PAN AIR - A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows About Arbitrary Configurations Using A Higher Order Panel Method

Volume III - Case Manual (Version 1.0)

Richard T. Medan (Editor), Alfred E. Magnus, Kenneth W. Sidwell, and Michael A. Epton Boeing Military Airplane Company Seattle, Washington

Prepared for Ames Research Center and Langley Research Center under Contract NAS2-9830

and for the Air Force Aeronautical Systems Division Air Force Wright Aeronautical Laboratories Naval Coastal Systems Center

> nt ed

ıd pr

Ames Research Center Moffett Field, California 94035

n a construction of a second sec

- -

··· • • • • •

TABLE OF CONTENTS

PAGE

ACK	NOWLEDGEMENTSiv
SUM	MARY 1
INT	RODUCTION 2
DIR	ECTORY OF CASES 4
REF	ERENCES
FIG	URES
1.	EIGHT PANEL DELTA WING 1-1
2.	THIN RECTANGULAR WING 2-1
3.	WEAPONS CARRIAGE AIRPLANE
4.	THIN DELTA WING 4-1
5.	NASA WING-BODY 5-1
6.	THIN WING WITH DEFLECTED FLAP 6-1
7.	TWO-DIMENSIONAL AIRFOIL DESIGN
8.	THIN WING DESIGN
9.	NACELLE
10.	ADDED MASS VALIDATION

ACKNOWLEGDEMENTS

The authors wish to thank the following for their ideas and/or material:

Ralph Carmichael, NASA Ames Research Center. Ed Ehlers, Boeing Commercial Airplane Company. Larry Erickson, NASA Ames Research Center. Forrester Johnson, Boeing Commercial Airplane Company. Ed Tinoco, Boeing Commercial Airplane Company.

PAN AIR - A COMPUTER PROGRAM FOR PREDICTING SUBSONIC OR SUPERSONIC LINEAR POTENTIAL FLOWS ABOUT ARBITRARY CONFIGURATIONS USING A HIGHER ORDER PANEL METHOD.

VOLUME III - CASE MANUAL. (VERSION 1.0)

Richard T. Medan (editor), Alfred E. Magnus, Kenneth W. Sidwell, and Michael E. Epton

Boeing Computer Services Company, and Boeing Military Airplane Company

SUMMARY

Numerous applications of the PAN AIR computer program system are presented. PAN AIR is a user-oriented tool for analyzing and/or designing aerodynamic configurations in subsonic or supersonic flow using a technique generally referred to as a "higher order panel method". Problems solved include simple wings in subsonic and supersonic flow, a wing-body in supersonic flow, wing with deflected flap in subsonic flow, design of two-dimensional and three-dimensional wings, axisymmetric nacelle in supersonic flow, and wing-canard-tail-nacelle-fuselage combination in supersonic flow.

INTRODUCTION

PAN AIR can be used to analyze and/or design aerodynamic configurations in subsonic or supersonic flow using a technique generally referred to as a "higher order panel method". This manual is a compendium of stand-alone case documents each of which describes an aerodynamic problem solved using PAN AIR. See references 1 to 4 for further PAN AIR documentation.

The purposes of this Case Manual are:

- (a) to provide a central record of sample problems executed by PAN AIR,
- (b) to illustrate the range of capabilities of PAN AIR,
- (c) to help the user formulate his problems quickly and easily by providing input listings which he can use as models for his own input decks,
- (d) to illustrate alternative flow modeling techniques,
- (e) to illustrate and record novel or unusual applications of PAN AIR, and
- (f) to identify which PAN AIR features and options have been validated.

Several of the case writeups compare results with a code that is described in references 5 and 6 and that has become known as the "PAN AIR pilot code". The pilot code has been verified to be generally very accurate (e.g., reference 6), and the equations and coding were developed totally independently of PAN AIR. Therefore, it is felt that comparisions to the pilot code are a valid method of verifying PAN AIR. Additional PAN AIR applications appear in reference 7.

An explanation of the PAN AIR terminology appearing in some of the following writeups is given in the Engineering Glossary and Index which appears in section 9.0 of the User's Manual (ref. 2). Also, an understanding of the input listings in the following case douments may be facilitated by reference to section 7 of the User's Manual. In particular, note that most of the input records in the input listings are labeled with a slash (indicating that what follows is a comment) followed by the number of the record, with the numbering scheme being that of section 7 of the User's Manual.

The PAN AIR program system is available on magnetic tape from

COSMIC 112 Barrow Hall University of Georgia Athens, Georgia 30602

(404) 542-3265

In addition to the program, the magnetic tape includes all of the sample cases mentioned herein (with some insignificant differences) and output data for some of these cases.

DIRECTORY OF CASES

A synopsis of the PAN AIR standard test cases described herein appears below. In addition, refer to Table 1 to ascertain which PAN AIR options have been validated and illustrated by these test cases. Note also the "EV" column in Table 1. EV stands for "Enhanced Validation", and actually represents a large number of cases developed to thoroughly test PAN AIR. The enhanced validation cases are not formally documented. In the descriptions that follow, "thin wing" refers to a mean-surface model and actual surface models are referred to as "thick".

KEY WORDS CASE TITLE 1 Eight panel delta wing Thick wing, class 1 boundary conditions 2 Thin rectangular wing Thin wing, multiple right hand sides, specified flow, local onset flow, rotational onset flow. 3 Wing-body with inlet and tail, Weapons carriage airplane supersonic flow, thick configuration with thin wing, superinclined panels 4 Doublets alone, thin wing, Thin delta wing Supersonic flow, asymmetric geometry 5 NASA wing-body Wing-body, two planes of symmetry, supersonic flow, thick wing Thin wing, exact flap deflection. 6 Thin wing with subsonic flow, specified flow, local deflected flap onset flow 7 Subsonic flow, design, thick wing Two-dimensional airfoil design 8 Thin wing design Thickness design, camber design, supersonic flow Nacelle Superinclined panels, inlet barrier, 9 supersonic flow, sources alone network

4

į

Added mass coefficients and surface flow properties of triaxial ellipsoids, ellipsoidal flat plates, spheres near a wall, rectangular flat plates, and parallelepipeds.

REFERENCES

- Magnus, Alfred E.; and Epton, Michael.A.: PAN AIR A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations Using a Higher Order Panel Method. Volume I -Theory Document (Version 1.0). NASA CR-3251, 1980.
- Sidwell, Kenneth W.; Baruah, Pranab K.; and Bussoletti, John E.: PAN AIR

 A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations Using a Higher Order Panel Method. Volume II - User's Manual (Version 1.0). NASA CR-3252, 1980.
- 3. Sidwell, Kenneth W.; and Derbyshire, Thomas: PAN AIR A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations Using a Higher Order Panel Method. Summary Document (Version 1.0). NASA CR-3250, 1981.
- 4. Baruah, Pranab K.; Bussoletti, John E.; Massena, William A.; Nelson, Franklin D.; Purdon, David J.; and Tsurusaki, Kiyoharu: PAN AIR – A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations Using a Higher Order Panel Method. Volume IV – Maintainence Document (Version 1.0). NASA CR-3254, 1980.
- 5. Moran, J.; Tinoco, E. N.; and Johnson, F. T.: User's Manual -Subsonic/Supersonic Advanced Panel Pilot Code. NASA CR-152047, 1978.
- Ehlers, F. Edward; Epton, Michael A.; Johnson, Forrester T.; Magnus, Alfred E.; and Rubbert, Paul E.: A Higher Order Panel Method for Linearized Supersonic Flow. NASA CR-3062, May 1979.
- 7. Carmichael, R. L.; and Erickson, L. L.: PAN AIR A Higher Order Panel Method for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations. AIAA paper 81-1255, June, 1981.

6 : 7 V : V	: 8 : : : V :	: 9 : : V : V	EV V V
V V	: : V :	V	V
V V	: : V :	· V	V V
V V	V	: V	V V
V V	: V : : :	: V :	: V : : V :
:	:		: v :
:	:		. v .
:		•	
•	•		. v .
-	•		
v : v	÷ v	• v	. v .
V : V	: V		. v .
:	:		
i V . V	• • •	•	. V .
V : V	; V	: V :	. V .
v :	• v		
V :	: V		. v .
•	•	•	. v .
: v	•	· v	
•••	•		· v ·
•	•	•	· · ·
•	•	•	
:	:	•	· · ·
•	•	•	
•		•	
•	•	•	. U . . V .
:	•	•	v .
• v	•	• v	v ·
• v	•		v .
	•	•	
•	•	•	. V .
• v	•	• •	. U .
• •	•		v i
•	•	•	
:	:	: :	
:	:	: :	v
viv	:	: :	v :
:	: V	: V :	V :
:	:	: :	
:	:	:	V :
V:	:	: :	Ý :
: • V		: V :	V :
	:	: :	
	: V	: :	V
:	:	: :	V :
	:	: :	
B impl	ies	knowr	bug)
	V V VV V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V V

Table 1. Validated PAN AIR options.

SAMPLE TEST CASE NUMBER

PAN	AIR option	:	1	: 2	: 3		: 4	: 5	: 6	: 7	: 8	:	9	: EV	:
06	Clobal Orest Flow	:		:	:			:	:	:	:	:		:	:
60	GIODAL UNSEL FIOW	:		•	-			•	• • v	: • v	•	•		: . v	-
	$V_{\text{MIIII}} = 0$	•	v	: • v	: • v		. v	: • v	: V	: ¥	: • v		v	: V • V	:
	Non Dofault RETA	•	¥	. v	. v		. v	. v	•	•	. v		۷	• ¥	
	Non Default HIME	:		• • •	:			•	•	•	•			• •	
	Non Default Dinr Flow	•		• •	•		•	•	•	•	•			: ¥	
	Multiple Solutions	•	v	• V	÷ v	i		•	• v	•	•			: V • V	
67	Tolonanco For Edge Matching	:	¥	. Y	• •	•	•	•	• •	:	•	•		. V	÷
u/	Omitted	:	v	•	:		. v	•	:	: v	: .	:	v	• • V	•
	Enternad	:	v	• • v	•		. V . V	: v	•	• •	• •	:	v	• ¥	•
	No Edgo Matching	•		: V	• • V		. V	: V	• • v	•	•	•		: V . V	-
60	NO Edge Matching	•		•	: Y	•		•	: V	•	•	•		: V	
60	Omitted (HDEE)	•	v	•	: • v			•			: • v			: • v	-
		:	Υ.	• • v	: V	:		• • v	•	• • v	• ¥	•	v	• V	
		:		• •	•	:	• ¥	. v	•	• •	•	•	V S	: V . V	•
		:		• •	•	•	v	•	• • •	•	•	÷	V i	: V . V	
		•	1	: V			v	•	: V		:		-	: V . V	-
		•	i		•				: 	•	•	÷		: V . V	•
<u></u>	AVERAUE	•	i		:				: V	:	:	:		: V	:
69	Selection of velocity comp method	:		: . v	: • v		v	: . v		: . v	:	-	v	: 	:
	DOUNDARY CONDITION		V	. V	: V -		V	: V -	•	: V	:	:	V 3	; V . V	:
		•		•	•			•	: . v	•	: • v	•		: V . V	:
C10	Computational Ontion for Proceuro	•			:				: V		: V	:		: V	:
010	Omitted (UNIEODM ONSET FLOW)	•			•			•	•	•	•	•	•		•
	UNITED MONSET FLOW	•			•							:		: V	÷
		÷	1	•	•	•			•	•	•	•			-
		•		•	•			•	•	•	•	•		. v	
c1 1	Valaaity Convertion Ontions	•			•	•		•	•	•	•	•		: ¥	:
GII	Omitted (NONE)	:	v :	. v	: . v		v	: 	: • V	: • v	: . v	:	v 3	: • •	:
		:	¥ .	. ¥	. V	:		• ¥	. v	• •	• •	:	V i	. v	
	NUNL	•			•			•	•	•	•	•	•	: ¥ . V	
	SA1	•			•	•		•	•	•	•	•	•	. v . v	
612	Descure Coofficient Dulos	:			•	:		•	•	•	•	•	i	. V	÷
012	Omittad (ISENTRODIC)	:			•	:		•	•	:	•	•			-
	ISENTRODIC					i	v	• V	•	•	: . v	÷	V A	; 	-
			V .	. V . V	• • • •	•	. ¥ 	: ¥ . V	• • •	• • •	: V . V	•	V i	i V . M	•
		: 1	V :	; V	: V	-	V	: V	: V	: V	: V	÷	V :	; V 	
		-								:	•	:		: V 	:
		•					v		: . v		•	:		i V . v	•
C1 2	Datio of Specific Meate	•		. V		-	¥ .		: V. -	•	•	•		V	÷
913	Omitted	: 	, :	. v	. v		v	• V	; • V	: • •	: • •	:	v :		÷
	Unitileu	•	v :	v	. ¥	•	¥	. V	. V	• •	. v	÷	V :	, v	:
	LIILEI 20	/ v	in	n nli	•	:	1:4	atod	• D	i imml	ioc	- 1		, 	; _`
		\₩.	14	ини	22	٧d	. i i u	ュレビロ	, D	impi	162	- 6 (IUMI	เมน	٩٦.

				SAM	IPLE	TEST	CAS	e nui	MBEF	2		
PANAIR option	: 1	:	2	: 3	: 4	: 5	: 6	: 7	: 8	:	9:	EV :
	:	:		:	:	:	:	:	:	:	:	:
G14 Reference Velocity for Pressure	:	:		:	:	:	:	:	:	:	:	:
Omitted	: V	:	V	: V	: V	: V	: V	: V	: V	:	۷:	<u>v</u> :
Entered	:	:		:	:	:	:	•	:	:	:	в:
GIS STORE VIC MATRIX	:	:		:	:	:	:	:	: .;	:	., :	:
Omitted	.: V	:	V	: V	: V	: V	: V	: V	: v	:	۷ :	V :
Entered	.:	:		:	:	:	:	:	:	:		V :
G16 STORE LOCAL ONSET FLOW	:	:		:	:	:	:	:	:	:	. :	:
Omitted	.: V	:		: V	: V	: V	: V	: V	: V	:	۷ :	V :
Entered	.:	:	V	:	:	:	:	:	:	:		V :
G17 CHECKOUT PRINTS	:	:		:	:	:	:	:	:	:		
Defaults	.:	:		:	:	: 	: 	:	:	:		V :
	.: V	:		: V	: V	: V	: V	: V	:	:	V :	
	.: <u>v</u>	:		: V	: V	: V	: V	: V	:	:	V :	V :
	.: V	:		: V	: V	: V	: V	: V	:	:	V :	V :
	.: V	:		: V	: V	: V	: V	: V . V	:	i	V i	V I
	.: V	:		: V	:	: V	: V	: V	:	÷	۷ :	V :
	. .	:		: 	: . v	: • V	: . v	: . v			v :	· · ·
DQG 5	. V	:		: V	: V	: V - V	: V . V	: V • V	•	•	V .	
	.: V	-		: V . V	: V	: V . V	: V . V	: V . V	•	•	V .	V I
	. V	•		: V	: V	• •	. v	• V	•	:	۷.	· • •
עט /		•			•	•	•	: V	•	•	•	· · ·
UEL		•	v	•	: . v	•	•	•	• • v	•	•	v
ALL	•	÷	V	•	. v	:	•	•	. ¥	:	•	
	•	•		•	•		•		•			
	•	•		•	•	•	•	•	•	:	•	•
	•	:		•	:	•	•	•	•	:	:	:
	:	:		:	:	•	•	•	•	:	:	•
	:	:		•	:	•	•	•	•	:	:	•
	:	:		•	•	•	•	•	•	:	•	•
	:	:		•	:	•	•	•	•	:	:	
	•	:		•	:	•	•	•	•	:		•
	:	:		•	:	•	•	•	•	:		•
	•	:		•	:	:	•	•	•	•		
	:	:		•	:	:	•	•	•	:		•
	•			•	•		•	•	•	:		
	:			•	•	•	•	•	•			
	•	:		•	•	•	•	•	•			
	•			•	•	•	•		•			
	•	•		•	:	:	:	:	:	:		
	•			•	•	:	•	•	:	:		• •
	(v	· im	nli	• • •	• Ialid	atod	- R	imnl	ioc	kn	Nwr	, bug)
	(*	144	PII	C2 1	ailu	areu	, D	imh i	162	КI		, buy)

					SA	MPL	.Ε	TEST	CA:	SE I	NUM	1BEF	2				
PAN	AIR option	: 1	:	2	: 3	:	4	: 5	: 6	:	7:	8	:	9	:	E۷	:
	· · · · · · · · · · · · · · · · · · ·	:	:		:	:		:	:	:	:		:		:		:
NET	JORK DATA GROUP	:	:		:	:		:	:	:	:		:		:		:
NI	Network Data Group Identifier	:	:		:	:		:	:	:	:		:		:		:
	Omitted (post-solution update)	:	:		:	:		: :		:	:		:		:	٧	:
	Entered	: V	:	V	: V	:	٧	: V :	: V	: 1	۷:	V	:	V	:	٧	:
N2	Network Identifier Record Set	:	:		:	:		: :		:	:		:		:		:
	N2a Network Identifier	:	:		:	:		: :	:	:	:		:		:		:
	Default (NEW)	•	:		: V	:		:	: V	: 1	۷:	V	:		:	٧	:
	NEW	: V	:	V	:	:	V	: V :		:	:		:	۷	:	٧	:
	REPLACE	:	:		:	:		:		:	:		:		:	Ŷ.	:
	SOL UTION-UPDATE		•		:			:		•			•		•	v	
	DELETE	•								•					•	v	:
	N2h Grid Point Coordinates	. v	:	v	÷v	:	v	• v	. v		v .	v	:	v	•	v	:
N3		• •	:	¥	• •	:	v		. v	•	•••	v	:	•		•	:
- NJ	Omittod	. v	:	v	: v	:	v	·	•	: .		v	:	v	•	v	•
	Entopod	: V -	•	v	: v	•	V V	• • •	. v . v		v : v :	v v	•	v	•	¥ V	•
NИ		•	•		•	-	v	•	. V	•	¥ ;	v	•		•	۷	•
194	Omitted	: • v		v	: . v		v	: 		:		v	:	v		v	:
		: V	•	۷	: V	•	V	: V :		•	V :	v	•	¥	•	۷	•
W7			:		:	:		:		:			•				•
N5	Reflection in Plane of Symm. lag	:	:		:	:		: . :		:	:		:			.,	:
	Omitted (Autom. Not lagged)	: V	:	V	: V	:	V	: V :	: V	:]	v :	Ý	:	V	:	V.	:
	Omitted (Automatically Tagged)	:	:		:	:		:		: '	۷:		:		:	V	:
	FIRST-PLANE.	:	:		:	:		: :	:	:	:		:		:	V.	:
	SECOND-PLANE	•	:		:	:		: :	:	:	:		:		:	V	:
N6	Wake Flow Properties Tag	:	:		:	:		: :	:	:	:		:		:		:
	Omitted	: V	:	V	: V	:	V,	: V :	: V	: \	۷:	V	:	V	:	V	:
	Store Wake IC's	:	:		:	:		: :		:	:		:		:	V	:
	Store Wake IC's a VIC's	:	;		:	:		: :	:	:	;		:		:	V	:
N7	Triangular Panel Tolerance	:	:		:	:		: :	:	:	:		:		:		:
	Omitted	: V	:	۷	: V	:	V	: V :	: V	: \	۷:	V	:	V	:	V	:
	Entered	:	;		:	:		: :	:	:	:		:		:	V	:
N8	Network and Edge Update Tag	:	:		:	:		: :	:	:	:		:		:		:
	Omitted	: V	:	V	: V	:	V	: V :	: V	: \	1 :	V	:	۷ :	:	۷	:
	Entire Network Tagged	:	:		:	:		: :	;	: \	1:		:	:	:	V	:
	Edges Only Tagged		:		:	:		: :		: \	1 :		:	:	:	V	:
			:		:	:				:	:		:	1			:
	:		:		:	:		: :		:	:		:	4	:		:
	:		:			:		: :		:	:		:	:			:
	:	:	:		:	:	:	: :		:	:		:	:			:
			:	:	:	:		: :		:	:		:				:
		;	:		:	:		: :		:	:		:				:
			:		:	:	:	: :			:		:				:
		(V ·	i mp	olie	es 1	Va 1	ida	ated.	В	imp)]i	es	kn	owr	n	bug)
		•								•						~	

Table 1. continued.

			SAN	IPLE	TEST	CAS	E NU	MBEF	२ _	
PANAIR option	<u>: 1</u>	: 2	: 3	: 4	: 5	: 6	: 7	: 8	: 9	: EV :
NO Devedence Condition Specification	:	:	:	:	:	:	:	:	:	
Ny Boundary condition Specification		:	:	:	:	: . v	:		:	
Dofault (LOCAL)	•••	: V - V	:	: • v	: . v	: V • V	• v	: • v	: • v	
	•••	i.V	•	:.V	V	V	i.v	V		. V .
	• • •	•	·v	•	·v	• v	•	•	•	v
Class 1 Impermeable Surface	•••	•		•	• •	• •	•	•	•	
Subclass 1	: v	•	÷v	•	· v	•	• v	•	÷v	· v ·
	•••• •	•		•	• •	•		•	• •	• • •
Subclass 2	•••• •	•	÷v	÷v	•	÷v	•	•	•	v ·
Subclass 4	· · · v	÷v	· v	÷v	÷v	÷ v	· v	. v	÷ v	v
Subclass 5		:	: '	: *	:	:	: '		:	V.
Class 2 Specified Flux			•	:		:	:	:	• •	
Subclass 1		:	:	:	:	:	:	:	:	V :
Subclass 2		:	:	:	:	:	:		:	
Subclass 3	:	: V	:	:	:	: V	:	:	:	: V :
Subclass 4	:	:	:	:	:	:	:	:	:	: V :
Subclass 5	:	:	:	:	:	:	:	: V	:	: V :
Class 3 Design	:	:	:	:	:	:	:	:	:	: :
Subclass 1	:	:	:	:	:	:	: V	:	:	: V :
Subclass 2	:	:	:	:	:	:	:	:	:	: :
Subclass 3	:	:	:	:	:	:	:	:	:	: :
Subclass 4	:	:	:	:	:	:	:	:	:	: :
Subclass 5	:	:	:	:	:	:	•	:	:	: :
Subclass 6	:	:	:	:	:	:	:	:	:	: :
Class 4 Selected Terms	:	:	:	:	:	:	:	:	:	:
Left Side Index 1	:	:	: V	:	:	:	:	:	: V :	:
	:	:	: V	:	:	•	:		:	:
		:	:	:	:	:	:		:	
т т ч 4		:	:	:	:	:	:		- V	
тана в с	•••	:		:	:	:			: V :	
	•••	•	: V		•	•	•		•	· · ·
/••••••••••• Q	•••	•	•	•	•	•	•		• v	· · ·
о и и и о		•	•	•	•	•	•			
9	• • •	•	•	•	•	•	•	•	•	• •
	• • •	•	•	•	•	•	•	• • v	•	v :
······································	•••	•	•	:	:	•	•	· v	•	v i
" " 13	•••	•	:	•	•	•	•		•	v .
II II II.	• • •	•	•	•	•	•	•	•		
"""15		•	:	•	•	•				
" " 16		:	:	:	:	:		-	:	:
	:	:	:	:	:	:	:		:	:
	:	:	:	:	:	:	: :	:	: :	:
	۷)	impli	es ۱	/alid	ated	, В	impl [.]	ies	knowr	n bug)

ï

 ~ 2

Table 1. continued.

SAMPLE TEST CASE NUMBER

Mass Flux R. H. S. Index 1 V """"""""""""""""""""""""""""""""""""
Mass Flux R. H. S. Index 1 V V H H H V Potential R. H. S. Index 1 V V H H H V V V V V Veloc. Design R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V
W W
Potential R. H. S. Index 1 V V Veloc. Design R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Index 1 V V Veloc. Anal. R. H. S. Veloc V V Veloc Veloc Veloc Veloc
Veloc. Design R. H. S. Index 1.: V V V Veloc. Anal. R. H. S. Index 1.: V V V Veloc. Anal. R. H. S. Index 1.: V V V Veloc. Anal. R. H. S. Index 1.: V V V Veloc. Anal. R. H. S. Index 1.: V V V Veloc. Anal. R. H. S. Index 1.: V V V Veloc. Anal. R. H. S. Index 1.: V V V Veloc. Anal. R. H. S. Index 1.: V V V Veloc. Anal. R. H. S. Index 1.: V V V
Weloc. Design R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. Anal. R. H. S. Index 1.: V V V Weloc. F. V V V V
Veloc. Design R. H. S. Index 1.: Veloc. Anal. R. H. S. Veloc. 1.: Veloc. 1.: Vel
Veloc. Anal. R. H. S. Index 1 Veloc. Index 1 Veloc. 5
Veloc. Anal. R. H. S. Index 1 ::::::::::::::::::::::::::::::::::::
Veloc. Anal. R. H. S. Index 1: : : : : : : : : : : : : : : : : :
NIU Method of velocity computation : : : : : : : : : : : : : : : : : : :
Default Classes A 5
LOWER-SURFACE-STAGNATION
UPPER-SURFACE-STAGNATION
NONSTAGNATION
N11 Singularity Types : : : : : : : : : : : : : : : : : : :
Omitted
NOS
SA : : : : : : : : : : : : : : : : :
SD1
DFW
DW1
DW2
N12 Edge Control Point Locations : : : : : : : : : : : : : : : : : : :
OmittedV:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V
SNE
DNE
N13 Remove Doublet Edge Matching
Umitted
(V imnlies Validated R imnlies known hun)

Table 1. continued

12

PANAIR o	ption		1 :	2	SAM : 3	PLE : 4	TEST	CAS : 6	SE NUI	4BER	• 0, •	• FV
	<u> </u>	:	:		:	:	:	:	:	: 0	:	
N14 Clos	ure Edge Boundary Condition	:	:		:	:	:	:	:	:	:	
N14a	Closure edge condition	:	:		:	:	:	:	;	:	:	
	Omitted	.: ١	۷:	۷	: V	: V	: V	: V	: V	: V	: V :	: V
	SNE	.:	:			:	:	:	: V	:	:	: V
	DNE	.:	:				:	:	:		:	
N14b	Closure Term					:	:	•	•	•	•	•
	TFRM = All	:	:		•	•	•	•	•	•	•	•
	TFRM - Al	•••	:			•	•	•	•	•	•	•
	$TERM = \Delta \Delta$	••	:		•	•	•	•	•	•	•	•
	TEDM = AD		:		•	•	•	•	:	•	•	
	TEDM = PC	•••	•			•		•	: V		:	
N1 4-	IEKM = DU	• •	:			•		:	: V		:	: V
NI 4C	closure Solutions List	:	:			:	•	•	:		:	
		.:	:		:	:	:		: V		:	: V
		.:	:			:	:		•		: :	: V
NI 4d	Closure Numerical Values	:	:			•		:	:		: :	:
	Global Value	.:		:	:	:	:	:	:		: :	: B
	Consecutive Ordering	.:	:	:	:	•	:	:	: V :	:	: :	: V
	Indexed Input	.:	:	:	:	:	:	:	:		: :	8
	Single Point	.:	:	;	:	:	:	:	:	:	: :	
	Index Range	.:	:	;		:	:	:	: :	3	: :	
	Index Global Range	.:	:	· -		•			:		: :	
115 Coef	ficient of General B.C. Eq.	:	:			:			:		: :	
N15a	Identifier	:	:			:			:		: :	
	Omitted	: \	1 :	V	V.	• V •	v	v	· v	v	· v ·	v
	Entered					•••			• •		• • •	v
N1 55	Equation Term	•	:			•		•	•	•	• •	
112.00	Left Hand Side	:	:			• •		•	• •	•	• •	
	Mass Flux	:	•		•	•	• •		• •		• •	v
	Dotontial	•	:		•	• •	•	•	• •	· .	• •	V V
	Volocity	•	:			• •		•	• •		• •	¥.
									: :		: :	V
	U				1				: :		: :	V
	L	:	:	:					: :		: :	V
	A	:	:	:					: :		: :	· V
		:	:	:					: :		: :	V
	Ist Equation	:	:	:		: :	:		: :		: :	V
	2nd Equation	:	:	:	:	: :	:		: :		: :	V
	Right Hand Side	:	:	:		:	:		: :		: :	
	Omitted	:	:	:	:	: :	:		: :		: :	
	Mass Flux or Velocity	:	:	:	:	:	:		: :	:	: :	۷
	Potential	:	:	:	:	:	:		: :		: :	V
	Tangential Velocity	:	:				:		: :		: :	Ý
		:		:		: :	:		: :		: :	-
		:	:	:								
		(V	im	Jio	ic V∍	lida	hat.	R	imeli	ا عم	- • • • • •	huc
		\ *	1 m	116	S ¥0	11100	iceu,	U	unhii	C2 1	KUOMU	սսց

Table 1. continued

.

SAMPLE TEST CASE NUMBER

PANA	IR or	otion	: 1	:	2 :	3	: 4	: 5 :	: 6	: 7	: 8	: 9	: E\	<u> : :</u>
	N15c	Equation Solutions List	:	:			:	: :	;	:		:	:	:
		Omitted	:	:	:	:	:	: :		: :	:	:	: <u>V</u>	:
		Entered	:	:	:	:	:	: :	1	:	:	:	: V	:
	N15d	Equation Control Point Locs				-	:	: :		: :	:	:	•	:
		ALL-CONTROL-POINTS		:		5	:	: :	1	:	:	:	: V	:
		CENTER-CONTROL-POINTS	5	:	:		:	: :		:	:	:	: V	:
		EDGE-CONTROL-POINTS		:	:	:	:	: :	;	: :	:	:	: V	:
		ADDITIONAL-CONTROL-POINTS		:	:	:	:	: :	5	: :	:	:	: V	:
	N1 5e	Equation Numerical Values	;	:	:		:	: :	:	:	:	:	:	:
		Global Value	5	:		;	:	: :		:	:	:	: V	:
		Consective Ordering		:		2	:	: :		:	:	:	:	:
		Indexed Input.		:		3	:	: :		:	:	:	: V	:
N16	Tange	ent Vectors for Design	:	:	2		:	:		:	:	:	:	:
	N16a	Tangent Vectors Identifier		:			:	:	1	:	:	:	:	:
	112 00	Omitted	: V	:	۷ :	: V	: V	: V :	: V	: V :	: V	: V	: V	:
		Entered		:			:	:		: V :	: V	:	: V	:
	N1 65	Tangent Vectors Term		:			:	:	:	:	:	:	:	:
	NI OD	Left Hand Side		:			:	:		:		:	:	:
				•			:	:	:	: V	:	:	: V	:
		1					:	:		:		:		:
		Δ		:			:	:		:	: V	:	: V	:
		D					:	:		:	: V	:	: V	:
		1st equation		:			:	:		: V	: V	:	: V	:
		2nd equation		:	-			:	:	:	: V	:	: V	:
		Pight Hand Side	•			:	:	:		:	:	:	:	:
		1st equation	•			:	:	:	:	: V	: V	:	: V	:
		2nd equation	•			•	:	:	:	:	:	:	:	:
	N1.6c	Tangent Vectors Scaling	•			•	•		:	•	:	:	:	:
	NIOC	Omitted	•	:		•	•	•	•	÷v	V		÷ν	
			•	:		•	•	•	•	:	:	:	:	:
	N1 Cd	Tangant Vactors Sol List	•			•	•	•	•		•	•	•	
	NIOU	Angent vectors sol. List	•	:		•	•	•	•	÷v	· v	•	: v	:
		Unit Least	•	•		•		•	•	:	:	:	:	:
	N160	Tang Voot C D Locations	•	:		•	•	•	•		•	•		
	NTOE	ALL CONTROL DOINTS	•	•		•	•	•	•	÷v	÷v	•	÷ν	:
		CENTED CONTROL DOINTS	• •	:		•	•	•	•	:	••••	•	:	
			•	•		•	•	•	•	•	•	•	•	
			•	:		•	•	•	•	•	•	:	•	
	N1 CE	ADDITIONAL-CONTROL-FOINTS	•	:		•	•	•	•	•	•	:	:	:
	NIDT	Clabal	•	•		•	•	•	•	:	•	:	:	:
		Global Ordering	•	•		•	•	•	•	•	•	•	•	:
		Indexed	•	:		•	•	•	•	•	:	÷	:	
	N1 C		•	•		•	•	•	•	•	•	•	•	
	NT 93	Lang. Vec. Stand. Num. Val	• •			•	•	•	•	•	• . •	•	•	:
		LUMPRESSIBILITT-DIRECTION	•	•		•	•	•	•	• v	: v	•	÷v	•
		miu-ruini	•			•	+ V-1-1-1	• مەسمە	•	• •	• •	know	• •	• \يمين
			۱¥.	1	ID 10	es	va 10	aleu	, D	i unb i	162	KIIUW		uy)

Table 1. continued

14

						SAM	MPL	E 1	TEST	CASE	E NUI	MBER		
PANA	AIR or	otion	: 1	:	2	: 3	:	4 :	: 5	: 6	: 7	: 8	: 9 :	EV :
		······································	:	:		:	:			:		:	: :	:
NI/	Spec1	Itled Flow Record Set Specified Flow Identifier		:		:	:			•	•	•	• •	•
	NI / d	Omitted	· v		v	÷v	:	v	v	v	· · v	v	: v :	v :
		Fntered	: •	:	v	:	:	•		: V	: V	: V	: :	V :
	N1 7b	Specified Flow Term	:	:	•	:	:			•		•	: :	:
	11270	TERM = 1	•	:		:	:	4		:	: V	: V	: :	۷:
		TERM = 2	:	:	V	:	:	1	:	: V	:	: V	: :	۷:
	N1 7c	Specified Flow Symmetries	•	:		:	•		:	:	:	:	: :	
		Omitted	:	:	-	:	:		:	:	:	•	: :	B :
		INPUT	:	:	V	1	:		•	: <u>V</u>	: V	: V	•	V :
		1ST		:	۷	:	:		:	: V	: V	: V		
		2ND	:	:		:	:			:	: V • V	•		V .
	N1 7d	SKU	• .	:		•	•		•	•	. ¥	•	• •	¥. •
	NT /U	Omitted	•			•	:		•	•	: v	: v	: :	V
		Fntered.	:	:	V	:	:		:	: v	:	:	: :	V :
	N17e	Specfied Flow C. P. Locs.	:	:		:	:	1	:	:	;	:	: :	:
		ALL	:	:	V	:	:	1	:	: V	: V	: V	: :	V :
		CENTER	:	:		:	:	1	:	:	: V	: V	: :	V :
		EDGE	:	:		:	:	1		•	•	: V	: :	V
		ADDITIONAL	•	:		:	:		:	:	:	: V	: :	V
	NI /†	Specified Numerical values	:	:	v	:	:		•	: • v	: • V	: • v	• •	v
		Gongogutivo Ordering	•	•	v	•	:		•	• •	• v	• v		v ·
		Indexed Input	:	:		:	:		•	:	:	:	: :	v :
N1.8	Loca	1 Onset Flow Record Set	:	:		:	:		:	:	•	•	: :	
1110	N18a	Local Onset Flow Identifier	:	:		:	:		:	:	:	: .	: :	
		Omitted	: V	:	۷	: V	:	V	: V	: V	: V	: V	: V :	V :
		Entered	:	:	V	:	:		:	: V	:	:	: :	V :
	N1 8b	Local Onset Flow Term	:	:		:	:		:	:	: }	:	: :	
		ALPHA-BETA-MAGNITUDE	:	:	v	:	:		:	: . v	•	•	• •	
	N1 0a	VATZ	•	•	v	•	•		•	• •	•	•		•
	NIOC	Omitted	•							:	:	:	: :	8
			:	:	۷	:	:		:	: V	:	:	: :	V :
		1ST	:	:	۷	:	:		:	: V	:	:	: :	V :
		2ND	:	:		:	:		:	:	:	:	: :	
		3R D	:	:		:	:		:	:	:	:	: :	
	N1 8d	Local Onset Flow Sol. List	:	:		:	:		•	:	:	:	: :	
		Omitted	:	:		:	:		:	:	:	:	:	v
		Entered	:		V	:	:		:	: V	:	•		v :
			:	:		:	:		•	i •	•	•	•	
			(v	in	n li	ies	Va'	lid	• ated	B	impl	ies	knowr	n bua
			۰.				•••			, <u> </u>	· · · · · · · ·			J

Table 1. continued

,

					SAM	PLE	TEST	CAS	E NU	MBE	2			
PANAIR o	option	: 1	: 2	2 :	3	: 4	: 5	: 6	: 7	: 8	: !	9:	E۷	:
<u> </u>			:	:		:	:	:	:	:	:	:		:
N18e	Local Onset Flow C.P. Locs.	:	:	:		:	:	:	:	:	:	:		:
	ALL	:	: V	:		:	:	: V	:	:	:	:	۷	:
	CENTER	:	:	:		:	:	:	:	:	. :	:		:
	EDGE	:	:	:		:	:	:	:	:	:	:		:
	ADDITIONAL	:	:	:		:	:	:	:	:	:	:		:
N18f	Local Onset Flow Num. Values		:	:		:	:	:	:	:	:	:		:
	Global	:	: V	:		:	:	: V	:	:	:	:	V	:
	Consecutive Ordering	:	:	:		:	:	:	:	:	:	:		:
	Indexed	:	:	:		:	:	:	:	:	:	:		:
GEOMETR	IC EDGE MATCHING DATA GROUP	:	:	:		:	:	:	:	:	:	:		:
GE1	Geometric Edge Matching Id	;	:	:		:	:	:	:	:	:	:		:
	Omitted	: V	: V	:		: V	: V :	:	: V	: V	:	: ۷	V	:
	Entered		:	:	V	:	:	: V	:	:	:	:	V	:
GE2	Abutment Definition	:	:	:		:	:	:	:	:	:	:		:
	Single Network	:	:	:	V	:	:	: V	:	:	:	:	V	:
	First Network Default	:	:	:		:	:	: V	:	:	:	:	V	:
	Subsequent Network Default		:	:	V	:	:	: V	:	:	:	:	V	:
	ENTIRE Edge	:	:	:	V	:		:	:	:	:	:	V	:
	Endpoint Pair		:	:		:	:	•	:	:	:	:	V	:
GE3	Abutment in Symmetry Planes		:	:		:	:	:	:	:	:	:		:
	Omitted		:	:	V.	:	:	: V	:	:	•	:	V	÷
	F IRST		:	:	V	:	:	: V	:	:	:	:	V	:
	SECOND		:	:		:	:	:	:	:	÷	:	V	:
054			:	:		:	:		:	:	:		V	-
GE4	Smooth Lage Treatment Uption		:	:	v	:	:		:	:	:	:	v	÷
			•	•	V	•	•	. V	•	•	•	•	v	•
	Entered		•	•		•	•	•	•	•	:	:	v	•
		•	•	:		•	•	•	•	•	:	:		:
			•	:		•	•		•	•	:	:		:
		•	:	•		•	•	•	•	:	:	:		:
		,	•	•		•	•	•	•	•	•			
		•	•			•	•		:	:	:	:		:
			:			:	:		:	:		:		:
			:	:		:	:		:	:	:	:		:
			:				:		:	:	:	:		:
			:	:		•	•		•	:	:	:		:
	:		:	:		:	:	:	:	:	:	:		:
	:		:	:		:	:	:	:	:	:	. :		:
	1	;	:	:		:	:	:	:	:	:	:		:
	:	3	:	:		:	:	:	:	:	:	:		:
	:	:	:	:		:	:	:	:	:	:	:		:
	· · · · ·		:	:		:	:	:	:	:	:	:		•
		(V	impl	ie	s Va	alid	ated,	, B	impl	ies	kn	own	bug))

Table 1. continued

III

16

The state of the s

1.0

1.16

			SAM	PLE	TEST	CAS	E NU	MBE	R	
PANAIR option	: 1	: 2	: 3	: 4	: 5	: 6	: 7	: 8	: 9	: EV :
FLOW PROPERTIES DATA GROUP FP1 Group Identifier Omitted Default (NEW) NEW REPLACE UPDATE	: : : : : :	· V	V	V	· V	V	V	: : : : : :	V	V : V : V : V : V :
Surface Flow Prop. Subgroup SF1 Subgroup Identifier Omitted Entered SF2 Networks + Imagos Soloction	: : : V	: : : : V	V	: : : V	: : : V	V	: : : V	: : : : V	V	V : V : V :
Omitted ID - Name ID - Index Image - Default INPUT 1ST	V V V	: V : V : V	V	V V V	V V	V	· V · V · V	V	: V : : V : : V :	V : V : V : V : V : V :
2ND 3RD Orient - Default RETAIN REVERSE SF3 Solutions List	V	V :		V	V		: V	V	· V ·	V : V : V : V :
SF4a Point Types Omitted (CENTER) GRID	V	: V : : V : :	V	V	V	V	: V :	V	: V : : : : : : :	
ALL. CENTER. EDGE. ADDITIONAL. ARBITRARY.	V V	V	۷	V V	V	V V	· V · V	V	: V : : V : : : :	V : V : V : V :
SF4b Arbitrary Points SF5 Surface Selection Option Omitted UPPER LOWER UPLO LOUP.	V V	V	V	V	V	V V	V V	V V V	V :	V : V : V : V : V : V : V :
AVERAGE	: V in	nplie	s Va	lida	ited,	B	impli	۷ es	: known	V : bug)

Table 1. continued

			•		SAM	PLE	TEST	CASE	E NUM	IBER		
PANAT	R option :	1	:	2	: 3	: 4	: 5	: 6 :	: 7 :	8	: 9 :	EV :
			:		:	:	:	:			: :	:
SE6	Select. of Vel. Comp. Method :		:		:	:	:	:	: :		: :	:
51.0	Omitted	V	:	٧	: V	: V	: V :	: V :	: V :	V	: V :	V :
	BOUNDARY-CONDITION.		:		:	:	:	:	: V :		: :	V :
	VIC-LAMBDA		:		:	: V	:	:	: V :		: :	V :
SE7	Comp. Ontion for Pressure		:		:	:	:	:	: :		: :	:
517	Omitted	V	:	V	: V	: V	: V :	: V :	: V :	V	: V :	V :
	INTEORM-ONSET-FLOW	-				:	:	:	: :		: :	V :
	TOTAL-ONSET-FLOW		:	۷	:	:	•	:	: :		: :	V :
	COMPRESSIBILITY-VECTOR		:		:	:	:	:	: :		: :	V :
SE8	Ratio of Specific Heats		:		:	:	:	:	: :		: :	;
510	Omitted	V	:	V	: V	: V	: V	: V	: V :	: V	: V :	۷:
	Entered		:		:	:	:	:	: :		: :	۷ :
SEQ	Reference Velocity for Pressure :		:		:	:	:	:	: :	:	: :	:
5, 5	Omitted	V	:	۷	: V	: V	: V	: ۷	: V :	: V	: V :	۷:
	Entered		:		:	:	:	:	: :		: :	в:
SE102	Printout Options		:		:	:	:	:	: :		: :	:
51 100	Omitted		:		:	:	:	:	: :		: :	:
	Default Options		:		:	:	:	: V	: :		: V :	۷ :
	Integers		:		:	:	:	:	: :	;	: :	۷:
	Keywords		:		:	:	:	:	:	:	: :	۷ :
	AI 1	: V	:	۷	: V	: V	: V	: V	: V :	: V	: V :	۷ :
SE10	Velocity Correction Options		:		:	:	•	:	:		: :	:
51 101	Omitted.	: V	:	۷	: V	: V	: V	: V	: 1	: V	: V :	۷ :
	NONF.		:		:	:	:	:	:	:	: :	V :
	SA1				:	:	:	:	:		: :	:
	SA2				:	:	:	:	:		: :	:
SE10	Pressure Coefficient Rules		:		:	:	:	:	:		: :	:
5110	Omitted	V	:	۷	: V	: V	: V	: V	: 1	: V	: V :	V :
	ISENTROPIC		:		:	:	:	:		:	: :	V :
	SECOND-ORDER		:		:	:	:	:	:	:	: :	V :
	REDUCED-SECOND-ORDER		:		:	:	:	:	:	:	: :	V :
	SI ENDER-BODY		:		:	:	:	:	:	:	: :	۷:
	I INFAR		:		:	:	:	:	:	:	: :	۷:
SE11	Data Rase		:		:	:	:	:	:	•	: :	:
JIII	A Ducu Dusc Amitted		:		:	:	: V	:	:	:	: :	:
	Default Options		:		:	:	:	:	:	:	: V :	۷:
	Integers		:		:	:	:	:	:	:	: :	V :
	Kewords	:	:		:	:	:	:	:	:	: :	۷:
	Al	: V	:	۷	: V	: V	: V	: V	: ۷	: V	: V :	V - :
SE11	b Velocity Correction Options		:		:	:	:	:	:	:	: :	:
5/11	Omitted.	: V	:	۷	: V	: V	: V	: V	: V	: V	: V :	۷:
	NONE	•	:		:	:	:	:	:	:	: :	۷:
	SA1	•	:		:	:	:	:	:	:	: :	:
	SA2	:	:			:	:	:	:	:	: :	:
		(V -	im	p]i	es l	Vali	dated	, B	impl	ies	known	🛛 bug.)

Table 1. continued

SAMPLE TEST CASE NUMBER

PANA	<u>IR option</u>	: 1	: 2	:	3:	4	: 5	: 6	: 7	: 8	<u>: 9</u>	: EV	:
SF11	c Pressure Coefficient Rules Omitted ISENTROPIC SECOND-ORDER REDUCED-SECOND-ORDER	: : V :	V	•	V :	V	: V : V :	: : V :	. V	V	: : V :	: : V : V : V : V	
	SLENDER-BODYLINEAR	: : :	: : :	:	:		:	:	: : :	:	:	: V : V :	:
Forc	<u>es + Moments Subgroup</u>	:	:	:	:		:	:	:	:	:	:	:
FWI	Subgroup Identifier Omitted	:	:	:	:		:	:	:	:	:	:	:
EM2	Entered	: V	: V	: '	۷ :	V	: V	: V	: V	: V	: V	: V	:
r MZ	Omitted	: • V	÷v	: 1	: V	v	: : V	: : V	: : V	V	: : V	: : V	:
	SR Omitted	:	:	:	:	Ň	:	:	:		:	:	:
	SR Entered	:	:	:	:	V	:	:	:	:	:	: V	:
	CR Entered	:	:		:	v	:	:	:		:	:	:
	BR Omitted	•	•	•	•	v	•	•	•	i		: V •	:
	BR Entered	:	:	:	:		:	:	:		:	: V	:
FM3	Axis Systems	:	:	:	:		:	:	:	:	:	:	:
	Omitted	: V	:	: \	: ۷	۷	:	:	: :		:	: V	:
	RCS _ mrn	:	: V	:	:		: V :	: V -	: V :	i V V	: v	: V . V	:
	SAS	:	:	:	:		• * •	•	: :	. V	:	· v	:
	SAS – mrp	:	:	:	:		: :	:	: :		:	: V	:
	WAS	:	:	:	:		: :	:	: :		:	: V	:
	WAS – mrp	:	:	:	:		:		: :		:	: V	:
	BAS - Euler angles	•	•	•	•		• •		• •		•	· v	:
	BAS – mrp	:	:	:	:				: :		•	v	:
FM4	Solutions List	:	:	:	:	:	: :	:	: :		:	:	:
	Omitted	:	:	: '	; ;	V :	: V :		: V :	۷	: V	: V	:
FM5	Printout Options	: V •	: v	: \	/ :			: V	: :		•	: V	:
	Omitted	• :	: v	: \	/:	v	v		: :		: v	v	:
	NO		:	:	:				: :		:		:
	SAME	:	:	:	:	•	: :		: :		:	V I	:
		: V	:	:	:	:			: ;		:	: V	:
	" – RCS	•	•	•	•				: :		•	v v	:
	" – SAS		:	:	;				: :		:	•	:
	" – WAS	:	:	:	:	:	: :		: :		:	V	:
	" – BAS	: /	:	:	;;				: ;		: :	V I	;
		ניי)	mp I 1	es	٧a	1108	ited,	, B	ımplı	es	knowr	i dug)

 \sim

Table 1. continued

					SAM	PLE	TEST	CAS	E N	IUM	BEF	2			
PANA	IR option	: 1	:	2	: 3	: 4	: 5	: 6	: 7	':	8	:	9:	E۷	:
			:			:	:	;	:	:		:	:		:
	COLSUM	:	:		:	:	:	: V	: V	1:	۷	:	:	V	:
	" – RCS	:	:		:	:	:		:	:		:	:	۷	:
	" – SAS		:			:	:	:	:	:		:	:		:
	" – WAS	:	:		:	:	:		:	:		:	:	V	:
	" – BAS	:	:		:	:	:	:	:	:		:	:	۷	:
	NETWORK	:	:		:	:	:	: V	: V	1:	V	:	:	V	:
	CONFIGURATION	:	:		:	:	:	: V	: V	1:		:	:	V	:
FM6	Data Base Options	:	:		:	:	:	:	:	:		:	:		:
	Omitted	:	:	۷	: V	: V	: V :	:	:	:		:	۷:	V	:
	NO	:	:		:	:	:	:	:	:		:	:		:
	SAME	:	:		:	:	:	: V	:	:	V	:	:	V	:
	ALL	:	:		:	:	:	:	:	:		:	:	۷	:
	PANELS	: V	:		:	:	:	:	:	:		:	:	V	:
	" – RCS	:	:		:	:	:	:	:	:		:	:		:
	" – SAS	:	:		:	:	:	:	:	:		:	:		:
	" – WAS	:	:	-	:	:	:	:	:	:		:	:		;
	" – BAS	:	:		:	:	:	:	:	:		:	:		:
	COLSUM	:	:		:	:	:	:	: \	1:		:	:	V	:
	" – RCS	:	:		:	:	:	•	:	:		:	:		;
	" – SAS	:	:		:	:	:	:	:	:		:	:		:
	" – WAS	•	:		:	:	:		:	:		:	:		:
	" – BAS	:	:		:	:	:	:	:	:		:	:	·	:
	NETWORK	:	:		:	:	:		:)	!:		:	:	V	:
	CONFIGURATION	:	:		:	:	:		: \	1:		:	:	V	;
FM7	Case Identifier	•	:		:	:	:		:	:		:	:		:
	ID Omitted	:	:		:	:	:	:	:	. :		:	:	V	:
	ID Entered	: V	:	V	: V	: V	: V	: V	: \	: :	۷	:	۷:	V	:
FM8	Network + Images Selection	:	:		:	:	:	:	:	:		:	:		;
	Omitted	:	:		: V	:	:	: V	:	. :		:	:	V	:
	ID – Name	:	:	V	:	: V	: V		: \	1:	V	:	., :	V	:
	ID – Index	: V	:		:	: .,	:		:	:		:	۷ :	V	:
	Image - Default	:	:	V	•	: V	: 		:	, :		:		V	
	" – INPUT	: V	:		:	: V	: V		: \	: :	V	:	۷ :	V	-
	-1ST	: V	:		:	: V	•		:	:		•		V	
	" – 2ND	:	•			:	:		:	:		•		V	:
	" – 3RD	:	:		-	:	:		:	, :	v	:		V V	:
	Orient – Default	: V	÷	V		:	: V	: V	: V		V	:	V :	v	:
	" – RETAIN		ì		:	: V	:		:	:			:	v	:
		• • • •	:	v	•	• • V	• • •		; 	, :	v	•	· ·	V V	:
		: V •	:	۷	•	: V •	• ¥	; V	: V	· •	V	•	v :	V	•
		•	i		•	•	•	•	•	•		:	•	v	•
		(\ -=	i Im	n];	· ·		atod	D	imr	1 i	۵۲		• • •	v bu	۰.
		(V	чЩ	рти	53 V	αιια	aleu	, U	ιmμ	11	63	N I	1040	Duy	31

Table 1. continued

20

.

				SAM	PLE	TEST	CAS	SE NU	MBE	ג	
PANA	IR option	: 1	: 2	: 3	: 4	: 5	: 6	: 7	: 8	: 9	<u>EV</u> :
	· · · · · · · · · · · · · · · · · · ·	:	:	:	:	:	;	:	:	:	: :
FM9	Edge Force Calculation	:	:	:	:	:	:	:	:	:	: :
	Omitted	: V	:	: V	:	: V	: V	: V	: V	: V	: V :
	One Edge	:	: V	:	: V	:	:	:	:	:	: V :
	Multiple Edges	:	:	:	:	:	:	:	:	:	: :
FM10	Moment Axis	:	:	:	:	:	:	:	:	:	: :
	Omitted	: V	: ٧	: V	: V	: V	: V	: V	: ٧	: V :	: V :
	Entered	:	:	:	:	:	:	:	:	:	: V :
FM11	Local Ref. Parameters	:	:	:	:	:	•	:	:	:	: :
	Omitted	:.V	:.V	:.V	:.V	:.V	:.V	:.V	:.V	:.V	: V :
	SR Omitted	:	:	•	:	:	:	:	:	:	: V :
	SR Entered	:	:	:	:			:	:	:	V :
	CR Omitted	•	:	•	•	•	•	-	•	•	v .
	CR Entered	:	:	:	:	:	:	:	:	:	v .
FM12	Surface Selection Options	•	•			:	•	:	:		
	Omitted.	:	•	•	÷v	· v	•	÷v	•	•	v .
	IPPER	•	•	•	• •	• •	•	•	•	•	v ·
	INWER	•	•	•	•	•	•	•	•	•	, v .
		• • v	• • v	•	• v	•	• • •	•	• • v	• v	· · ·
		• •	. v	• •	• •	•	. ¥	:	. Y		· · ·
		•	•	• •	•	•	•	•	•	•	
M1 2	Solast of Vol Comp Nothed	•	•	•	•	•		•	•	•	. V .
CTN.	Select. of ver. comp. Method	: - v	: 	: 	: 	: 		: 	: 	: · ·	
		: V	: V	: V	: V	: V	: V	: V	: V	: V :	
		:	:	:	:	:	:	: V	:	:	: v :
		:		:	: V	•		: V	:	:	: V :
M14	comp. Uption for Pressures	:	:	:	:	:	:	:	:	: :	:
		: V	: V	: V	: V	: V	: V	: V	: V	: V :	: V :
	UNIFORM-ONSEI-FLOW	:	:	:	:	•		:	•	:	: V :
	IOTAL-ONSET-FLOW	:	: V	:	:	:		:	•	: :	: V :
	COMPRESSIBILITY-VECTOR	•	:	:	:	:		:	:	: :	· V :
M15	Velocity Correction Options	:	:	:	:	:	:	:	:	: :	:
	Omitted	: V	: V	: V	: V	: ۷	: V	: V	: V	: V :	: V :
	NONE	:	:	:	:	:	:	:	:	: :	V :
	SA1	:	:	:	:	:	:	:	:	: :	:
	SA2	:	:	:	:	:	:	:	:	: :	:
M16	Pressure Coefficient Rules	:	:	:	:			:		: :	:
	Omitted	: V	: V	: V	: V	: V :		: V	: V	: :	· V :
	ISENTROPIC	:	:	:	:	:	: V	:	:	: V :	· V :
	SECOND-ORDER	:	:	:	:	:		•	:	: :	V :
	REDUCED-SECOND-ORDER	:	:	:	:			:		: :	V ·
	SLENDER-BODY	•	:	•				•	•		v ·
	INFAR	•	•	•	•		v	•	•	• •	v i
M17	Ratio of Specific Heats	•	•	•	•	•		•	•	• •	
FU T /	Auto of specific heats Amittad	• • V	• • v	• v	• v	. v	• • v	: v	• • v	• v	· v ·
	Entarad	• ¥	• V	• •	• ¥	. V 	. V	• ¥	. V	• • •	· • •
	LIIGT CU	• (v ÷-	•	• • ·	• •]•]•]•	• • • • • •	D	• imel·	ioc	• i	v i
		(V. 11	up I 1	es V	a i 10è	aled.	, D	IMPI	res	KNOWN	(puq)

~

× 2

Ľ

Table 1. continued

					SAM	PLE	TEST	CAS	E NUN	IBER				
PANAI	R option	: 1	:	2 :	: 3	: 4	: 5	: 6	<u>: 7 :</u>	: 8	: 9	:	EV	:
			:			:	:		:	:	:	:		:
FM18	Reference Velocity for Pressure :		:	:	8	:	:		:	:	:	:		:
	Omitted	V	:	V :	: V	: V	: V :	: V	: V :	: V	: V	:	V	:
	Entered		:	:		:	:		:	:	:	:	В	:
FM19	Local Printout Options		:			:	:		:	:	:	:		:
	Omitted	: V	:	V :	: V	: V	: V :	: V	: V :	: V	: V	:	V	;
	NO		:	:	;	:	:		:		:	:	.,	:
	SAME		:	:		:	:		:		:	:	۷	:
	ALL		:			•	:		:		:	:	v	:
	PANELS		:		•	:	:		:		:	:	V	:
	" – RCS		:			:	:		;	•	:	:	V	:
	" – SAS		:		2	:	:		:		:	;	۷	:
	" – WAS		:	1	:	:	:		:	:	:	:	.,	:
	" – BAS		:			:	:		:	•	:	:	V	:
	COLSUM		:		:	:	:		:		:	;	V	:
	" – RCS	•	:	1		:	:		:		:	:	V.	:
	" – SAS		:		:	:	:		:	:	:	:	V	÷
	" – WAS		;			:	•				:	÷	v	:
	" – BAS		:			:	:		:		:	:	V V	:
	NE TWORK		÷			:	:				:	÷	V V	:
	CONFIGURATION	•	•			:	:		:		:	:	v	•
FM20	Local Data Base Options		:			:	: 		: 	. v	÷	•	v	•
	Omitted	V	:	V	: V	: V	: V :	: V	: V :	: V	: V	:	V	•
	NO		•			•	•		•	•	•	•	v	•
	SAME		:			:	:		:		:	÷	V	÷
	ALL		:			:	:		:		:	:	v	:
	PANELS		:							•	•	•	¥ V	•
	" – RUS		-						•		•	•	v	•
	$" - SAS \dots$:			:						•	v	
	" – WAS		:			:					•	•	۷	•
	" – BAS		:			:					•	•	v	
	COLSUM		:			•	•		•	•	•	•	V V	
	" – RUS		÷			:					•	•	v	•
	" – SAS		:			:			•		•	•	v	•
	" – WAS		÷						•	•	•	•	V V	:
	" – BAS		•			•	•		•	•	:	:	N N	:
			-						•	•	•		¥ V	1
	CONFIGURATION		÷		•	•	•	•	•	•	•	:	v	
FM21	Accumulation Uptions		:		: - 11	: 	: 	. v	: • •	•	: • v	•	v	-
	Omitted	,	•	v	: V	: V	: Y	: V	. v	• • •	÷ ¥	•	V V	
	Selected	: V	•	V		•	•	•	•	• V	•		V V	•
	vel. Comp. Selection		•	V	•	•	•	•	•	. V	•	•	¥ V	•
	vel. Corr. Selection	/	:	V			•	•	•	•	•	:	V V	i
	Pressure Rules Selection	; V (√)		¥ ≞1±		; .1	ة امعاد		i imnl		i kna	÷.	¥ 	, i
		V I	IШ	p110	es v	a i 10	ared	, D	Till b	ies	KIIOV	411	้มนรู	"

Table 1. continued.

i

			SA	MPLE	TEST	CAS	E NU	MBEF	2		
PANAIR option	: 1	: 2	: 3	: 4	: 5	: 6	: 7	: 8	: 9	:	EV :
	:	:	:	:	:	:	:	:	:	:	:
PRINT - PLOT DATA GROUP	:	:	:	:	:	:	:	:	:	:	:
PP1 Group Identifier	:	:	:	:	:	:	:	:	:	:	:
Omitted	:	:	:	:	:	:	:	:	:	:	۷ :
Entered	: V	: V	: V	: V	: V	: V	: V	: V	: V	:	۷ :
PP2a Geometry Data Identifier	:	:	:	:	:	:	:	:	:	:	:
Omitted	:	:	:	:	:	:	:	:	:	:	:
Entered	: V	: V	: V	: V	: V	: V	: V	: V	: V	:	۷ :
PP2b Network Selection	:	:	:	:	:	:	:	:	:	:	:
Omitted	: V	: V	: V	:	:	: V	: V	: V	: V	:	۷ :
Entered	:	:	:	: V	: V	:	:	:	:	:	:
PP3a Point Data Identifier	:	:	:	:		:	:	:	:	:	:
Omitted	:	:	:	:	:	:	:	:	:	:	:
Entered	: V	: V	: V	: V	: V	: V	: V	: V	: V	:	V :
PP3b Case Selection	:	:	:	:	: -	:	:	:	:	:	:
Omitted	: V	: V	: V	: V	: V	: V	: V	: V	:	:	۷ :
Entered	:	:	:	:	:	:	:	:	: V	:	۷ :
PP3c Solutions List	:	:	:	:	:	:	:	:	:	:	:
Omitted	: V	: V	: V	: V	: V	: V	: V	: V	: V	:	V :
Entered	:	:	:	:	:	:	:	:	:	:	:
PP3d Networks + Images Selection	:	:	:	:	:	:	:	:	:	:	:
Omitted	: V	: V	: V	:	:	: V	: V	: V	:	:	۷ :
ID – Name	:	:	:	: ٧	: V	:	:	:	:	:	V :
– Index	:	:	:	:	:	:	:	:	: V	:	۷:
Image - Default	:	:	:	: V	:	:	:	:	:	:	۷ :
– INPUT	:	:	:	: V	: V	:	:	:	: V	:	V :
– 1ST	:	:	:	:	:	:	:	:	:	:	V :
– 2ND	:	:	:	:	:	:	:	:	:	:	V :
– 3RD	:	:	:	:	:	:	:	:	:	:	V :
PP3e Array Type	:	:	:	:	:		;	•	:	:	
Omitted	: V	: V	: V	: V	: V	: V	: V	: V	: V	:	۷ :
Default (COLUMNS)	:	:	:	:	:	:	:	:	:	:	:
COLUMNS	:	:	:	:	:	:	:	:	:	:	:
ROWS	:	:	:	:	:	:	:	:	:	:	В:
<pre>Default (CONTROL-PTS)</pre>	:	:	:	:	:	:	:	:	:	:	:
CONTROL-POINTS	:	:	:	:	:	:	:	:	:	:	:
GRID-POINTS	:	:	:	:	:		:	:	:	:	в:
PP4a Configuration Data Identifier	:	:	:	:	:	:	:	:	:	:	:
Omitted	:	:	:	:	:	:	:	:	:	:	:
Entered	: V	: V	: V	: V	: V	: V	: V	: V	: V	:	V :
PP4b Case Selection	:	:	:	:	:	:	:	:	:	:	:
Omitted	: V	: V	: V	: V	: V	: V	: V	: V	:	:	۷:
Entered	:	:	:	:	:	:	:	:	: V	:	۲:
PP4c Solutions List	:	:	:	:	:	:	:	:	:	:	:
Omitted	: V	: V	: V	: V	: V	: V	: V	: V	: V	:	V :
Entered	:	:	:	:	:	:	:	:	:	:	:
	(V i	mpli	es '	Valio	dated	, В	impl	ies	know	m	bug)

SAMPLE	TFST	CASE	NUMBER	2
	11	UDJL	NUTUE	•

PANAIR option	<u>:</u>	1:	2	: 3	: 4	: 5	6	: 7	: 8	: 9 :	EV :
PP4d Networks + Images Selection Omitted ID - Name	: : :: \	: : V :	V	: : : V :	: : : V	: : : V	V	: : V :	: : V : V		V : V : V :
ID - Index Image - Default - INPUT - 1ST	•••	:		:	: : V : V	V	۷	:	:	: V : : V : : V :	V : V : V : V :
– 2ND – 3RD PANELS	•••	:		-	:			:			V : V :
COLSUM	•••	:		:	: v : :		V	:	•	· · · · · · · · · · · · · · · · · · ·	v : : :
		:	-	•	:			::	:		
	•	•••••		•	:			: : :	:		
	:	: : :	ł	: : :	•			:	: : :		:
	•	:		•	•	:	•	•	:		:
	: :	:		•	•	•	•	•	:		:
	•••••••••••••••••••••••••••••••••••••••	::		•	•	•	•	:	:		:
	: : :	:		•	:	•	•		:		:
	: : (V	: : im	pli	: : es 1	: : /alid	: : lated	: : , B	: : impl	: : ies	: : : : known	: ; bug)

J

1 4

1. EIGHT PANEL DELTA WING

Purpose

The purposes of this case are to check that all PAN AIR modules execute and to check for certain self-consistencies. This case is intended to be the first case executed whenever PAN AIR is installed on a new computer system.

Configuration, Flow, and Modeling

The geometry of the wing is illustrated in figure 1.1. It is a 5 percent thick delta wing. The Mach number is 2.0, and the compressibility direction corresponds to zero angle of attack. The boundary conditions are the standard indirect specification of impermeability for a thick configuration (i.e., class 1, subclasses 1 and 2). Three solutions are obtained, corresponding to angles of attack of 0° and \pm .57295°.

Several results should follow from the symmetry of the configuration. First, for $\alpha = 0^{\circ}$, the flow properties for the upper surface should have the same magnitude as corresponding points on the lower surface. Second, the flow properties on the upper surface for $\alpha = \pm.57295^{\circ}$ should be equal in magnitude to the flow properties at corresponding points on the lower surface for $\alpha = -.57295^{\circ}$, and vice-versa.

Input

The input is given in figure 1.2. Several items are worth noting.

Global Data: There is only one plane of stated geometric symmetry, even though the configuration actually has two symmetry planes. Also, there is one plane of flow symmetry.

Network Data: The top surface of the wing is the RIGHT-TOP-WING network and the bottom surface of the wing is called the RIGHT-BOT-WING network. The input ordering of the network grid point coordinates causes the normal vectors for both wing networks to point nominally in the -zo direction. Thus the appropriate boundary condition for the RIGHT-TOP-WING network is zero mass flux on the network's "lower" surface, while for the RIGHT-BOT-WING network the appropriate boundary condition is zero mass flux on the network's "upper" surface.

1–1

Geometric Edge Matching Data: This data group is used to specify network edge abutments. Since no data is supplied for this case PAN AIR will search for all the abutments. Because the default value of zero is being used for the edge matching tolerance (record G7), there must be no geometric gaps between abutting networks in order for PAN AIR to correctly identify the abutments. In this case this condition is satisfied by the input grid point coordinates. In general, however, it would be better to specify a small positive value for the tolerance. Regardless of the choice made by the user, the abutment list printed by the DQG module of PAN AIR should always be checked to see that the abutments are as the user intended.

PDP Data: There are two surface flow properties cases. In the first case, only solution number 2 ($\alpha = 0^{\circ}$) is requested, and flow properties are requested for the input networks only (i.e., properties on the image networks are not requested). For the second case, all solutions are requested (by default) and data are requested for both the input configuration and its image. For each case, all quantities are to be stored on the PDP data base for a run of the PPP (Print/Plot Processor) module.

CDP Data: There is one case for forces and moments, with the accumulation of forces and moments for the configuration being the forces and moments computed using the isentropic pressure coefficient formula. Note that, since there is only one CDP case, accumulation serves no purpose other than just the testing the part of the code involved with this option.

PPP Data: Generation of three plot files is requested. All use the default options for selecting which data to put into the files. One file will contain the network grid point coordinates, one will contain the flow properties data for the two cases specified, and one will contain the force and moment data for the one case specified.

Results and Discussion

Figure 1.3 gives sample results for flow properties at the first panel center control point (refined grid index number (2,2)) for both the top and bottom wing networks. Observe that the expected symmetry/antisymmetry properties hold true, except for an occasional one digit in the last place (underlined in figure). This very slight asymmetry is due to the fact that at the leading edge abutment of the two wing networks an aerodynamic boundary condition is applied to one network, while a doublet matching condition is applied to the other.

a. Plan view

b. Cross-section at $y_0 = 0$

Figure 1.1 Geometry of eight panel delta wing

```
// PAN AIR CASE MANUAL CASE 1
// 2 NETWORK, 8 PANEL DELTA WING, WITH 1 PLANE OF SYMMETRY
// PLUS WAKE NETWORK
// SUPERSONIC FLOW, MACH NUMBER 2.0
// START GLOBAL DATA GROUP
BEGIN GLOBAL DATA
                     /G1
PID = SIMPLE DELTA WING WITH THICKNESS, ONE PLANE OF SYMMETRY
UID=USER IDENTIFICATION
// DEFAULT RECORD G4
// ONE PLANE OF CONFIGURATION SYMMETRY (X-Z PLANE)
// NORMAL VECTOR IS Y-AXIS
// SYMMETRIC-FLOW (BETA MUST BE ZERO)
MACH = 2.0 CALPHA = 0. CBETA = 0. /G5
// USE DEFAULTS FOR ALL SOLUTION DATA EXCEPT ALPHA AND SOLUTION-ID
// (BETA = 0., UINF = 1., WM = 0. FOR ALL SOLUTIONS)
ALPHA = -.57295, .0, +.57295 / G6.1
SID = SOLN-1, SOLN-2, SOLN-3
                                /G6.2
PRESSURE COEF RULES = ISEN SECOND /G12
CHECKOUT PRINTS = DIP 1 2 3, DQG 1 2 4 5 6 /G17
// START NETWORK DATA GROUP
BEGIN NETWORK DATA
                       /N1
// FOR THE NETWORKS --
// NORMAL VECTORS POINT (NOMINALLY) DOWNWARD
// NETWORK LOWER SURFACE EXPOSED TO EXTERNAL FLOW FIELD FOR 1ST NETWORK.
// NETWORK UPPER SURFACE EXPOSED TO EXTERNAL FLOW FIELD FOR 2ND NETWORK.
// NETWORK EDGE 1-LEADING EDGE
// NETWORK EDGE 2-COLLAPSED WING TIP OR OUTBOARD EDGE OF WAKE
// NETWORK EDGE 3-TRAILING EDGE
// NETWORK EDGE 4-INBOARD EDGE
NETWORK = RIGHT-TOP-WING,
                             3 3 NEW
  0.0000E-01
             0.0000E-01 0.0000E-01
                                       5.0000E-01
                                                   0.0000E-01
                                                                2.5000E-02
  1.0000E+00
             0.0000E-01
                          0.0000E-01
                                       5.0000E-01
                                                    5.0000E-01
                                                                0.0000E - 01
  7.5000E-01
             5.0000E-01
                           1.2500E-02
                                       1.0000E+00
                                                                0.0000E-01
                                                    5.0000E-01
              1.0000E+00
                                       1.0000E+00
                                                   1.0000E+00
  1.0000E+00
                           0.0000E - 01
                                                                0.0000E-01
  1.0000E+00 1.0000E+00
                           0.0000E-01
BOUNDARY CONDITION= 1, LOWER
                              /N9
NETWORK = RIGHT-BOT-WING,
                             3 3 NEW
  0.0000E-00 0.0000E-01
                           0.0000E-01
                                       5.0000E-01
                                                   0.0000E-01 - 2.500E-02
  1.0000E+00 0.0000E-01 0.0000E-01
                                       5.0000E-01
                                                    5.0000E-01 0.0000E-01
             5.0000E-01 -1.2500E-02
  7.5000E-01
                                       1.0000E+00
                                                    5.0000E-01
                                                                0.0000E-01
  1.0000E+00
              1.0000E+00 0.0000E-01
                                       1.0000E+00
                                                   1.0000E+00 0.0000E-01
  1.0000E+00 1.0000E+00 0.0000E-01
BOUNDARY CONDITION= 1, UPPER /N9
NETWORK = RIGHT-WAKE.
                        2 3 NEW
  1.0000E+00 0.0000E-01 0.0000E-01
                                      5.0000E+00
                                                   0.0000E-01 0.0000E-01
  1.0000E+00
              5.0000E-01 0.0000E-01
                                       5.0000E+00
                                                   5.0000E-01
                                                                0.0000E-01
  1.0000E+00 1.0000E+00 0.0000E-01 5.0000E+00 1.0000E+00 0.0000E-01
BOUNDARY CONDITION= 1 WAKE 1 /N9
```

Figure 1.2. Input for case 1.

ITT

```
\Pi
    OMIT GEOMETRIC EDGE MATCHING DATA GROUP
\Pi
\Pi
// START FLOW PROPERTIES DATA GROUP
BEGIN FLOW PROPERTIES DATA /FP1
// ** START SURFACE FLOW PROPERTIES DATA SUBGROUP: PDP DATA **
// SURFACE FLOW PROPERTIES CASE 1
SURFACE FLOW PROPERTIES=ZERO-ALPHA /SF1
 NETWORKS-IMAGES = 1, INPUT = 2, INPUT /SF2
 SOLUTIONS = 2 /SF3
 POINTS = ALL /SF4A
 SURFACES = UPPER, LOWER /SF5
 PRINTOUT = ALL /SF10A
 DATA BASE = ALL /SF11A
// SURFACE FLOW PROPERTIES CASE 2
SURFACE FLOW PROPERTIES=ALPHA-VARIATION-SF /SF1
NETWORKS-IMAGES = 1, INPUT, 1ST = 2, INPUT, 1ST /SF2
// OMIT RECORD SF3, DEFAULT IS ALL SOLUTIONS
POINTS = CENTER /SF4A-DEFAULT
 SURFACES = UPPER, LOWER /SF5
 PRINTOUT = ALL /SF10A
DATA BASE = ALL /SF11A
11
   \Pi
\Pi^{-}
   ** START FORCES AND MOMENTS DATA SUBGROUP: CDP DATA **
FORCES AND MOMENTS /FM1
SOLUTIONS = 1, 2, 3 /FM4-DEFAULT
PRINTOUT = ALL /FM5
DATA BASE = ALL /FM6
// FORCES AND MOMENTS CASE 1
CASE = ALPHA-VARIATION-FM /FM7
 NETWORKS-IMAGES = 1, INPUT = 2, INPUT /FM8
 SURFACES = UPL0 /FM12
 // INCLUDE THIS CASE IN THE ACCUMULATION CASE,
 // AND SELECT ONE PRESSURE COEFFICIENT RULE
ACCUMULATE = ISENTROPIC /FM21
\Pi
// START PRINT PLOT DATA GROUP
BEGIN PRINT PLOT DATA /PP1
GEOMETRY DATA /PP2A
POINT DATA /PP3A
CONFIGURATION DATA
                    /PP4A
END PROBLEM DEFINITION
```

Figure 1.2. Concluded.

		NETWORK, IMAGE									
I I EM	α	1,input	1,1st	2,input	2,1st						
VX	-0.57295°	.95356	.95356	.96688	.96688						
(xo component	0	.96027	.96027	.96027	.96027						
of velocity)	+0.57295°	.96688	.966 88	.95356	.95356						
VY	0.57295°	.04020	04020	.03046	03046						
(vo component	0°	.03533	03533	.03533	03533						
of velocity)	+0.57295°	.03046	03046	.04020	04020						
VZ	-0.57295°	.05490	.05490	05338	05338						
(zo component	0	.05414	.05414	05414	05414						
of velocity)	+0.57295°	.05338	.05338	05490	05490						
WMAG	-0.57295°	1.14115	1.14115	1.10088	1.10088						
(mass flux	0	1.12106	1.12106	1.12106	1.12106						
magnitude)	+0.57295°	1.10087	1.10087	1.1411 <u>4</u>	1.1411 <u>4</u>						
CPISEN	-0.57295°	.09376	.09376	.06523	.06523						
(isentropic	0	.07930	.07930	.07930	.07930						
pressure)	+0.57295°	.06522	.06522	.09376	.09376						
F/		· · · ·	_								

Figure 1.3. Results on wetted side of (2,2) control points for case 1.

1-6

÷

2. THIN RECTANGULAR WING

Purpose

The purpose of this case is to further test the self-consistency of PAN AIR. A simple flat plate rectangular wing is run with a variety of input options which should yield approximately the same results. The consistency of results is being checked, rather than accuracy. This case also illustrates how to set up input data for local incremental flows, rotational flows, and specified mass flux. Due to the numerous options illustrated, this case is one of the most complicated in this manual.

Configuration, Flow, and Modeling

The configuration is a planar rectangular plate with an aspect ratio of 20, and is illustrated in figure 2.1. Two doublet wing networks are defined. The purpose of the outboard network is to provide a sufficiently large aspect ratio to simulate a two-dimensional flat plate^{*}. In addition, standard (type DW1) wake networks of length 99 are attached to the trailing edge of both wing networks. The spanwise paneling of each wake is identical to that

^{*} Editor's note: This case was designed prior to the realization that there exists a more efficient and accurate technique for analyzing two-dimensional flows. In this technique, a DW1 network replaces the outboard wing network, and a DW2 network replaces the wake trailing behind the outboard network. The control point edge of the DW1 network must abut the outboard edge of the wing. Also, the spanwise extent of the outboard network may be significantly increased. This modeling technique reduces the number of unknown singularity parameters. It also prevents shed vorticity from occurring on the outboard network, thereby creating a flow field that is much more two-dimensional.

of its upstream wing network. The angle of attack is 5.7392°, which is simulated by the following four different flow models:

- (a) a uniform freestream flow meeting the wing with angle of attack $\alpha = 5.7392^{\circ}$ (≈ 0.1 radian),
- (b) a uniform freestream at zero α , plus a specified flow of 0.1 units in the negative z₀ direction,
- (c) a uniform freestream at zero α , plus a local onset flow in the positive z_{n} direction with magnitude of 0.1, and
- (d) a uniform freestream at zero α , supplemented by a rotational onset flow (about the distant point (100,0,0)) that gives a z_0 component of velocity of approximately 0.1 units over the wing networks.

The four different flow models used to simulate $\alpha = 0.1$ radian are all specified with class 2, sublcass 3 boundary conditions, namely,

$$\sigma = 0 \quad (\text{no sources}) \tag{2.1}$$

$$\vec{w}_{A} \cdot \hat{n} = -\vec{U}_{0} \cdot \hat{n} + \beta_{n2}$$
(2.2)

In these equations

- 1. \vec{U}_0 is the total onset flow, i.e., the sum of uniform (\vec{U}_{∞}) , local incremental (\vec{U}_{10c}) , and rotational (\vec{U}_{rot}) onset flows (see equations B.2.5 of the User's Manual).
- 2. β_{n2} is the specified (total mass flux) flow, see section B.3.2 of the User's Manual.

The onset flows and specified flow are chosen so that for each of the four flow models used to simulate $\alpha = 0.1$ radian, the right hand side of equation (2.2) becomes 0.1.
The flow and geometry exhibit symmetry about the x_0-z_0 plane. Standard wake boundary conditions (i.e., class 1, subclass 4) are used for the wake networks.

Input

The four models are illustrated in figure 2.2, and the input listing appears in figure 2.3. The input order chosen for the network grid points results in unit normals pointing in the negative z direction. Thus the network's "upper" surfaces correspond to the bottom side of the wing. The class 2, subclass 3 boundary condition to be used is specified on record N9.

In model (a) the uniform onset flow meets the wing networks at an angle of attack $\alpha = 5.7392^{\circ}$, as shown in figure 2.2 (a). This angle is specified by the first set of data listed under record G6 (i.e., the data identified as SID=ALPHA-VARIATION). For this model, the network is treated as an impermeable surface, i.e., $\overline{W}_{A} \cdot \widehat{n} = -\overline{U}_{\infty} \cdot \widehat{n}$, so $\beta_{n2} = 0.0$ in equation (2.2). Normally, values for mass flux are specified by using record set N17. Zero flux, however, is the default, so record set N17 is omitted for solution 1 (model (a)).

Model (b) simulates the angle of attack with a specified flow (in this case downwash) as illustrated in figure 2.2b. Several features should be noted:

1. The uniform onset flow \vec{U}_{∞} is parallel to the wing networks, and α is accordingly set equal to zero (the second set of solution data listed under record G6). Consequently, $\vec{U}_0 \cdot \hat{n} = 0$ and equation (2.2) becomes $\vec{W}_A \cdot \hat{n} = \beta_{n2}$.

2–3

- 2. The doublet network is required to produce a specified flow of β_{n2} = 0.1 units to turn the freestream flow downward through the angle α , thereby simulating the desired angle of attack. This is a simple example of the more general case of a thin cambered surface discussed in section B.3.2 of the User's Manual (see equation B.3.28 therein).
- 3. The specified flow B_{n2} is input using record set N17 for both wing networks. Looking at the listing, TERM=2 tells PAN AIR that the second equation is being specified, and SOLUTIONS = 2 tells PAN AIR that this specified flow applies only to the second set of data listed under record G6.

For model (c), figure 2.2 (c), the uniform onset flow \vec{U}_{∞} is again parallel to the wing networks and so $\alpha = 0$. (third set of solution data listed under record G6). The wing is made to see the angle of attack by vectorially adding the local onset flow $\vec{U}_{loc} = (0,0,.1)$ to \vec{U}_{∞} to obtain the total onset flow $\vec{U}_0 = (1, 0, 0.1)$. This is accomplished by using record set N18 for both wing networks. The resulting boundary condition is

$$\vec{w}_{A} \cdot \hat{n} = -(\vec{U}_{\infty} + \vec{U}_{1oc}) \cdot \hat{n} = 0.1$$

(since $\beta_{n2} = 0.0$ by default) as required. Also associated with model (c) are records G16 and SF7. Record G16 tells PAN AIR to save the local onset flow so it can be used to calculate the pressure in the second flow properties case, where SF7 appears. The local onset flow affects both ΔE (eq. B.4.13 in the User's Manual) and the total velocity, V (fig. B.48 in the User's Manual). The local onset flow is also used in the second forces and moments case, as specified by record FM14.

Note that the incremental onset flow is only included in the second flow properties case (labeled "TOTAL-ONSET-FLOW"), since in the first case (labeled "ALL-FLOWS"), the default pressure computation option of "UNIFORM-ONSET-FLOW" is chosen. See section B.4 of the User's Manual for a further discussion of the effects of these options. The incremental onset flow is treated similarly in the two forces and moments cases.

Model (d) is nearly the same as model (c), but instead of specifying a uniform local upwash \vec{U}_{loc} , a nearly uniform upwash \vec{U}_{rot} is defined as shown in figure 2.2(d). The rotational flow about a line parallel to the y_0 axis, at the point (100.,0,0), with clockwise angular velocity of magnitude 0.001 radians/second is input on the fourth set of solution data listed under record G6. Again, $\alpha = 0$ is specified. The resulting boundary condition at the wing networks is

$$\vec{\mathbf{w}}_{\mathsf{A}} \cdot \hat{\mathbf{n}} = -(\vec{\mathbf{U}}_{\infty} + \vec{\mathbf{U}}_{\mathsf{rot}}) \cdot \hat{\mathbf{n}} = 0.1 - 0.001 \times_{0} \cong 0.1$$

As in the case of model (c), the presence of record SF7 in the second flow properties case and record FM14 in the second forces and moments case results in the total onset flow $\vec{U}_0 = \vec{U}_\infty + \vec{U}_{rot}$ being used to calculate the pressure coefficients and overall forces and moments.

Note that edge forces are requested (record FM9).

2–5

Results and Discussion

Figure 2.4 shows the values of various computed quantities for the four This figure illustrates that models (a)-(c) produce identical solutions. perturbation velocities and doublet strengths at point (2,2), but that model (d) produces slightly different results. This was to be expected, since the boundary conditions were identical for models (a)-(c), while the boundary conditions for model (d) varied only slightly. Note that the x_0 components of the perturbation velocities are nearly equal in magnitude to the freestream speed because the control point is very close to the leading edge. However, the pressure coefficents vary noticeably among the four solutions. These variations are expected due to the differing uniform and total onset flows. Note also that the x_o component of force in the wind axis system for model (a) differs significantly from the x_0 components for the other models. This is because the wind axes for models (b)-(c) are identical to the reference axes since the real α (as opposed to the simulated α) is zero. Consequently, models (b)-(d) exhibit totally inaccurate x_0 components of force in the wing axis system.

The forces in figure 2.4 include the edge suction force. Since the wing lies strictly in the $z_0=0$ plane, the x_0 force components in the reference coordinate system arise only from the edge force, the computation of which was requested by record FM9. The drag (i.e., the x_0 component in the wind axis system) is very nearly zero as it should be since the flow is very nearly two dimensional.

The forces shown in figure 2.4 are those computed using the isentropic pressure formula and have been made nondimensional by dividing them by the area of network 1 (i.e., the numbers in figure 2.4 were obtained from the CDP printout by dividing by 10, which is the area of network 1).

In summary, the results for this case are self-consistent where self-consistency is to be expected. However, program users taking advantage of non-standard options should be aware of the effect that these options have on the computation of surface velocities, pressure coefficients, in-plane forces (edge forces), and moments arising from in-plane forces.

1 · · · · · · · · · ·

a. Uniform onset flow \vec{U}_{∞} at angle α = ALPHA = 5.7392⁰ to wing

$$\vec{v}_{0} = \vec{v}_{\infty} + \vec{v}_{1oc}$$
$$\vec{v}_{1oc} = (0,0,.1)$$
$$\vec{v}_{\infty}$$

c. Uniform onset flow \overline{U}_{∞} parallel to wing plus local onset flow $\overline{U}_{loc} = (0,0,.1)$ on wing networks

d. Uniform onset flow \overline{U}_{∞} parallel to wing networks plus rotational onset flow $\overline{U}_{rot} = (0,.001,0) \times \overline{R}$

Figure 2.2 (concluded)

2-10

```
// PAN AIR CASE MANUAL CASE 2
 // FLAT TWO-DIMENSIONAL RECTANGULAR WING (ASPECT RATIO = 20)
 // SUBSONIC FLOW, MACH NUMBER 0.6
 // SOLUTION 1 = ALPHA
                            (SINE(ALPHA)=.1000)
                                                                - MODEL A.
 // SOLUTION 2 = SPECIFIED FLOW (RECORD SET N17) - MODEL B.
// SOLUTION 3 = TOTAL (LOCAL) ONSET FLOW (RECORD SET N18) - MODEL C.
 // SOLUTION 4 = ROTATIONAL ONSET FLOW
                                                                - MODEL D.
 // START GLOBAL DATA GROUP
 BEGIN GLOBAL DATA /G1
 PID=FLAT TWO-DIMENSIONAL RECTANGULAR WING (ASPECT RATIO = 20)
 UID=USER IDENTIFICATION
 // OMIT RECORD G4, DEFAULT IS ONE PLANE OF CONFIGURATION AND FLOW SYMMETRY
 MACH = 0.6 /G5
 ALPHA
         UINF WM
                      WDC
                                 WCP
                                              SID
                                                       /G6, OPTION 1
 5.7392
        1.
                0.
                      0. 1. 0., 0. 0. 0.,
                                              ALPHA-VARIATION
                      0. 1. 0., 0. 0. 0.,
 0.
         1.
                0.
                                              SPECIFIED-FLOW
                0. 0. 1. 0., 0. 0. 0., LOCAL-ONSET-FLO
.001 0. 1. 0., 100. 0. 0., ROTATIONAL-FLOW
0.
         1.
                                            LOCAL-ONSET-FLOW
0.
         1.
TOLERANCE=.001
                     /G7
SURFACE SELECTION=UPPER,LOWER,UPL0 /G8
PRESSURE COEF RULES=ISENTROPIC, LINEAR, SECOND-ORDER /G12
// STORE LOCAL ONSET FLOW, FOR USE IN PRESSURE COEFFICIENT CALCULATIONS
 STORE LOCAL ONSET FLOW /G16
CHECKOUT PRINTS = ALL /G17
    END OF GLOBAL DATA GROUP
\Pi
\Pi
// START NETWORK DATA GROUP
 BEGIN NETWORK DATA /N1
// START DATA FOR NETWORK A1
 NETWORK=A1, 9, 2, NEW /N2A
-1.0000
          0.
                      0.
                                 -.9239
                                            0.
                                                      0.
-.7071
           0.
                      0.
                                 -.3827
                                            0.
                                                      0.
0.
           0.
                      0.
                                 .3827
                                            0.
                                                      0.
.7071
           0.
                      0.
                                 .9239
                                            0.
                                                      0.
1.0000
          0.
                      0.
-1.0000
           5.
                     0.
                                 -.9239
                                            5.
                                                      0.
-.7071
           5.
                     0.
                                 -.3827
                                            5.
                                                      0.
                     0.
0.
           5.
                                 .3827
                                           5.
                                                      0.
.7071
           5.
                     0.
                                 .9239
                                            5.
                                                      0.
1.0000
           5.
                     0.
// NORMAL VECTOR POINTS DOWNWARD (-Z DIRECTION)
// NETWORK EDGE 1-LEADING EDGE
// NETWORK EDGE 2-OUTBOARD EDGE
// NETWORK EDGE 3-TRAILING EDGE
// NETWORK EDGE 4-INBOARD EDGE (IN PLANE OF SYMMETRY)
BOUNDARY CONDITION=2.3
                                          /N9
```

Figure 2.3 - Input for case 2

SPECIF	IED FLOW	FOR MODEL	(B)	/N17A	
I EKM=2		INDUT 1CT		/N1/B /N17C	
	ITIONS 2	=1000,150			
SULU		¢ 0 10		/N170 /N175 E	
	LNIS=ALL	⇒ U.10	(c)	/N1/E,F	
LUUAL U	JNSEI FLU	UW FUR MUDE	L (U)		
	INTL T THACTC	TNDUT 1CT		/ 1100	
INPU	I-IMAGES	=1NPU1,151		/ 1100	
SOLU	JI 10NS=3	<i>t</i> 0 0 1	0	/N180	
	INIS=ALL		.U 1 1	/NISE,F	
II ENU	UF DATA	FUR NETWOR	N A1		
		FUR NETWURN	N AZ		
	κ=Αζ, 9,	4, NEW /N	0000	c .	~
-1.0000	5.	0.	9239	5. E	0.
/0/10	5.	0.	382/	5.	0.
0.	5.	0.	.3827	5.	0.
./0/1	5.	0.	.9239	5.	υ.
1.0000	5.	0.	0.000	10	~
-1.0000	10.	0.	9239	10.	0.
/0/1	10.	0.	3827	10.	0.
0.	10.	0.	.3827	10.	U.
./0/1	10.	0.	.9239	10.	0.
1,0000	10.	0.	0.000	16	~
-1.0000	15.	0.	9239	15.	0.
/0/10	15.	0.	3827	15.	0.
0.	15.	0.	.3827	15.	0.
./0/1	15.	0.	.9239	15.	0.
1.0000	15.	0.			_
-1.0000	20.	0.	9239	20.	0.
70710	20.	0.	3827	20.	0.
0.	20.	0.	.3827	20.	0.
.7071	20.	0.	.9239	20.	0.
1.0000	20.	0.			
// SAME	EDGE ARI	RANGEMENT A	S NETWORK A1		
BOUNDAR	RY CONDI	TION=2,3		/N9	
SPECIFI	ED FLOW	FOR MODEL	(B)	/N17A	
TERM=2	2			/N17B	
INPUT	-IMAGES	=INPUT,1ST		/N17C	
SOLI	JTIONS=2			/N17D	
P01	NTS=ALL	\$ 0.10		/N17E,F	
LOCAL ()NSET FL(OW FOR MODE	L (C)	/N18A	
TERM=\	IXYZ			/N18B	
INPUT	-IMAGES=	=INPUT,1ST		/N18C	
SOLU	ITIONS=3			/N18D	
PO 1	NTS=ALL	\$ 0.,0.,.1	0	/N18E,F	
// END	OF DATA	FOR NETWOR	K A2		

.

J

2-12

÷

// START DATA FOR NETWORK W1 NETWORK=W1, 2, 2, NEW /N2A 0. 1. 0. 100. 0. 0. 1. 5. 0. 100. 5. 0. // SAME EDGE ARRANGEMENT AS NETWORK A1 BOUNDARY CONDITION=1,4 /N9 // END OF DATA FOR NETWORK W1 11 START DATA FOR NETWORK W2 NETWORK=W2, 2, 4, NEW /N2A 1. 5. 0. 100. 5. 0. 10. 1. 0. 100. 10. 0. 1. 15. 100. 0. 15. 0. 20. 1. 0. 100. 20. 0. // SAME EDGE ARRANGEMENT AS NETWORK A1 BOUNDARY CONDITION=1,4 /N9 // END OF DATA FOR NETWORK W2 // END OF NETWORK DATA GROUP // OMIT GEOMETRIC EDGE MATCHING DATA GROUP 11 Π START FLOW PROPERTIES DATA GROUP BEGIN FLOW PROPERTIES DATA /FP1 Π START SURFACE FLOW PROPERTIES DATA SUBGROUP Π Π // SURFACE FLOW PROPERTIES CASE 1 SURFACE FLOW PROP=ALL-FLOWS /SF1 NETWORKS-IMAGES=A1 /SF2 // OMIT RECORD SF3, DEFAULT IS ALL SOLUTIONS POINTS=ALL /SF4A PRINTOUT=ALL /SF10A DATA BASE = ALL/SF11A Π // SURFACE FLOW PROPERTIES CASE 2 SURFACE FLOW PROP=TOTAL-ONSET-FLOW /SF1 NETWORKS-IMAGES=A1 /SF2 SOLUTIONS=3,4 /SF3 POINTS=CENTER /SF4A-DEFAULT // INCLUDE LOCAL (SOLUTION 3) AND ROTATIONAL (SOLUTION 4) ONSET FLOWS // IN PRESSURE COEFFICIENT CALCULATIONS COMPUTATION OPTION FOR PRESSURES=TOTAL-ONSET-FLOW /SF7 PR INTOUT=ALL /SF10A DATA BASE = ALL/SF11A // END OF SURFACE FLOW PROPERTIES DATA SUBGROUP Π

Figure 2.3 - Continued.

```
// START FORCES AND MOMENTS DATA SUBGROUP
FORCES AND MOMENTS /FM1
AXIS SYSTEMS = RCS /FM3
SOLUTIONS = 1, 2, 3, 4
                             /FM4-DEFAULT
\Pi
// FORCES AND MOMENTS CASE 1
CASE = ALL-FLOWS-FM /FM7
NETWORKS-IMAGES = A1 /FM8
EDGE FORCE = A1, 1 / FM9
                              /FM12
SURFACE SELECTION = UPLO
ACCUMULATE = BOUNDARY-CONDITION, NONE, ISENTROPIC /FM21
CASE=TOTAL-ONSET-FLOW-FM /FM7
NETWORKS-IMAGES = A1 /FM8
EDGE FORCE = A1, 1 /FM9
SURFACE SELECTION = UPLO
                          /FM12
COMPUTATION OPTION FOR PRESSURES = TOTAL-ONSET-FLOW /FM14
   END OF FORCES AND MOMENTS DATA SUBGROUP
\Pi
// END OF FLOW PROPERTIES DATA GROUP
\prod
// START PRINT-PLOT DATA GROUP
BEGIN PRINT PLOT DATA
                         /PP1
 GEOMETRY DATA
                 /PP2A
                 /PP3A
 POINT DATA
                       /PP4A
 CONFIGURATION DATA
// END OF POINT-PLOT DATA GROUP
 END PROBLEM DEFINITION
```

Figure 2.3 - Concluded.

			::	(a) α=5.7392°	::	(b) specified flow	: : :0	(c) local nset flow	: :r: :0	(d) : otational : nset flow :
	1.	uniform onset flow, U	::	0.99499, 0., 0.1	:	1., 0., 0.	:	1., 0., 0.	:	1., : 0., : 0. :
:	2.	specified flow βn2 *	:	none	:	0.1	:	none	:	none :
::	3.	local onset flow, ^U loc	::	none	:	none	:	0., 0., 0.1	:	none :
::	4.	rotational onset flow, _* U _{rot}	:	none	:	none	::	none	:	0., : 0., : 0.10096 :
:	5.	tota] onset flow [*] U _o = U + U _{loc} + U _{rot}	:	0.99499, 0., 0.1	:	1., 0., 0.	::	1., 0., 0.1	::	1., : 0., : 0.10096 :
::	6.	bottom surface perturbation velocity, v*	••••	-0.97550, 0.00006, -0.1	::	-0.97550, 0.00006, -0.1	::	-0.97550, 0.00006, -0.1	: -	-0.97549, : 0.00006, : -0.10096 :
:	7.	doublet strength*	:	-0.10467	;	-0.10467	:	-0.10467	: -	-0.10469 :
:	8.	bottom surface total velocity* V = U _O + v	:	0.01948, 0.00006, 0.	:	0.02450, 0.00006, -0.1	:	0.02450, 0.00006, 0.	:	0.02451, : 0.00006, : 0. :
::	9.	bottom surface 2nd order pressure* via uniform onset flow option (G10)	:	1.34580	:	1.33197	:	1.34197	:	1.34197
:	10	bottom surface 2nd order pressure [*] via total onset flow option (G10)	•	1.34580	:	1.33197	:	1.35197	:	1.35216
:	11	x _o and z _o force in ref. coord. system		-0.06730 0.66411	:	-0.06730 0.66536	:	-0.06730 0.66626	:	-0.06734 : 0.66268 :
:	12.	x _o and z _o force in wind-cent. coord. sys.	:	-0.00055 0.66751	:	-0.06730 0.66536	:	-0.06730 0.66626	: -	-0.06734 : 0.66268 :

*at control point (2,2) = (-0.96176, 2.48750, 0.0)

Figure 2.4 - Comparison of results for models (a)-(d)

 \sim

2–15

line i

3. WEAPONS CARRIAGE AIRPLANE

Purpose

The purpose of this case is to exercise PAN AIR with a complicated, supersonic configuration that tests numerous program features. In particular, the features being tested included subinclined and superinclined panels, both thick and thin components, a variety of boundary condition types, complicated abutment intersections, complicated doublet matching requirements, and a large number of panels.

Configuration, Flow, and Modeling

The paneling is illustrated in figure 3.1. This configuration was previously analyzed with a version of the PAN AIR pilot code (see INTRODUCTION for references). The analysis is described in references 3.1 and 3.2, and included, in some instances, weapons mounted underneath the aircraft and, therefore, the configuration is referred to as the "weapons carriage airplane" even though no weapon is considered in the present application.

The flowfield Mach number is taken to be 2.0, and the angles of attack considered are 2° and 0°.

Figure 3.2 shows the paneling scheme with the individual networks identified thereon by the index numbers that were assigned by PAN AIR. The wake networks are not shown. Figure 3.3 presents the network abutments in schematic form. Figure 3.3 also gives the correlation between program-assigned network indices and user-assigned network alphanumeric identifiers (e.g., network N11-INLET is network 35). The large number of networks, the curious shapes of some networks, and the multiple networks representing wakes shed from the lifting surfaces resulted from the following constraints:

(1) Discontinuities in surface slope should correspond to network edges.

(2) The pilot code requires that network corners (including wake network corners) cannot abut other networks, except at network corners. PAN AIR has less restrictive network abutment rules, but, since a close point-by-point comparison to the pilot code constitutes validation for this case, the pilot code paneling is used. If this restriction were relaxed, the number of networks could be reduced substantially. See figure 16 of reference 3.3 for an example that illustrates the difference between the pilot code and the PAN AIR abutment rules.

(3) Networks can only abut at their edges.

Note that networks are placed on the nacelle inlet face, nacelle outlet (hereafter referred to as the nacelle base), and the base of the fuselage.

The nacelle inlet face and the nacelle and fuselage surfaces are paneled and boundary conditions are applied thereon so as to attempt to cause the interior flow of the configuration (i.e., flow inside the nacelle and fuselage) to be the undisturbed free stream. The particular boundary conditions used are shown in figure 3.4. Specifying the interior flow to be the undisturbed free stream tends to prevent strong internal flow discontinuities along Mach lines that would, in turn, necessitate dense paneling on the nacelle and fuselage. Note, however, that, because boundary conditions are applied only at a finite number of points on the configuration, the interior flow will not be exactly undisturbed. Refer to section B.3.6.6 of the PAN AIR User's Manual for a more detailed discussion of nacelle modeling.

Input

The input is shown in figure 3.5. Note the following.

The canard, wing, and horizontal tail are idealized as mean camber surfaces (infinitely thin, lifting surfaces). Therefore, the appropriate boundary conditions for them is class 1, subclass 3.

The inlet face is modeled by superinclined panels, which necessarily require two boundary conditions on the downstream side of the face (which is the lower surface by virtue of the input point ordering) and none on the upstream side, as is discussed in section B.3.6.6 of the PAN AIR User's Note that the flow impinging on the upstream side of Manual. anv superinclined panel can not be influenced by the panel and that the superinclined panel "swallows" the upstream flow. Since the flow on the downstream side of the face is desired to be the uniform free stream, the appropriate boundary conditions thereon are that (a) the perturbation normal mass flux equal zero, and (b) that the perturbation potential equal zero. These conditions may be satisfied via a class 4 boundary condition specification. In particular, and by reference to figure 7.7 in the PAN AIR User's Manual, it is clear that (a) is satisfied by specifying indices 2 and 3 on record N9 and that (b) is satisfied by specifying indices 6 and 3.

The appropriate boundary conditions for networks defining the nacelle surface and fuselage surface (excluding the bases) are (a) that the outer flow be tangent to the outer surface, and (b) that there be an undisturbed flow at the inner surface. Since the outer surface is the upper surface for all nacelle and fuselage networks, these boundary conditions are conveniently satisfied by specifying class 1, subclass 1 boundary conditions.

Wake networks originate along trailing edges of the configuration. The wake shed from the trailing edge common to the fuselage and nacelle could have been modeled with only one wake network instead of seven (N53-N59), but, as previously mentioned, a point-by-point comparison with the pilot code is Similarly, the wakes shed from the three lifting surfaces could have desired. been modeled with just one network each. Note that even though the wakes shed from the trailing edge of the nacelle and fuselage have no direct upstream influence in supersonic flow, they do have an indirect upstream influence because of the doublet matching conditions enforced by PAN AIR. Therefore. they are required to be there. If they were not there, then the doublet strength matching conditions would cause the doublet strength distribution along the trailing edge of the nacelle and fuselage to equal the distribution of doublet strength on the perimeter of the nacelle and fuselage base This would be an incorrect condition since the latter (as will be networks. discussed in the following paragraph) is ideally zero.

Superinclined networks are placed on the bases of the nacelle and fuselage. These networks can have no direct upstream influence in supersonic flow. Also note that they can have no indirect upstream influence (by virtue of doublet strength matching conditions) since their abutments with the nacelle and fuselage are also abutments with the wake networks shed from the nacelle and fuselage. Therefore, these superinclined networks cannot influence any other part of the configuration. Consequently, they are not required. Note also that the boundary conditions specified for these networks imply an undisturbed freestream flow on the downstream sides of the networks. Thus the singularities thereon would have zero strength if the flow upstream were undisturbed, which is the situation that the modeling is attempting to Since these base networks are not required and, since they ideally produce. would have zero strength, one might question why they are there. They have been left in because the strengths of the singularities thereon are a measure of how close the interior flow really is to the unperturbed freestream. In other words, even though the base networks are not required, they have been left in because their presence provides a measure of the closeness of the interior flow to the undisturbed flow, which, in turn, is one measure of the adequacy of the nacelle and fuselage panelling. If the flow were subsonic, then the base networks would have an upstream influence and, therefore, they would be required. For a more complete discussion of base networks in subsonic flow, see figure 18 of reference 3.3.

The network abutments are completely specified by the input. For example, the line ABUT=1,2,ENTI=2,4 tells PAN AIR that the entire number 2 edge of network 1 abuts the entire number 4 edge of network 2. Refer to figure 7.3 of the User's Manual for the edge numbering scheme. The record PLAN=FIRST tells PAN AIR that the preceding abutment is in the FIRST plane of symmetry (x_0-z_0 plane). Abutments are explicitly specified to reduce the

cost of executing the test case. (The list of abutments was generated from the output of a previous run of this same case, using PAN AIR's automatic abutment search.) The automatic abutment search is turned off by inputting a negative number on the edge matching tolerance record (i.e., on record G7, which is the 17th line in the input).

Recall that this configuration can be modeled with a far fewer number of networks. If this were done, then the automatic abutment search would be far less costly.

Results and Discussion

In regards to the point-by-point comparison of PAN AIR to the pilot code, the singularity strengths, pressure coefficients, forces, and moments show satisfactory agreement considering the somewhat different algorithms that are used. Figure 3.6 compares various force and moment components. For $\alpha=2^{\circ}$, the PAN AIR overall force and moment coefficients are one to two percent lower than the pilot code coefficients. The individual lifts on the lifting surfaces are likewise in close agreement. FX of the base networks is noted to be only about 1.6 percent of the overall FX. Recall that, if the interior flow were precisely uniform, the singularity strengths on the base networks would be zero, and, hence, there would be no contribution of the base networks The magnitude of the base FX indicates that the interior flow is to FX. satisfactorily smooth, at least immediately upstream of the base. This, in turn, indicates that the paneling arrangement and density may be reasonably accurate for predicting overall forces.

REFERENCES

- 3.1 Cenko, A.; and Tinoco, E. N.: PAN AIR Weapons, Carriage and Separation. Air Force Flight Dynamics Laboratory Report AFFDL-TR-79-3142, Dec. 1979.
- 3.2 Cenko, A.; Tinoco, E. N.; Dyer, R. D.; and DeJongh, J.: PAN AIR Applications to Weapons Carriage and Separation. Journal of Aircraft, vol. 18, no. 2, Feb. 1981, pp. 128-134.
- 3.3 Carmichael, R. L.; and Erickson, L. L.: PAN AIR A Higher Order Panel Method for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations. AIAA paper 81-1255, June, 1981.

Figure 3.1 Weapons carriage aircraft paneling

3-6

(a) Top View, input networks

• .

Figure 3.2 - Concluded

(c) Side View, image networks

о х

3**-** 9.

Figure 3.3 - Schematic of weapons carriage airplane network abutments

(a) "Side View"

3-10

a

2

,

.

(b) "Rear View"

Figure 3.3 - Concluded

-

F...

```
// WEAPONS CARRIAGE AIRCRAFT
 // EXAMPLE OF ANALYSIS OF COMPLEX CONFIGURATION
 // ONE PLANE OF CONFIGURATION SYMMETRY
 // SUPERSONIC FLOW, ONE PLANE OF FLOW SYMMETRY
 // CONFIGURATION HAS SUPERINCLINED NETWORKS
 BEGIN GLOBAL DATA /G1
 PID WEAPONS CARRIAGE AIRPLANE WITHOUT WEAPON
 UID USER IDENTIFICATION
 // OMIT RECORD G4, DEFAULT IS ONE PLANE OF CONFIGURATION AND FLOW SYMMETRY
MACH = 2.0 CALPHA = 2.0 CBETA = 0.0
 // SPECIFY 2 SOLUTIONS
 ALPHA = 2., 0.
 CHECKOUT PRINTS = DIP, 1, 2, 3, DQG, 1, 2, 4, 5, 6
PRESSURE COEFFICIENT RULES = SECOND-ORDER
    TURN OFF AUTOMATIC ABUTMENT SEARCH, SINCE ALL ABUTMENTS ARE SPECIFIED
\Pi
11
      IN THE GEOMETRIC EDGE MATCHING DATA GROUP
TOLE=-.001
BEGIN NETWORK DATA
// THICK BODY NETWORKS FOLLOW
NETWORK = N1 - LOWER - FOREBODY 7 6
   0.00000
              0.00000
                        -.65400
                                   3.00000
                                             0.00000
                                                       -1.04700
   6.00000
              0.00000
                       -1.05500
                                   7.75000
                                              0.00000
                                                       -1.06000
   9.10000
              0.00000
                       -1.06200
                                  10.45000
                                              0.00000
                                                       -1.06600
  12.36900
              0.00000
                       -1.06900
   0.00000
                        -.65400
              0.00000
                                                        -.97000
                                   3.00000
                                               .21500
   6.00000
               .35600
                       -1.04600
                                   7.75000
                                               .50900
                                                       -1.06000
   9.10000
               .54800
                       -1.06200
                                  10.45000
                                               .50000
                                                       -1.06600
  12.36900
               .45600
                       -1.06900
   0.00000
              0.00000
                        -.65400
                                   3.00000
                                               .44000
                                                        -.89100
   6.00000
               .69200
                        -.92700
                                   7.75000
                                             1.00000
                                                       -1.00000
   9.10000
              1.09000
                       -1.03600
                                  10.45000
                                             1.00000
                                                       -1.06600
  12.36900
               .91100
                       -1.06900
   0.00000
             0.00000
                        -.65400
                                   3.00000
                                              .60000
                                                        -.65000
   6.00000
               .97800
                        -.51300
                                  7.75000
                                             1.12000
                                                        -.50700
   9.10000
             1.12000
                        -.52100
                                 10.45000
                                             1.09000
                                                        -.59100
  12.36900
             1.10900
                        -.54700
   0.00000
             0.00000
                        -.65400
                                  3.00000
                                              .68000
                                                        -.34500
   6.00000
             1.04800
                        -.01400
                                  7.75000
                                             1.12000
                                                        0.00000
   9.10000
             1.12000
                        0.00000
                                 10.45000
                                             1.12000
                                                        0.00000
  12.36900
             1.12000
                        0.00000
   0.00000
             0.00000
                        -.65400
                                  3.00000
                                              .60000
                                                        -.04000
   6.00000
              .89700
                         .44300
                                  7.75000
                                                         .51000
                                             1.09000
   9.10000
             1.12000
                         .63100
                                 10.45000
                                             1.12000
                                                         .58600
  12.36900
             1.12000
                         .61500
BOUNDARY CONDITIONS = OVERALL 1 1
```

Figure 3.5 - Input for test case 3.

NFTW = N2-L0	WER-FOREB	ODY 74			
0.00000	0.0000	65400	3.00000	.60000	04000
6 00000	.89700	44300	7,75000	1.09000	.51000
9,10000	1,12000	.63100	10.45000	1.12000	.58600
12 36900	1 12000	.61500			
0.00000	0 00000	- 65400	3.00000	.38000	.22000
6.00000	55400	78000	7 75000	83000	94000
0.00000	88500	1 20000	10 45000	88000	1,12000
9.10000	.00000	1.06500	10.40000	.00000	1.12000
12.30900	.90000	65400	3 00000	20000	31000
6.00000	20200	05400	7 75000	59100	1 56000
0.10000	.29000	1 70000	10 45000	60400	1 72000
9.10000	.01100	1.79000	10.45000	.00400	1.72000
12.36900	.59200	1.39200	2 00000	0 00000	26700
0.00000	0.00000	05400	7 75000	0.00000	1 9/000
6.00000	0.00000	1.04000	10 45000	0.00000	1 00200
9.10000	0.00000	2.02900	10.45000	0.00000	1.98300
12.36900	0.00000	1.83500			
NETWORK = N3	36	1	10 10150		1 07000
12.36900	0.00000	-1.06900	13.43450	0.00000	-1.07200
14.50000	0.00000	-1.07500			
12.36900	.45600	-1.06900	13.43450	.48800	-1.0/200
14.50000	.52000	-1.07500			
12.36900	.91100	-1.06900	13.43450	.86550	-1.02950
14.50000	.82000	- .9 8500			
12.36900	1.10900	54700	13.43450	1.11450	71850
14.50000	1.12000	89500			
12.36900	1.12000	0.00000	13.43450	1.12000	39500
14,50000	1.12000	79000			
12.36900	1.12000	.61500	13.43450	1.12000	06700
14,50000	1.12000	74800			
NFTWORK = N4	5 4				
14,50000	0.00000	-1.07500	15,42500	0.00000	-1.07950
16 35000	0,00000	-1 08400	17,12500	0.00000	-1,09200
17 90000	0.00000	-1.10000	1,112000	0000000	
14 50000	52000	-1 07500	15 42500	54000	-1.07850
16 35000	56000	1 08200	17 12500	56000	_1.09100
17 00000	56000	1 10000	17.12500	.50000	1.05100
17.90000	.50000	-1.10000	15 42500	96000	08550
14.50000	1.12000	09500	17 12500	.90000	1,00050
16.35000	.80000	-1.08100	17.12500	.00000	-1.09050
17.90000	.80000	-1.10000	15 40500	1 1 0000	01400
14.50000	1.12000	/4800	15.42500	1.12000	91400
16.35000	1.12000	-1.08000	17.12500	1.12000	-1.09000
17.90000	1.12000	-1.10000			
NE TWORK = N5	5 5		1. 10500	1 10000	01400
14.50000	1.12000	/4800	15.42500	1.12000	91400
16.35000	1.12000	-1.08000	1/.12500	1.12000	-1.02000

3–14

1.0

Ξ

- india

17,90000	1,12000	_1 10000				
14.50000	1,50000	74800	15.42500	1 50000	91/100	
16.35000	1.50000	-1.08000	17,12500	1.50000	_1 09000	
17.90000	1.50000	-1.10000	1/112000	1.30000	-1.05000	
14.50000	1.98500	74800	15.42500	1,98500	91400	
16.35000	1.98500	-1.08000	17.12500	1.98500	-1.09000	
17.90000	1.98500	-1.10000				
14.50000	2.40000	74800	15.42500	2.40000	91400	
16.35000	2.40000	-1.08000	17.12500	2.40000	-1.09000	
17.90000	2.40000	-1.10000				
14.50000	2.85000	74800	15.42500	2.85000	91400	
16.35000	2.85000	-1.08000	17.12500	2.85000	-1.09000	
17.90000	2.85000	-1.10000				
NETWORK = N	624					
12.36900	1.12000	.61500	14.50000	1.12000	.89800	
12.36900	.96000	1.06500	14.50000	.90000	1.11800	
12.36900	. 5 9 200	1.59200	14.50000	.62000	1.39800	
12.36900	0.00000	1.83500	14.50000	0.00000	1.58000	
$NETW = N7 \ 3$	3					
14.50000	1.12000	.89800	16.35000	1.12000	1.05900	
17.35000	1.12000	1.09500				
14.50000	.62000	1.39800	16.35000	.57400	1.25700	
17.35000	.56500	1.19000				
14.50000	0.00000	1.58000	16.35000	0.00000	1.34700	
17.35000	0.00000	1.23800				
NEIW = N8 3	3					
12.36900	2.85000	.61500	13.43450	2,85000	.75650	
14.50000	2.85000	.89800	10 40450	1 00500		
14 50000	1.98500	.01500	13.43450	1.98500	.75650	
12 36000	1,90500	.89800	12 42450	1 10000	75650	
14 50000	1 12000	.01500	13.43450	1.12000	./5650	
NFTW - N9 3	3	.09000				
14.50000	2 85000	80800	16 35000	2 95000	1 05000	
17.35000	2 85000	1 09500	10.33000	2.00000	1.05900	
14,50000	1.98500	89800	16 35000	1 09500	1 05000	
17.35000	1.98500	1 09500	10.33000	1.90000	1.05900	
14,50000	1,12000	89800	16 35000	1 1 2000	1 05000	
17.35000	1.12000	1.09500	10.00000	1.12000	1.03900	
NETW = N10 3	4					
12.36900	2.85000	.61500	13,43450	2.85000	- 06700	
14.50000	2.85000	74800	100100100	2.00000	00700	
12.36900	2.85000	.61500	13.43450	2.85000	.16000	
14.50000	2.85000	37400		2122000		
12.36900	2.85000	.61500	13.43450	2.85000	.34000	
14.50000	2.85000	0.00000		1100000		
12.36900	2.85000	.61500	13.43450	2.85000	.70000	
14.35000	2.85000	.70000				

3–15

.

// NETWORK 11 IS SUPERINCLINED INLET- GROUPED								
NETWORK - N1	2 3 4	ICLINED NEI	WUKKS FUR	CONVENTENC	, C			
14.50000	2.85000	74800	16.35000	2.85000	-1.08000			
14.50000	2.85000	37400	16.35000	2.85000	52450			
14.50000	2.85000	0.00000	16.35000	2.85000	0.00000			
14.35000 17.35000	2.85000 2.85000 2.85000	.70000	16.35000	2.85000	.70000			
12.36900	2.85000	.61500	13.43450	2.85000	.70000			
12.36900 14.50000	2.85000	.61500	13.43450	2.85000	.75650			
NEIW = NI4 3 14.35000	2 2.85000	.70000	16.35000	2.85000	.70000			
14.50000	2.85000 2.85000 2.85000	.89800 1.09500	16.35000	2.85000	1.05900			
NETW = N15 6	3	1 10000	10 54000	1 1 0000	1 10000			
21 18000	1 12000	-1.10000	22 82000	1.12000	-1.10000			
24,46000	1.12000	-1.10000	26.13000	1,12000	-1.10000			
17.90000	1.98500	-1.10000	19.54000	1.98500	-1.10000			
21.18000	1.98500	-1.10000	22.82000	1.98500	-1.10000			
24.46000	1.98500	-1.10000	26.13000	1.92600	-1.10000			
17.90000	2.85000	-1.10000	19.54000	2.85000	-1.10000			
21.18000	2.85000	-1.10000	22.82000	2.85000	-1.10000			
24.46000	2.79000	-1.10000	26.13000	2./3000	-1.10000			
NE IW = NI6 6	3	1 10000	10 54000	0,00000	1 10000			
21 18000	0.00000	-1.10000	19.54000	0.00000	-1.10000			
24 46000	0.00000	-1 10000	26 13000	0.00000	-1.10000			
17,90000	.56000	-1.10000	19.54000	.56000	-1.10000			
21.18000	.56000	-1.10000	22.82000	.56000	-1.10000			
24.46000	.56000	-1.10000	26.13000	.56000	-1.10000			
17.90000	1.12000	-1.10000	19.54000	1.12000	-1.10000			
21.18000	1.12000	-1.10000	22.82000	1.12000	-1.10000			
24.46000	1.12000	-1.10000	26.13000	1.12000	-1.10000			
NETW = NI/5	3	1 10000	07 00000	1 1 00 00	1 10000			
20.13000	1.12000	-1.10000	27.80000	1.12000	-1.10000			
29.00000	1 1 2000	_1 02000	30.30000	1.12000	-1.10000			
26.13000	1.92600	-1.10000	27,80000	1.87000	-1.10000			
29.00000	1.83000	-1.10000	30.50000	1.81000	-1.10000			
31.60000	1.81000	-1.02000						

3–16

26.13000	2.73000	-1.10000	27.80000	2.62000	-1.10000
29.00000	2.50000	-1.10000	30.50000	2.50000	-1.10000
31.60000	2.50000	-1.02000			
NE[W] = N[N]	5 3				
26.13000	0.00000	-1.10000	27.80000	0.00000	-1.10000
29.00000	0.00000	-1.10000	30.50000	0.00000	-1.10000
31.00000	0.00000	-1.02000	07 00000	5 6000	1 10000
20.13000	.56000	-1.10000	27.80000	.56000	-1.10000
29.00000	.50000	-1.10000	30.50000	.56000	-1.10000
26 13000	.50000	-1.02000	27 00000	1 12000	1 10000
20.13000	1 12000	-1.10000	27.60000	1 12000	-1.10000
31 60000	1 1 2000	1 02000	30.50000	1.12000	-1.10000
NFTW = N19	3 3	-1.02000			
31,60000	1,12000	-1.02000	32 00000	1 12000	_1 00000
32.85000	1.12000	90000	32.00000	1.12000	-1.00000
31.60000	1.81000	-1.02000	32,00000	1.81000	-1.00000
32.85000	1.81000	90000	0200000	1101000	1.00000
31.60000	2.50000	-1.02000	32,00000	2,50000	-1.00000
32.85000	2.50000	90000			
NETW = N20	33				
31.60000	0.00000	-1.02000	32.00000	0.00000	-1.00000
32.85000	0.00000	90000			
31.60000	.56000	-1.02000	32.00000	.56000	-1.00000
32.85000	.56000	90000			
31.60000	1.12000	-1.02000	32.00000	1.12000	-1.00000
32.85000	1.12000	90000			
NEIW = N2I	4 3				
17.35000	1.12000	1.09500	19.54000	1.12000	1.10000
22.82000	1.12000	1.10000	26.13000	1.12000	1.10000
17.35000	.56500	1.19000	19.54000	.56000	1.10000
17 25000	.56000	1.10000	20.13000	.56000	1.10000
22 02000	0.00000	1.23800	19.54000	0.00000	1.10000
22.02000 NETU _ N22	1 2	1.10000	20.13000	0.00000	1.10000
17 35000	2 9 50 00	1 00500	10 54000	2 95000	1 10000
22 82000	2.85000	1 10000	26 13000	2.05000	1 10000
17.35000	1 98500	1 09500	19 54000	1 98500	1 10000
22.82000	1.98500	1 10000	26 13000	1 92000	1 10000
17.35000	1,12000	1.09500	19 54000	1 12000	1 10000
22.82000	1,12000	1,10000	26.13000	1.12000	1,10000
NETW = N23	5 3		20120000	1112000	1110000
26.13000	1.12000	1.10000	27,80000	1,12000	1,10000
29.00000	1.12000	1.10000	30,50000	1,12000	1.10000
31.60000	1.12000	1.02000			
26.13000	.56000	1.10000	27.80000	.56000	1,10000
29.00000	.56000	1.10000	30.50000	.56000	1.10000
31.60000	.56000	1.02000			

Figure 3.5 - Continued.

3–17

26.13000 29.00000 31.60000	0.00000 0.00000 0.00000	1.10000 1.10000 1.02000	27.80000 30.50000	0.00000 0.00000	1.10000 1.10000
NETW = N24	5 3	1 10000	07 00000	0 60000	
20.13000	2.73000	1.10000	27.80000	2.62000	1.10000
31,60000	2 50000	1 02000	30.50000	2.50000	1.10000
26.13000	1,92000	1,10000	27,80000	1 87000	1 10000
29.00000	1.83000	1.10000	30.50000	1.81000	1.10000
31.60000	1.81000	1.02000			
26.13000	1.12000	1.10000	27.80000	1.12000	1.10000
29.00000	1.12000	1.10000	30.50000	1.12000	1.10000
31.00000 NETU - N25	1.12000	1.02000			
31.60000	1 1 2000	1 02000	32 00000	1 12000	1 00000
32.85000	1 12000	90000	32.00000	1.12000	1.00000
31.60000	.56000	1.02000	32,00000	56000	1 00000
32.85000	.56000	.90000	02.00000		1.00000
31.60000	0.00000	1.02000	32.00000	0.00000	1.00000
32.85000	0.00000	.90000			
NETW = N26 3	33				
31.60000	2.50000	1.02000	32.00000	2.50000	1.00000
32.85000	2.50000	.90000			_
31.60000	1.81000	1.02000	32.00000	1.81000	1.00000
32.85000	1.81000	.90000	22.00000	1 10000	1 00000
32 85000	1 12000	1.02000	32.00000	1.12000	1.00000
NETW = N27 4	1 2	. 90000			
17.35000	2.85000	.70000	19.54000	2 85000	70000
22.82000	2.85000	.70000	26.13000	2.82000	.70000
17.35000	2.85000	1.09500	19.54000	2.85000	1.10000
22.82000	2.85000	1.10000	26.13000	2.73000	1.10000
NEIW = N28 5	5 2				
26.13000	2.82000	./0000	27.80000	2.88000	.70000
29.00000	2.83000	.70000	30.50000	2.81000	.70000
26 13000	2.00000	./0000	27 00000	2 62000	1 10000
29,0000	2.73000	1 10000	30 50000	2.52000	1.10000
31,60000	2.50000	1 02000	50.50000	2.30000	1.10000
NETW = N29	3 2	1.02000			
31.60000	2.80000	.70000	32.00000	2.74000	.70000
32.85000	2.62000	.70000			
31.60000	2.50000	1.02000	32.00000	2.50000	1.00000
32.85000	2.50000	.90000			

3-18

NETW = N30	64				
17.90000	2.85000	-1.10000	19.54000	2.85000	-1.10000
21.18000	2.85000	-1.10000	22.82000	2.85000	-1.10000
24.46000	2.79000	-1.10000	26.13000	2.73000	-1.10000
17.90000	2.85000	55000	19.54000	2.85000	55000
21.18000	2.85000	55000	22.82000	2.85000	55000
24.46000	2.79000	55000	26.13000	2.89000	55900
17.90000	2.85000	0.00000	19.54000	2.85000	0.00000
21.18000	2.85000	0.00000	22.82000	2.85000	0.00000
24.46000	2.79000	0.00000	26.13000	2.89000	0.00000
17.35000	2.85000	.70000	19.54000	2.85000	.70000
21.18000	2.85000	.70000	22.82000	2.85000	.70000
24.46042	2.8351321	.70000	26.13000	2.82000	.70000
NETW = N31	24				
26.13000	2.73000	-1.10000	27.80000	3.03000	0.00000
26.13000	2.89000	55900	27.80000	3.03000	0.00000
26.13000	2.89000	0.00000	27.80000	3.03000	0.00000
26.13000	2.82000	.70000	27.80000	3.03000	0.00000
NETW = N32	5 3				
26.13000	2.73000	-1.10000	27.80000	2.62000	-1.10000
29.00000	2.50000	-1.10000	30.50000	2.50000	-1.10000
31.60000	2.50000	-1.02000	••		
26.96500	2.88000	55000	28.00000	2.95000	60300
29.00000	2.99000	63000	30.50000	2.98000	62000
31.00000	2.93000	56200			
27.80000	3.03000	0.00000	28.20000	3.06000	0.00000
29.00000	3.12000	0.00000	30.50000	3.14000	0.00000
	3.09000	0.00000			
NETW = N33	3 3 50000	1 00000		0 50000	1 00000
31.00000	2,50000	-1.02000	32.00000	2.50000	-1.00000
32.65000	2.50000	90000	22 00000	0.00000	5 3 5 0 0
32.00000	2,93000	56200	32.00000	2.89000	53500
31 60000	2.03000	44560	22 00000	2 00000	0 00000
32 85000	2 07000	0.00000	32.00000	3.08000	0.00000
NETW _ N3/ /	5 2	0.00000			
27 80000	3 03000	0 00000	28 20000	2 06000	0,0000
29 00000	3 1 2000	0.00000	30 50000	3.00000	0.00000
31 60000	3 09600	0.00000	30.50000	3.14000	0.00000
26.13000	2 82000	70000	27 80000	2 88000	70000
29,00000	2 83000	70000	30 50000	2 81000	70000
31,60000	2.80000	.70000	30.30000	2.01000	.,0000
NETW = N35	3 2				
31.60000	3.09600	0.00000	32,00000	3,08000	0.00000
32.85000	2,97000	0.00000		0.00000	0.00000
31.60000	2.80000	.70000	32,00000	2.74000	.70000
32.85000	2.62000	.70000			
// BEGIN SUP	PERINCLINED	NETWORKS			

 \sim

3–19

NETW = N11-I	NLET 3 3				
12.36900	1.12000	.61500	13.43450	1.12000	06700
14.50000	1.12000	74800			
12.36900	1.98500	.61500	13.43450	1.98500	06700
14.50000	1.98500	74800	10 40450		00700
12.36900	2,85000	.61500	13.43450	2.85000	06700
14.50000	2.85000	/4800	CONDITIONS		
77 SUPERINUL	INED PANEL	. BOUNDARY	CONDITIONS		
SING = SA DA	4,2,3,0,3				
I/RASE PLAT		STARTS NO	له		
NETW = N35A 2	2 10 0001	51/101	n		
32.85000	0.00000	.90000	32,85000	0.00000	0.0000
32.85000	.56000	.90000	32.85000	.56000	0.00000
32.85000	1.12000	.90000	32.85000	1.12000	0.00000
SING = SA D	A				
NETW=N35B 2	3				
32.85000	1.12000	.9 0000	32.85000	1.12000	0.00000
32.85000	1.81000	.90000	32.85000	1.81000	0.00000
32.85000	2.50000	.90000	32.85000	2.50000	0.00000
SING = SA	DA			-	
NEIW = N35C	2 3			1 10000	00000
32.85000	1.12000	0.00000	32.85000	1.12000	90000
32.85000	1.81000	0.00000	32.85000	1.81000	90000
	2.50000	0.00000	32.85000	2.50000	90000
SING = SA	2 2				
32 85000		0 00000	32 85000	0 00000	90000
32.85000	56000	0.00000	32.85000	56000	- 90000
32.85000	1,12000	0.00000	32.85000	1,12000	90000
// NORMALS O	N NEXT 3 N	IETWORKS A	REREVERSED	1012000	
SING = SA	DA				
NETW=N35E 3	2				
32.85000	2.50000	.90000	32.85000	2.56000	.80000
32.85000	2,62000	.70000			
32.85000	2.50000	0.00000	32.85000	2.50000	0.00000
32.85000	2.50000	0.00000			
BOUN = OVER,4	,1,3,5,3				
SING = SA	DA				
NEIW = N35F	3 2	70000	20.05000	0 70500	25000
32.85000	2.02000	./0000	32.85000	2./9500	.35000
32,05000	2.97000	0.00000	32 85000	2 50000	0 00000
32.05000	2.50000	0.00000	32.03000	2.50000	0.00000
SING = SA	DA	0.00000			
	10 C C C C C C C C C C C C C C C C C C C				

3–20

Î

NETW=N35G 3	2					
32.85000	2.97000	0.00000	32.85000	2,83000	44580	
32.85000	2.50000	90000			• • • • • • • • •	
32.85000	2.50000	0.00000	32.85000	2,50000	0.00000	
32.85000	2.50000	0.00000				
SING = SA	DA					
// BEGIN THI	N WING NE	TWORKS				
NETW = N50-W	ING 11 6					
17.90000	2.85000	-1.10000	18.59000	3.55000	-1.10000	
19.28000	4.25000	-1.10000	19.92100	4.90000	-1.10000	
20.66000	5.65000	-1.10000	21.35000	6.35000	-1.10000	
22.04000	7.05000	-1.10000	22.73000	7.75000	-1.10000	
23.42000	8.45000	-1.10000	24.11000	9.15000	-1.10000	
24.80000	9.85000	-1.10000				
19.54000	2.85000	-1.10000	20.12000	3,55000	-1.10000	
20.70000	4.25000	-1.10000	21.24000	4.90000	-1.10000	
21.86000	5.65000	-1.10000	22,44000	6.35000	-1.10000	
23.02000	7.05000	-1.10000	23.60000	7.75000	-1.10000	
24.18000	8.45000	-1.10000	24.76000	9.15000	-1.10000	
25.34000	9.85000	-1.10000				-
21.18000	2.85000	-1.10000	21.65000	3.55000	-1.10000	
22.12000	4.25000	-1.10000	22.56000	4.90000	-1.10000	
23.06000	5.65000	-1.10000	23.53000	6.35000	-1.10000	
24.00000	7.05000	-1.10000	24.47000	7.75000	-1.10000	
24.94000	8.45000	-1.10000	25.41000	9.15000	-1.10000	
25.88000	9.85000	-1.10000				
22.82000	2.85000	-1.10000	23.18000	3.55000	-1.10000	
23.54000	4.25000	-1.10000	23.87000	4.90000	-1.10000	
24.26000	5.65000	-1.10000	24.62000	6.35000	-1.10000	
24.98000	7.05000	-1.10000	25.34000	7.75000	-1.10000	
25.70000	8.45000	-1.10000	26.06000	9.15000	-1.10000	
26.42000	9.85000	-1.10000				
24.46000	2.79000	-1.10000	24.71000	3.55000	-1.10000	
24.96000	4.25000	-1.10000	25.19000	4.90000	-1.10000	
25.46000	5.65000	-1.10000	25.71000	6.35000	-1.10000	
25.96000	7.05000	-1.10000	26.21000	7.75000	-1.10000	
26.46000	8.45000	-1.10000	26.71000	9.15000	-1.10000	
26.96000	9.85000	-1.10000				
26.13000	2.73000	-1.10000	26.24000	3.55000	-1.10000	
26.38000	4.25000	-1.10000	26.51000	4.90000	-1.10000	
26.66000	5.65000	-1.10000	26.80000	6.35000	-1.10000	
26.94000	7.05000	-1.10000	27.08000	7.75000	-1.10000	· •
27.22000	8.45000	-1.10000	27.36000	9.15000	-1.10000	
27.50000	9.85000	-1.10000		-	-	

BOUN = OVER, 1, 3

Figure 3.5 - Continued.

NETW = N51-	-CANARD 3 4				
14.35000	2.85000	.70000	15.62000	4.10000	.70000
16.90000	5.37000	.70000			
15.35000	2.85000	.70000	16.33000	4.10000	.70000
17.35000	5.37000	.70000			
16.35000	2.85000	.70000	17.00000	4.10000	.70000
17.67000	5.37000	.70000			
17.35000	2.85000	./0000	17.72000	4.10000	.70000
18.08000	5.37000	.70000			
NE IW = N52 - 27 90000	-IAIL 5 4	0 00000	00 00000	2 00000	0 00000
27.00000	3.03000	0.00000	28.83260	3.90000	0.00000
29.04130	4.75000	0.00000	30./3180	5.50000	0.00000
31.80000	6.40000	0.00000	20.00400	2 00000	0 00000
29.00000	3.12000	0.00000	29.88480	3.90000	0.00000
30.09430	4.75000	0.00000	31.40920	5.50000	0.00000
32.20700	2 14000	0.00000	20 02710	2 00000	0 00000
21 54720	3.14000	0.00000	30.93/10	3.90000	0.00000
31.34/20	4.75000	0.00000	32.08000	5.50000	0.00000
32.73300	0.40000	0.00000	01 00000		
31.60000	3.09600	0.00000	31.98930	3.90000	0.00000
32.40000	4./5000	0.00000	32.76400	5.50000	0.00000
33.20000	6.40000 DIODKC DECIN	0.00000			
// WAKE NEI	WURKS BEGIN				
NEIW = N53	2 3	00000	000 00000	0 00000	00000
32.85000	0.00000	.90000	999.99999	0.00000	.90000
32.85000	.56000	.90000	999.99999	.56000	.90000
32.85000	1.12000	.90000	999.99999	1.12000	.90000
BUUN = UVER	(,1,4				
NEIW = N54	2 3			1 1 00 00	00000
32.85000	1.12000	.90000	999.99999	1.12000	.90000
32.85000	1.81000	.90000	999.99999	1.81000	.90000
32.85000	2.50000	.90000	999.99999	2.50000	.90000
NEIW = N55	2 2 50000	00000	000 00000	2 50000	00000
32.05000	2.50000	.90000	999.99999	2.50000	.90000
	2.02000	.70000	333.33333	2.02000	.70000
NETW = N50 22 0E000	2 62000	70000	000 00000	2 62000	70000
32.00000	2.02000	.70000	999.999999	2.02000	./0000
NETW _ NE7	2.3/000	0.00000	373.33333	2.97000	0.00000
22 95000	2 07000	0 00000	000 00000	2 07000	0 00000
32.85000	2.97000	44590	999.999999	2 97000	44590
32.85000	2.03000	44580	333.33333	2.03000	44560
NETW _ NEQ	2.30000		222.22222	2.50000	90000
32 05000	2 50000	مممم	000 0000	2 50000	00000
32,05000	1 81000	- 00000	000 00000	1 81000	90000 _ 90000
32.85000	1 12000	90000	000 00000	1 1 2000	00000
JE+03000	1.12000		ッフフ・フフフフブ	1.12000	

3–22

i
NETW = N59	2 3				
32.85000	1.12000	90000	999.99999	1,12000	- 90000
32.85000	.56000	90000	999.99999	.56000	90000
32.85000	0.00000	90000	999.99999	0,00000	90000
NETW = N60	35				
31.6 3	.096 .	.0	32.	3.08	.0
32.85 2	2 . 97 ().			•••
31.9893 3	.9 ().	32.35	3.9	0.
33.30000	3.90000	0.00000			•••
32.40000	4.75000	0.00000	32,77000	4,75000	0.00000
33.67000	4.75000	0.00000			0.00000
32.76400	5.50000	0.00000	33,10000	5.50000	0 00000
34.00000	5,50000	0.00000		0.00000	0.00000
33.20000	6.40000	0,00000	33,80000	6.40000	0 00000
34.45000	6.40000	0.00000		0.10000	0.00000
NETW = N67	2 5				
32.85000	2.97000	0.0000	999, 99999	2 97000	0 00000
33.30000	3,90000	0.00000	999,99999	3 90000	0.00000
33.67000	4,75000	0 00000	999 99999	4 75000	0.00000
34.00000	5,50000	0.00000	999,99999	5 50000	0.00000
34.45000	6.40000	0.00000	999,99999	6 40000	0.00000
NETW = N68 -	WING-WAKE	5 11		0.40000	0.00000
26.13000	2.73000	-1.10000	27,80000	2,62000	_1.10000
29.00000	2,50000	-1.10000	30,50000	2.50000	-1 10000
31.60000	2.50000	-1.02000		2.00000	-1.10000
26.24000	3.55000	-1.10000	27,80000	3 55000	_1 10000
29.00000	3.55000	-1.10000	30,50000	3 55000	_1 10000
31.60000	3,55000	-1.02000		0.00000	-1.10000
26.38000	4,25000	-1.10000	27 80000	1 25000	1 10000
29,00000	4,25000	-1.10000	30,50000	4 25000	-1 10000
31.60000	4.25000	-1.02000		4.2000	-1.10000
26.51000	4.90000	-1.10000	27,80000	4 90000	-1 10000
29.00000	4,90000	-1.10000	30,50000	4 90000	_1 10000
31.60000	4,90000	-1.02000		1.50000	-1.10000
26,66000	5.65000	_1 10000	27 80000	5 65000	1 10000
29,00000	5 65000	_1 10000	30 50000	5.65000	-1.10000
31,60000	5 65000	-1 02000	30.30000	3.03000	-1.10000
26.80000	6 35000		27 80000	6 25000	1 10000
29 00000	6 35000		30 50000	6 25000	-1.10000
31,60000	6 35000	1 02000	30.50000	0.35000	-1.10000
26 94000	7 05000	1 10000	27 00000	7 05000	1 10000
29 0000	7 05000	1 10000	21.00000	7,05000	-1.10000
31 60000	7.05000	1 02000	30.50000	1.05000	-1.10000
27 00000	7.00000	-1.02000	77 00000	7 76000	1 10000
29 00000	7.75000	-1.10000	27.80000	/./5000	-1.10000
21 60000	7 7 5000	-1.10000	30.50000	/./5000	-1.10000
21.00000	1.10000	-1.02000			

Figure 3.5 - Continued.

 \smile

27.22000 29.00000	8.45000 8.45000	-1.10000 -1.10000	27.80000 30.50000	8.45000 8.45000	-1.10000 -1.10000
31.60000 27.36000	8.45000 9.15000	-1.02000 -1.10000	27.80000	9.15000	-1.10000
29.00000	9.15000	-1.10000	30.50000	9.15000	-1.10000
27.50000	9.85000	-1.10000	27.80000	9.85000	-1.10000
29.00000 31.60000	9.85000	-1.10000 -1.02000	30.50000	9.85000	-1.10000
NETW = N69 31 60000	3 11	_1 02000	32,00000	2,50000	-1,00000
32.85000	2.50000	90000	00.00000	2.55000	1 00000
31.60000 32.85000	3.55000	-1.02000	32.00000	3.55000	-1.00000
31.60000	4.25000	-1.02000	32.00000	4.25000	-1.00000
31.60000	4.90000	-1.02000	32.00000	4.90000	-1.00000
32.85000 31.60000	4.90000 5.65000	90000 -1.02000	32.00000	5.65000	-1.00000
32.85000	5.65000	90000	32 00000	6 35000	-1.00000
32.85000	6.35000	90000	52.00000	7 05000	1 00000
31.60000	7.05000 7.05000	-1.02000	32,00000	7.05000	-1.00000
31.60000	7.75000	-1.02000	32.00000	7.75000	-1.00000
32.85000	8.45000	-1.02000	32.00000	8.45000	-1.00000
32.85000	8.45000 9.15000	90000	32.00000	9.15000	-1.00000
32.85000	9.15000	90000	22 00000	9 85000	_1 00000
32.85000	9.85000 9.85000	90000	32.00000	9.00000	-1.00000
NETW = N70	2 11	_ 90000	99999 9999	2,50000	90000
32.85000	3.55000	90000	999.99999	3.55000	90000
32.85000	4.25000	90000	999.99999	4.25000	90000
32.85000	4.90000	90000	999.99999	4.90000	90000
32.85000	5.65000	90000	999.99999	5.05000	- 90000
32.85000	5.35000	90000	999.99999	7 05000	- 90000
32.00000	7.05000		000 00000	7.75000	90000
32.00000	8 45000	_ 90000	999,99999	8,45000	90000
32.85000	9,15000	-,90000	999,99999	9.15000	90000
32,85000	9.85000	90000	999.99999	9.85000	90000

Figure 3.5 - Continued.

3–24

ŧ

NETW = N71-C	ANAR D-WAKF	4 3				
17.35000	2.85000		19 54000	2 85000	70000	
22,82000	2.85000	70000	26 13000	2 82000	70000	
17.72000	4,10000	70000	19 54000	4 10000	70000	
22.82000	4,10000	.70000	26 13000	4 10000	70000	
18,08000	5.37000	.70000	19.54000	5 37000	70000	
22.82000	5.37000	70000	26 13000	5 37000	70000	
NETWORK=N72	5 3	.,	20.10000	5.57000	•70000	
26.13000	2 82000	70000	27 80000	2 88000	70000	
29,00000	2 83000	70000	30 50000	2 81000	70000	
31 60000	2 80000	70000	50.50000	2.01000	.70000	
26 13000	4 10000	70000	27 20000	1 10000	70000	
20.10000	4.10000	70000	27.00000	4.10000	.70000	
31 60000	4.10000	70000	30.50000	4.10000	.70000	
26 12000	5 27000	70000	27 00000	E 27000	70000	
20.13000	5.37000	.70000	27.80000	5.37000	.70000	
29.00000	5.37000	.70000	30.50000	5.37000	.70000	
NETU N73 3	3.37000	./0000				
31 60000	2 20000	70000	22 00000	2 74000	70000	
32 85000	2.60000	70000	32.00000	2.74000	.70000	
31 60000	4 10000	.70000	22 00000	4 10000	70000	
32 85000	4.10000	70000	32.00000	4.10000	.70000	
31 60000	5 37000	70000	22 00000	E 27000	70000	
32 95000	5.37000	70000	32.00000	5.57000	.70000	
NFTW _ N74 2	3.37000	.70000				
32 85000	2 62000	70000	000 00000	2 62000	70000	
32.85000	1 10000	70000	999.99999	2.02000	.70000	
32.85000	5 37000	70000	000 00000	4.10000 5.27000	.70000	
REGIN GEOM	5.57000	•/0000	333.33333	5.37000	.70000	
ARIIT-1 2 ENT	1_2 /					
ABUT_1 3 ENT	I=2,4 I=3,1					
$\Delta RHT_1 4 ENT$	T, I					
PLAN_FIRST	1					
ABUT-2 2 ENT	T					
PLAN=FIRST	•					
ABUT-2 3 ENT	1-6 1					
ABUT=3, 2, ENT	I = 35.4					
ARIIT-3 3 ENT	T_4 1					
ABUT=3.4 FNT	· , . T					
PI AN-FIRST	•					
ARIT-4 2 FNT	1-5 4					
ARUT-4 3 FNT	I_15 1					
ARIIT-4 4 FNT						
PI AN_FIRST	•					

 \sim

Figure 3.5 - Continued.

ABUT=5,1,ENTI=35,3 ABUT=5,2,ENTI=11,4 ABUT=5,3,ENTI=14,1 ABUT=6,2,ENTI PLAN=FIRST ABUT=6,3,ENTI=7,1 ABUT=6,4,ENTI=8,2 ABUT=7,2,ENTI PLAN=FIRST ABUT=7,3,ENTI=20,1 ABUT=7,4,ENTI=9,2 ABUT=8,1,ENTI=35,1 ABUT=8, 3, ENTI=9, 1 ABUT=8,4,ENTI=12,2 ABUT=9, 3, ENTI=21, 1 ABUT=9,4,ENTI=13,2 ABUT=10,2,ENTI=12,4 ABUT=10,3,ENTI=11,1 ABUT=10,4,ENTI=35,2 ABUT=11,2,ENTI=13,4=44,1 ABUT=11, 3, ENTI=29, 1 ABUT=12, 3, ENTI=13, 1 ABUT=13,3,ENTI=26,1 ABUT=14,2,ENTI=29,4=43,1 ABUT=14, 3, ENTI=16, 1 ABUT=14,4,ENTI=15,2 ABUT=15,3,ENTI=17,1 ABUT=15,4,ENTI PLAN=FIRST ABUT=16,2,ENTI=31,4=55,4 ABUT=16,3,ENTI=18,1 ABUT=16,4,ENTI=17,2 ABUT=17, 3, ENTI=19, 1 ABUT=17,4,ENTI PLAN=FIRST ABUT=18,2,ENTI=32,4=56,4 ABUT=18,3,ENTI=38,3=51,1 ABUT=18,4,ENTI=19,2 ABUT=19, 3, ENTI=39, 3=52, 1 ABUT=19,4,ENTI PLAN=FIRST ABUT=20,2,ENTI PLAN=FIRST ABUT=20,3,ENTI=22,1 ABUT=20, 4, ENTI=21, 2 ABUT=21,3,ENTI=23,1 ABUT=21, 4, ENTI=26, 2 ABUT=22,2,ENTI PLAN=FIRST

2

ā

```
ABUT=22, 3, ENTI=24, 1
  ABUT=22,4,ENTI=23,2
 ABUT=23, 3, ENTI=25, 1
 ABUT=23,4,ENTI=27,2
ABUT=24,2,ENTI
 PLAN=FIRST
 ABUT=24, 3, ENTI=36, 1=46, 1
 ABUT=24,4,ENTI=25,2
 ABUT=25, 3, ENTI=37, 1=47, 1
 ABUT=25, 4, ENTI=28, 2
 ABUT=26, 3, ENTI=27, 1
 ABUT=26, 4, ENTI=29, 2=58, 4
 ABUT=27, 3, ENTI=28, 1
 ABUT=27, 4, ENTI=33, 2=59, 4
 ABUT=28, 3, ENTI=40, 4=48, 1
 ABUT=28,4,ENTI=34,2=60,4
 ABUT=29, 3, ENTI=30,1
 ABUT=30,2,ENTI=33,1
 ABUT=30,4,ENTI=31,1
 ABUT=31,2,ENTI=33,4=45,1
 ABUT=31, 3, ENTI=32, 1
 ABUT=32, 2, ENTI=34, 4=53, 4
 ABUT=32, 3, ENTI=42, 4=50,1
 ABUT=33, 3, ENTI=34, 1
ABUT=34, 3, ENTI=41, 4=49, 1
ABUT=36, 2, ENTI=37, 4
ABUT=36, 3, ENTI=39, 1
ABUT=36,4,ENTI
PLAN=FIRST
ABUT=37,2,ENTI=40,1
ABUT=37,3,ENTI=38,1
ABUT=38,2,ENTI=42,3
ABUT=38, 4, ENTI=39, 2
ABUT=39,4,ENTI
PLAN=FIRST
ABUT=40,3,ENTI=41,1
ABUT=41, 3, ENTI=42, 1
ABUT=43,2,ENTI=55,1
ABUT=44,2,ENTI=58,1
ABUT=45,2,ENTI=53,1
ABUT=46,2,ENTI=47,4
ABUT=46,4,ENTI
PLAN=FIRST
ABUT=47,2,ENTI=48,4
ABUT=48,2,ENTI=49,4=61,4
ABUT=49,2,ENTI=50,4=54,4
ABUT=50, 2, ENTI=51, 4=57, 4
```

Figure 3.5 - Continued.

ABUT=51,2,ENTI=52,4 ABUT=52,2,ENTI PLAN=FIRST ABUT=53, 3, ENTI=54, 1 ABUT=55, 3, ENTI=56, 1 ABUT=56,3,ENTI=57,1 ABUT=58, 3, ENTI=59, 1 ABUT=59, 3, ENTI=60, 1 ABUT=60, 3, ENTI=61, 1 BEGIN FLOW PROPERTIES DATA SURFACE FLOW PROPERTIES =ALPHA.2 SOLUTIONS = 1POINTS = CENTER SURFACE SELECTION = UPPER, UPLO PRINTOUT = ALLDATA BASE = ALLFORCES AND MOMENTS SOLUTIONS = 1, 2 CASE = ALL-NETWORKS SURFACE SELECTION = LOUP BEGIN PRINT PLOT DATA GEOMETRY DATA POINT DATA CONFIGURATION DATA END PROBLEM DEFINITION

Figure 3.5 - Concluded.

. . .

i

A MARINE N. 11 11

ź

-	a	=	0°	α	= 2° ::
	PAN AIR	:	PILOT CODE	PAN AIR	: PILOT CODE :
: configuration FX FY FZ wing FZ canard FZ tail FZ base FX	1.282 .703 -29.864 .629 119 080 .011		1.297 .694 -28.961 .616 129 071	1.206 15.233 -352.689 3.864 .425 .446 .014	1.228 15.435 -356.475 3.879 .446 .474 .009

Note: coefficients are for reference axis system, second-order pressure formula, and unit reference parameters.

Figure 3.6 - Comparison of PAN AIR and Pilot Code forces and moments.

3–29

4. THIN DELTA WING

Purpose

The purpose of this case is to validate several basic PAN AIR capabilities for a flow which exhibits large pressure gradients and, therefore, is a flow for which errors in panel influence coefficients are likely to be evident.

Configuration, Flow, and Modeling

Two separate cases are discussed. In both cases, the wing is thin, planar, and at .573° angle of attack. In the first case, the geometry and flow are symmetric and the wing sweep angle is 60°. In the second case, there is a large angle of sideslip modeled by paneling the wing with an asymmetric geometry having sweep angles of 35° and 65° for the left and right leading edges, respectively. The paneling of the wings is illustrated in figures 4.1 and 4.2. In both cases, the Mach number is 1.414.

Conical flow theory (e.g., Jones and Cohen, reference 4.1, Cases 6 and 8 of Table A,13a) can be used to predict the pressure on these wing surfaces. In either case the pressure is constant on any line emanating from the apex of the wing. In the symmetric case, the leading edges are subsonic, and, thus, the pressure distribution on any line with constant x_0 or y_0 coordinate is a smooth function that approaches infinity at the leading edge of the wing. In the yawed case, the left leading edge of the wing is supersonic and the right leading edge is subsonic. As a result, the pressure on a line of constant x_0 is constant from the supersonic edge to the intersection with the left Mach line from the apex. At the intersection a discontinuity in the slope of the pressure occurs. Furthermore, the pressure approaches infinity as the subsonic leading edge is approached.

The boundary conditions imposed are the standard of zero normal flow on a thin surface (class 1, subclass 3). A wake is attached to the trailing edge of each wing to prevent the program from forcing the doublet strength to zero there.

Input

<u>Symmetric Delta Wing.</u> The input for this case is shown in figure 4.3. The input geometry corresponds to the M and N directions shown in figure 4.1. As a result of the ordering of the input points, the wing network normal is in the $-z_0$ direction. The compressibility direction (defined by CALPHA) equals the direction of the uniform onset flow (defined by ALPHA).

4-1

Record N3 following the wing geometry tells PAN AIR to save the velocity influence matrices so that they will be available for using the VIC-LAMBDA method of computing surface velocities, pressures, forces, and moment. Records SF6 and FM13 tell PAN AIR to actually use the VIC-LAMBDA method. The VIC-LAMBDA method generally gives more accurate results compared to the BOUNDARY-CONDITION method.

An edge force calculation is requested (record FM9), but, since the panelling in the direction nominally perpendicular to the leading edge is not uniform, cosine, or semicosine (See Appendix 0 of the theory manual for version 1.1 or later), the edge forces will not be accurate.

Yawed Delta Wing. The input data is listed in figure 4.4. The M and N directions are shown in figure 4.2. Thus the network normal vector is in the $+z_0$ direction. The angle of attack for the compressibility direction is set by default to zero.

An edge force calculation is requested (record FM9), but, since the panelling in the direction nominally perpendicular to the leading edge is not uniform, cosine, or semicosine (See Appendix 0 of the theory manual for version 1.1 or later), the edge forces will not be accurate.

Results and Discussion

<u>Symmetric Delta Wing</u>. Figure 4.5 compares second order pressure coefficients predicted by both the PAN AIR pilot code and by PAN AIR for two columns of panel center control points (a column of points runs in the M direction). The first column is essentially oriented in the x_0 direction, so location is defined by percent chord, while the second column is essentially in the y_0 direction, so location is defined by the parameter y_0/s , where s is the semispan.

The delta wing in supersonic flow puts PAN AIR to a fairly stringent The theoretical pressures are infinite on the subsonic leading edge of test. the wing and are constant on the x_0 axis. Therefore the pressure changes very rapidly near the intersection of these two lines (i.e., near the apex of the wing). Thus in the case of the symmetric delta wing the pressure along the first column of panel center control points should be a function that has rapidly varying value and slope, that starts off infinitely large, and that almost immediately settles down to an approximately constant value. Figure 4.5 shows both PAN AIR and its pilot code generally predicting this type of However, it is apparent from ref. 4.1 that the pressure behavior. distribution along column 1 ought to be a monotonic function of percent chord. This feature is not displayed in figure 4.5(a), and, consequently, there is some inaccuracy. This inaccuracy is most likely occuring on at least the first four panels from the apex.

З

Yawed Delta Wing. Figure 4.6 compares pilot code results, PAN AIR results, and theoretical results from Jones and Cohen, for the yawed wing. Pressure is plotted as a function of span location y_0/s , where $y_0/s = -1$ corresponds to the supersonic leading edge, and $y_0/s = 0$ corresponds to the x_0 axis. The PAN AIR values of pressure coefficient are essentially indistinguishable from the pilot code values, and the results from both codes agree well with the theoretical results.

REFERENCES

4.1

Jones, Robert T.; and Cohen, Doris: High Speed Wing Theory. Volume 6 of Princeton Aeronautical Paperbacks. Princeton University Press, 1960.

a,

Figure 4.1 - Paneling of symmetric delta wing

4

U

```
// PAN AIR CASE MANUAL CASE 4 (FIRST MODEL)
BEGIN GLOBAL DATA /G1
// DEFINE PROBLEM ID.
PID = SYMMETRIC THIN DELTA WING
// DEFINE USER ID.
UID = PANAIR-USER IDENTIFICATION
// CONFIGURATION AND FLOW ARE SYMMETRIC ABOUT THE Y=O PLANE.
CONFIGURATION = FIRST, 0., 1., 0., 0., 0., 0., SYMMETRIC-FLOW
                                                                  /G4-DEFAULT
// DEFINE MACH NUMBER AND COMPRESSIBILITY DIRECTION
MACH = 1.414 $CALPHA = .573 $CBETA = 0.
// DEFINE ONSET FLOW FOR ONE SOLUTION
                                             /G5
// FOR THIS SOLUTION, ONSET FLOW IS UNIFORM, HAS UNIT MAGNITUDE AND IS
// IN COMPRESSIBILITY DIRECTION
ALPHA = .573
               /G6.1
// DEFINE SOLUTION ID.
SID = DELTA-1
                /G6.2
// SPECIFY GLOBAL DEFAULTS FOR FLOW PROPERTIES CALCULATIONS.
SURFACE SELECTION = UPL0 /G8
PRESSURE COEFFICIENT RULES = LINEAR, SECOND-ORDER /G12
// OBTAIN ALL AVAILABLE CHECKOUT DATA.
CHECKOUT PRINTS = ALL /G17
BEGIN NETWORK DATA
                     /N1
// GIVE NAME AND SIZE OF FIRST NETWORK.
NETWORK = WING, 11, 11, NEW
                            /N2A
// SPECIFY GEOMETRY.
  0.000000
            0.000000
                       0.000000
                                  .010000
                                            0.000000
                                                      0.000000
   .040000
            0.000000
                       0.000000
                                  .090000
                                            0.000000
                                                      0.000000
   .160000
            0.000000
                       0.000000
                                  .250000
                                            0.000000
                                                      0.000000
   .360000
            0.000000
                       0.000000
                                   .490000
                                            0.000000
                                                      0.000000
   .640000
            0.000000
                       0.000000
                                   .810000
                                            0.000000
                                                      0.000000
  1.000000
            0.000000
                       0.000000
   .010000
             .005773
                       0.000000
                                  .019900
                                             .005715
                                                      0.000000
             .005542
   .049600
                       0.000000
                                  .099100
                                             .005253
                                                      0.000000
   .168400
             .004849
                       0.000000
                                  .257500
                                             .004330
                                                      0.000000
   .366400
             .003695
                       0.000000
                                  .495100
                                             .002944
                                                      0.000000
   .643600
             .002078
                       0.000000
                                  .811900
                                             .001097
                                                      0.000000
  1.000000
            0.000000
                       0.000000
   .040000
             .023092
                       0.000000
                                  .049600
                                             .022861
                                                      0.000000
   .078400
             .022168
                       0.000000
                                  .126400
                                             .021014
                                                      0.000000
   .193600
             .019397
                       0.000000
                                  .280000
                                             .017319
                                                      0.000000
   .385600
             .014779
                       0.000000
                                  .510400
                                             .011777
                                                      0.000000
   .654400
             .008313
                       0.000000
                                  .817600
                                             .004387
                                                      0.000000
 1.000000
            0.000000
                       0.000000
   .090000
             .051957
                       0.000000
                                  .099100
                                             .051437
                                                      0.000000
   .126400
             .049879
                       0.000000
                                  .171900
                                             .047281
                                                      0.000000
   .235600 .043644
                       0.000000
                                  .317500
                                             .038968
                                                      0.000000
   .417600
             .033252
                      0.000000
                                  .535900
                                             .026498
                                                      0.000000
   .672400
             .018705
                       0.000000
                                  .827100
                                             .009872
                                                      0.000000
 1.000000
            0.000000
                      0.000000
```

Figure 4.3 – Input for test case 4A.

4-7

	.160000	.092368	0.000000	.168400	.091444	0.000000
	.193600	.088673	0.000000	.235600	.084055	0.000000
	.294400	.077589	0.000000	.370000	.069276	0.000000
	.462400	.059116	0.000000	.571600	.047108	0.000000
	.697600	.033252	0.000000	.840400	.017550	0.000000
	1.000000	0.00000	0.000000			
	.250000	.144325	0.000000	.257500	.142882	0.000000
	.280000	.138552	0.000000	.317500	.131336	0.000000
	.370000	.121233	0.000000	.437500	.108244	0.000000
	.520000	.092368	0.000000	.617500	.073606	0.000000
	.730000	.051957	0.000000	.857500	.027422	0.000000
	1.000000	0.000000	0.000000			
	.360000	.207828	0.000000	.366400	.205750	0.000000
	.385600	.199515	0.000000	.417600	.189123	0.000000
	.462400	.174576	0.000000	.520000	.155871	0.000000
	.590400	.133010	0.000000	.673600	.105992	0.000000
	.769600	.074818	0.000000	.878400	.039487	0.000000
	1.000000	0.00000	0.00000			
	.490000	.282877	0.00000	.495100	.280048	0.000000
	.510400	.271562	0.000000	.535900	.257418	0.000000
	.571600	.237617	0.000000	.617500	.212158	0.000000
	.673600	.181041	0.000000	.739900	.144267	0.000000
	.816400	.101836	0.000000	.903100	.053747	0.000000
	1.000000	0.000000	0.000000			
	.640000	.369472	0.00000	.643600	.365777	0.000000
	.654400	.354693	0.000000	.672400	.336220	0.00000
	.697600	.310356	0.00000	.730000	.277104	0.000000
	.769600	.236462	0.000000	.816400	.188431	0.000000
	.870400	.133010	0.000000	.931600	.070200	0.00000
	1.000000	0.000000	0.00000			
	.810000	.467613	0.00000	.811900	.462937	0.00000
	.817600	.448908	0.00000	.827100	.425528	0.000000
	.840400	.392795	0.000000	.857500	.350710	0.000000
	.878400	.299272	0.000000	.903100	.238483	0.000000
	.931600	.168341	0.00000	.963900	.088846	0.000000
	1.000000	0.000000	0.000000			
	1.000000	.577300	0.000000	1.000000	.5/152/	0.000000
	1.000000	.554208	0.00000	1.000000	.525343	0.000000
	1.000000	.484932	0.000000	1.000000	.432975	0.000000
	1.000000	.369472	0.000000	1.000000	.294423	0.000000
	1.000000	.207828	0.00000	1.000000	.109687	0.000000
	1.000000	0.000000	0.000000			
1	/ NORMAL \	VECTOR POIN	TS DOWNWAR	D (-Z DIRE	CTION)	
Ļ	/ NETWORK	EDGE 1-LEA	DING EDGE			
ļ	/ NETWORK	EDGE 2-TRA	ILING EDGE	_		
ļ	/ NETWORK	EDGE 3-COL	LAPSED EDG	E		
1	/ NETWORK	LDGE 4-INB	OARD EDGE	IN PLANE O	FSYMMETRY	
						<i>x</i> =

Figure 4.3 - Continued.

 $\mathbf{\nabla}$

4--8

Contraction of the local sector of the local s

<pre>// SURFACE (THIS IS A CLASS 1 B.C.) BOUN = 1,3 /N9 STORE VIC MATRIX /N3 // DEFINE WAKE NETWORK NETWORK = WAKE,2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 1.000000 .571527 0.000000 2.000000 .554208 0.000000 2.000000 .554208 0.000000 2.000000 .525343 0.000000 2.000000 .525343 0.000000 1.000000 .484932 0.000000 2.000000 .484932 0.000000 1.000000 .484932 0.000000 2.000000 .432975 0.000000 2.000000 .432975 0.000000 2.000000 .369472 0.000000 1.000000 .369472 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .20423 0.000000 2.000000 .294423 0.000000 1.000000 .20488 0.000000 2.000000 .294423 0.000000 1.000000 .20488 0.000000 2.000000 .294423 0.000000 1.000000 .20488 0.000000 1.000000 .20488 0.000000 1.000000 .20488 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .20488 0.000000 1.000000 .20488 0.000000 1.000000 .20488 0.000000 1.000000 .20488 0.000000 1.00000 .200000 0.000000 2.00000 .200000 0.000000 2.00000 .200000 0.000000 2.00000 .200000 0.000000 2.00000 .200000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.00000 0.000000 2.000000 0.000000 2.000000 0.000000 2.000000 0.000000 2.000000 0.000000 2.000000 0.0</pre>	// SURFACE (THIS IS A CLASS 1 B.C.) BOUN = 1, 3 /N9 STORE VIC MATRIX /N3 // DEFINE WAKE NETWORK NETWORK = WAKE, 2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 1.000000 .571527 0.000000 2.000000 .554208 0.000000 2.000000 .554208 0.000000 2.000000 .525343 0.000000 1.000000 .484932 0.000000 2.000000 .484932 0.000000 1.000000 .482975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 1.000000 0.000000 0.000000 2.000000 0.00000000 0.00000000	// SPECIFY ZERO TOTAL NORMAL MASS FLUX BOUNDARY CONDITION FOR THIN
BOUN = 1.3 /N9 STORE VIC MATRIX /N3 // DEFINE WAKE NETWORK NETWORK = WAKE,2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 2.000000 .571527 0.000000 1.000000 .554208 0.000000 2.000000 .554208 0.000000 1.000000 .525343 0.000000 2.000000 .525343 0.000000 1.000000 .484932 0.000000 2.000000 .484932 0.000000 1.000000 .432975 0.000000 1.000000 .432975 0.000000 2.000000 .369472 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000	BOUN = 1,3 /N9 STORE VIC MATRIX /N3 // DEFINE WAKE NETWORK NETWORK = WAKE,2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 1.000000 .554208 0.000000 2.000000 .554208 0.000000 2.000000 .525343 0.000000 1.000000 .484932 0.000000 1.000000 .484932 0.000000 2.000000 .432975 0.000000 1.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.0000000000000000000000000000	// SURFACE (THIS IS A CLASS 1 B.C.)
STORE VIC MATRIX /N3 // DEFINE WAKE NETWORK NETWORK = WAKE,2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 2.000000 .571527 0.000000 2.000000 .554208 0.000000 2.000000 .525343 0.000000 1.000000 .525343 0.000000 2.000000 .484932 0.000000 1.000000 .484932 0.000000 2.000000 .482975 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 0.000000 0.000000 2.0000000 0.000000000000000000000000000	STORE VIC MATRIX /N3 // DEFINE WAKE NETWORK NETWORK = WAKE, 2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 1.000000 .554208 0.000000 1.000000 .554208 0.000000 2.000000 .525343 0.000000 1.000000 .525343 0.000000 1.000000 .484932 0.000000 2.000000 .484932 0.000000 2.000000 .432975 0.000000 1.000000 .432975 0.000000 1.000000 .369472 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 .109687 0.000000 1.00000 0.000000 0.000000 2.000000 .109687 0.000000 1.00000 0.000000 0.000000 2.000000 .109687 0.000000 1.00000 0.000000 0.000000 2.00000 1.09687 0.000000 2.00000 1.09687 0.000000 1.00000 0.000000 0.000000 2.00000 1.09687 0.000000 1.00000 0.000000 0.000000 2.00000 1.00000 0.00000 0.000000 2.00000 1.00000 0.000000 2.00000 1.00000 0.000000 2.00000 1.00000 0.000000 2.00000 1.00000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.00000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.00000 0.000000 2.00000 0.00000 0.000000 2.00000 0.00000 0.000000 2.00000 0.000000 0.000000 2.00000 0.00000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.00000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.000000 0.00000 0.000000 2.00000 0.000000 0.000000 2.00000 0.00000	BOUN = 1,3 /N9
<pre>// DEFINE WAKE NETWORK NETWORK = WAKE,2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 1.000000 .571527 0.000000 2.000000 .554208 0.000000 2.000000 .525343 0.000000 1.000000 .484932 0.000000 2.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .29482 0.000000 1.000000 .297828 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 .100000 .000000 0.000000 2.000000 .000000 .000000 .000000 2.000000 .000000 .000000 .000000 2.000000 .000000 .000000 .000000 2.000000 .000000 .000000 .000000 2.000000 .000000 .000000 .000000 .000000 .000000</pre>	<pre>// DEFINE WAKE NETWORK NETWORK = WAKE,2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 1.000000 .571527 0.000000 2.000000 .554208 0.000000 1.000000 .554208 0.000000 1.000000 .525343 0.000000 2.000000 .484932 0.000000 1.000000 .484932 0.000000 2.000000 .432975 0.000000 1.000000 .432975 0.000000 2.000000 .432972 0.000000 2.000000 .369472 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .29488 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .109687 0.000000 1.000000 .0000000 0.000000 2.000000 .109687 0.000000 1.000000 .0000000 0.000000 2.000000 .109687 0.000000 1.000000 .000000 0.000000 2.000000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 .109687 0.000000 2.000000 .000000 0.000000 2.000000 .0000000 0.000000 2.000000 .000000 0.000000 2.000000 .0000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.000000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.00000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.00000 2.00000 .000000 0.00000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.00000 2.00000 .000000 0.00000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.00000 .00000 0.00000 2.00000 .000000 0.000000 2.00000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 .000000 2.000000 .000000 .000000 2.000000 .000000 .0000000000</pre>	STORE VIC MATRIX /N3
NETWORK = WAKE,2,11,NEW /N2A 1.000000 .577300 0.000000 2.000000 .577300 0.000000 2.000000 .571527 0.000000 2.000000 .554208 0.000000 2.000000 .554208 0.000000 2.000000 .525343 0.000000 1.000000 .484932 0.000000 1.000000 .484932 0.000000 2.000000 .432975 0.000000 1.000000 .432975 0.000000 1.000000 .369472 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .29482 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.00000 0.000000 2.000000 0.00000 0.00000 2.000000 0.00000 0.000000 2.000000 0.00000 0.00000 0.000000 2.000000 0.000000 0.000000 2.00000	NETWORK = WAKE, 2,11, NEW /N2A 1.000000 .577300 0.000000 2.000000 .571527 0.000000 1.000000 .571527 0.000000 2.000000 .554208 0.000000 2.000000 .554208 0.000000 1.000000 .525343 0.000000 2.000000 .484932 0.000000 1.000000 .432975 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 1.000000 .369472 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .109687 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 1.000000 .000000 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 .000000 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .000000 .000000 2.0000000000000000000000 2.0000000000	// DEFINE WAKE NETWORK
1.000000 .577300 0.00000 2.00000 .577300 0.00000 1.00000 .571527 0.000000 2.00000 .571527 0.000000 2.00000 .554208 0.000000 2.00000 .525343 0.000000 2.00000 .484932 0.000000 1.00000 .484932 0.000000 2.00000 .432975 0.000000 1.00000 .432975 0.000000 2.00000 .369472 0.000000 1.00000 .369472 0.000000 1.00000 .294423 0.000000 2.00000 .294423 0.000000 1.00000 .207828 0.000000 1.00000 .207828 0.000000 1.00000 .109687 0.000000 2.00000 .109687 0.000000 1.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 1.00000 1.09687 0.000000 1.00000 0.000000 0.000000 1.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 1.09687 0.000000 1.00000 0.000000 0.000000 2.00000 0.00000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.00000 0.00000 2.00000 0.00000 0.000000 2.00000 0.00000 0.000000 2.00000 0.000000 0.000000 2.00000 0.00000 0.000000 2.00000 0.00000 0.00	1.000000 .577300 0.000000 2.000000 .571527 0.000000 2.000000 .571527 0.000000 2.000000 .554208 0.000000 2.000000 .554208 0.000000 2.000000 .525343 0.000000 2.000000 .484932 0.000000 2.000000 .484932 0.000000 2.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .369472 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .29482 0.000000 2.000000 .29482 0.000000 2.000000 .29482 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY USING	NETWORK = WAKE, 2, 11, NEW /N2A
2.000000 .577300 0.000000 1.000000 .571527 0.000000 2.000000 .571527 0.000000 1.000000 .554208 0.000000 1.000000 .525343 0.000000 1.000000 .525343 0.000000 1.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 2.000000 .369472 0.000000 1.000000 .369472 0.000000 1.000000 .294423 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .00687 0.000000 2.000000 .00687 0.000000 2.000000 .000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	2.000000 .577300 0.000000 1.000000 .571527 0.000000 2.000000 .571527 0.000000 2.000000 .554208 0.000000 1.000000 .525343 0.000000 2.000000 .484932 0.000000 1.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 2.000000 .369472 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SULUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	1.000000 .577300 0.000000
1.000000 .571527 0.000000 2.00000 .571527 0.000000 1.00000 .554208 0.000000 2.00000 .525343 0.000000 2.00000 .525343 0.000000 1.00000 .484932 0.000000 2.00000 .484932 0.000000 1.00000 .432975 0.000000 2.00000 .369472 0.000000 1.00000 .369472 0.000000 1.00000 .294423 0.000000 2.00000 .294423 0.000000 1.00000 .29488 0.000000 2.000000 .207828 0.000000 1.00000 .207828 0.000000 1.00000 .00687 0.000000 2.000000 .109687 0.000000 2.000000 .00687 0.000000 1.00000 0.000000 0.000000 2.000000 .000000 0.000000 1.00000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES DATA /FP1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	1.000000 .571527 0.000000 2.000000 .571527 0.000000 1.000000 .554208 0.000000 1.000000 .525343 0.000000 1.000000 .484932 0.000000 1.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .369472 0.000000 2.000000 .294423 0.000000 2.000000 .294423 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 SURFACE FLOW PROPERTIES PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SULTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	2.000000 .577300 0.000000
2.000000 .571527 0.000000 1.00000 .554208 0.000000 2.000000 .554208 0.000000 1.000000 .525343 0.000000 1.000000 .484932 0.000000 2.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .000000 .000000 2.000000 .000000 .000000 2.000000 .000000 .000000 2.000000 .000000 .000000 2.000000 .000000 .000000 2.000000 .000000 .000000 .0	2.00000 .571527 0.00000 1.00000 .554208 0.00000 2.00000 .525343 0.00000 2.00000 .525343 0.00000 1.00000 .484932 0.00000 1.00000 .484932 0.00000 1.00000 .432975 0.00000 2.00000 .432975 0.00000 1.00000 .369472 0.00000 1.00000 .294423 0.00000 2.00000 .294423 0.00000 1.00000 .294423 0.00000 1.00000 .294423 0.00000 1.00000 .294423 0.00000 1.00000 .207828 0.00000 1.00000 .109687 0.00000 2.00000 .109687 0.00000 1.00000 0.00000 0.00000 2.00000 0.00000 0.00000 2.00000 0.00000 0.00000 1.00000 0.00000 0.00000 2.00000 1.09687 0.00000 2.00000 0.00000 0.00000 2.00000 0.00000 0.00000 2.00000 0.00000 0.00000 2.00000 0.00000 0.00000 2.00000 1.09687 0.00000 2.00000 0.00000 0.000	1.000000 .571527 0.000000
1.000000 .554208 0.000000 2.000000 .554208 0.000000 2.000000 .525343 0.000000 2.000000 .484932 0.000000 1.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .369472 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 2.000000 .000000 0.000000 2.000000 .000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 .000000 0.000000 0.00000 .000000 0.00000 0.000000 .000000 0.00000 0.000000 .000000 0.000000 0.000000 .000000 0.0000000000	1.000000 .554208 0.000000 2.000000 .525343 0.000000 1.000000 .525343 0.000000 1.000000 .484932 0.000000 1.000000 .484932 0.000000 2.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .369472 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 .000000 0.000000 2.000000 0.000000 0.000000 BUUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	2.000000 .571527 0.000000
2.00000 .554208 0.000000 1.00000 .525343 0.000000 2.00000 .484932 0.000000 2.00000 .484932 0.000000 1.00000 .484932 0.000000 2.00000 .432975 0.000000 1.00000 .369472 0.000000 2.00000 .369472 0.000000 2.00000 .294423 0.000000 2.00000 .294423 0.000000 1.00000 .207828 0.000000 2.00000 .207828 0.000000 1.00000 .109687 0.000000 2.00000 .109687 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 80UN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES ATC CENTER AND EDGE CONTROL POINTS.	2.000000 .554208 0.000000 1.00000 .525343 0.000000 2.000000 .484932 0.000000 1.000000 .484932 0.000000 1.000000 .432975 0.000000 1.000000 .432975 0.000000 2.000000 .369472 0.000000 1.000000 .294423 0.000000 1.000000 .294423 0.000000 2.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE ARE ONLY DESIRES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	1.000000 .554208 0.000000
1.000000 .525343 0.000000 2.000000 .525343 0.000000 1.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	1.000000 .525343 0.00000 2.00000 .525343 0.00000 1.00000 .484932 0.00000 2.00000 .484932 0.00000 2.00000 .432975 0.00000 1.00000 .369472 0.00000 1.00000 .294423 0.00000 2.00000 .294423 0.00000 1.00000 .294423 0.00000 1.00000 .207828 0.00000 2.00000 .207828 0.00000 1.00000 .00687 0.00000 2.00000 .109687 0.00000 2.00000 .000000 0.00000 2.00000 0.00000 0.00000 80UN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES PRESSURE /SF1 // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOLT=ALL /SF10A PATA PROSE AUL /SF10A	2.000000 .554208 0.000000
2.000000 .525343 0.000000 1.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	2.000000 .525343 0.000000 1.000000 .484932 0.000000 2.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	1.000000 .525343 0.000000
1.000000 .484932 0.000000 2.00000 .484932 0.000000 1.00000 .432975 0.000000 1.00000 .369472 0.000000 2.00000 .369472 0.000000 1.00000 .294423 0.000000 2.00000 .294423 0.000000 1.00000 .207828 0.000000 1.00000 .109687 0.000000 1.00000 .109687 0.000000 1.00000 0.000000 0.000000 2.00000 0.000000 0.000000 2.00000 0.000000 0.000000 80UN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	1.000000 .484932 0.000000 2.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .369472 0.000000 2.000000 .369472 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BUGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	2.000000 .525343 0.000000
2.000000 .484932 0.000000 1.000000 .432975 0.000000 2.000000 .432975 0.000000 2.000000 .369472 0.000000 1.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 1.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	2.000000 .482975 0.000000 1.00000 .432975 0.000000 1.00000 .369472 0.000000 1.00000 .369472 0.000000 1.00000 .294423 0.000000 1.00000 .294423 0.000000 1.00000 .207828 0.000000 1.00000 .207828 0.000000 1.00000 .109687 0.000000 2.000000 .109687 0.000000 1.00000 0.000000 0.000000 2.000000 0.000000 0.000000 BUIN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	1.000000 .484932 0.000000
1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES DATA /FP1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	1.000000 .432975 0.000000 2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW FROME SURFACE AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	2.000000 .484932 0.000000
2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	2.000000 .432975 0.000000 1.000000 .369472 0.000000 2.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	1.000000 .432975 0.000000
1.000000 .369472 0.000000 2.000000 .294423 0.000000 2.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	1.000000 .369472 0.000000 2.000000 .294423 0.000000 2.00000 .294423 0.000000 1.000000 .207828 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A DATA PASE ALL (SF10A	2.000000 .432975 0.000000
2.000000 .3694/2 0.000000 1.00000 .294423 0.000000 2.00000 .294423 0.000000 1.00000 .207828 0.000000 2.00000 .109687 0.000000 2.00000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	2.000000 .3694/2 0.000000 1.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	1.000000 .369472 0.000000
1.000000 .294423 0.000000 2.00000 .294423 0.000000 1.00000 .207828 0.000000 2.00000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	1.000000 .294423 0.000000 2.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	2.000000 .3694/2 0.000000
2.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 0.000000 0.000000 800N = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	2.000000 .294423 0.000000 1.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	1.000000 .294423 0.000000
<pre>1.000000 .207828 0.000000 2.000000 .207828 0.000000 1.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.</pre>	<pre>1.000000 .207828 0.000000 2.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A</pre>	
1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	1.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	
2.000000 .109687 0.000000 2.000000 .109687 0.000000 1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	2.000000 .109687 0.000000 2.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	
1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	1.000000 0.000000 0.000000 2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	2.000000 109687 0.000000
2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	2.000000 0.000000 0.000000 BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	1,000000,0,000000,0,0000000
BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	BOUN = 1,4 /N9 // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	2,000000,0,000000,0,000000
<pre>// // BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.</pre>	<pre>// BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A DATA PASE ALL /SF10A</pre>	BOUN = 1.4 /N9
BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	11
SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	SURFACE FLOW PROPERTIES = PRESSURE /SF1 // PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	BEGIN FLOW PROPERTIES DATA /FP1
<pre>// PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.</pre>	<pre>// PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES). // RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A</pre>	SURFACE FLOW PROPERTIES = PRESSURF /SF1
<pre>// RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.</pre>	<pre>// RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION). NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A DATA PASE ALL /SF10A</pre>	// PRESSURES ARE ONLY DESIRED ON INPUT NETWORKS (NOT ON IMAGES)
NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	NETWORK-IMAGE = WING, INPUT, RETAIN /SF2-DEFAULT SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	// RETAIN PRESENT ORIENTATION (DO NOT USE REVERSE OPTION)
SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	SOLUTION = DELTA-1 /SF3-DEFAULT // COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	NETWORK-IMAGE = WING, INPUT, RETAIN /SE2-DEFAULT
// COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.	<pre>// COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS. POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A DATA PASE ALL (SF11A)</pre>	SOLUTION = DELTA-1 /SF3-DEFAULT
	POINTS = CENTER, EDGE /SF4A // COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A DATA BASE ALL /SF11A	// COMPUTE PRESSURES AT CENTER AND EDGE CONTROL POINTS.
PUINTS = UENTER, EDGE /SF4A	// COMPUTE VELOCITY USING VIC MATRIX. SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	POINTS = CENTER, EDGE /SF4A
// COMPUTE VELOCITY USING VIC MATRIX.	SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6 // PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A DATA BASE ALL /SF11A	// COMPUTE VELOCITY USING VIC MATRIX.
SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6	// PRINT ALL AVAILABLE ITEMS. PRINTOUT=ALL /SF10A	SELECTION OF VELOCITY COMP=VIC-LAMBDA /SF6
// PRINT ALL AVAILABLE ITEMS.	PRINTOUT=ALL /SF10A	// PRINT ALL AVAILABLE ITEMS.
PRINTOUT=ALL /SF10A		PRINTOUT=ALL /SF10A
HATA RASELALI /CETTA	DATA DASE=ALL /SFIIA	DATA BASE=ALL /SF11A

~_~

Figure 4.3 - Continued.

4–9

 Π FORCES AND MOMENTS /FM1 CASE = FORCES-AND-MOMENTS /FM7 NETWORK-IMAGE = WING, INPUT, 1ST, RETAIN EDGE FORCE CALCULATION = WING, 1 /FM9 /FM8 /FM13 SELE = VIC// OMIT RECORD FM21, THIS CASE NOT ADDED TO ACCUMULATION CASE BEGIN PRINT PLOT DATA /PP1 GEOMETRY DATA /PP2A NETWORKS = WING /PP2B-DEFAULT POINT DATA /PP3A NETWORKS-IMAGES = WING, INPUT /PP3D CONFIGURATION DATA /PP4A NETWORKS-IMAGES = WING, INPUT, COLSUM /PP4D END PROBLEM DEFINITION

Figure 4.3 - Concluded.

-

// PAN AIR CASE MANUAL CASE 4 (SECOND MODEL) Π YAWED DELTA WING // LEFT LEADING EDGE (-Y) SUPERSONIC, 25 DEGREE SWEEPBACK
// RIGHT LEADING EDGE (+Y) SUBSONIC, 55 DEGREE SWEEPBACK TO DUPLICATE (PILOT CODE) RESULTS OF FIG. 38 OF NASA CR-3062 Π // AND TO DUPLICATE RESULTS OF CONICAL FLOW // REF. JONES AND COHEN, TABLE A,13A-NUMBER 8 BEGIN GLOBAL DATA /G1 PID=CASE YDW, YAWED DELTA WING - M=1.414 UID=USER IDENTIFICATION CONFIGURATION = ASYMMETRIC-GEOMETRY /G4 MACH = 1.414/G5 ALPHA = .573/G6.1 SID = SOLN-1/G6.2 TOLE = .00005/G7 SURFACE SELECTION = UPPER UPLO /G8 PRESSURE COEF RULES = ISENTROPIC, LINEAR, SECOND-ORDER /G12 CHEC = DIP 1 2 3, DQG 1 4 5 6 /G17BEGIN NETWORK DATA /N1 NETWORK=WING,21,7,NEW /N2A 0.,0.,0. .09427 -.20217 .09427 -.16329 0.00000 0.00000 .09427 0.00000 .09427 -.13464 0.00000 -.11235 .09427 -.09427 0.00000 .09427 -.07910 0.00000 .09427 -.06601 0.00000 .09427 -.05443 0.00000 .09427 -.04396 0.00000 .09427 -.03431 0.00000 .09427 -.02526 0.00000 .09427 -.01662 0.00000 .09427 -.00825 0.00000 .09427 0.00000 0.00000 .09427 .09427 .00825 0.00000 .01662 0.00000 .09427 .02526 0.00000 .09427 .03431 0.00000 .09427 .04396 0.00000 .09427 .05443 0.00000 .09427 .06601 0.00000 0.00000 .18855 -.40434 -.32657 .18855 0.00000 .18855 -.26927 0.00000 .18855 -.22470 0.00000 .18855 -.18855 0.00000 .18855 -.15821 0.00000 .18855 -.13202 0.00000 .18855 -.10886 0.00000 .18855 -.08792 0.00000 .18855 -.06862 0.00000 .18855 -.05052 0.00000 .18855 -.03325 0.00000 .18855 -.01650 0.00000 0.00000 .18855 0.00000 .18855 .18855 .01650 0.00000 .03325 0.00000 .18855 .05052 0.00000 .18855 0.00000 .06862 0.00000 .18855 .08792 .18855 .10886 0.00000 .18855 .13202 0.00000

Figure 4.4 - Input for test case 4B

4-11

	.28282	60651	0.00000	.28282	48986	0.00000
	.28282	40391	0.00000	.28282	33705	0.00000
	.28282	28282	0.00000	.28282	23731	0.00000
	.28282	19803	0.00000	.28282	16329	0.00000
	.28282	13188	0.00000	.28282	10294	0.00000
	.28282	07578	0.00000	.28282	04987	0.00000
	.28282	02474	0.00000	.28282	0.00000	0.00000
	.28282	.02474	0.00000	.28282	.04987	0.00000
	.28282	.07578	0.00000	.28282	.10294	0.00000
	.28282	.13188	0.00000	.28282	.16329	0.00000
	.28282	.19803	0.00000			
	.37709	80867	0.00000	.37709	65314	0.00000
	.37709	53854	0.00000	.37709	44940	0.00000
	.37709	37709	0.00000	.37709	31642	0.00000
	.37709	26404	0.00000	.37709	21//1	0.00000
	.37709	17584	0.00000	.37709	13/25	0.00000
	.37709	10104	0.00000	.37709	06649	0.00000
	.37709	03299	0.00000	.37709	0.00000	0.00000
	.37709	.03299	0.00000	.3/709	.06649	0.00000
	.37709	.10104	0.00000	.37709	.13/25	0.00000
	.37709	.1/584	0.00000	.37709	.21//1	0.00000
	.37709	.26404	0.00000	47100	01640	0 00000
	.4/136	-1.01084	0.00000	.4/130	81043	0.00000
	.4/136	6/318	0.00000	.4/130	301/3	0.00000
	.4/130	4/130	0.00000	.4/130	39332	0.00000
	.4/130	33005	0.00000	.4/130	2/214	0.00000
	.4/130	21980	0.00000	.4/130	1/150	0.00000
	.4/130	12030	0.00000	.47130	0.00000	0.00000
	.4/130	04124	0.00000	.47130	0.00000	0.00000
	.4/130	.04124	0.00000	.47136	17156	0.00000
	.4/130	21020	0.00000	47136	27214	0,00000
	.4/130	.21900	0.00000	. 4/150	• ८ / ८ म न	0.00000
	.4/130	1 21201	0.00000	56564	97971	0 00000
	.50504	-1.21301 80781	0.00000	56564	- 67410	0.00000
	56564	00701	0.00000	56564	- 47463	0 00000
	56564	30606	0.00000	56564	- 32657	0.00000
	56564	- 26376	0.00000	56564	- 20587	0.00000
	56564	- 15156	0.00000	-56564	09974	0.00000
	56564	04949	0.00000	.56564	0.00000	0.00000
	56564	04949	0.00000	.56564	.09974	0.00000
	.56564	.15156	0.00000	.56564	.20587	0.00000
	-56564	.26376	0.00000	.56564	.32657	0.00000
	.56564	.39606	0.00000			
11	NORMAL	VECTOR POINT	S UPWARD	(+Z DIRECT	ION)	

Figure 4.4 - Continued.

4–12

į

÷.

// NETWORK	EDGE 1-LEF	T LEADING EDGE
// NETWORK	EDGE 2-TRA	ILING EDGE
// NETWORK	EDGE 3-RIG	HT LEADING EDGE
// NETWORK	EDGE 4-TRU	NCATED APEX OF WING
BOUNDARY CC	NDITION =	1, 3 /N9
// END OF D	ATA FOR NE	TWORK WING
NETWORK = W	AKE,2,21,N	EW /N2A
.56564	-1.21301	0.0000
1.56564	-1.21301	0.00000
.56564	97971	0.00000
1.56564	97971	0.00000
.56564	80781	0.00000
1.56564	80781	0.00000
.56564	67410	0.00000
1.56564	67410	0.0000
.56564	56564	0.00000
1.56564	56564	0.00000
.56564	47463	0.00000
1.56564	47463	0.00000
.56564	39606	0.00000
1.56564	39606	0.00000
.56564	32657	0.00000
1.56564	32657	0,00000
.56564	26376	0.00000
1.56564	26376	0.00000
.56564	20587	0,00000
1.56564	20587	0.00000
.56564	15156	0.00000
1.56564	15156	0,00000
.56564	09974	0.00000
1.56564	09974	0.00000
.56564	04949	0.00000
1.56564	04949	0.00000
.56564	0.0000	0.00000
1.56564	0.00000	0.00000
.56564	.04949	0.00000
1.56564	.04949	0.00000
.56564	.09974	0.00000
1.56564	.09974	0.00000
.56564	.15156	0.00000
1.56564	.15156	0.00000
.56564	.20587	0.00000
1.56564	.20587	0.00000
.56564	.26376	0.00000
1.56564	.26376	0.00000
.56564	.32657	0.00000
1.56564	.32657	0.00000
.56564	.39606	0.00000
1.56564	.39606	0.00000

U

Figure 4.4 - Continued.

// NORMAL VECTOR POINTS DOWNWARD (-Z DIRECTION) // NORMAL EDGE 1-LEADING EDGE // NORMAL EDGE 2-RIGHT EDGE // NORMAL EDGE 3-TRAILING EDGE // NORMAL EDGE 4-LEFT EDGE BOUN = 1,4 /N9 // END OF DATA FOR NETWORK WAKE 11 BEGIN FLOW PROPERTIES DATA /FP1 // SURFACE FLOW PROPERTIES CASE 1 SURFACE FLOW PROP=CASE--A // OMIT RECORD SF2, DEFAULT IS ALL NON-WAKE (I.E., WING) NETWORKS // OMIT RECORD SF3, DEFAULT IS ALL (I.E., FIRST) SOLUTION /SF4A-DEFAULT POINTS=CENTER PRINTOUT=ALL /SF10A /SF11A DATA BASE=ALL /FM1 FORCES AND MOMENTS // SET SR=0.01 FOR PRINTING ADDED SIGNIFICANT FIGURES REFERENCE PARAMETERS = SR .01 /FM2 CASE=FORCES-AND-MOMENTS /FM7 /FM8-DEFAULT NETWORKS-IMAGES=WING, RETAIN EDGE FORCE CALCULATION=WING, 3 /FM9 /FM12 SURFACE SELECTION=UPLO BEGIN PRINT PLOT DATA /PP1 GEOMETRY DATA /PP2A NETWORKS = WING / PP2D-DEFAULT POINT DATA /PP3A NETWORKS-IMAGES = WING /PP3D-DEFAULT CONFIGURATION DATA /PP4A NETWORKS-IMAGES = WING, COLSUM /PP4D-DEFAULT END PROBLEM DEFINITION

Figure 4.4 - Concluded.

. the second se

4-14

Ē

(a) Column 1 of panel center control points.

4-15

4-17

10.00

-

inie. v

5. NASA WING-BODY

Purpose

The purpose of this case is to illustrate the use of the two planes of symmetry option for a thick wing-body in supersonic flow, using zero perturbation potential boundary conditions.

Configuration, Flow, and Modeling

The configuration is described in ref. 5.1, and its the plan view is illustrated in figure 5.1. Only a quarter of the geometry needs to be defined, since the configuration has two planes of geometric symmetry. Four networks are used to define the configuration: one for the forebody; one for the midbody; one for the wing; and a wake network for the remainder of the body.

A schematic of the four input networks and the program-created 3rd image networks (see figure 7.11 in the PAN AIR User's Manual) is shown in figure 5.2. For the three fuselage networks the N direction is streamwise and the M direction points circumferentially, starting at the top of the fuselage. For the wing network the N direction is streamwise and the M direction is spanwise. Thus, for each network NxM points out into the physical flow and so the network's "upper" surfaces are wetted by the physical flow.

The flow is supersonic (M = 2.01) and the configuration is being analyzed at zero angles of attack and sideslip. The leading edge of the wing is supersonic and, thus, a disturbance propagates downstream across the wing on the Mach line emanating from the junction of the body with the leading edge of the wing, as shown in figure 5.1.

The panels of both the wing and the body are on the exact configuration surface. Class 1, subclass 1 boundary conditions for analyzing a thick configuration (i.e., zero internal perturbation potential and indirect specification of zero normal flow) are used.

Generally, a wake network would be required to prevent the doublet strength on the wing from going to zero at its trailing edge. In this nonlifting case, however, the doublet strength is known to equal zero (at the trailing edges of both the real network and its image across the x_0-y_0 plane), and, therefore, the wake may be omitted. A type DW1 wake network would be required if a non-zero angle of attack were imposed. The body wake is required, however, because the body doublet strength is not necessarily zero at the trailing edge.

5–1

Another network which is omitted is a network to seal off the tip of the wing. Experience has shown that when zero perturbation potential boundary conditions (class 1, subclass 1 or 2) are used, no significant changes in the solution on the wing occur (except for pressures very near the tip) when a tip network is omitted.

Input

The input is shown in figure 5.3. Record G4 specifies that there are two planes of configuration symmetry, both of which are planes of flow symmetry. Since the geometric edge matching records are not input, the "automatic abutment search" is relied upon to locate abutting networks. Finally, there is one case each for flow properties data and force and moment data.

Results and Discussion

Figure 5.4 compares upper surface wing pressures predicted by PAN AIR with pressures predicted by the PAN AIR pilot code (see INTRODUCTION for references) for the second row of wing panels (Note that in this case a streamwise sequence of panels form a row rather than a column). The existence of the disturbance crossing the wing insures that the pressure distribution on the wing surface is not smooth, and, consequently, software errors in certain portions of the code, if existent, would probably tend to produce results that differ significantly from pilot code results. Therefore, the closeness of these results is assumed to adequately verify these certain portions of PAN AIR. In particular, source and doublet potential influence coefficient calculation and source and doublet spline construction are assumed to be verified.

Figure 5.5 compares results predicted by the PAN AIR pilot code (figure 75 of reference 5.2) with experimental results from reference 5.1. The pilot code results in figure 5.5 were obtained with denser paneling than for the results in figure 5.4.

Ŧ

REFERENCES

- 5.1 Gapcynski, J. P.; and Landrum, E. J.: Tabulated Data from a Pressure-Distribution Investigation at Mach Number 2.01 of a 45° Sweptback-Wing Airplane Model at Combined Angles of Attack and Sideslip. NASA Memorandum 10-15-58L, 1958.
- 5.2 Ehlers, Edward F.; Epton, Michael A.; Johnson, Forrester T.; Magnus, Alfred E.; and Rubbert, Paul E.: A Higher Order Panel Method for Linearized Supersonic Flow. NASA CR-3062, May 1979.

Figure 5.1 - The wing/body of NASA Memo 10-15-58L with two
planes of symmetry

// PAN AIR	CASE MANUA	AL CASE 5			
BEGIN GLOBA	NL DATA /(31			
PID=NASA WI	NG-BODY W	ITH TWO PL	ANES OF SY	MMETRY	
UID=PANAIR					
CONF = FIRS	ST, SECOND,	0., 0., 1	., SYMM	/G4	
MACH = 2.01	. /65				
SID = SOL - 1	/G6.1				
ALPH = 0.	/G6.2				
SURF = UPPE	.R /G8				
PRES = ISEN	I, SECOND	/G12			
10LE = .000	1 2 2	DOC 1 0		1017	
UHEL = DIP,	1, 2, 3,	DQG, I, Z	, 4, 5, 6	/61/	
	ATA (1)				
BEGI NEIW D	AIA /NI		(110.4		
	UREBUDI,8,	II,NEW	/ NZA	0 000000	0 000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1 459750	0.000000	0.000000	0.000000	0.000000	0.000000
1.450750	171004	.390382	1.458/50	.088203	.386444
1.458/50	.1/1984	.35/128	1.458/50	.247140	.309904
1.458/50	.309904	.24/140	1.458/50	.35/128	.1/1984
1.458/50	.386444	.088203	1.458/50	.396382	0.000000
2.917500	0.000000	./30/99	2.917500	.103953	./18320
2.917500	.319685	.003833	2.917500	.459380	.5/6052
2.91/500	.5/0052	.459380	2.91/500	.003833	.319685
2.91/500	./18320	1 022640	2.91/500	./30/99	0.000000
4.370250	442707	1.022040	4.370230	.22/009	.99/001
4.376250	.443/0/	.921307	4.3/0200	.03/000	./99032
4.370250	.799032	.03/000	4.370230	.921307	.443707
5 835000	0.00000	1 255040	4.37020U	270272	1 222574
5 835000	544542	1 1 20752	5.835000	782505	081230
5 835000	001230	792505	5.835000	1 1 20752	544542
5 835000	1 223574	270273	5.835000	1 255040	0 00000
7.293750	0 000000	1 434896	7 293750	319294	1 398920
7 293750	622578	1 292797	7 293750	894643	1 121847
7 293750	1 121847	894643	7 293750	1 292797	622578
7 203750	1 308020	31020/	7 203750	1 /3/896	0.000000
8 752500	0 000000	1 562889	8 752500	347775	1 523704
8 752500	678112	1 408114	8 752500	974445	1 221015
8 752500	1 221915	974445	8 752500	1 408114	678112
8 752500	1 523704	347775	8 752500	1 562880	0 000000
10 211250	0 000000	1 630406	10 211250	364822	1 598390
10 211250	711350	1 477134	10 211250	1 022209	1 281809
10.211250	1.281809	1.022209	10 211250	1.477134	711350
				2 V V V 2 V T	

Figure 5.3 - Input for test case 5.

5–6

_						
10.211250	1.598390	.364822	10.211250	1.639496	0,000000	
11.670000	0.000000	1.665000	11.670000	.370497	1.623255	
11.670000	.722416	1.500113	11,670000	1.038111	1 301749	
11.670000	1.301749	1.038111	11.670000	1 500113	722416	
11.670000	1.623255	.370497	11.670000	1 665000	0 000000	
13.631250	0.00000	1.665000	13 631250	370497	1 623255	
13.631250	.722416	1 500113	13 631250	1 020111	1 201 740	
13.631250	1.301749	1 038111	13 631250	1 500112	722416	
13.631250	1.623255	370497	13 631250	1.500115	./22410	
15 592500	0.000000	1 665000	15.031250	1.000000	0.000000	
15.592500	722416	1 500112	15.592500	.3/049/	1.023255	
15 592500	1 301740	1 020111	15.592500	1.038111	1.301/49	
15 592500	1 623255	370/07	15.592500	1.500113	./22416	
BOIIN = OVE	P 1 1	.370497 . /NQ	15.592500	1.005000	0.00000	
	RONY 8 1	/113 1 NEU	1120			
15 592500		1 665000 1	/NZA	270407	1 000055	
15 502500	722416	1 500112 1		.3/049/	1.023255	
15 592500	1 201740		15.592500	1.038111	1.301/49	
15 502500	1.501/49	270407 1	15.592500	1.500113	./22416	
16 491500	1.023255	.370497 1	5.592500	1.665000	0.000000	
16 481500	722416	1.005000 1	6.481500	.3/049/	1.623255	
16 481500	1 201740		.6.481500	1.038111	1.301/49	
16 481500	1 622255		6.481500	1.500113	./22416	
17 370500	1.023235	.370497 1	0.4//034	1.661485	.108131	
17.370500	722416	1.005000 1	7.370500	.3/049/	1.623255	
17.370500	•/22410	1.500113 1	7.370500	1.038111	1.301749	
17.370500	1.301/49	1.038111 1	7.370500	1.500113	.722416	
10 250500	1.023255	.370497 1	7.363803	1.658519	.146765	
10.209000	722416	1.665000 1	8.259500	.3/0497	1.623255	
10.239300	./22410	1.500113 1	8.259500	1.038111	1.301749	
10.259500	1.301/49	1.038111 1	8.259500	1.500113	.722416	
10.259500	1.023255	.3/049/ 1	8.251225	1.656440	.168618	
19.140500	0.000000	1.665000 1	9.148500	.370497	1.623255	
19.140500	./22416	1.500113 1	9.148500	1.038111	1.301749	
19.148500	1.301/49	1.038111 1	9.148500	1.500113	.722416	
19.140500	1.023255	.3/049/ 1	9.139941	1.655490	.177704	
20.03/500	0.000000	1.665000 20	0.037500	.370497	1.623255	
20.037500	./22416	1.500113 20	0.037500	1.038111	1.301749	
20.03/500	1.301/49	1.038111 20	0.037500	1.500113	.722416	
20.03/500	1.623255	.370497 20	0.029968	1.655962	.173250	
20.926500	0.000000	1.665000 20	0.926500	.370497	1.623255	
20.926500	./22416	1.500113 20	0.926500	1.038111	1.301749	
20.926500	1.301749	1.038111 20	0.926500	1.500113	.722416	
20.926500	1.623255	.370497 20	0.921049	1.657891	.153701	
21.815500	0.000000	1.665000 21	1.815500	.370497	1.623255	
21.815500	.722416	1.500113 21	1.815500	1.038111	1.301749	
21.815500	1.301749	1.038111 21	L.815500	1.500113	.722416	
21.815500	1.623255	.370497 21	L.812323	1.660461	.122857	
22.704500	0.000000	1.665000 22	2.704500	.370497	1.623255	

 \sim

Figure 5.3 - Continued.

.

22 704500	722416	1.500113	22.704500	1.038111	1.301749
22 704500	1.301749	1.038111	22.704500	1.500113	.722416
22.704500	1 623255	.370497	22.703145	1.662861	.084380
22.704500	0.000000	1.665000	23.593500	.370497	1.623255
23.593500	722416	1 500113	23 593500	1.038111	1.301749
23.593500	1 2017/0	1 039111	23 593500	1 500113	.722416
23.593500	1.301745	270407	22 502100	1 664453	042674
23.593500	1.023233	1 665000	24 492500	370497	1 623255
24.482500	0.000000	1 500112	24.402500	1 038111	1 301749
24.482500	./22410	1.500113	24.402500	1 500113	722416
24.482500	1.301/49	1.038111	24.402000	1 665000	0.000000
24.482500	1.623255	.3/049/	24.402000	1.005000	0.000000
NEW = WING	i, 12, 11	, NEW /N	17 200461	2 125024	0 00000
15.592500	1.665000	0.000000	17.308401	5.130024	0.000000
18.989490	4.576/06	0.000000	20.601367	5.958314	0.000000
22.111277	7.252523	0.000000	23.488483	8.432986	0.000000
24.704950	9.475672	0.000000	25.735914	10.359355	0.000000
26.560388	11.066047	0.000000	27.161587	11.581360	0.000000
27.527272	11.894805	0.000000	27.650000	12.000000	0.000000
16.477634	1.661485	.108131	18.099406	3.135824	.096179
19.684377	4.576706	.084498	21.204146	5.958314	.073298
22.627775	7.252523	.062806	23.926284	8.432986	.053237
25.073239	9.475672	.044784	26.045291	10.359355	.037620
26 822651	11 066047	.031891	27.389496	11.581360	.027714
27 734285	11 894805	.025173	27.850000	12.000000	.024320
17 263203	1 658519	146765	18.890351	3,135824	.130514
20 370263	4 576706	114663	21,806925	5.958314	.099465
20.379203	7 252523	085227	24 364085	8,432986	.072242
25.1442/4	0 175672	060771	26.354667	10.359355	.051050
23.441520	11 066047	0// 3276	27 617405	11,581360	037607
27.084913	11 00/0047	034159	28 050000	12,000000	.033002
2/.941290	1 656440	169619	10 681296	3 135824	149924
18.251225	1.000440	131716	22 409704	5.958314	.114257
21.0/4149	4.570700	.131/10	24 901886	8 432986	082985
23.000/72	1.252523	.097902	24.001000	10 350355	058642
25.809816	9.4/50/2	.009009	20.004043	11 591360	043200
27.34/1/8	11.066047	.049/12	27.045515	12 00000	037910
28.148311	11.894805	.039239	20.20000	2 125020	157001
19.139941	1.655490	.1///04	20.4/2241	5.130024	120405
21.769035	4.5/6/06	.138804	23.012483	0 400014	.120403
24.177271	7.252523	.1031/1	25.23908/	8.432900	.007431
26.178105	9.475672	.0/3566	26.973420	10.359355	.001/90
27.609442	11.066047	.052387	28.073224	11.581360	.045525
28.355324	11.894805	.041351	28.450000	12.000000	.039950
20.029968	1.655962	.173250	21.263187	3.135824	.154037
22.463922	4.576706	.135329	23.615262	5.958314	.11/391
24.693769	7.252523	.100588	25.677488	8.432986	.085262
26.546393	9.475672	.071724	27.282796	10.359355	.060251
27.871706	11.066047	.051076	28.301133	11.581360	.044385
28.562337	11.894805	.040316	28.650000	12.000000	.038950

Figure 5.3 - Continued.

5–8

Ę

20.921049 1.657891 .15370	01 22.054132 3.135824 .136675
23.158808 4.576706 .12002	76 24.218041 5.958314 .104160
25.210268 7.252523 .0892	51 26.115289 8.432986 .075652
26.914682 9.475672 .0636	40 27.592172 10.359355 .053460
28.133969 11.066047 .04533	19 28.529043 11.581360 .039383
28.769350 11.894805 .03572	72 28.850000 12.000000 .034560
21.812323 1.660461 .1228	57 22.845077 3.135824 .109269
23.853694 4.576706 .09599	99 24.820820 5.958314 .083274
25.726766 7.252523 .0713	54 26.553090 8.432986 .060482
27.282970 9.475672 .05087	79 27.901549 10.359355 .042740
28.396233 11.066047 .03623	32 28.756952 11.581360 .031486
28.976363 11.894805 .02859	99 29.050000 12.000000 .027630
22.703145 1.662861 .08438	B0 23.636022 3.135824 .075061
24.548580 4.576706 .06594	45 25.423599 5.958314 .057204
26.243264 7.252523 .04901	16 26.990891 8.432986 .041547
27.651259 9.475672 .03495	51 28.210925 10.359355 .029360
28.658496 11.066047 .02488	89 28.984861 11.581360 .021629
29.183376 11.894805 .01964	46 29.250000 12.000000 .018980
23.593190 1.664453 .0426	74 24.426967 3.135824 .037965
25.243467 4.576706 .0333	55 26.026378 5.958314 .028933
26.759763 7.252523 .02479	92 27.428692 8.432986 .021014
28.019547 9.475672 .01767	78 28.520301 10.359355 .014850
28.920760 11.066047 .01258	89 29.212771 11.581360 .010940
29.390389 11.894805 .00993	37 29.450000 12.000000 .009600
24.482500 1.665000 0.00000	00 25.21/912 3.135824 0.000000
	JU 26.629157 5.958314 U.UUUUUUU
27.276261 7.252523 0.00000	JU 27.866493 8.432986 U.UUUUUU
28.38/836 9.4/56/2 0.00000	JU 28.829678 10.359355 U.UUUUUU
29.183023 11.066047 0.00000	JU 29.440680 11.581360 0.000000
29.597402 11.894805 0.00000	
// BODY NEEDS WAKE EVEN THOUG	GH ANGLE OF ATTACK IS ZERU
NEIWORK = BODY-WAKE, 2, 8, NEW	/NZA
24.4825 0. 1.665	34.4825 U. 1.665
24.4825 .3/049/ 1.623255	34.4825 .3/049/ 1.623255
24.4825 ./22416 1.500113	
	34.4825 1.038111 1.301/49
	34.4825 1.301/49 1.038111
24.4825 1.500113 ./22416	34.4825 1.5UU113 ./2241b
	34.4825 1.623255 .3/049/
24.4823 1.005 U.	34.4823 I.003 U.
DUUN = 1,4 / N9	
11	

-

.

-

Figure 5.3 - Continued

.

5-9

/FP1 BEGIN FLOW Π /SF1 SURF FLOW = PRESSURENETWORKS-IMAGES= FOREBODY, INPUT=MIDBODY, INPUT=WING, INPUT /SF2 POINT = CENTER/SF4A PRINT = ALL/SF10A /SF11A DATA BASE=ALL Π /FM1 FORCES AND MOMENTS AXIS = RCS/FM3 CASE = FM/FM7 NETWORKS-IMAGES= FOREBODY, INPUT=MIDBODY, INPUT=WING, INPUT /FM8 BEGIN PRINT PLOT DATA /PP1 GEOMETRY DATA /PP2A NETWORKS = FOREBODY, MIDBODY, WING /PP2B POINT DATA /PP3A NETWORKS-IMAGES =FOREBODY, INPUT =MIDBODY, INPUT =WING, INPUT /PP3D CONFIGURATION DATA /PP4A NETWORKS-IMAGES =FOREBODY, INPUT =MIDBODY, INPUT =WING, INPUT, COLSUM /PP4D END PROB DEF

Figure 5.3 - Concluded.

5-12

1

t ditt

6 THIN WING WITH DEFLECTED FLAP

Purpose

The purpose of this case is to test the ability of PAN AIR to analyze in subsonic flow an infinitely thin wing with deflected flap and with boundary conditions specified on the true deflected flap surface and to further test the specified flow and local onset flow options.

Configuration, Flow, and Modeling

The configuration plan view is illustrated in figure 6.1. The wing has zero thickness, and the flap is geometrically deflected. The choice of the exact flap deflection model for this PAN AIR case was based on the desire to test certain influence coefficient calculations done only when a nonplanar singularity surface is used.

The wing and flap are divided into six networks, as shown in figure 6.2, with standard thin surface impermeability boundary conditions imposed. The configuration also has eleven wake networks, the boundaries of which are shown as dotted lines in figure 6.2. There are three wakes emanating from the wing and flap, two filler wakes in each of the two gaps between wing and flap, and four additional wake networks emanating from the trailing edges of the filler wakes^{*}. All wake networks are defined to be type DW1 networks.

The Mach number is 0.6, and the angle of attack of the wing is 0°. The wing network is in the x_0-y_0 plane, and, therefore, any pressure distribution on the planar wing is a result of the 10° flap deflection.

*Editor's note: In the editor's opinion, the modelling would be more physically realistic if wake networks 10 and 12 were replaced by one type 2 wake network with its first corner point being at the intersection of networks 1, 2, 4 and 5. This is because the wake shed from the outboard side edge of network 4 would not roll under the wing. Also, networks 15 and 17 should be replaced by one type 2 wake network in a similar manner.

Input

From the order of input for the The input is shown in figure 6.3. geometry and from figure 6.2 it can be seen that the network normals for the wing and flap networks have negative z_0 components. All abutments are specified. The first abutment record, for instance, instructs the program All abutments are that edge 2 of network A1 abuts edge 4 of network A2. The abutments have been specified to decrease processing costs. Almost all options for surface flow property data are the defaults, except that the VIC method is used for the surface velocity and pressure computation because it is generally more accurate than the BOUNDARY-CONDITION method. There are three solutions. In solution 1, the actual geometrically deflected flap is analyzed. The last two solutions consist of a specified flow and a local onset flow, respectively, both of which are used to reset the flap to an undeflected state via boundary conditions only (i.e., the flap is still geometrically deflected), and both of which should result in zero singularity strengths for all networks since the angle of attack is zero (by default). These boundary conditions are input the same as the boundary conditions for models (b) and (c), respectively, in section 2 of this document.

Results and Conclusions

Figure 6.4 compares PAN AIR results for solution 1 with experiment (reference 6.1) and with a kernel function method capable of accurately predicting the logarithmic pressure coefficient singularity known to occur at the flap hingeline (reference 6.2). The figure compares the lifting pressure distribution at a spanwise station near the mid-span of the flap. The two theoretical methods agree quite well, except that PAN AIR deviates somewhat from the kernel function method at the panel closest to the leading edge and at the panel just ahead of the hingeline. Since PAN AIR forces the doublet strength to vary quadratically over any panel, it can not be expected to give accurate results at the panel closest to free network edges or surface slope discontinuities, where the doublet strength is not well approximated by a In other words, PAN AIR results do not usually converge guadratic curve. uniformly at free network edges or surface slope discontinuities. The effects of this nonuniform convergence on overall forces and moments or on local conditions at any given, fixed point can be ameliorated by increasing the panel density, but the doublet strength distribution (and, hence, the pressure distribution) on the panel closest to free network edges and surface slope discontinuities can always be expected to be in error.

PAN AIR predicted a lift coefficient of 0.176, while the kernel function method predicted 0.197 and the pilot code (see INTRODUCTION for references) predicted 0.177. The lower lifts of the panel methods are probably due to the fact that the lifting pressure is forced to zero at the side edges of the flaps, whereas the lifting pressure from the kernel function method is generally non-zero at these locations. In other words, the kernel function method treats the flap gaps as sealed, whereas, the panel methods treat the gaps as unsealed.

Neither theory agrees exceptionally well with the experimental data. This discrepancy is most likely due to viscous effects.

Figure 6.5 (a)-(d) compares PAN AIR results for solution 1 with pilot code results at spanwise stations near the edges of the flap. The pilot code modelling was identical to the PAN AIR modelling. The two codes agree very well except for some minor discrepancy just aft of the hingeline. There was, however, no significant discrepancy between PAN AIR and pilot code results at $y_0 = .4372$.

As expected, solutions 2 and 3 exhibit virtually null solutions.

REFERENCES

- 6.1 Hammond, Alexander D.; and Keffer, Barbara M.: The Effect at High Subsonic Speeds of a Flap-Type Aileron on the Chordwise Pressure Distribution Near Midsemispan of a Tapered 35° Sweptback Wing of Aspect Ratio 4 Having NACA 65A006 Airfoil Section. NACA RM L53C23, 1953.
- 6.2 Medan, Richard T.: Steady, Subsonic, Lifting Surface Theory for Wings with Swept, Partial Span, Trailing Edge Control Surfaces. NASA TN D-7251, April 1973.

Figure 6.1 - Illustration of wing with deflected flap

!

J

6-6

```
// PAN AIR CASE MANUAL CASE 6
// VALIDATION CASE, THIN WING WITH DEFLECTED FLAP, MACH=0.6
// CLASS 1 BOUNDARY CONDITIONS, EXCEPT CLASS 2 ON NETWORK A5
// SOLUTION 1 = ORIGINAL PROBLEM (EQUIV TO BOUN COND = 1. AVERAGE)
// SOLUTION 2 = SPECIFIED FLOW USED TO ELIMINATE FLAP DEFLECTION
// SOLUTION 3 = LOCAL ONSET FLOW USED TO ELIMINATE FLAP DEFLECTION
// SOLUTIONS 2 AND 3 SHOULD GIVE APPROXIMATELY NULL SOLUTIONS // FOR ALL NETWORKS IN X-Y PLANE
// NORMAL VECTOR POINTS DOWNWARD (-Z DIRECTION)
// NETWORK EDGE 1-LEADING EDGE
// NETWORK EDGE 2-OUTBOARD EDGE
// NETWORK EDGE 3-TRAILING EDGE
// NETWORK EDGE 4-INBOARD EDGE
BEGI GLOB DATA
                   /G1
PID=VALIDATION CASE, WING WITH DEFLECTED FLAP, M=0.6
UID=USER IDENTIFICATION
// OMIT RECORD G4, DEFAULT IS ONE PLANE OF CONFIGURATION AND FLOW SYMMETRY
MACH = 0.6
              /G5
// DEFINE 3 SOLUTIONS (WITH ALPHA=0)
SID = SOLN-1, SOLN-2, SOLN-3
                                          /G6
    TURN OFF AUTOMATIC ABUTMENT SEARCH, SINCE ALL ABUTMENTS ARE SPECIFIED
11
     IN THE GEOMETRIC EDGE MATCHING DATA GROUP
\Pi
TOLERANCE = -.0001 /G7
SURF = UPLO, AVERAGE /G8
SELE VELOCITY COMP = VIC-LAMBDA /G9
PRES = LINE SECO / G12
CHECKOUT PRINTS = DIP 1 2 3, DQG 1 2 4 5 6 /G17
\Pi
BEGI NETW DATA
                     /N1
NETW = A1, 6, 4
                     /N2A
  0.000000
            0.000000 0.000000
                                   .154500 0.000000
                                                       0.000000
   .307815
            0.000000 0.000000
                                   .404500 0.000000
                                                       0.000000
   .487875
            0.000000 0.000000
                                   .500000
                                            0.000000
                                                       0.000000
   .095350
              .125000
                       0.000000
                                   .242125
                                              .125000
                                                       0.000000
   .387774
              .125000 0.000000
                                   .479625
                                              .125000
                                                       0.000000
   .558831
              .125000
                       0.000000
                                   .570350
                                              .125000
                                                       0.000000
   .165146
              .216500
                       0.000000
                                   .306267
                                              .216500
                                                       0.000000
   .446304
              .216500
                       0.000000
                                   .534617
                                              .216500
                                                       0.00000
   .610771
              .216500
                       0.000000
                                   .621846
                                              .216500
                                                       0.000000
   .190700
              .250000
                       0.000000
                                   .329750
                                              .250000
                                                       0.000000
   .467734
              .250000
                       0.000000
                                   .554750
                                              .250000
                                                       0.000000
              .250000
   .629788
                       0.000000
                                   .640700
                                              .250000
                                                       0.000000
STORE VIC MATRIX /N3
// DEFINE GLOBAL (OVERALL) DEFAULT FOR BOUNDARY CONDITION RECORD
BOUN = OVER, 1, 3 / N9
```

Figure 6.3 - Input for test case 6.

NETW = A2.	6.7	/N2A			
190700	250000	0.000000	.329750	.250000	0.000000
467734	.250000	0.000000	.554750	.250000	0.000000
629788	.250,000	0.000000	.640700	.250000	0.000000
216247	283500	0.000000	.353227	.283500	0.000000
489156	283500	0.000000	.574877	283500	0.000000
6/18707	283500	0.000000	659547	283500	0.000000
286025	375000	0.000000	417350	.375000	0.000000
547668	375000	0.000000	629850	375000	0.000000
.047008	375000	0.000000	711025	375000	0.000000
201250	50000	0.000000	504950	500000	0.000000
627602	500000	0.000000	704950	50,0000	0,000000
.02/002	.500000	0.000000	781350	500000	0.000000
.//1000	.500000	0.000000	502550	625000	0.000000
.4/00/5	.020000	0.000000	790050	625000	0.000000
./0/530	.02000	0.000000	.760050	625000	0.000000
.842381	.020000	0.000000	.051075	716500	0.000000
.540453	./10500	0.000000	.000073	716500	0.000000
./00048	.716500	0.000000	.030023	716500	0.000000
.894503	./10500	0.000000	.903133	.710500	0.000000
.5/2000	.750000	0.000000	.080150	.750000	0.000000
./8/4/1	.750000	0.000000	.855150	.750000	0.000000
.913513	./50000	0.000000	.922000	./50000	0.000000
SIURE VIC M	AIRIX /NS	NOA			
NEIW = A3,	o, 4 /	NZA 000000	C 001 F0	750000	0 00000
.572000	.750000	0.000000	.080150	.750000	0.000000
./8/4/1	.750000	0.000000	.855150	.750000	0.000000
.913513	.750000	0.000000	.922000	.750000	0.000000
.597540	.783500	0.000000	.703020	.783500	0.000000
.808886	.783500	0.000000	.8/52/0	./83500	0.000000
.932515	.783500	0.000000	.940840	.783500	0.000000
.66/300	.875000	0.000000	./0//25	.875000	0.000000
.86/380	.875000	0.000000	.930225	.875000	0.000000
.984419	.875000	0.000000	.992300	.875000	0.000000
./62600	1.000000	0.000000	.855300	1.000000	0.000000
.94/289	1.000000	0.000000	1.005300	1.000000	0.000000
1.055325		0.000000	1.062600	1.000000	0.000000
STURE VIC M	AIRIX /N3				
NEW = A4,	b, 4 /	NZA	506105	0 000000	0.00000
.500000	0.000000	0.000000	.506125	0.000000	0.000000
.523875	0.000000	0.000000	.551500	0.000000	0.000000
.586375	0.000000	0.000000	.625000	0.000000	0.000000
.570350	.125000	0.000000	.5/6169	.125000	0.000000
.593031	.125000	0.000000	.619275	.125000	0.000000
.652406	.125000	0.000000	.689100	.125000	0.000000
.621846	.216500	0.00000	.62/441	.216500	0.000000
.643654	.216500	0.000000	.668886	.216500	0.000000

Figure 6.3 - Continued.

.700741	.216500	0.000000	.736021	.216500	0.00000
.640700	.250000	0.000000	.646213	.250000	0.000000
.662188	.250000	0.000000	.687050	.250000	0.00000
.718438	.250000	0.000000	.753200	.250000	0.000000
STORE VIC MA	TRIX /N3				
$NETW = A5, \ 6$	5,7 /	N2A			
// A5 IS THE	DEFLECTE	D FLAP NET	WORK		
.640700	.250000	0.000000	.646213	.250000	.000957
.662188	250000	.003730	.687050	.250000	.008046
.718438	.250000	.013495	.753200	.250000	019530
.659547	.283500	0.000000	.664978	.283500	.000943
.680715	.283500	.003675	.705207	.283500	.007927
.736127	.283500	.013294	.770372	.283500	.019239
.711025	.375000	0.000000	.716231	.375000	.000904
.731319	.375000	.003523	.754800	.375000	.007599
.784444	.375000	.012745	.817275	.375000	.018445
.781350	.500000	0.000000	.786250	.500000	.000851
.800450	.500000	.003316	.822550	.500000	.007152
.850450	.500000	.011996	.881350	.500000	.017360
.851675	.625000	0.000000	.856269	.625000	.000797
.869581	.625000	.003109	.890300	.625000	.006705
.916456	.625000	.011246	.945425	.625000	.016275
.903153	.716500	0.000000	.907522	.716500	.000759
.920185	.716500	.002957	.939893	.716500	.006378
.964773	.716500	.010697	.992328	.716500	.015481
.922000	.750000	0.000000	.926288	.750000	.000744
.938713	.750000	.002901	.958050	.750000	.006258
.982463	.750000	.010496	1.009500	.750000	.015190
STORE VIC MA	TRIX /N3				
BOUN = 2, 3	/N9				
// DEFINE SP	ECIFIED F	LOW AND LO	CAL ONSET F	LOW FOR NI	ETWORK A5
SPEC FLOW			/N	117A	
IEKM = 2			/ N	17B	
INPUT-IMAG	ES = INPU	I, 1SI	/ N	17C	
50L0 = 50	LN-2	1 7 00 5	/N	17D	
PUINIS =	ALL \$ +.	17025	/ N	17E,F	
LUCAL UNSET	FLOW		/N	18A	
IEKM = VXYZ		F 107	/ N	18B	
	$L_{N} = INPU$	1, 151	/ N	180	
SULU = SU			/N	18D	
PUINIS =	ALL 🄰 🤇) ., U., +. .	1736 /N	18E,F	

Figure 6.3 - Continued.

NETW = A6,	6,4 /	N2A			- 12-12	
.922000	.750000	0.000000	.926288	.750000	0.00000	
.938713	.750000	0.000000	.958050	.750000	0.000000	
.982463	.750000	0.000000	1.009500	.750000	0.000000	
.940840	.783500	0.000000	.945046	.783500	0.00000	
.957233	.783500	0.000000	.976200	.783500	0.000000	
1.000145	.783500	0.00000	1.026665	.783500	0.00000	
.992300	.875000	0.000000	.996281	.875000	0.000000	
1.007819	.875000	0.000000	1.025775	.875000	0.000000	
1.048444	.875000	0.000000	1.073550	.875000	0.000000	
1.062600	1.000000	0.000000	1.066275	1.000000	0.000000	
1.076925	1.000000	0.000000	1.093500	1.000000	0.000000	
1.114425	1.000000	0.00000	1.137600	1.000000	0.00000	
STORE VIC M	ATRIX /N3					
NETW = A7,	2,4 /	N2A				
// HORIZONT	AL WAKE NE	TWORK				
.625000	0.000000	0.000000	20.00000	0.000000	0.000000	
.689100	.125000	0.000000	20.00000	.125000	0.000000	
.736021	.216500	0.000000	20.00000	.216500	0.000000	
.753200	.250000	0.000000	20.00000	.250000	0.000000	
// DEFINE G	LOBAL (OVE	RALL) DEFA	ULT FOR BO	UNDARY CON	DITION REC	ORD
BOUN = OVER	, 1, 4					
NETW = $A8$,	2, / /	NZA				
// HORIZONT	AL WAKE NE	IWORK BEHI	ND DEFLECT	ED FLAP NE	IWURK A5	
.753200	.250000	.019530	20.00000	.250000	.019530	
.//03/2	.283500	.019239	20.00000	.283500	.019239	
.81/2/5	.375000	.018445	20.00000	.375000	.018445	
.881350	.500000	.01/360	20.00000	.500000	.01/360	
.945425	.625000	.016275	20.00000	.625000	.0162/5	
.992328	./16500	.015481	20.00000	./16500	.015481	
1.009500	./50000	.015190	20.00000	.750000	.015190	
NEW = A9,	2,4 /	NZA				
// HORIZONI	AL WAKE NE	IWURK		760000		
1.009500	.750000	0.000000	20.00000	.750000	0.000000	
1.026665	.783500	0.000000	20.00000	.783500	0.000000	
1.0/3550	.875000	0.000000	20.00000	.875000	0.000000	
1.13/600	1.000000	0.000000	20.00000	1.000000	0.000000	
NEW = AIU,	2,6 /	NZA				
// VERTICAL	WAKE NETW	UKK	750000	050000	0 000000	
.753200	.250000	0.000000	.753200	.250000	0.000000	
./18438	.250000	0.000000	.753200	.250000	.003090	
.08/050	.250000	0.000000	./53200	.250000	.005880	
.662188	.250000	0.000000	./53200	.250000	.008090	
.040213	.250000	0.000000	./53200	.250000	.009510	
.040/00	.250000		./53200	.250000	.010000	
NEW = AII,	2, 0 /	NZA				

Figure 6.3 - Continued.

		10010				
FADTOD	WAKE NEIN	WURK				
.040700	.250000	0.000000	.753200	.250000	.010000	
.040213	.250000	.000957	.753200	.250000	.010467	
.002188	.250000	.003/30	.753200	.250000	.011820	
.68/050	.250000	.008046	.753200	.250000	.013926	
./18438	.250000	.013495	.753200	.250000	.016585	
.753200	.250000	.019530	.753200	.250000	.019530	
NEW = A12,	2,6	/N2A				
// VERTICAL	WAKE NETV	NORK				
.753200	.250000	0.000000	20.00000	.250000	0.000000	
.753200	.250000	.003090	20.00000	.250000	.003090	
.753200	.250000	.005880	20.00000	.250000	.005880	
.753200	.250000	.008090	20.00000	.250000	.008090	
.753200	.250000	.009510	20,00000	250000	.009510	
.753200	.250000	.010000	20,00000	.250000	.010000	
NETW = A13,	2,6	/N2A				
// VERTICAL	WAKE NET	IORK				
.753200	.250000	.010000	20,00000	.250000	010000	
.753200	.250000	.010467	20,00000	.250000	010467	
.753200	.250000	.011820	20,00000	250,000	011820	
.753200	.250000	.013926	20,00000	250000	.011020	
.753200	.250,000	016585	20.00000	250000	.015520	
.753200	250000	019530	20.00000	250000	.010505	
NETW = A14.	2.6	'N2A	20.00000	.250000	.019550	
11 VEDTICAL						
II VERIIUAL	WAKE NEIW	URK				
// NETWORK	WAKE NETW A14 COORDI	NATES ARE	REVERSED (DELATIVE T	0 15 15	AND 417)
// NETWORK /	A14 COORDI	NATES ARE	REVERSED (RELATIVE TO	0 A15, A16	AND A17)
// NETWORK / .922000 .926288	•414 COORDI •750000	NATES ARE 0.000000	REVERSED (1.009500	RELATIVE TO .750000	0 A15, A16 .007600	AND A17)
// NETWORK / .922000 .926288 .938713	414 COORDI .750000 .750000 .750000	NATES ARE 0.000000 .000744	REVERSED (1.009500 1.009500	RELATIVE TO .750000 .750000	0 A15, A16 .007600 .007972	AND A17)
// NETWORK / .922000 .926288 .938713 .958050	WARE NETW A14 COORDI .750000 .750000 .750000 750000	NATES ARE 0.000000 .000744 .002901	REVERSED (1.009500 1.009500 1.009500	RELATIVE TO .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050	AND A17)
// NETWORK / .922000 .926288 .938713 .958050 982463	WARE NETW 414 COORDI .750000 .750000 .750000 .750000 .750000	NATES ARE 0.000000 .000744 .002901 .006258	REVERSED (1.009500 1.009500 1.009500 1.009500	RELATIVE TO .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727	AND A17)
// NETWORK / .922000 .926288 .938713 .958050 .982463	WARE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 .750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845	AND A17)
// NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW - 415	WARE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 .750000 .750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE T .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 .750000 2, 6 /	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE T .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL 922000	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2, 6 / WAKE NETW 750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO 750000 750000 750000 750000 750000 750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 926288	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2, 6 / WAKE NETW .750000 2, 50000 2, 6 /	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.000000 0.000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 938713	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2, 6 / WAKE NETW .750000 .750000 2, 6 /	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.000000 0.000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO 750000 750000 750000 750000 750000 750000 750000 750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2, 6 / WAKE NETW .750000 .750000 .750000 .750000 .750000 .750000 .750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.000000 0.000000 0.000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2, 6 / WAKE NETW .750000 .750000 .750000 .750000 .750000 .750000 .750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.000000 0.000000 0.000000 0.000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 .750000 2,6 / WAKE NETW .7500000 .7500000000 .7500000 .750000000000000000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.000000 0.000000 0.000000 0.000000 0.000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE T .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469 .002348	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500	WARE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 .750000 2,6 / WAKE NETW .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469 .002348 0.000000	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A16,	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2,6 / WAKE NETW .7500000 .750000 .750000000 .7500000 .75000000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .002348 0.000000	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A16, // VERTICAL	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2,6 / WAKE NETW .7500000 .750000 .750000000 .7500000 .75000000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500	RELATIVE TO 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .002348 0.000000	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A16, // VERTICAL 1.009500	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2,6 / WAKE NETW .7500000 .750000 .750000000 .7500000 .7500000000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.0000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 20.00000	RELATIVE TO 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469 .002348 0.000000	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A16, // VERTICAL 1.009500 1.009500	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2,6 / WAKE NETW .7500000 .750000 .7500000 .7500000 .75000000 .7	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.00000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 20.00000 20.00000	RELATIVE TO 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000 750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469 .002348 0.000000 .015190 .012845	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A16, // VERTICAL 1.009500 1.009500	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2,6 / WAKE NETW .7500000 .750000 .7500000 .7500	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 20.00000 20.00000 20.00000	RELATIVE TO .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000 .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469 .002348 0.000000 .015190 .012845 .010727	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A16, // VERTICAL 1.009500 1.009500 1.009500	WAKE NETW A14 COORDI .750000 .750000 .750000 .750000 .750000 2,6 / WAKE NETW .750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 20.00000 20.00000 20.00000	RELATIVE T .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469 .002348 0.000000 .015190 .012845 .010727 .009050	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A16, // VERTICAL 1.009500 1.009500 1.009500 1.009500	WAKE NETW A14 COORDI .750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 20.00000 20.00000 20.00000 20.00000	RELATIVE T .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469 .002348 0.000000 .015190 .012845 .010727 .009050 .007972	AND A17)
// VERTICAL // NETWORK / .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A15, // VERTICAL .922000 .926288 .938713 .958050 .982463 1.009500 NETW = A16, // VERTICAL 1.009500 1.009500 1.009500 1.009500	WAKE NETW A14 COORDI .750000	NATES ARE 0.000000 .000744 .002901 .006258 .010496 .015190 N2A ORK 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.00000000	REVERSED (1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 1.009500 20.00000 20.00000 20.00000 20.00000 20.00000	RELATIVE T .750000	0 A15, A16 .007600 .007972 .009050 .010727 .012845 .015190 .007600 .007228 .006148 .004469 .002348 0.000000 .015190 .012845 .010727 .009050 .007972 .007600	AND A17)

Figure 6.3 - Continued.

// VERTICAL WAKE N	E TWORK			
1.009500 .7500 1.009500 .7500 1.009500 .7500 1.009500 .7500 1.009500 .7500 1.009500 .7500	00 .007600 00 .007228 00 .006148 00 .004469 00 .002348 00 .002000	20.00000 20.00000 20.00000 20.00000 20.00000 20.00000	.750000 .750000 .750000 .750000 .750000 .750000	.007600 .007228 .006148 .004469 .002348
1.009500 .7500	00 0.000000	20.00000	./ 50000	0.000000
BEGIN GEOM MATCHIN ABUT = A1, 2 = A2, ABUT = A1, 3 = A4, ABUT = A1, 4 /GE PLAN = FIRST /GE	G DATA /GE1 4 /GE2 1 /GE2 2 3			
ABUT = A2, 2 = A3, ABUT = A2, 3 = A5, ABUT = A3, 3 = A6,	4 /GE2 1 /GE2 1 /GE2			
$\begin{array}{rcl} ABUT &= A4, & 2 &= A10\\ ABUT &= A4, & 3 &= A7,\\ ABUT &= A4, & 4 & /G\\ PLAN &= EIPST & /G\end{array}$, 1 /GE2 1 /GE2 E2 E3			
ABUT = A5, 2 = A14 ABUT = A5, 3 = A8, ABUT = A5, 3 = A8,	, 1 /GE2 1 /GE2			
ABUT = A5, 4 = A11 ABUT = A6, 3 = A9, ABUT = A6, 4 = A15 ADUT = A7, 2 = A12	, 1 /GE2 , 1 /GE2 , 1 /GE2			
ABUT = A7, 2 = A12 $ABUT = A7, 4 / GE$ $PLAN = FIRST / GE$	2 3 4 /052			
ABUT = A8, 2 = A10 ABUT = A8, 4 = A13 ABUT = A9, 4 = A17 ABUT = A10, 2	, 4 /GE2 , 2 /GE2 , 2 /GE2			
ABUT = A10, 2 = A1 ABUT = A10, 3 = A1 ABUT = A11, 3 = A1 ABUT = A12, 2 = A1	2, 1 /GE2 3, 1 /GE2 3 4 /GE2			
ABUT = A14, 4 = A1 ABUT = A14, 3 = A1 ABUT = A14, 3 = A1 ABUT = A15, 3 = A1	5, 4 /GE2 6, 1 /GE2 7, 1 /GE2			
ABUT = A16, 2 = A1 //	7,4 /GE2			

÷

-

- 1

Figure 6.3 - Continued.

BEGIN FLOW /FP1 SURF FLOW = PRESSURE-CALCULATION /SF1 // OMIT RECORD SF2, DEFAULT IS ALL NON-WAKE (I.E., A1-A6) NETWORKS
SOLUTIONS = 1 /SF3 POINTS = ALL / SF4APRINT = ALL/SF10A DATA BASE=ALL /SF11A SURF FLOW = NULL-CHECK SOLUTIONS = 2, 3 /SF3 /SF1 POINTS = CENTER/SF4A-DEFAULT SURFACE SELECTION = UPLO /SF5 PRINTOUT /SF10A FORCES AND MOMENTS /FM1 AXIS SYSTEMS = RCS /FM3 PRINTOUT = COLSUM, NETWORK, CONFIGURATION /FM5 DATA BASE = SAME /FM6 CASE=FORCES-AND-MOMENTS /FM7 SURFACE SELECTION=UPLO /FM12 BEGIN PRINT PLOT DATA /PP1 GEOMETRY DATA /PP2A POINT DATA /PP3A CONFIGURATION DATA /PP4A NETWORKS-IMAGES =A1, INPUT, COLSUM =A2, INPUT, COLSUM + =A3, INPUT, COLSUM =A4, INPUT, COLSUM + =A5, INPUT, COLSUM =A6, INPUT, COLSUM /PP4D END PROB DEF

~

Figure 6.4 Comparison of PAN AIR pressure distribution with experiment and kernel function method for a wing with partial span flap

Figure 6.5 PAN AIR and Pilot Code pressure coefficients on wing with deflected flap

(b) just outboard of inboard flap edge ($\frac{y_0}{b/2}$ =.2667)

Figure 6.5 - Continued

6-16

(c) just inboard of outboard flap edge $(\frac{y_0}{b/2} = .7332)$

Figure 6.5 - Continued

(d) just outboard of outboard flap edge $(\frac{y_0}{b/2} = .7667)$

Figure 6.5 - Concluded

7. TWO DIMENSIONAL SUBSONIC AIRFOIL DESIGN

Purpose

The purpose of these two cases (7A and 7B) is to check design boundary conditions on a thick configuration in subsonic flow. The closure condition is also checked. The two cases are complementary. Case 7A is the analysis problem (i.e., given specified (zero) normal mass flux values on a surface, determine the corresponding tangential velocity values), while case 7B is the design problem (i.e., given the tangential velocity values). This approach thus checks the consistency of the analysis and design problems. An earlier study (reference 7.1, section 6.5.1) examined the same configuration and included the relofting of part of the configuration. There is no relofting in the present case.

Configuration, Flow, and Modeling

The configuration is the symmetric airfoil (NACA 65-010, reference 7.2), illustrated in figures 7.1 and 7.2. There are two planes of configuration (reflection in the x_0-y_0 plane makes use of the The aspect ratio is 12, which should result in symmetry airfoil symmetry). in nearly two-dimensional flow near the wing root. The airfoil is not tapered. The airfoil is divided into three networks: an analysis network from the leading edge to .2 chord, a design network from .2 to .9 chord, and an analysis network from .9 chord to the trailing edge. (Note that another network, closing the wing tip to separate the wing interior from the external flow field, should have been used. Omission of this network should not seriously affect the results since only the special case of non-lifting flow is considered.) There is a wake network, which is in the second plane of Since the aspect ratio is not infinite there will be a spanwise symmetry. variation in wing circulation. Thus, the DW1 wake network (which allows a spanwise variation in doublet strength) is used.

The flow is incompressible. There is one solution with the angles of attack and sideslip being zero. Therefore, the two planes of configuration symmetry are also taken as planes of flow symmetry.

Input

The DIP input data for case 7A is listed in figure 7.3. For the three airfoil networks, the class 1, subclass 1 boundary condition (see figure 7.4 of the User's Manual) is used, since the airfoil is impermeable and has the upper surface exposed to the external flow field. The VIC matrix is stored for the MID-WING network so that the VIC-LAMBDA method of velocity computation can later be specified in the surface flow properties and forces and moments data.

Two surface flow properties (PDP) cases are specified. The first calculates flow properties on the MID-WING network. Velocities are computed by both the BOUNDARY-CONDITION and the VIC-LAMBDA methods. The latter is generally more accurate and is used to generate the tangential velocities for the design case. The second PDP case calculates flow properties on the other two airfoil networks.

Two forces and moments (CDP) cases similar to the PDP cases are specified. The first calculates flow properties on the MID-WING network, while the second calculates flow properties on the other two airfoil networks.

The DIP input data for case 7B is listed in figure 7.4. The boundary conditions are the same as in case 7A, except that design boundary condition equations are used on the MID-WING network. Here boundary condition class 3, subclass 1 is used.

The boundary condition equations are:

$$\hat{\mathbf{t}}_{U} \cdot \vec{\mathbf{v}}_{U} = -\hat{\mathbf{t}}_{t1} \cdot \vec{\mathbf{U}}_{0} + \beta_{t1}$$
(7.1)
$$\hat{\boldsymbol{\psi}}_{L} = 0$$
(7.2)

The upper surface of the network is wetted by the external flow field.

The source singularity type is SD2 for boundary condition class 3 subclass 1. This allows the closure condition, which is appropriate for subsonic flow, to be specified. In this case the closure condition requires that the total normal mass flux emitted from the upper surface be zero for each column of panels or, equivalently, that the network leading and trailing edges be on the same mass flux streamline. Combining with the zero perturbation mass flux on the lower surface, the closure condition becomes (see section B.3.5.1 of the User's Manual)

$$\int_{edge 1}^{edge 3} dS = -\int_{edge 1}^{edge 3} dS$$
(7.3)

Record set N14 is used to specify the closure condition, replacing the default source strength matching condition on edge 1 of the network (the leading edge). The 42 values of 1. on record N14D following the TERM = AD (record N14B) card are the values at the panel centers of AD on the left hand side of equation 7.4.1 in the User's Manual. Specification of the closure condition also requires the values of the source integral over each column of panels (i.e., BC on the right hand side of equation 7.4.1 of the User's Manual). These values are obtained from case 7A as the negative of the "volume flow" values in the CDP output (see sections B.3.5.1 and B.4.1 of the User's Manual) and appear on record N14D following the TERM=BC record. (The closure condition also requires that the update tag (record N8) be used for the network.)

In addition to the closure condition data, the known factors and terms in the boundary condition equations must be specified. In particular, the tangent vectors and β_{t1} in equation (7.1) must be specified. Record set N16 specifies the tangent vectors. The MID-POINT=1 option (record N16G) is used: the tangent vectors are unit vectors parallel to the line connecting the mid-point of edge 1 to the mid-point of edge 3 in each panel. Consequently the vectors have no y_0 component. Values of β_{t1} are specified by record set N17.* The values used in N17 are velocity magnitudes printed out in case 7A for the VIC-LAMBDA method. Since the y_0 velocity components are all small and the aspect ratio is large, this is an acceptable approximation.

Two surface flow properties (PDP) cases and two forces and moments (CDP) cases are specified. These are similar to those for the analysis case 7A.

Results and Discussion

Figure 7.5 shows the square of the tangential velocity on the airfoil, as computed in case 7A for the center control points on the inboard panel column, and compares them to the theoretical values in reference 7.2. The computed values can be seen to be in close agreement to the theoretical values.

The check on the design boundary conditions is that case 7B should show small values for the normal mass flux and that it repeat the input tangential velocity values on the MID-WING network. The normal mass flux values seen in the output from case 7B were indeed small. For example, the normal mass flux on the upper surface varied from -0.00279 to 0.00104 on the outboard panel column and from -0.00052 to 0.00042 on the inboard column. (These non-zero values are due to use of the VIC-LAMBDA method for computing the velocities. This method does not use the perturbation potential condition, equation (7.2), for the lower surface. The difference normal mass flux, which is the source strength, shows a very close agreement with the values in the analysis case 7A.) The output velocity magnitude values were also noted to be in very close agreement with the values input via record N17, with the largest difference being one digit in the fifth place.

^{*} Equation (7.1) says that $\beta_{t1} = t \cdot V_U$. Since equation (7.1) is associated with the SD2 singularity type, it is applied only at the panel center control points. (The SD2 singularity type also requires an equation along edge 1, but the closure equation is used there. See figures 7.6 and 7.8 of the User's Manual.) For this reason the actual β_{t1} values are specified only at the panel center control points (record N17E). However, values need to be assigned at all control points even if the values are not used, and this is the reason that the card "POINTS = ALL § 1.0" appears.

REFERENCES

- 7.1 Johnson, Forrester T.: A General Panel Method for the Analysis and Design of Arbitrary Configurations in Incompressible Flows. NASA CR-3079, May 1980.
- 7.2 Abbott, I. H.; Von Doenhoff, A. E.; and Stiver, L. S. Jr.: Summary of Airfoil Data. NACA Report 824, 1945.

Net

Figure 7.1 - Cross section of wing for thick wing design case

First Plane of Symmetry

7-6

```
\prod
 \prod
     PAN AIR CASE MANUAL CASE 7A
 \Pi
     SUBSONIC DESIGN PROBLEM
     THICK AIRFOIL AND WAKE, WITH TWO PLANES OF CONFIGURATION SYMMETRY
 \Pi
     INCOMPRESSIBLE FLOW, WITH TWO PLANES OF FLOW SYMMETRY
 11
     AIRFOIL NACA 65-010, REF. ABBOTT AND VONDOENHOFF, PAGE 362
 \Pi
     ALSO REF. NASA CR-3079, FIGURE 27
 \Pi
     ANALYSIS CASE - GIVEN ZERO NORMAL MASS FLUX,
 \Pi
      SOLVE FOR THE TANGENTIAL VELOCITIES
 \Pi
 BEGIN GLOBAL DATA /G1
 PID= SUBSONIC DESIGN PROBLEM - ANALYSIS RUN
 UID=USER-IDENTIFICATION
 CONF = SECOND-PLANE, SYMMETRIC-FLOW
                                      /G4
 MACH = .00 / G5
// DEFAULT SOLUTION DATA, ALPHA AND BETA = 0. AND UNIF = 1.
 SID = SOLUTION-1
 SURFACE SELECTION = UPPER /G8
 PRESSURE COEFFICIENT RULES = SECOND-ORDER /G12
 CHECKOUT PRINTS = DIP 1 2 3, DQG 1 2 4 5 6 7 /G17
 BEGIN NETWORK DATA /N1
    START DATA ON FWD-WING NETWORK
H^{-}
 NETWORK=FWD-WING, 10, 4
  .00
          6. .00000.
                       .005
                               6. .00772.
  .0075
         6. .00932,
                       .0125
                              6. .01169,
  .025
         6. .01574.
                       .050
                               6. .02177.
  .075
         6. .02647,
                       .10
                               6. .03040,
  .15
         6. .03666.
                       .20
                               6. .04143.
  .00
         4. .00000,
                       .005
                               4. .00772.
  .0075
         4. .00932,
                       .0125
                              4. .01169,
         4. .01574,
  .025
                       .050
                              4. .02177,
  .075
         4. .02647,
                       .10
                              4. .03040.
  .15
         4. .03666,
                       .20
                              4. .04143,
  .00
         2. .00000,
                       .005
                              2. .00772.
  .0075
         2. .00932,
                       .0125
                              2. .01169.
  .025
         2. .01574,
                       .050
                             . 2. .02177,
  .075
         2. .02647.
                       .10
                              2. .03040,
  .15
         2. .03666,
                       .20
                              2. .04143.
  .00
         0...00000,
                       .005
                              0. .00772,
         0. .00932,
  .0075
                       .0125
                             0..01169,
  .025
         0. .01574,
                       .050
                              0. .02177,
  .075
         0. .02647,
                       .10
                              0..03040,
  .15
         0. .03666.
                       .20
                              0. .04143,
 BOUNDARY CONDITION = 1, 1
                             /N9
      END DATA ON FWD-WING NETWORK
H
```

Figure 7.3 - Input for test case 7A.

// STAF	RT DA	TA ON MI	D-WING	NETWO	ORK
NETWOR	<=MID	-WING, 1	5,4		
.20	6.	.04143,	.25	6.	.04503,
.30	6.	.04760,	.35	6.	.04924,
.40	6.	.04996	.45	6.	.04963,
.50	6.	.04812,	.55	6.	.04530,
.60	6.	.04146.	.65	6.	.03682,
.70	6.	.03156.	.75	6.	.02584,
.80	6.	.01987,	.85	6.	.01385,
.90	6.	.00810.			
.20	4.	.04143.	.25	4.	.04503,
.30	4.	.04760.	.35	4.	.04924,
.40	4 -	.04996	.45	4.	.04963.
.50	4	.04812.	.55	4.	.04530.
.60	4.	.04146.	.65	4.	.03682,
.70	4	.03156.	.75	4.	.02584
.80	4	.01987.	.85	4.	.01385.
90	4	.00810.			, , , , , , , , , , , , , , , , , , ,
20	2	04143	.25	2.	.04503.
30	2	04760	.35	2.	.04924
.30	2	04996	45	2	04963
.40	2.	04950,	55	2	04530
.50	2.	.04012,	.55	2	03682
.00	2.	.04140,	.05	2.	.03082,
.70	2.	.03150,	•/J 05	2.	.02304,
.80	2.	.01907,	•00	۲.	.01505,
.90	2.	.00010,	25	Λ	04503
.20	0.	.04143,	• 2 J 2 E	0.	.04505,
.30	0.	.04700,	.35 AE	0.	.04924,
.40	0.	.04990,	.40 EE	0.	.04903,
.50	0.	.04812,	.55	0.	.04550,
.60	0.	.04146,	.05	0.	.03002,
.70	0.	.03156,	./5	0.	.02584,
.80	0.	.01987,	.85	υ.	.01385,
.90	0.	.00810,			
STORE		AIRIX /	N3	(110	
BOUNDAI	RY CO	NDITION	= 1, 1	/ N9	201/
// E	ND DA	TA ON MI	D-WING	NETWO	JKK
// STAI	RT DA	ATA ON AF	T-WING	NEIWO	JRK
NETWORI	K=AFT	-WING,	3,4		
.90	6.	.00810,	.95	6.	.00306,
1.00	6.	.00000,			
.90	4.	.00810,	.95	4.	.00306,
1.00	4.	.00000,			
.90	2.	.00810,	.95	2.	.00306,
1.00	2.	.00000,			
.90	0.	.00810,	.95	0.	.00306,
1.00	0.	.00000,			
BOUNDA	RY CC	NDITION	= 1, 1	/N9	
// E	ND DA	ATA ON AF	T-WING	NE TW	ORK
	_				

Figure 7.3 - Continued.

```
// START DATA ON WAKE NETWORK
 NETWORK=WAKE, 2, 4
// WAKE NETWORK IS IN THE SECOND PLANE OF SYMMETRY
 1. 6. 0., 50. 6. 0.,
 1. 4. 0., 50. 4. 0.,
1. 2. 0., 50. 2. 0.,
 1. 0. 0., 50. 0. 0.,
 BOUNDARY CONDITION = 1, 4 /N9
\Pi
      END DATA ON WAKE NETWORK
 BEGIN FLOW PROPERTIES DATA /FP1
 SURFACE FLOW PROP=INSIDE-NETWORK
                                        /SF1
 NETWORKS-IMAGES = MID-WING
                                        /SF2
 POINTS = ALL /SF4A
 SURFACE SELECTION = UPPER, LOWER /SF5
 SELECTION OF VELOCITY COMPUTATION = BOUNDARY-CONDITION, VIC-LAMBDA /SF6
 PRINTOUT = ALL /SF10A
 DATA BASE = ALL /SF11A
 SURFACE FLOW PROP=OUTSIDE-NETWORKS
                                        /SF1
 NETWORKS-IMAGES = FWD-WING = AFT-WING /SF2
 POINTS=CENTER /SF4A
 PRINTOUT = ALL /SF10A
 DATA BASE = ALL /SF11A
 FORCES AND MOMENTS /FM1
 AXIS = RCS / FM3
 PRINTOUT = COLSUM, NETWORKS, CONFIGURATION /FM5
 DATA BASE = COLSUM, NETWORKS, CONFIGURATION /FM6
 CASE = FM-INSIDE-NETWORK /FM7
 NETWORKS-IMAGES = MID-WING, INPUT
                                   /FM8
 SELECTION OF VELOCITY COMPUTATION = BOUNDARY-CONDITION, VIC-LAMBDA /FM13
 ACCUMULATE = VIC-LAMBDA /FM21
 CASE = FM-OUTSIDE-NETWORKS /FM7
 NETWORKS-IMAGES = FWD-WING, INPUT = AFT-WING, INPUT /FM8
ACCUMULATE /FM21
/// PRINT-PLOT DATA GROUP
BEGIN PRINT PLOT DATA /PP1
GEOMETRY DATA /PP2A
POINT DATA /PP3A
CONFIGURATION DATA /PP4A
END PROBLEM DEFINITION
```

Figure 7.3 - Concluded.

11 PAN AIR CASE MANUAL CASE 7B Π SUBSONIC DESIGN PROBLEM Π THICK AIRFOIL AND WAKE, WITH TWO PLANES OF CONFIGURATION SYMMETRY Π INCOMPRESSIBLE FLOW, WITH TWO PLANES OF FLOW SYMMETRY Π AIRFOIL NACA 65-010, REF. ABBOTT AND VONDOENHOFF, PAGE 362 \prod ALSO REF. NASA CR-3079, FIGURE 27 Π DESIGN CASE - GIVEN TANGENTIAL VELOCITIES, Π SOLVE FOR THE NORMAL MASS FLUX Π BEGIN GLOBAL DATA /G1 PID= SUBSONIC DESIGN PROBLEM - DESIGN RUN UID=USER-IDENTIFICATION CONF = SECOND-PLANE, SYMMETRIC-FLOW /G4 MACH = .00 /G5 DEFAULT SOLUTION DATA, ALPHA AND BETA = 0. AND UNIF = 1. Π SID = SOLUTION-1SURFACE SELECTION = UPPER /G8 PRESSURE COEFFICIENT RULES = SECOND-ORDER /G12 CHECKOUT PRINTS = DIP 1 2 3, DQG 1 2 4 5 6 7 /G17 BEGIN NETWORK DATA /N1 START DATA ON FWD-WING NETWORK Π NETWORK=FWD-WING, 10, 4 6...00772, 6. .00000, .005 .00 6. .01169, .0125 6. .00932, .0075 6. .02177. 6. .01574. .050 .025 6. .03040. .10 6. .02647, .075 6. .04143, 6. .03666, .20 .15 .00 .005 4. .00772, 4. .00000, 4. .01169, .0125 .0075 4. .00932, .050 4. .02177, .025 4. .01574, 4. .03040. .10 .075 4. .02647, .20 4. .04143. 4. .03666, .15 .005 2. .00772, .00 2. .00000, 2. .00932, .0125 2. .01169, .0075 2. .02177. .050 2. .01574, .025 2. .02647, 2. .03040, .075 .10 2. .04143. .15 .20 2. .03666, 0. .00000, 0. .00772, .00 .005 0. .00932, .0125 0. .01169, .0075 .050 0. .02177, 0. .01574, .025 0. .03040, 0. .02647, .10 .075 0. .04143. .20 0. .03666, .15 UPDATE TAG = 3/N8 BOUNDARY CONDITION = 1, 1 /N9 END DATA ON FWD-WING NETWORK Π

Figure 7.4 - Input for test case 7B.

NETHOP				10-	1		UNK			
NETWOR	(N=M)	U-WI	NG,	15,	4					
.20	6.	• 04	143,	•	.25	6.	.04	503,	,	
.30	6.	.04	760,	,	.35	6.	.04	924.		
.40	6.	.04	996.		.45	6.	. 04	963.		
.50	6.	. 04	812		55	6	04	530'	,	
60	6	04	116)	65	6	02	,	,	
.00	с. с	.04	140, 157)	.05	0.	.03	, 500		
./0	0 .	.03	100,)	•/5	6.	.02	584,	,	
.80	ь.	.01	987,	1	.85	6.	.01	385,		
.90	6.	.00	810,							
.20	4.	.04	143.		.25	4.	. 04!	503.		
.30	4.	. 04	760		35	4	04	224		
40	Λ	04	006		.00 Λ6	л. Л	04.	163		
.40	т. Л	.04	, 110		.40 	4.	.043	, 205		
.50	4.	+040	512,		. 55	4.	.04:	530,		
.60	4.	• 04.	146,		.65	4.	.036	582 ,		
.70	4.	.03	156,		.75	4.	.025	584,		
.80	4.	.019	987.		.85	4.	.013	385		
- 90	4.	.008	310					,		
20	2	04	1/3		25	2	046	:02		
.20	· ·	.04.	760	•	20	<u>د</u> .	.04:	,003		
.30	۷.	.04	/00,		.35	۷.	.049	124,		
.40	2.	.049	996,		.45	2.	.049	963,		
.50	2.	.048	312,		.55	2.	.045	30.		
.60	2.	.041	46	_	65	2	036	82		
70	2	031	56	•	75	2	026	01		
.70	2.	.0001	107	•	7 J 0 E	<u> </u>	.020	104,		
.00	<i>2</i> .	.015	,07,	•	85	۷.	.013	85,		
.90	۷.	.008	\$10,							
.20	0.	.041	.43,		25	0.	.045	03,		
.30	0.	.047	60,		35	0.	.049	24.		
.40	0.	.049	96	-	45	0	049	63		
50	n	049	12	•	55	õ	015	20,		
.50	0.	-040	10,	•	55	0.	.040	<i>SU</i> ,		
.00	0.	.041	40,	•	05	0.	.036	82,		
.70	U .	.031	56,	•	/5	0.	.025	84,		
.80	0.	.019	87,		85	0.	.013	85,		
.90	0.	.008	10.							
STORE	VIC N	1ATR I	χĺ	/N3						
UPDATE	TAG	/ N8			IRED	FOR	nins		CON	
BUINDA		סחיק דד תואר	TON	ν L QU 2	1		CLUS	URE	COM	JITION
			TON	=) 	, 1	_/19				
LUSURE	EDGE	: CUN	DIT	IUN	= SN	E = 1	/ N	14A		
IERM =	AD	/NI4	В							
1. 1. 1	l. 1.	1.	1.	1.1	. 1.	1.1	. 1.	1.	1	
1. 1. 1	1. 1.	1.	1.	1.1	1	1 1	1	1	1	
1 1 1	1	1	1	1 1	1	1 1	1	1	1.,	/ 11/10
1. 1. J		/ 1 . / 1 1 /	⊥• . ⊓	L. 1	• 1•	1. 1	• 1•	1.	1.	/ N14D
	BL	/114	B	_						
-0.0666	ob -	-0.06	666	-0	.066	66	/N14	D		
TANGENT	VECT	ORS	FOR	DES	IGN	/N16	A			
TERM =	TU1.	TT1	/1	V16B						
POINTS	S = 4	чт	/N16	5F						
	, _, _, _, ОПТЫТ	- 1	/ 11 L L	1160						
P110-P	.OT NI	= 1	1	1106						

// START DATA ON MID-WING NETWORK

بر

Figure 7.4 - Continued.

SPECIFIED FLOW /N17A USE VMAG VALUES COMPUTED BY THE VIC-LAMBDA METHOD Π FROM CASE 7A Π TANGENTIAL VELOCITY BOUNDARY CONDITIONS ARE APPLIED ONLY AT PANEL Π CENTER CONTROL POINTS Π TERM = 1 / N17BINPUT-IMAGES = INPUT, 1ST, 2ND, 3RD /N17C POINTS = ALL \$ 1.0 /N17E,F POINTS = CENTER /N17E 1.11265 1.11949 1.12381 1.12801 1.13084 1.12963 1.11989 /U-1A .96298 /U-1B 1.10274 1.08318 1.06207 1.03925 1.01499 .98909 1.11562 1.12171 1.12604 1.13023 1.13306 1.13186 1.12213 /U-2A /U-2B 1.10497 1.08541 1.06429 1.04143 1.01711 .99104 .96526 1.11575 1.12191 1.12624 1.13042 1.13325 1.13205 1.12230 /U-3A 1.10515 1.08557 1.06444 1.04158 1.01724 .99117 /U-3B .96534 END DATA ON MID-WING NETWORK Π START DATA ON AFT-WING NETWORK Π NETWORK=AFT-WING, 3, 4 .95 6..00306, .90 6. .00810, 6. .00000, 1.00 .95 4. .00306, .90 4. .00810, 1.00 4. .00000, 2. .00810, .95 2...00306, .90 2. .00000, 1.00 0. .00306, 0...00810. .95 .90 0. .00000, 1.00 UPDATE TAG = 1 / N8BOUNDARY CONDITION = 1, 1 /N9END DATA ON AFT-WING NETWORK Π START DATA ON WAKE NETWORK Π NETWORK=WAKE, 2, 4 WAKE NETWORK IS IN THE SECOND PLANE OF SYMMETRY Π 1. 6. 0., 50. 6. 0., 4. 0., 50. 1. 4. 0.. 2. 0., 50. 2. 0., 1. 0. 0., 0. 0., 50. 1. BOUNDARY CONDITION = 1, 4 /N9END DATA ON WAKE NETWORK Π BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW PROP=INSIDE-NETWORK /SF1 NETWORKS-IMAGES = MID-WING /SF2 POINTS = ALL / SF4ASURFACE SELECTION = UPPER, LOWER /SF5 SELECTION OF VELOCITY COMPUTATION = VIC-LAMBDA /SF6 PRINTOUT = ALL / SF10ADATA BASE = ALL /SF11A

Figure 7.4 - Continued.

SURFACE FLOW PROP=OUTSIDE-NETWORKS /SF1 NETWORKS-IMAGES = FWD-WING = AFT-WING /SF2 POINTS=CENTER /SF4A PRINTOUT = ALL /SF10A DATA BASE = ALL /SF11A FORCES AND MOMENTS /FM1 AXIS = RCS /FM3 PRINTOUT = COLSUM, NETWORKS, CONFIGURATION /FM5 DATA BASE = COLSUM, NETWORKS, CONFIGURATION /FM6 CASE = FM-INSIDE-NETWORK /FM7 NETWORKS-IMAGES = MID-WING, INPUT /FM8 SELECTION OF VELOCITY COMPUTATION = VIC-LAMBDA /FM13 ACCUMULATE /FM21 CASE = FM-OUTSIDE-NETWORKS /FM7 NETWORKS-IMAGES = FWD-WING, INPUT = AFT-WING, INPUT /FM8 ACCUMULATE /FM21 /// PRINT-PLOT DATA GROUP BEGIN PRINT PLOT DATA /PP1 GEOMETRY DATA /PP2A POINT DATA /PP3A CONFIGURATION DATA /PP4A END PROBLEM DEFINITION

Figure 7.4 - Concluded.

8. THIN WING DESIGN

Purpose

The purpose of these two cases (8A and 8B) is to check design boundary conditions in supersonic flow on a thin configuration with a supersonic leading edge. The two cases are complementary analysis-design problems. Case 8A is the analysis problem: given specified normal mass flux values for camber and thickness representations, determine the corresponding tangential velocity values. Case 8B is the design problem: given the tangential velocity values (from case 8A), determine the corresponding normal mass flux values. This approach checks the consistency of the analysis and design problems. There is, however, no design as such, i.e., the position of the original surface is not changed.

Configuration, Flow, and Modeling

The geometry and paneling of the wing is illustrated in figure 8.1. There is one plane of configuration symmetry. The wing has an aspect ratio of 1.9 and a taper ratio of .10. The chordwise paneling is defined by a set of lines radiating from the point $(1.0, ctn(60^{\circ})) \cong (1.0, 0.57735)$, which is outside the planform.

The wing is modelled with singularities placed in the x_0-y_0 plane. Camber and thickness are simulated through specified flows to represent a parabolic top surface and a flat bottom surface, the latter lying in the x_0-y_0 plane. The parabolic top surface is defined by

$$z_0 = .008*(x_0 - tan(60)*y_0)*(1 - x_0)$$

Since the intersection of the above parabolic surface with the $z_0 = 0$ plane defines the leading and trailing edges, it is apparent that the wing leading edge has a 60° sweep angle (which would be sonic if the Mach number were 2.0) and the trailing edge is unswept and is given by $x_0 = 1$.

The flow Mach number is 2.2. One solution is specified with ALPHA = .573. Also, CALPHA = .573, so the compressibility axis is in the direction of the uniform onset flow. The plane of configuration symmetry is also a plane of flow symmetry.

8–1

The DIP input data for case 8A is given in figure 8.2. For the wing, a class 2 subclass 5 boundary condition (see figure 7.5 of the User's Manual) is used to simulate both camber and thickness. As is shown in figure 7.5 of the User's Manual, this boundary condition requires that B_{n1} and B_{n2} be defined. According to thin airfoil theory (e.g., section B.3.2 of the User's Manual) the appropriate values of β_{n1} are to be obtained from the equation

$$\beta_{n1} = U_0 * (\partial z_t / \partial x_0)$$

where z_t is the airfoil thickness. Note that $U_0 = 1$ in this problem, so

$$\beta_{n1} = .008 * (1 - 2 * x_0 + tan(60) * y_0)$$

Also, according to thin airfoil theory, B_{n2} should be calculated from

$$\beta_{n2} = U_0 * (\partial z_c / \partial x_o)$$

where $z_{\rm C}$ represents the mean camber surface. For this particular problem, the above equation gives

$$\beta_{n2} = .004*(1 - 2*x_0 + tan(60)*y_0)$$

Note that, since the bottom surface is in the $z_0 = 0$ plane, the specified flow for camber is one-half that for thickness (i.e., $z_c = z_t/2$). Both types of specified flow terms are input at panel center control points. Values of β_{n1} (i.e., the numerical values following TERM = 1) and values of β_{n2} (i.e., the numerical values following TERM = 2) are input *.

^{*}The first (TERM = 1) equation of the class 2 subclass 5 boundary condition is associated with the SA singularity type. Thus the β_{n1} values are used only at panel center control points (see figure 7.8 of the User's Manual). The second (TERM = 2) equation is associated with the DA singularity type. Thus the β_{n2} values are required at center, edge and additional (network corner) control points. However, these values (which are not zero) are not shown in figure 8.2. This is an error, but, since the error occurs on the COSMIC tape for Version 1.0, it is not corrected here.
To obtain more accuracy than the boundary-condition method yields, the VIC matrix is stored and used in all velocity computations. One surface flow properties (PDP) case and one forces and moments (CDP) case are specified.

The DIP input data for case 8B is given in figure 8.3. The data is similar to those of case 8A, except for the wing network boundary condition equations. These would normally be specified as class 3, subclass 5 boundary conditions (see figure 7.6 of the User's Manual). However, the boundary condition class 3 subclass 5 can not be used, because the closure condition and the associated SD2 network type is not allowed since the downstream edge is supersonic and thus can have no upstream influence. SA and DA (or the DFW) singularity types must be used instead. In particular, they are invoked by specifying class 4 boundary conditions (figure 7.7 of the User's Manual) in record N9 and by using record N11 to specify the singularity types. The boundary conditions specified by record N9 are the following (see Figure 7.6 and Section B.3.3.5 of the User's Manual):

and

 $\vec{t}_{A} \cdot \vec{v}_{A} = -\vec{t}_{t} \cdot \vec{U}_{0} + \beta_{t1} \qquad (8.1)$ $\vec{t}_{D} \cdot \vec{v}_{\mu} = \beta_{t2} \qquad (8.2)$

Note the footnote in figure 7.7 of the User's Manual, which states that β terms may be added to the right hand sides of all class 4 boundary conditions. All three of the tangent vectors in the above equations are defined by record set N16 to be unit vectors in the x_0 direction (since the vectors must be in the panels and since the y_0 components are ignored in applying the design equations). Record set N17 is used to specify β_{t1} and β_{t2} , which are the tangential velocities on the average and difference surfaces. The numerical values of β_{t1} were obtained from the VX-AVERAGE values in the output for case 8A and the numerical values of β_{t2} were obtained from the $\vartheta_m/\vartheta_{X_0}$ (labelled GMUX) values (since the left-hand side of equation (8.2) is GMUX). Note that β_{t2} is specified at CENTER, EDGE, and ADDITIONAL control points^{*}.

8-3

^{*} Since the singularity types are SA and DA (or DFW), both boundary condition equations are required at panel center control points. Only one equation is required at edge and additional control points. Equation (8.2) will always be selected in preference to equation (8.1). (The question of which equation PAN AIR selects is determined by the "boundary condition hierarchy" described in section H.2.5 and figure H.6 of the Theory Document.) Thus the B_{t2} values are specified for center, edge and additional control points. The B_{t1} values are specified for center control points only. (Note, however, that values need to be assigned at all control points even if the values are not used, and this is the reason the card "POINTS = ALL § 0." appears in the input data.)

Results and Discussion

Figure 8.4 gives the tangential perturbation velocity components that were computed in case 8A. Both x_0 and y_0 components are shown. The values are plotted against the x_0 coordinate at the mid-span chord on the wing. The x_0 tangential velocity components of case 8A were used in the data, as the specified flows β_{t1} and β_{t2} , in case 8B.

The check on the design boundary conditions is that case 8B showed the same surface flow properties as the analysis case 8A. This consisted of repetition of all three velocity (and mass flux) components. For the x_0 components, the design case is only repeating the basic input data, the specified flows, of equations (8.1) and (8.2). For the z_0 components, the design case gives the same (to printout accuracy) normal mass flux values that were originally input in the analysis case. For the yo components, the design case repeated the velocity component values that were computed in the analysis case and are shown in figure 8.4. The y_0 velocity components were ignored in using the design boundary conditions, equations (8.1) and (8.2), for the tangential velocities. The original reason for this was that the yo components were fairly small relative to the free stream velocity value. Ιŧ is surprising that the design boundary conditions were able to repeat the y_0 velocity components. However, the x_0 and y_0 velocity components are related through the condition of irrotational flow, so that specification of the x_0 component implicitly includes the y_0 component. Since the design case 8B is able to repeat the solution for the velocity potential that was obtained in the analysis case 8A, the design case gives the same y_{0} and z_{0} flow components as the analysis case.

Figure 8.1 - Geometry and paneling of wing in thin wing design case

```
\Pi
    PAN AIR CASE MANUAL CASE 8A
11
    SUPERSONIC DESIGN PROBLEM
\Pi
    CONFIGURATION HAS A PURELY SUPERSONIC LEADING EDGE
\Pi
    THIN DELTA WING AND WAKE, WITH ONE PLANE OF CONFIGURATION SYMMETRY
\Pi
    SUPERSONIC FLOW, MACH = 2.2, WITH ONE PLANE OF FLOW SYMMETRY
\prod
    ANALYSIS CASE - GIVEN THICKNESS AND CAMBER REPRESENTATIONS,
\Pi
     SOLVE FOR THE TANGENTIAL VELOCITIES
11
    START GLOBAL DATA GROUP
\prod
BEGIN GLOBAL DATA
                     /G1
PID= SUPERSONIC DESIGN PROBLEM - ANALYSIS RUN
UID= USER IDENTIFICATION
    DEFAULT RECORD G4 -
\Pi
     ONE PLANE OF CONFIGURATION SYMMETRY - NORMAL VECTOR IS +Y-AXIS
\Pi
            CALPHA=.573 /G5
MACH=2.2
// USE DEFAULTS FOR ALL SOLUTION DATA EXCEPT ALPHA AND SOLUTION-ID
ALPHA=.573 /G6-1
SID = SOLUTION-1 / G6-2
    USE VIC-LAMBDA METHOD FOR VELOCITY COMPUTATIONS
\Pi
SELECTION OF VELOCITY COMPUTATION=VIC-LAMBDA
                                                / G9
PRESSURE COEFFICIENT RULES = ISENTROPIC, SECOND-ORDER /G12
CHECKOUT PRINTS=ALL /G17
    START NETWORK DATA GROUP
\Pi
BEGIN NETWORK DATA /N1
    START DATA FOR WING NETWORK
\Pi
    NETWORK IN XY PLANE - NORMAL VECTOR POINTS UPWARD (+Z-AXIS)
\Pi
    NETWORK EDGE 1 = LEADING EDGE
\Pi
    NETWORK EDGE 2 = INBOARD EDGE (IN PLANE OF SYMMETRY)
\Pi
    NETWORK EDGE 3 = TRAILING EDGE
11
    NETWORK EDGE 4 = OUTBOARD EDGE
\Pi
NETWORK=WING, 11, 10 /N2A
                                               .51962
                                                        0.00000
               .51962
                                    .90100
    .90000
                        0.00000
                                               .51962
                                                        0.00000
                                    .90900
               .51962
                        0.00000
    .90400
                                    .92500
                                               .51962
                                                        0.00000
               .51962
                        0.00000
    .91600
                                               .51962
                                                        0.00000
                                    .94900
    .93600
               .51962
                        0.00000
                                                        0.00000
               .51962
                        0.00000
                                    .98100
                                               .51962
    .96400
                        0.00000
   1.00000
               .51962
                                               .46188
                                                        0.00000
               .46188
                        0.00000
                                    .80200
    .80000
                                               .46188
                                                        0.00000
                                    .81800
    .80800
               .46188
                        0.00000
                                    .85000
                                               .46188
                                                        0.00000
               .46188
                        0.00000
    .83200
                                               .46188
                                                        0.00000
               .46188
                                    .89800
    .87200
                        0.00000
                                               .46188
                                                        0.00000
               .46188
                        0.00000
                                    .96200
    .92800
               .46188
                        0.00000
   1.00000
                                               .40415
                                                        0.00000
                                    .70300
     .70000
               .40415
                        0.00000
                                    .72700
                                               .40415
                                                        0.00000
               .40415
                        0.00000
    .71200
                                               .40415
                                                        0.00000
                        0.00000
                                    .77500
               .40415
    .74800
                                    .84700
                                               .40415
                                                        0.00000
               .40415
                        0.00000
    .80800
                                               .40415
                                                        0.00000
                                    .94300
                        0.00000
    .89200
               .40415
                        0.00000
   1.00000
               .40415
```

Figure 8.2 - Input for test case 8A.

.60000	.34641	0.00000	.60400	.34641	0.00000
.61600	.34641	0.00000	.63600	.34641	0.00000
.66400	.34641	0.00000	.70000	.34641	0.00000
.74400	.34641	0.00000	.79600	.34641	0.00000
.85600	.34641	0.00000	.92400	.34641	0.00000
1.00000	.34641	0.00000			
.50000	.28868	0.00000	.50500	.28868	0.00000
.52000	.28868	0.00000	.54500	.28868	0.00000
.58000	.28868	0.00000	.62500	.28868	0.00000
.68000	.28868	0.00000	.74500	.28868	0.00000
.82000	.28868	0.00000	.90500	.28868	0.00000
1.00000	.28868	0.00000			
.40000	.23094	0.00000	.40600	.23094	0.00000
.42400	.23094	0.00000	.45400	.23094	0.00000
.49000	.23094	0.00000	.55000	.23094	0.00000
-01000	.23094	0.00000	.69400	.23094	0.00000
1 00000	.23094	0.00000	.88600	.23094	0.00000
30000	17221	0.00000	20700	17001	0.00000
.30000	17221	0.00000	.30700	.1/321	0.00000
.32000	17221	0.00000	.30300	.1/3/1	0.00000
55200	17221	0.00000	.4/500	.1/3/1	0.00000
7/1800	17321	0.00000	.04300	.1/3/1	0.00000
1 00000	17321	0.00000	.86/00	.1/321	0.00000
20000	11547	0.00000	20000	11547	0 00000
23200	11547		.20000	.11547	0.00000
.32800	11547	0.00000	10000	.11547 11577	0.00000
48800	11547	0.00000	59200	11647	0.00000
.71200	.11547	0.00000	84800	11547	0.00000
1.00000	.11547	0.00000	.04000	.1134/	0.00000
.10000	05774	0.00000	10000	05774	0 00000
.13600	.05774	0.00000	18100	05774	0.00000
.24400	.05774	0.00000	32500	05774	0.00000
.42400	.05774	0.00000	.54100	05774	0.00000
.67600	.05774	0.00000	82900	05774	0.00000
1.00000	.05774	0.00000		•••••	0.00000
0.00000	0.00000	0.00000	.01000	0.00000	0.00000
.04000	0.00000	0.00000	.09000	0.00000	0.00000
.16000	0.00000	0.00000	.25000	0.00000	0.00000
.36000	0.00000	0.00000	.49000	0.00000	0.00000
.64000	0.00000	0.00000	.81000	0.00000	0.00000
1.00000	0.00000	0.00000			
STORE VIC MA	TRIX /N3				
BOUNDARY CON	DITION=2,5	/ N9			

Figure 8.2 - Continued.

8-7

SPECIFIED) FLOW /I	V17A							
// THICK	(NESS AND	CAMBER	REPRESEN	TATIONS	FOR PARA	BOLIC U	PPER SURI	FACE	
// AND	FLAT LOW	ER SURFA	CE / BET	A-N-1 =	2.*BETA-	N-2			
TERM=1 /	'N17B								
// THICK	NESS REPP	RESENTAT	ION						
INPUT-I	[MAGE = II	VPUT, 1S	T /N17	С					
POINTS=AL	L\$0.	/N17E,F							
POINTS=CE	ENTER /N	L7E	_						
.0012	.0011	.0010	.0009	.0007	.0005	.0002	0002	0005	0010
.0020	.0019	.0017	.0015	.0012	.0008	.0003	0003	0009	0016
.0028	.0027	.0024	.0021	.0017	.0011	.0004	0004	0013	0023
.0036	.0034	.0031	.0027	.0021	.0014	.0005	0005	0016	0029
.0044	.0042	.0038	.0033	.0026	.0017	.0007	0006	0020	0036
.0051	.0049	.0045	.0039	.0031	.0020	.0008	0007	0023	0042
.0059	.0057	.0052	.0045	.0035	.0023	.0009	0008	0027	0049
.0067	.0065	.0059	.0051	.0040	.0027	.0010	0009	0031	0055
.0075	.0072	.0066	.0057	.0045	.0030	.0011	0010	0034	0062
TERM=2 /	/N17B								
// CAMBE	R REPRES	ENTATION							
// BETA-	-N-2 = (4)	.*H/YL)*	(Y-2.*YL	*X+YL) –	- WHERE	H=.001			
INPUT-1	[MAGE = I	NPUT, 1S	T /N17	С					
POINTS=AL	L\$0.	/N17E,F							
POINTS=CE	ENTER /N.	17E					6 6 6 7		6.0 0 .E
.0006	.00055	.0005	.00045	.00035	.00025	.0001	0001	00025	0005
.0010	.00095	.00085	.00075	.0006	.0004	.00015	00015	00045	0008
.0014	.00135	.0012	.00105	.00085	.00055	.0002	0002	00065	00115
.0018	.0017	.00155	.00135	.00105	.000/	.00025	00025	0008	00145
.0022	.0021	.0019	.00165	.0013	.00085	.00035	0003	0010	0018
.00255	.00245	.00225	.00195	.00155	.0010	.0004	00035	00115	0021
.00295	.00285	.0026	.00225	.00175	.00115	.00045	0004	00135	00245
.00335	.00325	.00295	.00255	.0020	.00135	.0005	00045	00155	002/5
.00375	.0036	.0033	.00285	.00225	.0015	.00055	0005	001/	0031
// END DATA FOR WING NETWORK									

Figure 8.2 - Continued.

START DATA FOR WAKE NETWORK Π NETWORK IN XY PLANE - NORMAL VECTOR POINTS UPWARD (+Z-AXIS) Π Π NETWORK EDGE 1 =LEADING EDGE NETWORK EDGE 2 = INBOARD EDGE (IN PLANE OF SYMMETRY) Π Π NETWORK EDGE 3 = TRAILING EDGE // NETWORK EDGE 4 = OUTBOARD EDGE NETWORK=WAKE,2,10 /N2A 1.00000 .51962 0.00000 2.00000 .51962 0.00000 1.00000 .46188 0.00000 2.00000 .46188 0.00000 .40415 1.00000 0.00000 .40415 2.00000 0.00000 .34641 1.00000 0.00000 2.00000 .34641 0.00000 1.00000 .28868 0.00000 2.00000 .28868 0.00000 1.00000 .23094 0.00000 2.00000 .23094 0.00000 1.00000 .17321 0.00000 2.00000 .17321 0.00000 1.00000 .11547 0.00000 2.00000 .11547 0.00000 1.00000 .05774 0.00000 2.00000 .05774 0.00000 1.00000 0.00000 0.00000 2.00000 0.00000 0.00000 BOUNDARY CONDITION=1,4 /N9 Π END DATA FOR WAKE NETWORK Π OMIT GEOMETRIC EDGE MATCHING DATA GROUP // START FLOW PROPERTIES DATA GROUP BEGIN FLOW PROPERTIES /FP1 // SURFACE FLOW PROPERTIES CASE 1 SURFACE FLOW PROP=SF-CASE-1 NETWORKS-IMAGES=WING, INPUT /SF2 POINTS = ALL/SF4A SURFACE SELECTION=UPPER,LOWER,UPLO,AVERAGE /SF5 PRINTOUT=ALL /SF10A DATA BASE = ALL /SF11A // START FORCES AND MOMENTS DATA SUBGROUP FORCES AND MOMENTS /FM1 AXIS SYSTEMS=RCS, 0. 0. 0. /FM3 PRINTOUT=COLSUM, NETWORKS /FM5 DATA BASE = SAME /FM6 Π FORCES AND MOMENTS CASE 1 CASE=FM-CASE-1 /FM7 NETWORKS-IMAGES=WING, INPUT /FM8 SURFACE SELECTION=UPLO /FM12 START PRINT PLOT DATA GROUP Π BEGIN PRINT PLOT DATA /PP1 GEOMETRY DATA /PP2A POINT DATA /PP3A CONFIGURATION DATA /PP4A END PROBLEM DEFINITION

Figure 8.2 - Concluded.

11								
// PAN AIR	CASE MANUA	AL CASE 8B						
// SUPERSC	11 SUPERSONIC DESIGN PROBLEM							
// CONFIGL	JRATION HAS	A PURELY S	UPERSONIC	LEADING ED)GE			
// THIN DE	TA WING A	ND WAKE. WI	TH ONE PLA	NE OF CONF	IGURATION SYM	IMETRY		
11 SUPERSC	NIC FLOW. N	1ACH = 2.2.	WITH ONE	PLANE OF F	LOW SYMMETRY			
// DESIGN	CASE - GÍVE	EN TANGENTÍ.	AL VELOCIT	IES (AVERA	AGE AND DIFFER	ENCE SURFACES)		
// SOLVE F	OR THE THIC	CKNESS AND	CAMBER REPI	RESENTATIO)NS			
// START G	LOBAL DATA	GROUP						
BEGIN GLOBA	L DATA /(G1						
PID= SUPERS	SONIC DESIG	N PROBLEM -	DESIGN RU	N				
IIID = USFR I	DENTIFICAT	ION						
	RECORD G4	_						
II ONE PI	ANE OF CONF	FIGURATION	SYMMETRY -	NORMAL VE	CTOR IS +Y-AX	IS		
MACH=2.2	CALPHA=.57	73 /G5	0.11112.1111					
// USE DEE	AULTS FOR A	ALL SOLUTIO	N DATA EXC	EPT ALPHA	AND SOLUTION-	ID		
ALPHA= $.573$	/66-1							
SID = SOLUT	10N-1 /G6-	-2						
	-LAMBDA ME	THOD FOR VE	LOCITY COM	PUTATIONS				
SELECTION C	F VELOCITY	COMPUTATIO	N=VIC-LAMB	DA /G9				
PRESSURE CC	FFFICIENT F	RULES = ISE	NTROPIC. S	ECOND-ORDE	R /G12			
CHECKOUT PR	INTS=ALL	/G17	,					
// START N	FTWORK DAT	AGROUP						
REGIN NETWO	ORK DATA //	V1						
// START D	DATA FOR WI	NG NETWORK						
// NETWORK	TN XY PLA	NE - NORMAL	VECTOR PO	INTS UPWAR	RD (+Z-AXIS)			
// NETWORK	EDGF 1 = 1	FADING EDG	E		· · ·			
// NETWORK	EDGE 2 = 1	INBOARD FDG	E (IN PLAN	E OF SYMME	TRY)			
// NETWORK	EDGE 3 = 1	TRATI ING ED	GE					
// NETWORK	(EDGE = 0)	NUTBOARD FD	GF					
NETWORK-WIN	NG 11 10 /1	N2A						
90000	.51962	0.00000	.90100	.51962	0.00000			
.90400	.51962	0.00000	.90900	.51962	0.00000			
.91600	.51962	0.00000	.92500	.51962	0.00000			
93600	-51962	0.00000	.94900	.51962	0.00000			
96400	51962	0.00000	.98100	.51962	0.00000			
1 00000	51962	0.00000						
800000	46188	0,00000	.80200	.46188	0.0000			
80800	46188	0.00000	.81800	.46188	0.00000			
83200	46188	0.00000	.85000	46188	0.00000			
\$7200	46188	0.00000	.89800	.46188	0.00000			
02800	46188	0 00000	.96200	46188	0.00000			
1 00000	46188	0.00000						
1.00000		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						

Figure 8.3 - Input for test case 8B.

.40415	0.00000	.70300	.40415	0.00000
.40415	0.00000	.72700	.40415	0.00000
.40415	0.00000	.77500	.40415	0.00000
.40415	0.00000	.84700	.40415	0.00000
.40415	0.00000	.94300	.40415	0.00000
.40415	0.00000			
.34641	0.00000	.60400	.34641	0.00000
.34641	0.00000	.63600	.34641	0.00000
.34641	0.00000	.70000	.34641	0.00000
.34641	0.00000	.79600	.34641	0.00000
.34641	0.00000	.92400	.34641	0.00000
.34641	0.00000			
.28868	0.00000	.50500	.28868	0.00000
.28868	0.00000	.54500	.28868	0.00000
.28868	0.00000	.62500	.28868	0.00000
.28868	0.00000	.74500	.28868	0.00000
.28868	0.00000	.90500	.28868	0.00000
.28868	0.00000			
.23094	0.00000	.40600	.23094	0.00000
.23094	0.00000	.45400	.23094	0.00000
.23094	0.00000	.55000	.23094	0.00000
.23094	0.00000	.69400	.23094	0.00000
.23094	0.00000	.88600	.23094	0.00000
.23094	0.00000			
.17321	0.00000	.30700	.17321	0.00000
.17321	0.00000	.36300	.17321	0.00000
.17321	0.00000	.47500	.17321	0.00000
.17321	0.00000	.64300	.17321	0.00000
.17321	0.00000	.86700	.17321	0.00000
.17321	0.00000			
.11547	0.00000	.20800	.11547	0.00000
.11547	0.00000	.27200	.11547	0.00000
.11547	0.00000	.40000	.11547	0.00000
.11547	0.00000	.59200	.11547	0.00000
.11547	0.00000	.84800	.11547	0.00000
.11547	0.00000			
.05774	0.00000	.10900	.05774	0.00000
.05774	0.00000	.18100	.05774	0.00000
.05774	0.00000	.32500	.05774	0.00000
.05774	0.00000	.54100	.05774	0.00000
.05774	0.00000	.82900	.05774	0.00000
.05774	0.00000			
0.00000	0.00000	.01000	0.00000	0.00000
0.00000	0.00000	.09000	0.00000	0.00000
0.00000	0.00000	.25000	0.00000	0.00000
0.00000	0.00000	49000	0.00000	0,00000
0.00000	0.00000	.81000	0.00000	0.00000
0.00000	0.00000			
	40415 40415 40415 40415 40415 40415 34641 34641 34641 34641 34641 34641 34641 34641 28868 28868 28868 28868 28868 28868 28868 23094 23094 23094 23094 23094 23094 23094 23094 23094 23094 23094 23094 23094 17321 17321 17321 17321 17321 17321 17321 17321 17321 17321 17321 17321 17547 11547 11547 11547 1547 1547 1547 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 05774 050000 0000000 000000 000000 000000 000000 000000 0000000 0000000 0000000000	40415 0.00000 40415 0.00000 40415 0.00000 40415 0.00000 40415 0.00000 40415 0.00000 34641 0.00000 34641 0.00000 34641 0.00000 34641 0.00000 34641 0.00000 34641 0.00000 34641 0.00000 28868 0.00000 28868 0.00000 28868 0.00000 28868 0.00000 28868 0.00000 23094 0.00000 23094 0.00000 23094 0.00000 23094 0.00000 23094 0.00000 17321 0.00000 17321 0.00000 17321 0.00000 17321 0.00000 17321 0.00000 17321 0.00000 17321 0.00000 17321 0.00000 11547 0.00000 11547 0.00000 11547 0.00000 05774 0.00000 05774 0.00000 05774 0.00000 0.5774 0.00000 0.5774 0.00000 0.5774 0.00000 0.5774 0.00000 0.5774 0.00000 0.00000 0.00000 0.00000 0.00000	.40415 0.00000 .70300.40415 0.00000 .72700.40415 0.00000 .84700.40415 0.00000 .84700.40415 0.00000 .94300.40415 0.00000 .60400.34641 0.00000 .63600.34641 0.00000 .79600.34641 0.00000 .92400.34641 0.00000 .92400.34641 0.00000 .50500.28868 0.00000 .54500.28868 0.00000 .54500.28868 0.00000 .74500.28868 0.00000 .40600.23094 0.00000 .40600.23094 0.00000 .45400.23094 0.00000 .69400.23094 0.00000 .88600.23094 0.00000 .36300.17321 0.00000 .47500.17321 0.00000 .47500.17321 0.00000 .47500.17321 0.00000 .47500.17321 0.00000 .47500.17321 0.00000 .47500.1547 0.00000 .27200.11547 0.00000 .20800.11547 0.00000 .84800.11547 0.00000 .84800.11547 0.00000 .84800.11547 0.00000 .82900.05774 0.00000 .82900.05774 0.00000 .82900.05774 0.00000 .82900.05774 0.00000 .8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure 8.3 - Continued.

8–11

```
STORE VIC MATRIX /N3
   SUPERSONIC FLOW MUST USE SINGULARITY TYPES SA AND DA
\Pi
 BOUNDARY CONDITION = 4, 11 1, 12 3 /N9
 SINGULARITY TYPE = SA, DA
                             /N11
   NO CLOSURE CONDITION SINCE FLOW IS SUPERSONIC
\Pi
TANGENT VECTORS FOR DESIGN /N16A
 TERM = TA1, TT1, TD2 /N16B
POINTS=ALL /N16E
 MID-POINT = 1
                /N16G
SPECIFIED FLOW
                /N17A
// VALUES FROM CASE 8A
TERM=1 /N17B
   BETA-T-1 = TANGENTIAL VELOCITY ON AVERAGE SURFACE
\Pi
     TANGENTIAL VELOCITIES (=VX) OBTAINED FROM ANALYSIS RUN
\Pi
  INPUT-IMAGES = INPUT, 1ST /N17C
   V-AVERAGE VALUES REQUIRED ONLY AT PANEL CENTER CONTROL POINTS
\Pi^{-}
                 0. /N17E.F
 POINTS = ALL
               8
 POINTS = CENTER
                  /N17E
  .99929
          .99929
                  .99925
                                   .99908
                                           /AVE-1A
                          .99917
                          .99856
                                   .99959
                                           /AVE-1B
  .99898
          .99886
                  .99873
                          .99866
                                   .99851
                                           /AVE-2A
  .99884
          .99881
                  .99876
                  .99961 1.00005 1.00041
          .99884
                                           /AVE-2B
  .99833
                                  .99792
                  .99830
                          .99814
                                           /AVE-3A
  .99840
          .99834
          .99960 1.00007 1.00044 1.00078
                                           /AVE-3B
  .99896
                                           /AVE-4A
                                  .99867
          .99792
                         .99760
  .99795
                 .99781
          .99989 1.00028 1.00065 1.00104
                                           /AVE-4B
  .99939
                                           /AVE-5A
  .99751
          .99747
                 .99732
                          .99808
                                  .99904
  .99961 1.00002 1.00043 1.00082 1.00121
                                           /AVE-5B
                                  .99923
                                           /AVE-6A
          .99702 .99683 .99858
  .99712
  .99971 1.00009 1.00051 1.00090 1.00133
                                           /AVE-6B
                                           /AVE-7A
  .99668
                                  .99934
         .99654 .99797
                         .99883
  .99973 1.00013 1.00053 1.00094 1.00140
                                           /AVE-7B
                 .99843
                          .99898
                                  .99937
                                           /AVE-8A
  .99623
         .99678
  .99971 1.00011 1.00050 1.00095 1.00143
                                           /AVE-8B
                 .99876
                                  .99932
                                           /AVE-9A
         .99825
                         .99904
  .99579
  .99963 1.00002 1.00043 1.00090 1.00145
                                           /AVE-9B
TERM=2 /N17B
   BETA-T-2 = TANGENTIAL VELOCITY ON DIFFERENCE SURFACE
\Pi
    TANGENTIAL VELOCITIES (=GMUX) OBTAINED FROM ANALYSIS RUN
\Pi
    VALUES MUST BE GIVEN AT APPROPRIATE PANEL FINE GRID POINTS, RATHER
\Pi
   THAN CONTROL POINTS, SINCE BOUNDARY CONDITION SPECIFIES GRAD-MU,
\Pi
   THUS BEING A SINGULARITY SPECIFICATION
\Pi
  INPUT-IMAGES = INPUT, 1ST /N17C
   V-DIFFERENCE VALUES REQUIRED AT ALL POINTS, EXCEPT WHERE EQUATION IS
\Pi
      REPLACED BY A DOUBLET MATCHING OR KNOWN DOUBLET CONDITION
H
 POINTS = ALL $ 0. /N17E,F
```

Figure 8.3 - Continued.

POINTS = 0	CENTER	/N17E					
.02099	.02215	.02286	.02239	.02139	/DMU/DX-1	A	
.02013	.01828	.01554	.01157	.00734	/DMU/DX-1	B	
.01956	.01952	.01924	.01918	.01933	/DMU/DX-2	Ā	
-01848	.01638	.01436	-01307	.01222	/DMI/DX=2	B	
.01873	.01855	.01843	.01862	.01713	/DMU/DX = 3	A	
-01433	.01245	01166	.01136	01147		R	
-01788	01755	.01791	.01673	01353		Δ	
.01155	01068	.01042	.01038	.01066	$/DMU/DX_4$	R	
01682	01694	01677	01351	01087		Δ	
00990	001034	00964	01991	01025		R	
.01593	01646	01420	01055	00913		Δ	
00868	00864	01920	001033	01009			
.00000 .	01/05	00300	.00931	.01009		Δ	
00769	01495	01007	00049	00001		н D	
.00709 .	00798	00044	.00901	.00994		D ^	
.01409 .	00740	00790	.00000	.00000		4	
.00000 .	00740	.00795	.008/9	.00959		5	
.0114/ .	00/22	.00585	.00500	.00575	/UMU/UX-9/	4	
.00012 .		.00748	.00850	.00928	/DMU/DX-91	3	
PUINIS = E	DGE /N:		01001				
.02028 .	.01937 .	.01831	.01891	.01862	/DMU/DX-E.	IA	
.0144/ .	.01155 .	.01506	.01696	/DMU/DX-	-E1B		
.00546 .	.00504 .	.00515	.00523	.00538	/DMU/DX-E	2A	
.00568 .	.00637 .	.00704	.00831	.00916	/DMU/DX-E	2B	
.00659 .	00630	00703	.00769	.00814	/DMU/DX-E:	3A	
.00888 .	.01003 .	.01058	.00425	/DMU/DX-	-E3B		
.00092 .	00381	00617	.00758	.00820	/DMU/DX-E4	4A	
.00873 .	00966	.01021	.00967	.00886	/DMU/DX-E4	4B	
POINTS = A	ADDITION/	AL /N1:	7E				
.00000	00535	00829	.00000	/DMU/DX-	-ADD		
// END DA	TA FOR W	ING NET	WORK				
// START D	ATA FOR	WAKE NE	TWORK				
// NETWORK	LIN XY F	PLANE -	NORMAL	VECTOR PC	DINTS UPWAR	RD (+Z-AXIS)
// NETWORK	EDGE 1	= LEAD	ING EDGE	-			
// NETWORK	EDGE 2	= INBO/	ARD EDGI	E (IN PLAN	NE OF SYMME	ETRY)	
// NETWORK	EDGE 3	= TRAIL	ING EDO	SE			
// NETWORK	EDGE 4	= OUTBO)ARD ED(GE			
NE TWORK = WAK	E,2,10	/N2A					
1.00000	.5196	52 0.0	00000	2.00000	.51962	0.00000	
1.00000	.4618	8 0.0	0000	2.00000	.46188	0.00000	
1.00000	.4041	.5 0.0	0000	2.00000	.40415	0.00000	
1.00000	.3464	1 0.0	0000	2.00000	.34641	0.00000	
1.00000	.2886	8 0.0	0000	2.00000	.28868	0.00000	
1.00000	.2309	4 0.0	0000	2.00000	23094	0.00000	
1.00000	.1732	1 0.0	0000	2.00000	.17321	0.00000	
1.00000	.1154	7 0.0	0000	2,00000	.11547	0.00000	
1.00000	.0577	4 0.0	0000	2.00000	.05774	0.00000	
1.00000	0.0000	0 0.C	0000	2.00000	0.00000	0.00000	

تعر

-

8-13

```
BOUNDARY CONDITION=1,4 /N9
    END DATA FOR WAKE NETWORK
\Pi
   OMIT GEOMETRIC EDGE MATCHING DATA GROUP
\Pi
// START FLOW PROPERTIES DATA GROUP
BEGIN FLOW PROPERTIES /FP1
// SURFACE FLOW PROPERTIES CASE 1
SURFACE FLOW PROPERTIES=PRESSURE-CASE-1 /SF1
NETWORKS-IMAGES=WING, INPUT /SF2
               /SF4A
POINTS = ALL
SURFACE SELECTION=UPPER,LOWER,UPLO,AVERAGE /SF5
PRINTOUT=ALL /SF10A
DATA BASE = ALL /SF11A
// START FORCES AND MOMENTS DATA SUBGROUP
FORCES AND MOMENTS /FM1
AXIS SYSTEMS=RCS, 0. 0. 0. /FM3
PRINTOUT=COLSUM, NETWORKS /FM5
DATA BASE = SAME /FM6
// FORCES AND MOMENTS CASE 1
CASE = FORCES-MOMENTS-1
NETWORKS-IMAGES=WING, INPUT /FM8
SURFACE SELECTION=UPLO /FM12
// START PRINT PLOT DATA GROUP
 BEGIN PRINT PLOT DATA /PP1
 GEOMETRY DATA / PP2A
 POINT DATA /PP3A
 CONFIGURATION DATA /PP4A
END PROBLEM DEFINITION
```

Figure 8.3 - Concluded.

Figure 8.4 - Tangential perturbation velocity components at $y_0 = .25995$ for cases 8A and 8B

8-15

P*-- - -

9. NACELLE

Purpose

The purpose of this case is to validate the superinclined panel capability of PAN AIR. Superinclined panels are used only in supersonic problems, and because they are superinclined, they do not affect the upstream flow. One application of superinclined panels is to seal off inlet openings so that the perturbation potential can be set to zero in the interior of a body (e.g., a nacelle). If superinclined panels were not used, internal Mach waves would arise which can cause severe numerical error. Another application of superinclined panels is for specifying exhaust flows, but this application is not described here.

Configuration, Flow, and Modeling

The configuration shown in figure 9.1 consists of an axisymmetric flow-through nacelle with a tapered forward portion and a rear portion aligned with the flow. There are four networks as shown in figure 9.2. Network 1 defines the tapered front, network 2 is the cylindrical rear portion of the nacelle, network 3 is the superinclined network at $x_0 = 1.25$, and network 4 is a wake attached to the trailing edge of the nacelle. The upper surfaces of the two nacelle networks are on the outer side of the nacelle, and the upper surface of the superinclined network faces downstream. The four networks define one quarter of the configuration since there are two planes of geometric symmetry. The Mach number is the square root of 2, and the angles of attack and sideslip are zero.

The tapered front of the nacelle causes a perturbation to the freestream which propagates along Mach lines as illustrated in figure 9.2. In the absence of the superinclined network, this disturbance would propagate without diminution through the interior of the nacelle. The mass flux and velocity are discontinuous across such Mach lines (see figure 39 of reference 9.1). Such jumps in flow properties on the interior side of the nacelle can cause numerical error in the solution for the flow about the exterior of the nacelle. The purpose of the superinclined panels is to nullify the disturbance caused by the nacelle lip and thereby produce a more-or-less uniform internal flow. The internal flow will not be exactly uniform because boundary conditions are satisfied only at a finite number of points.

9–1

The tapered front of the nacelle is modeled with source singularities alone and zero upper (i.e., outer) surface normal mass flux boundary conditions (see discussion of input below). This modeling does not produce impermeability on the inner surface of the lip, but rather results in a considerable volume of fluid being spewed out of the inner surface. This is not the recommended modeling for a nacelle, but is used here to provide a stringent test for a superinclined network. Ordinarily a doublet-only network would be used to model the tapered, forward portion of the nacelle and this would not spew fluid into the nacelle inlet.

The superinclined network has both source and doublet singularities, with two boundary conditions, one specifying zero perturbation potential and the other specifying zero perturbation normal mass flux, on the upper (i.e., downstream) surface. The specification of two boundary conditions on the same side of a panel is generally improper, but on superinclined panels it is required (see sections B.3.6.6 and A.3 of the User's Manual (ref. 2)) on theoretical grounds. Given sufficiently dense paneling, these boundary conditions produce an unperturbed freestream in the interior of the nacelle downstream from the superinclined network, with the source and doublet strengths on the face being precisely those required to "absorb" the disturbance caused by the nacelle lip.

Given the zero perturbation potential downstream of the superinclined network, the standard class 1 boundary conditions for a thick object may now be imposed on the rear portion of the nacelle. A successful prediction of the pressure distribution on the outer surface of the rear portion of the nacelle by means of these indirect boundary conditions is only possible, however, if the internal flow is an essentially unperturbed freestream.

Input

The input is shown in figure 9.3. Note the use of class 4 boundary conditions for the first and third networks. For the first network, the input values on record G9 correspond to the boundary conditions (see figure 7.7 of the User's Manual):

$$\mathbf{\dot{w}}_{U} \bullet \mathbf{\ddot{n}} = -\mathbf{\dot{U}}_{0} \bullet \mathbf{\ddot{n}}$$
(9.1a)

$$\mu = 0 \tag{9.1b}$$

while for the third network the resulting boundary conditions are:

$$\overrightarrow{w}_{11} \bullet \overrightarrow{n} = 0 \tag{9.2a}$$

$$\phi_{||} = 0 \tag{9.2b}$$

9–2

R

Note that the method of velocity computation for network 1 is "nonstagnation" (record N10). The nonstagnation method must be specified for boundary condition classes 4 and 5 whenever the surface velocity is to be computed from the boundary condition method and the perturbation potential on both sides of the surface is not identically zero. The boundary conditions (9.1a) and (9.1b) do not cause the perturbation potential to be zero on either side of the first network, and, therefore, the nonstagnation method must be specified for this network. When PAN AIR uses the nonstagnation method for network 1 the normal mass flux is obtained indirectly from the boundary conditions (i.e., 9.1a), while the potential is obtained from the influence coefficients. The potential is then splined and differentiated to compute the tangential velocity. The tangential velocity is then combined with the normal mass flux to compute all three components of velocity.

The method of velocity computation for network 3 (inlet barrier) is specified to be UPPER-SURFACE-STAGNATION (Record N10) since the perturbation on the upper (i.e., downstream) side is specified to be zero (eq. 9.2b).

Note that if surface velocities for networks 1 and 3 were not to be computed by the BOUNDARY-CONDITION method, then record N10 could have been omitted. Also note that record N10 is only required for boundary condition classes 4 and 5.

Results and Discussion

Results from the PAN AIR pilot code (see INTRODUCTION for references) for two different panel densities are shown in figure 9.4 and are compared there with a theoretical solution (Lighthill, reference 9.2). In figure 9.5, PAN AIR and pilot code results are compared for the case of 96 panels on the superinclined network. For reasons of economy, the PAN AIR solution computed velocities from the boundary conditions (BOUNDARY-CONDITION-METHOD), while the pilot code computed the velocities from the velocity influence coefficients as well (VIC-LAMBDA-METHOD). Pressures computed from the influence coefficients are only shown where they differ measureably from pressures computed from the boundary conditions.

Several items are worth noting here. First, one indication of an inaccurate solution is the disparity between results computed by the BOUNDARY-CONDITION-METHOD and the VIC-LAMBDA-METHOD. Another indication of inaccuracy is a strongly oscillatory solution, such as the pilot code solution for 48 panels.

The modeling used here is one of the most severe possible tests of the superinclined panel capability, since the source-alone modeling of the tapered front generates a large amount of fluid and the indirect impermeability boundary conditions (i.e., class 1, subclasses 1 and 2) are highly sensitive to internal perturbations. Figure 9.4 shows that adding more superinclined panels yields a pressure distribution which is converging toward the correct one, but figure 9.5 shows that with 96 superinclined panels, the resulting PAN AIR numerical solution is far from smooth. In practical cases (i.e., using doublets rather than sources for the nacelle portions upstream of the face) nacelle inlet faces will not be required to nullify such large perturbations. Therefore, 96 or more panels are not necessarily always required.

The most significant error evident in figure 9.5 is in the immediate neighborhood of the point where the Mach wave strikes the inner surface of the nacelle network, showing that the superinclined panels have not completely absorbed the disturbance. As may be expected from the PAN AIR splining techniques, the numerical error also propagates upstream from its source, though to a much lesser degree than it propagates downstream.

REFERENCES

 ~ 2

- 9.1 Carmichael, R. L.; and Erickson, L. L.: PAN AIR A Higher Order Panel Method for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations. AIAA paper 81-1255, June, 1981.
- 9.2 Lighthill, M.J.: Supersonic Flow Past Slender Bodies of Revolution, the Slope of whose Meridian Section is Discontinuous. Quarterly Journal of Mechanics and Applied Mathematics, Vol. I, No. 90, 1948.

9-6

b. Superinclined network

Figure 9.1 Concluded

-

Figure 9.2 - Network arrangement for nacelle, & Mach line pattern 9-8

```
// PAN AIR CASE MANUAL CASE 9
// NACELLE WITH SUPERINCLINED NETWORK INSIDE, MACH=1.414
11
    SIMILAR TO NASA CR-3062, FIGURE 86, P. 227
// VERSION WITH 2 PLANES OF CONFIGURATION AND FLOW SYMMETRY
// CONFIGURATION MODEL HAS 3 NON-WAKE NETWORKS, 252 PANELS
// CONFIGURATION MODEL HAS 1 WAKE NETWORK, 6 PANELS
// (FOR ONE-QUARTER OF ENTIRE CONFIGURATION)
 BEGIN GLOBAL DATA
                         /G1
PID=NACELLE WITH SUPERINCLINED NETWORK AS BARRIER, M=1.414
UID=USER IDENTIFICATION
 CONFIGURATION = SECOND, SYMMETRIC-FLOW
                                             /G4
 MACH = 1.414
                   /G5
// DEFINE 1 SOLUTION, WITH ALPHA=0.
ALPHA = 0.
               /66.1
SID = SOLN-1
              /G6.2
SURFACE SELECTION = UPPER, LOWER /G8
PRESSURE COEF RULES = ISENTROPIC, SECOND-ORDER /G12
CHECKOUT PRINTS = DIP 1 2 3, DQG 1 2 4 5 6 /G17
 BEGIN NETWORK DATA
                              /N1
\Pi
    START DATA FOR NETWORK 1
NETWORK = TAPERED-FRONT,
                            7, 11, NEW
                                             /N2A
    0.00000
               0.00000
                            .87300
    0.00000
                 .22595
                            .84326
    0.00000
                .43650
                            .75604
    0.00000
                .61731
                            .61731
    0.00000
                .75604
                            .43650
    0.00000
                .84326
                            .22595
    0.00000
                 .87300
                           -.00000
     .12500
               0.00000
                            .89713
     .12500
                .23219
                            .86656
     .12500
                .44857
                            .77694
     .12500
                .63437
                            .63437
     .12500
                .77694
                            .44857
     .12500
                .86656
                            .23219
     .12500
                .89713
                           -.00000
     .25000
               0.00000
                           .91872
     .25000
                .23778
                           .88742
     .25000
                .45936
                           .79564
     .25000
                .64963
                           .64963
     .25000
                .79564
                           .45936
     .25000
                .88742
                           .23778
     .25000
                .91872
                          -.00000
     .37500
               0.00000
                           .93777
     .37500
                .24271
                           .90582
    .37500
                .46889
                           .81213
    .37500
                .66310
                           .66310
    .37500
                .81213
                           .46889
```

Figure 9.3 - Input for test case 9.

.37500	.90582	.24271
.37500	.93777	00000
.50000	0.00000	.95428
.50000	.24699	.92176
.50000	.47714	.82643
.50000	.67478	.67478
.50000	.82643	.47714
.50000	.92176	.24699
.50000	.95428	00000
.62500	25060	93526
.02000	.25000	83853
.02000	68466	68466
62500	.83853	.48413
62500	.93526	.25060
.62500	.96825	00000
75000	0.00000	.97968
.75000	.25356	.94630
.75000	.48984	.84843
.75000	.69274	.69274
.75000	.84843	.48984
.75000	.94630	.25356
.75000	.97968	00000
.87500	0.00000	.98857
.8/500	.25586	.95489
.87500	.49429	.03013
.8/500	.09902	.09902
.0/000	.05/190	25586
87500	98857	00000
1 00000	0.00000	.99492
1.00000	.25750	.96102
1.00000	.49746	.86163
1.00000	.70351	.70351
1.00000	.86163	.49746
1.00000	.96102	.25750
1.00000	.99492	00000
1.12500	0.00000	.99873
1.12500	.25849	.96470
1.12500	.4993/	.00493 70621
1 12500	961021	49937
1 12500	96470	.25849
1 12500	.99873	00000
1.25000	0.00000	1.00000

Figure 9.3 - Continued.

9–10

1.25000 .25882 .96593 .50000 1.25000 .86603 .70711 1.25000 .70711 .86603 1.25000 .50000 1.25000 .96593 .25882 1.25000 1.00000 -.00000 // NORMAL VECTOR POINTS OUTWARD, // UPPER SURFACE IS EXPOSED TO EXTERNAL FLOW FIELD // CLASS 4 BOUNDARY CONDITIONS EQUATION 1 - ZERO TOTAL MASS FLUX ON UPPER SURFACE Π EQUATION 2 - ZERO DOUBLET STRENGTH Π BOUNDARY CONDITION = 4, 1 1, 8 3 /N9METHOD OF VELOCITY COMPUTATION = NONSTAGNATION /N10 SINGULARITY TYPES = SA NOD /N11 // END OF DATA FOR NETWORK 1 // START DATA FOR NETWORK 2 NETWORK = CYLINDRICAL-BODY, 7, 17, NEW /N2A 1.25000 0.00000 1.00000 1.25000 .25882 .96593 1.25000 .50000 .86603 1.25000 .70711 .70711 .86603 .50000 1.25000 .25882 1.25000 .96593 -.00000 1.25000 1.00000 1.37500 0.00000 1.00000 1.37500 .25882 .96593 .50000 .86603 1.37500 .70711 1.37500 .70711 1.37500 .86603 .50000 .96593 1.37500 .25882 1.37500 1.00000 -.00000 1.50000 0.00000 1.00000 .25882 .96593 1.50000 .50000 1.50000 .86603 .70711 .70711 1.50000 1.50000 .86603 .50000 .96593 .25882 1.50000 1.00000 -.00000 1.50000 1.62500 0.00000 1.00000 1.62500 .25882 .96593 .50000 1.62500 .86603 .70711 .70711 1.62500 1.62500 .86603 .50000 .96593 .25882 1.62500 1.62500 1.00000 -.00000 1.00000 1.75000 0.00000 1.75000 .25882 .96593

1.75000	.50000	.86603 70711
1.75000	.86603	.50000
1.75000	.96593	.25882
1.87500	0.00000	1.00000
1.87500	.25882	.96593
1.87500	.50000	.86603
1.87500	.86603	.50000
1.87500	.96593	.25882
2.00000	0.00000	1.00000
2.00000	.25882	.96593
2.00000	.50000	.80603
2.00000	.86603	.50000
2.00000	.96593	.25882
2.12500	0.00000	1.00000
2.12500	.25882	.96593
2.12500	.50000	.86603 70 7 11
2.12500	.86603	.50000
2.12500	.96593	.25882
2.12500	0.00000	1.00000
2.25000	.25882	.96593
2.25000	.50000	.86603
2.25000	.86603	.50000
2.25000	.96593	.25882
2.25000	1.00000	00000
2.37500	.25882	.96593
2.37500	.50000	.86603
2.37500	.86603	.50000
2.37500	.96593	.25882
2.37500	0.00000	1.00000
2.50000	.25882	.96593
2.50000	.50000	.86603
2.50000	.86603	.50000
2.50000	.96593	.25882
2.50000	1.00000	00000

Figure 9.3 - Continued.

9–12

۹- I ...

2.62500 2.62500 2.62500 2.62500 2.62500 2.62500 2.75000 2.75000 2.75000 2.75000 2.75000 2.75000 2.87500 2.87500 2.87500 2.87500 2.87500 2.87500 2.87500 3.00000 3.00000 3.00000 3.00000	0.00000 .25882 .50000 .70711 .86603 .96593 1.00000 0.00000 .25882 .50000 .70711 .86603 .96593 1.00000 0.00000 .25882 .50000 .70711 .86603 .96593 1.00000 0.00000 .25882 .50000 .70711 .86603 .96593	$\begin{array}{c} 1.00000\\ .96593\\ .86603\\ .70711\\ .50000\\ .25882\\00000\\ 1.00000\\ .96593\\ .86603\\ .70711\\ .50000\\ .25882\\00000\\ 1.00000\\ .96593\\ .86603\\ .70711\\ .50000\\ .25882\\00000\\ 1.00000\\ .96593\\ .86603\\ .70711\\ .50000\\ .25882\\00000\\ 1.00000\\ .96593\\ .86603\\ .70711\\ .50000\\ .25882\\00000\\ .25882\\00000\\ .25882\\00000\\ .25882\\0000\\ .25882\\0000\\ .25882\\0000\\ .25882\\0000\\ .25882\\0000\\ .000$		
2.87500	.00003	25882		
2.87500	1 00000	- 00000		
3,00000	0.00000	1.00000		
3.00000	.25882	.96593		
3.00000	.50000	.86603		
3.00000	.70711	.70711		
3.00000	.86603	.50000		
3.00000	.96593	.25882		
3.00000	1.00000	00000		
3.12500	0.00000	1.00000		
3.12500	.25882	.90593		
3.12500	.50000	.00003 70711		
3.12500	.86603	.50000		
3.12500	.96593	.25882		
3.12500	1.00000	00000		
3.25000	0.00000	1.00000		
3.25000	.25882	.96593		
3.25000	.50000	.86603		
3.25000	./0/11	./0/11		
3.25000	.80003	.50000		
3.25000	1.00000	00000		
// NORMAL VEC	FOR POINTS	OUTWARD.		
// UPPER SURF	ACE IS EXP	DSED TO EXTERNAL	FLOW	FIELD
BOUNDARY COND	[TION = 1,	1 /N9		
// END OF DATA	A FOR NETWO	DRK 2		

1

// START DA	ATA FOR NET	WORK 3		_	
// FINE PAN	NELING - 9	6 PANELS I	N QUADRAN	10.0	
NETWORK = IN	NLET-BARRIE	R, 7, 1/,	NEW /r	NZA	06503
1.25000	0.00000	1.00000	1.25000	.25882	.90393
1.25000	.50000	.86603	1.25000	./0/11	./0/11
1.25000	.86603	.50000	1.25000	.90593	.2002
1.25000	1.00000	00000	1 25000	0 00000	93750
		00555	1.25000	46975	.93730 81100
1.25000	.24264	.90550	1.25000	.40075 81100	46875
1.25000	.00291	.00291	1 25000	93750	00000
1.25000	.90550	87500	1 25000	22647	.84519
1.25000	43750	75777	1.25000	.61872	.61872
1 25000	76777	43750	1,25000	.84519	.22647
1 25000	87500	00000			
1.23000	.0/000		1.25000	0.00000	.81250
1.25000	.21029	.78481	1.25000	.40625	.70365
1,25000	.57452	.57452	1.25000	.70365	.40625
1 25000	.78481	.21029	1.25000	.81250	00000
1,25000	0.00000	.75000	1.25000	.19411	.72444
1,25000	.37500	.64952	1.25000	.53033	.53033
1.25000	.64952	.37500	1.25000	.72444	.19411
1.25000	.75000	00000			
			1.25000	0.00000	.68750
1.25000	.17794	.66407	1.25000	.34375	.59539
1.25000	.48614	.48614	1.25000	.59539	.343/5
1.25000	.66407	.17794	1.25000	.68/50	00000
1.25000	0.00000	.62500	1.25000	.161/6	.60370
1.25000	.31250	.54127	1.25000	.44194	.44194
1.25000	.5412/	.31250	1.25000	.60370	.101/0
1.25000	.62500	00000	1 25000	0 00000	56250
1 05000	14550	64222	1.25000	20125	1871/
1.25000	.14559	.54333	1.25000	.20125	28125
1.25000	.39//3	.39775	1 25000	56250	_ 00000
1.25000	.54333	.14559	1 25000	12941	48296
1.25000	25000	.30000	1 25000	35355	.35355
1.25000	43301	25000	1.25000	.48296	.12941
1 25000	50000	- 00000	1.20000		
1.23000	.30000	.00000	1.25000	0.00000	.43750
1 25000	.11323	.42259	1.25000	.21875	.37889
1,25000	.30936	.30936	1.25000	.37889	.21875
1,25000	.42259	.11323	1.25000	.43750	00000
1.25000	0.00000	.37500	1.25000	.09706	.36222
1.25000	.18750	.32476	1.25000	.26517	.26517
1.25000	.32476	.18750	1.25000	.36222	.09706
1.25000	.37500	00000			

$\begin{array}{c} 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \end{array}$.08088 .22097 .30185 0.00000 .12500 .21651 .25000	.30185 .22097 .08088 .25000 .21651 .12500 00000	$\begin{array}{c} 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \\ 1.25000 \end{array}$	0.00000 .15625 .27063 .31250 .06470 .17678 .24148	.31250 .27063 .15625 00000 .24148 .17678 .06470
1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000	.04853 .13258 .18111 0.00000 .06250 .10825 .12500	.18111 .13258 .04853 .12500 .10825 .06250 00000	1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000	0.00000 .09375 .16238 .18750 .03235 .08839 .12074	.18750 .16238 .09375 00000 .12074 .08839 .03235
1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 // SUPERINCL	.01618 .04419 .06037 0.00000 0.00000 0.00000 0.00000 INED NETWO	.06037 .04419 .01618 0.00000 0.00000 0.00000 0.00000 RK	1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000	0.00000 .03125 .05413 .06250 0.00000 0.00000 0.00000	.06250 .05413 .03125 00000 0.00000 0.00000 0.00000
<pre>// NORMAL VE // LOWER SUR // 2 BOUNDAR // CLASS 4 BOUNDARY CON METHOD OF VI SINGULARITY // END OF DA // START DA </pre>	CTOR POINT FACE IS EX Y CONDITIO OUNDARY CO DITION = 4 ELOCITY CON TYPES = S/ TA FOR NETW TA FOR NETW	S AFTWARD POSED TO E NS SPECIFI NDITIONS , 1 3, 5 3 MPUTATION = A DA /N1 NORK 3 NORK 4	XTERNAL FL ED ON UPPE /N9 = UPPER-SUI L	OW FIELD R (DOWNSTR RFACE-STAG	EAM) SURFACE NATION /N1O
NETWORK = WAH 3.25000 4.25000 3.25000 4.25000 3.25000 4.25000 3.25000 4.25000 3.25000 3.25000 3.25000	<pre>KE, 2, 7, 0.00000 0.00000 .25882 .25882 .50000 .50000 .70711 .70711 .86603</pre>	NEW /N2 1.00000 1.00000 .96593 .96593 .86603 .86603 .70711 .70711 .50000	2A		
4.25000 3.25000 4.25000	.86603 .96593 .96593	.50000 .50000 .25882 .25882			

· ------

/

-.00000 1.00000 3.25000 1.00000 -.00000 4.25000 BOUNDARY CONDITION = 1. 4 /N9 // END OF DATA FOR NETWORK 4 Π /FP1 BEGIN FLOW PROP DATA SURFACE FLOW PROPERTIES = EXTERIOR-NETWORKS /SF1 NETWORKS-IMAGES = 1, INPUT = 2, INPUT /SF2 /SF4A-DEFAULT POINTS = CENTER /SF10A PRINTOUT=ALL /SF11A DATA BASE=ALL SURFACE FLOW PROPERTIES = BARRIER-NETWORK /SF1 NETWORKS-IMAGES = 3 /SF2 /SF4A-DEFAULT POINTS = CENTERPRINTOUT /SF10A DATA BASE /SF11A /FM1 FORCES AND MOMENTS AXIS SYSTEMS = RCS /FM3 CASE = EXTERIOR-NETWORKS /FM7 NETWORKS-IMAGES = 1, INPUT = 2, INPUT /FM8 SURFACE SELECTION = UPL0 /FM12 / FM16 PRESSURE COEFFICIENT RULES = ISENTROPIC ACCUMULATE /FM21 CASE = BARRIER-NETWORKS /FM7 NETWORKS-IMAGES = 3, INPUT /FM8 SURFACE SELECTION = UPLO /FM12 PRESSURE COEFFICIENT RULES = ISENTROPIC / FM16 ACCUMULATE /FM21 BEGIN PRINT PLOT DATA /PP1 GEOMETRY DATA /PP2A POINT DATA /PP3A CASES = 1 / PP3BNETWORKS-IMAGES = 1, INPUT = 2, INPUT /PP3D CASES = 2 / PP3BNETWORKS-IMAGES = 3, INPUT / PP3D CONFIGURATION DATA /PP4A CASES = 1 / PP4BNETWORKS-IMAGES = 1, INPUT = 2, INPUT /PP4D CASES = 2 / PP4BNETWORKS-IMAGES = 3, INPUT /PP4D END PROBLEM DEFINITION

Figure 9.3 - Concluded.

9-16

Figure 9.4 - Comparison of pressure distributions on the exterior surface of the nacelle containing an interior superinclined network

lan - -

10. ADDED MASS VALIDATION

Richard T. Medan and David J. Purdon Boeing Computer Services Company

Purpose

The purpose of the cases described in this section is to demonstrate the numerical correctness of PAN AIR's added mass calculations. There are five basic types of geometry involved, and for each there exist analytical or experimental data against which PAN AIR can be compared. These geometries and the type of comparative data available are as follows:

- 1. General triaxial ellipsoids, analytical (ref. 10.1)
- 2. Elliptical plates, analytical (ref. 10.1)
- 3. Sheres near a wall, analytical (ref. 10.2)

- 4. Rectangular plates, experimental (refs. 10.3 and 10.4)
- Parallelepipeds, experimental (refs. 10.3 and 10.4) 5.

The results presented in this section were computed with version 1.1 of PAN AIR.

For each of the preceding types of geometries, cases were run for several geometrical parameters (e.g., for several aspect ratios in the elliptical plate cases).

Added mass calculations involve some flow fields that are asymmetrical about any planes of geometric symmetry, excluding ground effect planes. However, version 1.1 of PAN AIR contains an error that does not permit the ASYMMETRIC-FLOW option to be specified (List(2) and List(3) in record G4) in combination with the plane(s) of geometric symmetry option. Therefore, it was necessary to input the entire geometry and to use the ASYMMETRIC-GEOMETRY option for record G4, except that List(2) and the GROUND-EFFECT option were permitted on record G4 for the sphere near a wall cases. When the ASYMMETRIC-FLOW option is fixed, then only one-fourth as many panels would be required for geometries 1, 2, 4, and 5 above, and only one-half as many panels for geometry 3.

For all of the above geometries there are at most only six added mass coefficients that will be discussed: M_{11} , M_{22} , M_{33} , I_{11} , I_{22} , and I_{33} . M_{11} is a measure of fluid reaction force in the x_0 -direction arising from acceleration of the body in the x_0 -direction. Similarly, M_{22} measures the fluid reaction force in the y_0 -direction arising from acceleration in the y_0 -direction. I_{11} measures the fluid reaction moment about the x_0 -axis due to angular acceleration about the x_0 -axis due to angular acceleration of the solution the y_0 -axis due to angular acceleration of the solution the solution arising from acceleration about the solution force the fluid reaction moment about the solution acceleration about the solution force the fluid reaction moment about the solution about the solution and the solution about the solution solution about the solution solution about the solution solution about the solution solution solution solution about the solution solu

In the CDP output, M_{11} is in the row labelled "X" and the column labelled "U", M_{22} is in the row labelled "Y" and the column labelled "V", M_{33} is in the row labelled "Z" and the column labelled "W", I_{11} is in the column labelled "P" and the row labelled "K", etc., as shown in the table that follows:

Additional background on the PAN AIR added mass capability is provided in Appendix E of the Version 1.1 PAN AIR User's Manual.

10.1 Triaxial Ellipsoids

Configuration and Modeling

The triaxial ellipsoids are defined by the following equation:

$$(x_0/a)^2 + (y_0/b)^2 + (z_0/c)^2 = 1$$

The ellipsoid panelling was accomplished using the POTGEM program (ref. 10.5). Another program, PANGEM, was developed that interfaces POTGEM to PAN AIR.

The technique used for panelling the triaxial ellipsoids was to first panel a sphere using cosine spacing in the x_0 -direction and even spacing in the circumferential direction, and then to stretch the sphere (using the POTGEM STRETCH command) into the desired ellipsoid by multiplying all x_0 -values by a, all y_0 -values by b, and all z_0 -values by c. An example of panels so derived is provided in figure 10.1-1.

Each case was modelled using two networks. The first network is in the domain $y_0 \ge 0$, and the second is in the domain $y_0 \le 0$. The reason for using two networks instead of just one network was that PAN AIR does not permit opposite edges of a network to abut if either of the remaining two edges is collapsed.

For all values of a, b, and c, 6 panels in the x_0 -direction and 24 panels in the circumferential direction (12 on each of the two networks) were used for a total of 144 panels. In addition, 8 panels in the x_0 -direction and 36 panels in the circumferential direction (288 panels total) were used in some cases to assess the adequecy of the panel density.
Input

The DIP input deck for the 6 X 12 network paneling is shown in figure 10.1-2. Note the following:

- Record G4 was required because, as was previously mentioned, version
 1.1 of PAN AIR cannot use the geometric symmetry option with asymmetric flow.
- 2. Record G5 was not actually required since MACH=0. is the record default. The Mach number should not be anything but zero for added mass runs.
- 3. Record G8 was not actually required because SURFACE=UPPER is the record default.
- 4. STORE VIC MATRIX occurs because surface flow properties computed by the VIC-LAMBDA method were desired in addition to the added mass coefficients.
- 5. Record G18 is the signal to PAN AIR that CDP should print out added mass coefficients and not forces and moments. Record G18 also causes DIP to calculate the correct right hand sides, and, therefore, record set G6 (global onset flow) should not occur in an added mass run. The six right hand sides that are calculated by DIP when G18 is present correspond to flow fields seen by the body when it has unit speed along each of the axes (solutions 1, 2, and 3) or unit angular velocity about each of the axes (solutions 4, 5, and 6).
- 6. Record N7 was not actually required, since a global tolerance of 1.E-10 was already established in the GLOBAL (G) records.

7. The three solutions specified by record SF3 correspond to unit magnitude flow along the $-x_0$, $-y_0$, and $-z_0$ axes, respectively.

8. Records FI13 and FM4 were not required.

Results and Discussion

Some early results obtained for the case of the sphere indicated that the added mass coefficients as calculated by PAN AIR were somewhat low even though the surface potential was quite accurate. This suggested that the results could be improved by some simple geometrical factors to account for the fact that the panel models of the ellipsoids have less surface area and volume than the true ellipsoids they are meant to represent. POTGEM calculates the surface area of the configurations it panels (i.e., it adds up the areas of each of the individual panels), but it does not calculate volumes enclosed within configurations, and neither does PAN AIR. Therefore, the simple geometrical correction factors could, without any computer code modifications, be obtained only from the ratio of the exact area of the ellipsoids to the panelled area of the ellipsoids. In particular, dimensional analysis shows that the $M_{i,i}$ coefficients (i.e., those with row labels of X, Y, and Z and column labels of U, V, and W in the CDP output) should be multiplied by the area ratio raised to the 3/2 power and the I_{ij} coefficients (i.e., those with row labels of K, L, and M and column labels of P, Q, and R) should be multiplied by the area ratio raised to the 5/2 power. Multiplying the results by these correction factors is exactly equivalent to analyzing ellipsoids that are uniformly dilated such that the sum of the areas of the panels is equal to the true surface area of the ellipsoid being modelled. Table 10.1-1 shows the correction factors for all ellipsoids that were to have been analyzed.

1

Tables 10.1-2 and 10.1-3 show the corrected, and theoretically non-zero coefficients for all cases analyzed and compare them to analytical results (Note that the reference area and length were 1.0 by default and that the reference density is 2.0 in PAN AIR.). Most of the analytical results were read from graphs given in reference 10.1 and are themselves subject to some error.

Perfect symmetry in the PAN AIR results is not prevalent where it should be prevalent (e.g., M_{11} , M_{22} , and M_{33} should all be equal for the sphere). Also, some of the off-diagonal coefficients (not shown) were non-zero. These anomalies occured partly because of round-off error, but primarily because of asymmetry in the boundary conditions (the edge of one network has an aerodynamic boundary condition, while the corresponding edge of the adjoining network has a matching boundary condition).

The PAN AIR results are least accurate in the extreme cases (e.g., a=10, b=1, c=0.1). Of the extreme cases, the one of most interest is the case a=10, b=c=1, because this is most like a submarine hull. Considering, however, that this same accuracy can be obtained with only half as many panels once the ASYMMETRIC-FLOW option is fixed, the results seem satisfactory.

The increased accuracy arising from using the previously-described correction factors suggests that this same technique should be useful for all cases in which the panel model does not accurately describe the true surface of the real model. The correction, as noted above, can be effected a priori by uniformly increasing each panel's size such that the panelled area equals the true area, or it may be effected a posteriori (as in the present case) by applying correction factors to the results printed by PAN AIR's CDP module.

10.2 Elliptical Plates

Configuration and Modeling

The equations describing the elliptical plates are as follows:

 $(y_0/a)^2 + (z_0/b)^2 = 1$

 $x_0 = 0$

and

POTGEM was again used to develop the paneling. The technique used in POTGEM was similar to the technique used for the ellipsoids. In particular, panels for a circular disk were developed and then the circular disk was stretched into the appropriate elliptical plate. The panel distribution on the disk before stretching was semi-cosine radially (with the densest panels being at the outer edge) and uniform circumferentially. After being stretched, the circumferential paneling is not uniform, but is such that panels are more concentrated in regions of high curvature. An example is provided in figure 10.2-1.

Again, it was necessary to model each case using two networks. The first network is in the domain $z_0 \ge 0$, while the second is in the domain $z_0 \le 0$.

The number of panels was increased with the aspect ratio because it was anticipated that this would be necessary to keep the error more or less constant.

Input

The DIP input deck for the a=2, b=1 case is shown in figure 10.2-2. Note the following:

- SURFACE = AVERAGE in the global data set is used because both surfaces of the elliptical plate are exposed to the flow.
- 2. AXIS SYSTEMS = RCS and SOLUTIONS = 1 2 3 4 5 6 in the flow properties data set are not required.

Results and Discussion

As in the case of the ellipsoids, the panel representations of the elliptical plates always had less surface area than the true elliptical plates that the panels are supposed to represent. Therefore, the same corrections were applied to the elliptical plate cases. In particular, M_{11} was multiplied by the 3/2 power of the ratio of the exact surface area to the paneled surface area and I_{22} and I_{33} were multiplied by the 5/2 power of this ratio (M_{11} , I_{22} , and I_{33} are, theoretically, the only non-zero added mass coefficients for this geometry). These correction factors are shown in Table 10.2-1.

Corrected PAN AIR M_{11} and I_{11} coefficients are compared with analytical results in Tables 10.2-2 and 10.2-3. It is evident that the correction factors are not as effective in reducing errors as they are for the triaxial ellipsoid cases. Also the rate of increase of panel density with aspect ratio was greater than required to keep the error relatively constant. Figure 10.2-3 is a convergence plot for M_{11} for the circular disk. A smooth curve can be faired between the origin and the three data points and this provides some additional evidence of the correctness of the PAN AIR added mass calculations.

10.3 Spheres Near a Wall

Configuration and Modeling

The configuration consists of a unit radius sphere centered at the origin, plus a ground plane defined by the equation $z_0=h$. The values of h considered are 1.1, 1.5, 2.0, 3.0, and infinity.

Again, it was necessary to model each case using two networks. The first network is in the domain $y_0 \ge 0$, while the second is in the domain $y_0 \le 0$.

The panelling was accomplished using POTGEM in the same way as for the triaxial ellipsoids. The same panelling density was used for all values of h (but this density was not the same as that used for the triaxial ellipsoids). In particular, there were 8 cosine-spaced panels in the longitudinal direction $(x_0$ -direction) and 16 uniformly-spaced panels (8 on each network) circumferentially, as shown in figure 10.3-1.

Input

The input for the case h=1.1 is shown in figure 10.3-2. Note the following:

- 1. The CONFIGURATION = FIRST ... record defines the ground effect plane as the plane $z_0=1.1$.
- 2. The record MACH = 0. could have been omitted.
- 3. The records AXIS SYSTEMS = RCS and SOLUTIONS = 1 2 3 4 5 6 also could have been omitted.

Results and Discussion

The uncorrected M_{11} , M_{22} , and M_{33} coefficients calculated by PAN AIR are shown in Table 10.3-1 (These are the only theoretically non-zero coefficients). To isolate the wall effects and eliminate the need for correction factors, the coefficients for finite h were divided by the corresponding coefficients for infinite h. These ratios and the corresponding deviations from the analytical result in Figure 62.B in ref. 10.2 are presented in Table 10.3-2.

10.4 Rectangular Plates

Configuration and Modeling

The rectangular plates are defined by the following equations:

 $0 \le x_0 \le 2a$ $0 \le y_0 \le 2b$ $z_0 = 0$

and

where 2a = 1 and 2b takes on the values 1.0, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, and 10.0.

Cosine spacing was used in both the x_0 and y_0 directions. The number of panels in the x_0 direction was 6, while the number of panels in the y_0 -direction was increased as b was increased. The paneling for the case b=1.5 is shown in figure 10.4-1.

Only one network was required for each of these cases.

Input

The input for the case b=1.5 is shown in figure 10.4-2. Note the following:

1. Record G5 was not required.

 SURFACE SELECTION = AVERAGE was used since both surfaces of the network are exposed to the flow.

The record AXIS SYSTEM = RCS was not required.

10-12

Ę

Record FM8 was not required.

Results and Discussion

Nondimensional M₃₃ added mass coefficients (i.e., the coefficients for motion of the plates normal to themselves) calculated by PAN AIR are presented in Table 10.4-1 and are compared to experimental results in figure 10.4-3. The experimental coefficients were derived from observations of the natural frequencies of the plates immersed in water and connected to springs. There is a rather large discrepancy with the experimental coefficients always being greater than the PAN AIR coefficients. Possible reasons for this discrepancy are as follows:

- 1. The experimental data are for finite thickness plates. The variation with thickness is very large for small thicknesses as can be seen from figure 2 of reference 10.4.
- 2. In the experiments, boundary layers arise which, due to their displacement effect, cause the plates to appear larger to the flow fields than they really are.
- 3. Reference 10.3 shows a significant effect of oscillation magnitude and frequency on the results, yet none of the experimental results in figure 10.4-3 are corrected for these effects.

As a consequence, the discrepancy should not be taken as evidence of errors in the added mass formulation or coding for PAN AIR. Furthermore, note that the exact analytical result for a two dimensional flat plate is also presented in figure 10.4-3 and that this result lies below some of the experimental data even though the latter are for finite aspect ratio plates. This is further evidence that the discrepancies between PAN AIR and experiment are not an indication of errors in PAN AIR.

4.

10.5 Parallelepipeds

Configuration and Modeling

The equations defining the parallelepipeds are the following:

0	<u><</u>	×o	<u><</u>	2a	
0	<u><</u>	У _О	<u><</u>	2Ъ	
0	<	z _o	<	2c	

and

-- where a, b, and c take on sundry values.

POTGEM and PANGEM were again used to generate the panelling. In most cases two panel densities were considered for every value of a, b, and c. The panelling used had the following properties:

- 1. The panelling on each of the six faces was cosine-spaced in each direction.
- 2. The number of panels in the x_0 -direction divided into a, the number of panels in the y_0 -direction divided into b, and the number of panels in the z_0 -direction divided into c were made as equal as possible. In other words, the <u>average</u> panel widths in each of the 3 coordinate directions were made as equal as possible.
- 3. The panelling was compatible at each of the 12 edges of each parallelepiped. That is, corner points abutted corner points.

An example is provided in figure 10.5-1. 10-14 As previously stated, version 1.1 of PAN AIR does not allow the planes of geometric symmetry option to be used with unsymmetrical flow. Therefore, it was necessary to use one network for each of the six faces of each parallelepiped. When this error is fixed (i.e., when the ASYMMETRIC-FLOW option on record G4 is permitted), then it will be possible to use only four networks and one-fourth as many panels to get the same result.

Input

The input for the case a=3, b=4, and c=2.5 is shown in figure 10.5-2. Note the following:

- The STORE VIC MATRIX global data record was used because surface flow properties computed by the VIC method were desired in addition to the added mass coefficients.
- 2. The PRESSURE = REDUCED global data record is not needed.
- 3. Unit normals for networks 1, 4, and 6 point outward, and unit normals for networks 2, 3, and 5 point to the interior of the parallelepiped.
- 4. The NETWORKS = ... record in the forces and moment group and the correct use of the RETAIN and REVERSE options appearing thereon is required since a SURFACE = UPPER record appeared in the global data group and this surface selection was not overridden (by record FM12) in the forces and moments group. Note, however, that if a SURFACE = UPLO record (record FM12) were inserted into the forces and moments group then the NETWORKS = ... record would not have been required because SURFACE=UPLO causes calculation of the net vector force sum, which is independent of the unit normal direction.

Results and Discussion

The M_{11} added mass coefficients (i.e., the coefficients for motion of the parallelepipeds in the x_0 -direction) calculated by PAN AIR are compared with experimental results from refs. 10.3 and 10.4 in Tables 10.5-1 and 10.5-2. Again there are discrepancies between PAN AIR and experiment. Possible reasons for these discrepancies are the same as for the rectangular plate results (except for finite thickness effects) plus, in addition, the results from ref. 10.3 are for a mean displacement-to-diameter ratio of 1.46, which, judging from data presented in ref. 10.3, is far too large for a meaningful comparison. Consequently, the discrepancies should not be taken as evidence of errors in the added mass formulation or coding for PAN AIR.

References

- 10.1 Tuckerman, L. B.: "Inertia Factors of Ellipsoids for use in Airship Design." NACA Report 210, 1925.
- 10.2 Saunder, H. E.: "Hydrodynamics in Ship Design." The Society of Naval Architects and Marine Engineers, Vol. 2, 1957, p. 421.
- 10.3 Patton, K. T.: "An Experimental Determination of Hydrodynamic Masses and Mechanical Impedances." U. S. Navy Underwater Sound Laboratory report 677, October 1965, pp. 58, 59, 72, 73.
- 10.4 Yu, Yee-Tak: "Virtual Masses of Rectangular Plates and Parallelpipeds in Water." Journal of Applied Physics, Vol. 16, Nov. 1965, pp. 724-729.
- 10.5 Medan, R. T. and Bullock, R. B.: "NASA Ames Potential Flow Analysis (POTFAN) Geometry Program (POTGEM) - Version 1." NASA TM X-73127, August 1976.

: : a :	b	: : c	panels	S _{exact}	S _{panels}	Sexact Spanels	3/2: Sexac Spane	t 5/2:
: 1 : 1 : 2 : 5 : 10 : 10 : 10 : 1 : 1 : 1 : 1 : 1 : 1 : 2 : 5 : 10 : 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144 288 144 144 144 288 144 288 144 144 144 144 144 144 288	12.56C4 " 21.4784 50.1925 99.1510 " 6.4722 " 6.8712 8.6719 15.8510* 33.0350* 63.7781*	$12.0682 \\ 12.2935 \\ 20.5519 \\ 47.8477 \\ 94.4312 \\ 96.5196 \\ 6.1705 \\ 6.3033 \\ 6.5586 \\ 8.3085 \\ 15.1524 \\ 31.4964 \\ 60.8365 \\ 62.1473 \\ 15.1524 \\ 31.4964 \\ 60.8365 \\ 62.1473 \\ 100000000000000000000000000000000000$	1.0625 1.0335 1.0684 1.0744 1.0759 1.0412 1.0742 1.0405 1.0723 1.0663 1.0700 1.0742 1.0734 1.0396	: 1.100 1.050 1.110 1.127 1.129 1.129 1.129 1.120 1.120 1.123 1.123 1.112 1.125 1.066 1.125 1.066	54 : 55 : 55 : 71 : 97 : 96 : 57 : 33 : 33 : 34 : 29 : 56 : 53 : 59 : 59 : 59 : 59 : 59 : 59 : 59 : 59

* Computed numerically by POTGEM with 21 X 21 panels on 1/8 of ellipsoid.

Table 10.1-1

Correction factors for added mass coefficients of triaxial ellipsoids.

10-18

4

-			·	: ;		corre	ected PA	N AIR	: t	heoretica	1
:	a 	:	U 	· · · ·	paners	M ₁₁	. M ₂₂	: M ₃₃	: M ₁₁	: M ₂₂	: M ₃₃
:	1	:	1	: :	144	: 4.1829	4.2857	: 4.2864	: 4.1888	: 4.1888	4.1888
:	1	:	1	: 1 :	288	: (14) : 4.2002 :	4.2440	: (+2.3)		. "	
:	2	:	1	$\begin{array}{c} \cdot & \cdot \\ \cdot & 1 \end{array}$	144	: (+.27)	(+1.3) 11.967	(+1.3) (11.971)	: : 3.5188	: : 11.799	: 11.799
: :	5	: :	1	$\begin{array}{c} \vdots & \vdots \\ \vdots & 1 \end{array}$	144	: (+.14) : 2.5057	(+1.4) 37.644	: (+1.5) : 37.646	: : 2.4765	37.459	: 37.459
:	10	:	1	: 1 :	144	: (+1.2) : : 1.7592 :	: (+.49) : 80.132	: (+.50) : 80.123	: 1.7347	: 80.444	80.444
:	10	:	1	1:	288	(+1.4) (1.7376) (+17)	80.440	(40) : 80.436 : (01)	. n	н	. 11
:	1	:	1	0.1:	144	.06499	.06362	4.7981	.06266	.06266	5,1808
:	1	:	1	0.1:	288	(+3.7)	(+1.5)	(-7.4)	. "	"	"
:	1	:	1	0.2:	144	(+1.2) .24373	(+.94) .24432	(-2.5) 4.9662	. 23884	.23884	5.0395
:	1	:	: 1	: 0.5:	144	: (+2.0) : : 1.2998 :	(+2.3) 1.3279	: (-1.5) : 4.7261	: : 1.2968	1.2968	4.6708
:	2	:			144	(+.23)	2 2000	: (+1.2) : 10.700	1.0604	3.3357	12.718
:	2	:				(+1.1) :	(+1.6)	(+.11)	: : : 19706	1 6010	20.200
:	5	:	1 :	0.2:	144	(+5.5) :	(+.53)	: (-4.2)	: .12700		39.389
:	10	:	1:	0.1:	144	.02332 :	.82266	(-8.3)	: .02194 : :	.82656	82.274
:	10	:	1 :	0.1:	288 :	.02270 : (+3.5) :	.82673 (+.02)	: 79.399 : (-3.5)	•		
:		:	:	:	:	:			:		:

Note--numbers in parentheses are percentage errors

Table 10.1-2

Comparison of PAN AIR added mass coefficients to theoretical coefficients for triaxial ellipsoids in linear motion.

;		`			: corre	ected PAN	AIR	: tł	neoretica	;
:	a :	D	с: ;	paneis	: I ₁₁ :	I ₂₂	I ₃₃	I ₁₁	I ₂₂	: I ₃₃
:	: 1	1	: .1 :	144	: .00000	.00015	.00015	0	0	0
:	1 :	1	: 1 :	288	.00000	.00003	.00003	11	11	11
:	2 :	1	1 :	144	.00000	3.9041	3.9017	0	4.0116	4.0116
:	5	1	1	144	.00000	(2.7)	144.64	0	152.44	152.44
: : 1	10 :	1	: 1 :	144	.00000	(-5.1) 1396.7	(-5.1) 1396.8	0	1495.2	1495.2
: : 1 :	10 :	1	1	288	.00000	(-0.6) 1449.4 (-3.1)	(-0.0) 1449.4 (-3.1)	H	U	11
:	1 :	1	0.1:	144		.59623	.00000	.68068	.68068	0
:	1 :	1	: : : 0.1:	288	: (-24.) : : .62607 :	.63698 :	.00000	н	11	11
::	1 :	1	0.2:	144	: (-8.0) : : .57028 :	· (-6.4) : · .57976 :	.00001	.62488	.62488	0
: : :	1 :	1	0.5	144	: (-8.7) : .34280 : : (-3.3) :	(-7.2) .34426 (-2.9)	.00006	.35456	.35456	0
:	2 :	1	0.5	144	: .81181 :	6.5691	1.1959	.85074	6.9403	1.2163
:	5 :	1	0.2:	144	(-4.6): 3.3638:	159.75	6.7350	3.8088	180.37	6.9460
: : 1	: 10	1	0.1	144	(-12.) (-12.) (-12.)	(-11.)	(-3.0)	8.1866	1598.5	15.875
:	10	1	0.1	288	: (-20.) : 7.5342 : (-8.0) :	(-18.) 1458.0 (-8.8)	(-4.8) 15.522 (-2.2)	11	11	11

Note--numbers in parentheses are percentage errors.

Table 10.1-3

Comparison of PAN AIR added mass coefficients to theoretical coefficients for triaxial ellipsoids in angular motion.

10-20

Ť

:::::::::::::::::::::::::::::::::::::::	a	:	Ь	: : panel :	s :	S _{panels}	:	Sexact	3/2.	[S _{exact}] Spanels	5/2
	1 1 1 5 10		1 1 0.5 1 1	: 4 X 1 : 5 X 2 : 7 X 2 : 6 X 2 : 6 X 3 : 10 X 4	.6*: 20: 28: 24: 26: 20: 24: 26: 20: 20: 20: 20: 20: 20: 20: 20: 20: 20	3.06145 3.0917 3.11529 1.55291 15.6283 31.2869		1.03951 1.02430 1.01269 1.01732 1.00765 1.00619		1.06672 1.04083 1.02124 1.02904 1.01279 1.01034	
,	'i.	e.	,4 p	anels r	adia	ally and	16	panels c	ircum	ferential	lv.

Table 10.2-1

Correction factors for added mass coefficients of elliptical plates.

	a	: b	: panels :	PAN AIR M ₁₁	: ref. 10.1	percent : error :
:		:	:		:	:
:	1	: 1	4 X 16	4.87126	5.33333	-8.7
:	1	: 1	: 5 X 20	: 4.98334	: : 5.33333	-6.6
:	1	: 1	7 X 28	5.12774	: 5,33333 :	-3.9
:	1	: 0.5	6 X 24	1.64432	: : 1.72940	-4.9
:	5	: : 1	: 6 X 36	38.2598	: : 39.8742	-4.0 :
:	10	: 1	: 10 X 40	80.6474	: 82.4570 :	-2.2 :
:		•	:		:	:

Table 10.2-2

Comparison of PAN AIR added mass coefficients to theoretical coefficients for elliptical plates moving normal to themselves.

	a	: b : :	: panels : : :	PAN AIR I ₂₂ / I ₃₃	ref. 10.1 I ₂₂ / I ₃₃	percent error
:::::::::::::::::::::::::::::::::::::::	1	: : : 1 :	4 X 16	0.57506/	0.71111/	-19.1
::	1	1	: 5 X 20 :	0.61212/	0.71111/	-13.9
:::::::::::::::::::::::::::::::::::::::	1	1	7 X 28	0.64097/:	0.71111/	-7.9
• • • •	1	0.5	6 X 24	.044835/ .245107	.04970/: .27446 :	-9.8 : -10.7 :
:	5	1	6 X 36 :	: 3.80644/: 169.089 :	: 4.14916/: 184.951 :	-8.2 : -8.6 :
: : : :	10	1	10 X 40	8.00317/: 1532.42 :	: 8.35702/: 1606.35 : :	-4.2 -4.6

Table 10.2-3

Comparison of PAN AIR added mass coefficients to theoretical coefficients for elliptical plates rotating about minimum and maximum diameters.

: h	:	M ₁₁	:	M ₂₂	:	M ₃₃	:
: 1.1 2.0 3.0 : infin	0 : 0 : 0 : 0 : ite :	4.51343 4.14906 4.02657 3.96521 3.93954		4.70189 4.32295 4.19611 4.13243 4.10611		5.39714 4.54824 4.28701 4.15942 4.10562	

Table 10.3-1 Added mass coefficients predicted by PAN AIR for motion of a sphere near a wall.

-						
:		M _i M _i	j(h≠infin j(h=infin	ity) ity)		: : : :
: h :	i=j=1	:	i=j=2	:	i=j=2	:
: 1.1 : : 1.1 : : : : : : : : : : : : : : : : : : :	1.14567 (+0.42) 1.05318 (-0.23)	:	1.14510 (+0.37) 1.05281 (-0.26)	:	1.31457 (+2.6) 1.10781 (-0.3)	:
2.0	1.02209 (-0.13)	•	1.02192 (-0.15)	•	1.04418 (-0.3)	:
3.0	1.00652 (-0.04)	•	1.00641 (-0.05)	:	1.01310 (-0.1)	:

Table 10.3-2

Wall effects predicted by PAN AIR for a sphere and the percentage deviation of the PAN AIR results from an analytical result.

: : b/a :	 : :	panels	 ; ; ;	M ₃₃ 2 _{πρa} 2 _b	 : : :
: 1.0 1.5 1.7 2.0 3.0 4.0 5.0 : 10.0	5	6 X 6 6 X 9 6 X 11 6 X 13 6 X 15 6 X 20 6 X 26 6 X 30		.528 .640 .678 .708 .779 .819 .843 .890	

Table 10.4-1 PAN AIR added mass coefficients for rectangular plates.

:::::::::::::::::::::::::::::::::::::::	2a	: 2b	2c	: panels	: М :	11 abc	
:		:		: 	PAN AIR	: Ref. 10.3	:
:	1	: 1	: 1	: 5 x 5 x 5	.6295	: : 2.122	:
:	2	: 1	: 1	7 x 4 x 4	.3300	: 0.848	:
:	3	: 1	: 1	9 x 3 x 3	.2238	0.651	:
•	4	: 1	: 1	11 x 3 x 3	.1701	0.440	:
:	5	: 1	: 1	12 x 3 x 3	.1372	0.443	:
:	6	: 1	: 1	13 x 3 x 3	.1150	0.289	:
::	7	: 1 :	: 1	14 x 2 x 2	. 1008	0.219	:

Table 10.5-1

Comparison of PAN AIR added mass coefficients to experimental coefficients for parallelepipeds.

2a -	panels	м <u>1</u> 8 _Р а	lbc
		PAN AIR :	Ref. 10.4
.15	1 x 7 x 5 [*]	18.85	23.9
	1 x10 x 6	19.10	23.9
.3	1 x 7 x 5	9.862	12.3
.3	1 x10 x 6	9.958	12.3
1	1 x 7 x 4	3.250	3.97
	2 x 9 x 6	3.292	3.97
2	2 x 6 x 4	1.741	2.15
2	3 x 8 x 5	1.755	2.15
3	2 x 5 x 4	1.200	$1.48 \\ 1.48$
3	5 x 7 x 6	1.220	
4	3 x 5 x 3	.9265	1.14
4	4 x 7 x 5	.9362	1.14
5	3 x 5 x 3	.7546	.955
5	4 x 7 x 4	.7624	.955
6	4 x 5 x 3	.6413	.811

(a) 2b = 8, 2c = 5

Table 10.5-2

Comparison of PAN AIR added mass coefficients to experimental coefficients for parallelepipeds.

: : 2a	panels	: M ₁₁ : : 8 _p abc	- :: :: .
:		PAN AIR : Ref. 10.4	:
: : .15 : .15	1 x 6 x 5 1 x 9 x 7	: 16.90 : 21.5 17.19 : 21.5	::
3 3	1 x 6 x 5 1 x 9 x 7	8.847 11.2 8.962 11.2	:
	1 x 6 x 5 : 2 x 8 x 7 :	2.918 3.62 2.961 3.62	
: 2 :	2 x 5 x 4 : 3 x 7 x 6 :	1.560 : 1.95 1.576 : 1.95	
: 3 : : 3 :	3 x 5 x 4 : 3 x 6 x 5 :	1.084 : 1.34 1.086 : 1.34	
: 4 : 4	3 x 4 x 4 : 4 x 6 x 5 :	.8308 : 1.06 .8371 : 1.06	
. 5 : : 5 :	3 x 4 x 3 : 5 x 6 x 5 :	.6730 : .868 .6832 : .868	
6	5 x 5 x 5	.5761 .742	
. 7	6 x 5 x 4	.5001 .654	
8	6 x 5 x 4	.4415 .585	

(b)
$$2b = 6$$
, $2c = 5$

Table 10.5-2 Continued.

: : 2a	panels	M ₁₁ 	
: :		PAN AIR :	Ref. 10.4 :
: .3 : .3	1 x 5 x 6 1 x 7 x 9	7.313 7.401	9.25 9.25
: 1 : 1	2 x 5 x 6 2 x 6 x 8	2.442 2.451	3.10 3.10
2 2	2 x 4 x 5 3 x 6 x 7	1.293 1.307	1.64 1.64
: 3 : 3	3 x 4 x 4 4 x 5 x 6	.8970 .9033	1.17 1.17
4	3 x 3 x 4 5 x 5 x 6	.6848 .6949	.924 .924
: : 5 : 5	: 4 x 3 x 4 : 5 x 4 x 5	.5598 .5642	.755 : .755 :
6	: 6 x 4 x 5	.4771	.669 :
:	: :		:
:	:		:
:	: : 	: :	

(c) 2b = 4, 2c = 5

Table 10.5-2 Concluded.

10-30

į

19

(a) Projection into the x₀ - y₀ plane.

Figure 10.1-1. Panels for the rearward half of the $y_0 \ge 0$ network for the triaxial ellipsoid case a = 5, b = 1, c = 0.2.

Figure 10.1-1. Continued.

(c) Isometric view.

÷

Figure 10.1-1. Concluded

BEGIN GLOBAL /G1			
PID=TRIAXIAL ELLIPSOID FOR A	DDED MASS CAPABILITY TES	TING	
UID=R. T. MEDAN, BOEING COMPU	JTER SERVICES COMPANY, (2	206) 773 2349	
CONFIGURATION = ASYMMETRIC		/G4	
MACH = 0.0		/	′G5
TOLERANCE = 1.E-10 /G7			
SURFACE = UPPER /G8			
CHECKOUT = DEL /G17			
STORE VIC MATRIX /G15			
PRESSURE RULES = REDUCED /G	12		
ADDED MASS /G18			
BEGIN NETWORK DATA /N1			
/NETWORK = HALF-ELLIPSOID-Y-	POS = 100		
/MAP S TO -COLUMNS			
/MAP V TO -ROWS			
NETWORK=HALF-ELLIPSOID-Y-POS	7 13		/N2A
5,0000000000	0.	2.1561211432632E-15	/PANGEM
4.330127018922	0.	.100000000000	/PANGEM
2,50000000000	0.	.1732050807569	/PANGEM
8.5756224972141E-15	0.	.200000000000	/PANGEM
-2.50000000000	0.	1732050807569	/PANGEM
-4.330127018922	0.	.100000000000	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5,00000000000	2.7902260771236E-15	2.0826530968859E-15	/PANGEM
4.330127018922	.1294095225513	9.6592582628907E-02	/PANGEM
2.50000000000	.2241438680420	.1673032607476	/PANGEM
8.5756224972141E-15	.2588190451025	.1931851652578	/PANGEM
-2.50000000000	.2241438680420	.1673032607476	/PANGEM
-4 330127018922	1294095225513	9.6592582628907E-02	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5,0000000000	5.3903028581580E-15	1.8672556837027E-15	/PANGEM
4.330127018922	.250000000000	8.6602540378444E-02	/PANGEM
2 50000000000	4330127018922	150000000000	/PANGEM
8.5756224972141F-15	500000000000	.1732050807569	/PANGEM
-2 50000000000	4330127018922	.150000000000	/PANGEM
-4 330127018922	-250000000000	'8,6602540378444E-02	/PANGEM
~5.0000000000	0.	0.	/PANGEM
5,00000000000	7.6230394073055E-15	1.5246078814612E-15	/PANGEM
4 330127018922	.3535533905933	7.0710678118656E-02	/PANGEM
2 50000000000	.6123724356958	.1224744871392	/PANGEM
8 57562240721415-15	7071067811865	.1414213562373	/PANGEM
-2 5000000000	6123724356058	1224744871392	/PANGEM
	3535533005033	7 0710678118656F_02	/PANGEM
-4.33012/010922	• • • • • • • • • • • • • • • • • • • •	0	/PANCEM
-2.00000000000	V•	v.	TEANULN

Figure 10.1-2. DIP input for the triaxial ellipsoid with a = 5, b = 1, and c = 0.2.

10-34

÷

4

5.00000000000	9.3362784185136E-15	1.0780605716316E-15	/PANGEM
4.330127018922	.4330127018922	5,0000000000000 -02	/PANGEM
2.50000000000	.750000000000	8.6602540378445F-02	/PANGEM
8.5756224972141E-15	.8660254037844	. 100000000000	/PANGEM
-2,50000000000	.750000000000	8-6602540378444F-02	/PANGEM
-4.330127018922	.4330127018922	5,0000000000000 = 02	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5,00000000000	1.0413265484429E-14	5,5804521542478F-16	/PANGEM
4.330127018922	.4829629131445	2.5881904510253E-02	/PANGEM
2.50000000000	.8365163037378	4.4828773608405E-02	/PANGEM
8.5756224972140E-15	.9659258262891	5.1763809020507E-02	/PANGEM
-2.50000000000	.8365163037378	4.4828773608405E-02	/PANGEM
-4.330127018922	.4829629131445	2.5881904510253E-02	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5.00000000000	1.0780605716316E-14	0.	/PANGEM
4.330127018922	.500000000000	0.	/PANGEM
2.50000000000	.8660254037844	0.	/PANGEM
8.5756224972141E-15	1.00000000000	0.	/PANGEM
-2.50000000000	.8660254037844	0.	/PANGEM
-4.330127018922	.500000000000	0.	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5.00000000000	1.0413265484429E-14	-5.5804521542474E-16	/PANGEM
4.330127018922	.4829629131445	-2.5881904510252E-02	/PANGEM
2.50000000000	.8365163037378	-4.4828773608402E-02	/PANGEM
8.5756224972140E-15	.9659258262891	-5.1763809020503E-02	/PANGEM
-2.50000000000	.8365163037378	-4.4828773608402E-02	/PANGEM
-4.330127018922	.4829629131445	-2.5881904510252E-02	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5.00000000000	9.3362784185136E-15	-1.0780605716316E-15	/PANGEM
4.330127018922	.4330127018922	-4.99999999999999E-02	/PANGEM
2.50000000000	.750000000000	-8.6602540378443E-02	/PANGEM
8.5756224972140E-15	.8660254037844	-9.99999999999999E-02	/PANGEM
-2.50000000000	.750000000000	-8.6602540378443E-02	/PANGEM
-4.330127018922	.4330127018922	-4.99999999999999E-02	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5.00000000000	7.6230394073057E-15	-1.5246078814611E-15	/PANGEM
4.330127018922	.3535533905933	-7.0710678118654E-02	/PANGEM
2.50000000000	.6123724356958	1224744871392	/PANGEM
8.5756224972140E-15	.7071067811866	1414213562373	/PANGEM
-2.50000000000	.6123724356958	1224744871392	/PANGEM
-4.330127018922	.3535533905933	-7.0710678118654E-02	/PANGEM
-5.00000000000	0.	0.	/PANGEM

Figure 10.1-2. Continued.

,

4.330127018922 .250000000000 -8.6602540378443E-02 2.50000000000 .4330127018922 150000000000 8.5756224972141E-15 .500000000000 1732050807569	
2.50000000000 .4330127018922150000000000 8.5756224972141E-15 .5000000000001732050807569	/PANGEM
8.5756224972141E-15 .5000000000001732050807569	/PANGEM
	/PANGEM
-2.50000000000 .4330127018922150000000000	/PANGEM
-4.330127018922 .250000000000 -8.6602540378443E-02	/PANGEM
-5.0000000000 0. 0.	/PANGEM
5.00000000000 2.7902260771238E-15 -2.0826530968859E-15	/PANGEM
4.330127018922 .1294095225513 -9.6592582628906E-02	/PANGEM
2.5000000000 .22414386804201673032607476	/PANGEM
8.5756224972140E-15 .25881904510251931851652578	/PANGEM
-2.50000000000 .22414386804201673032607476	/PANGEM
-4.330127018922 .1294095225513 -9.6592582628906E-02	/PANGEM
-5.0000000000 0. 0.	/PANGEM
5.00000000000 1.1622145961067E-28 -2.1561211432632E-15	/PANGEM
4.330127018922 5.3903028581581E-15 -1.000000000000E-01	/PANGEM
2.50000000000 9.3362784185136E-151732050807569	/PANGEM
8.5756224972140E-15 1.0780605716316E-14200000000000	/PANGEM
-2.50000000000 9.3362784185136E-151732050807569	/PANGEM
-4.330127018922 5.3903028581581E-15 -1.000000000000E-01	/PANGEM
-5.0000000000 0. 0.	/PANGEM
TRIANGULAR PANEL TOLERANCE = $1.E-10$ /N7	•
BOUNDARY CONDITION = 1 UPPER /N9	
/NETWORK = HALF-ELLIPSOID-Y-NEG = 101	
/MAP S TO COLUMNS	
/MAP V TO -ROWS	
NETWORK=HALF-ELLIPSOID-Y-NEG 7 13	/N2A
5.00000000000 -1.1622145961067E-28 -2.1561211432632E-15	/PANGEM
4.330127018922 -5.3903028581581E-15 -1.0000000000000E-01	/PANGEM
2.50000000000 -9.3362784185136E-151732050807569	/PANGEM
8 5756224972140F_15 _1 0780605716316F_14 _ 20000000000	/PANGEM
0+0/005540/51405-10 -1+0/00000/100105-14 -+500000000000	/PANGEM
-2.50000000000 -9.3362784185136E-151732050807569	
-2.50000000000 -9.3362784185136E-151732050807569 -4.330127018922 -5.3903028581581E-15 -1.0000000000000E-01	/PANGEM
-2.50000000000 -9.3362784185136E-151732050807569 -4.330127018922 -5.3903028581581E-15 -1.0000000000000E-01 -5.00000000000 0. 0.	/PANGEM /PANGEM
-2.50000000000 -9.3362784185136E-151732050807569 -4.330127018922 -5.3903028581581E-15 -1.000000000000000E-01 -5.0000000000 0. 0. 0. 5.00000000000 -2.7902260771238E-15 -2.0826530968859E-15	/PANGEM /PANGEM /PANGEM
-2.50000000000 -9.3362784185136E-15 1732050807569 -4.330127018922 -5.3903028581581E-15 -1.000000000000000000000000000000000000	/PANGEM /PANGEM /PANGEM /PANGEM
-2.50000000000 -9.3362784185136E-15 1732050807569 -4.330127018922 -5.3903028581581E-15 -1.00000000000E-01 -5.00000000000 0. 0. 5.00000000000 -2.7902260771238E-15 -2.0826530968859E-15 4.330127018922 1294095225513 -9.6592582628906E-02 2.50000000000 2241438680420 1673032607476	/PANGEM /PANGEM /PANGEM /PANGEM /PANGEM
-2.50000000000 -9.3362784185136E-15 1732050807569 -4.330127018922 -5.3903028581581E-15 -1.00000000000E-01 -5.00000000000 0. 0. 5.00000000000 -2.7902260771238E-15 -2.0826530968859E-15 4.330127018922 1294095225513 -9.6592582628906E-02 2.50000000000 2241438680420 1673032607476 8.5756224972140E-15 2588190451025 1931851652578	/PANGEM /PANGEM /PANGEM /PANGEM /PANGEM
-2.50000000000 -9.3362784185136E-15 1732050807569 -4.330127018922 -5.3903028581581E-15 -1.00000000000E-01 -5.00000000000 0. 0. 5.000000000000 -2.7902260771238E-15 -2.0826530968859E-15 4.330127018922 1294095225513 -9.6592582628906E-02 2.50000000000 2241438680420 1673032607476 8.5756224972140E-15 2588190451025 1931851652578 -2.50000000000 2241438680420 1673032607476	/PANGEM /PANGEM /PANGEM /PANGEM /PANGEM /PANGEM
-2.50000000000 -9.3362784185136E-15 1732050807569 -4.330127018922 -5.3903028581581E-15 -1.00000000000E-01 -5.00000000000 0. 0. 5.00000000000 -2.7902260771238E-15 -2.0826530968859E-15 4.330127018922 1294095225513 -9.6592582628906E-02 2.50000000000 2241438680420 1673032607476 8.5756224972140E-15 2588190451025 1931851652578 -2.50000000000 2241438680420 1673032607476 -4.330127018922 1294095225513 -9.6592582628906E-02	/PANGEM /PANGEM /PANGEM /PANGEM /PANGEM /PANGEM /PANGEM

Figure 10.1-2. Continued.

1

F 000000000000		4 04905540090095 45	
5.00000000000	-5.3903028581582E-15	-1.8672556837027E-15	/PANGEM
4.330127018922	250000000000	-8.6602540378443E-02	/PANGEM
2.50000000000	4330127018922	150000000000	/PANGEM
8.5756224972141E-15	500000000000	1732050807569	/PANGEM
-2.50000000000	4330127018922	150000000000	/PANGEM
-4.330127018922	250000000000	-8.6602540378443E-02	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5.00000000000	-7.6230394073057E-15	-1.5246078814611E-15	/PANGEM
4.330127018922	3535533905933	-7.0710678118654E-02	/PANGEM
2.50000000000	6123724356958	1224744871392	/PANGEM
8.5756224972140E-15	7071067811866	1414213562373	/PANGEM
-2.500000000000	6123724356958	- 1224744871392	/PANGEM
-4.330127018922	- 3535533905933	-7.0710678118654F-02	/PANGEM
-5.00000000000	0	0	/PANGEM
5.0000000000000	_0_3362784185136F_15	-1 0780605716316F-15	
A 330127018022		_1.0700000710510E=13	
2 5000000000	- 750000000000		
8 5756224072140F-15	- 8660254037844	-0.00025405764452-02	
-2 50000000000	- 750000204037844	-9.99999999999999999990-02 -8.6602540378443E_02	
-4 330127018922	- 4330127018022	-0.0002040078443E-02	/PANGEM
- 5.0000000000	0	-4.33333333333333355 0	
5.00000000000	1 04132654944205 14	5 50015215121715 16	
4 220127010022	-1.04132034044290-14	- 5.5004521542474E-10	
4.330127018922	4029029131443	-2.5881904510252E-02	/PANGEM
	830510303/3/8	-4.4828773008402E-02	/PANGEM
8.5/562249/2140E-15	9059258262891	-5.1763809020503E-02	/PANGEM
-2.5000000000	836516303/3/8	-4.4828//3608402E-02	/PANGEM
-4.33012/018922	4829629131445	-2.5881904510252E-02	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5.00000000000	-1.0780605716316E-14	0.	/PANGEM
4.330127018922	500000000000	0.	/PANGEM
2.50000000000	8660254037844	0.	/PANGEM
8.5756224972141E-15	-1.00000000000	0.	/PANGEM
-2.50000000000	8660254037844	0.	/PANGEM
-4.330127018922	500000000000	0.	/PANGEM
-5.00000000000	0.	0.	/PANGEM
5.00000000000	-1.0413265484429E-14	5.5804521542478E-16	/PANGEM
4.330127018922	4829629131445	2.5881904510253E-02	/PANGEM
2.50000000000	8365163037378	4.4828773608405E-02	/PANGEM
8.5756224972140E-15	9659258262891	5.1763809020507E-02	/PANGEM
-2.50000000000	8365163037378	4.4828773608405E-02	/PANGEM
-4.330127018922	4829629131445	2.5881904510253E-02	/PANGEM
-5.00000000000	0.	0.	/PANGEM

Figure 10.1-2. Continued.

.

5 00000000000	-9.3362784185136E-15	1.0780605716316E-15	/PANGEM
4.330127018922	4330127018922	5.00000000000E-02	/PANGEM
2 50000000000	- 750000000000	8.6602540378445E-02	/PANGEM
8 5756224972141F-15	8660254037844	.100000000000	/PANGEM
		8.6602540378444E-02	/PANGEM
-4.330127018922	- 4330127018922	5,000000000000E-02	/PANGEM
	0.	0.	/PANGEM
5 000000000000	-7 6230394073055F-15	1.5246078814612E-15	/PANGEM
4 220127018022	- 3535533905933	7.0710678118656E-02	/PANGEM
2 5000000000	6123724356958	.1224744871392	/PANGEM
0 57562240721415-15	- 7071067811865	1414213562373	/PANGEM
2 50000000000	- 6123724356958	1224744871392	/PANGEM
4 220127018022	- 3535533905933	7.0710678118656E-02	/PANGEM
-4.330127010922 5.00000000000	0	0.	/PANGEM
-5.00000000000	-5 390 30 28 58 1 580 F - 1 5	1.8672556837027E-15	/PANGEM
4 220127018022	- 250000000000	8.6602540378444E-02	/PANGEM
2 50000000000	- 4330127018922	150000000000	/PANGEM
0 E756224072141F-15	- 500000000000	.1732050807569	/PANGEM
2 5000000000	- 4330127018922	150000000000	/PANGEM
	- 25000000000	8 6602540378444F-02	/PANGEM
-4.33012/010922		0	/PANGEM
-5.00000000000	0. 2 7002260771226E 15	2 0826530068850F-15	/PANGEM
5.0000000000	-2./902200//12302-13	0 6502582628907F-02	/PANGEM
4.33012/018922	22414295225515	1673032607476	/PANGEM
	2241430000420	1931851652578	/PANGEM
8.5/502249/21412-15	2300190451025	1673032607476	/PANGEM
-2.50000000000	1204005225513	0 6592582628907F-02	/PANGEM
-4.33012/018922	1294095225515 0	0	/PANGEM
-5.0000000000	0.	2 1561211432632E-15	/PANGEM
5.0000000000	0.	100000000000	/PANGEM
4.33012/018922	0.	1732050807569	/PANGEM
	0.	2000000000000	/PANGEM
8.5/562249/2141E-15	0.	1732050907560	
-2.50000000000	0.	100000000000	/DANGEM
-4.33012/018922	0.	• 10000000000	
-5.00000000000		υ.	/ PANGLIN
TRIANGULAR PANEL IULERANCE =	= 1.E-1U /N/		
BOUNDARY CONDITION = I UPPER	(/N9		

Figure 10.1-2. Continued.

BEGIN FLOW PROPERTIES DATA /FP1 SURFACE FLOW = CASE-1 /SF1 NETWORKS = 1/SF2 SOLUTIONS = $1 \ 2 \ 3$ /SF3 POINTS = CENTER /SF4 SURFACE = UPPER /SF5 SELECTION = VIC-LAMBDA/SF6 PRINTOUT = POINT XYZ PVXYZ VMAG PHIT /SF10A FORCES AND MOMENTS /FM1 AXIS SYSTEMS = RCS /FM3 DATA BASE = NO /FM6 SOLUTIONS = 1 2 3 4 5 6 / FM4CASE = TRI-AXIAL-ELLIPSOID END OF PROBLEM

Figure 10.1-2. Concluded.

BEGIN GLOBAL		/G1	
PID = ELLIPTICAL PLATE FOR	ADDED MASS TESTING		
UID = R.T.MEDAN, BCS, (206)	773.2349		
CONFIGURATION = ASYMMETRIC		/G4	
SURFACE = AVERAGE		/G8	
TOLERANCE = $1.E - 10$		/G7	
CHECKOUT = DIP $1 2 3$, DOG	1 2 4 5	/G17	
ADDED MASS		/G18	
BEGIN NETWORK DATA		N1	
/NETWORK = HALF-PLATE-Z-POS	= 200		
NETWORK=HALF-PLATE-Z-POS	13 7		/N2A
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	0.	0.	/PANGEM
0.	.1294095232737	0.	/PANGEM
0.	.125000006978	6.6987298481717E-02	/PANGEM
0.	.1120719346466	.1294095232737	/PANGEM
0.	9.1506351456919E-02	.1830127029138	/PANGEM
0.	6.4704761636827E-02	.2241438692932	/PANGEM
0.	3.3493649240860E-02	.250000013956	/PANGEM
0.	6.9755652317485E-16	.25881904654/3	/PANGEM
0.	-3.3493649240859E-02	.250000013956	/PANGEM
0.	-6.4704761636825E-02	.2241438692932	/PANGEM
0.	-9.1506351456917E-02	.1830127029138	/PANGEM
0.	1120/19346466	.1294095232/3/	/PANGEM
0.	- 125000006978	6.698/298481/19E-02	/PANGEM
υ.	1294095232/3/	2./9UZZ6U9Z6994E-15	/ PANGEM

 \sim

2

0	250000005181	0.	/PANGEM
0.	2414814570728	.1294095228195	/PANGEM
0.	2165063513948	.250000005181	/PANGEM
0.	1767766956630	.3535533913260	/PANGEM
0.	125000002591	.4330127027897	/PANGEM
0.	6 4704761409737E-02	.4829629141455	/PANGEM
0.	1 3475757173325E-15	.500000010363	/PANGEM
0.	-6 $4704761409734F-02$	4829629141455	/PANGEM
0.	125000002591	4330127027897	/PANGEM
0.	1767766056630	3535533913260	/PANGEM
0.	1/0//00950050	2500000005181	/PANGEM
0.	2105005515540	1204095228195	/PANGEM
0.	2414014570720	5 3903028693299F-15	/PANGEM
0.	250000005161	0	/PANGEM
0.		1830127020565	/PANGEM
0.	.3415003512520	3535533909106	/PANGEM
0.	.3001002101227	500000004487	/PANGEM
0.	.250000002244	6123724362454	/PANGEM
0.		692012202434	/PANGEM
0.	9.1506351028233E-02	7071067919211	
0.		6920127025052	
0.	-9.1506351028230E-02	612372/362/5/	/PANCEM
0.	1/0//00954555	5000000004487	/PANGEM
0.	250000002244	2525533000106	/PANGEM
0.	3001802181227	1930127020565	/PANGEM
0.	3415063512520	7 60002041414605 15	
0.	3535533909106	7.62303941414096-15	
0.	.4330127020418	U.	/PANGEM
0.	.4182581520134	.2241438681194	/PANGEM
0.	.375000001295	.4330127020418	/PANGEM
0.	.3061862179537	.6123/243590/3	/PANGEM
0.	.2165063510209	./50000002591	/PANGEM
0.	.1120719340597	.8365163040268	/PANGEM
0.	2.3340696054347E-15	.8660254040836	/PANGEM
0.	1120719340597	.8365163040268	/PANGEM
0.	2165063510209	.750000002591	/PANGEM
0.	3061862179537	.6123724359073	/PANGEM
0.	375000001295	.4330127020418	/PANGEM
0 .	4182581520134	.2241438681194	/PANGEM
0.	4330127020418	9.3362784217386E-15	/PANGEM
Ő.	.4829629131832	0.	/PANGEM
0.	.4665063509835	.250000000200	/PANGEM
0.	.4182581519024	.4829629131832	/PANGEM
Ő.	.3415063509735	.6830127019470	/PANGEM
0.	.2414814565916	.8365163038049	/PANGEM
Ô.	.125000000100	.9330127019670	/PANGEM

Figure 10.2-2. Continued.

10-42

0.	2.6033163713160E-15 .9659258263665	/PANGEM
0.	125000000100 .9330127019670	/PANGEM
0.	2414814565916	/PANGEM
0.	3415063509735 .6830127019470	/PANGEM
0.	4182581519024	/PANGEM
0.	- 4665063509835 2500000000200	
Ö.	4829629131832 1 0413265485264F-14	
0.	5000000000 0	
0.	4829629131445 2588190451025	
Ö.	.4330127018922 .500000000000	
0.	.3535533905933 .7071067811865	/PANGEM
0.	.250000000000000000	
0.	.1294095225513	/PANGEM
0.	2.6951514290791E-15 1.0000000000	
Ö.	1294095225513 065025000000000000000000000000000000000	
0.	25000000000 8660254037844	/PANGEM
0.	3535533905933 7071067811866	
0.	4330127018922 500000000000	/PANGEM
0.	4829629131445 2588190451025	
0.	5000000000000000000000000000000000000	/PANGEM
BOUNDARY	CONDITION = 1 AVERAGE /N9	TANGLIS
/NETWORK	= HALF-PLATE-Z-NEG $=$ 201	
NETWORK=+	IALF-PLATE-Z-NEG 13 7	/N2A
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	0. 0.	/PANGEM
0.	.1294095232737 0.	/PANGEM
0.	.125000006978 -6.6987298481717E-02	/PANGEM
0.	.11207193464661294095232737	/PANGEM
0.	9.1506351456919E-021830127029138	/PANGEM
0.	6.4704761636827E-022241438692932	/PANGEM
0.	3.3493649240860E-02 - 2500000013956	/PANGEM
0.	6.9755652317485E - 162588190465473	/PANGEM
0.	-3.3493649240859E-02 - 2500000013956	/PANGEM

 $\sim \sim$

Figure 10.2-2. Continued.

•		6 4704761636825E	-02	224143869	2932	/PANGEM
0.		0.1506351456017F	-02	183012702	9138	/PANGEM
0.		11207103/6/66	-02 -	129409523	32737	/PANGEM
0.		125000006078	-6	698729848	31719E-02	/PANGEM
0.		1250000000378	-2	790226092	6994E-15	/PANGEM
0.		1294095232737	-2.	7 50220052		/PANGEM
0.		.2500000005161		120400522	28195	/PANGEM
0.		.2414814570720		250000000	15181	/PANGEM
0.		.2165063513948		253553301	3260	/PANGEM
0.		.1/6//66956630		A 2 20 1 2 70 2	27807	/PANGEM
0.		.1250000002591		10206201/	11455	/PANGEM
0.		6.4/04/61409/3/E	-02 -	-40290291-	10363	/PANGEM
0.		1.34757571/3325E	-15 -	. 500000000	10303	/PANGEM
0.		-6.4704761409/34E	-02 -	48290291	41433 27007	/DANGEM
0.		1250000002591	-	.43301270	12260	/PANGEM
0.		1767766956630	-	.35355339	13200	
0.		2165063513948	-	.25000000	05181	/PANGEM
0.		2414814570728		.12940952	28195	/PANGEM
0.		2500000005181	-5	.39030286	93299£-15	/PANGEM
Ő.		.3535533909106	0	•	00565	/PANGEM
0.		.3415063512526	-	.18301270	20565	/PANGEM
0.		.3061862181227	-	.35355339	09106	/PANGEM
0.		.250000002244	-	.50000000	04487	/PANGEN
ů.		.1767766954553	-	.6123/243	62454	
<u>0</u> .		9.1506351028233E	02 -	.68301270	25052	/PANGEM
0.		1.9057598535367E	–15 –	.70/106/8	18211	/PANGEM
0.		-9.1506351028230	02 -	.683012/0	25052	/PANGEM
0		1767766954553	-	.61237243	62454	/PANGEM
0		250000002244	-	.50000000	0448/	/PANGEM
0		3061862181227	-	.35355339	09106	/PANGEM
0.		3415063512526	-	.18301270	20565	/PANGEM
0.		- 3535533909106	-7	.62303941	41469E-15	/PANGEM
0.		4330127020418	0	•		/PANGEM
0.		4182581520134	-	.22414386	81194	/PANGEM
0.		3750000001295	-	.43301270	20418	/PANGEM
0.		3061862179537	_	.61237243	59073	/PANGEM
0.		2165063510209	-	.7500000	02591	/PANGEM
0.		1120719340597	-	.83651630	40268	/PANGEM
0.		2 3340696054347	z - 15 -	.86602540	40836	/PANGEM
0.		- 1120719340597		.83651630)40268	/PANGEM
0.		- 2165063510209	-	.75000000	02591	/PANGEM
0.		- 3061862179537	-	61237243	359073	/PANGEM
U .		_ 375000001295	-	43301270	20418	/PANGEM
0.		- 4182581520134	-	.22414386	581194	/PANGEM
0.		A 2201 27020/19	_ (9.33627842	217386E-15	/PANGEM
0.		432012/020410	-			

Figure 10.2-2. Continued.

-

1

0.	.4829629131832	0.	/PANGEM
0.	.4665063509835	- 250000000200	/PANGEM
0.	4182581519024	4829629131832	/PANGEM
0.	.3415063509735	6830127019470	/PANGEM
0.	.2414814565916	8365163038049	/PANGEM
0.	.125000000100	9330127019670	/PANGEM
0.	2.6033163713160F-15	9659258263665	/PANGEM
0.	1250000000100	- 9330127019670	/PANGEM
0.	2414814565916	- 8365163038049	/PANGEM
0.	3415063509735	6830127019470	/PANGEM
0.	4182581519024	- 4829629131833	/PANGEM
0.	- 4665063509835	- 2500000000200	/PANGEM
0.	4829629131832	-1.0413265485264F-14	/PANGEM
0.	.5000000000000	0.	/PANGEM
0.	.4829629131445	- 2588190451025	/PANGEM
0.	.4330127018922	5000000000000	/PANGEM
0.	.3535533905933	- 7071067811865	/PANGEM
0.	-2500000000000	- 8660254037844	
0.	1294095225513	- 9659258262801	
0.	2.6951514290791F-15		/PANGEM
0.	1294095225513	- 9659258262891	/PANGEM
0.	- 250000000000	8660254037844	/PANGEM
0.	3535533905933	7071067811866	/PANGEM
0.	- 4330127018922	- 500000000000	/PANGEM
0.	4829629131445	- 2588190451025	/PANGEM
0.	- 500000000000	$-1.0780605716316E_14$	/DANGEM
BOUNDARY CONDITION = 1	AVERAGE	-1.0700003/10310E-14	TANGLA
BEGIN FLOW PROPERTIES)ATA	/FP1	
FORCES AND MOMENTS		/FM1	
AXIS SYSTEMS = RCS		/FM3	
SOLUTIONS = $1 2 3 4 5$	6	/FM4	
CASE = ELLIPTICAL-PLAT		/FM7	
LOCAL PRINTOUT = COLSU	M NETWORK CONFIGURATION	/FM19	
END OF PROBLEM		,	

· _ _ _ ~

Figure 10.2-2. Concluded.

.

Figure 10.2-3 Convergence of M_{11} with panel density for the case of the circular disk.

10-46

.

(a) Projection into the $y_0 - z_0$ plane

Figure 10.3-1. Panels for the $y_0 \ge 0$ network for the sphere near a wall case.

(b) Projection into the $x_0 - z_0$ plane

10-48

....

(c) Projection into the x_o - y_o plane

Figure 10.3-1. Concluded

DECIN CLOBAL		/61	
DEGIN GEODAL DID - CDHEDE NEAD WALL FOR AD	DED MASS CAPABILITY TEST.	ING	
$P_1D = SPRERE REAR RREE (206)$	773.2349		
A DIANE OF CROUND FEFECT RU	INS NEAR THE SPHERE OF RAI	DIUS 1.0	
$\gamma = PLANE OF UROUND EFFECT OF O$	1. 0. 0. 1.1 . GROUND	-EFFECT /G4	
CONFIGURATION = TIRST, 0.0.0		/G5	
MACH = U.		/G7	
0 ERANCE = 1.E-10		/G8	
SURFACE = UPPER		/G17	
CHECKOUT = ALL		/618	
ADDED MASS		/N1	
BEGIN NETWORK DATA		/	
/NETWORK = HALF-SPHERE-Y-POS	= 300		
/MAP S TO -COLUMNS			
/MAP V TO -ROWS	_		/N 2A
NETWORK=HALF-SPHERE-Y-POS	99	1 0700C0571C0165 14	/DANCEM
1.00000000000	0.	1.0/80605/163166-14	/PANGEM
9238795325113	0.	.3826834323651	/PANGEM
7071067811865	0.	.707106/811866	/PANGEM
3826834323651	0.	.9238795325113	/PANGEM
-5 3903028581581F-15	0.	1.00000000000	PANGEN
3826834323651	0.	.9238795325113	/PANGEM
7071067811865	0.	.7071067811865	/PANGEM
0220705225113	0.	.3826834323651	/PANGEM
1 0000000000	0	0.	/PANGEM
	4 1255591984946E-15	9.9599809693788E-15	/PANGEM
	1464466094067	.3535533905933	/PANGEM
.9238/95325115	2705980500731	.6532814824382	/PANGEM
./0/106/811805	3535533005933	.8535533905933	/PANGEM
	202603/323651	.9238795325113	/PANGEM
-5.3903028581581E-15	2525533005033	8535533905933	/PANGEM
3826834323651	2705080500731	6532814824382	/PANGEM
/0/106/811865	1464466004067	3535533905933	/PANGEM
9238795325113	.1404400094007	0	/PANGEM
-1.00000000000		7 6230394073057E-15	/PANGEM
1.00000000000	/.62303940/3050E=15	2705980500731	/PANGEM
.9238795325113	.2/05980500731	5000000000000	/PANGEM
.7071067811865	.5000000000000	.500000000000	/PANGEM
.3826834323651	.6532814824382	.0002014024004	/DANCEM
-5.3903028581581E-15	.7071067811865	./U/100/811800	/ FANGLIN
3826834323651	.6532814824382	.6532814824382	/ PANGEM
- 7071067811865	.500000000000	.5000000000000	/PANGEM
- 9238795325113	.2705980500731	.2705980500731	/PANGEM
	0.	0.	/PANGEM
-1.0000000000			

Figure 10.3-2. DIP input for the sphere 1.1 units from the wall.

10-50

_

/G1

1.00000000000	9.9599809693787E-15	4.1255591984946E-15	/PANGEM
.9238795325113	.3535533905933	.1464466094067	/PANGEM
.7071067811865	.6532814824382	2705980500731	/PANGEM
.3826834323651	.8535533905933	.3535533905933	/PANGEM
-5.3903028581581E-15	.9238795325113	.3826834323651	/PANGEM
3826834323651	.8535533905933	.3535533905933	/PANGEM
7071067811865	.6532814824382	.2705980500731	/PANGEM
9238795325113	.3535533905933	.1464466094067	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	1.0780605716316E-14	ŏ.	/PANGEM
.9238795325113	.3826834323651	0.	/PANGEM
.7071067811865	.7071067811866	0.	/PANGEM
.3826834323651	.9238795325113	0.	/PANGEM
-5.3903028581581E-15	1.00000000000	0.	/PANGEM
3826834323651	.9238795325113	0.	/PANGEM
7071067811865	.7071067811865	0.	/PANGEM
9238795325113	.3826834323651	0.	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	9.9599809693788E-15	-4.1255591984945F-15	/PANGEM
.9238795325113	.3535533905933	1464466094067	/PANGEM
.7071067811865	6532814824382	2705980500731	/PANGEM
.3826834323651	.8535533905933	3535533905933	/PANGEM
-5.3903028581581E-15	.9238795325113	3826834323651	/PANGEM
3826834323651	.8535533905933	- 3535533905933	/PANGEM
7071067811865	.6532814824382	2705980500731	/PANGEM
9238795325113	.3535533905933	- 1464466094067	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	7.6230394073057F-15	-7.6230394073056F - 15	/PANGEM
.9238795325113	.2705980500731	- 2705980500731	/PANGEM
.7071067811865	.500000000000	- 5000000000000	/PANGEM
.3826834323651	.6532814824382	6532814824382	/PANGEM
-5.3903028581581E-15	.7071067811866	7071067811865	/PANGEM
3826834323651	-6532814824382	6532814824382	/PANGEM
7071067811865	.500000000000	500000000000	/PANGEM
9238795325113	2705980500731	2705980500731	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	4.1255591984947E-15	-9.9599809693787F-15	/PANGEM
.9238795325113	.1464466094067	- 3535533905933	/PANGEM
.7071067811865	.2705980500731	- 6532814824382	
.3826834323651	.3535533905933	- 8535533905933	/PANGEM
-5.3903028581581E-15	.3826834323651	9238795325113	/PANGEM
3826834323651	.3535533905933	8535533905933	/PANGEM
7071067811865	.2705980500731	6532814824382	/PANGEM
9238795325113	1464466094067	3535533905933	/PANGEM
-1.00000000000	0.	0.	/PANGEM
			/ / / MGEN

ч. "*ж*

Figure 10.3-2. Continued.

1.0000000000 .9238795325113 .7071067811865 .3826834323651 -5.3903028581581E-15 3826834323651 7071067811865 9238795325113 -1.00000000000 TRIANGULAR PANEL TOLERANCE = BOUNDARY CONDITION = 1 UPPER /NETWORK = HALF-SPHERE-Y-NEC /MAP S TO COLUMNS	1.1622145961067E-28 4.1255591984947E-15 7.6230394073057E-15 9.9599809693788E-15 1.0780605716316E-14 9.9599809693788E-15 7.6230394073057E-15 4.1255591984946E-15 0. 1.E-10	-1.0780605716316E-14 3826834323651 7071067811865 9238795325113 -1.00000000000 9238795325113 7071067811865 3826834323651 0. /N7 /N9	/PANGEM /PANGEM /PANGEM /PANGEM /PANGEM /PANGEM /PANGEM
/MAP V TO -ROWS	0 0		/N2A
NETWORK=HALF-SPHERE-Y-NEG	9 9 1 1622145061067E_28	-1 0780605716316F-14	/PANGEM
1.000000000000	-1.1022145901007E-20	- 3826834323651	/PANGEM
.9238/95325113	-4.1255591984947E-15	- 7071067811865	/PANGEM
./U/100/811805	-9.9599809693788F - 15	9238795325113	/PANGEM
5 2002054525051	-1.0780605716316E - 14	-1.00000000000	/PANGEM
- 3926834323651	-9,9599809693788E-15	9238795325113	/PANGEM
- 7071067811865	-7.6230394073057E-15	7071067811865	/PANGEM
9238795325113	-4.1255591984946E-15	3826834323651	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	-4.1255591984947E-15	-9.9599809693787E-15	/PANGEM
.9238795325113	1464466094067	3535533905933	/PANGEM
.7071067811865	2705980500731	6532814824382	/PANGEM
.3826834323651	3535533905933	8535533905933	/PANGEM
-5.3903028581581E-15	3826834323651	9238/95325113	/PANGEM
3826834323651	3535533905933	8535533905933	/PANGEM
7071067811865	2705980500731	6532814824382	
9238795325113	1464466094067	3535533905933	ZDANCEM
-1.00000000000	0.	U. 7 (2202040720565 15	/PANGEM
1.00000000000	-7.62303940/305/E-15		/PANGEM
.9238795325113	2705980500731	2/05980500/31	/PANGEM
.7071067811865	5000000000000	-,5000000000000000000000000000000000000	/PANGEM
.3826834323651	6532814824382	7071067811865	/PANGEM
-5.3903028581581E-15		- 6532914824382	/PANGEM
3826834323651	0532814824382	0002014024002	/PANGEM
7071067811865	50000000000	2705000500721	/PANGEM
9238795325113	2/05980500/31	-*5102300200121	
-1.00000000000	υ.	U •	TANGLA

Figure 10.3-2. Continued.

1.00000000000	-9.9599809693788E-15	-4.1255591984945E-15	/PANGEM
.9238795325113	3535533905933	1464466094067	/PANGEM
.7071067811865	6532814824382	2705980500731	/PANGEM
.3826834323651	8535533905933	3535533905933	/PANGEM
-5.3903028581581E-15	9238795325113	3826834323651	/PANGEM
3826834323651	8535533905933	3535533905933	/PANGEM
7071067811865	6532814824382	2705980500731	/PANGEM
9238795325113	3535533905933	- 1464466094067	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	-1.0780605716316E-14	0.	/PANGEM
.9238795325113	3826834323651	0.	/PANGEM
.7071067811865	7071067811866	0.	/PANGEM
.3826834323651	9238795325113	0.	/PANGEM
-5.3903028581581E-15	-1.00000000000	0.	/PANGEM
3826834323651	9238795325113	0.	/PANGEM
7071067811865	7071067811865	0.	/PANGEM
9238795325113	3826834323651	0.	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	-9.9599809693787E-15	4.1255591984946E-15	/PANGEM
.9238795325113	3535533905933	.1464466094067	/PANGEM
.7071067811865	6532814824382	.2705980500731	/PANGEM
.3826834323651	8535533905933	.3535533905933	/PANGEM
-5.3903028581581E-15	9238795325113	.3826834323651	/PANGEM
3826834323651	8535533905933	.3535533905933	/PANGEM
7071067811865	6532814824382	.2705980500731	/PANGEM
9238795325113	3535533905933	.1464466094067	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	-7.6230394073056E-15	7.6230394073057E-15	/PANGEM
.9238795325113	2705980500731	.2705980500731	/PANGEM
.7071067811865	500000000000	.500000000000	/PANGEM
.3826834323651	6532814824382	.6532814824382	/PANGEM
-5.3903028581581E-15	7071067811865	.7071067811865	/PANGEM
3826834323651	6532814824382	.6532814824382	/PANGEM
7071067811865	500000000000	.500000000000	/PANGEM
9238795325113	2705980500731	.2705980500731	/PANGEM
-1.00000000000	0.	0.	/PANGEM
1.00000000000	-4.1255591984946E-15	9.9599809693788E-15	/PANGEM
.9238795325113	1464466094067	.3535533905933	/PANGEM
.7071067811865	2705980500731	.6532814824382	/PANGEM
.3826834323651	3535533905933	.8535533905933	/PANGEM
-5.3903028581581E-15	3826834323651	.9238795325113	/PANGEM
3826834323651	3535533905933	.8535533905933	/PANGEM
7071067811865	2705980500731	.6532814824382	/PANGEM
9238795325113	1464466094067	.3535533905933	/PANGEM
-1.00000000000	0.	0.	/PANGEM

Figure 10.3-2. Continued.

Figure 10.3-2. Concluded.

÷

Figure 10.4-1 Rectangular plate panels for the case 2a = 1 and 2b = 1.5

/// GLOBAL DATA GROUP								
BEGIN GLOBAL DATA							/G1	
PID = RECTANGULAR PLATE								
HID=R. T. MEDAN BOFING COMPL	UTER	SE	RVICES	COMPANY.	(206)	773	2349	
CONFIGURATION = ASYMMETRIC				,	•		/G4	
MACH = 0							/G5	
SUPPACE SELECTION = AVERAGE							/G8	
CHECKOUT = ALL							/G17	
							/G18	
ADDED MASS							,	
1/ CTADT DATA FOD WING NETWO	ODK							
// START DATA FOR WING ALTHO (NETWORK - WING = IOO								
VETWORK - WING - 400		7	10					/N2A
	Δ	/	10		Ο			/PANGEM
U. C. CO072070502025 02	0.				0.			/PANGEM
0.098/29/9582032-02	0.				0.			/PANGEM
.2499999994819	0.				0.			
.4999999991026	0.				. 0.			/PANGEM
./49999998963/	0.				0.			/PANCEM
.933012/011443	0.				0.			/PANGLM
1.00000000000	0.	~ ~ ~			0.			/PANGEM
0.	4.5	230	534308	253E-02	0.			/PANGEM
6.6987297958203E-02	4.5	230	5343082	253E-02	υ.			/PANGEM
.2499999994819	4.5	230	534308	253E-02	0.			/PANGEM
.4999999991026	4.5	230	5343082	253E-02	0.			/PANGEM
.749999989637	4.5	230	534308	253E-02	0.			/PANGEM
.9330127011443	4.5	230	5343082	253E-02	0 .			/PANGEM
1.00000000000	4.5	230	534308	253E-02	0.			/PANGEM
0.	.1	754	666672	762	0.			/PANGEM
6.6987297958203E-02	.1	754	666672	762	0.			/PANGEM
.2499999994819	.1	754	666672	762	0.			/PANGEM
.4999999991026	.1	754	666672	762	0.			/PANGEM
.749999989637	.1	754	6666727	762	0.			/PANGEM
.9330127011443	.1	754	666672	762	0.			/PANGEM
1.00000000000	.1	754	666672	762	0.			/PANGEM
0.	.3	749	9999922	228	0.			/PANGEM
6.6987297958203E-02	.3	749	9999922	228	0.			/PANGEM
.2499999994819	.3	749	9999922	228	0.			/PANGEM
.4999999991026	.3	749	9999922	228	0.			/PANGEM
.749999989637	.3	749	999992	228	0.			/PANGEM
.9330127011443	.3	749	9999922	228	0.			/PANGEM
1.00000000000	.3	749	999992	228	0.			/PANGEM

Figure 10.4-2. DIP input for the rectangular plate with 2a = 1 and 2b = 1.5

10-56

ŧ

0.	.6197638655714	0.	/PANGEM
6.6987297958203E-02	.6197638655714	0.	/PANGEM
.2499999994819	.6197638655714	0.	/PANGEM
.4999999991026	.6197638655714	0.	/PANGEM
.7499999989637	6197638655714	0.	/PANGEM
.9330127011443	.6197638655714	0.	/PANGEM
1.00000000000	.6197638655714	0.	/PANGEM
0.	.8802361317772	0.	/PANGEM
6.6987297958203E-02	.8802361317772	0.	/PANGEM
.2499999994819	.8802361317772	0.	/PANGEM
.4999999991026	.8802361317772	0.	/PANGEM
.7499999989637	.8802361317772	0.	/PANGEM
.9330127011443	.8802361317772	0.	/PANGEM
1.00000000000	.8802361317772	0.	/PANGEM
0.	1.124999998446	0.	/PANGEM
6.6987297958203E-02	1.124999998446	0.	/PANGEM
.2499999994819	1.124999998446	0.	/PANGEM
.4999999991026	1.124999998446	0.	/PANGEM
.7499999989637	1.124999998446	0.	/PANGEM
.9330127011443	1.124999998446	0.	/PANGEM
1.00000000000	1.124999998446	0.	/PANGEM
0.	1.324533330993	0.	/PANGEM
6.6987297958203E-02	1.324533330993	0.	/PANGEM
.2499999994819	1.324533330993	0.	/PANGEM
.4999999991026	1.324533330993	0.	/PANGEM
.7499999989637	1.324533330993	0.	/PANGEM
.9330127011443	1.324533330993	0.	/PANGEM
1.00000000000	1.324533330993	0.	/PANGEM
0.	1.454769464771	0.	/PANGEM
6.6987297958203E-02	1.454769464771	0.	/PANGEM
.2499999994819	1.454769464771	Ο.	/PANGEM
.4999999991026	1.454769464771	0.	/PANGEM
.7499999989637	1.454769464771	0.	/PANGEM
.9330127011443	1.454769464771	0.	/PANGEM
1.00000000000	1.454769464771	0.	/PANGEM
0.	1.50000000000	0.	/PANGEM
6.6987297958203E-02	1.50000000000	0.	/PANGEM
.2499999994819	1.50000000000	0.	/PANGEM
.4999999991026	1.50000000000	0.	/PANGEM
.7499999989637	1.50000000000	0.	/PANGEM
.9330127011443	1.50000000000	0.	/PANGEM
1.00000000000	1.50000000000	0.	/PANGEM
BOUNDARY CONDITION = $1, 3$	/N9		•

- -

Figure 10.4-2. Continued.

/// FLOW PROPERTIES DATA GROUP BEGIN FLOW PROPERTIES DATA /FP1 // NO PDP CASES FORCES AND MOMENTS /FM1 AXIS SYSTEM = RCS /FM3 PRINTOUT = PANELS, COLSUM, NETWORKS, CONFIGURATION /FM5 CASE = RECTANGULAR-PLATE /FM7 NETWORKS-IMAGES=1 INPUT /FM8 END PROBLEM DEFINITION

Figure 10.4-2. Concluded.

Ę

10-60

-

_

BEGIN GLOBAL		/G1	
PID = PARALLELEPIPED			
UID = R.T.MEDAN			
CONFIGURATION = ASYMMETRIC		/G4	
MACH = 0.		/G5	
SURFACE = UPPER		/68	
TOLERANCE = $1.E - 10$		/G7	
CHECKOUT = DIP = 1 2 3 DOG	1245	/G17	
ADDED MASS	,	/618	
BEGIN NETWORK DATA		/N1	
/NETWORK = Z.EO.O-FACE = 500			
NETWORK=Z.EO.O-FACE	5 6		/N2A
0.	0.	0.	/PANGEM
.8786796545366	0.	0.	/PANGEM
2 99999994615	0	0	/PANGEN
5.121320337848	0	0	/PANGEM
6.00000000000	0	0	/PANGEM
0	7630320208122	0	/DANGEM
8786796545366	7639320208122	0	/PANGEM
2,99999994615	7639320208122	0	/PANGEM
5 121320337848	7639320208122	0	/PANGEM
6.0000000000	7639320208122	0	/PANGEM
0	2 76393201 7038	0	/PANGEM
8786796545366	2 763032017030	0	/DANGEM
2 000000000000	2 763032017030	0.	/PANGEM
5 121320337848	2 763032017038	0	/PANGEM
6 0000000000	2 763032017030	0	/PANGEM
0	5 236067969306	0	/PANGEM
8786796545366	5 236067969306	0	/PANGEM
2,99999994615	5 236067969306	0	/PANGEM
5.121320337848	5,236067969306	0.	/PANGEM
6,00000000000	5,236067969306	0	/PANGEM
0	7 236067970748	0	/PANGEM
.8786796545366	7.236067970748	0.	/PANGEM
2,99999994615	7 236067970748	0.	/PANGEM
5.121320337848	7,236067970748	0.	/PANGEM
6,00000000000	7.236067970748	Ő.	/PANGEM
0.	8,000000000000	0.	/PANGEM
.8786796545366	8,000000000000	0.	/PANGEM
2,999999994615	8,000000000000	Õ.	/PANGEM
5,121320337848	8,00000000000	0.	/PANGEM
6.0000000000	8,000000000000	0.	/PANGEM
BOUNDARY CONDITION = 1 UPPER			/N9

-

トレ

Figure 10.5-2. DIP input for the parallelpiped with a = 3, b = 4, and c = 2.5.

/NETWORK = Z.EQ.2C-FACE = 501	L			
NETWORK=Z.EQ.2C-FACE	5 (6		/N2A
0.	0.		5.00000000000	/PANGEM
.8786796545366	0.		5.00000000000	/PANGEM
2.99999994615	0.		5.00000000000	/PANGEM
5.121320337848	0.		5.00000000000	/PANGEM
6.0000000000	0.		5.00000000000	/PANGEM
0.	.7639320	0208122	5.00000000000	/PANGEM
.8786796545366	.7639320	0208122	5.00000000000	/PANGEM
2.99999994615	.7639320	0208122	5.00000000000	/PANGEM
5.121320337848	.7639320	0208122	5.00000000000	/PANGEM
6.0000000000	.7639320	0208122	5.00000000000	/PANGEM
0.	2.76393	2017038	5.00000000000	/PANGEM
.8786796545366	2.76393	2017038	5.00000000000	/PANGEM
2.999999994615	2.76393	2017038	5.00000000000	/PANGEM
5.121320337848	2.76393	2017038	5.00000000000	/PANGEM
6.00000000000	2.76393	2017038	5.00000000000	/PANGEM
0.	5.23606	7969306	5.00000000000	/PANGEM
.8786796545366	5.236067	7969306	5.00000000000	/PANGEM
2.99999994615	5.23606	7969306	5.00000000000	/PANGEM
5.121320337848	5.236067	7969306	5.00000000000	/PANGEM
6.0000000000	5.236062	7969306	5.00000000000	/PANGEM
0.	7.236062	7970748	5.00000000000	/PANGEM
.8786796545366	7.23606	7970748	5.00000000000	/PANGEM
2.999999994615	7.236067	7970748	5.00000000000	/PANGEM
5.121320337848	7.23606	7970748	5.00000000000	/PANGEM
6.0000000000	7.236067	7970748	5.00000000000	/PANGEM
0.	8.00000	000000	5.00000000000	/PANGEM
.8786796545366	8.00000	000000	5.00000000000	/PANGEM
2.999999994615	8.00000	000000	5.00000000000	/PANGEM
5.121320337848	8.00000	000000	5.00000000000	/PANGEM
6.0000000000	8.00000	000000	5.00000000000	/PANGEM
BOUNDARY CONDITION = $1.10WER$			/N9	

Figure 10.5-2. Continued.

/NETWORK = Y.EO.O-FACE = 502						
NETWORK=Y.EO.O-FACE		5	4			/N2A
0.	0.			0.		/PANGEM
.8786796545366	0.			0.		/PANGEM
2,999999994615	0.			0.		/PANGEM
5,121320337848	Ő.			0.		/PANGEM
6,0000000000	Ő.			0.		/PANGEM
0	ň.			1 24	0000007400	/PANGEM
9786796545366	ñ.			1 24	0000007/00	/PANGEM
2 0000000000000	ñ.			1 24	0000007400	/PANGEM
5 121320337848	ñ.			1 24	0000007400	/PANGEM
6 0000000000	ň.			1 24	0000007/00	/PANGEM
0.00000000000	<u>0</u> .			2 7/	000000/910	/DANGEM
9796706545266	0.			2 74	0000004910	/DANGEM
2 00000004615	0.			2.74	0000004010	
Z-9999999994010 E 101000007040	0.			3./4	0000004010	
5.121320337848	0.			3./4	0000004019	
6.0000000000	0.			3.74	99999994819	/PANGER
U.	0.			5.00	0000000000	/PANGEM
.8/86/96545366	0.			5.00	000000000	/PANGEM
2.999999994615	0.			5.00	0000000000	/PANGEM
5.121320337848	0.			5.00	0000000000	/PANGEM
6.0000000000	Ο.			5.00	0000000000	/PANGEM
BOUNDARY CONDITION = 1,LOWER			· -		/N9)
/NETWORK = Y.EQ.2B-FACE = 503	3					
NETWORK=Y.EQ.2B-FACE		5	4			/N2A
0.	8.	0000	0000000	0.		/PANGEM
.8786796545366	8.	0000	0000000	0.		/PANGEM
2.999999994615	8.	00000	0000000	0.		/PANGEM
5.121320337848	8.	0000	0000000	0.		/PANGEM
6.00000000000	8.	00000	0000000	0.		/PANGEM
0.	8.	0000	0000000	1.24	9999997409	/PANGEM
.8786796545366	8.	00000	0000000	1.24	9999997409	/PANGEM
2.99999994615	8.	0000	0000000	1.24	9999997409	/PANGEM
5.121320337848	8.	00000	0000000	1.24	9999997409	/PANGEM
6.0000000000	8.	0000	0000000	1.24	9999997409	/PANGEM
0.	8.	00000	0000000	3.74	9999994819	/PANGEM
.8786796545366	8.	0000	0000000	3.74	9999994819	/PANGEM
2,999999994615	8.	00000	0000000	3.74	9999994819	/PANGEM
5.121320337848	8.	0000	00000000	3.74	9999994819	/PANGEM
6.00000000000	8.	00000	00000000	3.74	9999994819	/PANGEM
0.	8.	0000	0000000	5,00	0000000000	/PANGEM
.8786796545366	8	00000	0000000	5.00	00000000000	/PANGEM
2,99999994615	8	0000	00000000	5.00	00000000000	/PANGEM
5 121320337848	 ຊ	00000	0000000	5.00	00000000000	/PANGEM
6.00000000000	R	0000	0000000	5.00	00000000000	/PANGEM
BOUNDARY CONDITION = 1 HOPER	0.	5000		5.00	/NG	y i forderi

~ ~

Figure 10.5-2. Continued.

/NETWORK = X.EQ.O-FACE = 504			
NETWORK=X.EQ.O-FACE	4 6		/N2A
0.	0.	0.	/PANGEM
0.	0.	1.249999997409	/PANGEM
0.	0.	3.749999994819	/PANGEM
0.	0.	5.000000000000	/PANGEM
0.	.7639320208122	0.	/PANGEM
0.	.7639320208122	1.249999997409	/PANGEM
0.	.7639320208122	3.749999994819	/PANGEM
0.	.7639320208122	5.000000000000	/PANGEM
0.	2.763932017038	0.	/PANGEM
- O.	2.763932017038	1.249999997409	/PANGEM
0.	2.763932017038	3.749999994819	/PANGEM
0.	2.763932017038	5.000000000000	/PANGEM
0.	5.236067969306	0.	/PANGEM
0.	5.236067969306	1.249999997409	/PANGEM
0.	5.236067969306	3.7499999994819	/PANGEM
0.	5.236067969306	5.000000000000	/PANGEM
0.	7.236067970748	0.	/PANGEM
0.	7.236067970748	1.249999997409	/PANGEM
0.	7.236067970748	3.7499999994819	/PANGEM
0.	7.236067970748	5.000000000000	/PANGEM
0.	8.00000000000	0.	/PANGEM
0.	8.00000000000	1.249999997409	/PANGEM
0.	8.0000000000	3.749999994819	/PANGEM
0.	8.0000000000	5.000000000000	/PANGEM
BOUNDARY CONDITION = 1,LOWER			/N9

Figure 10.5-2. Continued.

/NETWORK = X.EQ.2A-FACE = 50	5		
NETWORK=X.EQ.2A-FACE	4 6		/N2A
6.00000000000	0.	0.	/PANGEM
6.0000000000	0.	1.249999997409	/PANGEM
6.0000000000	0.	3.749999994819	/PANGEM
6.0000000000	0	5.00000000000	/PANGEM
6.0000000000	.7639320208122	0.	/PANGEM
6.0000000000	.7639320208122	1.249999997409	/PANGEM
6.0000000000	.7639320208122	3.749999994819	/PANGEM
6.0000000000	.7639320208122	5.00000000000	/PANGEM
6.0000000000	2.763932017038	0.	/PANGEM
6.0000000000	2.763932017038	1.249999997409	/PANGEM
6.0000000000	2.763932017038	3.749999994819	/PANGEM
6.0000000000	2.763932017038	5.00000000000	/PANGEM
6.00000000000	5.236067969306	0.	/PANGEM
6.0000000000	5.236067969306	1.249999997409	/PANGEM
6.00000000000	5.236067969306	3.749999994819	/PANGEM
6.00000000000	5.236067969306	5.00000000000	/PANGEM
6.00000000000	7.236067970748	0.	/PANGEM
6.00000000000	7.236067970748	1.249999997409	/PANGEM
6.00000000000	7.236067970748	3.749999994819	/PANGEM
6.00000000000	7.236067970748	5.00000000000	/PANGEM
6.00000000000	8.00000000000	0.	/PANGEM
6.00000000000	8.00000000000	1.249999997409	/PANGEM
6.00000000000	8.00000000000	3.749999994819	/PANGEM
6.00000000000	8.00000000000	5.00000000000	/PANGEM
BOUNDARY CONDITION = 1, UPPER		/N9	•
BEGIN FLOW PROPERTIES		/FP1	
FORCES AND MOMENTS		/FM1	
AXIS SYSTEM = RCS		/FM3	
CASE = PARALLELEPIPED		/FM7	
NETWORKS = 1 , RETAIN +			
= 2 , REVERSE +			
= 3 , REVERSE +			
= 4 , RETAIN +			
= 5 , REVERSE +			
= 6 , RETAIN		/FM8	
LOCAL PRINTOUT = COLSUM NETWO	ORKS CONFIGURATION	/FM19	9
END			

Figure 10.5-2. Concluded.

~

- · -

٠.

and the second second

.

1. Report No. NASA CR-3253	2. Government Accession No.	3. Recipient's Catalog No.				
4. Title and Subtitle PAN AIR -	A Computer Program for	5. Report Date. August 1981				
Predicting Subsonic or Flows about Arbitrary C Order Panel Method V	Supersonic Linear Potential onfigurations Using a Highe olume III - Case Manual (Ve	6. Performing Organization Code D180-24910-5				
Medan, Richard T. (Edit Kenneth W.: and Epton.	Author(s) Author(s) Medan, Richard T. (Editor); Magnus, Alfred E.; Sidwe Kenneth W : and Epton Michael A					
9. Performing Organization Name and Addre Boeing Military Airplan	e Company	10. Work Unit No.				
P.O. Box 3707 Seattle, Washington 98	124	11. Contract or Grant No. NAS2-9830				
12. Sponsoring Agency Name and Address NASA, Washington D. C. AFWAL & ASD, Wright-Pat	20546 terson AFB, Ohio 45433	13. Type of Report and Period Covered Contractor Report 1/78- 6/81 14. Sponsoring Agency Code				
NCSC, Panama City, Flor 15. Supplementary Notes	ida 32407					
NASA/Ames: Larry L. Er NASA/Langley: David S. AFWAL: Ken Cramer, Wil	ickson, Ralph L. Carmichael Miller, James L. Thomas liam A. Sotomayer	, Alan D. Levin ASD: James R. Snyder NCSC: Neill S. Smith				
Numerous applications of the PAN AIR computer program system are presented. Numerous applications of the PAN AIR computer program system are presented. PAN AIR is a user-oriented tool for analyzing and/or designing aerodynamic configurations in subsonic or supersonic flow using a technique generally referred to as a "higher order panel method". Problems solved include simple wings in subsonic and supersonic flow, a wing-body in supersonic flow, wing with deflected flap in subsonic flow, design of two-dimensional and three- dimensional wings, axisymmetric nacelle in supersonic flow, and wing-canard- tail-nacelle-fuselage combination in supersonic flow.						
Potential Flow, Aerodynamics, Computer Programs, Subsonic, Supersonic						
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 22. Price*				
Unclassified	Unclassified	242				
		NASA-Langley, 1983				

-

B.

11

じ

i.