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Summary result, classical methods require excessive amounts of
computer time to solve stiff systems of ordinary differ-

The efficiency and accuracy of several algorithms ential equations (ODE's).
recently developed for the efficient numerical integration Several approaches for the solution of stiff ODE's
of stiff ordinary differential equations are compared, have been proposed; for details, see the reviews by
The methods examined include two general-purpose Lomax and Bailey (ref. 3), Seinfeld, et al. (ref. 4),
codes, EPISODE and LSODE, and three codes Enright and Hull (ref. 5), and Shampine and Gear
(CHEMEQ, CREK1D, and GCKP84) developed specifi- (ref. 6). Of all these techniques the general-purpose codes
cally to integrate chemical kinetic rate equations. The EPISODE and LSODE (refs. 7 to 10)are regarded as the
codes are applied to two test problems drawn from best available "packaged" codes for the solution of stiff
combustion kinetics. The comparisons show that LSODE systems of ODE's. However, although these codes may
is the fastest code currently available for the integration be the best available for solving an arbitrary system of
of combustion kinetic rate equations. ODE's, it may be possible to construct a superior method

An important finding is that an iterative solution of the for solving a particular system of ODE's governing the
algebraic energy conservation equation to compute the behavior of a specific problem. In this vein, Young and
temperature does not result in significant errors. In addi- Boris (ref. 11), Pratt (refs. 12 to 15), and Zeleznik and
tion, this method can be more efficient than evaluating McBride (ref. 16) have developed codes for the specific
the temperature by integrating its time derivative, purpose of integrating large systems of chemical kinetic

Significant reductions in computational work are rate equations.
realized by updating the rate constants (k =A TN The objective of the present investigation is to identify
exp( - E/R 7)) only when the temperature change exceeds the fastest algorithm currently available for the numerical
an amount AT that is problem dependent. An integration of combustion kinetic rate equationsA The
approximate expression for the automatic evaluation of motivation behind this work is the increasing interest in
AT is derived and is shown to result in increased (1) modeling the reaction mechanisms describing the
efficiency, consumption of fuels and pollutant formation and

destruction and (2) multidimensional modeling of
reactive flows, which includes the equations of fluid

Introduction motion. The former results in the need to integrate large
systems of nonlinear ODE's (reaction rates). The latter

The major problem associated with the simultaneous results in the need to integrate these rate equations at
numerical integration of large sets of chemical kinetic several thousand grid points. To make such calculations
rate equations is that of stiffness. Although stiffness does practicable, it is necessary to have a very fast homo-
not have a simple definition (see, e.g., Shampine, refs. 1 geneous batch chemistry integrator.
and 2), it is characterized by widely varying time In thepresentreport, currentlyavailable techniques are
constants. For example, in hydrogen-air combustion the examined by application to two test problems drawn
induction time is of the order of microseconds whereas from combustion kinetics. A detailed comparison of the
the nitric oxide formation time is of the order of efficiency and accuracy of these techniques is presented,
milliseconds. These widely different time constants and recommendations are made for ways to increase the
present classical methods (such as the popular explicit speed of general-purpose codes, as applied to the present
Runge-Kutta method) with the following difficulty: to problem.
ensure stability of the numerical solution, these methods
are restricted to using very short time steps that are
determined by the smallest time constant. However, the

time for all chemical species to reach near-equilibrium lln this report, attention is restricted to adiabatic, constant pressure
values is determined by the largest time constant. As a (hence,isenthalpic),exothermicchemicalreactions.



Symbols JJ total number of distinct elementary reactions
in reaction mechanism

Aj, A _j preexponential constants in forward and ky, k_j forward and reverse rate constants for reac-
reverse rate equations for reaction j (eq. tion j (eq. (5)), units depend on reaction type
(5)), units depend on reaction type

MF integration method to be used by EPISODE
Bj, B_j exponent-on-ten in modified Arrhenius and LSODE

preexponential factor, Bj=loglo A j,
B_j= logl0 A _j, arbitrary units IVy,N_j temperature exponent in forward and reverse

rate constants for reaction j (eq. (5))
CPU total CPU time required on IBM 370/3033, s

NFE total number of functional (i.e., derivative)
Cp,i constant-pressure specific heat of species i, evaluations

J/kmole K
NJE total number of Jacobian matrix evaluations

Ei estimated local error in independent variable
i(eq. (17)) NRRC total number of reaction rate constant

evaluations
Ej, E_j activation energy in forward and reverse rate

equations for reaction j (eq. (5)), cal/mole NS total number of distinct chemical species in
gas mixture

EPS for all methods, except EPISODE and
DASCRU: local relative error tolerance; NSTEP total number of steps required to solve
for EPISODE: local relative error tolerance problem
for species with initially nonzero mole ni mole number of species i, kmole species i/
numbers and for the temperature, and local kg mixture

absolute error tolerance for species with nj, nj' molecularities of forward and reverse
initially zero mole numbers; for DASCRU: reactions j (eq. (12))

local relative error tolerance for a variable nm reciprocal of mixture mean molar mass
whose magnitude is greater than or equal (eq. (10)), kmole/kg
to 10-3, and local absolute error tolerance
for a variable whose magnitude is less than Anj difference in molecularities of reverse and
10- 3 forward reactions j (eq. (6c))

ERMAX relative error tolerance for Newton-Raphson P pressure, N/m2
iteration for temperature R universal gas constant, 8314.3 J/kmole K

fi rate of formation of species i (eq. (2)), (1.9872 cal/mole K)
kmole i/kg mixture s Rj, R_j molar forward and reverse rates per unit

gO 1-atmosphere molal-specific Gibbs function volume for reaction j, kmole/m3 s
of species i, J/kmole T temperature, K

H o initial mass-specific enthalpy of mixture, Ty, T_y activation temperatures in forward and
J/kg reverse rate constants for reaction j,

H0 initial step length to be attempted by I)=Ej/R; T_j=E_j/R, K
integrator, s AT maximum temperature change allowed before

hi molal-specific enthalpy of species i, J/kmole reaction rate constants are updated. For
CREK1D, CHEMEQ-B, and DASCRU-B

IERROR error control indicator for EPISODE thermodynamic data are also updated only
ITMAX maximum number of corrector iterations to for temperature changes greater than AT, K

be attempted by CHEMEQ and CREK1D t time, s
ITOL error control indicator for LSODE

tswitch time at which error control performed by
J Jacobian matrix: for temperature method A EPISODE is switched from semirelative to

of size NSxNS: Jik=Ofi/Onlo i,k= 1,NS pure relative, s
(eq. (11)); for temperature method B, of Yi mole fraction of species i
size (NS+ 1)x(NS+ 1): Jik=Ofi/Onk, i,k=
1,NS (eq. (11)); Ji,NS+1 = Ofi/OT, i= 1,NS Cabs local absolute error tolerance (eq. (18))
(eq. (13)); JNS + 1,k = O/Onk (dT/dt), Cabs,i local absolute error tolerance for species i (eq.
k=I,NS (eq. (14)); JNS+I,NS+I=O/OT (19))
(dT/dt) (eq. (15)) Crel local relative error tolerance (eq. (17))



vii, vi'j stoichiometric coefficients for species i in (_T') £'--1Nfi ,forward and reverse reactions j (eq. (1)); Rj=Aj TNJexp (Pr/k)_kJ

number of kilomolesi in elementaryreaction

j as a reactant and as a product, respectively =AjT,VJexp I-[ (Pnk)pkjp mixture mass density, kg/m3 k= 1

NS

= kj _==1(tonk)_kJ (4a)

Problem Statement

The (initial value) problem may be stated as follows: and
given (1) a set of initial conditions (n i (i= 1,NS), where ni
is the mole number of species i (krnole species i/kg

mixture) and NS is the total number of distinct chemical R_j=A _j74V-iexp II (onk)_kj
species involved in the combustion reaction and the RT k=l
temperature T (K)) at time t = 0, (2) the pressure t9, and NS
(3) the reaction mechanism,find the mixture composition = A _jTN-Jexp H (Pr/k)Uk'J
and temperature at the end of a prescribedtime interval, k= 1

All chemical reactions are assumed to be elementary NS

reactions of the type = k_j _--1 (Prlk)Vk'j (4b)

NS NS

r'iiXi= E t'ljXi j= 1,JJ (1)i= l i= 1 In equations (2) to (4), p is the mixture density (kg/m3)
and Aj, A _j, Nj, N_j, Ej, Tj (= Ej/R) E_j, and T_j

, ,, (=E_j/R) are constants in the modified Arrhenius rate
where lqj and _'ij are the stoichiometric coefficients of expressions of the forward Rj and reverse R_j rates of
species i (with chemical formula Xi) in reaction j as a reaction j. The forward kj and reversek_j rate constants
reactant and as a product, respectively,and JJ is the total for reaction j are given by
number of distinct elementary reactions in the given
reaction mechanism.

The ordinary differential equations describing (__TT.)adiabatic, homogeneous,gas-phasecombustion reactions kj=AjTNJexp (5a)
are as follows:

_j =A _jTN-Jexp( (5b)k

_-_/=fi(nk, T) i,k= 1,NS _ In this study the reverse rate constants are calculated

ni(t =0)=given I (2) from the forward rate constants and the concentration
equilibrium constant by using the principle of detailed

T (t= 0) = given balancing(ref. 17).The resulting equations are

NS

where _ O'i'j-- t'i3)hi
i=1

JJ T_j = Tj+ (6a)R
fi = - to- 1 ._ (t,ij - Plj)(Rj - R _j) (3)

J=l

]where the molar reaction rates per unit volume Rj and k_j=kj(RT)an_exp [!=10'ij-PlJ)g° (6b)R _j are given by R T



where h i is the molal-specific enthalpy of species i Some of the techniques used in the present study
(J/kmole), &°is the 1-atmosphere molal-specific Gibbs require the evaluation of the Jacobian matrix J
function of species i (J/kmole) and Anj is given by (Jik = Ofi/Onk; i,k = I ,NS). Differentiation of equation (3)

with respect to nk gives the following expression for Jik:
NS

Anj= _._ (pfj--pfj) (6c) Jj

j_l II i it --

i=l Jik = --_nk) -1 (gi]-gij)(gkjRj-gkjR-j)+ fi
nm

Equality of the temperature exponents in equations jj

(5b) and (6b) for k_j together with equation (5a) results +(Onm) -1 _.d (Pi'j- Pfj)(njRj-nj'R-9 (11)
in the following relation for N_j: j= 1

where n) and n]are, respectively, the molecularities of the
N_j=Nj+Artj (6d) forward and reverse reaction j and are given by

NsI
For a constant-pressure, adiabatic combustion reac- nj= E vi'J

tion, the following enthalpy conservation equation i=l

constitutes an algebraic constraint on equations (2) to (4): (12)
NS

NS nj= ___viinih i=H 0=constant (7) i__=
i=1

When temperature is included as an explicit
where 1to is the mass-specific enthalpy of the mixture independent variable (see the section Evaluation of
(J/kg). Temperature for more details), the Jacobian elements

Time differentiation of equation (7) provides the Ofi/OT (i=I,NS), O/Onk (dT/dt) (k= 1,NS), and
following equation for the time rate of change of O/OT(dT/dt) are also needed. These are obtained by
temperature: differentiating equation (3) with respect to T and

equation (8) with respect to nk and T. These operations
NS yield

- ]_ fihi
dT i= 1

-- J'_l (Vii -- viI) Rj + Tj]_ niCp,i aT T pT .= T-i=1

where Cp,i is the constant-pressure specific heat of -R_j(N_j+ _l-nO] (13)
species i (J/kmole K).

The density p of the mixture is given by the equation of NS

state foranidealgasmixture _._ _khi-bCp, k(_)i=1

O(dT) (14)p Onk _ =- NS

p = RTnm (9) ]_ n,Cp,i
i=1

where p is the absolute pressure (N/m2), R the universal NS Oft'. NS dT NS
gas constant (J/kmole K), and the reciprocal of the mean i=1__ni + ft'cp,i+ -_ i= dt
molar mass of the mixture 0 { dT,_ = _

OT \ dt } NS
l'liCp,i

NS i= 1
nm= _ ni (10)

i= 1 (15)



Methods Studied their previous GCKP codes (ref. 25). The new code uses
the integration technique developed by Zeleznik and

The methods examined in this study include the McBride (ref. 16) specifically to integrate chemical
general-purpose packages EPISODE and LSODE (refs. 7 kinetic rate equations. Details of this integration
to 10), developed for an arbitrary system of ODE's, and technique are not yet available.
the specialized codes CHEMEQ (ref. 11), CREK1D (ref. DASCRU is an explicit fourth-order Runge-Kutta-
15), and GCKP84 (refs. 16 and 18), developed Merson ODE solver. This method requires five derivative
specifically to integrate chemical kinetic rate equations, evaluations per step. The additional derivativeevaluation
In addition, an explicit Runge-Kutta-Merson differential provides an estimate of the local truncation error
equation solver (ref. 19) (IMSL routine DASCRU) is (ref. 19).
used to illustrate the difficulty associated with integrating
chemical kinetic rate equations by classical methods.
These methods are summarizedin table I and discussed in
more detail in appendix A. Test Problems

The packages EPISODE and LSODE, based on the
methods of Gear (refs. 20 and 21), consist of a variable- The algorithms summarized in the preceding section
step, variable-order implicit Adams method (suitable for were applied to two test problems drawn from com-
nonstiff problems) and a variable-step, variable-order bustion kinetics. Both problems include all three regions
backward differentiation method (suitable for stiff of interest to a combustion researcher: induction, heat
problems). A range of corrector iteration methods--from release, and equilibration.
functional iteration to chord method (a variant of Test problem 1, taken from Pratt (ref. 12), describes
Newton's method) with a banded Jacobian generated the ignition and subsequent combustion of a mixture of
internally--is included in these packages. The user selects 33 percent carbon monoxide and 67 percent hydrogen
both the basic method and the corrector iteration method with 100 percent theoretical air, at a pressure of 10
by means of a method flag MF. atmospheres and an initial temperature of 1000 K. It

In CHEMEQ the ODE's are separated into two classes, comprises 12 reactions (table II) that describe the time
stiff and normal, at the beginning of each time step. A evolution of 11 species. Test problem 2, taken from
classical second-order predictor-corrector method is used Bittker and ScuUins (ref. 18), describes the ignition and
for equations classified as normal. For stiff equations a subsequent combustion of a stoichiometric mixture of
simple asymptotic integration formula is used. hydrogen and air, at a pressure of 2 atmospheres and an

CREK1D is based on the exponentially fitted initial temperature of 1500 K. It involves 30 reactions
trapezoidal rule developed by Liniger and Willoughby (table III) that describe the time evolution of 15 species.
(ref. 22) and by Brandon (refs. 23 and 24). The algorithm The initial values for the species mole fractions and
includes special treatment of ill-posed initial conditions temperature are given in tables IV and V for test
and automatic selection of functional iteration or problems 1 and 2, respectively, Also given in these tables
Newton iteration, are the equilibrium values for the species mole fractions

GCKP84, developed by Bittker and Scullins (ref. 18), is and temperature calculated by using a Gibbs function
a new general chemical kinetics program that supersedes minimization routine (ref. 26). Both test problems were

TABLE I.--SUMMARY OF METHODS STUDIED

Code or Description
method

GCKP84 Details not yet available
CREK1D Variable-step, predictor-corrector method based on an exponentially fitted trapezoidal

rule; includes filtering of ill-posed initial conditions and automatic selection of
functional iteration or Newton iteration

LSODE; Variable-step, variable-order backward differentiation method with a generalized
EPISODE Newton iteration a
CHEMEQ Variable-step, second-order predictor-corrector method with an asymptotic integration

formula for stiff equations
DASCRU Variable-step, fourth-order, explicit Runge-Kutta-Merson solver

aOther options are included in these packages.



TABLEII.--REATIONMECHANISMSANDRATE integrated over a time of 1 ms to obtain near
CONSTANTS USED IN TEST PROBLEM 1 equilibration of all species.

Reaction Rate constants a

B N E, kcal/mole Discussion of Results
CO+OH =CO2+H 11.49 0 0.596
H+Oz=O+OH 14.34 I 16.492 In this section, we discuss the computational work
H2+O=H+OH 13.48 9.339 (which we shall take as a measure of the efficiency of the
H20+O=OH +OH 13.92 18.121 algorithm) and the accuracy of the techniques selected for
H+HEO=H2+OH 14.0 _ 19.870 our study. All of the codes were applied to the two test
N+O2=NO+O 9.81 1.0 6.250 problems discussed above. All codes were run on the
N2+O=N+NO 13.85 0 75.506
NO+M=N+O+M 20.60 - 1.5 149.025 NASA Lewis Research Center's IBM 370/3033 computer
H+H+M=H2+M 18.00 -1.0 0 using single-precision accuracy, except GCKP84, which
O+O+M=O2+M 18.14 -1.0 .34 was in double precision.
H+OH+M=H20+M 23.88 -2.6 0

H2 + 0 2 = OH + OH 13.00 0 43.0 ComputationalProcedure

aRat..... tant k=lOBTCVexp(-E/R'l). A typical computational run consisted of initializing
the time (t, set equal to 0), species mole numbers,
temperature, and the CPU time.2 The integrator was then
called with values for the necessary input parameters,
which are discussed in the section Efficiency
Comparisons, and the elapsed time (1 ms for both

TABLE III.--REACTION MECHANISMS ANDRATE problems) at which the solution is to be terminated. The
CONSTANTS USED FOR TEST PROBLEM 2 integrator returns to the main calling program with the

computed solutions for the mole numbers and, for some
Reaction Rate constants a methods, the temperature. The integrator also returns

with values for the following parameters, which give a
B N E, kcal/mole

measure of the computational work required to solve the

H+O2=OH+O 14.342 0 16.790 problem: total number of steps NSTEP, total number of
O+HE=OH+H 10.255 1.0 8.9O0 functional (i.e., derivative) evaluations NFE, total
H2+OH=H20+H 13.716 0 6.500 number of Jacobian matrix evaluations (NJE=0 for
OH+OH=O+H20 12.799 / 1.093 CHEMEQ and DASCRU), and, for reasons presented

H+O2+M=HO2+M 15.176 1 -1.000 later, total number of rate constant evaluations NRRC.O+O+M=O2+M 13.756 _ -1.788
H+H+M=H2+M 17.919 -1.0 0 On return from the integrator the computer time CPU
H+OH+M=H20+M 21.924 -2.0 0 required to solve the problem was calculated.
H2+HO2=H20+OH 11.857 0 18.700

H202 + M =OH + OH + M 17.068 45.500 Evaluation of Temperature
H2+ 0 2 = OH + OH 13.000 43.000
H+HO2=OH+OH 14.398 1.900 Of the codes tested, only CREK1D and GCKP84 were
O+HO2= OH+O2 13.699 1.000 written explicitly for the integration of exothermic, non-
OH+ HO2= H20+02 13.699 1.000 isothermal, combustion rate equations. These therefore
HO2 + HOE = H202 + 02 12.255 0

OH+ H202= H20+HO2 13.000 1.800 have built-in procedures for calculating the temperature.
O+H202=OH+HO2 13.903 1.000 For the other codes the temperature was computed by
H+H202= H20+ OH 14.505 9.000 using one of two different methods, labeled as methods A
HO2+NO =NOE+OH 13.079 2.380 and B.3
O + NO2 = NO + 02 13.000 .596

NO+O+M=NO2+M 15.750 -1.160i p

NO2 + H = NO + OH 14.462 .795
N + 02 = NO + O 9.806 1.0 6.250 2Before this was done, various preprocessors were called to read in
O+N2=NO+N 14.255 0 76.250 thermochemical and reaction rate data and to compute the initial
N + OH = NO + H 13.602 0 mixture properties and the equilibrium composition and temperature.
N20 +M = N2 +O + M 14.152 51.280 This does not affect the work required by the integrator. The storage
O+N20=N2+O2 13.794 24.520 and work requirements of these preprocessors are therefore not
O +N20 =NO +NO 13.491 21.800 included in this study.
N + NO2 = NO + NO 12.556 0 3The following convention was adopted in naming these other codes:
OH+N2=N20+H 12.505 " 80.280 those using temperature method A were given the suffix A (e.g.,

LSODE-A, EPISODE-A, etc.) and those using temperature method B
aRateconstantk= IOBpVexp(-E/RT). were given the suffix B (e.g., CHEMEQ-B, DASCRU-B, etc.).



TABLE IV.--COMPOSITIONS AND TEMPERATURES FOR TEST PROBLEM 1

[Solution generated with LSODE-B and EPS = 10-5.]

Compo- Time, t, s
nent and

temper- 0 9 × 10-6 10 -5 5x 10 -5 10 4 5 × 10 -4 10-3 co
ature

Composition, species mole fraction

CO 8.319×10 -2 8.311x10 -2 8.292×10 -2 3.123×10 -2 2.562×10 -2 1.802×10 -2 1.754×10-2 1.798×10-2

CO2 0 8.359×10 -5 2.886×10 -4 6.078×10 -2 6.715×10 -2 7.557×10 -2 7.610×10 -2 7.564×10-2
H 0 1.400×10 -3 4.572×10 -3 5.958×10 -3 3.131×10 -3 1.177×10 -3 1.084×10 -3 1.059×10-3

H2 1.664×10 -I 1.641×10 -1 1.588×10 -l 1.373×10-2 1.030×10-2 6.559×10-3 6.357×10-3 6'580x10-3
H20 0 1.519×10 -3 5.221×10 -3 1.608×10 -l 1.682×10 -l 1.762x10 -l 1.767×10 -l 1.768×10 -1
N 0 2.419×10 -19 2.419×10 -19 3.258×10 -7 4.117×10 -7 3.778×10 -7 3.364×10 -7 2.209×10-7

NO 0 5.501×10 -16 1.725×10 -13 6.295×10 -5 1.993×10 -4 9.975x10 -4 1.666×10 -3 5.347×10-3

N2 6.256×10 -l 6.256x10 -1 6.257×10-1 6.919×10-1 6.975×10-1 7.033×10-1 7'034×10-1 7"014×10-1
O 0 1.699×10 -4 5.678×<10 -4 3.803×10 -3 2.173x10 -3 8.779×10 -4 7.986x10 -4 7.048×10-4

OH 0 4.569 x 10-5 1.508 X 10 -4 1.301 × 10 -2 1.082 × 10 -2 7.552 x 10 -3 7.238 × 10 -3 6.762 x 10 -3

02 1.248×10 -l 1.239×10 -1 1.217×10 -_ 1.878×10-2 1.484×10-2 9.752×10-3 9.171×10-3 7'826×10-3

Temperature, T, K

TA 1000 I 1001 ] 100612407 2512 262312629 2619
TB .... 1001 1006 2407 2512 2623 2628 ....

TABLE V.--COMPOSITIONS AND TEMPERATURES FOR TEST PROBLEM 2

[Solution generated for LSODE-B and EPS = 10-5.]

Compo- Time, t, s
nent and

temper- 0 3 x 10 -6 5 x 10 6 10-5 5 x 10 -5 10 -4 5 x 10 4 10-3 Oo
ature

Composition, species mole fraction

Ar 6.571x10 -3 6.572x10 -3 6.605x10 3 6.744x10-3 7.080x10-3 7.204xi0-3 7.323x10-3 7.324x10-3 7.326x10-3

CO 2 2.110×10 -a 2.111×10 -4 2.121×10 -a 2.166×10 -4 2.274x10 -4 2.314×10-4 2.352×10 -4 2.352×10 -4 2.353x10 -4
H 0 3.006×10 -3 1.073×10 -j 9.848×10 2 4.542×10-2 3.063×10-2 1.870×10-2 1.854x10-2 1.853x10-2

HO 2 0 3.261 x 10 -5 1.183×10 -5 5.878×10 -6 5.121×10 _6 8.674×10 -6 1.447 x 10-5 1.398x 10 -5 1.391×10 -5
H2 2.951x10-1 2.896x10-1 9.272× 10 -2 6.201×10 -2 6.063×10 -2 5.544x10 -2 4.924× 10-2 4.966× 10 -2 4.974×10 -2

H20 0 3.807x10 -3 1.429×10 -I 1.793×10 -_ 2.171x10 -_ 2.353×10 -j 2.549×10 -l 2.549×10 -_ 2.549×10 -_
H202 0 3.442×10 -8 3.790×10 -6 5.603x10 -6 2.629×10 -6 1.380×10 -6 6.377x10 -7 6.185×10 -7 6.160×10 -7
N 0 1.718×10 -12 2.039×10 -I° 4.927×10 -9 3.084x10 -7 9.124x10 -7 3.544×10 -6 4.067×10 -6 4.144×10 -6

NO 0 4.894×10-1_ 3.769x10 -9 2.925×10 -7 1.428x10 -4 8.095×10 -4 7.615×10 -3 9.752×10 -3 1.008x10 -2

NO2 0 1.639×10 -Is 2.112×10 -19 3.520×10 -I_ 1.928x10 -8 1.374×10 -7 1.568×10 -6 1.973×10 -6 2.035×10 -6

N2 5.501×10 -j 5.502 ×10-1 5.530×10-1 5.646×10-J 5.926x10-i 6.027×10-1 6.094x10-1 6.084×10-J 6.082x10-1
N20 0 1.090× 10 -9 6.095 × 10-8 1.149× 10-7 1.704x 10-7 3.010× 10-7 6.382× 10-7 6.350× 10 -7 6.345 x 10 -7
O 0 6.325×10 -4 2.533×10 -'_ 2.841×10 -2 1.690x10 -2 1.204x10 -2 7.113×10 -3 6.866×10 -3 6.833×10 -3
OH 0 3.358x10 -4 1.452×10 2 2.440×10-2 3.495×10-2 3.485×10-2 3.068×10-2 3.011×10-2 3.003x10-2

02 1.480×10 -I 1.456×10 -j 5.738×10 z 3.583×10-z 2.495x10-2 2.078x10-2 1.480×10-2 1.417×10-2 1.408×10-2

Temperature, T, K

TA 1500 1503 1634 1909 2512 2724 2911 2909 2908
TB .... 1503 1634 1909 2512 2723 2911 2909 ....



In method A the temperature was calculated from the derivatives (dni/dt) and the Jacobian matrix
mole numbers and the initial mixture enthalpy by using (Jik= Ofi/Onk;i,k = 1,NS)were evaluated.
the algebraic enthalpy equation (eq. (7)). A Newton- In method B the temperature was treated as an
Raphson iteration technique (with a user-specified additional independent variable and evaluated by
relative error tolerance ERMAX) was used to solve integrating its time derivative(eq. (8)).This increasedthe
equation (7) for the temperature. In this method the number of independent ODE's to NS+ 1, and the
temperature doesnot enter into the problem as an explicit computation of the Jacobian matrix (of size (NS+ 1) by
independent variable, so the number of independent (NS+ 1)) involved the calculation of 2NS+ 1 additional
ODE's is equal to the number of species NS and the terms. In this method, the integrator tracks the solutions
Jacobian matrix is of size NS by NS. The integrator for both the temperature and the speciesmole numbers.
therefore tracks only the solution for the mole numbers.
As shown later, this did not introduce significant errors
because the species concentrations changed faster than AccuracyEstimate
the temperature (figs. 1 and 2) and the step length was To compare the accuracy of the algorithms, standard
determined by the rate at which the variables changed, solutionsmust be establishedsince exactsolutions for the
Sincethe integrator did not compute a solution for the test cases are not known. The solutions usedas standards
temperature, it was evaluated from the solution for the were those generated by using LSODE-B (which is
molenumbers returned by the integrator. In addition, the LSODE using method B for computing the temperature)
temperature was computed whenever the species time because LSODE and its predecessors have been
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3500 fH N22 H20 I 4000

i0-1 I0"1

""..-........ 3000 3500

10-2 10-2

10-5 10-5
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Figure 1.--Variation with time of species mole fractions and Figure 2.--Variation with time of species mole fractions and
temperature for test problem 1. Solution generated with LSODE-B temperature for test problem 2. Solution generated with LSODE-B
and EPS = 10-s. and EPS = 10-5.
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extensively tested on a wide variety of problems (refs. 7, several thousand grid points for relatively short times
8, 27 to 29). A low relative error tolerance (EPS -- 10-5) between fluid mechanic time steps (ref. l 1).These models
was used, and the method flag MF was set equal to 21 generally also have large storage requirements. Hence
(stiff method, user-supplied analytic evaluation of the reaction rate integration techniques with both a low
complete Jacobian matrix). As discussed in appendix B, storage requirement and a low initialization (startup)
LSODE requires the specification of values for both the time are needed.
local relative and absolute error tolerances. In the test The storage requirements (for 20 species and 36
problems examined in this study the species mole reactions) for the single-precision versions of CREK1D,
numbers and temperature differed widely (tables IV and LSODE, EPISODE, CHEMEQ, and DASCRU are given
V), so relative error control was appropriate. Pure in table VI. The storage requirements for LSODE,
relative (or absolute) error control can be realized by EPISODE, and DASCRU are for versions that included
using a value of zero for the absolute (or relative) error both methods A and B for calculating the temperature.
tolerance. However, since some of the mole numbers had The temperature method to be used was specified via a
zero initial values, a truly relative error criterion could temperature-method flag. Also, for LSODE the given
not be used. To make the local error control mostly figure does not include the storage required by
relative, low values for the absolute tolerance for species subroutines (included in this package) that are not
mole numbers and zero for temperature were used. essential for its execution with method flag MF=21. The
Values for the absolute error tolerances for the species storage shown in table VI for GCKP84 is that required by
mole numbers were obtained by progressively decreasing the double-precision version. We note that the special-
them until the temperature-time trace showed essentially purpose codes CHEMEQ and CREK1D required much
no change with a further decrease. The values used for less storage than the general-purpose codes EPISODE
the absolute error tolerances for the species mole and LSODE. GCKP84 required more storage than the
numbers were 10- 14and 10- 11 for test problems 1and 2, other codes because of the precision used and also
respectively, because of the various options built into it. Although

To determine if the use of solutions generated with GCKP84 is a special-purpose code in that it has been
LSODE as standards biases the test in favor of LSODE, developed for chemical kinetics problems, it can be used
we explore the use of other standards in the section to solve a wider variety of problems than CHEMEQ and
Efficiency Comparisons and show that these do not give CREK1D (ref. 18).
different results. The CPU time required by each code to successfully

The standard solutions (for the mole fractions and complete the first step was taken as a measure of the
temperature) are shown in figures 1 and 2 for test startup time. Each code was run with alow value for the
problems l and 2, respectively. The values for the mole elapsed time to ensure that only one step was taken to
fractions and temperatures at various times are shown in complete the problem. Note, however, that because of
tables IV and V for problems 1 and 2, respectively. The the automatic filtering of initial conditions (appendix A),
third column in these tables presents immediate CREK1D took two steps to return with a solution. The
postinduction (i.e., end of the essentially isothermal CPU times (in milliseconds) required for the first step
reaction period) values, and the remaining columns show (and the first two steps for CREK1D) are given in table
development of postinduction profiles. The last column VII. The general-purpose codes required longer
shows the equilibrium solution obtained by using a Gibbs initialization times than the special-purpose codes.
function minimization routine (ref. 26). GCKP84 required a much longer startup time than the

Although these standard solutions were generated by other codes for the same reasons that its storage
using temperature method B, method A was also used requirement is greater and also because of the extra work
during these computations to evaluate the temperature,
using only the solution for the mole numbers returned by
the integrator. This was done to see if any consistent TABLE VI.--STORAGE
differences could be observed between values generated REQUIREMENTS
by using method A (TA in tables IV and V) and those Method Storagesize,
generated by using method B (TB in tables IV and V). The bytes
consistently excellent agreement between T.4 and TB
indicates that either method A or B would suffice for GKCP84a 205948

CREKID 26 304
computing the temperature. LSODE 47152

EPISODE 35 116

Storage Requirement and Startup Time CHEMEQ-A 10832CHEMEQ-B 10552

Multidimensional models for reactive flows require the DASCRU 10 928

integration of large sets of reaction rate equations at aDoubte-orecisionversion.



TABLE VlI.--CENTRAL PROCESS- 10-2 for the error tolerance EPS, and a solution (with
ING UNIT TIMES REQUIRED TO output at various times) was generated. The computedSUCCESSFULLY COMPLETE

FIRSTSTEP temperature-time profile was then compared with the
standard solution and was accepted if within 50 kelvins.

Method Problem 1 Problem 2 Otherwise, it was rejected and a lower value for EPS was
tried. This ensured that computational work was

CPU time,CPUms, compared with codes of comparable accuracy. All of the
GCKP84 32 44 results presented herein, except EPISODE and GCKP84
CREKID a9 a17 for test problem 1, satisfied this criterion. In other words,
LSODE-A 20 24 for these codes no EPS _> 10-6 resulted in acceptable
LSODE-B 19 24 agreement. With DASCRU the temperature did not
EPISODE-A 14 18 satisfy this criterion during early heat release for testEPISODE-B 13 18

CHEMEQ-A 6 10 problem 1.
CHEMEQ-B 6 8 For test problem 2, some runs with DASCRU and
DASCRU-A 7 11 LSODE predicted zero mole numbers for the nitrogen
DASCRU-B 6 10 dioxide at times when the standard solutions had risen to

aTim¢requiredforfirsttwo steps, measurable levels (of the order of 0.1 ppm). All codes
were therefore required to satisfy the following

involved in handling species whose mole numbers have additional criterion: a run was accepted only if it
zero initial values (see ref. 18 for details), predicted nonzero mole fractions for all species whose

standard solution values were greater than or equal to

Efficiency Comparisons 10-7. All results presented herein satisfied this criterion.
Each code was run with the maximum (and lower)

The procedure described in the section Computational values of EPS that resulted in acceptable agreement with
Procedure was used to study the computational work the standard solution. The computational work was
required by the different techniques examined in this obtained by following the procedure outlined earlier.
study. For LSODE, EPISODE, CHEMEQ, and Figures 3 and 4 present the computational work
DASCRU both temperature methods A and B were (expressed as the CPU time in seconds required on the
attempted. NASA Lewis Research Center's IBM 370/3033 com-

The codes examined in the present study require the puter) plotted against the local error tolerance EPS for
specification of several parameters in addition to the test problems 1 and 2, respectively. For all codes except
local error tolerance EPS required of the solution. Values EPISODE and DASCRU, EPS is the local relative error
for these parameters that minimized the computational tolerance required of the numerical solution. For
work required by each code were obtained by using a EPISODE, EPS is a mixed relative and absolute error
trial-and-error process. Following are the user-supplied tolerance--relative for species with initially nonzero mole
parameters (excluding the local error tolerance EPS and numbers and for temperature (method B) and absolute
the elapsed time at which the integration is to be for species with initially zero mole numbers4. For
terminated) required by each code (see appendix B for a DASCRU, EPS is absolute for variables whose
detailed discussion)--for EPISODE: the method flag magnitude is less than 10-3 and relative otherwise. For
MF, the error control to be performed IERROR, and the this study, because the maximum permissible local
initial step length H0 to be used; for LSODE: the method relative error in the temperature calculated by using
flag MF, the error control to be performed ITOL, and method B was EPS, ERMAX (the relative error allowed
the values for the absolute error tolerances for the in the Newton-Raphson iteration procedure used in
independent variables; for CHEMEQ: the maximum
number of corrector iterations ITMAX allowed before
nonconvergence is declared; for CREK1D: the maximum
number of corrector iterations ITMAX allowed before 4Because some mole numbers had zero initial values, pure relative

nonconvergence is declared and the maximum error control (option IERROR=2) could not be used with EPISODE.
The option IERROR = 3 was used, instead. This is a semirelative error

temperature change AT allowed before thermodynamic control where, for a variable that is initially nonzero, the error control is
properties and reaction rate constants are updated; for relative. For a variable that is initially zero, the error control is absolute

GCKP84: since details for this technique are not yet until the variable reaches 1 in magnitude, when the control becomes
available, default values for all parameters to be used; for relative. Since none of the mole numbers reaches a value of unity, the

error control is always absolute for species with initially zero mole
DASCRU: a guess for the initial step length H0 to be numbers. In CHEMEQ and CREK1D, mole numbers less than l0 -2°
used. were set equal to 10-20. In addition, in CREK1D the convergence test

The following selection procedure was adopted in was applied only to species whose mole numbers are greater than 10- 20
using these techniques: each code was run with a value of (appendixA).
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method A to solve the algebraic energy equation) was set For codes5 that failed to satisfy the comparison with
equal to EPS to make the two methods comparable. For LSODE, new standards were established. For every one
the same reason, with LSODE-B the absolute error of these codes the solutions used as the new standards
tolerance for the temperature was set equal to zero. were those generated by the code itself using a low value

For test problem 1, very small values for the error for EPS. All runs that had previously been rejected were
tolerance had to be used for GCKP84, EPISODE, and then compared with these new standards, which were all
DASCRU (fig. 3). Even with EPS = 10-6, EPISODE-A, found to be essentially the same as the standard solutions

EPISODE-B, and GCKP84 did not accurately track the generated with LSODE. More specifically, the following
temperature during ignition and heat release, when the comparisons were made: for test problem 1 the runs with
solution changed rapidly (fig. 1). For EPS _ 5x 10-6, GCKP84 and EPS _> 5 x 10-6 were compared with the
EPISODE predicted physically meaningless results--little solution generated with GCKP84 and EPS = 10-8, and
or no change from initial values after an elapsed time of the runs with CHEMEQ-B and EPS _> 5× 10-3 were
1 ms. However, with GCKP84 and DASCRU, although compared with the solution generated with CHEMEQ-B
higher values of EPS resulted in poor solutions during and EPS= 10-5. For test problem 2 the runs with
ignition and heat release, the predicted solutions during GCKP84 and EPS _> 5 x 10-5 were compared with the
equilibration were satisfactory. For example, with solution generated with GCKP84 and EPS= 10-8, and
GCKP84 and DASCRU, values of EPS as high as the runs with EPISODE-A and EPISODE-B with
5 x 10-3 and 10-3, respectively, were adequate to track EPS _ 5 x 10-5 were compared with solutions generated
the temperature in this regime with an error of less than with EPISODE-A and EPISODE-B, respectively, and
1 percent. The run with GCKP84 and EPS=10-2 EPS=10-6. In making these new comparisons the
exhibited serious instability and so was terminated, selection criterion remained the same: namely, accept the

Similar remarks apply to test problem 2 where, again, run if the predicted temperature-time profile is within 50
small values of EPS had to be used with EPISODE-A, kelvins of the new standard. These additional
EPISODE-B, and GCKP84 to track correctly the comparisons did not result in the acceptance of any run
temperature during ignition and heat release. During that had previously been rejected. Furthermore, for test
equilibration, higher values for EPS could be used problem 1 the run with GCKP84 and EPS-- 10-6 failed
without incurring error penalties. With EPISODE and the 50 kelvin requirement when compared with GCKP84
GCKP84, values of EPS equal to 10-4 and 10-2, and EPS= 10-8. These additional comparisons not only
respectively, were adequate to follow the temperature support the use of solutions generated with LSODE as
within 1 percent in this regime, although these runs did standards, but also imply that LSODE, CREK1D, and
not satisfy the accuracy criterion during ignition and heat CHEMEQ-A are more accurate than the other codes•
release. EPISODE-A and EPISODE-B predicted little or
no change in the composition and temperature after an Figures 3 and 4 illustrate the difficulty associated with

using a classical method (in this case the explicit Runge-elapsed time of 1 ms for EPS greater than or equal to
Kutta method used in DASCRU) to integrate combustion

5 × 10-4 and 5 × 10-3, respectively• Although the runs
kinetic rate equations. The CPU times required for thewith EPISODE-B and EPS of 5 x 10-4 and 10-3 were
two test problems were of the order of 1 and 15 min,

successfully completed, the solutions were considerably respectively. Using this technique would make
inaccurate. Also, these runs were less efficient than the multidimensional modeling of practical combustion
run with EPS = 5 x 10- 5. For a more detailed study on devices prohibitively expensive•the variation of the CPU time with EPS, see references 30
and 31 For test problem 1 the difference in computational

• work required by methods A and B was small (fig. 3),
The selection procedure used above required that all with method B being more efficient. For test problem 2

integrators track the solutions generated with LSODE. (fig. 4) the difference was small for large values of EPS.
This accuracy criterion is subject to the following two But for small values of EPS the difference was more
objections: (1) it biases the test in favor of LSODE at the marked, with method A being significantly superior to
expense of the other integrators, and (2) there is no method B. The temperature-time profile was steeper for
guarantee that LSODE is more accurate than the other test problem 1 (figs. 1 and 2), indicating a stronger
codes examined in this study. The other integrators were
therefore being required to track not the true solutions

(which are not known) but solutions that could be less 5TheseincludeGCKP84 and CHEMEQ-B for testproblem1 and
accurate than what they themselves generated• In other GCKP84,EPISODE-A, and EPISODE-B for test problem 2.

words, the use of solutions generated with another Although some runs with DASCRU-A and DASCRU-B also failed to
satisfy the comparisons with LSODE, the new tests were not applied tointegrator might have resulted in the acceptance of some
DASCRU. The main purpose in using DASCRU was to illustrate the

runs that were rejected above. This possibility was difficulty associated with using classical methods to integrate
explored by further testing• combustionkineticrate equations.
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coupling between the species and the temperature. This values of EPS, however, GCKP84 was significantly
may explain why the inclusion of the temperature as an slower than LSODE, EPISODE, and CREK1D (ref. 30).
additional independent variable worked well for test It should be emphasized that GCKP84 is a general-
problem 1. But for test problem 2 the additional work in purpose chemical kinetics code designed to solve a variety
computing the temperature rate and the temperature- of chemical kinetics problems. Consequently the
dependent terms in the Jacobian matrix did not lead to overhead associated with functional and Jacobian

increased efficiency, evaluations is higher for GCKP84. In spite of the extra
LSODE and CREK1D were superior to the other codes work required per step GCKP84 has been shown to be an

examined in this study (figs. 3 and 4). Comparing efficient code for performing a wide variety of chemical
EPISODE and GCKP84 with CREK1D and LSODE was, kinetics calculations (ref. 18).
however, difficult for the reasons discussed below. The
error control performed by EPISODE is different from Computational Tactics
that performed by the other codes. As shown later, for

A simple way of increasing the efficiency of theproblems of the type examined in this study, the error
control used in EPISODE is inferior to that used in algorithms as applied to the present problem was
LSODE. To attain comparable accuracy at early times, explored. Experience with CHEMEQ-A showed that
EPISODE must use much lower values of EPS than computing the rate constants kj [=AjTNj exp (-Tj/T)]

and k_j [=A_jTN-j exp (-T_j/T)] every time theLSODE, a result seen earlier. Nevertheless, when interest
was restricted to computational efficiency, EPISODE species time derivatives are evaluated is quite inefficient.

Note that evaluating the rate constants necessitateswas an attractive alternative to LSODE and CREK1D,
especially for test problem 2 (see ref. 30 for details). In computing both the exponential terms in the expressions

for kj and k_j (eqs. 5(a) and 6(b)) and the fifth-orderusing EPISODE, however, a word of caution is in order.
The computational work can depend strongly on the polynomial expression used for the Gibbs functions (ref.
value for the initial step length H0 chosen by the user. A 26). To reduce the computational work associated with
poor guess for H0 can make EPISODE prohibitively evaluating the rate constants, these were updated only
expensive to use, as shown for test problem 2 in table when the temperature change exceeded a value AT.
VIII. Note an order-of-magnitude increase in the CPU Shown in table IX are the CPU times for various values
time for a change in H0 from 10-7 to 10-8. Although of AT using CHEMEQ-A on test problem 1. Note the

substantial decrease in computational workma value ofnot shown here, the solution was found to be adversely
affected by a poor choice for H0. Also, some values for AT= 0.1 kelvin resulted in about a 40-percent decrease in
H0 resulted in problems with solution instability, both the number of steps and the number of function

Comparing GCKP84 with CREK1D and LSODE was evaluations. Furthermore the number of rate constant
evaluations NRRC decreased from 27 736 to 2578 fordifficult because of the much lower values of EPS used

by GCKP84. These low values were necessary to satisfy AT= 0.1 kelvin. These reductions in computational work
the two independent accuracy criteria used above. For resulted in about a 70-percent decrease in the CPU time
test problem 1, GCKP84 was significantly slower than required to solve the problem.

EPISODE for the same value of EPS. For test problem 2 TABLEIX.--EFFECTOFMAXIMUMTEMPERATURE
its speed was comparable to those of LSODE-B and CHANGEALLOWEDBEFORE REACTION RATE
EPISODE-B for the same values of EPS. For larger CONSTANTUPDATEONWORKREQUIREDBY

CHEMEQ-A (EPS = 10-3) FOR
TEST PROBLEM 1

TABLE VIII.--EFFECT OF INITIAL STEP LENGTH ON

WORK REQUIRED BY EPISODE-A (EPS = 10-5) FOR Maximum Total Total Total Total
TEST PROBLEM 2 temperature number number of number of CPU time

change, of steps functional reaction rate required,
Initial Total Total Total Total AT, required, evaluations, constant CPU,
step number number number of CPU kelvin NSTEP NFE evaluations, s

length, of steps of functional Jacobian time NRRC
H0, required, evaluations, matrix required,

s NSTEP NFE evaluations, CPU, (a) 13 272 27 736 27 736 28.4
NJE s 0 13 272 27 736 18 624 24.8

.05 8 061 17 131 3 693 10.4
10-5 129 237 33 0.79 .1 8 030 17 103 2 578 10.0
10-6 129 231 31 .78 .5 13 582 28 394 953 14.4
10-7 126 225 36 .79 1 13 974 29 300 627 14.7
10-8 1168 2355 353 7.91 (b) 8 027 17 107 2 827 9.3
10-9 1170 2394 362 8.04
10-l0 133 231 32 .77 aNotused.

bCalculated by using eq. (16).
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In selecting a value for AT, care must be taken to avoid the use of equation (16) is given in tables IX and X.
poor approximations in the resulting reaction rates, Although using equation (16) did not necessarily result in
which leads to excessive computational work. Table X the fastest algorithm, it did result in shorter CPU times.
presents an example of such a case. A value of AT as For CHEMEQ-A this decrease was significant; but for
small as 1 kelvin resulted in an order-of-magnitude reasons discussed below, it was small for LSODE-A.
increase in the CPU time required to solve the problem. Using equation (16) resulted in significant savings for
The selection of an optimum value for AT--defined as CHEMEQ and DASCRU for all values of EPS used in
that value which results in minimum computational this study. But with EPISODE and LSODE the savings
work--is therefore a trial-and-error process, with it being were found to be small, especially when low values of
a function of the problem and the error tolerance EPS were used. The decreases in CPU time were more
specified, significant for CHEMEQ and DASCRU because these

To avoid repeated runs of the program in search of the two codes require many more reaction rate evaluations
optimum value for AT, an approximation for it was (NRRC in tables XI and XII) than EPISODE and
developed. The results are given below and details are LSODE. For EPISODE and LSODE the computational
presented in appendix C. By requiring that the maximum work required for evaluating AT by equation (16) is
relative error in the resultant reaction rates not exceed the therefore a greater fraction of the work saved by not
required relative error tolerance EPS, the following updating the rate constants than for CHEMEQ and
expression for AT was derived: DASCRU. In addition, when EPS was small, the

resulting AT has such small values that the decrease in
NRRC (and hence in computational work) is not

EPS T sufficient to offset the work required to update AT. This
AT= (16) update occurs more often as EPS is decreased.

maxI Tj +Nj; _ + N_j ] In incorporating equation (16) into codes that useJ T temperature method B, the following attempt at further
reducing the computational work was made. In addition
to updating the rate constants only for temperature

where T is the current value of the temperature, the bars changes greater than AT, the thermodynamic properties
I Idenote absolute value, and the maximum is taken over hi and cp,i (eq. (8)) were updated only for temperature
all forward and reverse reactions, changes greater than AT. This reduced the work

Every time the reaction rate constants were evaluated, associated with computing the fifth-order polynomial

which occurred only when the temperature change (since approximations used in evaluating hi and Cp,i (ref. 26).
the last update of the rate constants) exceeded AT, a new For CHEMEQ-B and DASCRU-B this resulted in
value of T could be calculated from equation (16). Thus increased efficiency for all values of EPS used in this
equation (16) provides a simple expression for the study. But for LSODE-B and EPISODE-B no consistent
automatic evaluation (through the history of the differences could be observed. Hence with LSODE-B
problem) of AT. The computational work resulting from and EPISODE-B the thermodynamic properties were

TABLE X.--EFFECT OF MAXIMUM TEMPERATURE
CHANGE ALLOWED BEFORE REACTION RATE

CONSTANT UPDATE ON WORK REQUIRED
• BY LSODE-A (EPS = 10-4) FOR

TEST PROBLEM 1

Maximum Total Total Total Total number Total CPU
temperature number number of number of of reaction time

change, of steps functional Jacobian rate constant required,
AT, required, evaluations, matrix evaluations, CPU,

kelvin NSTEP NFE evaluations, NRRC s
NJE

(a) 206 293 33 326 0.63
0 206 293 33 263 .58

.05 227 317 32 203 .58

•1 220 296 34 171 .54

.5 438 642 109 209 1.12

1 1224 2163 550 317 3.88
(b) 213 289 31 224 .57

aNot used.

bCalculated by using eq. (16),
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TABLE XI.--WORK REQUIRED FOR TEST PROBLEM 1

[Given CPU times represent minimum time required by each code to solve test problem 1.]

Method Error Relative Initial Total Total Total number Total number Total CPU
tolerance, error step number number of of Jacobian of reaction time

EPS tolerance, length, of steps functional matrix rate constant required,
ERMAX H0, required, evaluations, evaluations, evaluations, CPU,

s NSTEP NFE NJE NRRC s

GCKP84 10-6 (a) bl0 -6 309 684 54 684 3.13
CREK1D 10- 2 (a) (a) 84 280 32 91 .23
LSODE-A 10-2 10-2 (a) 114 165 27 105 .32
LSODE-B 5x 10-3 co (a) 101 156 27 113 .32
EPISODE-A 10-6 10-2 10 -10 244 463 41 435 .70
EPISODE-B 10-6 (a) 10 -9 248 460 36 447 .68
CHEMEQ-A 10-2 10-2 (a) 6 741 13 963 0 735 6.58
CHEMEQ-B 10 -3 (a) (a) 11 884 24 943 / 2 638 9.82

DASCRU-A 10-5 10-2 10-7 12 997 70 075 _ 31 395 43.2DASCRU-B 10-5 (a) 10 -7 12 822 69 185 _ 31 827 35.5

aNot needed.
bDefault value.
CAbsolute error tolerance for temperature.

TABLE XII.--WORK REQUIRED FOR TEST PROBLEM 2

[Given CPU times represent minimum time required by each code to solve test problem 2.]

Method Error Relative Initial Total Total Total number Total number Total CPU
tolerance, error step number number of of Jacobian of reaction time

EPS tolerance, length, of steps functional matrix rate constant required,
ERMAX H0, required, evaluations, evaluations, evaluations, CPU,

s NSTEP NFE NJE NRRC s

GCKP84 10-5 (a) bl0 -6 137 313 34 313 3.06
CREK 1D 10- 3 (a) (a) 140 439 138 214 1.04
LSODE-A 10-2 10-2 (a) 87 137 26 87 .47
LSODE-B 10- 2 co (a) 72 126 22 75 .45
EPISODE-A 10-5 10 -4 10 -6 127 227 31 229 .71
EPISODE-B 10-5 (a) 10 -9 145 303 34 273 .86
CHEMEQ-A 10-2 10 -2 (a) 8 167 17 033 0 1 171 13.7
CHEMEQ-B 10-2 (a) (a) 8 745 18 213 974 12.0
DASCRU-A 10-3 10-2 10-9 94 596 594 640 11 666 400
DASCRU-B 10-3 (a) 10-9 94 627 593 940 11 057 310

aNot needed.
bDefault value.
CAbsolute error tolerance for temperature.

updated every time the derivatives and the Jacobian problems 1 and 2 is presented in tables XI and XII,
matrix were evaluated. But with CHEMEQ-B and respectively. For temperature method A, ERMAX was
DASCRU-B these properties were evaluated only when allowed to be different from EPS (cf. figs. 3 and 4) and
the rate constants were updated.6 We note here that the value resulting in the least computational work was
CREK1Dallowsfor a user-specifiedATand both the rate used. For LSODE-B the value for the absolute error
constants and the thermodynamic properties are updated tolerance for the temperature was chosen similarly.
only for temperature changes greater than AT. Tables XI and XII present the values for the user-

The changes discussed above were incorporated into specified parameters that result in the least
CHEMEQ, DASCRU, EPISODE, and LSODE. The computational work. The CPU times given in tables XI
computational work required by each code for test and XII represent the minimum time required by each

code to solve test problems 1 and 2, respectively.
Comparing tables XI and XII with figures 3 and 4

6With method A, since a Newton-Raphson iteration technique was
used to compute the temperature, the thermodynamic properties were shows the savings realized by using equation (16). For
updated every time the derivatives and the Jacobian matrix were DASCRU (classical Runge-Kutta method) and
evaluated. CHEMEQ the decreases in CPU time were significant,
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ranging from about 30 to about 65 percent. For LSODE for times t greater than or equal to 5 x 10-5 and 10-4 for
and EPISODE the decreases were more modest, ranging test problems 1 and 2, respectively.
from negligibly small to about 20 percent. The mole fraction differences from the standard

Tables XI and XII show that CREK1D was the fastest solutions were largest at times immediately after ignition
code for test problem 1, and LSODE for test problem 2. and during heat release because the solutions were
Note that although CREK1D is only marginally faster changing rapidly in these regimes. During ignition and
than LSODE for problem 1, it is significantly slower for heat release GCKP84 and EPISODE were inferior to the
problem 2. We therefore conclude that LSODE is the other codes. However, at longer times they were superior
fastest code currently available for integrating chemical to the other codes. These results for species mole
kinetic rate equations. LSODE is faster than CREK1D fractions are consistent with the solutions for the
because of (1) better step length control, especially at temperature. In addition, as discussed in the section
early times (see the section Step Length Comparisons for Efficiency Comparisons, although the use of larger error
details) and (2) less frequent update of the Jacobian. For tolerances gave poor solutions during ignition and heat
test problem 2, CREK1D requires 138 Jacobian release, the predicted solutions were satisfactory at longer
evaluations, whereas LSODE-B requires only 22 times. Hence, where the main objective of modeling is to
Jacobian evaluations (table XII). The main difficulty in predict pollutant (e.g., NOx) formation, the user can
using LSODE is the trial-and-error procedure necessary specify fairly large error tolerances without incurring
to obtain optimum values for the absolute error severe errorpenalties. Again, we note that the differences
tolerances for a given value of EPS. between the solutions generated with methods A and B

(and the same value of EPS) are not significant. Among
the codes that use a large error tolerance, CHEMEQ was

Accuracy Comparisons the most accurate during ignition and early heat release;
during late heat release and equilibration, LSODE and

The standard solutions established in the section CREK1D were superior to the other codes.
Accuracy Estimate and given in tables IV and V were EPISODE was inferior to LSODE and CREK1D at
used to compare the accuracy of the algorithms examined early times because of the difference in the error control
in this study. Tables XIII and XIV give the differences performed by these codes. In contrast to the other codes
from the standard solutions, in percent, for the solutions for which EPS is the local relative error tolerance, EPS is
obtained with the optimized codes. The valueschosen for a mixed error tolerance for EPISODE; that is, it is
the user-specified parameters are given in tables XI and relative for species with nonzero initial mole numbers and
XII for test problems 1 and 2, respectively. As expected, absolute otherwise. Since most of the species had zero
all temperature predictions were in close agreement with initial mole numbers for both problems examined in this
the standard solutions, except for the immediate study (tables IV and V), the error control performed by
postinduction solutions with GCKP84 and EPISODE. EPISODE was mostly absolute. For pure relative error
Unlike the other codes CHEMEQ tracked the control the estimated local truncation error Eiin speciesi
temperature more accurately during induction and heat satisfies
release than during equilibration. During equilibration all
other codes tracked the temperature well, with GCKP84
and EPISODE being superior to the other codes because Ei<-Crelni (17)
of the use of a much smaller error tolerance. These

temperature differences show that even for solutions where ereI is the local relative error tolerance. For pure
generated with large values of EPS, the differences be- absolute error control Ei satisfies
tween temperature methods A and B were insignificant.
Furthermore, for test problem 1, solutions generated
with EPISODE-A and DASCRU-A were as accurate as Ei--<Cabs (18)

those generated, respectively, with EPISODE-B and

DASCRU-B, although ERMAX was much larger than where Cabs is the local absolute error tolerance. Equations
EPS (table XI). Similar remarks apply to test problem 2 (17) and (18) show that, since ni < < 1, relative error
and the runs with EPISODE and DASCRU. control is more accurate for the same value of the local

The numbers in parentheses in tables XIII and XIV are error tolerance. In other words, to attain comparable
values for the percent differences obtained by ignoring all accuracy for mole numbers that were initially zero,
species with standard solution values for mole fractions EPISODE requires lower values of EPS than the other
less than 10-7 . This was done because the selection codes. Equations (17) and (18) also show that the error
criterion used in the section Efficiency Comparisons controls are of comparable accuracy for ni of order
involved only species with mole fractions greater than or O(Cabs/Crel),a result that can be used to examine the
equal to 10-7. All mole fractions were larger than 10 -7 difference in accuracy attained by EPISODE and
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TABLE XIII.--DIFFERENCES FROM STANDARD SOLUTIONS FOR

TEST PROBLEM 1

[Numbers in parentheses are values obtained by ignoring species with mole fractions less than
10-7.]

Method Time, t, s

9x10-6 10-5 5x10-5 10-4 [ 5x10-4 [ 10 -3

Difference in mole fractions, (rms), percent

GCKP84 4.001 × 103 3.866 x 104 2.076 0.795 0.138 0.121

(266.0) (228.8)
CREK1D 689.5 2.822 x 103 .502 .515 .274 .257

(3.965) (4.008)
LSODE-A 766.6 3.082×103 .619 .700 .512 .122

(10.05) (9.280)
LSODE-B 2.002x 106 1.044× 10l° .871 .764 .335 .184

(10.32) (9.687)
EPISODE-A 4.781 x 103 5.659 x 104 2.157 .784 .0873 .0701

(310.4) (267.0)
EPISODE-B 7.702 x 104 6.789 x 107 2.182 .791 .0881 .0725

(317.2) (273.0)

CHEMEQ-A 647.1 2.618 x 103 10.48 15.64 32.72 42.17
(0.305) (0.299)

CHEMEQ-B 649.4 2.622× 103 5.306 10.39 19.17 20.80
(0.154) (0.150)

DASCRU-A 1.785 x 103 9.228 x 103 1.174 .435 .225 .350

(107.8) (94.66)
DASCRU-B 1.819x 103 9.486 x 103 1.183 .430 .232 .391

(110.8) (97.14)

Difference in mole fractions (maximum), percent

GCKP84 1.324 x 104 1.282 x 105 5.528 1.957 0.451 0.360

(374.5) (330.7)
CREKID 2.285 x 103 9.359 x 103 - .862 .893 - .584 .598

(5.485) (5.746)
LSODE-A 2.541 x 103 1.022 x 104 - 1.398 - 1.498 - 1.033 - .234

(13.72) (13.10)
LSODE-B 6.641 x 106 3.464 x 10l° - 1.695 - 1.624 - .697 .459

(14.42) (14.25)
EPISODE-A 1.583 x 104 1.877 x 105 5.749 1.895 .285 .209

(439.6) (386.5)
EPISODE-B 2.555 x 105 2.252 x 108 5.814 1.917 .288 .212

(449.6) (395.1)

CHEMEQ-A 2.144x 103 8.683 x 103 19.08 28.49 -56.32 -72.11
(- 0.446) (- 0.440)

CHEMEQ-B 2.152 x 103 8.695 x 103 8.920 18.32 36.89 40.45
(- 0.236) ( - 0.208)

DASCRU-A 5.911 x 103 3.060 x 104 3.082 .953 -.397 - .595

(148.8) (135.2)
DASCRU-B 6.022 x 103 3.146x 104 3.114 .953 -.424 -.684

(153.0) (138.8)

Difference in temperatures, percent

GCKP84 0.899 4.572 0.208 0.0795 0 0.0381

CREK 1D .0497 .111 .0606 .0357 .0333 .0322
LSODE-A .0587 .172 .0951 .0840 .0448 .0360

LSODE-B .0588 .177 .136 .103 .0501 .0442
EPISODE-A 1.107 5.548 .204 .0628 .00629 .0236
EPISODE-B 1.137 5.697 .207 .0634 .00620 .0236

CHEMEQ-A .0365 .0430 - 1.466 - 1.635 - 1.917 -2.163
CHEMEQ-B .0333 .0409 .449 .904 1.491 1.539
DASCRU-A .300 1.590 .0831 .0398 - .0381 0

DASCRU-B .300 1.590 .125 .0398 - .0381 - .0381
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TABLEXIV.--DIFFERENCESFROM STANDARDSOLUTIONSFOR TEST PROBLEM2

[Numbersin parenthesesare valuesobtainedby ignoringspecieswithmole fractionsless than 10-7.]

Method Time, t, s

3x10-6 5×10-6 10-5 5x10-5 10-4 5X 10-4 10-3

Differencein mole fractions(rms),percent

GCKP84 143.6 8.772X107 8.447 0.731 0.615 0.852 0.835

(103.2) (15.98) (5.925) (0.723)
CREK1D 4.106 3.570x 107 0.322 0.0458 .0459 .213 .297

(1.089) (0.504) (0.222) (0.0435)
LSODE-A 11.62 4.486x 107 10.62 0.444 1.011 .0721 .170

(8.642) (1.977) (8.086) (0.380)
LSODE-B 653.9 10.85 12.45 1.854 2.159 .563 .592

(30.83) (7.167) (8.741) (1.584)
EPISODE-A 105.7 7.612x 107 6.996 0.798 .276 .0358 .0449

(76.26) (14.11) (4.806) (0.621)
EPISODE-B 157.3 8.743X 10 7 8.542 0.947 .358 .0260 .0174

(101.0) (15.87) (5.883) (0.737)
CHEMEQ-A 3_830 3.457× 107 0.0528 2.885 10.25 26.71 37.85

(0.198) (0.0893) (0.0382) (2.570)
CHEMEQ-B 3.839 3.447× 107 0.103 1.591 5.990 25.40 38.50

(0.234) (0.138) (0.0735) (1.433)
DASCRU-A 30.17 10.23 25.90 0.362 8.571 .477 9.640

(23.24) (7.541) (1.829) (0.280)
DASCRU-B 30.18 1.247× 107 2.615 0.261 .564 .641 7.164

(23.24) (7.085) (1.787) (0.201)

Differenceinmole fractions (maximum),percent

GCKP84 317.5 3.397x 108 21.03 1.471 - 1.396 - 1.622 - 1.764
(164.2) ( - 26.75) (21.03) (1.471)

CREK1D - 10.382 1.383× 10s 0.768 - 0.101 -.122 -.446 -.609
(1.728) (-0.854) (0.768) (-0.101)

LSODE-A 21.85 1.738x 10s 29.12 0.965 - 1.706 .144 .382
(13.64) (-3.207) (29.12) (0.934)

LSODE-B 1.987× 103 30.55 36.45 4.051 3.932 1.229 1.203
(48.95) (- 12.25) (31.51) (3.821)

EPISODE-A 222.4 2.948× 108 17.13 2.034 .717 .0684 .131
(121.5) (-24.06) (17.13) (1.820)

EPISODE-B 309.8 13.386x 108 20.97 2.422 .898 .0621 .0303
(160.7) (-26.87) (20.97) (2.179)

CHEMEQ-A - 12.32 1.339x 108 -0.151 -6.203 -20.52 -46.38 -63.40
(-0.334) (0.177) (-0.129) (-6.203)

CHEMEQ-B -12.51 1.335x 108 -0.281 -3.034 11.18 44.45 65.14
( - 0.402) (0.256) ( - 0.260) ( - 2.731)

DASCRU-A 57.47 23.44 - 100.0 0.934 33.19 .957 37.25
(38.03) (- 14.62) (6.530) (0.840)

DASCRU-B 57.50 4.830× 107 6.359 0.674 -2.174 - 1.244 27.24
(38.03) ( - 11.89) (6.359) (0.630)

Differenceintemperatures,percent

GCKP84 0.333 2.203 0.733 0.0795 0 0 0
CREK1D .00477 .0875 .0152 - .00135 .0218 .0126 - .00641
LSODE-A .0306 .370 - .266 .146 .203 - .0179 - .0282
LSODE-B .105 1.017 -. 140 .310 .373 .0704 .0406
EPISODE-A .261 1.856 .635 .0739 .0361 - .00448 - .00292
EPISODE-B .344 2.194 .770 .0910 .0466 - .00447 - .00421
CHEMEQ-A .00486 .0209 - .0227 - .524 - 1.381 - 1.025 - 1.227
CHEMEQ-B -.00189 .0108 - .0288 - .107 .0265 1.283 1.678
DASCRU-A .0665 .796 .262 .0398 .0367 0 .0687
DASCRU-B .0665 .796 .262 0 0 - .0687 - .138

18



LSODE, for mole numbers that are initially zero. Using confirmsthis behavior. Wenote that, relativeto LSODE,
the values for the error tolerances given in tables XI and EPISODE was (1) inferior at short times, (2)superior at
XII, we found that the two codes were of comparable long times, and (3) comparable at intermediatetimes.
accuracy for ni of order O(10-4) and O(10-3) for test These observationsimply that the error control used by
problems 1 and 2, respectively.It should be emphasized EPISODE is unsatisfactory for problems of the type
that these values are only estimatesbecause the two codes examined in this study. Many of the variableshave zero
control the root-mean-square norm of the estimatedlocal initial values and they never reach unity. The nature of
errors and not the estimated local error for each species, the error control performed by EPISODE therefore

These estimates for mole numbers correspond to mole requires small values of EPS for acceptable accuracy at
fractions of order O(10 -3 ) and O(10-2) for test short times. The continued use of these small values of
problems 1 and 2, respectively,assuming a mixture mean EPS at long times is wasteful because it results in
molar massof order O(10).Tables IV and V and figures 1 solutions that are more accurate than required by the
and 2 show that these values were not attained at early selection criterion. A simple method for increasing the
times by species with initial zero mole numbers. Hence efficiency of EPISODE is therefore to switch to pure
EPISODE is expected to be inferior to LSODE during relativeerror control (IERROR= 2) with a larger valueof
ignition and early heat release. However,during late heat EPS once the species mole numbers have reached
release and equilibration, when many of the mole acceptablevalues.Tables XV and XVI present the effects
numbers exceedthese values, EPISODE is expectedto be of such a switch. In these tables, tswitch is the time at
superiorto LSODE. Examination of tablesXIII and XIV which the switchwas made. The program was run up to

TABLE XV.--EFFECT OF SWITCH TO PURE RELATIVE ERROR
CONTROL ON COMPUTATIONAL WORK REQUIRED FOR

TEST PROBLEM 1

(a) EPISODE-A

Time at Total Total Total Total Total
which number number number number of CPU
error of steps of of Jacobian reaction time

control is required, functional matrix rate required,
switched, NSTEP evaluations, evaluations, constant CPU,

tswitch, NFE NJE evaluations, s
s NRRC

10-5 121 223 39 175 0.37
1.5 x 10-5 150 290 40 273 .48
2x 10-5 164 314 40 294 .51

2.5 x 10-5 175 332 40 304 .53
5x 10-5 194 369 42 347 .58

10-4 209 394 41 367 .62
5x 10-4 236 444 44 415 .68
al0- 3 244 463 41 435 .70

(b) EPISODE-B

Time at Total Total Total Total Total
which number number number number of CPU
error of steps of of Jacobian reaction time

control is required, functional matrix rate required,
switched, NSTEP evaluations, evaluations, constant CPU,

/switch, NFE NJE evaluations, s
s NRRC

1.5 x 10 -5 140 257 37 240 0.43
2 x 10 -5 148 278 37 258 .45

2.5 x l0 -5 157 292 36 277 .47

5x 10 -5 181 340 37 322 .53
10 -4 201 367 39 350 .57

5× 10-4 234 436 41 413 .66
al0- 3 248 460 36 447 .68

aNo switching performed.
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TABLE XVI.--EFFECT OF SWITCH TO PURE RELATIVE ERROR

CONTROL ON COMPUTATIONAL WORK REQUIRED FOR
TEST PROBLEM 2

(a) EPISODE-A

Time at Total Total Total Total Total
which number number number number of CPU
error of steps of of Jacobian reaction time

control is required, functional matrix rate required,
switched, NSTEP evaluations, evaluations, constant CPU,

/'switch, NFE NJE evaluations, s
s NRRC

3 × 10-6 92 167 35 132 0.53
4x 10-6 119 212 35 172 .64
5x 10-6 101 186 31 168 .58

10- 5 112 204 36 188 .65
5x10 -5 118 218 34 204 .68

10-4 125 227 35 215 .72
5× 10-4 128 233 35 219 .72
al0 -3 127 227 31 229 .71

(b) EPISODE-B

Time at Total Total Total Total Total
which number number number number of CPU
error of steps of of Jacobian reaction time

control is required, functional matrix rate required,
switched, NSTEP evaluations, evaluations, constant CPU,

tswitch, NFE NJE evaluations, s
s NRRC

4 x 10 -6 88 173 30 140 0.54
5x 10 -6 104 215 32 170 .62

10 -5 119 221 36 191 .67
5 × 10- _ 127 242 32 219 .71

10- 4 130 248 33 229 .73
5 × 10 -4 142 296 37 258 .84

al0- 3 145 303 34 273 .86

aNo switching performed.

time t = tswitch with IERROR = 3 and EPS of 10- 6 and work associated with the reinitialization and restart of the
10-5 for test problems 1 and 2, respectively. At t = tswitch integrator.
the integrator was reinitialized, the error control was (3) Using low values of EPS for t_<tswitchresults in
switched to IERROR =2, and EPS was increased to tighter error control than is necessary to satisfy the
10-2. The problem was then run to completion with these accuracy criterion for species with initially nonzero mole
new values for IERROR and EPS. Note the significant numbers and for the temperature.
decreases in the computational work obtained by A more appropriate error control for problems of the
switching to pure relative error control. The resultant type examined in this study is therefore one that is
CPU times compare favorably with those required by absolute for mole numbers that are initially zero and that
LSODE. This switching process is, however, unsat- automatically becomes relative once these mole numbers
isfactory for the following reasons: reach acceptable values. The error control should also be

(1) The value of/'switchthat minimizes the CPU time is relative for species with initially nonzero mole numbers
a function of the problem and the temperature method and for the temperature. Such an error criterion can be
used. Moreover, a poor choice for tswitch can make the realized by requiring Ei to satisfy
run prohibitively expensive. For example, for test

problem 1 the run with EPISODE-B and tswitch= 10-5 (19)
was not successfully completed even after a CPU time of Ei _ erelni+ _abs,i
2 min.

(2) The switching requires unnecessary computational where Eabs,i is the local absolute error tolerance for
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Figure 5.--Variation with time of the step length successfully used by GCKP84, CREKID, EPISODE, and LSODE for test problem 1.

species i. For values of r/i < (_abs,i/_rel) the error control Figures 6 and 8 illustrate the small steps that classical
is mostly absolute, and for ni > (eabs,i/erel) it is mostly methods have to use to ensure solution stability. For both
relative. This is, in fact, the nature of the error control test problems the explicit Runge-Kutta technique used
used in LSODE; it is therefore more efficient than small step lengths to track the solutions through
EPISODE for integrating combustion kinetic rate induction and heat release. During equilibration the step
equations, lengths remained small, and thus prohibitive amounts of

computer time were required. The difficulties with
Step Length Comparisons CHEMEQ (figs. 6 and 8) included the selection of a very

All codes used in the present study automatically select small initial step length, the continued use of small step
a step length during the course of the integration. Some lengths because of the very small increases allowed after
of the codes (GCKP84, DASCRU, and EPISODE) satisfactory convergence, and its inability to select a
require trying a user-supplied initial value. The other suitable step length during equilibration. Much computer
codes automatically select the value for the initial step time was wasted in the search for an appropriate step
length. The size of the step successfully used by the code length. In addition, the search was restrictedto very small
indicates both the efficiency of the code and regions step lengths. These factors make CHEMEQ very
where difficulties due to stiffness arise. Figures 5 to 8 expensive to use.
present plots of the step length used by each code through We note that all codes use small steps during induction
the course of each problem. To facilitate comparisons and early heat release. In these regimes the species and
(among the faster codes) at early times for test problem 2, temperature change rapidly (figs. 1 and 2). Most of the
figure 9 presents the variation of the step length between species and temperaturehave positive time constants--an
t= 10-6 and t= 10-5. indication that the differential equations are unstable.
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Figure6.--Variation with time of the steplengthsuccessfullyused by CHEMEQ-Aand DASCRU-B for test problem1.
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Figure7.--Variation with timeof the step length successfullyusedbyGCKP84, CREK1D,EPISODE,and LSODEfor test problem2.
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Figure 8.--Variation with time of the step length successfully used by CHEMEQ-B and DASCRU-A for test problem 2.
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Figure 9.--Variation with time of the step length successfully used at early times by GCKP84, CREKID, EPISODE-A, and LSODE-A for test
problem 2.
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Hence the step lengths are constrained to small values. This study has shown that for comparable accuracy the
For test problem 1, EPISODE was superior to fastest package currently available for integrating

GCKP84 and CREK1D was superior to LSODE. Note combustion kinetic rate equations is LSODE. This merits
that although in the postinduction regime EPISODE special notice because LSODE was developed as a
selected steps comparable to those selected by LSODE, multipurpose stiff differential equation solver with no
its difficulty in tracking the solution during ignition and one particular application as its objective. Its disadvan-
early heat release made it less efficient than LSODE. For tages, however, include a large storage requirement and a
test problem 2, at long times, CREK1D took step lengths relatively long startup time. Where storage is a significant
comparable to those of LSODE. However, at times problem, both EPISODE and CREK1D are attractive
preceding and immediately after ignition (t=3 /xs), alternatives. However, a poor guess for the initial step
CREK1D took much smaller step lengths and was hence length to be tried by the integrator can make EPISODE
less efficient than LSODE. Although not presented prohibitively expensive to use. It can also result in
herein, the run with CREK1D and EPS= 10-2 showed incorrect and unstable solutions. Some experimentation
that this code had difficulty selecting a suitable step with different values for the initial step length may be
length at early times. Much computer time was wasted by necessary to obtain its optimum value. In addition, the
repeatedly unsuccessful attempts at selecting a larger step error control performed by EPISODE was found to be
length. This run was therefore less efficient than the one unsatisfactory for problems of the type examined in this
with EPS = 10- 3 (fig. 4). The step lengths selected by study. For acceptable accuracy at short times small values
EPISODE were comparable to those selected by of the error tolerance had to be used. Significant
GCKP84, although the former used larger steps initially, decreases in computational work were obtained by

The results discussed above indicate that the step switching to pure relative error control in the
length to be used is regime dependent: during induction postinduction regimes. An error control that is more
and early heat release, when the solution changes rapidly, appropriate for combustion kinetics problems is required
small steps have to be taken to ensure solution stability, for additional increases in computational efficiency. The
The search for large step lengths is both futile and code CREK1D needs refinement in the area of step-
expensive. At later times, however, when the differential length selection, especially at early times, before
equations are more stable, larger step lengths can be significant increases in its speed can be realized.
used. In these regimes it is worth attempting to use a The step length to be used in integrating combustion
larger step length after every step. kinetic rate equations was found to be regime dependent.

During induction and early heat release, small steps had
to be taken to ensure solution stability. At later times,
however, when the differential equations were more

Summary of Results and Conclusions stable, larger steps could be used.
An important conclusion from this study is that using

Several algorithms (GCKP84, CREK1D, LSODE, an algebraic energy conservation equation to calculate
EPISODE, CHEMEQ, and DASCRU) for numerically the temperature does not result in significant errors or
integrating stiff ordinary differential equations arising in inefficiencies. On the contrary, this method can be more
combustion chemistry have been compared. The accurate and efficient than evaluating the temperature by
following performance indicators were recorded for integrating its time derivative.
purposes of this comparison: Another important conclusion is that, where the

(1) Total number of steps required to solve a problem objective of modeling is to predict pollutant (e.g., NOx)
(2) Total number of derivative evaluations formation, the user can specify large error tolerances
(3) Total number of Jacobian matrix evaluations without incurring significant error penalties.
(4) Total number of rate constant evaluations A simple method for realizing significant efficiency
(5) Total CPU time required to solve a problem increases was demonstrated. This involved updating the

reaction rate constants only for temperature changes
In addition, the errors relative to reference solutions greater than an amount that was problem dependent. An
(generated with LSODE with a very low relative error expression for the maximum temperature change allowed
tolerance) were recorded at selected times. These tests before such an update was presented and shown to result
were conducted on two combustion kinetics problems: in significant savings.
one involving 11 species and temperature with 12 reac-
tions, and the other involving 15species and temperature
with 30 reactions. Both problems included all three Lewis Research Center
combustion regimes: induction, heat release, and National Aeronautics and Space Administration
equilibration. Cleveland, Ohio, June 6, 1984
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Appendix A

Outline of Methods Studied

The ordinary differential equations (2) and (8) this study, some (CHEMEQ, CREK1D, and DASCRU)
describing homogeneous gas-phase chemical reactions are single-step methods; the rest (EPISODE, LSODE,
can be generalized as follows: and GCKP84) are multistep methods. A single-step

method provides a rule for computing Y_nat t n from a

dyi ) knowledge of the step length hn and the solution Yn- l at
._i = _-_ =_CVk) i,k = 1,N the previous step t n_ 1. A multistep method, on the other

(A1) hand, uses hn and the solution at several earlier points to
generate Yn. For example, the K-step method uses hn and

Yi (t = O)= Yi(O)= given the K earl-]ervalues Y_n- l, Y_n- 2..... Y_n- K (at times tn_ 1,
tn-2 ..... tn-K) to compute Yn. Since at the outset only
the initial conditions y_(0)are known, multistep methods

where for temperature method A (see the section are not self-starting. EPISODE and LSODE resolve this
Evaluation of Temperature) difficulty at the initial point by starting with a single-step,

first-order method. As the integration proceeds, the
solutions that they generate provide the necessary values

Yi = ni i= 1,NS ) for a multistep method.

(A2) We now outline the methods studied in the present
work. In particular, we examine how each method

N= NS advances the solution by one step (of length hn) from
time tn_ 1to time tn. To avoid confusion between the time
step length hn and the molal-specific enthalpy for species

and for temperature method B n, the latter is denoted by _'n.

Yi = ni i= 1,NS ) EPISODE and LSODE
Both EPISODE and LSODE use the integration

YNS+I= T (A3) formulas developed by Gear (refs. 20 and 21). These
formulas involve linear multistep methods of the form

N=NS+I

K1 K2

Yi,n = _ Otn,jYi, n-j+ hn _ On,Pi, n-j (A5)
In vector notation, equation (A1) becomes j= 1 j=0

dy ) where Yi,n is an approximation to the exact solution
Y-'= d-7=f(v) Yi (tn), Yi,n[ =fi (Yk,n)] is an approximation to the exact

derivative );i (tn)[=fi LVk (tn)]}, and the and and [3n,j
(A4) (_n,0>0) are associated with the particular formula

y_(t= 0)=y_(0)=given selected by the user. The options include implicit Adams
predictor-corrector formulas and backward differen-
tiation formulas (BDF). As discussed in appendix B,

where the underscore is used to denote a vector quantity. BDF's were found to be more efficient for problems
A matrix is denoted by a boldface letter. This notation is examined in this study. The discussion is therefore
used throughout this appendix, restricted to BDF's. For a BDF of order q, K 1= q, K2= 0,

The initial-value problem is to determine values for Yi and equation (A5) reduces to
(i= 1,N) at the end of a prescribed time interval, given fi
(i= 1,N) and the initial values Yi (0) (i = 1,N). q

All methods examined in the present study are step-by- Yi,n= _ Otn,jYi, n -j + hnl3n,OYi,n (A6)
step methods. They compute approximations Y_n(=Yi,n; j= 1
i = 1,N) to the exact solution Y(tn) at discrete points tl, t2,
t3.... The size hn of the spacing ( = tn - tn - 1) may vary The step length hn ( = tn - tn_ 1)can vary from one step
from one step to the next. Of the methods examined in to the next in EPISODE but is held constant for q + 1
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consecutive successful steps in LSODE. Hence, for For this method, much computation time is involved in
EPISODE, Otn,j and find can vary from one step to the forming the Jacobian matrix ;I and in doing the linear
next, but in LSODE they are predetermined constants algebra necessary to solve equation (A9). To reduce this
corresponding to the order used. The predicted values of computational work, the matrix P is not updated at every
Y_nand Y_'n,denoted by _y(o)and _3;(o)respectively, satisfy iteration. For further savings, it is updated only when it
the equation has been determined to be absolutely necessary for

convergence. Hence the iteration matrix is only accurate
q enough for the iteration to converge, and the codes may

,(o)_ h a ^_;(o)=i,n n_"n,u"i,n Otn,jYi,n_j use the same matrix over several steps of the integration.jl= In any case, both EPISODE and LSODE update P at

least every twentieth step. .(0)
so that equation (A6) can be written as The predicted values y_°n)and Yi, n are required before

equation (A9) can be solved for Y_n.These are obtained by
a Taylor series expansion as follows: the history of the

Yi,n-Yi,n- (0), hn[3n,OYi,n'(O)+ hnf3n,OY_,n'. (A7) solution is maintained in the Nordsieck array (which is a
Taylor series array) zn of size Nx (q + 1). The ith row Z__i,n
contains the q + 1 elements

At each integration step equation (A7) must be solved

for Y_n.This is accomplished as follows: let
hl , havtql

Z__i,n=Yi, n, hnYi,n, "-_.Yi,n .... qt " i,n

where Y[Y]_,nis the approximation to (adYi/dtJ)tn• Thus, if
then the solution to equation (A7) is equivalent to finding zn- 1has been obtained,
the zero of (3.Equation (A8) can be solved in a variety
of ways. Forstiff problems the most efficient is a variant
of Newton's method: z(°)= Zn_ iA(q)

N

--11_")n[Y_"+I)-Y_")]=-G'[Y(m)]'I'-nJ i=l,N where Ajk(q) is given by
(A9)

where m+l is the current iteration number and the Ajk(q)=I (_) J<k 1matrix P is given by j>k j,k=O,1,2 ..... q (AIO)

(OGi _ m where _) is the binomial coefficient, defined as,.,.=\ a- - kJy'
j.,/i\

.( m) _'k) k!(j- k)!
1

= 6ik-- hn_n,OJik.n

where 6ikis the Kronecker symbol, Thus the predicted values z(°) are obtained by a simple
Taylor series expansion by using equation (A10). Once
the predicted values have been calculated, equation (A9)

f = 0 i _ k is iterated until convergence. The test for convergence of
1 i= k the iterates _'(m)isbased on successive differences of these6ikt = .Y"Iffl

quantities and the local error tolerance EPS as discussed
below. For EPISODE a vector YMAX is constructed as

and r(m) (i,k=l,N) are elements of the Jacobian follows:•' ik,n
matrix J

m) / #fi _ (_) IERROR= 1 (absoluteerror control):
_ik,n= t _] Y_,, YMAXi= 1 i= 1, 2..... N
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IERROR= 2 (pure relativeerrorcontrol): EPISODE:

YMAXi=_Vi,n_ll i=1,2 ..... N l /v(M'-v(O)\ 2
I" 6n - 6n|

IERROR= 3 (semirelativeerrorcontrol): \ YMAXi ] stEEPS
N

YMAXi=max [_i,n - l I,LVi,n- 21]for/that satisfyyi(0) #0

= max II, Lri,n- 11] for i that satisfy Yi(O) = 0 LSODE:

Convergenceis said to occur if r
N /v (M)-v( 0)\2

|-- i,n --i,n 1
/v(m)_. ,,(m- 1)'_ 2 \ EWTi ,/
|., t,n ., ,,n | <tL
\ / N

_' --cEEPS (All)
N

where_' is proportionalto EPS, the localerrortolerance, where tE and tL are test constants that depend on the
For LSODEandoptionITOL= 2 (seeappendixB for orderused.If theerrortest fails, thestepis repeatedwith

other options includedin this package),an errorvector a differenthn or a lower order until eitherthe test ispassedor the situationis consideredhopeless.If the test
EWT is constructedas follows: is passed,thestepis acceptedassuccessful,andtheentire

Nordsieckarrayis updatedby

EWTi = ErelLVi,n _ 11+ eabs,i i = 1,2, .... N

zn= +
where _rel(=EPS) and _abs,iare the local relative error
tolerance and the local absolute error tolerance, where
respectively,for thevariablei.

Convergenceis saidto occurif

_1_=1 /v(m)--v(m-1)\ 2 e-n=Y-n---Y(O)

|- i,,n -i,n |
= \ EWTi ]

am=" _C L (A12) and the row vectorln(li,n;i=O,1..... q) is determinedby
N the formulas used and satisfies 1o,n = 1 and ll,n= 1/_n,O.

For EPISODE,/n depends on the variable step length
In equations (All) and (A12) the proportionality and is computedat the start of every step. For LSODE,

constants cE and CLare chosen to make the convergence li,n are constants that are set at the beginning of the
tests consistent with the local truncation error. If problem.
convergencedoes not occur after the first iteration, both In summary, the predictor and corrector steps are
EPISODE and LSODE anticipate the magnitude of dm given by
one iteration in advance by assuming that the iterates
convergelinearly. Thus dm+1,whichdoes not yet exist, is Predictor:
estimated by

z(0)=Zn-IA(q)
dm

dm+l=dm( d-d'-_-I) Corrector:

If the corrector iteration fails to converge in three \
iterations, hn is reduced if P is current and the step is P_n(m+I)]-Y_(m)=p[Ay(nm)]
retried; otherwise, P is updated and the step is retried. If
the corrector converges after M (M<3) iterations, an =-_G_n(m) ] m=0,1, ....M-I

estimateof the truncationerror is madeand is acceptedif ,,(m +1)__y(nm)+ Ay( nm)it passesthe followingtest: J_n _ _
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,,(M)_ ,,(o)_L±% andy_-n--J_ n --_ n

NS

M-1 k_= Qkffke_n= _.I Ay(nm) r_ =1
m =0 - Z"T=

NS

k_= YkCp,kzn= z_) + enLn = 1

The objective of this decomposition is to enable
CHEMEQ factorization of Yi from D i

In this technique, developed by Boris and Young (ref.

11), the rate equation (A2) is expressed as a difference Yi
between two positive-definite terms as follows: Di = LiYi = T-i

dYi where L i is obtained simply by dividing Di by y (i.e.,
-di =fi=Oi-Di (A13) Li=Di/Yi). With this new notation, equation (AI3) can

be written as

where, for species i, the production rate Qi and the

destruction rate Di can be derived from equation (3) dyi

jj d--_=Qi- LiYi = Qi- y_iri (A15)

ai=p-1 j=l_ (_iJR-j+ui'jRJ) I

(A14) which, for constant Qi and Li, can be solved to give
JJ

Oi = p - 1 _ (PiiRj + uiiR _j)
j= 1

Yi(tn)=Yi(tn- l + hn)= -_ + [Yi(tn- l)- -_ ]

When temperature is an independent variable (method
B), its rate equation (eq. (8)) can be cast in a similar form x exp(-Lihn) (A16)
by combining equations (8) and (A13)

With this expression, it can be seen that 1/Li(=r i)NS NS

_k_ = fkfi-k _ _ (Qk_Dk)ff k describes how quickly the variable Yi reaches itsdYNS+ 1 dT =1 k = l equilibrium value.
dt dt NS - NS In advancing the solution from time tn- 1to time in, all

k_= YkCp, k k_= ykCp, k of the equations are separated into two classes, stiff and= 1 = 1 nonstiff, according to the criterion

= QNS+ ! - DNS+ 1

hn__ _'_>1 stiff
= QT-DT ri,n- 1 (< 1 nonstiff

where
where ri,n_ 1denotes the valueof riat time tn_ 1.The two

NS types of equations are integrated by separate predictor-

k_a=Dffi'k corrector schemes. For equations classified as nonstiff,
Q7 =1 the improved Euler method--the Euler method as

NS predictor and the modifiedEuler method (or trapezoidal

k_=YkCp,k rule) as corrector--is used. For equations classified as=1 stiff a simpleasymptoticformulais used.

28



Predictor (nonstiff): code consists of two algorithms developed for the two
distinctly different regimes identified in the section
Accuracy Comparisons. These regimes are (a) induction

(o)_y. 1+ hnfi,n- 1 and early heat release, when the ODE's aredominated byi,n -- l,n -

positive time constants, and (b) late heat release and
equilibration, when the ODE's are more stable. Both

Predictor(stiff): (A17) algorithms are based on an exponentially fitted
trapezoidal rule, but they use different iterative methods

y(.O)= Yi, n - 1(21"i,n- 1-- ha) + 2hn1"i,n - 1Qi, n - 1 for convergence.
t,n 2ri n- 1+ hn In the CREK1D method the temperature is not treated

• as an additional independent variable, so the number of
ODE's is equal to NS. The temperature is calculated from

Corrector (nonstiff): the algebraic energy conservation equation (eq. (7)). In
the following discussion the variables Yi (i=I,NS)

_[fi, _- therefore refer only to the species molenumbers.y!,m+ 1)=Yi,n - 1+ n - 1+_,m_ The species rate expression fi (the right side of eq. (AI))
can be expanded in a first-order-truncated Taylor's series
about the current approximate solution, [tn_l, Yn-I

Corrector (stiff): '<A18) ( =Yi, n- 1; i= 1, NS), Tn_ d, as follows:

y!,:+l'-- [_rr(."o+r,,,_l][O!,_' +Qo,_,]l'," ' J fi=fi, n-1+ \d_i/y_,,_ (Yi-Y<n-l) (A20)

-t-Y<n- i [i'_#_) + "#'i,n- l + hn] } / ['r!mn)+ 7"<n- l + hn-
where dfildy i is the total derivative offi with respect to Yi
and is given by the chain rule as

In equations (A17) and (A18), m+ 1 is the current
iteration number. The zeroth iterate is the result of the

predictor step. Also, f_m)=fiLv(,_)]. Convergence is dj__ NS Of i dyk/dt Ofi dT/dt
ascertainedbyc°mparingYi!n m+l)with Jv('m),,nfor all N dy-]- k_al Oyk dyi/dt + Ot dYi/dt
equations using ttie relative error criterion

1 OfiA+Of i
lyi(,nm+1, _yf,_l, I --s, ,,_-,

_EPS (A19)

min[y},m),y},mn+l) ] To avoid confusion with the partial derivative of fi withrespect to Yi (afi/ayi), a special notation is employed

If after ITMAX iterations any of the N variables fails
the test given by equation (A19), the step length is halved Zi m dfi
and the step repeated. If all N variables pass the test after _i
M iterations (M_<ITMAX), the step is accepted as

With this new notation equation (A20) becomessuccessful and the solution is updated

fi = fi, n - 1+ Zi, n - l(Yi-Yi, n - 1) (A21)
_ (M) i= 1,NYi, n -Yi, n

or

CREK1D dY___i= fi, n - 1+ Zi n - l(Yi -Yi, n - 1)dt
In CREK1D, attention is paid to the distinguishing

physical and computational characteristics of the
induction, heat release, and equilibration regimes. This which can be integrated to give
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molal-specific enthalpy of species k at temperature T (m),
[ exp (hnZi,n_ 1)- 1 (A22)

Yi, n =Yi, n-l+hnfi'n-ll L _--i and H0 (To) is the initial mixture mass-specific enthalpy
at the initial temperature To.

Newton-Raphson corrector equations with log variable

Consider now, an approximate solution to equation (2) corrections (for self-scaling of the widely varying mole
based on a variation of the second-order trapezoidal rule, numbers) are given by
the tunable trapezoid,

NS OFi!nm)Aiogy(k,_) ,_
k_--1 Ology(k,_)Yi,n= Yi,n_ l + hn[ Ui,nf i,n+ (1- Ui,n)f i,n_ l] (A23) 0F(m) . .

i,n Alo.Ttm =_Fm)
+ OlogT (m) _, n

The substitution of equation (A22) into equation (A23) (A27)
gives NS _(m)

_.Z3LT_.n_Alogylm)
1 1 k = 1 Ology(k,mn) x,n

I- (A24) OF(m) T(m) =• T.n AIog --F_-_)
Uin= hnZi,n_ 1 1-exp(hnZi, n_l) + OlogT(m)

In order to maintain absolute A-stability of equation To start the iteration process, the predicted values y_0)(A23) (i.e., Yi,n remains bounded as hn is increased
indefinitely), Ui must be restricted to the interval (0.5, and 7(o)are obtained quite simply by setting them equalto the values at the previous time step
1.0). For values of Zi>O, equation (A24) gives Ui<0.5.
CREK1D resolves this problem by setting Zi= 0 whenever

it is greater than zero. This gives Ui=0.5, so that ,,(0).... i=I,NS
equation (A23) defaults to the second-order-accurate Ji, n-''t'n-1

trapezoidal rule. However, for Zi<O, equations (A23)

and (A24) together are equivalent to the locally exact or T(n0)= Tn- 1
exponential solution, which has an equivalent polynomial
accuracy of order six to eight. Thus equations (A23) and
(A24), with the constraint (0.5< Ui< 1), constitute an The Jacobi-Newton iteration technique can be derived
exponentially fitted trapezoidal rule, a method which is from the Newton-Raphson iteration procedure by
A-stable and has a polynomial-order accuracy of at least neglecting the off-diagonal elements of the Jacobian
two and as great as six to eight, matrix Ofi/Oyk. With this simplification, equations (A27)

At each integration step, equation (A23) must be reduce to
solved for Yi,n. This is accomplished by Newton-Raphson
iteration in regime b and Jacobi-Newton iteration in

OF(m)
regime a. -- t n Aln_ v(m) -F(m) (A28)

A Newton-Raphson functional F!,m)(i= 1,NS) for the Ology!,m)..... ,,n = t,n
species mole numbers is defined from equation (A23) by m)

cgF_n) Ainu, T( m)-

Olog T(nm)_._o_ n - - F_-m,) (A29)

v(m) ( 1 Ui_' )F},nm)= -"i,nhnUi,n-Yi,n-1 ,n fi, n-1 -fi(nm), (A25)
The iteration procedure is further simplified as follows:

the expression for OF},m)/olog y},m), derived from equa-
For temperature the functional F(T,m) is defined from the tion (A25), is given by
enthalpy conservation equation (7) as

OF(m) v(m) . . Of(m)t,n = _ _lAm)-_ t,n

NS Ology_ ) hnUi n .',,n Ov(m)F(m)- _a Y(,mn)_'k[T_m)]- Ho(To) (A26) , .",,n
T,n - k=l

In deriving an expression for Of!_)/Oy!,_ ), the partial
where m is the iteration number, T(nm) is the mth- derivatives with respect to the inverse mean molar mass
approximation to the exact value T(tn), ffk [Tn(m)]is the nm are assumed to be negligible in comparison with the
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other terms. This results in the following approximation NS

for Of!,_n)/Oy_,m) (see eq. (11) for the exact expression for Ho(To)- E Y_)nffkTn-I
Of(. m) /Ov(. m)_. k= 1
•",,n -',,n ," T(O)= Tn - 1+

NS

JJ E Y_O,)Cp, kTn- Ioi!.-',r 1, ,, , ,, ,<:,
Ov.(m) = -- LOyf'm)j - E (t+'iJ- uiJ)(t"ijRj- uijR -j)-"t,n j = 1

For both Newton-Raphson (NR) and Jacobi-Newton
For Jacobi-Newton iteration, this expression is further (JN) iteration schemes the current values v (m+l) and-'i, n
approximated by T(m + 1)are updated by the approximate equations

JJ

0v (m) = -- IPY!m)]-1, _ (p(jRj+PiiR_j) y!,#ff+ 1) =yi(m){1, . Al°gy!'m)] I

.'t,n j= 1 (A30)

which when combined with equation (A14) gives T (m + 1)= T(m)[1 + AIog T(m)]

= - _ The test for convergence of the iterates v(.m+ l) is basedJl,F/
Ov(.m ) v(. m )
¢_,n _,n on the value ,5 log yi(,m)and is given by

where Dim) is the destructi°n rate °f species i"With these /_[ )]simplifications equation (A28) can be solved explicitly for "Ill Alogy},m 2

the iterative corrections Vi = 1 _ EPS (A31)NS

F(m)
Alogy_,m)

/.#1

Y_,m)/hn_]iln+ D_,m) This test is used only with variables whose magnitudes
are greater than 10-20; that is, the summation does not
include species with mole numbers less than or equal to

From equation (A26) the following expression can be 10-20. If convergence is not obtained after ITMAX
derived: iterations, the step length is reduced and the step retried.

If convergence is achieved in M iterations (M_<ITMAX),

OF_m2 = z (m) NS [ ]
OlogT (m) k_=1Y_m)cp'k T(m) updatedthestep is accepted as successful and the solution is

where Cp,k[T (m) ] is the constant pressure molal-specific Yi, n =y(m) i = 1,NS
heat of species k at temperature T(m) . Substituting the
preceding equation into equation (A29) gives

- F_.m) Tn = T(nM)
A1og T( m) =

NS CREK1D automatically selects the iteration scheme

T (m) k_= lY_,mn)cp,k IT(m) ] (JN or NR) to be used for solving equation (A23). Duringinduction and heat release, when small step lengths are
required for solution stability, the JN iteration is used to

To start the iteration process, the predicted values y}O) minimize computational work. During late heat release
are obtained from equation (A22) and equilibration, when the ODE's are more stable and

larger step lengths can be used, NR iteration is preferred

r exp(hnZi n- I) - 1] since it has a much larger radius of convergence than JN

v!O)=Yi'n-l+hnfi'n-l[ _nn_i'n-I J that during equilibration many reactions achieve a
-_,n iteration. The regime identification test exploits the fact

condition in which the forward and reverse rates are large
The predicted temperature Tn(°) is obtained by a single but have vanishingly small differences. The actual test
Newton-Raphson iteration employed at the beginning of each time step is
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Lfi]-<10-3(Qi+Di) (A32) conditions may arise, for example, in multidimensional
modeling because of the averaging of mole numbers over
adjacent grid nodes. CREK1D therefore "filters" the

where Qi and D i are the production and destruction initial conditions to provide physically meaningful initial
terms, respectively, for species i (eq. (A14)). If any of the mole numbers and net species production rates. For
species satisfies equation (A32), regime b is obtained and purposes of this filtering CREK1D uses the
the NR iteration is used for the step. If none of the decomposition performed in CHEMEQ (eqs. (A13) and
species satisfies equation (A32), regime aisobtainedand (A15)). On the first call to CREK1D it uses this
the JN iteration is used for the step. formulation over one time step of length hi, which is

For this method much computation time can be determined by
involved in calculating Z i because it requires the
evaluation of the Jacobian matrix. To avoid evaluating 1
this matrix, Zi,n_ 1 is estimated as follows: if equation hl- maxLi
(A21) is applied to the entire time step hn t

The predictor-corrector algorithm uses equation (A15)

fi, n = fi, n - 1+ Zi, n - l(Yi, n -Yi, n - 1) as the predictor

which, when substituted into equation (A22), gives y!°l =Yi(0) + hlfi(O) ( 1- exP[hlLi(0)-hlLi(O)l J]

fi, n=fion_lexp(hnZi, n_l) An implicit Euler corrector is then iterated to
convergence

or ,,(m + 1) =Yi(0) +hlf!t_ + 1)•-'i, 1

1 ( fi, n _
Zi n - 1= hnnlog• \fi, n- 1/ In these equations Yi(O) are the initial values and the

subscript 1 is used to indicate that this is the first step.

However, fi, n is not known at the start of the step, so Using equations (A13), (AI5), and (A30), together
approximations have to be developed for Zi, n_ 1. For the with the approximations Q_,_+ 1)= Q_,/_/)and L_,_ + 1)=
NR iteration, Zi,n_ 1is approximated by L_,_), the preceding corrector equation can be rewritten

to provide the following expression for the log variable

corrections A log y_,_n):
.1 log (fi'n-l'_ for 0< fi'n-_l <1Zi, n-1 =
_ --- Jrtn\Ji, n -2 fi, n- 2

= 0 otherwise A1ogy},_n)= Yi(O)-Y_n) + hlfff_) (A33)y!,r_)+ hlDffff)

For the JN iteration, Zi,n_ I is approximated by Equation (A33) is iterated' until convergence, which is
ascertained by the criterion given by equation (A31). If
convergence is not obtained after 10 iterations, the step

1 fi, n-l--fi, n-2

Zi'n-1 = -_n fi, n-1 forfi, n_lfi, n_2>O length is halved and the step retried. If convergence isobtained after M iterations (M___10), the step is accepted
andfi, n_l_O as successful, the solution for the mole numbers is

updated

= 0 otherwise

=y},lM) i= 1,NSYi,l

CREK1D also includes an algorithm for filtering the and the temperature T 1 is obtained by a single Newton-
initial conditions that may be ill posed. These ill-posed Raphson iteration
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Ns jH:0)- E yk.l(ro) y!?a=y,..-,+
k=l

T 1= TO+

NS hn[fi _ 3f!?)+ 4f!?)]E Yk,lCp,k(To) Y}4')=Y6n-I+ --2-,n-I
k=1

y(5)=y. + _ [fi,n-1 + 4f}3!+f{4)It,n t,n - 1 ,n t,njGCKP84

GCKP84 is a general-purpose chemical kinetics In theseequations
program designed to solve a wide variety of problems
(ref. 18). It uses the integration technique developed by

Zeleznik and McBride (ref. 16) specifically to integrate fl, n =fi n
chemical kinetic rate equations. Details of this
integration technique are not yet available.

A good estimate of the local error in computed y!,Sn),the
accepted value for Yi, n, is t_,(4) --v{5))/5 if the time step isMrl, F/ "l_ H/

DASCRU sufficiently small (ref. 19). However, DASCRU uses the
following test to ascertain convergence:

DASCRU is an explicit fourth-order Runge-Kutta
process that differs from the standard Runge-Kutta

method as follows: the standard Runge-Kutta method v{4)--v{5) <0.5EPS for y{5)
requires four derivative evaluations per step. The main .'t,n .'_,n _,n < 10-3

disadvantage with its use is the difficulty of estimating (A34)
the local truncation error at each step, since its formal

expression is excessively complicated. The Runge-Kutta-lY}42-Y}5,)nl
Merson method requires an additional derivative y},Sn) <0.5EPS for y},5)___10-3
computation that serves to determine the estimated local

error. This technique uses the following equations to where EPS is the local error tolerance. If any of the
advance the solution from time tn- 1to time tn (ref. 19): variables fails to satisfy the convergence criterion (eq.

(A34)), the step length is halved and the step is retried. If
all of the variables satisfy the convergence criterion (eq.

hn (A34)), the step is accepted as successful and the solution
Y},l)=Yi, n-1 . -_-f/',n- 1 is updated

33



Appendix B

User-Supplied Parameters

The codes (EPISODE, LSODE, CHEMEQ, CREK1D, can be specified either as (1) a scalar, so that the same
GCKP84, and DASCRU)examined in this study require error tolerance is used for all variables, or (2)an array, so
the specificationof severalparameters in addition to the that different values for the error tolerance can be used
local error tolerance EPS and the elapsed time at which for different variables. The value of ITOL indicates
the integration is to be terminated. For each code, values whether RTOL and ATOL are scalars or arrays. ITOL
for the user-suppliedparameters that minimizedthe CPU has four possiblevalues(1, 2, 3, and 4) whichcorrespond
time required by the code were obtained by a trial-and- to the types of RTOL and ATOL as follows:
error procedure. The parameters required by each code
are discussedbelow. ITOL= 1: scalar RTOL and scalar ATOL

ITOL= 2: scalar RTOL and array ATOL
EPISODE ITOL= 3: array RTOL and scalar ATOL

ITOL= 4: array RTOL and array ATOL
EPISODE requires the user to specify the method flag

MF, the error control to be performed IERROR, and the The option ITOL= 2 (scalar RTOL and array ATOL)
guess for the initial step length H0. For both test prob- was used for the following reasons: since the same
lems all options (10, 11, 12, 13, 20, 21, 22, and 23) for number of significant figures (given by RTOL) is
MF were tried, and the stiff option with a user-supplied acceptable for all components, RTOL was specifiedas a
analytic evaluation of the complete Jacobian matrix scalar. However, since the temperature has much larger
(MF = 21)was found to be the most efficient. The typeof values than the species mole numbers, ATOL can be
error control to be performed is specified by the much larger for the temperature than for the mole
parameter IERROR, which has three possible values: 1, numbers. Hence ATOL was specifiedas an array.
2, and 3. For IERROR = 1, the error control is absolute; For both test problems, the options (10, 11, 12, 13,20,
and for IERROR=2, it is relative. In the test problems 21, 22, 23) for MF were tried and the method MF=21
examined in this study, the variables differ widely (see (backward differentiation method and user-supplied
tables IV and V), so relative error control is appropriate, analyticevaluation of the complete Jacobian matrix) was
However, since some of the mole numbers had zero found to be the fastest. For speciesmolenumbers, values
initial values, pure relative error control could not be for the absolute error tolerances that resulted in
used. The option IERROR = 3 was used instead. This is a minimum CPU times were found to be a function of the
semirelativeerror control. It is relative for variables that problem, the temperature method used, and the value of
are initially nonzero. For a variable that is initially zero, the relativeerror tolerance EPS. For valuesof EPS given
the error control is absolute until the variable reaches in tables XI and XII for test problems 1 and 2,
unity in magnitude, when the control becomes relative, respectively, a value of zero for the absolute error
Sincenone of the molenumbers reachesa valueof unity, tolerance for the temperature (required by LSODE-B)
the error control is always absolute for species with resulted in minimum CPU times for both test problems.
initially zero mole numbers. The optimum value for H0
was found to be a function of the problem, the CHEMEQ

temperature method used, and the value for EPS. For CHEMEQ requires the user to specify the maximum
test problem 2, valuesfor H0 close to the optimum value number of corrector iterations ITMAX to be attempted
resulted in vastly increased CPU times. This behavior is before nonconvergence is declared and a smaller step
illustrated in table VIII. Note that a decreasein H0 from length tried. The optimum value for ITMAX was found
10-7 to 10-8 S has resulted in an order-of-magnitude to be 5 for both test problems. Several attempts at
increasein the CPU time. Although not shownhere, the increasingthe efficiencyof CHEMEQ were made. These
solution was also found to be adversely affected by a included (1) replacement of the Newton-Raphson
poor choice for H0. Also, somevalues for H0 resulted in iteration procedure for the temperature (method A) with
problems with solution instability, a single Newton-Raphson iteration and (2) limiting the

LSODE temperature change per time step. If the temperature
change during any time step exceeded the maximum

The user-specifiedparameters for LSODE include the permitted, the step was shortened accordingly and
method flag MF, the error control to be performed retried.
ITOL, and values for the local relative RTOL and Modification (1) resulted in less efficiency and more
absoluteATOL error tolerances. Both RTOL and ATOL errors and was therefore abandoned. Test (2)was applied

34



(a) after each predictor step, (b) after each corrector step, thermodynamic properties h i and cp,i (i= 1,NS) and the
and (c) after each predictor step and after each corrector rate constants kj [=AjTNj exp(- Tj/T)] and T_j, N_j,
step. For test problem 1 and temperature method A, and k_j [=A_jTN-j exp(-T_j/T)] are updated. Note
option c was found to be the most efficient, that T_j, N_j, and k_j are calculated from the forward

Various values for the maximum temperature change rate constants and the equilibrium constant. See Pratt
permitted per time step were tried, and the optimum and Wormeck (ref. 27) for details. The optimal value for
value was in the range 7 to 8 kelvins for test problem 1. ITMAX was in the range 5 to 7, depending on the test
Although option c was found to be the best among the problem and the value of the relative error tolerance. For
three options (a-c), it was only marginally faster than the all runs presented in this report, a value of ITMAX = 10
basic algorithm (with no constraint on the temperature was used. The optimal value for DELT was in the range 1
change per time step). Also, for test problem 2 with to 2 kelvins depending on the problem and on the value
temperature method A, and for both test problems with of the relative error tolerance.
temperature method B, none of the three options was

more efficient than the basic algorithm. In addition, GCKP84
when the reaction rates were not continuously calculated
but were updated only after an allowed temperature Since details for this technique are not yet available,
change AT, the basic method was found to be the most default values for all parameters were used.
efficient. Hence modification 2 was also rejected.

DASCRU
CREK1D

This code requires the user to specify the guess for the
The user-supplied parameters to CREKID include the initial step length H0. The optimum value for H0 was

maximum number of corrector iterations ITMAX found to a function of the problem, the temperature
allowed before nonconvergence is declared; and the method used, and the error tolerance required of the
maximum temperature change DELT allowed before the solution.
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Appendix C

Approximation for Maximum TemperatureChange Between Rate Constant Updates

As discussed in the secti°n C°mputati°nal Tactics' I _ [-<EPS (C4)significant increases in efficiency are realized by updating 1 - kj,exact
the forward rate constants kj [= AjT NJexp (- Tj/T)] and
the backward rate constants T_j, N_j, and k_j
[= A_jTN-i exp (- T_j/T)] only when the temperature where the bars I [ denote absolute value.
change exceeds an amount ATthat is problem dependent. The division of equation (C2) by equation (C3) and
In specifying a value for AT, care must be taken to avoid rearrangement give

poor approximations in the resulting reaction rates [ (_@TT.)]I 1
because this leads to excessive computational work, as exp l'4"_T

shown, for example, in table IX. To avoid the work _ = (C5)

associated with a trial-and-error search for an optimum kj'exact (1 "I-eT)NJ
value for AT, we now develop a simple approximation
for it.

Consider rate constant kj for reaction j. The exact where eT=AT/T, the positive sign denotes increasing
expression for kj is given by temperature, and the negative sign denotes decreasing

temperature.

-____ There are four possible cases (other than the trivial onekj=AjTNJexp (C1) Tj=Nj= 0) as follows:

(1) For increasing T
where Aj is the preexponential constant, Tj is the
activation temperature (= Ej/R, where Ej is the

activation energy and R the universal gas constant), and (a) (---_ +Nj) >0T is the current value of the temperature.
The idea behind using AT is that the work associated

with computing kj and the reverse rate constants (T_j, (b) (---_ +Nj) <0N_j, and k_j) from the forward rate constants and the
equilibrium constant is eliminated for changes in T not

greater than AT. Hence, if the temperature changes from (2) For decreasing T
its current value of T by an amount not greater than AT,
the rate constants kj and k_j are not reevaluated. The

poorest approximation (kj,approx) for the new rate (a)/'Tj+N:'_>0
constant is therefore given by equation (C1) as follows: \T "V

kj,approx: ZjTNJ exp ( _TT" ) (C2)

Consider case a. For increasing T and positive

The exact expression for kj (kj,exact)is given by (Tj/T+Nj), inequality (C4) becomes
1

/ > 1- EPS (C6)

where the plus sign denotes increasing temperature and (1 +_r)N
the minus sign denotes decreasing temperature.

We now estimate the maximum allowable AT by

limiting the relative error in the resulting reaction rate to For small EPS and _T, exp( -- EPS) _ 1- EPS,
be no greater than EPS, the error tolerance required of exp(_r)--1 + _T, and 1/(1 + Er)_ 1-CT, so that equation
the solution, (C6) becomes
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7)_ exp (-_TNj)> exp (-EPS) Equation (C7)gives the maximum value of AT that canexp _T T - be used without resulting in a relative error greater than/
EPS in the forward reaction rate Rj for reaction j. For
each forward and reverse reaction a value for the

or maximum allowable AT can be calculated by using
equation (C7). Using the minimum of these values will

( Nj) ensure that no forward or reverse reaction rate wiUhave aTj + > -EPS relative error greater than EPS. The minimum value for--_T T
ATover all forward and reverse reaction rates is given by

or

I iI-- for eT, EPS < < 1; AT=rain

or EPS T

EPS T max _ + Nj ; -" + N_jAT< j T

- +NjT

Similar analyses for theotherthreecasesleadto similar Equation (C8) provides a simple expression for the
expressions for AT. These four expressions can be automatic evaluation of ATthroughout the history of the
replaced by a single expression given by problem. Every time the rate constants kj, T_j, N_j, and

k_j are evaluated, which occurs only when the
temperature change since the last update of the rate

EPS T constants exceeds AT, a new value for AT can be

AT max- I I (C7) calculated by using equation (C8). Using this equation
I_T2+Nj I therefore avoids the work associated with a trial-and-I IT error search for the optimum value of AT.
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