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ABSTRACT

- The overall goal of achieving improved life cycle management of aircraft

engine, gas turbine components is a major industry thrust. Low Cycle
Fatigue (LCF) crack initiation prediction, an important elemeant of life
cycle management as traditionally applied, may be overly conservative in
estimating total cyclic life capability. Consequently, there is increasing
pressure to improve predictive methods both for crack initiation and for
subsequent crack propagation. This increased emphasis ié the result of
significantly higher component replacement costs as a consequence of more
complex designs coupled with advanced materials and processing techniques.
Moreover, despite added strength, the increased performance demands placed
on engine components to achieve higher engine thrust-to-weight ratios
have resulted in decreased cyclic lives. It is apparent, therefore, that
significant cost savings can be realized through improved accuracy in high
temperature, LCF crack initiation prediction.

In practical applications, engine components generally undergo very
complex cycles of multiaxial strain, temperature, and dwell time, all of
which add uncertainty to the problem of life prediction. During the process
of designing and analytically evaluating the lifetime of gas turbine engine
components, it is necessary to simplify many of these complexities to make the
problem tractable. Nevertheless, there remain several important questions
which can be clarified through the studylof life prediction models: among
these are how to address the problems of multiaxial loading, cumulative damage,
and mean stress effects, and how they influence fatigue crack initiation life.

Consequently, an 18-month study was undertaken to determine the utility
of equivalent damage concepts for application to hot section components of air-
craft engines. Specifically, the topics studied were mean stress, cumulative
damage, and multiaxiality. Other factors inherently linked to this study
were the basic formulation of damage parameters at elevated temperatures and
the fact that hot section components experience severe temperature fluctuations
throughout their service lifetime. Both of these latter considerations placed

contraints on the level of confidence with which recommendations regarding
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specific equivalent damage criteria could be made since most such criteria
were developed for use at lower temperatures. Despite this, the study yielded
useful results, both from the point of view of data consolidation techniques
under isothermal conditions and in producing concepts that will be useful in

future studies.

\ .

Through a literature review of the three areas of interest, the most
promising techniques were extracted for further study. In the case of mean
stress techniques, statistical evaluations of suggested approaches were made
by comparing each technique to various isothermal data sets. Similiarly, a
combined literature review and isothermal data'anélysis technique was used to
determine the most appropriate cumulative damage approach. In the case of
multiaxiality, this decision process rested solely on the basis of the litera-
ture review. Following the initial screening, both the mean stress techniques
and the cumulative damage concepts were tested against data sets involving
either time dependent aspects of damage and/or varying temperature. The

following conclusions were suggested by this study:

1. The equivalent strain relationship is the best mean stress criteria
for low homologous temperatures and aircraft gas:turbine engine alloys
if the appropriate isothermal data are available. The Leis tech-
nique appears to be the best predictive mean stress parameter when
data are not available to determine the exponent in the equivalent

strain technique.

2. Thermal mechanical fatigue (TMF) experiments are required to
verify the mean stress criteria. However, an elevated temperature

mean stress criterion should be more conservative than normal
approaches when applied to the out-of-phase TMF cycles which are

normally encountered in hot path components.

3. 1Isothermal mean stress criteria should be verified in the longer 1life
(design) regime. Most experimental results are obtained in the
shorter cycle life range where more inelastic strain is present. A

specific series of experiments was described.

4. The double linear damage rule is the best isothermal cumulative
damage technique currently available. However, the technique was
not consistent (it was conservative) in predicting a series of

two-step tests where a temperature change was introduced into the

second block of loading.
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5.

A test seriles was described for developing a consistent damage
methodology. These tests used a so-called equal life technique

to aid in the formulation of uniaxial equivalent damage criteria,

and involved changing temperature during the experiments. Such a
test series was viewed as a first step in developing a damage methodo-
logy for TMF.

A multiaxial equivalence criterion was developed based on a litera=
ture review. The criteria deemed important were the use of a tri-

axiality factor function and a consistent mean stress formulation,

A need exists for multiaxial test data on aircraft engine industry
alloys. These experiments should concentrate on positive biaxial
stress ratios, and should study the effect of mean stress. In
general, multiaxia} relationships for elevated temperature aﬁplica-
tions will remain an open research area for quite a while. Current
research should concentrate on lower temperature phenomena which
would suggest criteria at elevated temperatures. Uniaxial damage
considerations at elevated temperatures appear complicated enough

for the present.
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Tangential Stress, 066’ MPa
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Suggested Multiaxial Formulation
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€, a, Oy, k*, [ are material parameters

N¢ = Cycles to Failure



