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ABSTRACT

SYMBOLS

The next section contains a brief
derivation of the fundamental equations, includ­
ing a discussion of some implications of the
equations. The third section contains a
description of the method of solution. Finally,
the results of some calculations for the several
specific examples are given.

with a stationary observer, whereas the lifting
surface theory is essent i ally concerned wi th the
details of the near-field case for a co-moving
observer as well as the satisfaction of certain
of certain boundary conditions. Runyan (1973) .
utilized the acceleration potential approach to
obtain a solution to the oscillating propeller
in compressible flow. Oat, (1973), has derived
a general expression for an acceleration doublet
for any motion. Pierce and Vaidyanathan (1983)
have treated the helicopter rotor in forward
flight using the method of matched asymptotic
ex~ansion for the incompressible case. The
procedure developed here involves the precise
numerical inte~ration over the surface of the
rotor in a time frame. The method sets forth a
formulation of a fundamental three dimensional,
compressible, unsteady aerodynamic theory for
propellers and helicopter rotors.

t

A lifting surface theory has been developed
for a helicopter rotor in forward flight for
compressible and incompressible flow. The
method utilizes the concept of the linearized
acceleration potential and makes use of the
vortex lattice procedure. Calculations demon­
strating the application of the method are given
in terms of the lift distribution on a single
rotor, a two-bladed rotor, and a rotor with
swept-forward and swept-back tips. In addition,
the lift on a rotor which is vibrating in a
pitching mode at 4/rev is given. Compressibi­
lity effects and interference effects for a
two-bladed rotor are discussed.

INTRODUCTI ON

Rotating lifting surfaces are an integral
part of the ~ropulsive unit of every aeron­
autical and nautical vehicle, from the
compressor and turbine blades of jet engines,
the pumps for rocket engines, to pro~eller and
helicopter rotors. The aerodynamics of these
rotating elements has been under extensive study
since the advent of the airplane and with a
combination of experimental and analytical
approaches, succcessful designs have been
achieved. In many cases, two-dimensional theory
has been used, usually modified by an assumed
spanwise distribution, and inflow velocities.
This pa~er presents a compressible, lifting
surface method for a helicopter rotor in forward
flight within the limits of linearized theory.

The method is based on the concept of the
acceleration potential, originally introduced by
Kussner (1941). The method was first applied to
an oscillating wing in uniform translatory
motion inclUding effects of compressible flow by
Runyan and Woolston (1957). The acceleration
potential approach has now hecome standard for
the determination of the unsteady aerodynamic
forces for flutter studies of lifting surfaces
in rectilinear motion.

The first use of the acceleration potential
approach for a rotating system was made in a
paper by Hanaoka (1962) for the 1oadi ng on a
marine propeller in incompressible flow. The
acceleration potential has been used in the past
in studying the propeller noise problem, but in
all of these noise propa~ation cases the problem
was specialized early in the analytical develop­
ment to the so-called far-field case usually
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The formulation of the aerodynamic
equations is based on the linearized
acceleration potential. approach. The fluid is
considered perfect, with no separation and the
formulation is based upon the assumption of
sma 11 perturbations. The wake created by the
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f ~(t') dt'

p =-~

4'(t)

+

p = -p~

where %t is the substantial derivative.
Dropping out the second order terms
and integrating with respect to field time
results in

+
where f(X,t) is a source distribution.
Furthermore, if an isolated source is

+ + +
moving with velocity Vo, then f(X,t) O(X

Vot) where 0 is the delta function.

The acceleration potential ~s satisfies
the wave equation

2
2 1 a ~

'V ~ - 2" -r = -411 f(~,t) (4)
Scat

This expression represents the pressure p at
+

point X due to a single source

Let ~ be the acceleration potential of a
source (or doublet), the perturbation pressure
is then' !Jiven by

lifting rotor is assumed to lie in the skewed
hel ical path taken by the rotor blade. One
reason for adopting the acceleration potential
approach is that the pressure discontinuity
occurs only on the surface of the blade and thus
the boundary conditions need only be applied on
the blade surface and not throughout the wake.
The blade is treated as a very thin surface of
discontinuity across which a pressure jump
occurs. The effect of compressibiity is taken
into account by utilizing the complete
linearized potential for a lifting doublet,
along with the effects of retarded time.

As shown in Fig. 1, an jnertial coordinate
system has been used in which the origin of
coordinates is fixed to a point on the ground.
The helicopter rotor is moving in the negative
x-direction with velocity U, in the positive
z-direction with velocity Wand is rotating
counter clockwise with a constant angular
velocity n. A point of interest on the rotor

+
blade is designated by the radius vector XO(T)
from the origin of the ground based coordinate
system.

(or doublet) located at Xo• The potential ~

contains a constant "q" which represents the
strength of the source and thus the magnitude of
the pressure. In this form, there is no
boundary condition available to determine the
value of "q" and the resulting pressure.
Recourse can be made to the velocity potential,
since the spatial derivative of a velocity
potential represents a velocity. The
relationship between the pressure and velocity
potential for an inertial coordinate system is

2

of blade at

1 aiJ"o
caT

position

velocity at downwash points

source or doublet strength
rotor tip radius
rotor root radius
distance of downwash point
along the span
distance of doublet along the
soan

velocity component of V at
the downwash point normal to
the rotor leading edge

upper limit of spanwlse panel
lower limit of spanwise panel
distance of doublet along
span at singular point time
field time
velocity of rotor system,
parallel to x-axis, positive in
negative x-direction

time at which integrand in Eq.
(24) becomes singular
velocity potential
source acceleration potential
doublet acceleration
potential
azimuth angle
rotation speed of rotor
vibration frequency of rotor

+
Volc
angular
time t
angular position of blade at
time T
blade angle of attack
blade angle relative to plane
of rotation
advance ratio
air density
time

velocity of doublet
velocity of rotor system,
parallel to z axis
downwash velocity
distance from pitch axis to
downwash point
Cartesian coordinates of
downwash point
Cartesian coordinates of
doublet position
twist angle at downwash point
twist angle at doublet
position
angle of axis of rotation
relative to z-axis
+
Volc

BASIC FORMULATION

T

q
Rt
Rs
r

e

\.I

P
T, TO

+
a

v

+
Vo
W

+

x,y,z

+

t
U



Usiny the Green's function formulation the
acceleration potential expression for a moviny
source, 's can be written as (Morse and
Feshbach, 1978, p. 841)

q(~O,T)"s (~, t) = -----'------.:::....-----­
_ ~O(T).[~ - ~o(T)]1

cit - to (T) I
(!»

+
where XO(T) designates the position of the

+
source at time T, X is the position of the

+
field point at the time t, VO(T) is the
velocity of the source point at time T, c is
the speed of sound and q is the strength of
the source. An aUXiliary equation which relates
the time interval (t - T) to the distance
between the two points is

required. This derivative is taken normal to
the flight path at the location of the downwash
point, as follows

to obtain
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Eq. (9) gives the downwash at a field point
(x, y, z, t) due to a doublet placed at a point
(xo,yo,ZO,T) having a strength q. In
order to represent a lifting surface such as a
rotor, it is necessary to distribute the
doublets over the lifting surface and integrate
over the surface to obtain the downwash at a
field point. If the downwash is known, the
quantity "q" can be determine~. Letting K b~

the expression on the RHS of Eq. (9), the final
equation is

(6)

q( T')t

which is usually referred to as the causality
condition. Eq. (5) expresses the potential as
an explicit function of T, and only through Eq.
(6) as an implicit function of t ans~. From
Eq. (3), the velocity potential due to a moving
source is

t

~s(t) = J .,s(t') dt'
-co

The quantities T', t' and t, T satisfy Eq.
(6) •

To obtain the final equation for downwash
AWn. a second directional derivative is

T

=J !tLT~J dT'
D17T '-co

w (r,t) = V tan6w = If K dA' (11)
n n A

where Vn is the velocity component of V tt the
downwash point and is normal to the rotor
leading edge and 6w is the angle of attack.
Thus the problem requires setting up a method of
solution of Eq.' (11) from which a value of 4,
the unknown doublet strength, can be determined
which satisfy the known velocity boundary
conditions wn'

This represents a rather formidable
computing task and the history of lifting
surface theory even for non-rotating wings has
centered on devising approximate methods to
accomp1 ish the integration in an economical
manner. One method, termed the vortex lattice
method, has been very successfully applied to
aircraft wings, and is probably the more
economical procedure of the many variants. This
method was first demonstrated for the unsteady
case by Runyan and Uoo1ston (1957) and was later
expanded by Albano and Rodden (1969). This is
the method adopted in this paper and the
application will be discussed later.

where A' is the area of the rotor surface.
The LHS, wn, represents the known boundary
condition and is the velocity normal to the
velocity vector at the downwash point. By using
the no flow condition for the velocity
perpendicular to the blade surface, the velocity
component in the ndirection is Vn tan6w or

(8)

n • V+ '"o X 't's= -+no • V+ ~
Xo s

n.O T n.D
=l 0 .9.

0
JT + I q 0 d T'

411c(0-a.o) -co 411D3

where 0 = ~ - ~o' 0 = 101

and dt'= [l - D~a] dT'

Note that for incompressible flow, c + co, the
first term + 0 and the integral remains
unchanged except for the upper limit where T =
t.

By definition, the doublet velocity
potential 40 of a doublet aligned along 00
can be written as

Of

3



(13)

where

(18)

............

V ',lw2 + V'2
o 0

W(roo cos (OT) - (C/4)O sin(oT)cos ao)
(16)

t = W(U + rO sin(ot)- (C/4)o cos(ot)cos a)

V' / W2 + V'2

By the same procedure, n = ti + mj + nk,
where

V '
n = 0

o /w2 + V'2
o

m = -W(rn cos(ot)+ (C/4)O sin(nt)cos a)

'I 2 ,2V W + V

m =­o

VO,2 ='(U + roo sin(OT)+ (C/4)n COS(OT)COS ao)2

+ (roo COS(OT) - (C/4)n sin(Or)cos ao)2 (17)

In E4S. (12) and (13), the angles a,aa are the
twist anyles of the velocity vectors ~ and ~o,
respectively, defined by

Specification of Coordinate System

.The blade has the cord C and length Rt-
Rs • Rs being distance to the the root of
the blade. Rt is the distance to the tip of
the blade. Let the blade momentarily coincide
with the coordinate system along the positive
x-axis at t = 0 and execute a counterclockwise
rotation with angular velocity O· while moving
with velocity U along the negative x direction
and velocity W along the positive z
direction. Since the vortex lattice method has
been adopteQ, the doublet point lies C/4 ahead
and the downwash point lies C/4 aft of the
section midchord. The position of the doublet
poi nt as well as the downwash poi nt can be
established as follows. The Cartesian
components of the doublet position are

Xo = -UT + ro COS(OT) - (C/4)sin(OT)cos aa
Yo = ro sin(OT)+ (C/4) COS(OT)COS aa
Zo = WT + (C/4) sin aa (12)

where ro is the radial distance of the doublet
along the span. With the substitution of
C + -C, ro ... r, T ... t the position of the
downwash point is given by

x = -Ut + r cos(ot)+ (C/4) sin(ot)cos a
y = r sin(ot) - (C/4) cos(ot) cos a
z = Wt - C/4 sin a

... ... ...
the vector 0 = X-Xo defined in Eq. (7) can be
expressed as

..

(20)

V
n =

o = {[U(t-T) + r cos(ot)- ro COS(OT)

+ (C/4)(sin(ot)cos a + sin(Or)cos ao)]2

+ [r sin(ot)- ro sin(oT)

-(C/4)(cos(ot)cos a + COS(OT)COS ao)]2

+ [W(t-r) -(C/4)(sin ao+ sin a )]2}1/2
With the substitution of the quantities, the
integra1 E4. (11) was solved for the unknown
q(ro,T) by using a collocation process based

and

V,2 = (U + rO sin(ot) - (C/4)O cos(ot)cos a)2

+ (ro cos(ot)+ (C/4)O sin(ot)cos a)2 (19)

(15)

tan a W
U sin(ot)+ rO

W (14 )
tan ao U sin(OT'+ roo

The unit vector no is chosen to be
perpendicular to the twisted surface created

...
by the velocity vector Vo which is a function
of ro, through Eq. (14).

...

where to' mo' no are the directional cosines of

The reference plane defined by the doublets and
downwash points is a twisted surface. From
Eq. (12) the doublet velocity can be computed,
namely the time derivative of the position
vectors.

Express no as

the unit vector
...
"0. It can be shown that

4
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on the vortex lattice assumption. The kernel is
singular when 0 = 0, and this was handled by use
of the finite part technique.

SOLUTION OF INTEGRAL EQUATION

In following the vortex lattice technique
the rotor is divided into a number of
predetermined panels, both spanwise and
chordwise, In each chordwise panel, a line of
doub1ets of unknown strength qi is located at
the 25% chordwise location of the particular
panel, and the downwash is evaluated at the
point located at 75% chordwise location of the
panel. Therefore, a collocation procedure is
used to obtain a set of equations in terms of
the unknown loadings qi. It is also assumed
that the spanwise loading qi is constant along
each of the panels. A set of equations is thus
obtained as shown below.

(21)

r
where Anm = I u Knm dro and where n refers to

r
t

the downwash point and m refers to the vortex
lattice. The kernel K is a complicated function
which involves an integration over t.

The term q(ro,t) represents the strenyth
of the doublet located at ro and at time T,
and is proportional to the unknown loading. In
order to account for unsteadiness, a solution
was formulated to take into account the time
variation of the strength of the wake. This was
done by assuming a Fourier series of the form

m

q(ro,t) = A + L (A cos(nGT) + B sin(nGT)) (22)
o 1 n n

If q(ro.t) is assumed to be a function of ro
alone, which means that the wake strength does
not vary with time, the Fourier series reduces
to q(ro) = Ao• A solution obtained with
this approximation is termed the quasi-
steady solution.

This series was inserted in the basic
equation and integrated with respect to T.
However, there were more unknowns than
simultaneous equations to solve for the
unknowns. The additional required equations
were obtained by evaluating Eq. (11) at a number
of azimuth locations. For instance if m = 1,
thpn

q(ro,t) = Ao + Al COSOt + BlsinGt. (23)

The azimuth was divided into equal segments of
1200 and the proper boundary conditions
applied at ~ = 00 , 1200 , and 2400 thus
prQ\'idimLt!le necessary additional equations.

Numerical Integration of Kernel

The integration was performed by numerical
i ntegrati on, except for the area surround~ ng the

5

singularity. The integration domain was divided
into areas as shown in Fig. 2. Areas 1-4
(hatched) were computed numerically using a
two-dimensional Romberg integration (Davis and
Rabinowitz, 1967) and the contribution of the
singular region (unhatched) was obtained in
closed form by consideration of the finite part
as shown in the next section.

Treatment of Singular Term in Integral - The
integral in the downwash equation, Eq. (11)~ is
singular when 0+0 and produces a complication
which must be treated properly. It should be
remembered that the integration path alony "T"
is the path the doublet has taken in arriving at
the final dOUblet point at (c/4, ro) measured
in the local blade coordinates and can be
considered as the wake. The integration takes
place along the path from -~ to the final
doublet position at TO. The distance 0 is the
distance from the integration point at time t to
the downwash point at X.

There is a particular set of values of ro
and t for which the denominator D approaches
zero, thus resulting in an infinite integrand.
The singular part of the Eq. (11) is

r T2 n.oo - 3(0.0)(0 • 00)
I = Jr

u
IT 03 dT dro (24)

R. I

As 0+0 at the downwash point, Dbecomes
perpendicular to ~, therefore, at the singular
point. the second term is zero and will be
neglected in the treatment of the sinyularity.
However, this second term is retained in all of
the numerical integrations involVing Areas 1-4
since it represents an important contribution
particularly when the blade is passing over a
trailing wake.
The time and distance at which the integral I

A A

becomes singular are designated by t and roo
The domain of the integration in Eq. (24)
consists of a rectangle in which the duration
T2-t1 is kept extremely small. In other
words. the integration is performed along a slit
in roo over which the 2nd term in Eq. (24) is
negligible. Therefore the integral I can be
apprOXimated by

+ +
r T2 n • no

I = I u J -3- dt dro (25)
rR, T1 D

Furthermore. noticing that 02 is quadratic in
ro, if ao is independent of roo then the
integration on ro can be performed
analytically. This can be achieved by
recognizing that in the vortex lattice method,
the rotor is divided into spanwise panels from
rR. to rue If these spanwise panels are
small then the variation in ao is small.

d<xo ~IG

dro .. - (U sine + r G)2 + ~12 (26)
o a

If the value of ao is approximated by its mid
panel value, it is possible to integrate Eq.
(24), in closed form in the ro direction.
This is quite acceptable in the hel icopter morie,



Expanding f(t) in a Taylor series about the
singular point T results in

A A A A A 2
f( t) = f( t) + f' (T)(T-t) + fll( t) (T - T) -/2 +•••

(28)

because dao/dro is in the order of
magnitude 10-3 or smaller. The value ~o is
also a function of ro, but in the region of
the singularity it has a very small variation
and is evaluated at the singular position,

" "(T,ro)' Performiny the ro integration
results in the form

J = /2 .9l!l. dT (27)
T1 lTtT

where g(T) is a function containing all the
non-singular part after performing the ro
integration and f(t) =0, at

" "T=t (t1 < t < 12). It can be argued
physically that since the quantity D(t,ro;
t,r) as well as its modified form f(t) (after
integration over ro) represents the distance
between two points in space it must be positive
and real for all its arguments, and never become
negative. Denote the value of ro and t at

" "whi ch D becomes zero as ro and to' Thus, in
"the neighborhood of t the function f(t) behaves

like a parabolic function and has a second order
zero.

A A

0' (t) 1Li!l+~ + 2 j df (30)
( t-t)

Since f is a second order zero
APPLICATION TO SPECIFIC EXAMPLES

as liT is kept large because the very large
values of the inte9rand near the singularity are
avoided. On the other hand, regarding the
finite part integration, the denominator was
expanded in a Taylor series about the

A

singular point, T. Therefore, it is desirable
to maintain lit as small as'possible to keep
within the limits of the applicability of the
series expansion. Numerous calculations were
made, varying At until a reasonable
convergence was found. This value was found to

A

be .01(t-t), i.e. 1% of the time difference.
Actually, there is very little difference
between 1% or 10% of the time difference and the
computing time and cost is considerably reduced
by using 10%. For trend studies 10% is
recommended principally to reduce computer
costs, However, for final design type analysis,
a smaller value of time difference liT is more
appropriate.

The foregoing analysis has been applied to
several specific examples which are given in
Figs. (3) and (4). The following section
presents results for several paneling
configurations; e.g. 5 spanwise and 1 chordwise
panels (designated (5-1» and 7 spanwise and 3
chordwise (designated (7-3». The rotor blade
was maintained at a constant pitch setting of
6B = .1 radians for all the calculations.

For the spanwise direction, liro is also
an integration limit variable. The finite part
integral was obtained by approximating the angle
of twist of the velocity vector across a segment
by assuming it constant across the segment,
having'a value as determined at the center of
segment. Numerical experimentation indicates
that for a helicopter, liro = 0 is satis­
factory.

(29)

If only
(27)

" "f(t) = f'(t) = 0

Eq. (29) has been verified numerically.
the square term is kept in Eq. (28), Eq.
can be written as

t A

I = J 2 ---?. l g~ t)
t1 fll(T) (t_t)2

and

In Ell. (30), if t2 and t1 are chosen Single Blade
A

symmetrically about t, then the odd derivative
terms integrate to zero. Futhermore, the third

A

term can be neglected since g"(T) is small. The
major contribution comes from the first term.
Then using the standard integration technique
(Mangler, 1952) the final result for the
integral is

I = - M_4_ (31)
fll(;) lit

where 2liT = T'~ - T1 and T1 < T < T2 •

A numerical problem arises because the
finite part integration results in a negative
number which is close to the total of the
surrounding numerical integration areas which
are positive. Thus, it is necessary to take the
difference between large numbers, and the final
integration accuracy is dependent on the
accuracy of the two integrations. On the one
hand, the numerical integration is more accurate

6

In order to investigate the convergence of
the method when usiny the vortex lattice
procedure, the program was run for several
chordwise and spanwise elements for the incom­
pressible case. The thrust coefficient Cr
vs. the azimuth angle is shown in fig. (5). (In
all of the following plots for thrust coeffi­
cient vs. azimuth angle, the thrust was
calculated for 16 uniformly spaced azimuth
angles and each curve was faired using a
cubic spline). The rotor was first divided into
5 spanwise and one chordwise (5-1) panel and the
resu'lts are shown by the solid line. The
chordwise division was increased to (5-2) and
the results are shown by the long dashed line.
It can be seen that very little change has taken
place. The spanwise divisions were increased to
(7-1) and the largest change occurred at
W= 00 where the difference in CT is about
11%. Increasing the chordwise divisions to 3
(7-3) shows convergence af the (7-1) case ta be
very \,load.

An interestiny phenomena occurs in the
region of small azimuth angles. For w=0 to

•
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37 0 , the lift increases to a local maximum at
w=370 then the lift abruptly falls to a local
minimum for'v=600 and then rapidly increased
to a maximum at,1jI"1000 .:, A similar phenomenon
is shown analyticaily by Eglof and Landgrebe
(1983) in Fig. 60 of that report where a
local minimum and a local maximum occur in the
same range of azimuth angles, even, though tne
geometry of the two blades and the flight
conditions are different. Also, in Fig. 93 ,of
the same report some test data shows ,a similar,
variation of loading in the same azimuth range,'

The chordwise pressure dis~ributions for
the (7-3) case are presented in figure 6. It
should be remembered that in usinv the vortex
lattice method, the loading is concentrated at
the location of the vortex ~Ihich for the (7-3)
case is located at .Oa33C, .416G, and .75e. The
pressure was faired using a cubic spline through
the three vortex locations and the known value
of zero at the trailing edge. The distributions
are given for 7 spanwise positions. In general,
the curves exhibit the expected shape, having
the largest values as the leading edge is
a~proached. For the span distribution the
values at r/RT ••85 are slightly larger than
the values at r/RT ••9!:) .. indicating a falling
off in the tip region.

From these concentrated forces, the section
pitching moment can be calculated. Figure 7
presents these resul ts for 1/1 = 9U degrees. The
section moment was taken about the 1/4 C and a
nose down moment is taken as positive. The
~itching moment shows some rather dramatic
changes along the span. The moment is nose up
near the ti ~ (r/RT = .95), changes to a small
nose down value, then becomes nose u~ for most
of the inboard region. Integration of the
moment wou 1d res uIt ina tota1 pitch moment up
at 1/1= 90°.

Swept Tip

The segments used for the vortex lattice
for the swept tip studies were(5-1), where two
equal segments were used in the tip region and
three equal segments were used in the unswept
inboard section. In Fig. 8 the lift is shown
plotted against azimuth for the two sweep
conditions and for zero sweep. In general, the
three results show little difference. The
sweptback confi gurat ion has a 1arger 1.i ft from
1/1 ~ 3000 to 400 • For 1/1 ~ 1000 to 2400 ,
the swept forward configuration has a gligntly
larger lift. It appears that the total lift for
one rotation for the swept-back case and the
sweptforward case would give about the same lift
as produced by the unswept rotor. In Fig. g
the lift distribution along the rotor span is
!Ii ven for 1jI. UO. The major effect of sweelJ
is concentrated at the tip, Where the swept-back
tip load is greater than both the unswe~t and
sweptback cases. In fig. 10, 1/1'= 1800 •

Comparing to fig. 9, the swept-back tip load is
larger than both the unswept and the
swelJt-forward tips.
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Hlade Oscillating in Pitch

An exam~le of unsteady loads on a rotor
blade with (5-1) paneling which is oscillating
in a pitching mode about the mid-chord at a
frequency of 4 per revo1ut ion (120 cy~l es/sec)
is given ,on fig. 11. For this case a 17 term,
Fourier series (m=8) 'was used to simulate the
oscillating load, which was comprised of one
constant term, 8 cosine terms; and 8 sine
terms. The steady and unsteady rotor blade
loading is yiven for one rev~lution. The blade
was oscillated through an angle of .1 rad.
about a mean angle of ~1 rad. The effect of the
oscillation is readily apparent as compa~ed to

'the steady case. With the harmonic
representation of the ,loading, the magnitude and
phase of the several harmonic loads are easily
determined. The magnitudes are plotted in
Fig. 12. The only harmonic loads that were
significan~ly changed from the steady case were
the 3rd, 4th and 5th. Both the 3rd and 5th
harmonics were increased and the 4th harmonic
was dramatically increased. Another calculation
was made for the non-Qsc ill atory unsteady case
and compared to the ~uasi-steady' case.
Virtually no difference was observed, indicating
that, at 1east' for thi s case, the 'rate of change
of loading ina revolution of the blade is small
enough so that the effect of a variable wake is
negligible.

Compressible Effects (5-1)

For a one-bladed rotor, the effect of
compressibility is illustrated in Fig. 13, in
which the CT is plotted against azimuth
anyle. The in,ompressible result is included
for comparison. As expected, the compressible
load is larger than the incompressible
throughout one revolution. The effect is
greatest in the region of the advancing blade
and smallest in the retreating region as would
be expected.

Two-Bladed Rotor in Compressible Flow (5-1 per
blade)

The method has been extended to the
two-b1aded rotor for the com~ressi hIe case and
the results are shown in Fig. 14. The thrust
coefficient CT per blade is given vs. azimuth
angle for a single bladed rotor and for a
two-bladed rotor. For azimuth angles from
1jI'. 20 0 to 1200 the single blade rotor has a
1arger CT. For 1/1 = 1200 to 260°, the Cr
on the one and two-bladed rotors are
approx imate ly the same. However, for 1/1. 2600

to 34Uo a dramatic reduction in lift occurs
for the two-bladed rotor as compared to the one
bladed results. The lowest lift occurs at
1jI= 292 0 which 1J1aces the other blade of the
tWO-bladed rotor at 1jI= 1120, the point of
maximum lift on the other blade. AlJparently the
high lift on the blade at '1/1. 1120 creates a
very unfavorable induced velocity on the second
hlade at 1jI= 2920 which re~uires the loading
to go to zero in order to satisfy the boundary
conditions at 1/1 = 292°.



CONCLUDING REMARKS

A linearized lifting surface theory
including the effects ot" compressibil ity has
been developed for a helicopter rotor in forward
flight. The method utilizes the concept of the
acceleration potential, and makes use of the
vortex-lattice procedure for performing the
required integrations. In addition, the method
has been extended to include the effects of
unsteady flow.

Sample calculations have been done for
several cases. These include the effect of
swept-back and swept-forward tip. The effect of
these two tip configurations was minimal on the
total loading for one revolution. However, the
loading distribution changed considerably for
several azimuth positions. A comparison of the
thrust coefficient, CT, of a one bladed rotor
and a two bl aded rotor was made. In the
azimuthal range between 200 and 1200, the
one bladed rotor showed higher lift. However
between ~ = 2600 to 3400 the two bladed
rotor indicated a lower CT. Compressibility
was investi~ated for one configuration. As
expected, the effect was greatest in the
advancing blade region (~= 900) and was
minimal in the retreating blade region. The
effect on CT of a blade oscillating in pitch
at 4/rev is given. The effect on -the total
blade lift is shown and the effect of the
oscillation is readily apparent. The harmonic
content was calculated and the greatest
difference between the oscillatory and
non-oscillatory cases was found in the 4th
harmonic.
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