET). 
E Calculate CALPHA, CaETA and set number of networks. 

C Process geometry plot file (GEOPLT). 
A Write header titles, run ID, problem 10, user 10 and DQG global data 

on plot file (HEADR). 
B Determine network selections. 

A Set networks to all active DQG selections (Default). 
B Set networks to PPP selections. 

C Get network specs from DIP (SOSLIB/ESGET). 
D Print run name (DPRINT). 
E Process geometry corner points from DOG data base (CORPTS). 

A Get panel corner point data from DOG data base (SOSLIB/ESGET). 
B Prepare and write a column of corner points on plot file. 

F Write ending identification on plot file. 
o Close DQG and DIP data bases (SDSLIB/PACLOS). 

C Process point data [Overlay 3,OJ (POINTP). 
A Open DIP data base (SDSLIB/PAOPEN). 

A Setup map for POINT-PRINT-PLOT (SOSLIB/DSMAP). 
B Define static map (SDSLIB/SVMAP). 

B Get point data specs from DIP for PPP (SDSLIB/ESGET). 
C Open PDP data base (SDSLIB/PAOPEN). 
D Form maps for PDP data (MAPPOP). 

A Get global PDP data (SDSLIB/ESGET). 
E Process and prepare point data plot file. 

A Get surface flow data (SDSLIB/ESGET). 
B Prepare layout of outputs (LAYOUT). 

A Print global data. 

ll-B.3 



B Print surface flow options data. 
A Print header information (HEADPR). 
B Print option selection information. 
C Print option index values for flow quantities. 

C Get network data (SDSLIB/ESGET). 
D Prepare point data plot file (PNTPLT). 

A Initiate program execution. 
B Process point types for network edge and additional control point. 

A Process edge data table (EDGTAB). 
A Initialize row/column indices. 
B Prepare panel center control point table. 
C Prepare additional control point table. 

B Process network edge and additional control points· data 
(PTYP23). 
A Initialize loop control parameters. 
B Get flow quantities data (SDSLIB/ESGET). 
C Process point type. 

A Unpack flow quantities (STUFF). 
A Initialization of unpacked flow quantities data. 
B Unpack flow data. 
C Store flow data. 

B Load flow quantities data (LOADVL). 
A Initialization. 
B Fill flow data selections into buffers. 
C Fill sub header flow data. 
D Load subheader flow data into buffers. 
E Load flow data into buffers. 

D Process plot file data (PLTFIL). 
A Prepare new page of report (PLTSUB). 
B Write new page headings (HEADPR). 
C Prepare run name (PRUNAr,I). 
D Print/store flow quantities data. 
E Save current point indices. 

C Process center control points and grid points (PTVP14). 
A Initialize row/column indices (LINDX). 
B Load flow data from PDP data base (SDSLIB/ESGET). 
C Set surface option. 
D Set velocity correction option. 
E Unpack flow data (STUFF). 
F Load flow data (LOADVL). 
G Store flow data (PLTFIL). 

F Close PDP plot file (SDSLIB/PACLOS). 

D Process configurations data [Overlay 4,OJ (CONFIG). 
A Open data bases and define SDMS maps. 

A Open DIP data base (SDSLIB/PAOPEN). 
B Define DIP maps (MAPDIP). 

A Initialize. 
B Select maps for DIP data base. 

11-8.4 



C Map SURF-FAr~. 
D Map SURF -FAl;\ for CASEMAP. 
E Map GLOBAL. 
F Map CONFIG-PRINT-PLOT PPP selection. 

B Process and prepare plot file. 
A Get DIP-CFG-PL specs (SDSLIB/ESGET). 
B Determine selection options for CDP. 
COpen CDP data base (SDSLIB/PAOPEN). 
D Define SDMS maps for CDP (MAPCDP). 
E Define SDMS maps for DIP (MAPDIP). 

C Get forces and moments data. 
A Read forces and moments case-options data (RCASFM). 

A Initialize. 
B Get case-options and surface data from CDP and DIP data base. 
C Generate computation options vectors. 
D Print output case requirements. 
E Prepare solutions list array. 

D Get forces and moments data from COP data base and store output onto 
plot file (GENOUT). 
A Print CDP Global and case-opticns data. 
B Print Global data (PNTGLOB). 

A Print header lines. 
A Print header information for top of new page (PLTHED). 
B Store header information for plot file (PLTHDC). 

B Print networks information. 
C Print global data. 

C Print CDP case-options data (PLTOPT). 
D Get CDP case-options and network specs data (SDSLIB/ESGET). 
E Setup CDP parameter name list (CDPARM). 
F Get CDP network specs data (SDSLIB/ESGET). 
G Get panel forces and moments data and prepare configuration plot 

data (PLTDAT). 
A Initialization. 
B Prepare panel forces and moments data (PANLSM). 

A Setup panel run name (CRUNAM). 
B Prepare alpha, beta and magnitude of uniform onset flow 

velocity data (ONSETF). 
C Get panel forces and moments data (SDSLIB/ESGET). 
D Process panel forces and moments plot data (PLTRPT). 

C Prepare column sum forces and moments data (PCOLSM) 
A Setup column sum run name (CRUNAM). 
B Prepare alpha, beta and magnitude of uniform onset flO\'/ 

velocity data (ONSETF). 
C Output column sum of forces and moments data. 

A Get column sum data (SDSLIB/ESGET). 
B Process column sum forces and moments plot data (PLTRPT). 

D Prepare network sum forces and moments data (PNETSM). 
A Setup network sum run name (CRUNA~1). -
B Prepare alpha, beta and magnitude of uniform ~nset flow 

velocity data (ONSETF). 
C Get network sum data (SDSLIB/ESGET). 
D Process network sum forces and moments plot data (PLTRPT). 

H Prepare configuration sum plot data. 

11-B.5 



A Setup COP option run name. 
B Prepare alpha, beta and magnitude of uniform onset flow velocity . ~ 

solution data (ONSETF). 
C Get configuration data (SOSLIB/ESGET)~ 
o Process configuration plot data (PLTRPT). 

I Process accumulations option data. 
A Setup COP parameter name list (COPARM). 
B Setup COP run name (CRUNAM). 
C Prepare alpha, beta and magnitude of uniform onset flow velocity 

solution data (ONSETF). 
o Get forces and moments data (SOSLIB/ESGET). 
E Process configuration plot data (PLTRPT). 

E Close DIP and COP data bases (SOSLIB/PACLOS). 

E Terminate Program Execution (PRGENO). 

11-8.6 



APPENDIX 11-C DATABASE COMMUNICATIONS CHARTS 

The Data Base Communications Chart is presented in three forms. Each form 
is alphabetized by columns, from left to right. The first form has a column 
order of Data Base, Dataset Name, Map Name, Common Block, and 
Program/Subroutine. The second form has a column order of Data Base, Map 
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has 
a column order of Common Block, Data Base, Map Name, Dataset Name, and 
Program/Subroutine. Thus a person can get a cross reference on a data element 
by knowing either the Dataset Name, r'lap Name or Common Block name. 

11-C.l 



Page Missing in 

Original Document 



FIRST FORr~ 

DATA BASE DATA SET NAME f1AP NAf~E COf1MON BLOCK SUBROUTINE 

Overlay (1,0) 

MEC DATA-BASE-HEADER ~lECHDR /RUNIDS/ PPPINT 
DIP GLOBAL-DB-OUTPUT DIP-GLOBPP /GLOPPP/ PPPINT 

Overlay (2,0) 
DIP GEor~-PRINT -PLOT DlpGEOI,\ /PPPDAT/ GEO~IPR 
DQG DATA-BASE-HEADER DQGHDR /RUNIDS/ GEor~PR 
DQG GLOBAL GLOBAL /NETWX/ GEOMPR 
DQG NETWK-SPEC NETMAP . /NETWX/ GEOPLT 

Dynami c 
DQG PANEL-CORNER-COORDS PANCORD Dynam; c CORPTS 

Overlay (3,0) 

DIP POINT-PRINT-PLOT DIPPTPLT /PPPDAT/ POINTP 
PDP DATA-BASE-HEADER PDPHDR /RUNIDS/ POINTP 
PDP FLOW-QUANT FLQNTf,1AP /PDOPT/ PTYP23 

/FLQNT/ 
Dynam; c 

PDP FLOH-QUANT FLQNTi·1AP /PDOPT/ PTYP14 
/FLQtlT / 
Dynamic 

~ PDP GLOBAL GLOBMAP /PDGLOB/ POINTP 
PDP SURF -OPTIONS OPTNMAP /PDOPT/ POINTP 
PDP NETWK-SPEC NETMAP /NETSPC/ POINTP 

Overlay (4,0) 

DIP CONFIG-PRINT-PLOT DIP-CFG- /PPPDAT/ CONFIG 
DIP GLOBAL-FLOW-PROP GLOBALPR /CASES/ CONFIG 
DIP SURF-FAM SURFAf~ /CASES/ CONFIG 

/SOLS/ 
/ACCut,l/ 
/NETVJK/ 

DIP GLOBAL GLOBDIP /CASES/ CONFIG 
DIP GLOBAL GLOBDIP /CASES/ RCASFM 
DIP SURF-F~l CASEMAP /CASES/ RCASFM 

/ACCUM/ 
COP DATA-BASE-HEADER HDRMAP /RUN IDS/ CONFIG 
COP CASE-OPTIONS OPTNMAP /CASES/ RCASFM 
COP CASE-OPTIONS OPTtJMAP /SOLS/ GEtJOUT 

/NETWK/ 
/ACCUM/ 

COP NETWK-SPEC NETSPCMP /CASES/ GEtJOUT 
/NETWK/ 

COP CONFIG-FORCES CONFIMAP /CASES/ GENOUT 
/ACCUW 
Dynamic 

11-C.3 



DATA BASE DATA SET NA~lE r~AP NAME CONMON BLOCK SUBROUTINE 
~, 

CDP PANEL-FORCE-MOMENT PANELMAP /CASES/ PANLSM 
/ACCU~1/ 
/NETWK/ 
/LEGEor~/ 
/PANDAT/ 

COP NETWORK-FORCE-MOMENT NETHKt~AP /CASES/ PCOLS~1 
COP NETWORK-FORCE-MOMENT NETWKMAP /ACCUr~/ PNETSM 

/FMACCU/ 

ll-C.4 



SECOND FOR~l 

,~ DATA BASE MAP NA~'E DATA SET NAME Cor>1MON BLOCK SUBROUTINE 

Overlay (1,0) 

MEC r~ECHDR DATA-BASE-HEADER /RUNIDS/ PPPINT 
DIP DIP-GLOBPP GLOBAL-DB-OUTPUT /GLOPPP/ PPPINT 

Overlay (2,0) 

DIP DIPGEOt,1 GEOM-PRINT-PLOT /PPPDAT/ GEOMPR 
DQG DQGHDR DATA-BASE-HEADER /RUtJIDS/ GEO~lPR 
DQG GLOBAL GLOBAL /NETWX/ GEOf~PR 
DQG NETMAP NETWK-SPEC /NETWX/ GEOPLT 

Dynam; c 
DQG PANCORD PANEL-CORNER-COORDS Dynami c CORPTS 

Overlay (3,0) 

DIP DIPPTPLT POINT-PRINT-PLOT /PPPDAT/ POINTP 
PDP PDPHDR DATA-BASE-HEADER /RUtJIDS/ POINTP 
PDP FLQNTMAP FLOW-QUANT /PDOPT/ PTYP23 

/FLQNT/ 
Dynami c 

PDP FLQNTr~AP FLOW-QUANT /PDOPT/ PTYP14 
/FLQtJT / 
Dynami c 

,~ PDP GLOBr·IAP GLOBAL /PDGLOB/ POINTP 
PDP OPTNt·1AP SURF-OPTIONS /PDOPT/ POINTP 
PDP NEnlAP NETHK-SPEC /NETSPC/ POINTP 

Overlay (4,0) 

DIP DIP-CFG- CONFIG-PRINT-PLOT /PPPDAT/ CONFIG 
DIP GLOBALPR GLOBAL-FLOW-PROP /CASES/ CONFIG 
DIP SURF At" SURF-FAM /CASES/ CONFIG 

/SOLS/ 
/ACCUM/ 
/NETWK/ 

DIP GLOBDIP GLOBAL /CASES/ CONFIG 
DIP GLOBDIP GLOBAL /CASES/ RCASHI 
DIP" CASEMAP SURF-FAN /CASES/ RCASFM 

/ACCUM/ 
COP HDRr~AP DATA-BASE-HEADER /RUNIDS/ CONFIG 
COP OPTNMAP CASE-OPTIONS /CASES/ RCASFM 
COP OPTN~'AP CASE-OPTIONS /SOLS/ GENOUT 

/NETHK/ 
/ACCUM/ 

COP NETSPC~1P NETWK-SPEC /CASES/ GENOUT 
/NETHK/ 

COP CONFIMAP . CONFIG-FORCES /eASES/ GENOUT 
/ACCUM/ 
Dynami c 

ll-C.5 



DATA BASE MAP NAlvtE DATA SET NA~lE CO~lMON BLOCK SUBROUTINE 

COP PANELMAP PANEL-FORCE-MOMENT ICASESI PANLSM 
IACCU~1/ 
INETWKI 
ILEGEOtV 
IPAtJDAT I 

CDP NETWKlvtAP NETWORK-FORCE-MOMENT ICASESI PCOLSM 
COP NETWKMAP NETWORK-FORCE-MOMENT IACCUf~1 PNETSM 

IFMACCUI 

11 -C. 6 



THIRD FORI·' 
~ COMHmJ BLOCK DATA BASE MAP NAME DATA SET NA11E SUBROUTINE 

/RUNIDS/ r~EC r~ECHDR DATA-BASE-HEADER PPPINT 

/GLOPPP/ DIP DIP-GLOBPP GLOBAL-DB-OUTPUT PPPINT 

Overl ay (2,0) 

/PPPDAT/ DIP DIPGEO~l GE0l1-PRINT -PLOT GEOl~PR 
/RUNIDS/ DQG DQGHDR DATA-BASE-HEADER GEOMPR 
/NETWX/ DQG GLOBAL GLOBAL GEOl~PR 
/NETWX/ DQG NETMAp· NETWK-SPEC GEOPLT 
Dynami c 
Dynamic DQG PMJCORD PANEL-CORNER-COORDS CORPTS 

Overlay (3,0) 

/PPPDAT/ DIP DIPPTPLT POINT-PRINT-PLOT POINTP 
/RUNIDS/ PDP PDPHDR DATA-BASE-HEADER POINTP 
/PDOPT/ PDP FLQNTr"AP FLOW-QUANT PTYP23 
/FLQNT/ 
Dynami c 
/PDOPT/ PDP FLQtm~AP FLOW-QUANT PTYP14 
/FLQNT/ 
Dynamic 
/PDGLOB/ PDP GLOB1~AP GLOBAL POINTP 
/PDOPT/ PDP OPTN1·1AP SURF -OPTIONS POINTP 
/NETSPC/ PDP NETMAP NETWK-SPEC POINTP . 

Overl ay (4,0) 

/PPPDAT/ DIP DIP-CFG- CONFIG-PRINT-PLOT CONFIG 
/CASES/ DIP GLOBALPR GLOBAL-FLOW-PROP CONFIG 
/CASES/ DIP SURFAM SURF-FAM CONFIG 
/SOLS/ 
/ACCUW 
/NETWK/ 
/CASES/ DIP GLOBDIP GLOBAL CONFIG 
/CASES/ DIP GLOBDIP GLOBAL RCASFM 
/CASES/ DIP CASEMAP SURF -F A/>I RCASFM 
/ACCUM/ 
/RUNIDS/ COP HDRMAP DATA-BASE-HEADER CONFIG 
/CASES/ COP OPTNMAP CASE-OPTIONS RCASH1 
/SOLS/ COP OPTNr~AP CASE-OPTIONS GENOUT 
/NETWK/ 
/ACCUr~/ 
/CASES/ COP NETSPC~lP NETWK-SPEC GENOUT 
/NETWK/ 
/CASES/ COP CONFIMAP CONFIG-FORCES GENOUT 
/ACCUM/ 
Dynami c 

('""'. 

11-C.7 



COt~t40N BLOCK DATA BASE MAP NANE DATA SET NAt~E SUBROUTINE 

/CASES/ COP PANELMAP PANEL-FORCE-MOMENT PANLSM 
/ACCUW 
/NETWK/ 
/LEGEor~/ 
/PANDAT/ 
/CASES/ COP NETWKr~AP NETWORK-FORCE-MOMENT PCOLSM 
/ACCUf4/ COP NETWKMAP NETWORK-FORCE-MOMENT PNETSM 
/FMACCU/ 

ll-C.8 



APPENDIX 11-0 PPP ERROR MESSAGES 

11-0.1 



Page Missing in 

Original Document 



I 
C) 

w 

) 

Module/ 
Suhmodule Name 

PPP 
(0,0) 

PPPINT 

GEOMPR 
(2,0) 

GEOPLT 

Error Message 

********ERROR IN MODULE ERR 
where, ERR = PPPINT 

or GEOr~PR 
or POINTP 
or CONFIG 

) 

********NERR = IS COUNT OF FATAL ERRORS FROM PPPINT 

********ERROR IN FETCHING DATASET GLOBAL-DB-OUTPUT FROM DIP-DB***FATAL ERROR*****EXIT 
SDMS ERROR CODE = 

DATA BASE NAME IS 
IRO = ---
*****ERROR IN CALLI NG CHPADB-WARNING ONL Y**"k** 

*****ERROR IN FETCHING DATASET ERR FROM DQG-DBkk***FATAL ERROR-SKIP GEOMETRY DATA 
SDMS ERROR COD E = __ _ 

where, ERR = DIP-GEOMPP 
or = GLOBAL-IN 

*****ERROR IN FETCHING NETWORK SPECS DATASET FROM DQG-DB*****WARNING MESSAGE - CONTINUE 
SDMS ERROR CODE = 
MAP NAME = NET MAP 
KEYSET = 

) 



...... Module 

...... 
I 

~ POINTP 
~ 

) 

Error Message 

*****PPP SELECTION FOR GRID DIRECTION OF ROWS WERE MADE --- WARNING ONLY***** 
COLUMN SELECTION IS ONLY AVAILABLE IN PAN AIR VERSION I(GRID DIRECTION FLAG WILL BE SET TO COLUMNS) 

*****PPP SELECTION FOR POINT TYPE OF GRIDS WERE MADE --- WARNING ONLY ***** 
CENTER CONTROL POINT TYPE IS ONLY AVAILABLE IN PAN AIR VERSION I(POINT TYPE FLAG WILL BE SET TO 
CENTER) 

*****ERROR IN FETCHING DATASET POINT-PRINT-PLOT FROM DIP-DB*****FATAL 
SDMS ERROR CODE = 
LNOSOL =---
LNOCAS = ----
LNONET =---
IARDIR =----
IARTYP = 

ERROR - EXIT 

*****ERROR IN FETCHING DATASET GLOBAL 
SDMS ERROR CODE = 

FROM PDP-DB*****FATAL ERROR - EXIT 

NCASE = ---
NNET---
NSOL 
NPOS 

*****ERROR IN FETCHING DATASET SURF-OPTIONS FROM PDP-DB*****WARNING MESSAGE - CONTINUE 
SDMS ERROR CODE = 
ICASE = 
NNETR = --
NSOLR = --
NLOCR = --
NSURFR = -----
IPROPT = ---

NEXT CASE 

*****ERROR IN FETCHING DATASET NETWK-SPEC FROM PDP-DB*****WARNING MESSAGE - CONTINUE 
SDMS ERROR CODE = 

NEXT NETWORK 

ICASE 
ISOL 
INET = ---
NROW 
NCOL =---
***IMAGE SELECTED IS NOT ON PDP-DB FOR THE PPP IMAGE LIST***** 
IMAGE = 

) ) 



I 
o 
U1 

) 

Module 

PNTPLT 

PTYP23 

PTYP14 

CONFIG 

RCASFM 

') 

Error Message 

POINT TYPE OF EDGE (ILOC = 2) OR ADDITIONAL (ILOC = 3) 
WAS SPECIFIED. THESE OPTIONS ARE· NOT AVAILABLE IN 
VERSION I-----SKIP THIS OPTION AND CONTINUE EXECUTION 
ILOC = 
ICASE =-
ISOL = 
INET = 

. IMAGE = 

***ERROR IN FETCHING DATA FRor~ PDP-DB*** 
S[Xv1S ERROR - ERROR CODE = __ 

*****ERROR IN FETCHING FLOW QUANTITIES DATA FROM PDP-DB - WARNING MESSAGE ONLY***-u 
(ERROR IN EDGE AND ADDIT CALC) 
SDMS ERROR CODE = --
*****ERROR IN FETCHING FLOW QUANTITIES DATA FROM PDP-DB - WARNING MESSAGE ONLY***** 
(ERROR IN CENTER AND GRID) 
SDMS ERROR CODE = 
ICASE = ---

INET = __ 
ISOL = 
IMAGE = ---

ILOC = 
IX =---
JX = ---

***SDMS ERROR IN GETTING DATASET CONFIG-PRINT-PLOT*** 
SOMS ERROR CODE = 

*****ERROR IN FETCHING DATASET GLOBAL FROM DIP-DB*****FATAL ERROR - EXIT 
SOMS ERROR CODE = --
***SDMS ERROR IN READING CDP DATA*** 
ERROR CODE = 

***SDMS ERROR IN READING DIP DATA*** 
ERROR CODE = __ 

) 



I 
o 
()) 

Module 

GENOUT 

PANElSM 

PCOLSM 

PNETSM 

) 

Error Message 

*****ERROR IN FETCHING DATASET CONFIG-FORCES FRor~ CDP-DB*****FATAL ERROR - SKIP CONFIGURATION SUMS 
SDMS ERROR CODE = 

*****ERROR IN FETCHING DATASET CONFIG-FORCES FROM CDP-DB*****FATAL ERROR - SKIP ACCUMULATION SUMS 
SDMS ERROR CODE = 

*****ERROR IN FETCHING DATASET CASE-OPTIONS FROM CDP-DB*****FATAL ERROR - EXIT 
SDMS ERROO CODE = --
*****ERROR IN FETCHING DATASET NETWK-SPEC FROM CDP-DB*****FATAL ERROR - EXIT 
SDMS ERROR CODE = 

*****ERROR IN FETCHING DATASET PANEL-FORtE-MOMENT FROM CDP-DB*****FATAL ERROR - SKIP PANEL SUMS 
SDMS ERROR CODE = 
ERROR OCCURED WHEN SD~KEYS WERE SET TO: 
CASE NUMBER (ICASE) = 
SOLUTION NUMBER ( I SOLA) =--
NETWORK NUMBER (INETA) = 
IMAGE INDEX (IMAGEA) = ----
VEL C()1PUTATION (I VECPA) = 
VEL COORECTION (IVECRA) = 
PANEL COL NUMBER (I PACOL) =--
PANEL ROW NUMBER (IPAROW) = 
AX I S NAME ( NAMAXS ) = === 
*****ERROR IN FETCHING DATASET NETWORK-FORCE-MOMENT FROM CDP-DB*****FATAL ERROR - SKIP COLUMN SUMS 
SDMS ERROR CODE = 

*****ERROR IN FETCHING DATASET NETWORK-FORCE-MOMENT FOR NETWORK SUMS FROM CDP-DB*HHWARNING MESSAGE -
CONTINUE EXECUTION 
SDMS ERROR CODE = 

) ) 



APPENDIX 11-E GEOMETRY PLOT FILE 

11-E.1 



Page Missing in 

Original Document 



11-E.1 Plot File Format for Geometry Data 

The network panel corner points data along with its identification information 
is written onto a plot file (logical unit 9), as given below: 

Record 
Set(s) Item Columns 

1 

.2 

3 

4 

5 

6 

DQG Plot Titles 

a) NETWORK GEOMETRY 1-35 
FROf.1 DQG DATA 
BASE 

b) Run 10 1-72 

c) Problem 10 1-72 

d) User 10 1-72 

*START 

$GLOBAL DATA 

(DQG Run Id) 

(Geometry Data 
from DQG) 

*END 

1-5 

1-12 

1-28 

1-4 
5-10 
11-14 
15 
16-19 
20 
21-24 
25 
26-37 
38 
39:.50 
51 
52-63 
64 

1-4 

Description 

DQG Plot Title Information consisting of 
4 lines of title information as follows: 
DQG Title (Format 3A10,A5) 

DQG Run Identification (RID). (Format 
7A10,A2) 
DQG Problem Identification (PID). 
(Format 7A10,A2) 
DQG User Identification (UID). (Format 
7A10,A2) 

Signifies start of data (Format A5) 

Global Data (see paragraph ll-E.2 for 
details) 

DQG Run Name Identification (Format A1, 
13, 212, 2A10) (see Paragraph ll-E.3). 

Network Geometry corner points data X, 
Y and Z along with its identification 
data [Format 14, 6X, 3(14, lX), 3(F12.6, 
1 X)] 
Sequence Number 
Blanks 
Row Number 
Blank 
Column Number 
Bl ank 
Network Number 
Blank 
X-coordinate 
Blank 
Y-coordinate 
Blank 
Z-coordinate 
Blank 

(Repeat record sets 4 and 5 above for 
each Network selected.) 

The last line of data contains *END to 
signify the end ~f DQG data (Format A4) 

11-E.3 



ll-E.2 Global Data for Geometry File 

A description of the Global Data for DQG is written on the geometry plot file 
(logical unit 9) following record set 2 (i.e., *START descriptor record 
signifying the start of data). 

Record Record 
Set(s) Subset(s) Item( s) Columns Description Format 

3 $GLOBAL DATA 1-12 Global Data A12 

DATE 1-5 The -headi ng DATA AS 
DATECR 6-15 Date of creation in A10 

the form Yr/tvlo/Date** 

2 AMACH 1-10 tvlach Number F10.5 
CALPHA 11-20 Angle of attack F10.5 

(degrees) 
CBETA 21-30 Angle of sideslip F10.5 

(degrees) 
NUtvlPOS 31-35 Number of planes of IS 

symmetry, 
=0 unsymmetric 
=1 one plane of sym. 
=2 two planes of sym. 

NNET 36-40 Number of Networks IS 

3 POSNRr~ 1-60 Normal to first ~nd 6F10.5 
second planes normal 
to the planes of sym-
metry (3 by NUtvlPOS) 

4 POSLOC 1-30 Coordinates of point 3Fl 0.5 
common to first and 
second planes 

. -'\ 

5 NETPPP , NETID 1-70 Network index and ID, 2(I4,lX,2A10,10X) 
two networks per 
record subset 
[network number 
(14) and network 
i d (2Al 0) ] 

** For the Ames System, the form is Date/Mo/Yr 

11-E.4 



ll-E.3 DQG Run Name Format 

ITEr~ LITERAL 
NUMBERS COLUMNS NAt·1E/VALUE FOR~lAT DESCRIPTIOtJ 

D Al DQG Identification 

2 2-4 I3 Network Number 

3 5-6 12 Number of RO\'1s 

4 7-8 12 Number of Columns 

5 9-28 A20 . Network ID 

11-E. 5 



APPENDIX ll-F POINT DATA PLOT FILE 

ll-F.l 



Page Missing in 

Original Document 



ll-F.l Plot Fi 1 e Format for Poi nt Data 

The format of the point data plot file (on logical unit 10) is described below:. 

Record 
Set(s) Item Columns 

2 

3 

4 

5 

6 

7 

8 

(6Fl O. 5) 1-8 

PDP PLOT TITLE(S) 

a) $POINT DATA FROM 1-30 
PDP DATA BASE 

b) $(RID) 1-72 

c) $(PID) 

d) $(UID) 

1-72 

1-72 

*RUN 40 1-7 

$GLOBAL DATA 1-12 

(PDP Parameter 1-76 
Name Li st) 

(PDP Run Name) 1-40 

(Point data from 1-60 
PDP in order of 
Parameter name list) 

*EOF 1-4 

Description 

Data Format Specification (Format A8) 

PDP Plot Title Information. Starts in 
column 1 with a $ and consists of 4 
lines of title information as follows: 

PDP Plot Title (Format 3A10) 

PDP Run Identification (RID).(Format 
7A10, A2) 
PDP Problem Identification (PID).{Format 
7A10, A2) 
PDP User Identification (UID).(Format 
7A10,A2) 

Identifies ~aximum run name length of 40 
alpha/numeric characters in PDP run name 
(record set 6). 

Global Data (see paragraph ll-F.2 for 
details) 

Identifies parameters available for 
plotting. If more than one line is 
needed to specify parameters, the word 
MORE must be entered in columns 73-76 on 
that line except for the last line of a 
parameter list. The parameter name list 
is written on the plot file at the 
beginning of each solution. The 
parameter list is written 6 per line. A 
detailed description is given in the 
Table 11.2 (Format 6A10, 12X, A4). 

A detailed description of the PDP run 
name is described in paragraph ll-F.3 
(Format Al, 12, 13, 12, 4A4, Al, 13, A3, 
A4, Al, 12, 2X). 

PDP Data list in order of parameter name 
list in the format specified in Record 
Set 1 above. 

(Repeat Record Sets 6 and 7 above for 
all selected data options.) 

The last line of dataset contains *EOF 
to signify the end of data for that run 
(Format A4). 

ll-F.3 



11-F.2 Global Data for PDP file 

A description of the Global Data for PDP is written on the point data plot file 
(logical unit 10) following record set 3 (i.e., *RUN 40 descriptor record 
identifying maximum run name length of 40). 

Record Record 
Set(s) Subset(s) 

4 

2 

3 

4 

S 

6 

Item(s) 

$GLOBAL DATA 

DATE 
DATECR 

AMACH 
CALPHA 

CBETA 

NUMPOS 

NNET 
NSOL 
NCASE 

POSNRf" 

POSLOC 

NETPPP ,NETID 

ALPHA 

Columns Description Format 

1-12 Global Data A12 

l-S The heading DATA AS 
6-1S Date of creation in A10 

the form Yr/f~o/Date** 

1-10 
11-20 

21-30 

31-35 

36-40 
41-45 
46-50 

Mach Number F10.S 
Angle of attack F10.5 
(degrees) 
Angle of sideslip F10.5 
(degrees) 
Number of planes of IS 
symmetry, 
=0 unsymmetric 
=1 on~ plane of sym. 
=2 two planes of sym. 
Number of Networks 15 
Number of solutions 15 
Number of cases 15 

1-60 Normal to first and 6F10.5 
second planes normal 
to the planes of sym-
metry (3 by NUt,IPOS) 

1-30 Coordinates of point 3F10.5 
common to first and 
second planes 

1-70 Network index and 2(I4,lX,2A10,10X) 
ID, two networks 
per record subset 
[network number (14) 
and network id (2A10)] 

1-70 Angle of attack for 7F10.5. 
each solution 
(max 200) 

** For the Ames System, the form i s Date/r~o/Yr 

ll-F.4 



Record Record 
Set(s) Subset(s) Item(s) Columns Description Format 

7 BETA 1-70 Angle of sideslip for 7F10.5 
each solution 
(max 200) 

8 SOLLST ,SOLID 1-70 Solution index and 2( 14,1 X,2Al 0,1 OX) 
10, two solutions per 
record subset 
[solution number (14) 
and solution id (2A10)] 

9 CASLST,CASEID 1-70 Case index and 10, 2(14,lX,2A10,10X) 
two cases per record 
subset [case number 
(14) and case id (2A10)] 

ll-F.5 



11-F.3 PDP Run Name Format 

Item 
Number Columns 

1 

2 (a) 2-3 
(b) 4-6 

3 7-8 

4 9-12 

5 13-16 

6 17-20 

7 21-24 

8 (a) 25 
(b) 26-28 

9 29-31 

10 32-35 

11 (a) 36 
(b) 37-38 

12*( a) 39 
(b) 40-41 

13* 42-44 

Literal Name (s) 
or Va1ue(s) 

P 

99 

UPPE - 1 
LOWE - 2 
UPLO - 3 
LOUP - 4 
AVER - 5 

BOUN - 1 
VIC - 2 

UNIF - 1 
LOCA - 2 

NONE - 0 
SAl - 1 
SA2 - 2 

N 

INP - 1 
1ST - 2 
2ND - 3 
3RD - 4 

CENT - 1 
EDGE - 2 
ADDI - 3 
GRID - 4 

R or C 

C 

For Literal name 
or Associated 
Integer Format* Description 

A1 PDP Identification 

12 
13 

12 

M/l4 

M/l4 

M/I4 

A4/14 

Al 
13 

A3/13 

M/14 

A1 
12 

A1 
12 

13 

Case Number 
Solution Number 

Job number, preset to 99 
(not used) 

Surface Selection 

Velocity computation 
opti on . 

Pressure computation 
opti on . 

Velocity correction 
option 

Network ID 
Network number 

Images 

Poi nt type 

Row or Column ID 
Row or Column Number 

Column ID 
Column Number 

Run Sequence Number 

* Note that the PDP plot file has 2 similar names for each dataset option. Item numbers 
12 and 13 in the Run Name are used for only the second run name descriptive with 
associated integer values for item numbers 4, 5, 6, 7, 9 and 10 above. Also, the 
second run name length is 44 characters instead of the maximum length of 40 ~ 
specified in record set 3 described in paragraph 11-F.1. ' 

ll-F.6 



APPENDIX ll-G CONFIGURATION FORCES AND MOMENTS PLOT FILE 

ll-G.l 



Page Missing in 

Original Document 



11-G.1 Plot File Format for Configuration Data 

The format of the configuration data plot file on logical unit 11 is 
described below: 

Record 
Sets ( s) Item 

(6F10.5) 
. 

2 COP Plot Tit1e(s} 

Columns Description 

1-8 Data Format Specification (Format A8) 

COP Plot Title Information. Starts in 
column with a $ and co"nsists of 4 lines 
of title information as follows: 

a}$CONFIGURATION 1-38 COP Plot Title (Format 3A10, A8) 

3 

4 

5 

6 

DATA FROl1 COP 
DATA BASE 

b} $(RID) 

c} $(PID) 

d) $(UID) 

*RUN 40 

$GLOBAL DATA 

(COP Parameter 
Name List) 

(COP Run Name) 

1-72 

1-72 

1-72 

1-7 

1-12 

1-76 

1 -40 

COP Run Identification (RID}.(Format 
7A10,A2) 

COP Problem Identification (PID}.(Format 
7A10,A2) 

COP User Identification (UID}.(Format 
7A10,A2) 

Identifies maximum run name length of 40 
alpha/numeric characters in COP run name 
(record set 6). 

Global Data (see paragraph"11-G.2 for 
details) 

Identifies parameters available for 
plotting. If more than one line is 
needed to specify parameters, the word 
MORE must be entered in columns 73-76 on 
that line except for the last line of a 
parameter list. The COP parameter name 
list is written on the plot file at the 
beginning of the plot file data for each 
solution and at the beginning of the 
accumulation sum data. The parameter 
list is written 6 per line. A detailed 
description of the COP parameter name 
list is described in Table 11.3, 
(Format 6A10, 12X, A4) 

A detailed description of the COP Run 
Name is described in paragraph 11-G.3 
(Format A1, **, 12~ 4A4, A1, 13, A3, Al, 
Al, 12, Al, 12, 2Xj. 

11-G.3 



Record 
Sets(s) Item Columns 

7 

8 

(Configuration data 1-60 
from COP in order of 
parameter name list) 

*EOF 1-4 

Description 

COP data is written in order of 
parameter name list specified in 
record set 5 above. The first record 
lists the solution number, magnitude of 
uniform onset flow velocity, alpha 
(angle of attack) and beta (angle of 
sideslip) values using format (110, 
3F10.5). The forceS and moments data 
for the selected pressure rules and axis 
systems as shown in TABLE 11.3 are 
written on the plot file in the format 
specified in record set 1 above. 

(Repeat record sets 6 and 7 above for 
all selected data options. ) 

The last line of dataset contains *EOF 
to signify the end of data for that run 
(Format A4). 

**Formats for configuration options in columns 2-6 of the COP Run Name are 
described in paragraph ll-G.3, item number 2. 

ll-G.4 



~ 
I 

ll-G.2 Global Data for CDP file 

A description of the Global Data for CDP is written on the configuration data 
plot file (logical unit 11) following record set 3 (i.e., *RUN 40 descriptor 
record identifying maximum run name length of 40). 

Record Record 
Set{s) Subset{s) Item{s) Columns Description Format 

4 $GLOBAL DATA 1-12 Global Data A12 

DATE 1-5 The heading DATA A5 
DATECR 6-15 Date of creation in A10 

the form Yr/Mo/Date** 

2 Af~ACH 1-10 Mach number F10.5 
CALPHA 11-20 Angle of attack F10.5 

(degrees) 
CBETA 21-30 Angle of sideslip F10.5 

(degrees) 
NUr~POS 31-35 Number of planes of 15 

symmetry, 
0= unsymmetric 
1= one plane of sym. 
2= two planes of sym. 

NNET 36-40 Number of networks 15 
NSOL 41-45 Number of solutions 15 
NCASE· 46-50 Number of cases 15 

3 POSNRr~ 1-60 Normal to first and 6Fl 0.5 
second planes normal 
to the planes of sym-
metry (3 by NUr~POS) 

4 POSLOC 1-30 Coordinates of point 3Fl O. 5 
common to first and 
second planes 

5 NETPPP ,NETID 1-70 Network index 2{I4,lX,2A10,10X) 
and ID, two networks 
per record subset 
[network number (I4) 
and network id (2A10)] 

6 ALPHA 1-70 Angle of attack for 7F10.5 
each solution 
(max 200) 

** For the Ames System, the form is Date/Mo/Yr 

ll-G.5 



Record Record 
Set(s) Subset(s) Item{s) Columns Description Format 

7 BETA 1-70 Angle of sideslip 7F10.5 
for each solution 
(max 200) 

8 SOLLST,SOLID 1-70 Solution index and ID,2{I4,lX,2A10,10X) 
two solutions per record 
subset [solution number 
(I4) and solution ID (2A10)] 

9 CASLST ,CASEID 1-70 Case index and ID, 2{I4,lX,2A10,10X)-
two cases per record 
subset [case number 
(I4) and case ID (2A10)] 

10 REFPAR List of reference data 
coefficient values 

SR 1-10 Area reference F10.5 
parameter 

CR 11-20 Chord reference F10.5 
parameter 

BR 21-30 Span reference F10.5 
parameter 

11 NUMAXS 1-4 NUr.lber of axis 14 

AxisAR 
systems selected 
List of selected 
axi s systems 
allowable 

5-8 1= reference coor- 14 
dinate system (RCS) 

9-12 2= wind axis system 14 
(WAS) 

13-16 3= body axi s system 14 
(BAS) 

17-20 4= stability axis 14 
system (SAS) 

12 r'10~lLST 1-72 Coordinates of mo- 12F6.2 
ment reference values 
for above axis system 
(3 by NUMAXS) 

13 ELRLST 1-72 Eul er angl es in 12F6.2 
degrees to go from 
RCS to selected axis 
system only for BAS 

ll-G.6 



ll-G.3 COP Run Name Format 

Item 
Numbers Column(s) Li teral Name(s) Format Description 

C Al COP Identification 

2(a)Panel 2-3 12 Network Number 
Data 4-6 I3 Panel Number 

(b)Column 2-3 12 Network Number 
Sum 4 C Al Co 1 umn Sum ID 

5-6 I2 Column Number 

(c)Network 2-3 12 Network Number 
Sum 4-6 3X Blanks 

(d)Config. 2-4 CON A3 Configuration ID 
Sum 5-6 12 Case Number 

(e)Accum. 2-4 ACC A3 Accumulation 10 
Sum 5-6 I2 Case Number 

3 7-8 99 12 Job number, Preset to 99 
(Not used) 

4 9-12 UPPE A4 Surface Selection Option 
Lo\~E 

UPLO 
LOUP 
AVER 

5 13-16 BOUN A4 Velocity Computation Option 
VIC 

6 17-20 UNIF A4 Pressure Computation Option 
LOCA 

7 21-24 NONE A4 Velocity Correction Option 
SAl 
SA2 

8(a) 25 C Al Case 10 
(b) 26-28 13 Case Number 

9 29-31 INP A3 Images 
1 ST 
2ND 
3RD 

1 O( a) 32 P Al Panel 10 
(b) 33 R Al Ro\'/ 10 
(c) 34-.35 12 Row Number 

11 (a) 36 C Al Col umn ID 
(b) 37-38 12 Column Number 

ll-G.7 



12.0 FIELD DATA PROCESSOR (FOP) MODULE 

12.1 Introduction 

The Field Data Processor (FOP) is a stand alone program which is a module 
of the PAN AIR system. It presumes that singularity strengths have been 
calculated for points on the configuration and computes flow quantities for 
points in the field. It is a post processing module like the Point Data 
Processor (PDP) and Configuration Data Processor (COP) modules. The two basic 
functions of FOP are to compute flow quantities at user. selected points in the 
field (offbody points) or along streamlines. The computational core of 
routines in FOP was taken from the PAN AIR pilot code and does not conform to 
PAN AIR coding standards. This section will describe all of the higher level 
routines in ~DP but will not describe some of the lower level routines. Also 
much of the code used in FOP was taken from the Matrix Generator (MAG) 
module. In particular, the PIVC subassembly, described in section 5, is used 
in FOP. The reader should review appendix P of reference 1 for an explanation 
of the computations performed in FOP and section 7.6.2 of reference 2 for a 
description of the user specifications for FOP. 

12.2 FOP Overview 

12.2.1 Purpose of FOP 

FOP will examine flow behavior in the field a'day from the configuration 
surface. It will trace streamlines from a user specified starting point and 
compute flo\'! quantities along the streamline. The user may also select 
individual points or grids of points off tile body at Which flm/ quantities are 
computed. The flow quantities output include all those available from the PDP 
module except fo"r those associated with singularities·. In addition, the 
streamline arclength and transit time can be output. The output quantities 
from FOP are enumerated in table 7.10 of reference 2. 

12.2.2 FOP Input/Output Data 

12.2.2.1 Input 

Input data to the FOP nodule, like other post processing modules, comes 
from the MEC, DIP and MDG databases. (The reader should be familiar with the 
use of SDHS described in section 14.) The datasets required are given in 
appendix 12-C along with the routines where database maps are defined. To 
precisely define which quantities are input to FOP, compare the database maps 
with the MEC, DIP and HOG master definitions in appendices 2-A, 3-A and a-A 
respectively. 

In general, the MEC data base provides the names of the databases and DIP 
provides the user specifications for offbody point and streamline cases. (See 
section 7.6.2 of reference 2.) DIP also provides global problem data such as 
the number of networks, Mach number and pl anes of symmetry. The ~1DG database 
·provides the panel geometry data, such as spl ines and normal s, and the 
calculated singularities. 

12.2.2.2 Output 

The flow properties computed by FOP for offbody points and streamlines are 
printed and also written to a plot data file (logical unit 12). See figure 

12.1 



12.1. FOP does not produce an SDMS database. The FOP plot data file is 
similar to the plot data file (logical unit 10) which is written by the Print 
Plot Processor (PPP) module. The specific format of logical unit 12 is 
described in tables 8.41 through 8.43 of reference 2. 

The printed output is si~ilar to that of the PDP module. In all the 
offbody points cases, the selected flow quantities are preceded by a summary 
of the solutions selected and the points selected. The streamline cases begin 
with a summary of the selected starting points and integration parameters, 
foll o\'1ed by a status Sllmr:1ary of each streaml ine. The status summary will 
indicate if the streamline integration has terminated abnormally. The flow 
quantities along the strea.mlines \'Iill be displayed after the summary. An 
example of FOP printed output is given in figure 8.9 of reference 2. 

12.2.3 Internal Data Files 

FOP uses four internal files for temporary data storage. They contain 
column singularities (logical unit 28), panel data (logical unit 18), panel 
singularities (logical unit 19) and streamline data (logical unit 8). These 
are not SDMS databases and so their contents are described in appendix 12-0. 
The internal data flow is shown in figures 12.2 through 12.5. 

12.3 Module Description 

12.3.1 Overall Structure 

The FOP module does not use overlays but its operation can be divided into 
three basic tasks and one basic function. The Qodule will perfor~ preparation 
processing by initializing the contents of t~e internal data files. Flow 
quantities at offbody PQints will be computed and displayed during offbody 
processing. During streamline processing the streamline integration is 
performed and flm'l quantities along the streamlines are output. Both offbody 
and streamline processing \'Ii11 have to perform potential and velocity 
calculations. 

12.3.2 Detailed Descriptions 

12.3.2.1 Preparation Processing 

This task is perforr.led by the main routine FDPPRG prior to the offbody 
case loop. The MEC and DIP data bases are accessed in routine OPENDB and 
their data is loaded into labeled common blocks. The columns of singularity 
data on the I~DG data base are unsymmetrized and transferred to the col umn 
singularity dataset (logical unit 28). The routine BLOCK loads various 
program constants. The routine PPPDQ takes the essential panel data from the 
HOG data base and packages it in the panel data dataset (logical unit 18). In 
FDPPRG, the number of offbody and streamline cases is retrieved from the DIP 
database and the global headings are written to the plot data file (logical 
unit 12) by routine PLTHDR. 

12.3.2.2 Offbody Processing (OFFBD) 

All the processing for offbody cases is performed inside the offbody case 
loop in FOPPRG. The user case selections are retrieved from the DIP database 
and the data is directed to labeled common blocks with the SDMS static map 

12.2 



option. The routine PANSNG takes the unsymrnetrized column singularities for 
only the solutions selected for the case and the panel data and writes the 
panel singularity data (logical unit 19). The routine OUTPREP interprets the 
case selections so that FDPOUT will print the data in the proper format. The 
offbody points are represented internally as a list of points and a matching 
list of solution numbers. Thus for a case with multiple solutions, one point 
would have r.lUltiple occurrences in tIle point list each with a different 
corresponding solution index. The data is ultimately passed to the potential 
and velocity calculations in this form. The call to OFFBD begins the 
calculation and display of offbody points for a selected subset (usually all) 
of the case solutions. The total velocity and perturbation potential for each 
point and solution index pair is calculated by a call to PVCAL. (See section 
12.3.2.4.) Then for each point and solution, the full set of requested 
quantities is computed from these basic quantities using procedures explained 
in appendix N of reference 1. The routine FDPOUT writes the printed output 
and FDPPLT writes the plot data file. 

12.3.2.3 Streamline Processing (STMLNE) 

All of the processing for streamline cases is performed inside the 
streamline case loop in FDPPHG. The user case selections are retrieved from 
the DIP database. The routines PANSNG and OUTPREP perform the same function 
here as in section 12.3.2.2. The starting point list and corresponding 
solution index list is prepared in the same fashion as in section 12.3.2.2. 
Additional lists are prepared which indicate the streamline limits and 
direction. The data is ultimately passed to the integrator in this form. The 
call to STMLNE begins the calculation and display of streamline points for a 
selected subset of the case solutions. The routine STMLNE2 and subordinates 
perform the integration. They were extracted from the PAN AIR pilot code and 
perform the asynchronous integration of multiple streamlines. That is~ 
several streamlines are integrated together to minimize multiple accesses to 
the same set of panel data. The integration technique is described in 
appendix P of reference 1. The function evaluation by the integrator is 
directed by the routine FSTLNtJ which calls PVCAL. (See section 12.3.2.4.) 
The basic streamline data is written by the integrator to logical unit 8 as it 
is computed. (See appendix 12-0.) The file is sequential so data for a 
particular streamline may be scattered throughout the dataset. When the 
integration is completed and the streamline data has been written, the routine 
STMOUT reorders the data, expands the basic data to the full set of selected 
output quantities, and writes the printed output and plot data file. The 
routine will read through the streamline data (unit 8) looking for data for 
tile first streamline, rewind the dataset and repeat the process for subsequent 
streamlines. The selected output quantities are computed in the same fashion 
as in section 12.3.2.2. The streamline arclength is calculated by the 
integrator. The streamline travel time is computed by averaging the velocity 
(or mass flux) between adjacent streamline points. The routines FDPOUT and 
FDPPLT perform the same fUnction as in section 12.3.2.2. 

12.3.2.4 Potential and Velocity Calculation (PVCAL) 

Both the streamline and offbody routines require the calculation of 
velocity and potential at selected points. (See appendix P.1 of reference 
1.) The routine PVCAL retrieves singularity data for panels from unit 19 and 
panel geometry data from unit 18 and uses the PIVC subassembly to compute 
perturbation velocity and potential. The PIVC subassembly is also used in l·lAG 

12.3 



and it is described in section 5. The perturbation velocity is converted to 
total Illass flux or velocity per request of the calling routine. 

12.3.3 Module Database 

FOP does not generate an SONS database. 

12.3.4 Data Interfaces 

12.3.4.1 System Interfaces 

Fi gure 12.1 illustrates the external i n~erfaces bet't/een the FOP modul e and 
the MEC, DIP and MDG data bases. Figures 12.2 through 12.5 illustrate the 
internal interfaces between routines in FOP and the datasets on units 8, 18, 
19 and 28. Figure 12.1 illustrates the printed output and plot file generated 
by FOP. They are not required by any other PAN AIR module. 

12.3.4.2 Subprogram Interfaces 

A tree diagram of all the routines in FDP is given in Appendix 12-A. This 
show the interrelationships among the subroutines which make up FOP. It also 
shO\'/s the calls to routines in the SDIlS library (see section 14) and the PAN 
AIR library (see section 13). Figures 12.1 through 12.5 also show tile called
by rel ati onshi ps of routi nes in FOP \·11 thout the references to 1 i brary and 10\,1 
level routines. Each subroutine is described briefly in section 12.4.2. 

12.3.5 Data Flow in FOP 

Figures 12.2 to 12.5 illustrate the data flow between routines in FOP and 
external databases and datasets. All accesses to SONS databases are performed 
in routines FOPPRG, OPENDB and PPPDQ. Access to the FOP internal datasets is 
described in Appendix 12-0. The flow of data is labeled common and formal 
parameters may be traced \'Ii ttl the use of COfill:lents in the code. 

12.4 LO~ER LEVEL FUNCTIOflS 

The following paragraphs present the functional decompositions of the 
routines and gives the purpose of each routine. 

12.4.1 Functional Decomposition 

The FOP functional decomposition is given in Appendix 12-B. 

12.4.2 Subroutine Descriptions 

The subroutines used in FDP are described below. 

BLOCK 

Initializes selected labeled com~on blocks. 

BLTRtJS 

Initializes the panel singularity dataset (unit 19). 

12.4 



BRTRNS 

Initializes the panel data dataset (unit 18). 

COEFP 

COr.1putes pressure coefficients, local nach numbers 'and critical pressure 
coefficients. 

CSCAL2 

Scales the cO(;Jponent of a vector parallel to the compressibility axis. It 
is used to convert between perturbation mass flux and velocity. 

OUALXF 

Converts between total mass flux and velocity. 

ELTRNS 

Clears the data buffer for the panel singularity dataset (unit 19). 

ERTR~JS 

Clears the data buffer for the panel data dataset (unit 18). 

FDPOUT 

Writes the selected flow,quantities for a point to the printed output 
dataset. It also writes pages headings and labels as appropriate. 

FDPPLT 

Writes the selected flow quantities for a point to the plot data dataset 
(unit 12). 

FDPPRG 

Control s the preparation for FOP cases and tile processing of offbody and 
streamline cases. 

FSTLHN 

Performs the evaluation of velocity or mass flux for the streamline 
integration. It arranges the data in the proper form and then calls PVCAL. 

ILTRNS 

Writes data to the panel singularity dataset (unit 19). 

IRTRNS 

Writes data to the panel data dataset (unit 18). 

12.5 



LTRNS 

Reads data froLl the panel singularity dataset (unit 19). 

OFFBO 

Computes and pd nts fl m'l quantiti es at offbody poi nts for sel ected 
solutions. 

ONSTFI: 

Adds any rotational component to tile freestream velocity .. 

OPENOB 

Opens and defines the maps for all the SDMS databases. Reads and 
initializes global run parameters, such as Nach number and compressibility 
axis. It also unsymmetrizes singularity values and writes them to the 
column singularity dataset (unit 28). 

ORIENT 

COI:lputes the orientation of a vector \'Iith respect to the positive x axis 
in the reference coordinate system. It is used to compute quantities such 
as VALPHA and VBETA (see table 7.10 in reference 2) or to regenerate 0c 
and Bc from tile cOTllpressibility direction. 

OUT.PREP 

Prepares to output FOP quantities. It distinguishes between offbody and 
streamline cases and initializes the appropriate headings. Since any 
subset of the possible flow quantities can be selected for printing, 
OUTPREP computes how they will be formatted. Tl1is information is used by 
FOP OUT to actually perform the write. 

PAKLArvl 

Packs the panel singularities into a single buffer. 

PAKPQF 

Packs the panel data into a single buffer. 

PANSNG 

PIVC 

Converts the column singularity data to panel singularities on unit 19. 
It writes singularities only for the current set of selected solutions. 

Computes a panel's influence on a pOint. It is described in section 5. 

PLTHDR 

Writes the headings for the plot data dataset (unit 12). 

12.6 



PPPDQ 

Transfers the panel data on the MDG data base to the panel data dataset 
(unit 18). 

PVCAL 

Computes perturbation potential and total velocity or 1,1ass flux. 

RTRUS 

Reads data from the panel data dataset (unit 18). 

SETUP 

Prepares to COfilpute streaml i nes. 

SETUP1 

STEP 

Controls the streamline integration and writes the streamline data as 
computed to unit 8. 

Performs the streamline integration. 

STHLNE 

Computes the strea;;llines and outputs flo.,., quantities along the streamlines. 

STNLNE2 

Computes streamlines. 

STtlOUT 

Outputs flow quantities along the streamlines. 

UPKLA~l 

Unpacks a buffer of panel singularities. 

UPKPQF 

Unpacks a buffer of panel data. 

VELCOR 

Performs vel oci ty correcti ons. 

12.7 



-' 
N 

co 

) 

,,-
i'oo.. 

" ""'" 

" 

-..." 

MEC 
DATA 
BASE 

........ 
.." 

010 
DATA 
BASE 

..... .,. 
MOG 
DATA 
BASE 

PRINTED 
OUTPUT .... 

". 

. .. 
", 

FOP .... MODULE ... 
.. ... -

.... UNIT I ..... , 
12 

,) 
pwr 
DATA 

FIGURE 12.1 - FDP EXTERNAL INTERFACES 

) ) 



,~ 
I 

~ 

~ 

I 
I 
I 

fl:J 
~ , 

I 
~.I'I'I" 1'.1'.1 '" "," 

...l 
t..:..l< 
Zr
« 0..0 

I 
I 
I 
I 
I 
I 
I 

en l 
t..:..l l 

E=I 
-I 

Z ex: I 
~ .:s I 
::l ::l I 
...l 0 I o Z I 
U en I 

I 
I 
I 

....J 
< z 
c:::::: 
c..w :z 

12.9 



-' 
N 

-' 
o 

)' 

PVCAL 

SEE FIGURE 
12.5 --....I~--. 

DUALXF 

DATAFLOW 

CALLED BY 

OFFBD 

VELCOR COEFP 

ORIENT FDPOUT 

ORIENT 

FIGURE 12.3 - OFFBODY INTERNAL INTERFACES 

) 

FDPPLT 

:--." ................. 

\.." 

PLOT 
DATA 

PRINT 
OUTPUT J 

) 



~ 

N 

~ 

~ 

') 

J 
STEP 

STMLNE2 

SETUP 

\ 
t 

STMLNE 

STREAMLINE 
DATA 

STMOUT ~""lYJNIT ":---[> 
\ 8· .' ____ ~----~ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

-I \ 

VELCOR COEFP 

___ -r-__ ... l ~ ~ ~ ~ ----~ SETUPl 

ORIENT DUALXF 

I 
FSTLMN 

I 

, , , , , , , , , , , , , , STREAMLINE STATUS SUMMARY 

FDPOUT 

ORIENT 

DATAFLOW 

CALLED BY 

FDPPLT 

.... -. ..................... 

.............. '~ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ ... ,-

PYCAL ~" ...................... "' ...... " .... " ..................................................................................................... -........... , ........... ..... 

I 
SEE FIGURE 
12.5 

FIGURE 12.4 - StREAMLINE INTERNAL INTERFAACES 

) 

PLOT DATA 

PRINTED 
OUTPUT 



--' 
N 

--' 
N 

LTRNS UPKLAM 

f). 

• 

~ 19 

PANEL 
SINGULARITIES 

) 

PVCAL 

I R~ UPKPQF LJe CSCAL2 ONSTFL 

, 
• • SEE FIGURE 
\ 
\ 5.2 

DATAFLOW 

~ 18 
................................................... 

PANEL CALLED BY 

DATA 

FIGURE 12.5 - PVCAL INTERNAL INTERFACES 

) ) 



APPENDIX 12-A 

. TREE STRUCTURE 

The tree structure diagram of the FDP module has been deleted from this 
documeht. It is, however, available on the installation tape. 

12-A.l 



APPENDIX 12-8 

FUNCTIONAL DECOMPOSITION OF FDP 

This appendix descriQes the functional decoQPosition of FOP, that is, an 
outline form of the structure of FOP organized by task. Where a particular 
task is realized as a subroutine, the subroutine name is listed in parenthesis 
along the right margin. 

12-B.1 



Page Missing in 

Original Document 



( 

A. Prepare for offbody and streaml ine data processing 

A. Define the SD~IS maps for the DIP and t·iDG databases. 
Retrieve global case data. Transfer the singularity 
data (MOG datasets LAMBDA-UNKNOWN and LAMBDA-KNOWN) 
to a randor.J access (READI'IS/WRITEH~) dataset (FT28) 

B. Initialize labeled common blocks 

C. Transfer the panel data (MDG dataset MAG-PANEL-DATA) 
to a sequential binary dataset (FT18) 

D. Write the plot dataset (FT12) heading 

B. Perfor~ offbody data processing 

A. Get offbody case options 

B. Write source and doublet parameters for each panel and 
selected solution to a sequential binary dataset (FT19) 
by combining the global singularity data from FT28 and 
the panel data from FT18. 

C. Pr~pare the output heading format 

D. Compute and output flow quantities at offbody points 

A. Compute total velocity/mass flux and perturbation 
potential 

B. 

C. 

D. 

E. 

F. 

A. Get singularity data from FT19 

B. Interpret the singularity data in a usable 
form 

C. Get panel data from FT18 

D. Interpret the panel data in a usable form 

E. Compute perturbation velocity and potential 
(see section 5.4.2 and figure 5.2 for a 
decomposition of the PIVC subassembly) 

F. Compute perturbation mass flux 

G. Compute total velocity/mass flux 

Perform velocity corrections 

Conlpute pressure coefficients 

Compute total potential 

Output field flow properties 

Write flow quantities to the plot dataset (FT12) 

(OPENDB) 

(BLOCK) 

(PPPOQ) 

(PLTHDR) 

-(PANSNG) 

(OUTPREP) 

(OFFBD) 

( PVCAL) 

(LTRNS) 

(UPKLAM) 

(RTRNS) 

(UPKPQF) 

(PIVC) 

(CSCAL2) 

(OtJSTFL) 

(VELCOR) 

(COEFP) 

(FDPOUT) 

(FDPPLT) 

12-B.3 



C. Perform streamline data processing 

12-B.4 

A. Get streamline case options 

B. Write source and doublet parameters for each panel (PANSNG) 
and selected solution to a sequential binary data-
set (FT19) by conbininy the global singularity data 
from FT28 and the panel data from FT18 

C. Prepare the output heading format (OUTPREP) 

O. Compute and output flow quantities along streamlines (STMLNE) 

A. Compute flow quantities along streamlines (ST~1U.JE2 ) 

A. Prepare to compute streamlines (SETUP) 

B. Control the asynchronous integration of (SETUP1) 
multiple streamlines and write the results 
as computed to a binary sequential dataset 
(FT08) 

A. Hove along the appropriate integra
tion path 

B. Prepare to evaluate the total veloc
i ty 

C. Compute the total velocity/mass flux 
andperturbation potential (see. 
paragraph BOA) . 

B. Output flow quantities along streamlines 

A. Get all the data for just the current 
stream line from FT08 

B. Transform velocity to mass flux 

C. Transform mass flux to velocity 

O. Compute velocity corrections 

E. Compute pressures 

F. Compute arc length and time 

G. Output field flow properties 

H. Write flow quantities to the plot 
dataset (FT12) 

(STEP) 

(FSTU,iN) 

(PVCAL) 

( STMOUT) 

(DUALXF) 

(OUALXF) 

(VELCOR) 

(COEFP) 

(FOPOUT) 



APPENDIX 12-C 

DATA BASE COf.IHUNICATIONS CHART 

The Data Base Comun; cat; ons Chart; s presented ; n tllree forms. Each form 
is alphabetized by columns from left to right. The first form has a column 
order of Data Base, Dataset Name, Map Name, Common Block and Subroutine. The 
second form has a column order of Data Base, I~ap Name, Dataset r~ame, Common 
Block and Subroutine. The third form has a column order of Common dlock, Data 
Base, Map Name, Dataset Name and Subroutine. Thus a person can get a cross 
reference on a data el ement by knowing e; ther the Dataset Name, I·lap Name or 
Common Slack name. 

12-C.l 



Page Missing in 

Original Document 



FIRST FORf.l 

DATA C01'iIION PROGRAr'l/ 
BASE DATASET IJAf.1E ~liAP NA11E BLOCK SUBROUTINE 

NEC DATA-BASE-HEADER HECHED /RUNIDS/ OPENDB 

rlEC 1,IACRO-OPT IONS NACRO /NAGNU~1/ OPElJOB 

DIP GL08AL FSVtlAP /ACASE/ OPENDB 

DIP GLOBAL FSVHAP /snljvJf uPEIJDB 

DIP GLOBAL GLOBAL /HAGGLO/ OPENDB 

DIP GLOBAL GLOBAL /11AGIWH/ OPENDS 

DIP GLOBAL GLOBAL /NSOLN/ OPElJOB 

DIP GLOBAL GLOBAL /SYMTRY/ OPENDB 

OIP GLOBAL-FLOW-PROP DIP-GLOFLO dynami c OPENDB 

DIP OFFBODY-OPTIONS OIP-OBOPT /FDPCAS/ OPENDB 

DIP OFFBODY -OPTIOI·IS DIP-OBOPT /OFBOPT/ OPENOB 

DIP OFFBOlJY -:OPTIONS DIP-OBOPT /ZFDP/ OPENDB 

DIP STREAMLINE-OPTIONS DIP-SLuPT /FOPCAS/ OPENDB 

DIP STREAI·iL !NE-OPT lOrJS DIP-SLOPT /KST1'ILN/ OPENDB 

DIP STREAMLINE-OPTIONS DIP-SLOPT /STLOPT/ OPENDB 

DIP STREAMLINE-OPTIONS DIP-SLOPT /SHICAS/ OPENDS 

DIP STREAI·IL INE-OPTIOtJS DIP-SLOPT /ZFDP/ OPENDB 

l·jDG GLOBAL GLOtilDG /t'IAGNU1'1/ OPENDB 

NDG LAHl3DA-KNOWN LAlvl-KNOW dynami c OPENDB 

t~DG LAI>IDBA-UNKIWWN LAt·l-UNKN dynami c OPENDB 

NDG MAG-PANEL-DATA r1AG-PAN /PANDF/ OPENDB 

NDG ~tAG-PANEL-DATA NAG-PAN /PANDQ/ OPEND13 

12-C.3 



SECOND FORi~ 

DATA COI·ll/ION PROGRAIvI/ 
BASE t,IAP NAt'IE DATASET NAr'lE BLOCK SUBROUTINE 

MEC ~IACRO NACRO-OPTIONS /1~AGI~Uf.J/ OPENDB 

MEC t'IECHED DATA-BASE-HEADER /RUNlDS/ OPENDB 

DIP DIP-GLOFLO GLOBAL-FLOW-PROP dynami c OPENDB 

DIP DIP-OBOPT OFF130DY -OPT IOtJS /FDPCAS/ OPEIJOB 

DIP DIP-OBOPT OFFBODY-OPTIONS /OFBOPT/ OPENDB 

DIP DIP-OBODT OFFBODY -OPTIONS /ZFDP/ OPENDB 

DIP DIP-SLOPT STREAMLINE-OPTIONS /FDPCAS/ OPENDB 

DIP DIP-SLOPT STREAMLINE-OPTIONS /KSTNLN/ OPENDB 

DIP DIP-SLOPT STREAMLINE-OPTIONS /STLUPT/ OPEN DB 

DIP DIP-SLOPT STREAMLINE-OPTIONS /ST/·ICAS/ OPENDB 

DIP DIP-SLOPT STREArlL I tJE -OPT I OIJS /ZFDP/ OPENDB 

DIP FSVi'IAP GLUBAL /ACASE/ OPENDB 
.~ 

DIP FSVr·IAP GLOBAL /SYI:'1M/ OPENDB 

DIP GLOBAL GLOBAL /HAGGLO/ OPENDB 

DIP GLOBAL GLOBAL /HAGNUN/ OPENDB 

DIP GLOBAL GLOBAL /1~SOLN/ OPENDB 

DIP GLOBAL GLOBAL /SYt,ITRY / OPENDB 

NDG GLOt·1DG GLOBAL /r1AGNUr~/ OPENDB 

flOG LA~i-KNOW LAr~BDA-KNOWN dynami c OPEtJOB 

~1DG LAH-UNKN LAH13DA-UNKNO\JN dynamic OPENDB 

~1DG ~1AG-PAN !,lAG-PAI;EL-DATA /PANDF/ OPEIJDB 

I·IOG MAG-pAN MAG-PANEL-DATA /PANDQ/ OPENDB 

12-C.4 



THIRD FORt-' 

conNOtJ PROGRAM/ 
BLOCK DATA BASE 11AP NAHE DATASET IJAt·iE SUBROUTINE ---
/ACASE/ DIP FSVi'lAP GLOBAL OPENDB 

dynamic DIP DIP-GLOFLO GLOUAL-FLOW-PROP OPENDB 

dynami c r·IDG LAI'I-KNOW LAtlDBA-KNmm OPENDB 

dynamic flOG LAH-UNKN LAt>1BuA-UNKIJOWN OPEN DB 

jFDPCAS/ DIP DIP-OBOPT OFFI:30DY-OPTIONS OPENIJB 

jFDPCASj DIP DIP-SLOPT STREAMLINE-OPTIONS OPENDB 

jKSnlLN/ DIP DIP-SLOPT STREAMLINE-OPTIONS OPENDB 

jMAGGLOj DIP GLOBAL GLOBAL OPENDB 

jtlAGIJUN/ DIP GL013AL GLOi:3AL OPENDB 

jtIAGNUj'l/ HOG GLOflOG GLOBAL OPENDB 

jf.lAGrJUHj nEC HACRO i-IACRO-OPT IONS OPOJOB 
~. jNSOLNj DIP GLOBAL GLOUAL OPENDB 

jOFElOPT/ DIP DIP-OBOPT OFFBUDY -OPTImlS OPENDB 

jPANDFj j(IDG r~AG-PAN NAG-PANEL-DATA OPENDB 

JPArmQ/ j,lDG nAG-PAN t1AG-PANEL-DATA OPENDB 

jRUtJ IDSj ~lEC r'iECHED DATA-SASE-HEADER OPEND13 

JSTLOPTj DIP DIP-SLOPT STREAHL I NE -OPT I OtJS OPENDB 

jSTHCASj DIP DIP-SLOPT STREAMLINE-OPTIONS OPENDB 

jSY1-1l'lj DIP FSVI·IAP GLOBAL OPENDB 

jSY~lTRY j DIP GLOBAL GLOBAL OPENDB 

JZFDPj DIP DIP-OBOPT OFF80DY -OPTI ONS OPENDB 

IZFDPI DIP UIP-SLOPT STREAMLINE-OPTIONS OPENDS 

12-C.5 



APPENDIX 12-0 
FOP INTERNAL OATASETS 

12-D.1 



Page Missing in 

Original Document 



12-0.1 Introduction 

FOP uses four internal data sets for temporary storage Ivnich are not SOt·IS 
·datasets. They are described in the following sections. 

12-0.2 Column Singularities (Unit 28) 

Thi sis a random access bi nary dataset created by REAOHShIRITEf.1S routi nes 
on logical unit 28. Its records are keyed by solution number. Each record 
contains all of the calculated singularity strengths for that particular 
solution. The singularities have been unsymmetrized. They I'lere derived from 
the symLletrized singularities on the NDG datasets LAlviBOA-KNOIIN and 
LAMBDA-UNKNOWN by the routine OPENDB. They are used by the routine PANSNG to 
derive the sinyularity strengths on a particular panel. The singularities are 
stored in the following order: known-nonupdatable, known-updatable, 
unknown-nonupdatable and unknown-updatable. That group is repeated within a 
record for each distinct image. 

12-0.3 Panel Data (Unit 18) 

This is a sequential access binary dataset created by unformatted binary 
writes to logical unit 18. Each physical record is 2u48 Hords long. The 
pllysical records are logically divided into 256 word packets. These packets 
contain the essential panel defining quantities which are prepared by the 
routine PAKPQF. The panel data dataset is created by the routine PPPOQ 1'Illich 
reads the dataset MAG-PANEL-DATA in NOG and makes calls to PAKPQF. The panel 
data is used in velocity calculations by PVCAL. The routines BRTRNS, IRTRNS, 
ERTRNS and RTRNS are used to read and write to the dataset. 

12-0.4 Panel Singularities (Unit 19) 

This is a sequential access binary dataset created by unformatted binary 
writes to logical unit 19. If NS is tile number of solutions selected for the 
current case and NI is the number of distinct images, then the physical record 
length is the largest multiple of 14*NS*NI which is less than or equal to 
1120. The physical records are logically divided into packets of 14*NS*NI 
I'lords. The packets contain the singularity strengtlls (the five source 
parameters followed by the nine doublet parameters) for a particular panel. 
The group of 14 singularity values are repeated for each distinct image and 
that group in turn is repeated for each of the selected solutions. The 
dataset is rewritten for each case by the routine PANSt~G and will contain only 
the singularities for the solutions selected for the case. PANSNG combines 
the column singularities and panel data to create the panel singularities. 
They are used by PVCAL in velocity calculations. The routines 8LTRIJS, ILTRNS, 
ELTRNS and LTRNS are used to read and write to the dataset. 

12-D.5 Streamline Data (Unit 8) 

This is a sequential access binary dataset created by unformatted binary 
writes to logical unit 8. Each record is 12 words long. It contains the basic 
data for a particular point of a particular streamline. Table 12-0.1 shows the 
contents of a record of basic streamline data. The dataset is written by the 
routine SETUPl as the streamline integration is being performed. The records 
for a given streamline may be scattered through the dataset. The routine 
STMOUT reads through unit 8 searching for records for the first streamline, 
rewinds the aataset and repeats the process for the remaining streamlines. 

12-0.3 



viord Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Table 12.0.1 - Basic Streamline Data 

Contents 

streamline number 
streamline pOint number 

arclength 
x component of position 

y component of position 
z component of position 

x component of total velocity* 
y component of total velocity* 
z component of total velocity* 
perturbation potential 
order of integration 
(see section P.2.1 of reference 1) 
streamline direction 
+1 implies downstream and 
-1 implies upstream 

* If variable TPSL is common block /KSTI>1LtJ/ is 0.0, the velocity is replaced 
by mass flux. 

12-0.4 

'" \ 



13.0 PAN AIR LISRARY (PALlS) 

13.1 INTRODUCTION 

This section is a guide to the diverse collection of routines that make 
up the library used in PAN AIR. This guide is a short description of what 
each routine does. It is not a detailed description of calling sequences nor 
is it a detailed description of program contents (with exceptions as noted 
below). Note that structured programming techniques were used for only about 
ten percent of the routines which make up PALlS. The extent and completeness 
of in-line documentation in the other ninety percent of the library varies 
from excellent to non-existent. The basic supposition of this manual is that 
the programs in PALlS have been so thoroughly used in previous (non-PAN AIR) 
programs that no errors can remain in them, and that they are so simple that 
they may be easily modified even without extensive documentation. 

This section also describes eleven basic classes of subroutines which 
make up PALlS and provides a short description of each subroutine. All of the 
PALlS routines required by PAN AIR are described in this section. For one of 
the classes (e.g. the Constrained Quadratic Least Squares Fit subroutines), a 
more detailed discussion of the operation is provided in Appendix 13-B. 

13.2 PALlS OVERVIEW 

13.2.1 Purpose of PALIB 

PALIB is a collection of general purpose library routines \'/hicil are used 
by modul es \,/ithi n the PAN AIR system. They are divi ded into el even cl asses of 
related routines: 

1) matrix and vector manipulation; 
2) general routines related to arbitrary geometries; 
3) special routines related to PAN AIR geometries; 
.4) general mathematical routines; 
5) constrained quadratic least squares fit routines; 
6) blank common management; 
7) special purpose SDMS-related routines; 
8) real matrix solver routines; 
9) free field format input routines; 

10) miscellaneous; and 
11) input data processing support routines; 

13.2.2 PALlS Output 

Most routines in PALlS print out only error messages. A few, however, 
produce printed output as part of their normal execution. They are CHPADB, 
LODREC and several of the miscellaneous routines. 

13.2.3 Database Interfaces 

The two subroutines in the IIspecial purpose SDMS-related ll class of 
subroutines communicate with one or more SDMS databases. One subroutine, 

13.1 



CHPADB, is used by all PAN AIR Modules to create all permanent and temporary 
databases. Note that no data is written to any of the databases by CHPADB. 
It merely opens and closes the database. The other subroutine in this class 
(MULTI) is used to perform an out of core matrix multiplication operation. 
The matricies are assumed to be stored as data sets of an SDMS database. The 
SDMS'maps (see Section 1, Paragraph 1.2.3) are defined externally by the 
calling program. 

A second class of routines in PALIB utilize SDMS databases in I/O 
operations. This class is the real matrlx solver set of routines. We note 
here only that the SDMS map names are defined externally just as for the 
subroutine MULTI. 

13.3 DESCRIPTION OF CLASSES OF SUBROUTINES IN PALIB 

A brief description of the eleven classes of subroutines is given in 
this section. Included is a list of all subroutines which are members of the 
class. 

Note that most PALIB routines receive their data by way of a formal 
parameter list. However, there are some subroutines in the library which 
receive data by labeled common block (notably blank common management 
routines). Tree diagrams for subroutines in PALIB are presented in Appendix 
l3-A. 

13.3.1 Matrix and Vector Manipulations 

The subroutines in this class perform various combinations of vector and 
matrix operations. Table 13.1 lists the subroutine names and a short" 
indication of the operation which is performed. 

13.3.2 General Routines Related to Arbitrary Geometry 

The subroutines in this class manipulate basic geometric concepts such 
as a point, line or plane. There is no direct reference to their application 
in PAN AIR. Table 13.2 lists the subroutine names and a short indication of 
the operation that they perform. 

13.3.3 Special Routines Related to PAN AIR Geometry 

This class of operations are related to those in the first class except 
that they involve some specialized operations that occur frequently in PAN AIR 
but might not occur in some other system, (e.g. the evaluation of the 
compressible inner product). They deal mostly with panel defining quantities 
which are computed by DQG and ~1AG. Some routi nes al so impl ement the graph 
theoretic approach to the assi~nment of matching conditions at abutment 
i ntersecti ons. (See reference 1.) Tabl e 13.3 1 i sts the subrouti ne names and 
a brief indication of their operation. 

13.3.4 General Mathematical Routines 

These routines perform a variety of general mathematical operations such 
as sorting arrays, inverting matrices, and solving sets of linear equations. 

13.2 



The routines are listed by name in Table 13.4 along with a brief description 
of the function. 

13.3.5 Constrained Quadratic Least Squares Fit 

These routines solve the general least squares fit problem with an 
arbitrary number of independent exact constraints. A hierarchy exists in that 
subroutine CQLSF is the only routine called by a PAN AIR Module. In turn it 
calls subroutine OEFVEC and LSQSFX. Subroutines LSQSFX calls subroutines 
OCBHTX and PSINTP. The function of these routines is briefly discussed in 
Table 13.5. A more detailed description will be found in Appendix 13-B. 

13.3.6 Blank Common Management 

This set of programs keeps track of multiple arrays stored in blank 
common. They are relatively unsophisticated but their use simplifies the code 
within the modules of PAN AIR. A short description of the purpose of each 
subroutine in this group is given in Table 13.6. Note that subroutine STARTR 
must be called before any other subroutine in this class is called. All 
subroutines in this group are written in FORTRAN. These routines reference a 
blank common array with a dimension of 1. It is up to the calling module to 
dimension blank common and pass that length in another special common block. 
A PAN AIR module which uses these routines will cause the loader to indicate 
that the length of blank common has been redefined. This is acceptable as 
long the definition in the PAN AIR module is used. 

13.3.7 Special Purpose SONS-Related Routines 

These are subroutines which perform specialized tasks within the PAN AIR 
System and \"ihich make use of the SONS database system. Tab1 e 13.7 describes 
the FORTRAN subroutines. 

13.3.8 Real Matrix Solver 

This collection of subroutines performs an out-of-core matrix inversion 
and back-substitution. It makes use of an SOMS database. Table 13.8 lists 
the routines. 

13.3.9 Free Field Format Input Routines 

This class of subroutines reads an input record in free field format and 
decodes it into separate data items based on the occurance of certain 
delimiters (blanks, commas and end of card). LOOREC is the controlling 
subroutine in this process. Table 13.9 briefly describes these subroutines. 

13.3.10 Miscellaneous 

These routines are those which do not seem to list well with the other 
classes. Table 13.10 describes these subroutines. 

13.3 



13.3.11 Data Input Processing Support Routine 

These routines support only the DIP module. They each perform an 
operation which occurs in more than one place in the module. The routines are 
listed by name in Table 13.11 along ''lith a brief description of the function. 
All routines in this class are written in FORTRAN. 

13.4 



,---

Table 13.1 - Matrix and Vector Manipulation Routines 

SUBROUTINE OPERATION 

CAB C = A * B 
CAD C = d * A 
CAr'1B C = A - B 
CAPB C = A + B 
CAPDB C = A + d * B 
CATB C = At * B 
CMAB C = A * B 
CROSS Z = X x Y 
CXMAB C" = e""k A"l 1m 1J J Bklm 

DET d = det(A) 
MUL3X3 C = A * B 

MXMACA C = C + A * B 

RRAATX Y = Y + At * X 
RRAAX Y = Y + A * X 
RRZAB C = A * B 
RRZATB C = At * B 
RRZATX Y = At * X 
RRZAX Y = A * X 
RRZXYT A = X * yt 

TRANS C = At· 

UNIVEC y = X / magnitude(X) 
UVECT y = X / magnitude(X) 
VADD C = A + d * B 
VIP d = X • Y 
VIPDA d = d + X . Y 
Vr,1AG d = magnitude(X) 
Vr~UL X = d * Y 
ZERO X = 0 

Note: A, B, Care matricies 
X, Yare vectors 
d is a scalar 

COMMENTS 

arrays stored by columns 

arrays stored by rows 

3 by 3 determinant 
3 by 3 matricies 

highly vectorized CAL 

arbitrary dimension 
dimension 3 

13.5 



SUBROUTINE 

DISTNC 

IMAGE 

INSIDE 

ISCAL 

LPROJ 

NORCAL 

NRPTED 

PIDENT 

PROJ 

XXADJ 

13.6 

Table 13.2 - General Geometry Routines 

OPERATION 

Computes the distance between two points 

Reflects a point through a plane of symmetry 

Determines if a point lies inside a quadralateral 

Determines if an edge is collapsed 

Performs a length preserving projection 

Computes the unit normal to a triangle 

Finds a point on an edge that is closest to a given point 

Determines if two points are essentially coincidental 

Projects a vector onto a plane 

Withdraws the vertex of a triangle a fraction of the 
distance along its angular bisector 



I~ 

SUBROUTINE 

ABTINT 

BIQUAD 

CCALN 
COMPIP 
GPHPLK 

GPHSCN 

GPLUCK 

GTALAM 

NRPTHP 

PANr~OM 
PDQSUB 

RACOF 

RCSLOC 

SD2LIN 

TCOF 

UNIPAN 

UVCALC 
XBPOSH 

XBPROJ 

XCOF 

ZCADJ 

Table 13.3 - PAN AIR Geometry Routines 

OPERATION 

Generates the matching condition assignments for the control 
points in an abutment intersection 
Evaluates the nine canonical biquadratic basis fUnctions at a 
point on the standard isoparametric element. It is used in 
spline construction. 
Prepares computations for panel moment data. It invokes PANMOM. 
Evaluates the compressible inner product. (See reference 1.) 
Reorganizes the node to node description of a tree so that 
branches occur in the proper order for pruning. It is called by 
ABTINT. (See appendix F in reference 1.) 
Identifies a spanning tree for a connected graph. It is called 
by ABTINT. (See appendix F in reference 1.) 
Assigns nodes to branches and checks for bad assignments. It is 
called by ABTINT. (See appendix F in reference 1.) 
Computes the IIALAM" array for subpanel doublet splines. The 
IIALAM" array contains lambda vectors defining corner chord 
midpoint values used in subpanel spline calculations. 
Finds an estimate of the point on an H-P surface closest to a 
given control point. It is used to compute 
hyperbolic-paraboidal coordinates of the four corner chord 
midpoints which is one of the panel defining quantities. (See 
reference 1.) 
Computes panel moment matricies 
Computes the doublet and source inner spline matricies for a 
subpanel. It is used to compute panel defi ni ng quanti ti es. 
Computes source inner spline matricies. It is used for 
computing near field panel defining quantities. 
Defines a subpanel reference to local coordinate system 
transformation 
Computes a transformation of source design splines from a 
representation based on center and edge midpoints to one based 
on center and corner points 
Computes the coefficients of the linear, quadratic and cubic 
basis functions on a triangle. It is used for generating panel 
defining quantities. 
Transforms the representation of a position vector from 
universal to panel coordinates 
Computes additional panel data 
Performs a projection of points onto a plane in scaled 
coordinates and applies an origin shift 
Performs a projection of a point onto a plane in scaled 
coordinates 
Computes the quasi-far-field doublet spline matricies. It is 
used for panel defining quantities. 
Withdraws edge control points 

13.7 



SUBROUTINE 

A~ICON 

CODIM 

DECor~ 

FBSUBM 

FSHELL 

GLESOM 

ISHELL 

JORDAN 

KEYSRT 

LCHVAR 

SHLSRT 

SORTAK 

SRCHOL 

UKYSRT 

ZWINDG 

13.8 

Table 13.4 - General Mathematical Routines 

OPERATION 

Defines constants to maximum machine accuracy 

Interpolates using a controled deviation method 

Decomposes a square matrix into lower and upper triangular 
matricies with partial pivoting and row equilibration 

Solves a matrix equation by forward and backward substitutions 
using the lower and upper triangular decomposition of the 
matrlx 

Sorts a real array using the shell sort algorithm. It keeps 
track of the original order of the array. 

Solves a linear system of equations by calling DECOM and FBSUBM 

Sorts an integer array using the shell sort algorithm. It 
keeps track of the original order of the array. 

Inverts a matrix 

Arranges elements in an array to bring it into correspondence 
with an array tha~ has been sorted 

Performs a linear change of variables. It is used in panel 
moment calculations. 

Sorts an integer array using the shell sort algorithm. 

Sorts an integer array. It performs the same functi on as 
ISHELL. 

Searches an ordered list for an entry 

Arranges elements in an array to bring it into its original 
order after it has been sorted 

Computes the product of an array of complex numbers keeping 
track of the quadrant 



Table 13.5 - Constrained Quadratic Least Squares Fit Routines 

SUBROUTINE 
CQlsF 

DCBHTX 

DEFVEC 

LSQSFX 

PSINTP 

FUNCTION 
Sets up arrays for constrained and least squares fit, 
calls LSQSFX and unpacks solution. 

Performs a Householder Q-R factorization of the least 
squares part of the matrix. 

Defines functional form of the fit (polynomial in two 
dimensions of order one, bilinear or quadratic). 

Constructs L-U factorization of constrained part of 
fit and calls DCBHTX and PSINIP to solve the least 
squares part of problem. 

Constructs the transpose of the pseudo-inverse of the 
least squares part of the fit using the Q-R 
factorization performed by DCBHTX. 

13.9 



SUBROUTINE 

DELETR 

INITIR 

LOCATR 

STARTR 

REQFL 

13.10 

Tabl e 13.6 - Bl ank Common t~anagement Routi nes 

FUNCTION 

Eliminates an array from blank common and compresses 
storage in blank common. 

Initializes storage parameters for a new array in 
blank common. 

Returns current size, type and location of an array in 
blank common. 

Initializes storage scheme, creates an array catalog, 
sets limit for maximum number of arrays and determines 
maximum storage available. 

Checks that the current scratch memory request can 
reside within blank common 



SUBROUTINE 

CHPADB 

t~UL TI 

PAOPEtJ 

PAC LOS 

Table 13.7 - Special Purpose SDMS-Re1ated Routines 

FUNCTION 

This FORTRAN subroutine obtains the names of the 
required database files from the MEC database, opens 
the database, and (if the database is not a newly 
generated one) checks that the database is complete. 
This subroutine is used by all PAN AIR "lodules to 
define new databases and to check the status of those 
databases generated by upstream modules which are 
required as input. 

This subroutine performs an out-of-core matrix 
multiplication between the matrices stored in Sor'IS 
datasets. The resulting matrix is stored as another 
SDMS dataset. 

Open a temporary or permanent SD~1S database. 

Close a temporary or permanent sons database. 

13. " 



Table 13.8 - Real Matrix Solver Routines 

PAC RDPIV 

RDSMR REDUCR 

RMSBS RNSCBS 

RMSCFS Rt·1SD 

RMSDC R~lSERA 

RNSERG R~lSFB 

RMSFS R~lSLBS 

RMSLTS R~lSLUS 

RMSRDB R~lSRED 

R~lSUBS RI'1SXCH 

RMSXCS UNPAC 

WTPIV WTSf'lR 
~ 

13.12 



,""-"" 

SUBROUTINE 

BIT$LGN 

BIT$LOC 

BIT$MSK 

CHKEOR 

DCODIR 

GETT 

INCBCD 

LODREC 

PUTT 

STRMOV 

Table 13.9 - Free Field Format Input Routines 

OPERATION 

Aligns one bit string with another. It is written in CAL. 

Performs bit string location calculations. It is written 
in CAL. 

Generates a variable length bit string mask. It is. 
written in CAL. 

Checks an input record for an end-of-record delimiter. It 
is called by LODREC. 

Sets error flags. It is called by LODREC. 

Extracts a character from a string and places it, 
left-adjusted and blank-filled in another 

Increments the numerical portion of a left justified BCD 
(Binary Coded Decimal) number 

Reads and decodes an input record 

Takes one left most character of a word and inserts it 
into a string 

Moves a specified number of characters from one word to 
another 

13.13 



SUBROUTINE 

ABTJOB 

BKMOVE 

CSTPRT 

ERRMSG 

LOCF 

OUTLIN 

OUTMAT 

OUTI~XV 

OUTVEC 

PIlv4 

PRGBEG 

PRGEND 

REr~ARKF 

SHFTIC 

SYSTH1C 

UABEND 

UNPIlv4 

XFERA 

13.14 

Table 13.10 - Miscellaneous Routines 

OPERATION 

Aborts the job and initiates a traceback 

Transfers one matrix to another 

Prints the cumulativ~ CPU time since the last call 

Writes an error message 

Interfaces the call to the intrinsic LOC function 

Prints an intermediate output line of at most ten values 

Prints an intermediate output matrix 

Prints an intermediate output vector with up to ten values 
per line 

Prints an intermediate output vector Hith one value per line 

Packs four words into one word 

Indicates the start of a PAN AIR module 

Indicates the completion of a PAN AIR module 

Suppresses the logfile messages from the random I/O package 

Translates influence coefficients by a shift of origin 

Acts as an interface to future error handling routines 

Aborts the job 

Unpacks one word into four words. It is the inverse of PIW4 

Transfers one array to another 



Table 13.11 - Data Input Processing Support Routines 

SUBROUTINE FUNCTION 

ADJCHK 

BALIND 

BDTERM 

COLIND 

COMP 

CUSCOE 

Check the user specified edge control point locations to ensure 
that there are b/o edges wi th control poi nts, the edges must be 
adjacent in order to have a control point at one corner of the 
neblOrk. 
Process the balance of an indexed input record once the index or 
indices have been evaluated into row and column ranges. Thus fot 
a record like 

. (1, 4 to 5) = • 5 
this routine checks for the right paren, the equal sign and 
loads the .5 into a temporary buffer for smearing. 

Process the TERr~ records for the fo 11 owi ng network data sets: 
Closure edge boundary condition boundary set; 
Coefficients of general boundary condition equation 
data set; 
Tangent vectors for design data set; 
Specified flow data set; and 
Local incremental onset flow data set. 

Examples: 
TERr~ = AU / A closure term. 
TERM = ADl ,CA2 / A pair of coefficient terms 

*/ of equal value. 
/ A tangent term. TERr·j = TAl 

TERM = 1 
TERr~ = VWYZ 

/ Specified flow equation number 
/ Local incremental onset flow 

option. 
Note: a record which begins with */ is for comment only 

Process the column index or range of indices for the indexed 
input option for control point data values. 

Examples: 
( rO\~ , 1 ) = value / Column 1 
( row, 2 TO 4 ) = value / Columns 2 thru 4 
( row, ALL) = value / Columns 1 thru max 
( row, 4 TO MAX) = value / Columns 4 thru max 

This routine is called after the row index or range of 
indices have been decoded. 

Process the computation option for pressures record. 
Examples: 

COMP = UNIF / Compute 
COMP = LOCA / Compute 

COMP = COMP / Compute 
Global record default: 

Cor~P=UNIF 

presures from uniform set 
pressures from local onset 

flow 
pressures from compressibility 

Write defaulted general B.C. coefficient term datasets to data 
base. Check user inputs to verify that user has not tried to 
define input for these terms. 

13.15 



SUBROUTINE 

EDGE 

EXPIND 

FILIND 

H1P[lCK 

H~PRDA 

n1REPA 

FPCASE 

FPOA\~R 

13.16 

Table 13.11 - (Continued) 

FUNCTION 

Process the parameter list for the fo11o\'Iing network data record 
types: 

Edge control point locations = type(s), edge-number(s) 
Closure edge condition = type, edge-number 

Examples: 
EDGE = SNE, 1, 2, ONE, 3, 4 
CLOS = DNE, 1 

Expand a dataset which is homogenous (same value for all control 
points) and contains only data for a single representative 
control point to a dataset .which may be heterogenous (every 
co~trol point with one user specified value) and contains data 
for each control point. -This step preceeds the updating of a 
homogenous dataset with indexed input. 

Fill the portion of the network defined by the indexed input 
option of a value(s) record for network data sets as follows: 

Closure; 
Coefficients of general B.C. equation; 
Tangent vectors; 
Specified flow; and 
Local incremental onset flow. 

The value(s} is uniform for all points and is either a single 
value (closure, coefficient or specified flow) or a triplet 
(tangent vector, local incremental onset flow). 
Each column number represents a separate dataset for the data 
base. 

Check the combined inputs for printout and data base output 
requests by user. 

Process the forces and ~oments printout and data base records. 

Process global and local reference parameter records from the 
forces and moments data subgroup of the flow properties data 
group. 

Process flow properties case names. New case names must be 
alphanumeric (1 to 20 characters). Old case names may be 
alphanumeric or integer (input order no). Old case names can 
only be referenced if the post solution update option is set to 
update. 
In surface flow properties the case name appears as the 
parameter list on the surface flow properties record. In forces 
and moments the case name appears as the parameter list on the 
case record. 

Write a flow properties calculation problem to the DIP database. 



SUBROUTINE 

FPVALU 

IMAGED 

INDXED 

INPum 

LHSTST 

NBDORT 

NEDATA 

Table 13.11 - (Continued) 

FUNCTION 

Process any record which has a single floating point 
parameter list. 

value for a 

Examples: 
GEOM = E-3 
RATI = 1.5 
TRIA = E-6 

/ Geometric edge matching tolerance - .001 
/ Ratio for computation of pressures = 1.5 
/ Triangular panel tolerance = .000001 

Process the images ina parameter 1 is t for the neb/ork and image 
selection records in the flow properties calculations data group. 

Process the indexed input option of a value(s) record for 
network data sets as follows: 

Closure; 
Coefficients of general B.C. equation; 
Tangent vectors; 
Specified flow; and 
Local incremental onset flow. 

The value(s) is uniform for all points and is either a single 
value (closure, coefficient or specified flow) or a triplet 
(tangent vector,local incremental onset flow) 
Example: 

( row, column) = value(s) 

Process the input-images records for neb/ork data in tile 
specified flow data set and the local incremental onset flow 
data set. 
Examples: 

INPUT-IMAGES = INPUT 
INPUT-IMAGES = INPUT, 1ST, 2ND, 3RD 

Test left hand side network constraint data to verify that each 
data set covers all solutions 

Check the order of data records for the following groups 
Closure; 
Coefficients; 
Local incremental onset flows; 
Specified flows; and 
Tangen t vectors. 

Process the values for the following network data set terms: 
Coefficients of general boundary condition equation 
Tangent vectors for design; 
Speci fi ed fl ow; 
Local incremental onset flow; 

The values may appear as floating point data or as indexed 
input. Indexed input starts with a left paren as follows: 

( row, column) = value 

13.17 



SUBROUTINE 

NEPOItJ 

NETwm 

NORSUB 

PLAN 

PPCASE 

PPPNET 

PPPORT 

13.18 

Table 13.11 - (Continued) 

FUNCTION 

Process the point~ (control point locations) record for the 
following network data set terms: 

Coefficients for general boundary condition equation; 
Tangent vectors for design; 
Specified flow; and 
Local incremental onset flow; 

Examples: 
POINTS = CENTER 
POIN = EDGE 
POIN = ADDITIONAL 
POIN = ALL 

Process network and image selection records-in the flow 
properties data group 
Examples: 

NETWORK-IMAGES = WING-A, INPUT 1ST, + 
= WING-B, REVERSE + 
= WING-C, 1 ST 

NETW = BODY-l = BODY-2 = BODY-3 / IMAGES DEFAULTED TO INPUT, 
*/ ORIENTATION DEFAULTED TO RETAIN 

Note: a record which begins with a */ is for comment only. 

Normalize a triplet of X,Y,Z direction numbers and also return 
the magnitude for error testing (RSQ = Zero). 

Process either of the following two record types: 
Plane of symmetry deletion flag 
Abutments in planes of symmetry 

Examples: 
DELETE REFLECTION IN PLANE OF SY~H~ETRY = FIRST-PLANE 
DELE = SECOND-PLANE 
PLANE OF SYMMETRY = FIRST-PLANE-OF-SYMMETRY 
PLAN = FIRS 
PLAN = SECO 
PLAN = BOTH 

Process the case list found on case records for PPP Point and 
Configuration Data. 

Process the network IDs found in the parameter lists of network 
and surface records for PPP data. 

Read and check the order of data records for the following DIP 
data subgroups for PPP; 

GEOMETRY - DQG 
POINT - PDP 
CONFIGURATION - COP 

Determine \'/hen datasets are complete and \'irite them on data base. 



SUBROUTINE 

PRES 

REFE 

RHSPRG 

ROHIND 

SELE 

SETFLG 

SFOUCL 

SFOUIC 

SFOULD 

Table 13.11 - (Continued) 

FUNCTION 

Process the pressure coefficent rule record. 
Examples: 

PRES = ISENTROPIC,LINEAR,SECOND-ORDER,REDUCED-SECOND-ORDER, + 
SLENDER-BODY / THIS CONTAINS ALL OPTIONAL TYPES. 

PRES=ISEN 
PRES=ISEN,LINE 

r·1ay be called from GLOBDP or any of the point data post solution 
processors. 

Process the reference velocity for pressure record. 
Examples: 

REFE = 1.3,1.29,1.31,1.32,1.33 
REFERENCE VELOCITY FOR PRESSURE = 1.305 

Purge right hand side (RHS) terms from data for current network. 

Process the row index or range of indices for the indexed input 
option for control point data values. Examples are 

( 1, col ) = val ue / ROH 1 
( 2 TO 4 , col) = value / ROWS 2 THRU 4 
( ALL , col ) = val ue / ROWS 2 THRU t~AX 
( 4 TO MAX , col ) = val ue / ROI-iS 4 THRU r·1AX 

This routine is called only after it has been determined that a 
data value record starts with a left paren. 

Process the selection of velocity computation record. 
Examples: 

/ BOUNDARY CONDITION METHOD SELE = BOUN 
SELE = VIC- / VIC-LAt·1BDA (VIC DOTTED WITH LANBDA) 

Process records which require an on/off flag to be set. (l.EQ.ON) 
Example record type: 

STORE LOCAL ONSET FLOWS 
STORE VIC MATRIX 

Load the output array with pressure coefficient rule data and 
velocity corrections data. The output array becomes the list of 
print/data base output requests for current surface flow 
properties calculation. 

Load the individual parameter list options encountered on the 
printout and data base records for surface flow properties 
calculations. 

Process the parameter list for both the printout record and the 
• data base record, within the surface flow properties data 

subgroup. 

13.19 



SUBROUTINE 

SFPRDB 

SMRIND 

SOLSFP 

SURF 

VALUE 

VELO 

13.20 

Table 13.11 - (Concluded) 

FUNCTION 

Process printout options data set an'd data base options data set 
from the surface flow properties data subgroup. 
Examples: 

PRINTOUT = 13 
VELOCITY CORRECTIONS = NONE, SAl, SA2 
PRESSURE COEFFICIENT RULES = ISEN, LINE, SECO, RUDU, SLEN, 
DATA BASE = ALL 
VELO = NONE 
PRES = ISENTROPIC, SLENDER-BODY 

Transfer data from the temporary buffer for smear values to the 
output buffer for control point values. Then load the data onto 
the data base. Network data sets processed are defined by the 
MAPID contents as follows: 

lOHDIP-CLOSUR = Closure edge B.C. data 
10HDIP-COEFBC = Coefficients of general B.C. equation 
10HDIP-LOCFLO = Local incremental onset flow 
lOHDIP-SPCFLO = Specified flow 
lOHDIP-TANVEC = Tangent vectors for design 

Process solutions lists records. 
Exampl es: 

SOLUTIONS = 1, 2, SOLUTION-ID-3, 6 
SOLU=l ,2,3,6 

Process the surface selection record. 
Exampl es: 

SURF=UPPER,LOWER,UPLO(UPPER-MINUS-LOWER) 
SURF=LOUP(LOWER-MINUS-UPPER) ,AVERAGE 
SURF=UPPE,LOWE,UPLO,LOUP,AVER / ALL OPTIONS 

Global default: 
SURF=UPPE 

Process the array of data values record(s) for network data sets 
as follows: 

Closure; 
Coefficients of general B.C. equation; 
Tangent vectors; 
Specified flow; and 
Local incremental onset flow ,vectors. 

The array shall contain data (one value for non-vectors, three 
values for vectors) for each control point as defined by the 
current control points location option. 
Process the velocity corrections record. 
Examples: 

VELOCITY CORRECTIONS= NONE(NO-CORRECTION) 
VELO=NONE ,SAl (1 ST -STAGNATION-TO-A~IBIENT) 
VELO=NONE,SA1,SA2 / ALL OPTIONS 

/~. 



APPENDIX l3-A TREE STRUCTURE 

The tree structure of selected routines in the library is presented in 
this appendix. ~fany tasks requested by the PAN AIR modules are performed by 
groups of routines in the library. The purpose of this appendix is to show 
the calling relationships between those routines. A routine may be shown as 
the trunk of its own tree or a one of the branches of another tree. Routines 
~'Ihich perform a single function and do not use other library routines are not 
shown in this appendix. 

l3-A.l 



Page Missing in 

Original Document 



+-GPHPLK----UKYSRT 
I 
I +-FSHELL 
I I-ISHELL 
I-GPHSCN--I-KEYSRT 
I I-UKYSRT 
I +-XFERA 
I 
I-GPLUCK----UKYSRT 
I-OUnlAT 

ABTI~JT--I 
I-OUTMXV----OUTLIN 
I 
I-OUTVEC 
I-XFERA 
+-ZERO 

+-ABTJOB 
CCALN---I-LOCF 

I 
I +-LCHVAR 
+-PAN~10~1--I 

+-DEFVEC 
I 

+-ZERO 

I +-DCBHTX----VIP 
I I-PSINTP----VIP 

CQLSF---I-LSQSFX--I 
I - I-VIP 
I +-VIPS 
I 
+-ZERO 

+-DECOM-----Ar~CON 
GLESOM--I-FBSUBM 

+-VIPDA 

+-CAB 
I-CANB 

IMAGE---I 
I-CAPB 
+-XFERA 

13-A.3 



+-CROSS 
I-RRZAB 

INSIDE--I 
I-VADD 
+-XFERA 

ISCAL-----PIDENT 

+-GETT 
+-CHKEOR--I 
I +-PUTT 
I-DCODIR 
I-GETT 
I 
I +-GETT 

LODREC--I-INCBCD--I +-BIT$LGN 
I +-STRMOV--I-BITSLOC 
I +-BIT$MSK 
I-LOCF 
I +-BIT$LGN 
I-STRMOV--I-BIT$LOC 
I +-BIT$MSK 
I 
+-SYSTE~lC 

+-CMAB 
I 
I +-CMAB 
I -PROJ ---- I 
I +-VADD 
I 

LPROJ --- I -UVECT 
I-VADD 
+-VMAG 

+-LOCATR 
+-DELETR--I 
I +-XFERA 
I 
I +-LOCATR 
I +-DELETR--I 
I I +-XFERA 

MULTI---I-INITIR--I-LOCATR 

13-A.4 

I +-LOCF 
I 
I-LOCF 
I 
I-REQFL----LOCF 
+-VIP 



+-CROSS 
NORCAL--I-UVECT 

+-VADD 

+-CROSS 
I 
I +-CROSS 
I I-RRZAB 
I-INSIDE--I 
I I-VADD 
I +-XFERA 
I 
I-MUL3X3 
I 
I +-VADD 
I-NRPTED--I-VIP 
I +-XFERA 
I 

NRPTHP--I-RRZAB 
I-R'RZATB 
I-VADD 
I-VIP 
+-XFERA 

+-LCHVAR 
PANMOM--I 

+-ZERO 

+-RRZXYT 
I-UNIPAN----CMAB 

PDQSUB--I 
I-VMUL 
+-ZERO 

+-VIP 
RACOF---I 

+-ZERO 

13-A.5 



+-ROPIV _ 
I-ROSMR 
I -R~1SERG 
I-R~lSLBS 
I-Rt~SLUS 
I 
I +-REOUCR 

+-RMSOC---I-RMSREO--I-RMSERG 
I I +-RMSLTS----VIPS 
I I 
I I-RMSUBS 
I I-RMSXCH----UNPAC 
I I-RMSXCS----PAC 
I I-WTPIV 
I +-WTSMR 

RMSO----I 
I +-ROSMR 
+-RMSERA--I 

+-RMSERG 

+-ROPIV 
I-ROSMR 
I-R~lSCBS 

+-R~ISBS--- I -RMSROB----REOUCR 
I I-RMSXCH----UNPAC 
I I-RMSXCS----PAC 
I +-WTSMR 

RMSFB---I 
I +-ROSMR 
I I-REOUCR 
+-RMSFS---I 

+-MUL3X3 
I-RRZAB 

S02LIN--I-XBPOSH 
I-XFERA 
+-ZERO 

I-RMSCFS 
+-WTS~IR 

+-LOCATR 
+-OELETR--I 
I +-XFERA 

+-INITIR--I-LOCATR 
I +-LOCF 

STARTR--I-LOCF 
I 
+-REQFL-----LOCF 

XCOF ------r~UL3X3 

, 3-A. 6 



Appendix 13-B CONSTRAINED QUADRATIC LEAST SQUARES FIT SUBROUTINES 

13-B.1 



Page Missing in 

Original Document 



13-8.1 CONSTRAINED LEAST SQUARES FIT SUBROUTINES 

The PAN AIR Theory Document, Sec. 1.5 (Ref. 1), discusses the theoretical 
basis of the constrained least squares procedure. In this Appendix we discuss 
the realization of the theory in a set of FORTRAN subroutines. The set of 
subroutines and their interrelationships are indicated in Figure 13-B.l. 

13-B.2 Subroutines CQLSF and DEFVEC 

Information is passed to CQLSF through its formal arguments concerning the 
number of points to be fit, a two dimensional coordinate for each point, a 
weight for each point and the order of the fit desired (linear, bilinear or 
quadratic). 

13-B.3 



Any point with an input weight greater than 1.0 is treated as an exact 

constraint. Any point with a negative weight is treated as a least squares 

part of the fit with a weight equal to the absolute value of it~ weight. 

Subroutine DEFVEC defines a vector of polynomials in the two dimensional 

coordinates of the points according to the order of the fit. The vectors are: 

(1, x, y) Li near 

(l, x, y, xy) Bilinear 

( 1 , x, y, 1/2x2, xy, 1/2y2) Quadratic 

These are defined for each point in the fit. In CQSLF the vectors are 

scaled by the \'1eights for each point and are stored in the matrix A. This 

matrix is defined as a one dimensional array. The rows of the matrix which 

correspond to the exact constraints occur at the beginning of the matrix and 

those that correspond to the least squares constraints occur at the end of the 

array. Subroutine LSQSFX then solves for the set of equations and returns the 

transpose of the solution (see below). CQLSF unpacks the solution array and 

generates the solution matrix for the problem. A check on round-off errors is 

made by computing the identity matrix minus the product of the solution matrix 

and the fit matrix. The quadratic norm of this matrix is computed. If it is 
-6 greater than 10 the fit is declared to be singular. If it is greater than 

10-12 the fit is declared to be poor. CQSLF then copies the solution matrix 

into appropriate locations in the output array SOL~~T according to whether the 

full matrix is desired (e.g. for the panel subsp1ine in the sixth overlay of . 

DQG) or whether only the constant coefficient term of the fit is required 

(e.g. as in the computation of spline vectors in the fifth overlays of DQG and 

~1DG) • 

13-B.4 



13 -B.2 Some Theoretical Remarks 

The general form of the equations solved by LSQSFX is 

[AJ [x] = [b] 

where A is a matrix which contains some equations which are to be solved 

exactly and some which are to be solved in a least squares sense. This can be 

wr itten as 

These can be separated into two sets of equations 

If the submatrix All is. invertable then 

We can substitute this into the expression for x2 and rearrange terms to find 

The inverse of Z22 (in the least squares sense) is computed to allow a 
solution for x2 in terms of bE and bL• 

13 -B.S 



This result is substituted for x in the equation for x . 
2 1 

. [~lJ = [=lq_~J ~~ -[~_~5L~!~ ~-J 
o • [;!L~~L~:~_:~L;~~_~!t-l-=~!t~;E_:~~~ [~~~ 

o : 0 bL 
I 

The complete solution is then 

~-!J = [~~t-~~!t~~!~-:~~-~~!-~!t-(-=~!t-~!~-:~~J [~s] 
-1 -1 I -1 

x2 - Z22 A2l All i Z22 bL 

-1 -1 
where Z22 = A22 - A21 All A12 and Z22 is the least squares pseudo-inverse 
of Z22' The transpose of this matrix is returned to LSQSFX. 

13-B.3 Subroutine LSQSFX 

Subroutine LSQSFX and the two routines it calls (DCBHTX and PSINTP) all 

make use of a particularly dense style of coding (See Reference 6) which is ,--..., 

intended to minimize both storage space and execution time. For this reason 

they may be difficult to unravel. In this section we give an outline of the 

operations of the subroutine LSQSFX without discussing the details of data 

storage. If this information is requir~d it will have to be found through 

careful study of the code. 

The matrix of equations which are to be solved may be divided into four 

quadrants distinguished by the exact constraints and the least squares 

constraints. The first operation LSQSFX performs is to do an L/U 

decomposition of the exact constraints quadrant. This operation is carried 

13-B.6 



out in the section of the subroutine marked phase (l,A). Simultaneously in 

phase (l,A) the matrix 212 (see figure 13-B.2) is constructed in the lower 

right quarter of the matrix. 

Then, in DCBHTX, a Householder OR factorization of Z22' the least squares 

part of the matrix is performed. This is phase (1 ,B) of LSQSFX. 

In phase (2,A) the inverse of the Lll and Ull matrices are computed and 
-1 -1 are applied to the U12 and L21 submatrices. In phase (2,B) the Lll and Ull 

. - 1 -1 A d A A..-
l
l matrix product is computed and the submatrlces All' All 12 an 21 -1 are 

computed, and the transpose of the pseudo-inverse of the matrix Z22 is 
computed.in PSINTP. 

Finally in phase 3 the pieces of the matrix are assembled to form the 

transpose of the solution matrix defined at the end of section 13-B.2. Figure 

13-B.2 summarizes the operations. 

13-B.4 Subroutine DCBHTX 

Subroutine DCBHTX decomposes the least squares portion of the matrix 
-1 

Z22 = A22 - A21 All A12 into a product of unitary matrices 0 and an upper 
triangular matrix R 

The matrix 0 is not computed explicitly. Rather since it is a product of 

elementary reflections 

13-B.7 



with 

and 

Bk = - l/[dk(Wk)k]; dk = - sgn(a(k))[.f (a~k))2J1/2 
kk l=k lk 

Wk = [a~~); i=k •...• m] - dk[6 ik ; i=k •...• m]i=k 

just the numbers dk and the vectors Wk are stored in a packed form. In the 

above expression a~~) denotes the entries of the partially factored Z22 

matrix at the beginning of the kth stage of factorization. 

13-B.5 Subroutine PSINTP 

Subroutine PSINTP computes the least squares pse~do-inverse of the matrix 

Z22 as follows. Let 

Z22 = OR = [01 1 O2] [~J 

= [01 1 0] [~J 
Then the pseudo-inverse of Z22 is given by 

-1 -1 T 
Z22 = R 01 

S -1 ince the transpose of Z22is comformable with Z22' PSINTP actually computes 

the matrix (Z2~)T = 0
1 

(R-1)T. 

13 -B.8 



CQLSF 

LSQSFX 

DEFVEC 

DCBHTX PSINTP 

Figure 13-B.1 Tree Structure of Constrained Least Squares Subroutines 

13'-B.9 



f
Exact LSQ] 
All A12 

4 ________ _ 

A21 A22 

Exact 
A :: 

LSQ 

L/U Factorization 
----------------> 
Phase (I,A) 

QR Factorization 
---------------> 
Phase (l,B) ~--L~J o : R 

I 

DCBHTX 

Back Solve 
---------> 
Phase (2,A) 

-1 [-1 . -1 J Compute All All : All A12 
----------) --------f--------

( -l)T -1 : ( -l)T and Z22 A22 All : Z22 

(PSINTP) 
Phase (2,8) 

Collect Terms 
------------> 
Phase 3 [

-IT -IT T -IT T -IT -IT T -IT] 
All + All A2l Z22 A12 All All A2l Z22 
------------------------------ --------------

Z-lT A T A-IT Z-lT 
- 22 12 11 22 

Figure 13-B.2 Outline of Algorithm Implemented in lSQSFX 
13 -B.10 



Section 14 - Scientific Data r~anagement System (SDMS) 

The Scientific Data f'lanagement System Reference Manual is included 
verbatim as a section here and, as such, it does not conform to the standards 
of the PAN AIR Maintenance Document (i.e., page numbering). The manual is 
written for the CDC (Control Data Corporation) version of sor~s but it may be 
applied to the CRAY version used by PAN AIR with the following considerations: 

1. The user number of a file may be considered the CRAY dataset 
identification (10). The job user number may be considered the 
ownership (OHN) value. Any datasets saved by sm1S will have an 
identification equal to the ownership value. This includes databases 
and master definitions. To specify the dataset identification will 
require additional job control language. The options for SCOPE 2.; do 
not apply to the CRAY version. 

2. The job control language to access the SDMS library and the Data 
Definitions Processor is provided on the PAN AIR installation tape. 

3. Sequential datasets (described in 'section 3.5 of the SDMS manual), 
miscellaneous database functions (section 3.6), indexed sequential 
datasets (appendix B), and qualified datqset search (appendix C) are not 
used by PAN AIR. 

4. The dynamic storage capability (described in section 3.01 of the 
SDMS manual) and the trace option (section 5) are not available. 

5. The permanent file errors in table 4-3 and table 4-4 do not apply 
to the CRAY version. Table 0-2 (POD Status) of reference 7 (CRAY-OS 
Manual) should be used instead. The permanent file error number is 
labeled in table 0-2 as the PMST. -

The copyright to the Scientific Data r·lanagement System (SONS) is owned 
by the Boeing Computer Services Company. All recipients of the PAN AIR 
software system have been granted a royalty-free, nonexclusive, irrevocable, 
world-'fJide license to publish, distribute, copy and use SD~iS as long as this 
is accomplished without separating SDMS from the entire PAN AIR system. 

SDMS and any documentation thereof may not be reproduced in whole or in 
part, or used in any form outside the PAN AIR System 'f/ithout express written 
permission of Boeing Computer Services Company. 

14.1 



Page Missing in 

Original Document 



TABLE OF CONTENTS 

Title Page 

List of Active Pages 

Table of Contents 

Revisions 

1.0 

1.1 
1.2 
1.3 
1.4 

2.0 

2.1 
2.2 
2.2.1 
2.2.2 
2.2.3 
2.2.4 
2.2.5 
2.2.6 
2.3 
2.4 
2.5 

3.0 

3.01 
3.1 
3.1.1 
3.1. 2 
3.2 
3.3 
3.3.1 
3.3.2 
3.3.3 

Introduction 

Data Dependence 
Data Independence 
Data Base Construction Process 
SDMS Features 

Data Base Definition 

SDMS Data Base Fundamentals 
Master Definition Structure 
Master Definition Syntax 
Dataset Syntax 
Password Set Syntax 
Key Set Syntax 
Dataset Body Syntax 
Element Set Syntax 
Master Definition Example 
Lirnit;:Jtions 
Definition Processing 

Data Base Access Facilities 

SONS Initialization Routine (ISDMS) 
Data Base Initializ;:Jtion Routine (DBOPEN) 
Data Base Creation 
Post Creation Access 
Data Base Termination Routine (DBCLOS) 
Dataset Mapping Routines 
Static Mapping 
Dynamic Happing 
r'lap Creat i on 

Page 

i i 

iii 

v 

1 

1 
2 
2 
2 

7 

7 
9 
9 

11 
11 
12 
12 
13 
15 
16 
17 

24 

25 
26 
27 
23 
30 
31 
31 
33 
35 

14.3 



TABLE OF CONTENTS 

3.3.4 St~tic Mapping Examle 36 
3.3.5 Dynamic Mapping Example 38 
3.3.6 Restrictions 38 
3.3.7 Permissible Usages 38 
3.3.8 Map Usage Techniaues 39 
3.3.9 Map Construction in Overlay Programs 40 
3.4 Random Dataset Functions 41 
3.4.1 Put Element Set (ESPUT) 41 
3.4.2 Put DIRECT Element Set (DESPUT) 41 
3.4.3 Get Element Set (ESGET) 42 
3.4.4 Get DIRECT Element Set (DESGET) 43 
3.4.5 Replace Element Set (ESREP) 43 
3.4.6 Replace DIRECT Element Set (DESREP) 44 
3.4.7 Creating and .Accessing Random Datasets 45 
3.4.8 DIRECT Dataset Usage 48 
3.5 Sequential Dataset Functions 50 
3.5.1 Open Element Set Se(]uences (ESSOPN) 50 
3.5.2 Position Element Set Sequence (ESSPOS) 50 
3.5.3 Close Element Set Sequence (ESSCLS) 51 
3.5.4 Put Into Next Element Set (ESSPUT) 51 
3.5.5 Get From Next Element Set (ESSGET) 51 
3.5.6 Using Se(]uential Datasets 52 ~. 

3.6 Miscellaneous Data Base Functions 54 

4.0 Error Handling 55 

5.0 Diagnostic FeatureS 64 

6.0 Recovery Options 65 

7.0 Access to SOMS Subroutines 66 

14.4 



1.0 Introduction 

This document describes the Scientific Data Management Systenl (SONS). SOMS 
provides a high-level, file-independent framework for external data transfers 
performed by scientific appl ication programs. With SD~IS, data is transferred 
between a program and named scalars and vectors in an external data base. 
These scalar and vector data elements are grouped into a data hierarchy by 
means of an external data definition. 

The use of named, structured data ~eans that I/O takes place at a higher level 
of abstraction than files provide, thus simplifying I/O design. The use of an 
external data definition makes data sharing oetween programs easier. 

1.1 Data Dependence 

A model of data flow in a modern system is Shown in Figure 1-1. Each program 
P in the system communicates both with its local data Land witn data S which 
is shared among members of the system. 

Tne use of separate programs to perform Sharply-defined functions provides a 
high degree of modularity. However, the use of file-oriented data transfer 
methods tends to impede inter-program communication in SUCh a system. 
File-oriented I/O ignores two of the most important properties of data: 
identity and form. Record elements have values but no inherent identity, no 
external names. Similarly files have no innerent form. Althougn some files 
are regular in form, many are not, and none are reauired to be so. 

The only identity given to record elements is that of position within the 
record. A variaDle stored in word 12 of a record must, of course, oe 
retrieved from word 12. This is at best a weak kind of data identification, 
and it imposes on the data an ordering which is not intrinsic to it. 

14.5 



1.2 Data Independence 

SDMS uses a data definition to define the form and identity of external data. 
This definition is part of the external data it represents and provides the 
exclusive means of access to it (Figure 1-2). This comoination of definition 
and data is commonly referred to as a data base. This approach makes it 
possible for programs to issue data reauests of the form "get external data 
element MACH-NU~lBER and store it in program variable mN". 

1.3 Data Base Construction Process 

Figure 1-3 shows the basic processes involved in the construction and use of a 
data base. The form of the data base is specified in the definition text. 
The definition text is converted by the Data Definition Processor (an SDMS 
utility) to a master definition file. Program P accesses data base elements 
by calling on SDMS routines wnich are loaded with it. These routines use a 
copy of the master definition to retrieve and store data base values. 

1.4 SDMS Features 

The important features of SDMS are listed oelow. 

Permanent and Temporary Data Bases 

SDMS permits the construction of both temporary and permanent data bases. 
Temporary data bases can be used to handle both the local data and transient 
snared data shown in Figure 1-1. 

Multiple Data Bases 

Several data bases may be accessed by the same program. 

Master Definition Concept 

A single external definition can provide the form for an arDitrary number of 
physical data bases. 

Random Datasets 

SDMS supports tne list-directed transfer of element set variables to and from 
random datasets. A random dataset corresponds to a logical file in a 
file-oriented system. An element set corresponds to a logical record. 

Sequential Datasets 

SONS supports list-directed transfers of element set variables to and from 
element set sequences. Element set sequences correspond to sequential files. 
They are grouped into sequential datasets. 

14.6 



Keyed Access 

SDMS provides keyed access to random element sets and to element set sequences 
as well. Multiple keys are permitted. 

Data Element Types 

A data block consists of a set of data elements. Data element types include 
scaiar, fixed-length vectors, and variable-length vectors. (A vector is a 
single-dimensional array.) 

Data Element Access by Name 

Data block elements are selectively accessed by name. 

High-Efficiency Transfers 

Random element sets can be transferred verbatim between disk and central 
memory without intermediate buffering. 

Availaoility 

SDNS is availahle to programs coded in Control Data Corporation (CDC) Fortran 
Extended (FTN) running under the KRONOS/NOS operating systems for CDC lower 
CYBER computers (6600 like), and the SCOPE 2.1 operating system for CDC 7600 
computers. 

14.7 



14.8 

P • Program 
L • Local externai data 
S • Shared externai data 

Figure 1-1: Data Communication in Typical Programs 



---- Con~rol path 
Data path 

---

.' 

--------

Figure 1-2: Definition Controlled Data Access 

14.9 



-

14.10 

Data 
Definition 
Processor 

SDMS Util ity 

P 

S 
D 
M 
S 

User Program 

Figure 1-3: Data Base Processing 

Data Base 



2.0 Data Base Definition 

2.1 SDMS Data 3ase Fundamentals 

Figure 2-1 ShOWS tne general for,n of 3n SDfIJS data base. Each SDHS data base 
consists of two major parts: a data case definition and a collection of 
random and sequential datasets. The dat~ base definition is a copy of a 
master definition. 

The basic SDMS information unit is the data element. All retrieval and 
storage of information is done by referenclng data elements througn names 
given in their dataset definition. SDMS dat3 elements are well-suited to the 
expression of scientific data. Data element-forms include scalars, 
fixed-length vectors and variable-length vectors. Data element values may be 
integers, floating point numbers, and text strings. 

In case of random datasets, data elements are grouped into element sets, each 
with a key set. The corresponding definition gives the names and attributes 
of element set keys and data elements. In Figure 2-1, dataset X has a single 
key K. Each element set has two data elements A and B. Programs store 
dataset X inform'ltion Dy nJaking statements of the form ",nake a new ele:l1ent set 
in dataset X SUCh that K has the value K1 and data element A has the value 
AI'" Retrieval statements have the form "from an element set in dataset X 
SUCh that K has the value K2 ' transfer data element B into program area 
82'" 

In a random dataset, each key set is associated with one element set. In a 
sequential dataset, each key set is linked to an element set sequence. An 
element set sequence is tne SD~1S correspondent to a seauential file. The 
dataset description gives the names and attributes of selJuence key sets and 
element set data elements. 

In dataset Y of Figure 2-1, sequences are keyed by the single key Q. Each 
element set contains the sinale data element R. To create a new element set 
seouence requires that tne program issue an SDMS request of the form "open a 
new sequence L in dataset Y SUCh that Q has the value Q1'" The sequence is 
built by issuing SDMS reauests of the form "add an element set to the end of 
se'Juence L in which d3ta element R has the value R(i)." 

14.11 



DEFINITION 

IMaster Definition Z 

Dataset X 

Key Set 
K 

End 

Element Set 
A 
B 

End 

End Dataset 
• 
• 
• 

Dataset Y 

Key Set 
Q 

End 

Element Set Sequence 
R 

End 

End Dataset 

End Definition 

14.12 

CONTENT 

Key Set K n 

Al ••• ft. n 
Data Bn 

Elements 

Element Set 

Random Dataset X 

.. 

V SR2l 
Element Set V 

.. 

Element Set Sequence 

Sequential Dataset Y 

Data Base Z 

Figure 2-1: A Typical SDMS Data Base 



2.2 Master Def~nition Structure 

A m~ster definition consists of a seQuence of 80 Ch~r~cter text lines which 
establishes: 

1. form of a data base. 

2. the perlnanent file on which the master definition \-Jill reside. 

3. controls on dataset access within permanent data bases. 

4. the names and attributes of dataset elements. 

Each definition line consists of a left-to-right sequence of items separated 
by blanks. The one-character item 'Z' is reserved as an optional end-of-line 
terminator which may be followed by comments. Blank lines may be inserted in 
the definitio.n to aid legibility. 

The master definition is constructed using SDDL (Scientific Data Definition 
Language). In the paragraphs that follow, the syntax of SDDL will be 
expressed in top-down fashion, using the syntactic constructs defined in Table 
2-1. Uppercase text strings denote literal items. Constructs peculiar to the 
cjc 7600 version (SCOPE 2.1) wilt be enclosed by double slashes (II). 

2.2.1 Master Definition Syntax 

Tile complete master definition has the form 

MASTER DEFINITION mdname Iluser-id set-namell 

-----------------------* 
<dataset definition> 

END DEFINITION 

where mdname is the name of the direct access permanent file to whiCh tne 
master definition is to be written. IIUser-id and set-name are the SCOPE 2.1 
permanent file user-id and set name under which mdname is to be cataloged. 
For system residence (not private pack), set-name=SYSTEM.II 

Note: the asteriSk and horizontal lines indicate vertical repetition of the 
syntactic construct between them. 

14.13 



Syntactic Unit 

<key element> 
<data element> 
<5UDscripb 
<data type> 
<option> 

Elementary Unit 

mdname 
sname 
user-id 
set-name 
pw 
el name 
lnallle 
TEXT or 
INTEGER 
REAL or 

T 
or 
R 

READ or R 
\~R ITE or ~J 

I 

Syntactic Constructs 

--------------------* 
X 

Definition 

elname <data type> 
elname[<subscript>] <data type> 
integer/name 
TEXT/INTEGER/REAL/T/I/R 
READ/i4RITE/R/W 

Definition 

master definition name (1 to 6 characters1) 
dataset name (1 to 20 characters1). 
SCOPE 2.1 user-id (1 to 9 charactersli' 
SCOPE 2.1 set name (1 to 9 Characters ). 
password (1 to 10 ch ar acters1). 
element name (1 to 20 characters1). 
name of scalar integer <data element>. 
textual type. 
integer type. 
real type. 
read permission. 
write permission. 

Defi n it i on 

x 

x 

[x] x is optional. 
x/y x or y 
<x> x is a compound syntactic unit. 

Table 2-1: Scientific Data Definition Language (SDDL) Syntax 

1. No imbedded blanks permitted. 

14.14 



,~ 
I 

2.2.2 Dataset Syntax 

Tne syntactic unit <dataset definition> defines a random dataset or a 
seauential dataset. Tne unit <dataset definition> expands to 

DATASET sname [DIRECT] 

[<password set>] 

[<key set>] 

[<dataset Dody>] 

END DATASET 

wnere sname is tne na:ile of tne dataset. The i dent i fi er sname can be up to 20 
characters in length and may contain any legal FORTRAN character except 
'olank' .. 

The DIRECT option specifies a random dataset wnich nas no <element set> and 
therefore no structure. Its simplicity permits nigh-efficiency transfers to 
take place (3.4.2, 3.4.4, 3.4.5). 

2.2.3 Password Set Syntax 

The syntactic unit <password set> defines access permissions for this dataset 
or group in conjunction with permanent data ~ase initialization (3.1.2). The 
unit <password set> exp~nds to 

PASSlWRDS 
--------------- * 

pw <option> 

END 

where pw 
<option> = 

password (10 characters or less) 
READ or \~RITE. 

Options may be abbreviated by specifying R instead of READ, and W instead of 
WRITE. 

14.15 



2.2.4 Key Set Syntax 

Tne synt~ctic unit <key set> defines the names and attributes of keys which 
are used to access dataset components. It expands into 

KEY SET 
-------------------- * 
elname <data type> 

END 

where elname is the name of a scalar data element and <data type> is the 
eJement type (in the FORTRAN sense). <data type> = INTEGER, REAL or TEXT 
where INTEGER (or I) denotes integer type, REAL (or R) denotes real type and 
TEXT (or T) denotes textual type. Elname can be up to 20 cnaracters in length 
and may contain any legal cnaracter except 'olank'. A key set may contain a 
maximum of 10 elements. 

2.2.5 Dataset Body Syntax 

The syntactic unit <dataset body> defines how data elements are arranged 
within the dataset. It expands to 

ELEMENT SET [SEQUENCE] 

<element set> 

END 

If tne word SEQUENCE is present in the neader, a sequential dataset is 
defined. Its aosence indicates a random dataset. In a sequential dataset, 
keyed access is provided to sequences of element sets. In a r;;!J1dom dataset, 
each element set is key-accessible. 

14.16 



2.2.6 Element Set Syntax 

The synt~ctic unit <element set> defines the data elements present in each 
element set in a dataset. It expands to 

where 

------------------------------* 
, elname [<subscripb] <data type> 

= 
data element name « 20 characters) 
integer/lname -
TEXT/INTEGER/REAL/T/I/R 
natural number > 1 

elname 
<suDscripb 
<data type> 
integer 
lnarne = name of sc~lar lnteger data element in the same 

element set. 

The use of the <subscript> parameter determines data element structure. 

<subscripb 

null (not given) 
integer 
ln~me 

element structu~es 

scalar 
fixed-length vector 
variable-length vector 

Data element type is defined by <data typ~>. 

<data type> 

TEXT (or T) 
INTEGER (or I) 
REAL (or R) 

element type 

text 
integer 
real 

14.17 



Some data element definitions are illustrated oelow. 

data element defi n it i on 

integer scalar LIST-LENGTH. LIST-LENGTH 

text scalar NAME. NAME T 

5 words of text named TITLE. TITLE 5 T 

3-word floating-point array POINT 3 R 
POINT. 

floating-point array LIST LIST LI ST -LENGTH R 
whose length is eaual 
to the value of LIST-LENGTH. 

14.18 



~ 
I 

2.3 Master Definition Example 

The basis for our example is the kind of data which represents a paneled 
aerodynamic body. Figure 2-2 shows a wing modeled as two networks of panels; 
one for the wing and one for tne waKe. Associated with each panel are one or 
more control points at which boundary conditions are evaluated. An 
aerodynamic analysis reauir.es that several collections of geometric properties 
be extracted from the modeled configuration. 

Figure 2-3 ShowS the breakdown which we will use to represent our panelled 
configuration. A master definition called PANCD which corresponds to this 
data arrangement is shown in Table 2-2. 

The dataset global-data consists of a single elernent set containing all global 
information aoout the configuration. In our example, this consists of the 
number of networKS and a configuration name. 

The dataset network-def-data contains information about individual networks, 
keyed by network numoer. Note that parameters with a prescribed set of values 
are fully described by comments. 

Network-gri~-points is anotner dataset containing information about individual 
networKS. The data consists of a sequence of grid points 'in 3-space, each 
seauence keyed by network number before. Tne data element name networK-no was 
chosen to be the same in both cases to emphasize that the Key is tne same in 
ooth cases. Uniaueness of reference is preserved by the fact that the data 
elements are in different datasets. Network grid points are accessed by 
specifying dataset name and network number and then reading or writing them 
seauentially. 

The dataset panel-def-auant contains a large collection of panel-related data 
keyed jointly on network number and panel number. The element set includes 
fixed-length arrays like panel-moments and variable-length arrays like 
fit-wt-factors with its length- speclfying ele:nent pnl-srf-fit-ord r . 

The last two datasets in our master definition represent the control-point 
definition data of Figure 2-3. The first dataset, ctl-pt-def-auant, contains 
an element set seauence for each network. Each element set contains data 
about a particular control-point in one network. This data inclUdes tne 
coordinates of tne control-point and tne number of the panel associated with 
it. The data element panel-no is used as a key into the dataset 
panel-def-auant. 

The second control-point dataset is distinct-ctl-pts, again keyed by networK 
number. Since all control points may not be spatially distinct, the index 
array ctl-pt-no-lst is used to indicate those control-points which are 
duplicated. 

Figure 2-4 snows how PANCD can serve as the basis for an arbitrary number of 
PAN AIR data bases. 

14.19 



2.4 Limitations 

Item 

Oatasets per master defini~ion 

Passwords per dataset 

Keys per key set 

Scalar elements per dataset 

Fixed-length arrays per dataset 

Variable-length arrays per dataset 

14.20 

L irnit 

100 

10 

10 

100 

100 

100 



2.5 Definition Processing 

At the BCS Renton Dat~ Center, the control cards required to create a master 
definition are: 

GET,DDP/UN=PAWAMI. 

DDP(MDIN,OFIL) 

where 

MDIN=file of master definition text. 

OFIL=print file. 

(defaul t:HlPUT) 

(defaul t:OUTPUT) 

Assume MDIN contains a valid master definition named x. At DDP 
completion,direct access permanent file x will be the corresponding master 
definition file. 

14.21 



-

14.22 

Wing Panel 

Flow 

Control Point 

~ Wing Network 

~ Wake Network 

Wake Panel 

Figure 2-2: Plan View Of Wing Geometry 



-

Aerodynamic 
Geometry 

Data 

-

Network Network Panel Control PoiQt 
Global Definition Grid Definition Definition 
Data Data Data Data Data 

Figure 2-3: Panelled Geometry Data Structure 

14.23 



PAN AIR 

14.24 

Configuration A 
Geometry 
Data Base 

Configuration 
Geometry 
Data Base 

Configuration 
Geometry 
Data Base 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

Figure 2-4: Data·Base/Master Definition Relationship 



MASTER DEFINITION pancd 

DATASET glOb~l-d~ta 
ELEMENT SET 

no-of-networks 

config-name 
END 

END DATASET 

DATASET network-eef-data 
KEY SET 

network-no 
END 
ELEHENT SET 

num-gr i d-pt-roIVs 
num-grid-pt-cols~ 
pnl-srf-fit-ordr 

pnl-sing-type 

network-type 

num-sing-parall1s 
nUill-C t l-p t-rOI'iS 
num-ctl-pt-cols 
num-ctl-pts 

END 
EriD DATASET 

DATASET network-grid-pts 
KEY SET 

network-no 
END 
ELEMENT SET SEQUENCE 

grid pOint 
END 

END DATASET 

Table 2-2: 

t 

r 

"global configuration data. 

number of panel networks in 
configuration. 
configuration name. 

network defining data. 

network number. 

number of grid point rows. 
number of grid point columns. 
order of panel surface fit: 

l=flat panels, 
2=curved panels. 

p~nel singularity type. 
O=constant strength source, 
l=linearly-v~rying source, 
2=auadraticly-varying doublet, 

network type: 
l=source/~nalysis; 
2=doublet/analysis, 
3=source/design no 1, 
4=doublet/design no. 1, 
5=source/design no. 2, 
6=doublet/design no. 2, 
8=doublet/wake no. 1, 
O=doublet/wake no. 2. 

number of singularity parameters. 
number of control point rows. 
number of control point columns. 
number of control points. 

network grid points. 

"network number. 

grid point in x,y,z order. 

Aerodynamic Data Definition 

14.25 



DATASET panel-def-quant 
KEY SET 

network-no 
panel-no 

END 
ELEMENT SET 

corner-pt-l 
corner-pt-2 
corner-pt-3 
corner-pt-4 
u-vector 

v-vector 
pnl-ctr-pt 
lcs-rrans-mat 

inv-lcs-tr-mat 
panel-centroid 
lcs-pnl-crnr-pts 

quad-surf-coeff 
lcs-o!"igin 
max-panel-diam 
panel-moments 
panel-sing-type 

pnl-surf-fit-ordr 

sing-par-index-lst 

fit-wt-factors 

leasr-sq-coeff-mat 

END 
END DATASET 

3 r 
3 r 
3 r 
3 r 
3 r 

3 r 
3 r 
9 r 

9 r 
3 r 
8 r 

2 r 
3 r 

r 
36 r 

i 

96 r 

panel defining quantities. 

network numoer. 
panel numoer. 

corner point in x,y,z order. 
same, 
same, 
same. 
(u cross v defines vector normal 
to flat panel.) 

panel center point. 
local coord. system transfor
mation matrix. (3 x 3) 
inverse of lcs-trans-mat. 
panel centroid coordinates. 
panel corner points in local 
coordinate system. 
quadratic surface coefficients. 
local coordinate system origin. 
maximum panel diameter. (in.) 
array of panel mo~ents. (6 x 6) 
panel singularity type: 

O=constant-strength source, 
l=linearly-varying source, 
2=quadraticly-varying doublet. 

panel surface fit order: 
1 for flat panels, 
2 for curved panels. 

pnl-surf-fit-ordr 
singularity parameter index list. 
pnl-surf-fit-ordr 
fit weighting factors. 
least squares fit coefficient 
matrix. (6 x 16) 

Table 2-2: Aerodynamic Data Definition (Cont'd) 

14.26 



DATASET ctl-pt-def-quant 

KEY SET 
networK-no 

END 
ELEMENT SET SEQUENCE 

panel-no 
control-pt-coords 
panel-surf-normal 

END 
ErJD DATASET 

DATASET distinct-ctl-pts 

KEY SET 
network-no 

END 
ELElvlENT SET 

ncp 
ctl-pt-num-list ncp 

END 
END DATASET 

ErW DEFINITION 

3 
3 

r 
r 

-i 

Z control point defining 
(Juantities. 

Z network number. 

Z panel numoer. 
Z control point coordinates. 
Z panel surface normal at control 

point. 

Z definition of distinct control 
Z points. 

Z network number. 

Z numoer of control points. 
Z list of distinct control point 

indices. 

Table 2-2:' Aerodynamic Data Definition (Cont'd.) 

14.27 



3.0 Data Base Access Facilities 

Figure 1-3 illustrates the relationship between the data definition process 
(creating data base forms) and the data manipulation process (creating and 
accessing data base values). Data manipulation activitiBs are carried out by 
calls to SDMS subroutines using CDC Fortran Extended calling sequence 
conventions. 

There are five classes of manipulation activity: 

1. Data Base Initialization and Termination--creating new data 
bases, connecting to existing ones, and terminating data base 
processing. 

2. Program Variable/Data Base Element Mapping--specifies 
associations between program variables and data base elements 
fO.r data transfer purposes. 

3. Random Dataset Data Transfer Operations--

4. Sequential Dataset Data Transfer Operations--

5. Dynamic Stora~e Assignment--obtain and release olocks of central 
memory. 

The sUb-sections wnich follow will discuss each class in the order given 
above. Two forrns will be given for each data manipulation function: a 
Fortran calling sequence and a statement in a higher~level language called 
SDMl (Scientific Data Management language). The SDML statements are included 
only for their descriptive value. They may be included as comments since they 
begin with an * in column one. 

14.28 



3.01 SDMS Initialization Routine (ISDMS) 

* BEGIN SDI'1S. 

where 

CALL ISD~S (fwa,lwa) 

fwa 1 if this is the first word of SDr~S working storage. ° if working storage is to be Obtained from the system 
as needed. 

lwa last word of SDMS working storage, if fwa = 1 . 

ISDMS initializes data areas for the use of data base processing routines 
described in SubSequent sections. 

It is called only once in a given executable step. 

It must be called before any other SDMS routines are called. 

In an overlay program, it must be called from the (0,0) level. 

The presence of ISDMS arguments indicates that all buffer space and dynamic 
storage areas reauired by SDNS routines will be allocated within the memory 
limits specified. For example, the code 

A(1) = 1 
CALL ISDMS (A(1),A(10000)) 

specifies that SDMS can use A(1) through A(10000) as a dynamic storage area. 

If fwa = 0, SDMS will get dynamic storage starting at the current value of 
field lengtn. The amount of additional storage used will fluctuate depending 
on the number of data bases and seauential datasets open at one time. 

The following table indicates SDMS dynamic space requirements. 

For each 

data base 

dataset map(3.3) 

open element set 
seauence(3.5) 

central memory words required (decimal) is 

4 + no. of datasets. 

14 + no. of dynamic variables + no. of key set 
variables + 2 no. of data elements. 

1045 

14.29 



3.1 Data Base Initialization Routine (OBOPEN) 

Some DBOPEN calls require tne use of a data base descriptor dbd and a master 
definition description mdd. Both descriptors are short arrays having the same 
form. 

The descriptor~ tell SDMS where to find or create permanent files. 

mdd(l) 

mdd(2) 

I!mdd(2) 

//mdd (3) 

dbd (1) 

dod(2) 

IldDd(2) 

//dDd(3) 

master definition file name. 

master definition file user numDer. May be a if same 
as job. 

master definition file set name. II 
(1 to 9 cnaracters) 

master definition file user id. 1/ 
(1 to 9 Characters) 

data base name (dbn). 
(1 to 6 alphanumeric characters starting 
with a 1 etter) 

data base files user number. 
May be a if same as job. 

data base files set name. II 
(1 to 9 characters) 

data base files user id. II 
(1 to 9 characters) 

Note: only the first six non-blank characters of mdd(l) and dbd(l) are used. 
II Unless a private pack is mounted for the JOD, mdd(2) and dbd(2) must be set 
to 'SYSTEM'. After a DBOPEN call using dbd, the default set name for the 
remainder of the jOb will De set to dbd(2).11 

14.30 



3.1.1 D~ta Base Cre~tion 

Tne first function to be performed relative to a particular data base is th~t 
of data base creation. In this step, an "empty" data base is created having a 
form supplied by a specified master definition. 

The exercise of this function takes one of two forms. The first is for the 
creation of temporary data bases. 

* OPEN DATA BASE dbn USING mdd. 

CALL DBOPEN (dbn,'USING',mdd) 

where dbn data base name (1 to 6 Characters) 
mdd = m~ster definition descriptor. 

Since a temporary data base is being created, DBOPEN creates 'local' (in the 
operating system sense) data base files with names dbn1, dbn2, dbn3 and dbn4 
(after returning to the system any previously existing files with the same 
names). 

Tne statement form for permanent data base creation is: 

* OPEN DATA BASE dbd PERMANENT pw USING mdd. 

CALL DBOPEN (dbd, 'PER[v1M~ENT', pw, 'USING', mdd) 

where dbd = data base descriptor. (3.1) 
pw master password (1 to 10 Ch~r~cters). 

mdd = master definition descriptor. (3.1) 

With this c~lling sequence variant, OBOPEN creates direct access permanent 
data base files with an associated master password. 

14.31 



3.1.2 Post Creation Access 

DBOPEN is also called to connect to existing data bases. If dbn is an 
existing temporary data base (exists on local files), the following form is 
used. 

* OPEN DATA BASE dbn. 

CALL DBOPEN (dbn) 

If dbn is an existing permanent data base (exists on permanent files) the form 
used is: 

* OPEN [SHARED] DATA BASE dbd PERMANENT pw. 

CALL DBOPEN (dbd, 'PERt~ANENT', pw, 'OLD', [,'SHARED',]) 

where dbd 
pw 

= 
= 

data base descriptor. (3.1) 
password (1 to 10 characters). 

If the parameter 'SHARED' is included, the data base files are attached in 
READ mode. This permits other programs to use dod in SHARED mode at the same 
time. None of these programs may modify data base dbd. 

If password pw is tne master password assigned at data Dase creation, then 
rea~ permission is granted for all datasets in dbd; write permission is 
granted for all datasets if dbd is not SHARED. 

If pw is not the master password, then access to 
tne set of passwords included in its definition. 
set, no dataset elements may be accessed. If pw 
granted either read (R) or write (W) permission. 
read permission. 

Restrictions 

a dataset is controlled by 
If pw is not in the password 

is in the set, it has been 
Write permission includes 

Attempting to open a permanent data base in SHARED mode when it is currently 
open in non-SHARED mode will result in a non-fatal error (see 4.0). 

No more than 10 data bases can be open (active) at one time. 

3.2 Data Base Termination Routine (DBCLOS) 

After data base processing is complete, the using program may elect to perform 
a data base termination function. 

* CLOSE/RETURN DATA BASE dbn. 

CALL DBCLOS (dbn [,'RETURN' ,]) 

14.32 



where x/y indicates IX or yl. 
dbn = data base name. 

DBCLOS updates data base files for dbn to reflect its current state. It also 
releases all dynamic table space used by dbn, including its maps (3.3). 
Inclusion of the RETURN parameter causes data base files to be returned to the 
system. In the case of abnormal job termination, SONS regains control and 
automatically close~ any open data bases, excluding any for which the DBOPEN 
process was not completed. 

Restrictions 

Any data oase which has been modified and which is required after program 
termination must be CLOSED before termination. 

A data base must be CLOSED oefore it can be reOPENed. 

14.33 



3.3 Dataset Mapping Routines 

SONS handles co~nunication between two different data spaces: one containing 
program variables liKe x,y,z and another containing data base elements like 
X-VALUE, V-VALUE, Z-VALUE (Figure 3-1). 

In order for data transfer to take place, a two-part process must occur. 
First, a named data map is constructed by a se~uence of SUbroutine calls 
(3.3.3). The data map binds program variables to elements of a data base as 
specified in its master definition (Figure 3-2). Then calls to other SONS 
routines move data to and from the data base by referencing the map name (3.4, 
3.5) • 

From a mapping standpoint, program variables fall into two classes: dynamic 
and static. Dynamic variables have addresses which may change from reference 
to reference. In Fortran, dynamic variables consist of variable-subscript 
array references like X(I) and subroutine formal parameters. All other 
variables define static references. 

The distinction is made because static variables can be "bound" when the map 
is constructed. Dynamic variaoles cannot be bound until data transfer is 
requested. 

3.3.1 Static Mapping 

Figure 3-3 shows a mapping in which a map M forms an association oetween 
static variable V and data element d in data~et OS. Map M is created by 
suoroutine calls. A single map may define an arbitrary number of 
variable-to-data element bindings; only one is Shown for clarity. 

The process of data transfer Detween V and d is diagrammed in Figure 3-4. 
Transfers to and from the data base are effected by SDMS subroutines which 
reference map M to guide the transfer. 

Suppose that DS(K) is a dataset with one key K. We add to map M a program 
variable VI which is Dound to dataset key K. Figure 3- 5 shows how this map 
extension perlnits transfers between program variable V2 and data element d 
in OS. 

14.34 



-

.,.,-...., 

Program Data Base 

Figure 3-1: SDMS Data Spaces 

Program Data Base 

x--------~--~--~~--~---- X-VALUE 
V-VALUE 

---I---~-~--.lt-_ Z-VALUE 
Y 

Z 

Figure 3-2: Variables-to-Data Element Mapping 

14.35 



-

Central 
Memory V ~~ __________ ~ ____ ~ ________________ ~. 

{CM} 

MapM 
Dataset OS 

Figure 3-3: Static Variable Map 

CM V __ ~~ ____ ~~~ ____ -+ __ -+ __________ ~r--

Data Transfer Operation 0 
OS 

Figure 3-4: Data Transfer of Static Variable 

CM 

Figure 3-5: Mapping of Keyed Dataset 

14.36 



3.3.2 Dynamic Mapping 

Tne use of static variables makes mapping efficient but rigid. In our 
previous examples, the source or destination of data element d as determined 
by M must be a fixe~ location in central memory. 

The use of dynamic mapping (Figure 3-6) removes this restriction. At map 
creation, only the data base side of the correspondence js established. The 
central memory portion of the linkage is completed at data transfer time 
(Figure 3-7). Dynamic mapping makes it possible to reference dynamic 
variables SUCh as subroutine formal parameters and variably-subscripted array 
references. 

A map M can reflect ooth static and dynamic mappings, as shown in Figure 3-8. 

14.37 



-

CM 

Map M 
os 

Figure 3-6: Dynamic Variable Map 

CM 

o OS 

Figure 3-7: Transfer of Dynamic Variable 

eM. V ~------+-----i---

Figure 3-8: Typical Map 

14.38 



3.3.3 Map Creation 

* MAP dmn FOR dsn IN dbn HAS [vn=den,J* [vden (i)J*. 

where 

CALL OSMAP (n,dsn,dbn) 
-------------------------------------------* 
[CALL SVMAP (vn(l),den(l), ..• ,vn(n),den(n))] 

[CALL OVMAP (vden(l), •.. ,vden(m))] 
CALL ENOMAP 

dmn = uniaue map name (1 to 10 characters). 
dsn = dataset name (Hollerith literal 1). 
don name of open data base. 

* = arbitrary integer ~ O. 
[xJ* x,x, ••. ,x 

vn(i) = static variable name. 
den(i) = Hollerith literal defining data element 

corresponding to vn(i). 
vden(K) = Holleritn literal defining data element 

with dynamic variaoles in data transfer 
(3.4.1 - 3.4.6, 3.5.4, and 3.5.5). 

name 

name associated 
calls 

The map name dmn is used by data transfer functions (3.4) to determine the 
sources and destinations of program variables and data base elements. 

Restrictions 

OSMAP must be called only once for eacn value of drnn. 

A map definition seauence must begin with a call to OSMAP and end with a call 
to ENDMAP. 

The calls to SVMAP and OVMAP are order-independent. 

No more than one OVMAP call may appear in the seauence. 

No more than 10 SVMAP calls may appear in the seauence. 

No more than 100 maps can De defined at one time. 

1. The name of a 2-word array variable may be substituted for the 
Holleritn literal. If tne text string nas 10 characters or less, the 
second word must have a zero value. 

14.39 



3.3.4 ·Static Mapping Example 

Tne most efficient method of btnding program variables to data base elelnents 
is in the OSMAP call itself. Such variables must be static; they cannot be 
suoroutine formal paralneters or a dynamic array reference SUCh as A(I),. Any 
other references are legal, such as local variables L or A(3,4), or COMMON 
variable X. 

Consider the dataset shown in Table 3-1. The following OSMAP call forms an 
association between local program variables N,X,Y and dataset elements NC, 
X-VALUE and V-VALUE respectively. 

* MAP CRVMAP FOR 2D-CURVE IN dbn HAS N=NC, X=X-VALUE, Y=Y-VALUE. 

CALL OSMAP ('CRVMAP', '2D-CURVE', don) 
CALL SVMAP (N, 'NC',X,'X-VALUE',y, 'V-VALUE') 

~ CALL J:NOMAP 

Tnis association is specified by map name in subsequent calls to SOMS data 
transfer routines. After the previous map calls nave been made, the statement 

* PUT CRV~1AP. 

CALL ESPUT ('CRVMAP') 

causes a transfer of variables from tne program to the data base as shown 
below. 

Program Variable 

N 
X(i),i=1,tJ 
Y(i),1=1,N 

---> 
---> 
---> 

Data Base Element 

NC 
X-VALUE 
V-VALUE 

The use of ESPUT is fully explained in Section 3.4.1. 

14.40 



DATASET 2d-curve 

ELEMENT SET 

END 

END D,Ll.TASET 

curve-t it 1 e 
nc 
x-v"3lue 
y-value 

5 t 

nc r 
nc r 

curve title arr"3y. 
number of coordin"3te pairs. 
x coordinate "3rray. 
y coordin"3te "3rray. 

Table 3-1: Example Dataset 

14.41 



3.3.5 Dynamic Mapping Example 

In the previous example, suppose tnat N,X and Y were formal SUb-routine 
parameters. They would then be referenced in the ESPUT call instead of the 
crSMAP call, as shown below: 

* MAP CRVMAP FOR 2D-CURVE IN dbn HAS NC, X-VALUE, V-VALUE. 

CALL OSf1AP ('CRVt~AP', '20-CURVE',dbn) 
CALL OVMAP ('NC, 'X-VALUE','Y-VALUE') 
CALL ENOMAP 

* PUT CRVMAP USING N,X,Y. -

CALL ESPUT ('CRVMAP', N,X,Y) 

3.3.6 Restrictions 

OSMAP must be called only once to establish "l map with a given n"lme (dmn 
value). It should be considered a declarative command. 

O"lta element names must be Hollerith literals in the calling sequence. 

If a variable-length array data element is included in a map, its 
lengtn-defining scalar must also be included (2.2.6). 

All key data elements must be included in the map. 

3.3.7 Permissiole Usages 

Any subset of dataset elements may be referenced in a single Inap. 

Dynamic and static mappings may be included in tne same map. For example, 

is legal. 

CALL DSMAP ('CRVMAP' ,'2D-CURVE',dbn) 
CALL SVMAP (N, 'NC') 
CALL DVMAP ('X-VALUE','Y-VALUE') 
CALL ENOMAP 

Data element names and static and dynamic variables may be used in more than 
one map. 

14.42 



3.3.8 Map Usage Techniaues 

In brder to reference static map variables in more than one coding module, it 
is necessary to pass them through blank or laDelled COHMON. It is recommended 
that all static variaDles and only tnose variables associated with a 
particular map be kept in a single labelled common block with the same name as 
the map. It is also recommended that the correspondence between program 
variaDles and mapped data elements be identified by comments immediately 
preceding or following the common block containing mapped variables. 

To keep the clerical work involved in maintaining several copies of 
map-related text to a minimum, it is suggested that the UPDATE utilityl be 
used to maintain the source program. Then each set of map co~nents and a 
COMMON declaration can be maintained as a single COMDECK within UPDATE. 

The following text shows now map-related text might look for the map used in 
3.3.4. 

c ................................... C 
C MAP=CRVMAP DATASET=2D-CURVE 
C VARIABLES DATA ELEMENTS 
C N NC 
C X X-VALUE(NC) 
C Y Y-VALUE(NC) 

COMMON/CRVMAP/N,X(lOO),Y(lOO) 
c ................................... C 

When dynamic variables are used, the list position of the data element in the 
DVMAP call should De given in place of the variable name. For example, the 
map text for the map used in 3.3.5 might be as follows: 

c ................................... C 
C fv1AP=CRVt~AP DATASET=2D-CURVE 
C VARIABLES DATA ELE~1ENTS 

C D.V. 1 NC 
C D.V. 2 X-VALUE(NC) 
C D.V. 3 Y-VALUEUK) 
c ................................... C 

Note that no COMMON declaration is reauired because the map includes no static 
variables. 

1. UPDATE Reference Manual, Control Data Corp. Document No. 60449900. 

14.43 



3.3.9 Map Construction in Overlay Programs' 

To conserve variable space, it may be desiraole to issue map-construttion 
statements in overlay levels above the 0,0 level. If this is done, the 
programmer must arrange to nave these calls executed only once no matter how 
many times the overlay is called. This can be done conveniently by placing a 
map-construction flag in a labelled COMMON block in the 0,0 overlay and 
testing it just prior to map creation. If the flag is false, the map does not 
yet exist. It is then created and the flag is set to true. 

3.3.10 Preventing Mapping Error Aborts 

If a data or key element name is mis-spelled during map construction, SDMS 
error 18 is detected during ENDMAP processing. Normally, this causes an 
explanatory message to be printed followed by an immediate abort of the jOb. 
If many errors are present in a set of maps, ~t will take many runs to find 
them all. 

The jOb abort due to SONS error 13 can be prevented by executing 

CALL MAPCHK 

prior to map processing. The explanatory message is still printed, but 
execution of the job continues. 

After map processing is complete~ the user program should execute 

CALL fvlAPERR(err) 

The variaDle err will be .TRUE. if SDMS error 18 has occurred since the MAPCHK 
call. It is the calling program's responsioility to terminate the jOb if an 
error condition is detected. 

14.44 



3.4 Random Dataset Functions 

I/O operations on random dat3sets 3re carried out relative to 3 map of tne 
d3taset (3.3). If the dataset has 3 key set, all corresponding key variables 
must be set before an I/O operation is performed. A key variable is a program 
variable which corresponds to a KEY SET element in a dataset (2.1, 2.2.4). In 
th~ example of 3.4.7, NAME is the key variable associated with key element 
'i\~ATRIX-NA~lE' in dataset 't'1ATRIX-DATA'. 

3.4.1 Put Element Set (ESPUT) 

* PUT dmn [USING pv*J. 

CALL ESPUT (dmn [,pv(l), .•. ,pv(n)J) 

where dmn name of non-DIRECT random dataset map. 
pv(k) dynamic Fortran variable corresponding to data element 

vden (k) in map dmn (3.3.3). 

ESPUT uses DSMAP static variables vn(i) and ESPUT dynamic variaoles pV(k) (if 
present) to transfer data to the corresponding data elements in the selected 
element set. 

Note: if an element set with the specified key values already exists, no 
transfer is made and non-fatal error 21 is returned (4.0). This 
error can be made fatal by calling SETAEF. 

3.4.2 Put DIRECT Element Set (DESPUT) 

* PUT dmn DIRECT origin lb. 

CALL DESPUT (dmn,origin,lb [,pv(l), .•• ,pv(n)J) 

where dmn 
origin 

lb 
pV(k) 

= name of DIRECT random dataset map. 
= start of block to be transferred. 
= length of olock. 
= dynamic Fortran variable corresponding to key element 

vden(k) in map dmn (3.3.3). 

DESPUT transfers the bloCk to the DIRECT dataset specified by dmn. Since 
DIRECT datasets have no element set structure (2.2.'2), they can be moved to 
and from the data bas~ more efficiently. 

Note: the note in 3.4.1 also applies to DESPUT. 

14.45 



3.4.3 Element Set (ESGET) 

* GET dmn [USING pv*J. 

CALL ESGET (dmn[,pv(l), .... ,pv(n)J) 

where dmn = name of random dataset map. 
pV(k) = dynamic Fortran variable corresponding to data element 

vden(k) in m~p dmn (3.3.3). 

ESGET uses DSMAP variables vn(i) and ESGET variables pV(k) {if present) to 
transfer data from the corresponding data elements in the selected dataset. A 
non-fatal error occurs if the selected data set does not exist (4.0). Any 
data element with undefined value will be input as the indefinite quantity 
1777 0000 0000 0000 0000 octal. 

Note: if the specified element set does not exist, non-fatal error 23 is 
returned (4.0). This error can be made fatal by calling SETAEF. 

14.46 



. ,,-..... 

3.4.4 Get DIRECT Element Set (DESGET) 

* GET dmn DIRECT origin limit 10. 

CALL DESGET (dmn,origin,limit,lb [,pv(l), .•. ,pv(n)J) 

where dmn 
origin 

1 imit 
lb 

pV(k) 

= name of DIRECT DATASET MAP. 
start of olock to be received. 

= maximum block length permitted. 
actual block length (output). 
dynamic Fortran variable corresponding to 
key element vden(k) in map dmn (3.3.3). 

The element set specified by dmn is transferred into the program area 
indicated in the DESGET call. No error is returned if lb exceeds limit. 

Note: the note in 3.4.3 also applies to DESGET. 

3.4.5 Replace Element Set (ESREP) 

* REPLACE dmn [USING pv*J. 

CALL ESREP (dmn[,pv(l), ... ,pv(n)J) 

where· dmn 
pv (K ) 

name of non-DIRECT random dataset map. 
Fortran variable corresponding to data element 
vden(k) in map dmn (3.3.3) 

ESREP replaces the whole element set selected through map dmn, not just the 
mapped data elements. If the previous element set is at least as long as its 
replacement, it will be overwritten. Otnerwise, additional disk space will be 
used. 

Note: the note in 3.4.3 also applies to ESREP . 

14.47 



3.4.6 Replace DIRECT Element Set (DESREP) 

* REPLACE dmn direct origin lb. 

CALL DESREP (dmn, origin, lb [,pv(l), .•. ,pvCn)]) 

where dmn 
origin 

lb 
pV(k) 

= name of DIRECT dataset map. 
start of block to be transmitted. 
actual Dlock length. 
dynamic Fortran variable corresponding to key element 
vden(k) in map dmn (3.3.3). 

DESREP replaces the DIRECT element set selected via map dmn. If the previous 
element set is at least as long as its replacement, it will De overwritten. 
Otherwise, additional disk space will De used. 

Note: the note in 3.4.3 also applies to DESREP. 

14.48 



3.4.7 Cre~ting and Accessing Random Datasets 

A common d~ta representation for a matrix is shown in Figur"e 3-9. Each matrix 
X consists of mn clocks X(i,j) in a rectangular arrangement. Eacn ClOCk 
X(i,j) contains r(i) rows and c(j) columns. Table 3-2 shows an SDMS 
representation of bloCk-format matrices with comments referencing the symbols 
of Figure 3-9. 

The dataset 'matrix-data' holds global information aoout each matrix keyed by 
matrix name. Dataset 'blocks' describe the structure of an individual OlOCK. 
It includes r(i), c(j) and X(i,j). Its keys include i, j and the name of X. 

This pair of datasets describe a whole family of matrices X(i,j), 
i=1,2, .•. ,m(X),j=1,2, •.. ,n(X). The global attributes of any matrix X are 
retrieved 'matrix-data' using the matrix name as key. The contents of any 
block X(i,j) ~re retrieved from 'blocks' using (i,j), and the name of X as 
keys. 

Assuming that an empty data base HTX has been initialized, the next step is to 
provide a mapping for 'matrix-data'. Since tnere is no need for dynamic 
reference to its data elements, tne :napping will be exclusively in terms of 
static variables. 

CALL DSMAP ('M-D' ,'MATRIX-DATA', 'MTX') 
CALL SVMAP (NAME, 'MATRIX-NAME' ,NRB, 'N-ROW-BLOCKS', 

NCB, 'NUM-COL-BLOCKS',NR, 'N-ROWS',NC, 
'NUf-1-COLS' ) 

CALL ENm~AP 

In the case of dataset 'blocKs', a dynamic variable will be used to reference 
data element ,block, since the program will be working on more tnan one block 
at a time. 

CALL OSMAP ('BLK','BLOCKS','MTX') 
CALL SVMAP (r~Ar~E, 'MATRIX-NAME' ,RBI, 'ROt~-BLOCK-INDEX, 

CBI,'COL-BLOCK-INDEX' ,NRPS,'NUH-OF-ROWS/BLOCK') 
NCPB, 'NUM-OF-COLS/BLOCK' ,LB, 'BLOCK-LENGTH') 

CALL DVMAP ('BLOCK') 
CALL ENDt·1AP 

After the variables NAME, NRB, NCB, NR and NC have been set, the statement 

CALL ESPUT ('M-D') 

causes a new element set to be created in dataset 'matrix-data'. 

14.49 



... , 
1 j n 

• • • • • • • • • 

rl{l G ••• G • •• tJ ~. 

• • • • • • • • • 

mG···G···D· 
Figure 3-9: Block Format Matrix 

14.50 



DATASET ~atrix-data 

KEY SET 

miltrix-narne t name of matrix x. 

END 

ELE~1ENT SET 

num-row-blocKS Z m-
num-col-blocks Z n 
num-rows Z sum of r ( i ) , i =1,m 
num-cols Z sum of c (j) , j=1,n 

Elm 

END DATASET 

DATASET blocks 

KEY SET 

matrix-name t Z name of matrix X. 
row-block-index Z i 
col-block-index Z j 

END 

ELEMENT SET 

num-of-rowS/DloCK Z r ( i ) 
num-of-cols/block Z c (j ) 
block-length Z r ( i ) * c(j) 
Dlock block-length r ~ X ( i , j ) elements in column 

order. 

END 

END DATASET 

Table 3-2: Random Dataset Example 

14.51 



Assume the dynamic variable XIJ is the ongln of olock X(i,j). After key 
variaoles NAME, RBI, CBI, and data variables NRPB, LB are set, the statement 

CALL ESPUT ('BLK',XIJ) 

transfers the specified matrix block to the data oase. 

To read a matrix block, the key variables NAME, RBI, CBI are set and dynamic 
variable XBS(I) is selected to serve as a correspondent to 'BLOCK'. The 
statement 

CALL ESGET ('BLK',~BS(I)) 

causes the matrix block to De transferred to the block of memory starting at 
XBS(I). 

3.4.8 DIRECT Dataset Usage 

Table 3-3 ShOWS a typical DIRECT dataset containing information related to a 
group of surface "patches". The patches themselves might be defined 
individually in anotner dataset. To analyze a surface region efficiently, a 
group of patches can be formed into a larger olock and transferred to 
'intermed-geom-data' for use in subsequent processes. 

This dataset is mapped with the statement 

CALL DSMAP ('I-G-D', 'INTERMED-GEOM-DATA',dbn) 
CALL SVMAP (NR, 'REGION-NUMBER') 
CALL ENDHAP 

Assume that the blOCK is constructed in the array REG. After the static key 
variable NR is set, a block is output with the statement 

CALL DESPUT ('I-G-D',REG,LREG) 

where LREG is the block lengtn. 

Block input is achieved by again setting NR and executing the statement 

CALL OESGET ('I-G-D',REG,NREG,LREG) 

where REG and LREG have tne same meaning as previously and NREG is the maximum 
number of words to be read. 

14.52 



,"-'" 

DATASET intermed-geom-data DIRECT 

KEY SET 

region-number 

END 

END DATASET 

index to a group of neigh
boring surface patches. 

Table 3-3: DIRECT Dataset. 

14.53 



3.5 Sequential Dataset Functions 

3.5.1 Open Element Set Sequences (ESSOPN) 

Before data can De transferred to or from an element set sequence, it must be 
opened or initialized with a call to ESSOPN. 

* OPEN lsn FOR dmn FIRST/LAST. 

where 

CALL ESSOPN (lsn,dmn, 'FIRST'/'LAST') 

dmn 
lsn 

= name of existing sequential dataset map~ 
local sequence name (1 to 10 characters) = 

If the sequence specified by map dmn and its key values (if any) exists, then 
it is opened at the position indicated by tne table below. 

argument 3 

'FIRST' 
'LAST' 

position 

before first element set, 
after last element set. 

If the referenced sequence does not exist, an empty sequence is created. Any 
sequence previously associated with lsn will be closed (3.5.3). 

Cautions 

Opening an element set seauence requires buffer and control table space. Dead 
space can be minimized by keeping inactive sequences closed. 

Restrictions 

All key variables in dmn must De static. 

3.5.2 Position Element Set Sequence (ESSPOS) 

* POSITION lsn FIRST/LAST 

CALL ESSPOS (lsn, 'FIRST'/'LAST') 

where 1 sn local seauence name. 

If 'FIRST' is specified in tne calling sequence, lsn is pOSitioned before the 
first element set in the sequence. If 'LAST' is specified, lsn is positioned 
after the last element set ill the sequence. 

14.54 



3.5.3 Close Element Set SeQuence (ESSCLS) 

* CLOSE 1sn . 

CALL ESSCLS (lsn) 

where 1sn = local seQuence name. 

ESSCLS updates the data base image of 1sn if necessary and marks associated 
central memory space for release. 

3.5.4 Put Into Next Element Set (ESSPUT) 

* PUT INTO SEQUENCE 1sn [USIrJG pv*J . 

where 

CALL ESSPUT (lsn [,pv(1),pv(2), ..• ,pv(n)J) 

1 sn = 
pv(i) 

local seauence name. 
dynamic Fortran variable corresponding to 
data element vden(i) in the map associated with 
lsn (3.3.3, 3.5.1). 

ESSPUT uses map variables vn(i) and variables pV(k) to transfer data to the 
corresponding data elements (see 3.3.6) in the next element set in the 
seauence. This element set becomes the last element set in the seQuence. 

3.5.5 Get From Next Element Set (ESSGET) 

* GET FROM SEQUENCE lsn [USING pv*J . 

CALL ESSGET (lsn [,pv(l), ... ,pv(n)J) 

where 1 sn local seauence name. 
pv ( i ) = dynamic Fortran variable corresponding to data element 

vden(i) in the map associated with 1sn (3.3.3, 3.5.1). 

ESSGET is symmetric to ESSPUT. It uses map variables vn(i) and variables 
pV(k) to transfer data into tne program from the corresponding data elements 
in the 'next' element set in the seauence. Any undefined data element values 
will be represented by the indefinite value 1777 0000 0000 0000 0000 octal. 

14.55 



3.5.6 Using Sequential Datasets 

Taole 3-4 contains a definition which will be used to illustrate how 
sequential datasets are built. The first step is to create a new temporary 
data base and build a !nap for dataset space curve. 

* OPEN DATA SASE SHAPE USING CRVSET. 

CALL DBOPEN ('SHAPE ' , 'USING ' , 'CRVSET ' ) 

* MAP CURVE OF SPACE-CURVE IN SHAPE HAS X=X-VALUE, Y=Y-VALUE, Z=Z-VALUE, 
CN=CURVE-NAME. 

CALL DSMAP ('CURVE', I SPACE-CURVE I , 'SHAPE ' ) 
CALL svr~AP (X,'X-VALUE ' , Y, 'Y-VALUE ' , Z, 'Z-VALUE ' , 

CN, I CURVE-NAME I ) 

CALL ENDf"AP 

The next step is to specify the name of a curve to be constructed and open a 
local seauence to hold it. 

C~l = 'SPIRAL ' 

* OPEN CRVI FOR CURVE. 

CALL ESSOPN ('CRVl ' , 'CURVE ' ) 

This is followed by steps to move successive curve points into the 'SPIRAL ' 
element set sequence. 

DO 10 I=I,NPOINTS (set values of x,y,and z) 

* PUT INTO CRVI. 

10 CALL ESSPUT ('CRVll) 

The next curve can be constructed by opening a 'CURVE ' element seQJence with a 
different key. 

CN = 'GREAT-CIRCLE ' 

* OPEN CRVI FOR CURVE. 

CALL ESSOPN (I CRVl l , I CURVE I) 

As indicated in 3.5.1, the 'SPIRAL ' element sequence will be CLOSED 
automatically when 'GREAT-CIRCLE ' is opened. After all curves have been 
generated, local seauence CRVI is CLOSED. 

* CLOSE CRVI. 

CALL ESSCLS ('CRVll) 

14.56 



MASTER DEFINITION crvset 

DATASET space-curve 

KEY SET 

curve-name 

END 

ELEMENT SET sequence 

END 

END DATASET 

EfliJ OEF I N I TI ON 

x-value 
y-value 
z-value 

2 t 

r 
r 
r 

~ curve identifier. 

x coordinate. 
y coordinate. 
z coordinate. 

14.57 



3.6 Miscellaneous Data 3ase Functions 

3.6.1 Purging Data Base (DBPUKG) 

Permanent data bases may be completely removed from the system oy use of the 
DBPURG routine. 

* PURGE DATA BASE dbd. 

CALL DBPURG (dbd) 

wnere dbd = data base descriptor (3.1) 

Restrictions: 

The data base referenced by dbd must be closed when DBPURG is called. Since 
the data base is. completely removed from tne system, DSPURG must oe used with 
considerable caution. 

3.6.2 Deleting Key Sets (KSDEL) 

Key sets may be removed from a dataset index by using the KSDEL routine. 

Calling sequence: 

where: 

dmn 
pV(k) 

CALL KSDEL(dmn [,pv(l), ... ,pv(n)J) 

dataset map name. 
dynamic Fortran variable corresponding to argument 
vden(k) in map dmn (3.3.3). 

KSDEL can be used with any of the three dataset classes: random, direct and 
sequential. 

No error condition results if the specified key set values are not found. 

Note: KSDEL results in a logical rather than a physical delete of a key set 
and its associated data. 

14.58 



4.0 Error Handling 

SDMS detects both fatal and non-fatal errors. Detected fatal errors cause the 
printout of the error numoer plus a traceoack showing the flow of control 
which preceded the error. SDMS enters a recovery phase in which it closes all 
data bases currently open and aborts tne job. 

Non-fatal errors can occur after calls to ESPUT, ESGET, ESREP, ESGET, DESREP 
AND ESSGET. These can be detected by including the COMMON block SDMSER as 
shown below. 

COMMON/SDMSER/NERR 

If NERR is non-zero, non-fatal error with that value occurred on the preceding 
Sm·1S call. 

Tables 4-1 and 4-2 list all SDMS error messages. 

Non-fatal errors can be made fatal by executing the statement CALL SETAEF 
('ON'). Afterwords, all non-fatal errors are treated as fatal except error 
27, 'end-oF-information detected on element set sel'Juence'. The default 
condition can be restored with the statement CALL SETAEF ('OFF'). 

14.59 



Table 4-1: SDMS Error Messages 

Error Fatal 
Number Meaning 

1 Second call to ISDMS in same program. 

2 Wrong no. of arguments to ISDMS. 

3 Too many data bases defined. 

4 ISDMS not yet called. 

5,n Permanent file error. (see table 4-3 or 4-4) 

6,n System error. (see Table 4-2) 

7 Field length limit exceeded while getting working 
storage from system or supplied worKing storage 
buffer exceeded (see 3.01). 

8 Previous map not yet complete. 

9 Too many maps defined. 

10 Duplicate map name. 

11 Unknown data base name. 

12 Too many SVMAP calls for one map. 

13 Too many DV~AP calls for one map. 

14 ENDMAP call without preceding DSMAP call. 

15 Unknown dataset name. 

16 Key element not found in map arguments. 

17 Array-length parameter not given for 
variable-length array. 

18 Dataset does not contain one or more 
elements specified in map. 

14.60 

Error 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 



Error 
~Iumber 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

i·leaning 

Unknown map name. 

Wrong no. of dynamic variables. 

Element set already exists with the 
specified key set. 

Illegal dataset access within permanent 
data base. Attempting to write to shared 
data Dase or attempting access which 
violates user password permissions. 

Key entry not found. 

Too many local sequences open. 

Undefined local seouence. 

Undefined local seouence positioning operation. 

End-of-information detected reading 
element set sequence. 

Duplicate data base name. 

Element set sequence already open. 

Bad syntax in DBOPEN call. 

matrix column length (via MATNAP call) less than 
submatrix column length. 

array or matrix element dimension negative. 

33 not used. 

34 

35 

36 

too many simultaneous searches. 

search over unique dataset not necessary or 
permitted. 

o (zero) is not a legal dataDase name. 

37 not used. 

33 not used. 

TaDle 4-1: (continued) 

Fatal 
Error 

yes 

yes 

no 

yes 

no 

yes 

yes 

yes 

no 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

14.61 



Error Fatal 
Number :Vlean i ng Error 

39 datamap not terminated by E:W~'lAP ca 11 • yes 

40 not used. 

41 unpaired SVMAP argument. yes 

42 DIRECT dataset bloCk length .1t. o. yes 

Table 4-1: (Continued) 

14.62 



System 
Error 
~umber n 

1 

2 

3 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Meaning 

Incorrect length of file resident table. 

Premature end-of-information detected on data base file. 

Index tree malformed. 

Positioning error on file dbn2. 

Too many index levels. 

Too many dynamic variaoles. 

Not used. 

Positioning error on file dbn4. 

Element set length mismatch. 

Element set length field on dbn4 has wrong parity. 

V3riaDle-le~gth data element header has wrong parity. 

Element .set boundary exceeded. 

Master definition file length does not match its directory value. 

Output word count doesnlt match buffer length. 

Next available position doesnlt match end-of-information 
position on data base file. 

Table 4-2: SDMS System Errors. 

14.63 



Table 4-3: KRONOS/NOS Permanent File Errors 

Perm. Fi le 
Error 
Numner n Meaning 

1 The specified direct access file is attached to another joo. 

2 One of the following: 

3 

* The specified permanent file could not be found. 

* The specified account number could not be found. 

* The user is not allowed to access the specified file. 

* The user issued an indirect access file command on a direct 
access file. 

* The user issued a direct access file command on an indirect 
access file. 

If this message occurs in response to the SAVE macro, the specified 
local file is not attached to the control point, is a direct access 
file,or is an execute-only file. 

The file specified on a SAVE macro contains no data. 

4 The file to be saved is not on mass storage: the first track of the 
file is not recognizable. 

5 The user has already saved or defined a file with the name specified. 

6 The user attempted to define a file that was not a. local file. 

7 File name contains illegal characters. 

8 The user is not validated to create direct access or indirect access 
files or to access auxiliary devices. 

9 The device type (r parameter) specified on a request for an auxiliary 
device cannot be recognized or does not exist in the system. 

14.64 

If the auxiliary device specified by the pn parameter is not the same 
type as the system default, the r parameter must be included; if not, 
this message is issued. 



Perm. File 
Error 
~umner n Meaning 

10 The local file specified for a SAVE, REPLACE, or APPEND command 
exceeds the length allowed or the direct access file specifiea for an 
ATTACH in WRITE, MODIFY, or APPEND mode exceeds the direct access 
file length limit for which the user is validated. 

11 One of the following: 

* 111 ega 1 command code passed to PFM 

* Illegal permitmode or catalog type specified 

* CATLIST request has permit specified without a file name 

* PERMIT command attempted on a library file 

12 Access to the permanent file device requested is not possible. 

13 The device on which the fil~ resides may not contain direct access 
files because: 

1. The device is not specified as a direct access device in 
the catalog descriptor table. 

2. The device is not specified as ON and initialized in the 
catalog descriptor table. 

3. The device is a dedicated indirect access permanent file 
device. 

14 Because a permanent file utility is currently active, tne operarion 
was not atteropted; the user should retry the operation. 

15 An error occured in a read operation during a file transfer. 

16 The number of files in the user,S catalog exceeds the limit (refer to 
LIMITS control statement, section 6). 

17 The cummalitive size of the indirect access files in the user's 
catalog exceeds the limit (refer to LIMITS control statements. 
section 6). 

Table 4-3: (Continued) 

14.65 



Perm. Fil e 
Error 
Number n Me~ning 

18 The number of PRUS specified vi~ the S p~rameter on the DEFINE macro 
is not available. 

19 A re~uest was attempted on a local file that is currently active. 
This error can occur, for example, if the user creates two FETs for 
the same fjle and issues a second request before the first is 
completed. 

20 The job's local file limit has been exceeded by an attempt to GET or 
ATTACH the file. 

21 The job's mass storage PRU limit has been exceeded during preparation 
of a local copy of an indirect access file. 

22 Permit limit has been exceeded for a private file. 

24 The resource executive has detected a fatal error. 

25 No allocatable tracks remain on equipment xx, where xx is the EST 
ordinal. 

26 The length of a file does not equal the catalog length: the action 
taken depends on the type of command issued. 

Command Action 

GET A local file is created with length being the actual 
length retrieved. 

SAVE If file length is longer than TRT specification, file. 
is truncated. 

REPLACE Same as for SAVE. 

27 Permit random address error. 

28 The system sector data for the file does not match the catalog data. 

29 The same file was found twice during a catalog searCh. This error can 
occur for APPEND or REPLACE commands after a file is found and purged 
and the catalog search is continued. 

30 Error flag detected at PFM control point. 

31 An error was encountered in reading a portion of the permanent file 
catalog or permit information. 

Table 4-3: (continued) 

14.66 



· ,-.... 
Perm. fil e 
Error 
Number n Meaning 

2 Local file name already in use. 

3 Local file name unknown. 

4 No room for new cycle. 

5 Catalog full (PAM full). 

6 No local file name or permanent file name, both null. 

8 Blocked file not closed. 

9 File not on mass storage device. File not reauested for *PF. 

10 File not on set. Cycle referenced does not exist on set. File 
purged while waiting for attach. 

12 Invalid cycle. Nonnumeric character in numeric field. 

13 Duplicate cycle. 

14 Directory full. 

15 Purge attempted on nonpermanent file. Nonpermanent file cannot be 
extended. 

16 Catalog attempt on nonlocal file. 

17 Parameter error. 

18 Catalog attempt on null, INPUT or OUTPUT file. 

19 Cycle incomplete on an attaCh. RECOVER detected error on file. 

20 Duplicate attach. 

22 I/O error on permanent file device. Invalid extend. 

23 Illegal local file name. 

29 PF name already in system. 

32 Illegal setname (set not mounted). 

Table 4-4: SCOPE 2.1 Permanent File Errors 

14.67 



5.0 Diagnostic ~eatures 

SDMS has extensive instrumentation to assist in finding stubborn problems. 
After execution of the statement CALL TRACER ('ON'), each SDMS call produces 
trace information on tne OUTPUT file. This information shows when SONS 
routines are called and when they return, and the contents of internal tables 
and important parameters. The tracing process is terminated with the 
statement CALL TRACER ('OFF'). 

14.63 



6.0 Recovery Options 

If a system detected error occurs (address out of range, etc.), SONS normally 
initiates data base recovery procedures. Any modified element set se~uences 
currently open are closed. All open data Dases are closed, with the exception 
of any data Dase being opened when the error occurred. 

At this point, the SDMS-supplied routine DBABT without argents is called to 
abort the job. If the user wishes to perform his own recovery operations, he 
may include his own OBABT routine. 

To disable the recovery process and obtain a normal abort sequence, the 
statement CALL NORCVR must be executed before the call to ISOMS. 

14.69 



7.0 Access to SDMS Subroutines 

At the BCS Renton Data Center, the SONS subroutines described in Section 3 are 
accessed with the control card 

ATTACH(SDMSLIB/UN=PAWAMl) 

SDMSLIB is in user library format. Loading of reauired SMDS subroutines can 
be accomplished in several ways. One way is to execute 

LIBRARY,SDMSLIB 

and then carry out the necessary loading operations. 

Another way is to use SO~ISLIB directly in the loading operation; e.g. 

LOAD(lfn, SDMSLIB, .•. ) 

or 

LOADXEQ(F=lfn,U=SDMSLIB, ..• ) 

14.70 



APPENDIX A 

14.71 



SDMS MATRIX DATA ELEMENT USAGE 

Matrix Definition 

A matrix data element type nas been ~dded to SDMS. This feature permits tne 
definition and use of two-dimensional arrays. Both row and column dimensions 
may be fixed or variable in size. 

The matrix data element syntax in the master definition is as follows: 

elname row-dim col-dim data-type 

where 

elname 

row-dim 

col-dim 

data-type 

14.72 

data element n~me (1 to 20 char.) 

integer value of row dimension or 
name of scalar element containing 
row dimension value. 

integer value of column dimension or 
name of scalar element containing 
column dimension value. 

TEXT, REAL, INTEGER, R, I, .T. 



The following dataset definition illustrates the various possible matrix data 
element forms. 

~~atrix Usage 

DATil.SET :'lAT-DEF 
ElEHENT SET 

NROW 
NCOl 
i,1ATl 
MAT2 
r~AT3 
MAT4 

END 

NROW 
6 
3 
NROW 

END DATASET 

NCOl 
6 

.NeOl 
4 

I 
I 
R 
R 
R 
R 

SDMS matrices are stored in the data base in contiguous column-wise order. 
That is, a 5 by 7 matrix is stored as a succession of 7 columns, each 5 words 
long, starting with column 1. 

This is also tne default storage arrangement in central memory. An m by n 
matrix data element will occupy m*n contiguous addresses in core, in column 
order a la Fortran. This default arrangement is obtained by simply using the 
existing map creation calls to SVMAP and DVMAP. Tnis usage is a simple 
extension of tne techniaues used for fixed and variable-length vectors. 

14.73 



However, the matrix data element Om n to be transferred may be a sUb-matrix 
of a larger matrix i·lmx nx in centra1 memory, wnere ':Je "lssume without loss' of 
generality that 01 1 m~ps into M1 l' If m is not eau"ll to mx, tne 
sequence of d"lt"l m~p c"llls must i~clude the following subroutine call: 

where mei = name of matrix element O. 
cli name of variable containing column lengtn 

of array M corresponding to O. 

and M1 1 must be associated with 0.1,1 either througn static or dynamic 
variab1e references. 

Note: tne value of column lengtn variable cli is used at d"lta transfer time 
and therefore may be changed dynamically as required. 

Examples 

Suppose we wisn to m"lp the matrix element 'MAT21 of d"ltaset MAT-DEF (see 
previous p"lge) to tne array MAT2(6,6). It is only necessary to associate the 
array MAT2 and tne data element 'MAT21 in the data map. 

14.74 

CALL OSr-lAP('M1 1, dbn, '~1AT-DEF') 
CALL SVMAP(MAT2, 'MAT21) 
CALL OlDr~AP 



Now suppose that we have an. array BIGMAT(30,24) which consists of 20 5 by 6 
partitions. We want to dynamically map the data element MAT2 into anyone of 
tnese partitions. The following map will suffice for this purpose. 

CALL DS~lAP (' r~2', dbn, 'HAT -DEF') 
CALL DVMAP('MAT2') 
CALL MATMAP ( I r'1A T2 " 30) 
CALL ENDi~AP 

The following code would output the 6 by 6 partition starting at SIGMAT(?,?). 

CALL ESPUT('M2', SIGMAT(?,?)) 

Using Vectors As Sub-matrices 

Fixed and variable-length vector data elements may also be treated as matrix 
rows in central memory through the use of the MAn-1AP call. That is, a vector 
data element of length n can also be considered to be a 1 by n matrix for data 
transfer purposes. In the previous example, if 'MAT21 had been defined as a 
vector of length 6, the ESPUT call would have caused the first row of the 6 by 
6 partition starting at BIGMAT(?,?) to be output. 

14.75 



APPENDIX B 

~. 

14.76 



INDEXED SEQUENTIAL DATASET SEARCH 

Introduction 

Tne search functions described in this section permit the indexed sequential 
retrieval of selected key sets in a dataset. That is, starting at a specified 
key set, key sets may be retrieved in order. In the case of random datasets, 
mapped data elements may be retrieved along with their key sets. 

Key sets are kept in a dataset index in ascending order of composite key 
value. The composite key is the concatenation of key elements ln KEY SET 
definition order, with the first key in tne high order position. 

In a key set with multiple keys, tne composite key ordering causes all key 
sets witn the same key 1 value to be grouped togetner (see Fig. B-1). 
Likewise, all key sets with the same key 1 and key 2 values will be grouped 
together, and so on. 

The SMDS indexed sequential search features take advantage of this property oy 
permitting the initial Key set for retrieval to be determined by specifying 
values for major key comhinations as shown below: 

no keys. 
key 1. 
key 1, key 2. 
key 1, key 2, key 3. 

key 1, key 2, key 3 •... key n. 

The initial key set retrieved will oe the first one with key values equal to 
or greater than those specified. In Figure 4-1, if key 1 = TAIL is given, the 
initial key set retrieved would be key 1 = TAIL, key 2 = 1. The initial key 
set would be the same if key 1 had been ENGINE, since TAIL is the next highest 
key 1 value. If no keys are given, the initial key set would be the first 
one; key 1 = BODY, key 2 = 1. 

Initial index positions are established by calls to suoroutine BG~DSS. 
Successive key sets are retrieved by calling GETNXT. Search operations are 
terminated oy calling ENDDDS. Figure B-2 gives a scenario for performing 
search operations. 

Some additional searcn features are as follows: 

* 

* 

* 

Up to five dataset searches may bc active at one time. 

~itnin the above limit, several searches may be active on the 
same dataset. 

All SDNS 1/0 operations may be carried ciut on any dataset during 
searches. However, key sets added during a search by functions 
like ESPUT mayor may not be retrieved by GETNXT calls. 

14.77 



14.78 

RANDOM DATASET NOD 

KEY ELE~lENTS DATA ELE~lENT 

COMPONENT 

BODY 
BODY 
BODY 
TAIL 
TAIL 
WING 
WING 
WING 
WING 

NETWORK 

1 
2 
3 
1 
2 
1 
2 
3 
4 

DATA MAP FOR NOD 

CALL DSr'1AP ( 'M1', 'NOD', don) 

NETWORK-TYPE 

1 
2 
2 
1 
1 
1 
2 
8 
8 

CALL SVMAP(COMP, 'COMPONENT',NTWK, 'NETWORK') 
CALL SVMAP(NWTYP,'NETWORK-TYPE') 
CALL ENDr'1AP 

Figure B-1: Dataset and Map for Search Examples. 



Start search. 
* 
*<**************** 
v * 

Set key values K for * 
dataset D. * 

* 
* 
v 

Position to first key set 
e~ual to or greater than 
K in index on dataset D. 

* 

* 
* 
* 
* 
* 
* 
* 

*<**************** 
v * 

Retrieve next key set in D. * 
Optionally retrieve random * 

dataset data elements. * 
* * 
****************** 
v 

Terminate searcn. 

Figure B-2: Flow diagram of an indexed seauential searCh. 

14.79 



Begin Dataset Search (BGNDSS) 

* SEARCH dmn WITH nmk KEYS [USING dv*J. 

where 

CALL BGiWSS (dmn, nmk [, dVI ' 

dmn = name of static map for n-key dataset (n > 1) 
nmk = numoer of major keys supplied (0 < nmk <-n) 
dVi = dynamic variables if specified in-map dmn. 

A call to BGNDSS is used to start a search procedure. Up to five search 
procedures may be active at one time. 

Prior to calling BGNDSS, nmk of the mapped key variables are set. BGNDSS 
positions a map-associated search pointer at tne first key set with key values 
equal to or greater than those supplied. 

For a better understanding of BGNDSS operation, consider Fig. B-1 and tne 
following searCh operations. 

1. To begin a search at COMPONENT = 'TAIL ' , NETWORK = 2: 
COHP='TAIL ' 
NTWK=2 
CALL BGNDSS('Hll ,2) 

2. To begin searching at the fi~st WING network: 

CQi'1P= I WI NG I 

CALL BGNDSS('Ml l ,l) 

3. To begin searcning at tne first network of the first component: 

CALL BGNDSS('Hl l ,O) 

4. To searcn for component NACELLE (which doesn't exist): 

COHP='NACELLE ' 
CALL BGNDSS('Ml l ,l) 

14.80 



Get Next Operation (GETNXT) 

* Get next from dmn. 

CALL GETNXT(dmn,eoiflg) 

where 

dmn = datamap name reference in a preceding BGNDSS call. 
eoiflg = .T. if end-of-index detected (output). 

A call to GETNXT causes tne next key values in the index of the rnapped dataset 
to be moved to the mapped Key variables. Mapped data elements will also be 
transferred in the case of random datasets. In the case if direct and 
sequential datasets, no data elements are transferred. 

The following shows the results of the first execution of CALL 
GETNXT('MI',FLG) for the four examples of the previous section: 

l. 
2. 
3. 
4. 

cor~p 

TAIL 
WIl~G 
BODY 
TAIL 

NTWK 

2 
1 
1 
1 

NWTYP 

1 
1 
1 
1 

FLG 

.F. 
• F • 
• F • 
.F. 

In example 4, COMP=TAIL and NTWK=l because COMPONENT 'NACELLE ' was not found 
and the search pointed was positioned at its insertion position. 

14.81 



End Dataset Search (ENDDSS) 

* END SEARCH using dmn. 

CALL ENDDSS(dmn) 

where 

dmn = datamap name reference in a preceding BGNDSS call. 

A call to ENDDSS terminates a search operation using the reference datamap, 
and releases search buffer space. 

It is not necessary to call ENDDSS to initiate a new searCh using the same map. 

14.82 



APPENDIX C 

14.83 



Qualified Dataset SearCh 

Introduction 

A feature has been added to SD~S wnich 
well beyond those availaole previously 
search re~uires the specification of 0 
initial position in the key set index. 
retrieved in ascending order. 

extends dataset searching capabilties 
(Appendix B). Tne indexed se~uential 
or more major Keys to establish the 
Successive key sets can then be 

The new search capability permits the specification of one or more searcn 
ranges for each key in the key set. The basic form of the query specification 
is as follows: using map M, retrieve keys [and data] where key 1 is in range 
r11 or key 1 is in range r12 or .•• etc. and key 2 is in range r21 or 
key 2 is in range r22 or etc. and etc. Each range rij for some key j 
con~ists of a pair .of values (Tij, Uij). All retrieved values will 
satlsfy lij ~ key J ~ Uij. 

A wide range of queries can be made within this frameworK. Suppose we wish to 
restrict a retrieved integer key to be greater than 40. The corresponding 
range is (41,2 47 ), where 247 is close to the largest integer value 
possible in FTN Fortran. The range for "less than 40" would be (_2 47 ,39). 
The range for "equals 23" is (23,23). Tne specification "equals 23 or 27" 
requires 2 ranges for this key; (23,23) and (27,27). 

For example, consider the takeoff data dataset sKetched in Figure C-1. Tnis 
dataset described takeoff performance of a specific airplane as a function of 
several key parameters: airplane weight, wind velocity, and runway slope and 
alt itude. 

14.84 



MASTER DEFINITION PERFMD 

DATASET TAKEOFF 
KEY SET 

WEIGHT 
WIND 
SLOPE 
AL TITUDE 

END 
ELEMENT SET 

TAKEOFF-DIST 
END 

END DATASET 

END DEFINITION 

I $ AIRPLANE WEIGHT. 
I $ WIND VELOCITY. (KNOTS) 
I $ RUNWAY SLOPE. (DEGREES) 
I S RUNWAY ELEVATION. (FEET) 

R $ TAKEOFF DISTANCE REQUIRED. (FEET) 

Figure C-1: Takeoff Data Definition. 

14.85 



Suppose we want to retrieve all data for runways at 5000 feet elevation or 
higher with +2 degree runway slope, for airplane weights of 140K and 160K lb. 
The range specifications needed are as follows: 

Usage 

Parameter 

airplane weight 
wind velocity 
rumvay slope 
runway altitude 

Ranges 

(140K,140K), (160K,160K) 
( -M ,+tX)) 
(2,2) 
(5000,+ ~) 

Retrievals are accomplished oy making repeated calls to SDMS subroutine 
GETNXQ. Each successful call retrieves one qualified key set and, in the case 
of random datasets, its associated mapped values. 

Prior to the first call to GETNXQ, range information is entered into laoeled 
COMMON block /QSP/ for use by GETNXQ. The format is: 

COMMON/QSP/ KEYCNT,KEY(10),LB(5,10),UB(5,lO),NR(lO) 
INTEGER US 

where 

KEYCNT = no. of Keys in key set. 

for J = 1 to KEYCNT: 
KEY(J) = program variable mapped to dataset key J. 
NR(J) = no. of ranges specified for key J. 

for I = 1 to NR(J): 
LB(I,J) = lower oound of Ith range for key J. 
UB(I,J) upper bound of Ith range for key J. 

If real keys are used, then the additional declarations 

REAL XKEY(lO), XLB(5,lO), XUB(5,lO) 
EQUIVALENCE (XKEY,KEY), (LB,XLB), (US,XUB) 

will be necessary to avoid type conversion proolems when accessing keys and 
key bounds. 

14.86 



It is of course necessary that LB(I,J) < UB(I,J). An additional requirement 
is that nnges for a given key may not overlap and must be specified in 
ascending order. Mathematically, 

UB(I,J) < L8(I + 1,J), I < NR(J). 

The following table gives recommended values for ~ ~for each of the key 
types. 

key type -to +C>D 

real -1.E322 1.E322 
integer _2 47 247 
text 0 II •••••••••• 11 

""""" 

After the appropriate values are placed in IQSPI and the logical variable EOI 
is initialized to .TRUE., a call is made to GETNXQ with the arguments 

CALL GETNXQ(dmn,eoi) 
where 

dmn = 

eoi 

= 

name of previously defined datamap, in which the KEY 
array of COMMON clock /QSP/ must ce matched one-to-one 
to the key elements of the mapped dataset. 

returned .FALSE. if a qualified key set was retrieved 
from the dataset. 
returned .TRUE. if no more aualified key sets are 
available. 

Note: eoi must be set .TRUE. before the first call to GETNXQ in order to 
lnltla11ze the searCh. 

If eoi = .FALSE. after calling GETNXQ, tnen the KEY array in IQSP/ holds the 
next set of qualifying key values. Repeated calls are made to GETNXQ until 
eoi is returned .TRUE. indicating that no more qualified values exist. 

GETNXQ can be used with any of the 3 dataset types: random, direct and 
seauentia1. Mapped data element values are returned in the case of random 
datasets. Only key set values are returned for direct and sequential datasets. 

Restrictions 

No more than 5 ranges may be specified for eacn key. GETNXQ can be used with 
only one map at a time. Also, no indexed seauentia1 search routines 
(BGNDSS,GETNXT,ENDOSS) should be used with this map until GETNXQ returns eoi = 
.TRUE. This is because GETNXQ makes use of these routines itself. 

Any other SONS operations (ESPUT, ESGET, etc.) may De carried out during a 
sequence of GETNXQ calls without interference. 

14.87 



Example 

Tne code on the next page shows how GETNXQ would De used to answer tne query 
used in the Introduction aganst the dataset of Figure C-1. Namely, to 
retrieve takeoff data for airplanes weighing 140K and 160K lb. on runways witn 
2 degree upslopes at an elevation of 5000 ft. or higher. 

14.83 



C 

C 

C 

C 

C 

C 

C 

C 

10 

C 
20 

CO~f'10~1/QSP/ KEYC~lT ,KEY(10) ,LB(5,10) ,UB(5,10) ,tlR(10) 
INTEGER NR 
LOGICAL EOI 

SET UP MAP FOR TAKEOFF DATA. 
CALL DSMAP ('MAP', 'TAKEOFF', 'PERF') 
CALL SVMAP (KEY(1), 'I-JEIGHT', KEY(2), 'WIND', KEY(3), 'SLOPE') -
CALL SVMAP (KEY(4), 'ALTITUDE', TOO, 'TAKEOFF-DIST') 
CALL END~lAP 

INITIALIZE /QSP/ FOR SEARCH. 
KEYCNT = 4 

SET FIRST RANGE FOR KEY 1 (AIRPLANE WEIGHT) 
LB(l,l) = UB(l,l) = 140000 

SET SECOND RANGE FOR KEY 1. 
LB(2,1) = UB(2,1) = 160000 
NR(l) = 2 

SET RANGE FOR KEY 2 (WIND VELOCITY) 
LB(l,2) = -2**47 % UB(1,2) = 2**47 % NR(2) = 1 

SET RANGE FOR KEY 3 (RUNWAY SLOPE) 
LB(1,3) = UB(1,3) = 2 % NR(3) = 1 

SET RANGE FOR KEY 4 (RUNWAY ALTITUDE) 
LB(1,4) = 5000 % UB(l,4) = 2**47 %-NR(4) = 1 

GET QUALIFIED KEY SETS AND ASSOCIATED DATA 
EOI = .TRUE. 

CALL GETNXQ( 'MAP' ,EOI) % IF(EOI) GO TO 20 
PRINT *, (KEY (I), 1= 1,4), TOO 
GO TO 10 

SEARCH COMPLE:TE. 
CONTINUE. 

14.89 



Efficiency Considerations 

To speed up rijnge searChing, keys with one or more of the following 
characteristics should be earliest in the Key set definition: 

1. keys with selection ranges which are likely to contain relatively few 
values. 

2. keys which naturally have a small set of possible values to select 
from. E.g., eye color = (brown·, blue, black). 

Conversely, keys which have uniaue (or nearly so) values should be among the 
last Keys mentioned in the key set. An example would be employee number or 
social security number. 

The effect of using these guidelines will be to limit, in many cases, tne 
portion of the index which needs to be traversed during range searches, thus 
reducing the amount of database lID performed. 

14.90 



15.0. SDMS CONVERSION 

15. 1 INTRODUCTION 

While much of SDMS is written in ANSI-standard FORTRAN, certain of the 
requi rements for SD~lS are not supported by standard FORTRAN. These 
requirements have led to very specific conversion problems. These problems 
are characterized by the following areas: 

1. Assembly language - portions of SDMS are written in assembly level 
language (CAL on the CRAY and COMPASS on the CYBERS) 

2. Word length - SONS assumes a word length of 8 characters per word and 
makes no provisions for double length variables. 

3. FORTRAN dialect - SDMS was written in ANSI standard FORTRAN wherever 
possible; system enhancements on the CRAY and CYBER such as "BUFFER" 
or "ENCODE/DECODE" statements were not used. The dialect of FORTRAN 
should not be a problem assuming that the destination machine 
supports standard FORTRAN and not a subset (For example, the DEC/VAX 
version of Fortran is a subset.). 

4. Variable length calling sequence - SOMS as implemented in PANAIR 
requires that the calling sequence be variable. That is, the user 
can call certai n routi nes wi til as many arguments as requi red to 
perform the interface; the called routine determines how many 
arguments exist in tile calling sequence and processes them 
accordi ngly. -

5. Operating system interface - SOMS requires support from the operating 
system for functions such as permanent file access, error recovery, 
etc. Such interfaces must exist on the destination system. 

6. Format of calling sequence - SOMS assumes that the FORTRAN compiler 
assembles a list of addresses for the arguments within the calling 
sequence and that this list is available to SOMS. This allows the 
various components of SOMS to access the calling sequences of other 
routines. 

7. Absolute central memory addressing - a practice common to much of 
SOMS is the concept of central memory addressing from within 
FORTRAN. This allows SOMS to access variables local to portions of -
the host program (eg: PANAIR) by knowing the central memory address 
of the variable. 

8. Input/Output - SOMS requires an I/O scheme that can handle variable 
length random access records. The method must allow for the opening 
and closing of such files as well as input and output. 

15. 1 



The most pervasive problem is item (6) - the assumption of a mechanism whereby 
subprograms can access each other1s calling sequence. Solution of this 
problem on the CRAY was accomplished by storing the addresses of the calling 
sequences within central memory. A subsequently called routine accessed 
actual arguments from a previously called routine by first accessing the 
address of the previous routine1s calling sequence and thereby the addresses 
of the actual arguments. T'f1O assumptions are implicit in this method: 

1. Addresses are storable in central memory \'Jords 

2. If the address of an array, IIARRAy lI
, is given by IIINDA", and the 

address of the desired variable is IIINDY", the desired variable may 
be referenced by IIARRAY( INDY-INDA+1) II. 

If these assumptions cannot be satisfied on the target machine, the conversion 
effort will be extensive. Subprograms that make use of this indirect 
addressing technique are shown in Table 15.1. 

The next most important consideration is the variable-length calling 
sequence. On the CYBERs, this was handled directly in FORTRAN (As an 
extension to standard FORTRAN, the dialect implemented on the CYBERs allows a 
variab1e- length calling sequence.). On the CRAY, this was handled by coding 
a CAL interface: The variab1e- length argument list was handled by the CAL 
routine, and the FORTRAN routine was given the address of the list that 
contained the addresses of the argument list. Implementation of a variable 
length calling sequence is required to avoid extensive changes to the PANAIR 
program. 

Both the operating system interface and the I/O package within SD~lS are 
isolated in the code. Routines requiring an OS interface are shown in Table 
15.1. System routines are required to perform the following operations: 

Access permanent files 
Open and close local files 
Control central memory field length 
Control recovery from all errors 
Perform random access, \'/ord-addressib1e I/O 

The requirements dictated above to support access of subprogram calling 
sequences, variable length calling sequences, and syste~ interfaces represent 
minimum requirements that must be met by the target system to ensure that 
conversion is feasible. 

15.2 



15.2 MACHINES AND OPERATING SYSTEhS TO WHICH SDhS HAS bEEN CONVERTED 

The SDMS package is currently operating or was operating on the following 
machines and operating systems: 

i·IACHINE OPEl\ATING SYSTE~I 

CDC 170 NOS 1 
CDC 17U NOS 2 
CDC 7600 SCOPE 2 
CDC 170 NOS/BE 
CRAY l/? COS 1.09 
CRAY XI·1P COS 1.12 
DEC 11/780* VNS 
DEC 11/70* lAS 

* MSDMS - a subset of SDMS 

Note that the version of SDMS operative on DEC equipment (~SDMS) was generated 
by recodi ng from the SD~lS desi gn rather than by a true conversi on effort. The 
filsm'lS system \/i 11 NOT support PANAIR without extensi ve changes made to the 
PANAIR system. 

15.2.1 Conversion of the Code to the CRAY 

The SDNS package was converted from CDC CYBER machines to CRAY. Comments were 
placed in the source code to indicate changes made in the code durins the 
conversion. The rqutines changed are indicated in Table 15.1. The changes 
made are highlightea in the source code by surrounding comments. The comment 
"C** CRAY DEFINED" prefaces such changes, and "C** END CRAY" follows the 
changes. The conversion requirea approximately one person-month. Note 
however, that estimating conversion to other machines based on these changes 
may be misleading - CYBER and CRAY machines are architectured very similarly; 
conversion between the two machines is often elementary compared to other 
conversion efforts. Conversion of SDMS to another machine woula be extremely 
difficult if the minimum requirements outlined in section 15.1 were not met. 

15.3 SUr·I~IARY OF CONVEkSION PROBLEHS BY SUBPROGRAIvI 

Table 15.1 and 15.2 summarize conversion problems within SDIvlS by routine. 
Table 15.1 summarizes the SDMS library routines and Table 15.2 summarizes the 
Data Definition Processor (LDP). Note that columns one through eight 
correspond to the difficulties noted in section 15.1; column nine indicates 
conversion effort required during conversion to CRAY. 

Some confusion has arisen from the term "fvIASHCII code" in the CRAY version of 
SONS. The technique consists ill mapping the eight-bit ASCII codes into a 
six-bit hash. This six-bit hash allows storage of ten characters of data into 
a single CRAY word. In this aiscussion, the use of this technique has been 
included under the heading "word length". 

15.3 



15.3 PURPOSE OF ASSEMBLY LANGUAGE ROUTINES 
~ , 

The following routines have been written in assembly language (CAL) to 
accommodate a requirement not allowed in FORTRAN 

NAHE • • • • • • • • • • • • • • • • • • •• PURPOSE •••••••••••••••••••• 

BGtJDSS Accommodates variable-length calling sequence for BGNDSF 

CINFO Returns name and line of calling routine 

DESGET Accommodates variable-length calling sequence for DESGTF 

DESPOR AccolTlllodates variable-length calling sequence for DESPRF 

DESPUT Accommodates variable-length calling sequence for DESPTF 

DESREP AccolTllloda tes variable-length call i ng sequence for DESRFF 

DVMAP Accommodates variable-length calling sequence for DV~lAPF 

ESGET Accommodates variable-length calling sequence for ESGETF 

ESPUT Accommodates variable-length calling sequence for ESPUTF 

ESREP AccolTU'ilodates variable-length calling sequence for ESREPF 
~ 

ESSGET Accommodates variable-length calling sequence for ESSGTF 

ESSPUT Accommodates variable-length calling sequence for ESSPTF 

IUS Returns user number of running job 

KSDEL Accommodates variable-length calling sequence for KSDELF 

MATMAP Accommodates variable-length calling sequence for MATt11PF 

SVr~AP Accommodates variable-length calling sequence for SVMAPF 

15.4 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRAM 

NAt·1E 2 3 4 5 6 7 8 9 

ADF X X 

AKE* X 

ARES X X X 

ARRES X 

ASP X X 

ASPX 

ATE 

ATTACH X X X 

BGNDSF X X X 

BGDNSS X 

r', BKE X X X 

BMKE* X X X 

BUFSIZ 

CALLPT* X 

CATLOG X X X 

CDIH X X X 

COLUMN LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* Whil e a part of SDMS, this routine is not used by PANAIR 

15.5 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRAM (Continued) 

NAME 2 3 4 5 6 7 8 9 

CINFO X 

CLSl X 

Cr~D 

CPB* X 

DBABT* X 

DBAOJ* X X X 

OBCLOS X X X 

OBOPEN X X X 

OBPURG X X X 

OBTSET 

OOF X X 
,~ 

OESGET X 

DESGTF X X X 

OESPOR X 

DESPRF X X 

DESPUT X X 

COLUMIJ LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* While a part of SOMS, this routine is not used by PANAIR 

0 

15.6 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRAr·1(Continued) 

NAt1E 2 3 4 5 6 7 8 9 

DES REP X X 

• DKE* 

DSMAP X X 

DVMAP X X 

DVMAPF X X 

ENDDSS* X 

EMDMAP X 

EREXIT X 

ERRCLR 

ERRST X X 

r-' ESDG* 

ESFL X X X 

ESGET X X X 

ESGETF X X X 

ESPORF X X X 

ESPUT X X X 

COLUf.1N LEGEND: 

l. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* While a part of SDMS, this routine is not used by PANAIR 

15.7 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRAM (Continued) 

NAr~E 2 3 4 5 6 7 8 9 

ESPUTF X X X 

ESREP X X X 

ESREPF X X X 

ESSCLS X X X 

ESSGET* X X X 

ESSGTF* X X X 

ESSOPN* X X 

ESSPOS* X 

ESSPur* X X 

ESSPTF* X X X 

FALP X X X 

FARP X 

FDOESS X 

FDP X 

FDVA X X X 

FESD X X 

COLur~N LEGEND: 

l. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* While a part of SDMS, this routine ;s not used by PANAIR 

15.8 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRN~ (Continued) 

NAt·1E 2 3 4 5 6 7 8 9 

FILE X 

FKBI 

FKE 

FNESL X X X 

FUDE X X X X 

FVKS 

GETNXQ* 

GETNXT* X 

GKB X 

GKB1* X 

r---- GTS X X X X 

ICPRZ X 

IDBFD X 

IDMT X X X 

IETB X 

IFFN X 

COLUr~N LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Abso 1 ute centra 1 memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* While a part of SDMS, this routine is not used by PANAIR 

r----

15.9 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRAM (Continued) 

NAr·1E 2 3 4 5 6 7· 8 9 

IKDB X X 

IKE 

IMES X X X X 

INDB X X 

INDXZ 

IODB X X 

ISDMS X X X X 

ISDT* X 

ISES* X X X X 

IUS X X 

KRT* 

KSDEL* X X X 

KSDELF* X X X 

LGTHL X 

LGTHW X 

LOCF* X X X 

COLUMN LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* While a part of SDMS, this routine is not used b,y PANAIR 

15.10 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRN~ (Continued) 

NAI~E 2 3 4 5 6 7 8 9 

LSDB* X X 

MAPCHK* 

MAPERR* 

MATCHl 

MAT~lAP X X 

MATr~PF X 

MDB 

f.1MRU 

MONSIO* 

NORCVR 

ODBFD X X 

OKB X X 

OKBTT 

or~ES X X X 

OPENRM X X 

COLur~N LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* llhile a part of SDMS, this routine is not used by PANAIR 

15.11 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRAl~ (Continued) 

NAf·1E 2 3 4 5 6 7 8 9 

OSES* X X X 

PBS 

PFLET X X X 

PFNDB 

PKBB* 

PKCHR X X 

PKET X X 

PLA X X X X 

PLA1 X X X 

Pt·1ET X X X X 

Pf4PT* 

Pf4VT* X 

PPT X X 

PRDrH* 

PSET X . X X 

PSPT* 

COLU~lN LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* While a part of SDMS, this routine is not used by PANAIR 

/"""\ 

15. 12 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRAM (Continued) 

NAl'·lE 2 3. 4 5 6 7 8 9 

PVLET X 

RDBF 

RDBUF X X X X X X 

RNDB* X X 

RNKB X X X 

RSDB* X X 

RTNPRT* X 

RTS X X 

SETAEF 

SFKB X 

r SFP X 

SKBI 

SPB X X 

svr'lAP X X 

SVMAPF X X X X 

SYSTElvl X X 

COLUMN LEGEND: 

l. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

* Uhile a part of SDMS, this routine is not used by PANAIR 

15.13 



TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRAM (Concluded) 

NAt·1E 2 3 4 5 6 7 8 9 

TFB X 

TFSDB* X 

TIME X X 

Tf.1FSDB* X 

TNTSDB* X 

TRACER* 

TTB X X 

TTSDB* 

TYPSET X X 

UDBFD 

UKBT ~, 

UPKCHR X X 

USDT* X 

WSDB X X 

WTBUF X X X X X X 

COLUI4N LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBERjCRAY conversion 

* While d ;J.ll"'t ,)1- ~!)ji:;. this routine is not used by PANAIR 

15.14 



NAt·1E 

BEST 

TABLE 15.2 - DDP CONVERSION TASKS GROUPED BY SUBPROGR.AJ1 

2 3 4 5 6 7 8 9 
-- .. - . -- ---------------- ---..... -------

------------------------- ------_. 
BKT 

--------------- ... ---
BPT 

SST 

CVED 

DDP 

ERRST 

FATAL 

FNT 

ILT 

INDEX 

INITP X X 

INTGR 

1ST X X 

LFTCH 

ODD 

COLUMN LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

15. 15 



TABLE 15.2 - DDP CONVERSION TASKS GROUPED BY SUBPROGRAM (Continued) 

NAr·1E 1 2 3 4 5 6 7 8 9 

ODFD x X 

ODT 

OSD 

PASD 

PC IT 

Pt~DF 

PI~DN X X 

PSD X X 

RFD 

RNC 

SESD 

SFDDS 

SFDE 

sr"LP 

SNIT 

SRSD 

COLUr~N LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. Input/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

1""""'\, 

15. 16 



TABLE 15.2 - DDP CONVERSION TASKS GROUPED BY SUBPROGRAM (Concluded) 

NAt1E 2 3 4 5 6 7 8 9 

SSEP X X 

SSr4E X X 

STNC 

TOKEQ 

UFLET 

UMET 

USET 

UVLET 

COLUfm LEGEND: 

1. Routine written in assembly language (CAL) 
2. Word length dependant 
3. Non-standard FORTRAN 
4. Variable length calling sequence 
5. Operating System interface 
6. Calling sequence format dependant 
7. Absolute central memory dependant 
8. I nput/Output dependant 
9. Conversion effort required for CYBER/CRAY conversion 

15.17 



16.0 SOFTWARE GLOSSARY 

16.1 



Page Missing in 

Original Document 



Key Word 
r'\ 

Abutment 

Abutment Intersections 

Account numbers 

Address 

Array 

B (Outer) Spline 

BP-Spline 

Block Partition Format 

Buffer 

CAL 

Calling relationship 

CFT 

Closure Condition 

Communication Vehicle 

Compilation 

Description 

A curve where tvlO or more neblOrk edges 
(exactly or approximately) meet. 

Points where several abutments meet. 

Computing center cost accounting labels. 

The software identification of a word 
in central memory. 

A collection of contiguous words in 
central memory. 

A matrix which gives the value of 
source or doublet strength at panel 
grid points in terms of surrounding 
singularity parameters. 

A row vector giving a flow quantity at 
a grid point in terms of the flow 
quantities at surrounding control 
points. 

The arrangement of a coefficient matrix 
as a collection of rectangular 
submatrices. 

An area of storage which temporarily 
holds data that will be subsequently 
delivered to a processor. 

The CRAY Assembly Language. 

The set of all subprograms invoked by a' 
program unit. 

A procedure-oriented language supported 
by CRAY compilers. 

A non standard boundary condition 
imposed to insure a design network edge 
will remain unchanged after the 
geometry has been relofted. 

A method of data transfer between 
subprograms. 

The translation of a high level source 
language, like CFT, into machine 
language. 

16.3 



Key }/ord 

Compressibility Direction 

Compressible Inner Product 

Constraints 

Control Card Stream 

Control Statement 

Core 

COS 

CPU (Central Processor Unit) 

CRAY 1-5, X-MP, l-M 

Data Base Communication Chart 

Data Base Directive 

Data Base Information Table 

Data Base ~1anagement System 

Data Base status 

Data flow 

16.4 

Description 

The direction of freestream flow in the 
Prandtl-Glauert equation. It is 
defined by the input terms "CALPHA" and 
"CBETA." 

An inner product with respect to the 
compressibility coordinate system. 

Right-hand-side values for boundary 
condition equations. 

A sequence of control statements. 

A user instruction to the operating 
system. 

Semi-conductor memory which is 
manipulated by the central processing 
unit. 

CRAY Operating System. 

Elements of a data processing system 
that carry out a variety of essential 
data manipulations and controlling 
tasks. 

CRAY Research data processing systems. 

A tabular listing which correlates 
datasets and the subprograms which use 
them. 

A user directive which may specify the 
file identification parameters for the 
PAN AIR databases and the master 
definitions. 

A tabular listing of the specifications 
made by the data base directives. 

A piece of software which manages data 
bases in direct access storage. 

The completeness of the information in 
a data base. 

The relationship of the output data of 
one program to the input data of 
another program. 



~ 

Key Hord 

Dataset 

Design Code 

Diagnostic message, 
warning message 

Disk 

Element 

E1 ement Set 

lend of record l card 

Executable Code 

Execution 

Executi on time 

Executive Directive 

Executive Module 

Fatal error 

Flow quantity 

Formal Parameters 

Free field format 

Description 

A collection of element sets and their 
associated key sets. 

See pseudo code. 

Program identification of an 
abnormality detected during execution 
which will not result in program 
termination. 

A computer storage medium external to 
the CPU. 

The basic informational unit of an SD~lS 
data base. 

A well defined collection of elements. 

The delimiter between sections of a job 
input file. 

FORTRAN statements \thi ch speci fy 
actions the program is to take. 

The operation of the CPU under control 
of a program. 

The wall clock time at which a program 
is in execution. 

A user directive which specifies the 
type of PAN AIR analysis. 

The component of a software system 
which controls the execution of other 
system components. 

An abnormality detected by the program 
during execution which results in 
program termination. 

Surface potential, velocity or normal 
mass flux. 

Arguments which appear in calling 
sequence of SUBROUTINE or a FUNCTION. 

The interpretation of program input by 
its content instead of position. 

16.5 



Key Word 

Functional Decomposition 

Glossary 

Heterogeneous 

. Homogeneous 

IC Matrix 

Input 

JCL (Job Control Language) 

Key 

Key Set 

Library 

Load 

Macro-options 

Main program 

Main Overlay 

Maintainability 

Map 

16.6 

Descri pti on 

The breakdown of a major computing task 
into basic computing functions. 

A section of the program preface which 
describes program variables. 

The condition of the specified flow 
data set of the DIP data base when 
smearing has not been employed. 

The condition of the specified flow 
data set of the DIP data base after 
smearing has been employed. 

A matrix giving one or more field flow 
properties as a linear combination of 
the array of singularity parameters. 

Data used downstream from a given PAN 
AIR module. 

The criteria for defining the set of 
all syntactically correct control 
s ta tements. 

An element set identifier. 

A collection of keys which uniquely 
identify an element set. 

See program li~rary. 

Transform a program held on some 
external storage medium into the main 
memory of the machine in a form 
suitable for execution. 

A data set of the NEC data base which 
will inform all downstream PAN AIR 
modules of an IC-update, solution 
update or post-solution run. 

A program which is not a subprogram. 

The overlay which is loaded initially 
and remains in core. 

Resilience to internal changes 

A correlation between SDMS dataset 
elements and program variables. 

.~, 



Key Word 

t~aski ng 

Master Definition File 

MEC Directives 

Modular Code 

Modul e 

Operating System 

Out-of-core Matrix Multiplication 

Output 

Overlay 

PAN AIR Problem 

Permanent (Temporary) Data Base 

Plot data fil e 

Preface 

Description 

A bit by bit logical operation on one 
or more words in central memory. 

A collection of data records which 
defines the structure of a 
permanent/temporary data base. 

Data base directives and executive 
directives. 

Software which has localized the impact 
of changes in its operating environment. 

One of the ten basic programs of the 
PAN AIR system. 

The computer system software that 
assists the hardware to implement 
various supervisory and control 
functions it performs for the tasks 
created by the users. 

The computation of the product of two 
out-of-core matrices (stored on SDMS 
da ta bases). 

Data used downstream from a given PAN 
AIR module. 

A portion of a program written on a 
file in absolute form and loaded at 
execution time without relocation. 

The computation of a numerical solution 
to the Prandtl-Glauert equation and 
boundary condition equations over a 
surface configuration. 

A well defined data structure, 
generated by a particular PAN AIR 
module, which will (not) remain 
accessible after the job has run to 
completion. 

Input data to plotting software. 

Software documentation presented as 
comment statements at the beginning of 
each PAN AIR module. 

16.7 



Key Word 

Primary Overl ay 

Procedure 

Procedure File 

Program 

Program Library 

Program Tree Structure 

Pseudo Code 

Secondary Overlay 

Smeari ng 

Software System 

Solution data 

Stand-alone program 

Structured Programming 

16.8 

Description 

An overlay which may be called into 
core only by the main overlay and is 
loaded immediately following the main 
overl ay. 

A collection of control statements, 
separate from the job control statement 
section, that-may be called by a 
control statement. 

A collection of data records which may 
be called as a procedure. 

A colJection of FORTRAN statements, 
with optional comments, terminated by 
an END statement. 

A collection of computer programs made 
available to computer users to reduce 
the work of programming. 

The schematic representation of calling 
relationships between subprograms of a 
module. 

A user-defined, non compilable 
shorthand for use in defining the flow 
of a program segment. 

An overlay which may be called into 
core only by a primary overlay and is 
loaded immediately following the 
primary overlay. 

The application of a single specified 
flow value to a subset of control 
points. 

An integrated collection of programs 
which perform a major computing task. 

Basic flow quantities associated with a 
particular set of right-hand-side 
equality constraints. 

A program module which may be executed 
independent from other modules. 

Software development which has employed 
disciplined program organization and 
notation to facilitate correct and 

~, 
\ 



Key Word 

System Architecture 

Submodule 

Subprogram 

Subroutine 

Symmetrize 

Transportability 

Tree Diagram 

Unsymmetrize 

User Directives 

Description 

clear descriptions of data and control 
structures. 

The construction of a computing system 
by assembling basic modules. 

A subprogram of a PAN AIR module. 

A program unit that begins with a 
SUBROUTINE, FUNCTION or BLOCK DATA 
statement. 

A subprogram unit that begins with a 
SUBROUTINE statement. 

Transform a large system of linear 
equations into smaller systems of 
linear equations, by using symmetric 
properties of the coefficient matrix. 

Resilience to external changes. 

See program tree structure. 

Transform the solutions of symmetrized 
systems of linear equations into the 
solution of the original system. 

A collection of user specifications 
which define a particular PAN AIR 
problem and its computing environment. 

16.9 



r·· 

,-., 
.V 

17.0 REFERENCES 

1. Magnus, Alfred E.; and Epton, Michael A.: PAN AIR Volume 1- Theory 
Document (Version 1.0), NASA CR-3251, 1980. 

2. Sidwell, Kenneth W.; Baruah, Pranab K; and Bussoletti, John E.: PAN AIR 
Volume II - User's Manual (Version 1.0), NASA CR-3252, 1980. 

3. Medan, Richard T. (Editor); Magnus, Alfred E.; Sidwell, Kenneth W.; and Epton, 
Michael A.: PAN AIR Volume III - Case Manual (Version 1.0), NASA CR-3253, 
1981. 

4. Sidwell, Kenneth W.; and Derbyshire, Thomas: PAN AIR Summary Document 
(VerSion 1.0), NASA CR-3250, 19a2. 

5. UPDATE Reference Manual, SR-0013, CRAY Research, Inc. 

6. Businger, P.; and Golub, G. H.: "Linear Least Squares Solutions by 
Householder Transformations," in the "Handbook for Automatic Computation, 
Volume II," Springer Verlag, New York, 1971, pp. 111-118. 

7. CRAY-OS Reference Manual, SR-0011, CRAY Research, Inc. 

17.1 



NI\S/\ Report Documentation Page N.kInIII~.,Ice'" 
S4IOco-........ 

1. Report No. 2. Government Accession No. 3. Recipienrs Catalog No. 

NASA CR-3254 

4. Title and Subtitle 5. Report Date 

PAN AIR-A Computer Program for Predicting Subsonic or Supersonic Linear January 1990 
Potential Flows about Arbitrary Configurations Using a Higher Order Panel 

6. Perfonning Organization Code 
Method 
Volume IV-Maintenance Document (Version 3.0) 

7. Author(s) 8. Perlonning Organization Report No. 

David 1. Purdon, Pranab K. Baruah, John E. Bussoletti, Michael A. Epton, 
William A. Massena, Franklin D. Nelson, and Kiyoharu Tsurusaki 

10. Work Unit No. 

9. Perfonning Organization Name and Address 
11. Contract or Grant No. 

Boeing Military Airplane Company 
NAS2-12036 P.O. Box 3707 

Seattle, Washington 98124 13. Type of Report and Period Covered 

12. Sponsoring Agency Name and Address Contractor Report 

National Aeronautics and Space Administration, Washington, DC 20546-0001 Oct 19~ept 1987 

AFWAL and ASD, Wright-Patterson, AFB, Ohio 45433 
14. Sponsoring Agency Code 

NCSC, Panama City, Florida 32407 

15. Supplementary Notes 

Point of Contact: Larry L. Erickson, Ralph L. Carmichael, Michael D. Madson, and Alex C. Woo 
Ames Research Center, MS 227-2, Moffett Field. CA 94035-1000 ----. 
(415) 604-5856 or FTS 464-5856 

16. Abstract 

The Maintenance Document Version 3.0 is a guide to the PAN AIR software system, a system which computes the subsonic 
or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document 
describes the overall system and each program module of the system. Sufficient detail is given for program maintenance, 
updating and modification. It is assumed that the reader is familiar with programming and CRAY computer systems. 

The PAN AIR system was written in FORTRAN IV language except for a few CAL language subroutines which exist in 
the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The 
operating systems accommodated are COS 1.11, COS 1.12, COS 1.13, and COS 1.14 on the CRAY IS, 1M, and X-MP 
computing systems. 

The system is comprised of a data base management system, a program library, an execution control module and nine 
separate FORTRAN technical modules. Each module calculates pan of the posed PAN AIR problem. The data base manager 
is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for 
each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, set of 
CRAY procedures (pAPROCS) was created to automatically supply most of the 1CL cards. 

Most of this document has not changed for Version 3.0. It now, however, strictly applies only to PAN AIR version 3.0. The 
major changes are: (1) additional sections covering the new FOP module (which calculates streamlines and offbody points), 
(2) a complete rewrite of the section en the MAG module, and (3) strict applicability to CRAY computing systems. 

17. Key Words (Suggested by Author(s» 18. Distribution Statement 

Aerodynamics, Potential flow, Panel methods, Influence .. iiSB" 
coefficients, Data base, Functional decomposition, Splines, 
Tree diagram, Master definition,1CL, CRAY Subject Category - 02 

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price 

Unclassified Unclassified 97q 

NASA FORM 1626 OCT ae 



End of Document 


