

A USER'S GUIDE TO THE FLEXIBLE

 SPACECRAFT DYNAMICS AND CONTROL PROGRAM-VJoseph V. Fedci

July 1984

FOREWARD FOR USER｀S GUIDE－V

The Flexible Spacecraft Dynamics Program（FSD program）is a second generation computer program having evolved from the Radio Astronomy Explorer（RAE）Dynamics program which had its inception in 1965．The main FSD program was written and developed by the AVCO Ccrporation，Systems Division，Wilmington，Massachusetts and was kいいいい！！！\quad ，• in 1970．Since that time many checkouts and numerous improvements have been made．The program has run on the iBM 360／91 and 360／95 machines at GSFC，requiring up to 600 bytes of storage with overlay capability．More recently．the program has been running on the IBM 3081 machine which has no restrictions on storage requirements．Currently，the use of the program has been extended to the VAX 11／780 machine．The operation of the program is user oriented．That is．the design of the program and input output is suth that．aside from initial job conirol language cards，a dynamics or an analytical control engineer can wet up and run pro－ blems without programming assisance：no programming shills are required．

It is beyond the scope of this Guide to go into the many applications of this program．Exami－ nation of the input control words and various options does give an indication of its versatility． The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft．This program has been used to simulate the dynamics of antenra deployment and in－orbit attitude performance of the RAE－A．B．IMP－I．J．ISEE－A． C．Langley HAWKEYE．Air Force SCATHA．Italy SAN MARCO－D．Japan EXOS－B．ISPM． Dynamic Explorer－A．B．ISTP and CRRES．

With current emphasis on active control of pointed instruments on flexible spacecraft． recent additions have been in the controls area．Some additions to the current FSD program are as follows：

1．A two axis gimble platform and digital control system（propertional．integrai and derivative controller）to track the earth＇s magnetic field from a spinning or non－spin－ ning spacecraft．The magnetic field can be sensed on the spacecraft hub or at the end of a flexible boom．The control system coding is contained in one subroutine so that other control laws can be implemented without requiring changes in the overall program．
 degree of freedom for the azimuth gimble．This permits simulation of flexible ele－ ments on the azimuth platform as well as on the spacecraft while tracking the mag－ netic field．

3．Proportional，integral and derivative controller has been added to each axis $/ \cdots:$ ：p！．h and yaw of the earth pointing mode）to generate control torques from the respective momentum wheels．An arbitrarily oriented momentum wheel with control is also included．User formulated control laws are pennitted．

4．Jet damping added to the thruster option to simulate launch vehicle dynamics．
5．Thermal expansion and contraction of flexible elements caused by changing sun angle，spacecraft or orbit shadowing．

In addition to being used in Goddard related flight programs, the FSD program is being modified and maintained by the Systems Division of the AVCO Corporation, Wilmington, Massachusetts.
J. V. Fedor
E. A. Lawlor ${ }^{1}$
J. P. Downey
A. H. Forbes ${ }^{2}$
${ }^{1}$ AVCO
2Old Dominion Systems, Inc.

CONTENTS

Page
FOREWORD iii
INTRODUCTION 1
PART 1: ORBIT GENERATION 3
Earth Properties 4
Classical Orbit Parameter Options 5
PART 2: CONTROL WORDS 6
Tir:e Control Words 6
Gel:eral Control Words 6
Option Control Words 8
Integration Control Worás 15
Integration Bounds 16
Plot Control Words 21
Diagnostic Control Words 36
PART 3: SPACECRAFT DESCRIPTION AND SIMULATION OPTIONS 37
Core Properties 37
Element Geometry and Physical Properties 37
Computation of Flexible Element Root Bendings Moments 41
Computation of Element Root Tensions 42
Thermal Lag - Element Bending 42
Thermal Expansion and Contraction of Element Length 43
Element Damping Coefficient 46
Element Twist (Torsion) Option 46
Tip Mass Rotatory Inertia 47
Libration Damper Option 48
Earth Oriented Satellite Option - Attitude and Body Rates 51
Boom Deployment From Sun Pulse Option 52
Spinning Body Option Attitude and Body Rates 53
Nutation Viscous Ring Damper Option 53
Attitude Control Moment Option 54
Constant Torque Levels About Body Axes 55
Spin Axis Moment Option 56
Thrust Loading Option 56
Jet Damping Option 58
Angular Momentum Option 58
Momentum Wheel Option 59
Magnetic Moment Option 60
Spacecraft Acceleration Option 61
Accelerometer Location 62
Fast Fourier Transform (FFT) Analysis 63
Atmospheric Density Model Option 64
Linear Varying Drag Loading 65
Ground Simulation Option 65
Secondary Body Simulation 67
Slewing or Rastering of Secondary Body 70
Actuator Initiation from Zero Crossing of State Variables 71
Dual Spin Spacecraft Control System (DE-B) 73
Two Axis Gimble Simulation (No Active Control) 79
Control System for Two Axis Platform Maynetic Tracking 82
Two A.xis Damper Gimble Simulation (No Active Control) 86
Control System for Two Axis Platform (Damper) Magnetic Tracking 88
Axis Momentum Wheel Control 93
Arbitrarily Oriented Monentum Wheel Control 98
End of Input 100
PART 4: DEFINITION OF COMPUTER PRINTED OUTPUT DATA 101
Classical Orbital Parameters After Thrusting 107
Fast Fourier Transform Analysis Output 108
DE-B Control System Output 108
Secondary Body Output 108
Two Axis Platform (and Damper) Conirol Systems 109
Axis Momentum Wheel 109
Arbitrarily Oriented Momentuin Wheel $: 10$
Element Thermal Expansion 110
Adams-Moulton Numerical Integration Control Message Output 111
GENERAL REFERENCES 112
APPENDIX A: COORDINATE SYSTEMS AND OTHER RELATED MATERIAL A-1
APPENDIX B: EXAMPLES OF RAE. IMP-I AND DE-B SPACE- CRAFT INPUT B-1

A USER'S GUIDE TO THE FLEXIBLE SPACECRAFT DYNAMICS AND CONTROL PROGRAM-V

INTRODUCTION

This computer program was initially developed to simulate the dynamics of the IMP and RAE class of satellites. Generality was retained in its development so that it is applicable to the simulation of the dynamics and control of a large class of flexible and rigid spacecraft.

The program is applicable to inertially oriented spinning, earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects developed at orbital altitude are simulated. The efferts include gravity gradient forces, solar pressure, magnetic torques and thermal bending due to solar heating. Body torquing devices in the computer program include momentum wheels, a viscous ring nutation damper, magnetic torquer coils and attitude control thrusters. For gravity gradient satellites, an option is available for simulating either a magnetic hysteresis or viscous libration damper.

The computer program has the capability of simulating up to ten flexible tubular elements arbitrarily oriented with respect to the body fixed coordinate frame. A finite series of shape function are used to describe the bending and twisting of the flexible elements. Higher order displacement terms are retained in order to achieve reasonable accuracy for large displacements.

The equations of motion are derived from variational principles, i.e., the principle of virtual work. The generalizad coordinates include the three rotational and three translational degrees of freedom of the body fixed axes and the amplitudes of the shape functions for each flexible element. An additional generalized coordinate is necessary to describe the motions of the libration damper.

Generalized forces were derived and programmed for gravity gradient forces, solar pressure, bending stresses and structural damping. The induced temperature gradients and solar pressure generalized forces are derived from the instantaneous angle of incidence between the sun line vector and the deformed flexible elements. The effects of aercdynamic drag on the flexible motions of a spacecraft is also computed for low altitude orbits.

A special purpose computer program (Integral Evaluation Program) was also developed to compute input data for the dynamics computer program. This computer program evaluates definite integrals that evolve in the mathematical process of spatially integrating the internal and external forces acting on the flexible
elements of a satellite. The integrals are normalized products of the shape functions and their derivatives evaluated over the flexible elements lengths. For a given shape function, selected to represent the deformed shape of a flexible element, the integrals have to be evaluated only once. The integrals are read into the dynamics program either on cards or compiled into block data. The dynamics simulations can then be made without further recourse to the integral evaluation program. The shape functions are specified by the coefficients of polynomials. For a flexible element with no tip mass, a set of typical shape function used would represent cantilever beam bending modes. Other more appropriate shape funcritions would be specified for simulating flexible elements with tip masses. The dynamics program can use up to three shape functions or modes in simulation of the deflectional motion of the flexible elements. At times it is necessary to have different types of flexible elements with different stiffness characteristics on the same spacecraft. The dynamics program has, therefore, the capability of utiiizing two different sets of values as determined by the integral evaluation program for two different families of shape function. An example of the use of this capability would be a spinning spacecraft requiring interlocked closed cross-section elements on the spin axis and utilizing wire elements on the transverse axes.

The input to the Flexible Spacecraft Dynamics program consists of four main parts, i.e.:

1. Input which is necessary to construct the orbit of the spacerraft.
2. Control words to invoke or delete various options such as gravity gradient effects, control torques, starting integration interval, etc.
3. Input to describe mathematically the spacecraft, appendages and control system.
4. Desired state variable output which is controlled by INOPT 1 or 2 and by KPLOTS arrav addresses.

The input to these portions is on punched cards, punched in columns 2 through 72. The Fortran input symbol can be punched in any of these columns followed by its input value. Since the program utilizes a nameless read, more than one input symbol and associated value can be punched on a card provided the symbol value pairs are separated by at least one blank. Within each main portion, the order of input is immaterial. A heading card can be inserted within the input donkz provided an H is punched in column one. Comment cards can be inserted in the input dat eck with an " $\$$ " or "*" punched in column one.

The input to the main parts will be described in detail.

PART 1
ORBIT GENERATION

There are two options for describing the orbit. They are:

1. Utilizing the internal orbit generator which generates a two-body (Keplerian) orbit at each time step in the program. Constant orbit drifting rates of longitude of ascending node and argument of perigee can also be input to the program providing better orbit simulation if long term study is required. For the majority of simulations, this simpiified orbit is quite adequate. However, if a definitive orbit is desired, or the program is used during operational support of a mission, the second orbit option should be used.
2. An orbit tape can be read by the program via control words and Fortran I/O unit. The orbit tape is generated by GTDS (Goddard Trajectory Determination System) of Code 582 at GSFC for the satellite and time span in question.

The orbit option is set by two input control words, IORB and ITAPE. For internal orbit generation, set

$$
\text { IORB }=0, \text { ITAPE }=0 \text { (preset values) }
$$

For reading orbit tape option, set

$$
\mathrm{IORB}=1, \mathrm{ITAPE}=\mathrm{NM}
$$

where NM is the Fortran I/O unit number corresponding to the followirg JCL to be inserted for this option
//GO. FTNMF001 DD UNIT=2400, DSN=FSD. EPHEM, //VOL =SER=XXXXXX, LABEL=1, BLP), $\mathrm{DCB}=$ ($\mathrm{RECFM}=\mathrm{VS}, \mathrm{BLKSIZ} \mathrm{E}=2808$, $\mathrm{BUFNO}=1$)

In either case the following orbital input parameters are input: the parameters for which the earth is the central body are pre-set internally, so it is not really necessary to read in these values unless it is desired to ch.nge them. The user can also specify a central body other than the earth by reading in the appropriate parameters.

The orbital input parameters are as follows:

Fortran Symbol	Math Symbol	Description	Units
AEARTH	a_{E}	Semi-major axis of Earth. Internally set to 6378.165	km
ZMU	$\mu_{\text {E }}$	Gravitational constant of Earth. Internally set to $3.986032 \mathrm{D}+05$	$\mathrm{km}^{3} / \mathrm{sec}^{2}$
ZJ20		Oblate Earth coefficient. Internally set to $1.082 \mathrm{D}-06$	N. D.
FLAT	$\frac{a}{a-b}$	$a=$ Semi-major axis of Earth b = Semi-minor axis of Farth Flat is internally set to 298.3	N.D.
WWO		GHA of Aries at instant vernal equinox occurs in the year of simulation. Used for the $(2,2)$ term in the expansion of Earth's gravitational model (preset = 55.0)	
WE	ω_{E}	Earth's mean angular velocity about the sun. Internally set to $1.1407 \mathrm{D}-$ $05 \mathrm{Deg} / \mathrm{sec}$.	deg/sec
TVER		Time in seconds from Jan. 1st at 00:00 to time of Vernal Equinox in the year ut simulation. Internally set to 6873720.0 seconds.	sec
ECLPTC		Obliquity of the ecliptic. Internally set to 23.444 deg .	
J2		Oblate Earth coefficients. Internally set as follows:	
J4		$\begin{aligned} & \mathrm{J} 2=1082.3 \mathrm{D}-06, \mathrm{~J} 3=2.3 \mathrm{D}-06, \\ & \mathrm{~J} 4=1.8 \mathrm{D}-06, \mathrm{~J} 22=5.35 \mathrm{D}-06 \end{aligned}$	
J22		Non-dimensional values.	

Fortran Symbol	Math Symbol	Description		Units
IKPLR	N. A.	Control word for Keplerian orbit parameter input		N. L.
		IKPLR $=0$, input $\left\{x_{i}\right\}$ and $\left\{\dot{x}_{1}\right\}$ IKPLR $=1$, (preset) input Keplerian orbit parameters		
Fortran Symke?	Math Symbol	Description	Preset Value	Units
AS	a	Semi-major axis	8000.0	km
E	e	Eccentricity	0.0	N.D.
EI	i	Inclination angle	0.0	deg
F	f	True anomaly	0.0	deg
BW	Ω	Longitude of ascending node	0.0	deg
W	ω	Argument of perigee	0.0	deg
BWDOT	$\dot{\Omega}$	Rate of change of longitude of ascending node	0.0	deg/day
WDOT	$\dot{\omega}$	Rate of change of argument of perigee	0.0	deg/day

The following cards are input only if $I K P L R=0$, otherwise they are omittec.
XSAT (1-3) $\left\{x_{i}\right\} \quad$ Components of initial position $\quad \mathrm{km}$ vecter in the Aries (Equatorial) Inertial Frame.
$($ preset $=8000.0,0.0,0.0)$
XSATDT (1-3) $\left\{\dot{x}_{1}\right\} \quad$ Components of initial velocity km/sec vector in the Aries (Equatorial) Inertial Frame.
(preset $=0.0,7.0587,0.0$)

PART 2

CONTROL WORDS

TIME CONTROL WORDS
Fortran
Symbol Description Units

TIME Time in seconds from start of day. This is also the Geconds

TSTOP	Problem stop time. Specified as incremental time	Seconds
	from TIME (preset $=3600.0$)	

FREQ Output data print frequency (preset $=60.0$) Seconds
GENERAL CONTROL WORDS
Fortran
Symbol
Description
Units
IDATA Control word for printing of input data by subroutine ECHO (preset = 1)

If IDATA $=0$ prints out original set of inpui parameters, implies MLAST $=1$.

If IDATA $=1$ prints out set of input parameters which were the end conditions of the previous case in the stack. Implies MLAST $=0$.

IDATA, unlike MLAST, is used in the case within the stack to which it appies.

MLAST Control word associated with stacking of Integer, cases. If a card MLAST $=0$ is inserted N. D. within a case, the terminal ccinditions of this case are used as initial conditions for the next case which follows.

Fortran

 SymbolDescription
Units
$\begin{array}{ll}\text { MLAST } & \text { If a card MLAST = } 1 \text { is inserted in each case, } \\ \text { (con't) } & \text { the first set of data for spacecraft descrip- } \\ & \text { tion is used in each case which follows the } \\ & \text { first except for those cards which override } \\ & \text { the originals ia the first case. }(\text { Preset }=0) .\end{array}$
NOTL

Stacking Procedure

'The capability is provided to stack computer runs in order to simplify and speed the parametric analysis of spacecraft dynamics problem:. Two types of problems can be processed: (1) Parallel stacking capability - series of simulations are being made with similar initial conditions and it is desired to change one or more paraneters in each case, or (2) Series stacking capability - a continuous (in time) simulation is run where at specified times, changes in parameters are made but the dependent variables are carried over from the last time of one sequence to the beginning of the next sequence.

To run a stacked case, it is only necessary to insert a " 1 " card, i.e., a " 1 " punched in column one, after each set of input data. The simulation will continue until the TSTOP of a sequence is reached. The new data will be read in "fter the " 1 " card and the simulation will restart with the modified input data. An indefinite number of stacked cases can be processed providing there is sufficient computer time available.
deployment run is also considered to be a stacked case. The first sequences should have either MDPLY = 1 or DDPLY $=1$ or both. Deployment is either initiated or terminated in a particular sequence by setting Z L1(k) equal to the desired deployment rate or equal to zero, respectively.

Note that it is important to specify an appropriate value of DELTAT for each sequence in order to start the Runge Kutta-Adanis Moulton integration scheme. If no new DELTAT is specified in the new stack, the DELTAT value of the previous stack will be used for the new stack.

If it is desired to rerun the deployment sequencs with a change in a parameter, set MLAST = 1 in the last sequence. This will restore the input set of initial conditions.

OPTION CONTROL WORDS

Fortran Symbol	Description	Units
INOPT	Control word for type of satellite being studied. (Preset value $=1$)	$\begin{gathered} \text { Integer, } \\ \text { N.D. } \end{gathered}$
	INOPT = 1 Spin Stabilized Satellite	
	INOPT $=2$ Gravity-Gradient or earth-pointing Sat - lite	
IHAMLT	Control word to call Relative Hamiltonian subroutine. (Preset value $=0$)	$\begin{aligned} & \text { Integer, } \\ & \text { N.D. } \end{aligned}$
	IHAMLT $=0$ By-passes subroutine	
	IHAMLT $=1$ Employs subroutine	
IGRAV	Control word to incorporate or exclude gravity effects. (Preset value $=1$)	$\begin{gathered} \text { Integer, } \\ \text { N.D. } \end{gathered}$
	IGRAV $=0$ Gravity excluded	
	IGRAV $=1$ Gravity included	
MDPLY	Control word for boom deployment subroutine. (Preset vaiue $=0$)	Integer, N. D.
	MDPLY $=0$ Not a deployment case	
	MDPLY $=1$ Deployment of booms required	
DDPLY	Control word for libration damper boom deployment. (Preset value $=0$)	$\begin{aligned} & \text { Integer, } \\ & \text { N.D. } \end{aligned}$
	DDPLY $=0$ Not a deployment case	
	DDPLY = 1 Deployment of libration damper boom required	
ISDPLY	Control word to begin boom deployment from a "see sun" pulse. $\quad($ Preset value $=0)$	Integer, N.D.
	ISDPLY $=0$ By-passes subroutine	
	ISDPLY $=1$ Employs subroutine	

Fortran Symbol	Description	Units
DAMP	Control word to exclude or allow libration damper motion. (Preset value $=0$)	Integer, N.D.
	DJAMP = 0 No damper motion	
	IDAMP = 1 Damper motion	
IVISCS	Control word to employ viscous ring nutation damper into program. (Preset value $=0$)	integer, N.D.
	IVISCS $=0$ By-passes subroutine	
	IVISCS $=1$ Employs subroutine	
ISPIN3	Control word to call spin axis moment subroutine. (Preset value $=0$)	Integer, N.D.
	ISPIN3 = 0 Bypass subroutine	
	ISPIN3 $=1$ Employs subroutine	
IATTDE	Control word to call the attitude control subroutines. (Preset value $=0$)	Integer, N.D.
	LATTDE $=0$ Bypasses subroutine	
	IATTDE $=1$ Employs subroutine	
IWHEEL	Control word to call momentum wheel subroutine. (Preset value $=0$)	Integer, N.D.
	IWHEEL $=0$ Bypasses subroutine	
	IWHFEL $=1$ Employs subroutine	
IMGMTS	Control word to exclude or allow magnetic moments. $($ Preset value $=0)$	Integer, N.D.
	IMGMTS $=0$ magnetic moments excluded	
	IMGMTS $=1$ magnetic moments allowed	
ITORK	Control word to apply torque about body axes. (Preset value $=0$)	Integer, N.D.
	ITORK = 0 No torque applied	
	ITORK $=1$ Torque applied	

Fortran
Symbol
Description
Units

IBENDM	Control word to calculate and print out flexible element root bending moments. (Preset value $=0$)	Integer, N.D.
	IBENDM $=0$ No calculation	
	IBENDM $=1$ Calculate and print	
ITENSE	Control word to calculate and print out element root tensions. (Preset value $=0$)	Integer, N. D.
	ITENSE $=0$ No caiculation	
	ITENSE $=1$ Calculate and print	
IPLANS	Control word to invoke a thermal lag effect on appendages due to planet and satellite shadowing. (Preset value $=0$)	Integer, N.D.
	IPLANS $=0$ No lag invoked	
	IPLANS = 1 Lag invoked	

ISATSH Control word to invoke thermal lag effect of Integer, appendages due to satellite shadowing N.D. (Preset value $=0$)
LSATSH $=0$ No shadowing
SATSH $=1$ Shadowing and lag
IWRTTF Control word to print out thermal forces before and Integer, after computation of thermal lag. (Preset value $=0$) N.D.

IWRTTF $=0$ No print out
IWRTTF $=1$ Print
IAFM(1) Concrol word to print out unit sun vector in body frame. Integer, (Preset value $=0$)
N. D.

IAFM(1) $=0$ No sun vector printout
LAFM(1) = 1 Prints out sun vector

IAFM(2) Control word for punch cards restart. (Preset Integer, value $=0$) N. D.

Fortran Symbol	Description	Units
	$\operatorname{IAFM}(2)=0$ No cards punched	
	IAFM(2) = 1 Cards punched	
IAFM(3)	Control word for printing of output data. (Preset value $=0$)	integer, N. D.
	LAFM(3) = 1 No printout, printer plots only	
	LAFM(3) $=0$ Printout and plots	
IAFM(4)	Control word to activate the data records and autocorrelation function plots for fast fourier transform analysis. (Preset value $=0$)	Integer, N. D.
	IAFM(4) $=0$ No data record and autocorrelation function plots	
	IAFM(4) = 1 Data record and autocorrelation function plots	
LAFM(5)	Control word to activate Adams-Moultion integrator message table. (Preset value $=0$)	Integer, N. D.
	LAFM(5) $=0$ No integrator message	
	LAFM(5) = 1 Integrator message printed	
IACOMP	Control word to activate the acceleration computation for both hub and element tip accelerations. $(\text { Preset value }=0)$.teger, N. D.
	IACOMP = 0 Bypasses computation	
	IACOMP = 1 Computes accelerations	
IHUBAC	Control word to activate acceleration computation and printout for the hub. (Preset value $=0$)	Integer, N. D.
	IHUBAC $=0$ No computation	
	IHUBAC = 1 Computes hub accelcrations	
ITIPAC	Control word to activate acceleration computation and printout for the element tip. (Preset value $=0$)	Integer, N. D.
	ITIPAC $=0$ No computation	
	ITIPAC $=1$ Computes tip accelerations	

Fortran Symbol	Description	Units
IPULSE	Control word to activate thrust subroutine. (Preset value $=0$)	Integer, N. D.
	IPULSE $=0$ Bypasses subroutine	
	IPLLSE $\geqslant 1$ Employs subroutine	
ISPLSE	Control word to activate sun crossing time to start thrusting. (Preset value $=0$)	Integer, N. D.
	ISPLSE $=0$ Sun crossing not used	
	ISPLSE $=1$ Sun crossing used	
IPLPRP	Control word for number of thrust pulses per spin period. IPLPRP = 1 One pulse (Preset)	Integer. N.D.
	IPLPRP = 2 Two pulses	
ISPNP	Control word to print out orbit update message (only if ISPLSE = 1, IPULSE >1). i.e., if ISPNP = 5, (preset) the orbit update message will be printed at every 5th nulse.	Integer, N. D.
IHCALC	Control word to calculate and print out the angular momentum vector of the system and system moments of inertia (preset value $=0$)	Integer, N. D.
	IHCALC $=0$ No calculation	
	IHCALC $=1$ Calculates and prints	
IHREF	Control word to compute reference direction for EPSERR from the initial system angular momentum vector (Preset value $=0$)	$\begin{aligned} & \text { Integer, } \\ & \text { N. D. } \end{aligned}$
	IHREF $=0$ No calculation	
	IHREF = 1 Determines reference direction from initial angular momentum vector	
[KPLR	Control word for Keplerian orbit parameter input (Preset value =1)	Integer, N. D.
	IKPLR = 0 Input position an velocity	
	IKPLR $=1$ Input Keplerian orbit parameters	

Fortran Symbol	Description	Units
ICSD	Control word to activate the Fast Fourier Transform analysis and plot. See p. 18 for KPLOTS control also (Preset value $=0$)	Integer. N.D.
	ICSD $=0$ By-passes subroutine	
	ICSD $=1$ Employs subroutine	
IPRY	Control word to print and plot pitch, roll and yaw rates instead of OMBC values when INOPT $=2$	
	IPRY $=0$ No print out and plot	
	IPRY $=1$ Print out and plots (preset $=0$)	
ISCP	Control word to activate the spacecraft configuration plot option. (Not available in current program)	Integer. N.D.
	ISCP = 0 Br-passes subroutine	
	ISCP = I Empleys plot subroutine	
IPUNCH	Control word for punched card output under normal case end. Set MLAST $=1$ and IPUNCH $=1($ preset $=0)$	Integer. N.D.
KNTRL(10)	Vector of control integers (10) for DE-B control system simulation	Integer N.D.
I2BDY	Control word to add secondary body to simulation	Integer.
	I2BDY $=0$ No secondary body	
	I2BDY $=1$ Secondary body present	
IRAST	Control word to invoke prescribed rastering motions for secondary body.	Integer. N.D.
	IRASI $=0$ No rastering	
	IKAST = 1 Rastering Prescribed	
IARST(3)	Control word to specify type of rastering cycle to be invoked on each axis.	Integer N.D.
	IARST (I$)=0$ No motion	
	IARST (1) = 1 Motion of Type 1	
	IARST (1) $=2$ Motion of Type 2	
	$\mathrm{l}=1$ to 3	
	$\mathrm{I}=1$ motion about the 3 axis	

Fortran Symbol	Description	$\underline{\text { Units }}$
	$1=2$ motion about the 1 axis	
	$1=3$ motion about the 2 axis	
IACFLT(20)	Control integers for filtered sensor signal to actuate momentum wheel cycling or pulsed thrusting.	Integer, N.D.
IDPHLD	Control word for simulation of constant angular velocity of libration damper.	Integer. N.D.
	IDPHLD $=0$ No simulation	
	IDPHLD $=1$ Constant angular velocity for damper	
IPLOT	Control word for plotting of output data.	Integer, N.D.
	IPLOT $=0$ No plots	
	IPLOT $=1$ Printer plots or FFT analysis. $\quad($ Preset $=0$)	$\begin{gathered} \text { Integer, } \\ \text { N.D. } \end{gathered}$
IGMBL	Control word for two axis gimble simulation.	Integer, N.D.
	IGMBL 0 No gimble simulated (preset)	
	IGMBL 1 Gimble simulated	
IPCTCS (20)	20 Control words for gimble platform con rol system simulation (preset $=0$)	Integer. N.D.
IJTOMP	Control word to invoke jet damping.	Integer, N.D.
	IJTDMP 0 No jet damping (preset)	
	IJTDMP 1 Jet damping	
IGMBLD	Control word for two axis gimble (damper simulation)	Integer, N.D.
	IGMBLD 0 No gimble simulated (preset)	
	IGMBLD 1 Gimble simulated	
IPLDCS (20)	20 Control words for gimble platform (damper) simulation (preset $=0$)	Integer, N.D.
ITHRM (20)	20 Control words for element thermal expansion - contraction simulation	
IAMPRM (1)	Control word for arbitrary oriented momentum wheel simulation (preset $=0$)	Integer N.D.

FortranSymbolDescriptionUnits
IAMWH (10) 10 Control words for axis momentum wheel simulation $($ preset $=0)$

Integer,
N.D.
IOMKDM (1) Control word to invoke use of reference frequency for dampingcoefficient (preset $=0$)

Integer, N.D.

INTEGRATION CONTROL WORDS

Fortran

Symbol

DELTAT Starting integration interval for Runge Kutta. Seconds (preset value $=0.01$)
$\begin{array}{lll}\text { DELMIT } & \begin{array}{l}\text { Minimum value for time integration interval for } \\ \text { predictor-corrector. If integration step size be- } \\ \text { comes less than DELMIT, simulation stops. } \\ \text { (Preset }=1.0 \mathrm{D}-7 \text {) }\end{array} & \text { Seconds }\end{array}$
FACTOR Percentage by which $\triangle t$ is varied in the Adams- N.D. Moulton integrator. If the difference between extrapolated and interpolated values of the integrands is greater than the upper bound (on the difference) Δt is decreased; if the difference is greater than the lower bound, Δt is increased. (predictor-corrector) FACTOR is presently set to 0.3). i.e., $\Delta t_{n+1}=$ $\Delta t_{n}(1 \ominus$ FACTOR $)$

Fortran Symbol	Description	Units
$\mathbf{U P}(\mathbf{i})$	The upper bound on the absolute difference between the extrapolated and interpolated values used in the predictor-corrector of the integration routine.	Corresponds to specific variables
DN(i)	The lower bound on the absolute difference between the extrapolated and interpolated values. NOTE	Corresponds to specific variables
UP and polated and ar it is re integra	are bounds on the difference between the extrapolat ues of the components of the state vector. They are required to be input. Unless the user fully underst mended that they be left undisturbed. The same app bounds control words which follow.	and interinternally ds their use es to the
INTEGR	ON BOUNDS	
Fortran Symbol	Description	Units
CONSA	This is the upper bound on the absolute difference between the extrapolated and interpolated values used in the predictor-corrector for the integration of the elements in the first two rows of direction cosine matrix. The lower bound is automatically set two orders of magnitude below the upper bound. (Preset value $=1.0 \mathrm{D}-5$)	N. D.
COMEG	This is the upper bound allowed for the error in the predictor-corrector oi the integration of the body components of inertial angular velocity. The lower bound is automatically set two orders of magnitude below the upper bound. (Preset value $=1.0 \mathrm{D}-7$)	$\mathrm{rad} / \mathrm{sec}$
DUC	This is the upper bound on the error for the predictor-corrector integration for the libration damper angle of gravity-gradient satellites. For the simulation of spin stabilized satellites with nutation damping, this represents the upper bound on the error for predictor-corrector integration for the viscous torque of the damper. (Preset value $=1.0 \mathrm{D}-2$)	rad

Fortran Symbol	Description	Units
DUC1	This is a lower bound for DUC. (Preset value $=1.0 \mathrm{D}-4$)	rad
DUCD	This is the upper bound on the error for the predictor-corrector integration for the angular velocity of the libration damper for gravitygradient satellites. For the simulation of spinstabilized satellites with viscous damping, this is the upper bound on the error for the predictorcorrector integration for the angular momentum of the viscous liquid. (Preset value $=1.0 \mathrm{D}-3$)	$\mathrm{rad} / \mathrm{sec}$
DUCD1	This is the lower bound for DUCD. (Preset value $=1.0 \mathrm{D}-5$)	$\mathrm{rad} / \mathrm{sec}$
DOOP	This is the upper bound on the error for predictorcorrector integration for the 2 axis components of damper element deflections. (Preset value $=1.0 \mathrm{D}-1$)	feet
D00P1	This is the lower bound for DOOP. (Preset value $=1.0 \mathrm{D}-3$)	feet
DOOPV	This is the upper bound on the error for predictorcorrector integration for the 2 axis components of damper element velocity. (Preset value $=5.0 \mathrm{D}-5$)	$\mathrm{ft} / \mathrm{sec}$
DOOPV1	This is the lower bound for DOOPV. $($ Preset value $=5.0 \mathrm{D}-7$)	$\mathrm{ft} / \mathrm{sec}$
DIP	This is the upper bound on the error for predictorcorrector integration for the 3 axis components of damper element deflections. (Preset value $=1.0 \mathrm{D}-1$)	feet
DIP1	This is the lower bound for DIP. (Preset value $=1.0 \mathrm{D}-3$)	feet

Fortran Symbol	Description	Units
DIPV	This is the upper bound on the error for predictorcorrector integration for the 3 axis components of damper element velocities. (Preset value $=5.0 \mathrm{D}-7$)	$\mathrm{ft} / \mathrm{sec}$
DIPV1	This is the lower bound for DIPV.	$\mathrm{ft} / \mathrm{sec}$
AOOP	This is the upper bound on the error for the predictor-corrector integration for the 2 axis element frame component of antenna tip displacement. $($ Preset value $=1.0 \mathrm{D}-1)$	feet
AOOP1	This is the lower bound for AOOP. (Preset value $=1.0 \mathrm{D}-3$)	feet
AOOPV	This is the upper boynd on the error for the predictor-corrector integration for the 2 axis element frame component of tip velocities. (Preset value $=5.0 \mathrm{D}-5$)	$\mathrm{ft} / \mathrm{sec}$
AOOPV1	This is the lower bound for AOOPV. (Preset value $=5.0 \mathrm{D}-7)$	ft/sec
AIP	This is the upper bound on the error for the predictor-corrector integration for the 3 axis element frame component of tip displacement. (Preset value - $1.0 \mathrm{D}-1$)	feet
AIP1	This is the lower bound for AIP. (Preset value $=1.0 \mathrm{D}-3$)	feet
AIPV	This is the upper bound on the error for the predictor-corrector integration for the 3 axis element frame component of tip velocity. (Preset value $=5.0 \mathrm{D}-5$)	
AIPV1	This is the lower bound for AIPV. (Preset value $=5.0 \mathrm{D}-7$)	$\mathrm{ft} / \mathrm{sec}$
TW'IUP	Upper integration bound for twist angle. (Preset value = $1.0 \mathrm{D}-4$)	deg

Fortran Symbol	Description	Units
TWIDN	Lower integration bound for twist angle. (Preset value $=1.0 \mathrm{D}-6$)	deg
TWDUP	Upper integration bound for twist velocity. (Preset value $=1.0 \mathrm{D}-5$)	$\mathrm{deg} / \mathrm{sec}$
TWDDN	Lower integration bound for twist velocity (Preset value $=1.0 \mathrm{D}-7$)	deg/sec
CSUP(20)	Upper bound on difference between predicted and corrected control system state vector. Location in CSUP corresponds to the location of the variable in the state vector initial condition array SVCS. $($ Preset value $=1.0 \mathrm{D}-02)$	
CSDN(20)	Lower bound on difference between predicted and corrected cont ${ }^{-0 l}$ system state vector. Location in CSDN corresponds to location of the variable in the state vector initial condition array SVCS. $($ Preset value $=1.0 \mathrm{D}-04)$	
SBUP(2)	Integration upper bounds for secondary body angles and angular rates. $($ Preset $=1.0 \mathrm{D}-3)$	$\begin{gathered} \mathrm{rad} \\ \mathrm{rad} / \mathrm{sec} \end{gathered}$
SBDN(2)	Integration lower bounds for secondary body angles and angular rates. $($ Preset $=1.0 \mathrm{D}-5)$	$\begin{gathered} \mathrm{rad} \\ \mathrm{rad} / \mathrm{sec} \end{gathered}$
ACPARM(19)	Upper bound for filter integrater.	
ACPARM(20)	Lower bound for filter integrater.	

Fortran Symbol	Description	Units
PCSPRM(30)	Integration upper bound for magnetometer first order lag transfer function (preset $=0$)	gauss
PCSPRM(31)	Integration lower bound for magnetometer first order lag iransfer function (preset $=0$)	gauss
GMUP(1)	Integration upper bound for gimble angles (preset $=1.0 \mathrm{D}-3$)	rad
GMUP(2)	Integration upper bound for gimble angular rates (pcoul $=$ i . i) is	$\mathrm{rad} / \mathrm{sec}$
GMDN(1)	Integration lower bound for gimble angles (preset $=1.0[-5$)	rad
GMDN(2)	Integration lower bound for gimble angular rates (preset $=1.0 \mathrm{D}-5$)	$: \mathrm{ad} / \mathrm{sec}$
DMUP(1)	Integration upper bound for damper gimble angles (preset $=1.0 \mathrm{D}-3$)	rad
DMUP(2)	Integration upper bound for damper gimble anguiar rates (preset $=1.0 \mathrm{D}-3$)	$\mathrm{rad} / \mathrm{se}$,
DMDN(1)	Integration lower bound for damper gimble angles (preset $=1.0 \mathrm{D}-5$)	rad
DMDN(2)	Integration lower bound for damper gimble angular rates (preset =1.0 D-5)	$\mathrm{rad} / \mathrm{sec}$
DCSPRM(30)	Integration upper bound for damper related magne iometer first order lag transfer function (preset $=0$)	gauss
DCSPRM(31)	Integration lower bound for damper related magnetometer first order lag transfer function (preset $=0$)	gauss
THRMPR(2)	Integration upper bound for thermal expansion - contraction simulation (preset $=0$)	${ }^{\circ} \mathrm{R}$
THRMPR (3)	Integration lower bound ior thermal expansion-contraction simulation (preset	0) ${ }^{\circ} \mathrm{R}$
AMPARM (101)	Integration upper bound for filtered error angle of the arbitrarily oriented momentum wheel (preset $=0$)	deg
$\begin{aligned} & \text { AMPARM } \\ & (102) \end{aligned}$	Integration lower bound for filtered error angle of the arbitrarily oriented momentum wheel (preset $=u$)	deg
AMPARM (103)	Integration upper bound for arbitrarily oriented momentum wheel speed (preset $=0$)	deg/ser
$\begin{aligned} & \text { AMPARM } \\ & (104) \end{aligned}$	Integration lower bound for arbitrarily oriented momentum wheel speed (preset $=0$)	$\mathrm{deg} / \mathrm{sec}$
AMWHPR (101)	Integration upper bound for filtered angle error of the axis momentum wheel simulation (preset $=0$)	deg

AMWHPR (102)	Integration lower bound for filtered angle error of the axis momentum wheel simulation (preset = $)$	t-
AMWHPR (103)	Integration upper bound for axis momentum wheel speed (preset = 0	des.'sec
AMWHPR (104)	Integration lower bound for axis momentum wheel speed $($ preset $=0)$	$\mathrm{deg} / \mathrm{sec}$

PLOT CONTROL WORDS

Fortran
Symbol
Description
Units
IPLOT Control word for plotting of output data.
Integer, N.D.

IPLOT $=0$ No plots.
IPLOT $=1$ Printer plots or FFT analysis.
Integer,
$($ Preset $=0)$.
N.D.

Fortran Symbol	Description	Preset Value	Units
IPLMOD	Control word for individual modal analysis plot	0	Integer N.D.
	IPLMOD $=0$, No individual modal analys:is plot		
	IPLMOD $=1$, Store individual modal variables for plotting		
IKMOD	Control word to activate the flexible element requiring independent higher mode plots. E.g., if $\operatorname{NELMTS}=7$, NDAMPR $=0$, Set IPLMOD $=1$ and IKMOD $=5$ in order to activate higher modal displacement plots for 5th elements	1	Integer N.D.

NOTE

Value of MODES for IKMODth element must be greater or equal to one and less or equal to 3.

The variables to be plotted by printer plot are controlled by KPLOTS array values. The dimensions of KPLOTS array is 253. The control of plotting is as follows

$$
\begin{aligned}
\operatorname{KPLOTS}(\mathbf{I})=0 & \text { do not plot Ith variable (preset value) } \\
\operatorname{KPLOTS}(\mathrm{I})=1 & \text { plot Ith variable } \\
\operatorname{KPLOTS}(\mathrm{I})=2 & \text { for plot and FFT analysis } \\
\operatorname{KPLOTS}(\mathrm{I})=3 & \text { for FFT analysis only }
\end{aligned}
$$

All KPLOTS array addresses are integer variables with value of either 0 or 1. For the first ten KPLOTS array addresses, (i. e., I = 1 to 10), the variables plotted are functions of INOPT. For $I \geqslant 11$, the plotting variables are independent of the INOPT value. The KPLOTS array addresses are given in the following table.

KPLOTS Array Address	Fortran Variable Plotted vs. Time		
1	PSII	ALFAE	deg
2	THET1	BETAE	deg
3	PHEL	GAMAE	deg
4	OMEG1	OMBC1	deg/sec
5	OMEG2	OMBC2	deg/sec
6	ONiEG3	OMBC3	deg/sec
7	PHILD	PHILD	deg
8	NUT ANG (deg)	PRAT	deg/sec
9	EPSERR (deg)	RRAT	$\mathrm{deg} / \mathrm{sec}$
10	--	YRAT	$\mathrm{deg} / \mathrm{sec}$

The definition of the Fortran variables are given in Part 4 of this document.

For I $\geqslant 11$
KPLOTS
Array
Address
I
11 1st flexible element $\mathbf{1 - 2}$
Fortran
Symboi Units Note
plane tip displacement
12 1st flexible element 1-2 U2DOT1 ft/sec plane tip velocity

13 1st flexible element 1-3 U'S1 feet plane tip displacement

```
KPLOTS
    Array
Address Fortran
    I
        Description
        Symbol Units
        Note
    14 1st flexible element 1-3 U3DOT1 ft/sec
        plane tip velocity
    15 1st flexible element twist* no deg
        displacement symbol
    16 1st flexible element twist* no deg/sec
        velocity symbol
    17 2nd flexible element 1-2 U22 feet
        plane tip displacement
    18 2nd flexible element 1-2 U2DOT2 ft/sec
        plane tip velocity
    19 2nd flexibie element 1-3 U32 feet
        plane tip displacement
    20 2nd flexible element 1-3 U3DOT2 ft/sec
        plane tip velocity
            etc.
65 10th flexible element 1-2 U210 feet
        plane tip displacement
    66 10th flexible element 1-2 U2DOT10 ft/sec
        plane tip velocity
    67 10th flexible element 1-3 U310 feet
        plane tip displacement
    68 10th flexible element 1-3 U3DOT10 ft/sec
        plane tip velocity
    69 10th flexible element* no deg
        twist displacement symbol
```


KPLO'TS				
Address		Fortran		
I	Description	Symbol	Units	Note
132	Mode 1 1-3 plane tip	BK1	feet	$1 \leqslant$ MODES $\leqslant 3$
	displacement for			
	element IKMOD			IPLMOD $=1$
133	Mode 2 1-2 piane tip	AK2	feet	$1 \leqslant$ MODES $\leqslant 3$
	displacement for			
	element IKMOD			IPLMOD = 1
134	Mode 2 1-3 plane tip	BK2	feet	$1 \leqslant$ MODES $\leqslant 3$
	displacement for			
	element IKMOD			IPLMOD $=1$
135	Mode 3 1-2 plane tip	AK3	feet	$1 \leqslant$ MOLES $\leqslant 3$
	displacement for			
	element IKMOD			IPLMOD = 1
136	Mode 3 1-3 plane tip	BK3	feet	$1 \leqslant$ MODES $\leqslant 3$
	displacement for			
	element IKMOD			IPLMOD = 1
137	Mode 1 twist displacement for element IKMOD		deg	
137	Mode 1 twist displacement for element IKMOD	CWK1	deg	
138	Mode 2 twist displacement for element IKMOD	CWK2	deg	
139	Mode 3 twist displacement for element IKMOD	CWK3	deg	
140	Mode i 1-2 plane tip displacement for damper		feet	
	element IKMOD			
141	Mode 1 1-3 plane tip displacement for damper element IKMOD	DINK2	feet	
142	Mode 2 1-2 plane tip displacement for damper element IKMOD	DINK2	feet	

KPLOTS Array Address \qquad	Description	Fortran Symbol	Units	Note
143	Mode 2 1-3 plane tip displacement for damper element IKMOD	DINK2	feet	
144	Mode 3 1-2 plane tip displacement for damper element IKMOD	DOUTK3	feet	
145	Mode 3 1-3 plane tip displacement for damper element IKMOD	DINK3	feet	
146	Mode 1 twist displacement for damper element ZKMOD	CWK1	deg	
147	Mode 2 twist displacement for damper element ZKMOD	CWK2	deg	
148	Mode 3 twist displacement for damper element ZKMOD	CWK3	deg	
$\overbrace{154}^{149}\}$	Accelerometer reading value from 1 to 6 respectively	ACCRED1 ACCRED2 \vdots ACCRED6	$\begin{gathered} \mathbf{f t} / \sec ^{2} \\ \mathbf{f t} / \sec ^{2} \\ \vdots \\ \mathbf{f t} / \sec ^{2} \end{gathered}$	$\begin{aligned} & \text { IACOMP }=1 \\ & \text { IHUBAC }=1 \end{aligned}$ The Max. No. of plot is NUMHUB
155	Instautaneous body moment of inertia about 1-axis	BLXX	slug-ft ${ }^{2}$	IHCALC $=1$
156	Instantaneous body moment of inertia about 2-axis	BIYY	slug-ft ${ }^{2}$	IHCALC $=1$
157	Instantaneous body moment of inertia about 3-axis	BIZ Z	slug- ft^{2}	IHCALC $=1$
158	Right ascension angle of angular momentum vector in Aries inertial frame	None	deg	$\text { IHCALC }=1$ PLOTTED ONLY

KPLOTS Array				
Address		Fortran		
I	Description	Symbol	Note	
159	Declination angle of angular momertum vector in Aries inertial frame	None	deg	IHCALC $=1$ PLOTTED ONLY
160	Magnitude of angular momentum vector	HMAG	ft-lb-sec	IHCALC $=1$
	Root tension history for element 1 to 10 respectively	TENSN1 TENSN2 \vdots TENSNN10	$\begin{gathered} \mathbf{l b} \\ \mathbf{l b} \\ \vdots \\ \vdots \end{gathered}$	```ITENSE = 1 plotting quantities \leqslant (NELMTS + NDAMPR)```
171	1-2 plane root bending moment for element 1	BNMTA1	lb-ft	IBENDM $=1$
172	1-3 plane root bending moment for element 1	BNMTB1	lb-ft	IBENDM $=1$
173	1-2 plane root bending moment for element 2	BNMTA2	lb-ft	IBENDM $=1$
174 \vdots \vdots	1-3 plane root bending moment for element 2 etc.	BNMTB2	lb-ft	IBENDM $=1$
189	1-2 plane root bending moment for element 10	ENMTA10	$\mathbf{l b - f t}$	$1 \mathrm{BENDM}=1$
190	1-3 plane root bending moment for elemen. 10	BNMTB10	lb-ft	IB'j ${ }^{\text {NDM }}=1$
191	Right ascension angle of the unit sun line vector in body reference frame	None	deg	$\operatorname{LAFM}(1)=1$ PLOTTED ONLY
192	Declination angle of the unit sun line vector in body reference frame	None	deg	$\operatorname{IAFM}(1)=1$ PLOTTED GNLY

KPLOTS				
Array				
Address		Fortran		
1	Description	Symbol	Units	Note
213	Component of angular momentum on 1 body axis	HBODY 1	$\mathrm{ft}-\mathrm{lb}-\mathrm{sec}$	IHCALC 1
214	Component of angular momentum on 2 body axis	HBODY 2	ft -lb-sec	IHCALC 1
215	Component of angular momentum of 3 body axis	HBODY 3	ft -lb-sec	IHCALC 1
216	Pitch sensor output		volts	IWHEEL 1
217-219	Pitch sensor dynamics			$\begin{aligned} & \text { KNTRL(1) } \\ & 1 \text { or } 2 \end{aligned}$
220	Not used			
221	Roll sensor output		volts	
222-224	Roll sensor dynamics		volts $/ \mathrm{sec}$, etc	
225	Not used			
226	Output of pitch compensation amplifier		volts	
227	Not used			
228	Tachometer output		volts	
229	Not used			
230	Momentum wheel speed			
231-233	Not used			
234	Nutation damper phase shift dynamics			
235	Nutation damper phase shift output			

KPLOTS				
Address		Fortran		
I	Description	Symbol	Units	Note
248	Product of inertia	IXY	slug ft^{2}	
249	Product of inertia	IXZ	slug ft^{2}	
250	Product of inertia	IXY	slug $\mathrm{ft}^{\mathbf{2}}$	
251	1st damper element 1-2 plane slope		rad	
252	1st damper element 1-3 plane slope		rad	
253	2nd damper element 1-2 plane slope		rad	
-	etc.		rad	
269	10th damper element 1-2 plane slope		rad	
270	10th damper element 1-3 plane slope		rad	
271	1 st flexible element 1-2 plane slope	U2P 1	rad	
272	1st flexible element 1-3 plane slope	U3P 2	rad	
273	2nd flexible element 1-2 plane slope	U2P 2	rad	
	etc.			
289	10th flexible element 1-2 plane slope	U2P 10	rad	
290	10th flexible element 1-3 plane slope	U3P 10	rad	
291	1 st mode 1-2 plane slope		rad	Mode output is for the element specified
292	1st mode 1-3 plane slope		rad	by input IKMOD

KPLOTS			
Address I	$\begin{array}{ll}\text { Description } & \begin{array}{l}\text { Fortran } \\ \text { Symbol }\end{array}\end{array}$	Units	Note
293	2nd mode 1-2 plane slope	rad	
294	2nd mode 1-3 plane slope	rad	
295	3rd mode 1-2 plane slope	rad	
296	3rd mode 1-3 plane slupe	rad	
297	Azimuth angle for the gimble azimuth platform	deg	
298	Azimuth angular rate for the gimble azimuth platform	deg/sec	
299	Elevation angle for the gimble elevation platform	deg	
300	Elevation angular rate for the gimble elevation platform	deg/sec	
301	Output of first order lag transfer function for magnetometer one axis	Gauss	
302	Output of first order lag transfer function for magnetometer two axis	Gauss	
303	Output of first order lag transfer function for magnetometer three axis	Gauss	
304	Azimuth error output	deg	IPLTCS 1
305	Elevation error output	deg	IPLTCS 1
306	Azimuth PID digital controller output		Units depend on PID gain constant units
307	Elcvation PID digital controller output		

KPLOTS			
Array			
Address	Fortran		
I	Description Symbol	Units	Not
308	Azimuth platform drive motor torque	ft-lbs	IPLTCS 1
309	Elevation plathom drive mc*or torque	ft-lhs	
310	Azimuth angle for the gimble azimuth platform	deg	
311	Azimuth angular rate for the azimuth platform	deg/sec	IGMBLD 1
312	Elevation angle for the gimble elevation platfurm	deg	
313	Elevation angular rate for the gimble elevation platform	deg/sec	
314	Output of first order lag transfer function for magnetometer one axis	gauss	
315	Output of first order lag transfer function for magnetometer two axis.	gauss	
316	Output of first order lag transfer function for magnetometer three axis	gauss	
317	Azimuth error output	rad	
318	Elevation error output	rad	
319	Azimuth PID digital controller output		Units depend on PID gain constants
320	I:levation PII digital controllor ouput		
321	Azimuth platform drive motor torque	ft-lbs	
322	Elevation platform drive motor torque	ft-lbs	$\begin{aligned} & \operatorname{IAMWH}(1)=1 \\ & \text { and } \\ & \operatorname{IAMWH}(2)=1 \end{aligned}$

KPLOTS			
Array			
Address	Fortran		
1	Description Symbol	Units	Note
323	Roll axis filter output of error signal for momentum wheel control	rad	
324	Pitch axis filter output of error signal for momentum wheel control	rad	1AMWH(3) $=1$
325	Yaw axis filter output of error signal for momentum wheel control	rad	IAMWH(4) $=1$
326	Roll axis momentunı wheel speed	$\mathrm{deg} / \mathrm{sec}$	
327	Pitch axis momentum wheel speed	$\mathrm{d} \mathrm{fg} / \mathrm{sec}$	
328	Yaw axis momer:tum wheel speed	deg/sec	
329	Arbitrarily oriented momentum whed filter output of control system angular error		$\operatorname{IANDNM}(1)=1$
330	Momentum wheel speed		
331 \vdots	1st element temperature	${ }^{\circ} \mathrm{F}$	$\begin{aligned} & \operatorname{ITHRM}(1)=1 \\ & \quad \text { and } \end{aligned}$
\vdots	etc		etc
340	10th element temperature	${ }^{\circ} \mathrm{F}$	$\operatorname{lTHRM}(20)=1$

PART 3

SPACECRAFT DESCRIPTION \& SIMULATION OPTIONS

CORE FROPERTIES

Fortran Symbol		Description	Units
BDYMI (\mathbf{i}, \mathbf{j})	I_{ij}	Moments of inertia of satellite core about Y body axes. $i=1,2,3 \quad j=1,2,3$	slug ft^{2}
SCO	S_{0}	Projected area of central core of satellite Used for aerodynamics and solar pressure. (preset $=14.6$)	$\mathrm{ft}^{\mathbf{2}}$
ZMS	M_{s}	Mass of entire satellite (preset $=25.0$)	slugs
HUBCDA (3)		$\mathrm{C}_{\mathrm{D}} \mathrm{A}$ values for spacecraft hub along three body axes. (preset $=1.0,1.0,1.0$)	ft^{2}
HUBCP (3)		Body frame position vector of hub center of pressure. $\quad($ preset $=0.0,0.0,0.0$)	ft^{2}

ELEMENT GEOMETRY AND PHYSICAL PROPERTIES

Fortran	Math	
Symbol	Symbol	Description

NELMTS		The number of elements rigidly attached to satellite core. (preset $=6$, do not set to 0).	Integer, N.D.
ZL0 (k)	${ }^{\text {OK }}$	Length of the $\mathbf{k}^{\text {th }}$ element at start of problem time. (preset $=1.0$, do not set to 0)	feet
2L1 (k)	$\dot{\ell}_{k}$	Velocity of deployment of $\mathrm{k}^{\text {th }}$ element. (preset $=0.0$)	ft/sec
ZLA (k)	$\ddot{\ell}_{k}$	Acceleration of depioyment of $k^{\text {th }}$ element. (preset $=0.0$)	$\mathrm{ft} / \mathrm{sec}^{2}$
$\begin{aligned} & \mathrm{ZBZ}(1, k) 2 \\ & \mathrm{ZBZ}(2, k) 2 \\ & \mathrm{ZBZ}(3, k) 2 \end{aligned}$	$\begin{aligned} & z_{\mathrm{mlk}} \\ & \mathrm{z}_{\mathrm{m} 2 \mathrm{k}} \\ & \mathrm{z}_{\mathrm{m} 3 \mathrm{k}} \end{aligned}$	Coordinates of the origin of the k element frames as defined ir the reference Y body frame or inuration damper Z frame. (preset $=0.0$)	feet

Fortran Symbol	Math Sy mbol	Description	Units
ALFAEK (k)	α_{k}	Euler angle relating orientation of $k^{\text {th }}$ element frame as defined in the reference Y body frame or libration damper Z frame. (Around 1 axis, 2nd angle in 2-1-3) rotation. (preset $=0.0$)	deg
BETAEK (k)	$\boldsymbol{\beta}_{\mathbf{k}}$	Euler angle relating orientation of $k^{\text {m }}$ element frame as defined in the reference Y body frame or libration damper Z frame. (Around 2 axis, 1st angle in 2-1-3 rotation.) (preset $=0.0$)	deg
GAMAEK (k)	$\boldsymbol{\gamma}_{\mathbf{k}}$	Euler angle relating orientation of the $\mathbf{k}^{\text {th }}$ element frame as defined in the reference Y body frame or libration damper Z frame. (Around 3 axis, 3rd angle in 2-1-3 rotation.) $($ preset $=0.0)$	deg
MODES (k)		Designation of bending modes for element	Integers
		0 = Rigid body	
		1 = Bending mode 1	
		$2=\text { Bending mode } 2$	
		3 = Bending mode 3 (includes 3 modes)	
A $(k, j) 1$	A_{ij}	Component of the $k^{\text {th }}$ core element tip deflection in the $j^{\text {th }}$ bending mode as measured along the 2 axis of the element frame. $($ preset $=0.0)$	feet
$\operatorname{ADOT}(\mathbf{k}, \mathbf{j}) \mathbf{1}$	A_{ij}	Component of the $k^{\text {th }}$ core element tip velocity in the $j^{\text {th }}$ bending node as measured in the element frame along the 2 axis of the frame. (preset $=0.0$)	$\mathrm{ft} / \mathrm{sec}$
B (k, j) 1	$\mathbf{B}_{\mathbf{i j}}$	Component of the $k^{\text {th }}$ core element tip deflestion in the $j^{\text {th }}$ bending mode as measured in the element frame along the 3 axis of the frame. $($ preset $=0.0)$	feet

Fortran Math
Symbol

Symbol

Ccmponent of the $k^{\text {th }}$ core element tip
$\mathrm{ft} / \mathrm{sec}$ velocity in the $j^{\text {th }}$ bending mode as measured in the element frame along the 3 axis of the frame. (preset $=0.0$)

NOTE

In the above arrays, the " 1 " foliowing the parentheses indicates that the first integer in the parentheses varies as numbers are read off across the input card. For example, the card:

$$
A(k, 1) 1 \quad 2.0 \quad 4.0 \quad 5.0
$$

would be interpreted by the program as:

$$
\begin{aligned}
& A(1,1)=2.0 \\
& A(2,1)=4.0 \\
& A(3,1)=5.0 \text { etc. }
\end{aligned}
$$

The arrays A, ADOT, B, BDOT are both input and output of the program. Thus if the user wished to start a problem on case with initial tip deflections and on velocities of the rigidly attached elements, these quantities would be input. Otherwise, they are internally set to zero at the start of the problem and are output only.

Fortran
Symbol

Description

LK (k) This is a control word for the selection of one of two preset (Block 2) data sets for the $k^{\text {th }}$ element. Each data set contains normalized mass integrals and normalized effective areas integrals for flexible elements. The first data set is generated using cantilever beam modes. The second data set utilizes spinning string modes with a tip mass.
$\mathrm{LK}(\mathrm{k})=1$ uses data set 1
LK (k) $=2$ uses data set 2
(preset to 1)

Fortran Symbol

A data set can be generated for a specific antenna configuration by using the Integral Evaluation Program.

LLK (k) This is a control word for the selection of one of two preset data sets for the $k^{\text {ti }}$ element. Each data set contains normalized internal fcrce integrals and normalized thermal force integrals for flexible elements.

$$
\begin{aligned}
L L K(k)= & 1 \text { uses data set } 1 \\
L L K(k)= & 2 \text { uses data set } 2 \\
& \text { (preset to } 1)
\end{aligned}
$$

A data set can be generated for a specific flexible configuration by using the Integral Evaluation Program.

Fortran Symbol	Math Sy mbol	Description	Units
EMODLS (k)	E	Young modulus for $\mathrm{k}^{\text {th }}$ element (preset $=2.0 \mathrm{D} 7$)	lb-in. ${ }^{2}$
RTUBE (k)	r	Mean radius of $k^{\text {th }}$ element (preset $=2.935 \mathrm{D}-1$)	inches
HTUBE (k)	h	Wall thickness of $\mathrm{k}^{\text {th }}$ element (pieset $=2.0 \mathrm{D}-3$)	inches
THERMC (k)	$\alpha_{\text {T }}$	Thermal coefficient of expansion for $k^{\text {th }}$ element. $($ preset $=8.85 \mathrm{D}-6$)	in. $/$ in. $/ /^{\circ} \mathrm{F}$
TIPMS (k)	M_{T}	Tip mass attached to $\mathrm{k}^{\text {th }}$ element	slugs
SAO (k)	$\mathrm{S}_{\text {co }}$	The projected area of a one foot length of element corrected for flow around a cylinder. Used in computing aerodynamic and solar pressure. (preset $=0.0$)	ft^{2}
STMK (k)	$\mathrm{S}_{\text {Tk }}$	The projected area of a tip mass corrected for flow around a spherical body. Used in computing aerodynamic and solar pressure.	ft^{2}

Fortran Symbol	Matn Symbol	Description	Units
RHOK (k)	ρ_{k}	Mass per unit length of the $k^{\text {th }}$ element. (preset $=4.36 \mathrm{D}-4$)	slugs/ft
POO	p_{0}	Solar pressure on a flatplate at normal incidence. $($ preset $=0.0)$	$\mathrm{lb} / \mathrm{ft}^{2}$
DTOO	$\Delta \mathrm{T}_{0}$	Temperature differential across antenna at normal incidence of sunlight. $($ preset $=0.0)$	${ }^{\circ} \mathrm{F}$
CDAMP(n, k)2	$\mathrm{C}_{\text {cr }}$	Damping ratio in $\mathrm{n}^{\text {th }}$ bending mode for $\mathbf{k}^{\text {th }}$ element. (preset $\left.=0.0\right)$	N.D.
SKOA(k, n)2	$A_{\text {kno }}$	The 2 axis component in the $k^{\text {th }}$ element frame of the offset zero stress position corresponding to the $\mathrm{n}^{\text {th }}$ mode shape. (preset $=0.0$)	feet
SKOB(k, n)2	$\mathrm{B}_{\mathrm{kno}}$	The 3 axis component in the $k^{\text {th }}$ element frame of the offset zero stress position corresponding to the $\mathbf{n}^{\text {th }}$ mode shape. (preset $=0.0$)	feet
AERO	C_{D}	Aerodynamic drag coefficients for the elements. $($ preset $=2.0)$	N. D.
TDIS(k)		Factor to acccunt for variations in temperature distributions for $k^{\text {th }}$ element. (preset $=2.0$)	N.D.

Computation of Flexible Element Root Bending Moments
Fortran Math
Symbol Symbol

Description
Units
$\begin{array}{ll}\text { IBENDM } & \begin{array}{l}\text { Control word to calculate and print out flexible } \\ \text { element root bending moments. } \\ \text { (Preset value }=0)\end{array} \\ \text { Integer, }\end{array}$

Fortran Symbol	Math Symbol	Description	Units
ISATSH		Control word for invoking satellite shadowing and thermal lag for satellite shadowing. (Preset value $=0$)	Integer, N. D.
		ISATSH $=0$ No shadowing	
		ISATSH $=1$ Shadowing and lag	
RADSH	$\mathbf{R}_{\text {s }}$	Radius of shading disk for satellite shadowing. $($ preset $=10.0)$	feet
TAUK(10)	τ_{k}	Characteristic delay time for each element. (preset =1.0)	sec
OCULTK(10)	O_{k}	Threshold for invoking thermal lag switching for each element (satellite shadowing)	N.D.
IWRTTF		Control word to write out thermal forces before and after computation of thermal lag. $($ Preset value $=0)$	Integer, N.D.

Thermal Expansion and Contraction of Element

Fortran Symbol	Math Symbol	Description	Preset Value	Units
ITHRM(20)		Control words for element thermal expansion simulation	0	Integer, N.D.
ITHRM(1)		Basic control word for thermal expansion simulation ITHRM(1) 0 No thermal expansion ITHRM(1) Thermal expansion simulated		
ITHRM(2)		Internal. Not input		
ITHRM(3-10)		Not used		
ITHRM(11-20)		Control words for individual elemen according to internal numbering system		

Fortran Symbol	Math Symbol	Description	Preset Value	Units
		$\operatorname{ITHRM}(\mathrm{K}+10) 0$ No thermal expansion for KTH element		
		ITHRM(K + 10) 1 Thermal expansi for the KTH element		
THRMPR(100)		Physical constants for thermal expansion simulation	0.0 D0	
THRMPR(1)		Solar radiation constant at the satellite		$\frac{\text { Btu }}{{\sec -\mathrm{ft}^{2}{ }^{\circ} \mathrm{R}}_{{ }^{\circ} \mathrm{R}}}$
THRMPR(2-3)		Upper and lower integration bounds		$\mathrm{ft} / \mathrm{sec}$
THRMPR (4)		Acceleration due to gravity at sea level		
THRMPR(5)		Stefan Boltzmann Radiation constant		$\frac{\text { Btu }}{\text { sec- }-\mathrm{ft}^{20} \mathrm{R}^{4}}$
THRMPR(6-10)		Not used		
THRMPR(11-20)		Spc sific heat for individual element material according to internal numbering system		$\frac{\mathrm{Btu}}{1 \mathrm{~b}^{\circ} \mathrm{R}}$
THRMPR(21-30)		Emissivity of individual element surface material according to internal numbering system		N.D.
THRMPR(31-40)		Absorbtivity of individual element surface material according to internal numbering system		N.D.
THRMPR(41-50)		Area of individual element surface for thermal absorbtion according to internal numbering system	0.0 D0	ft^{2}
THRMPR(51-60)		Area of individual element surface for thermal emission according to internal numbering syvem		ft^{2}

Thermal Expansion and Contraction of Element (Cont)

lortran	Math	Preset	
Symbul	Sumbol	Description	Vilue

THRMPR(61-80) Used internally
THRMPR(81-90) Element reference temperature for ${ }^{\circ} R$ length calculation

THRMPR(91-100) Initial condition for element ${ }^{\circ} \mathbf{R}$
temperature simulation
TYPICAL INPUT FOR THERMAL EXPANSION SIMULATION
ITHRM(1) I
THERMAL COEFFICIENT OF EXPANSION PER DEG R
THERMC(1-4) I.OD-3
ELEMENTS IN SIMULATION
ITHRM(11) 1010
SOLAR RADIATION BTU / SEC. - FOOT**2
THRMPR(1) 0.12278
GRAVITATIONAL ACCELERATION FOR CONVERSION ONLY
THRMPR(4) 32.174
STEPHAN BOLTZMANN CONSTANT BTU/SEC. - FOOT**2 - DEG R**4
THRMPR(5) 0.476D-12
SPECIFIC HEAT FOR ELEMENT MATERIAL BTU / POUND - DEG R
THRMPR(11-14) 0.21
EMISSIVITY FOR ELEMENT SURFACE
THRMPR(21-24) 0.2
ABSORPTIVITY FOR ELEMENT SUPFACE
THEMPR(31-34) 0.2
AREA ASSOCIATED WITH ABSORPTIVITY FOOT**2
THRMPR(41-44) 0.05
AREA ASSOCIATED WITH EMISSIVITY FOOT**2
THRMPR(51-54) 0.15
REFERENCE TEMPERATURE FOR STANDARD LENGTH ZLO DEG R
THRMPR(81-84) 500.0
INITIAL TEMPERATURE OF ELEMENT
THRMPR(91-94) 500.0
INTEGRATION BOUNDS
THRMPR(2) 1.0D-8 1.0D-10

Plotting Locations for Element Temperatures

ELEMENT DAMPING COEFFICIENT

Fortran Symbol	Type	Preset Value	Descriptior
IOMKDM(1-10)	I*4	0	Control word to invoke use of reference frequency
			IOMKDM(K) 0 Reference Frequency not used
			IOMKDM(K) 1 Reference Frequency used
OMKDMP $(3,10)$	R*4	0.0 D0	Reference frequency ($\mathrm{rad} / \mathrm{sec}$) for calculation of model damping coefficient

Element Twist (Torsion) Option
Fortran Math

Symbol Symbol
Description
Units

ITWIST	Control word to include or exclude twist motion for flexible element. ITWIST $=0$, twist motion excluded ITWIST $=1$, twist motion included (preset $=0$)	N. D.
NKT(10)	Set to the number of twist modes desired for a particular flexible element; i.e., $N K(K)=0,1,2$ or 3 for the $k^{\text {th }}$ element.	N. D.
ZA(10)	Cross-sectional area for the $k^{\text {th }}$ flexible element. (preset $=3.757 \mathrm{D}-2$)	in ${ }^{2}$

Fortran	Math
Symbol	Symbol

Description

Units

12OVI3(10)	$\mathrm{I}_{2} / \mathrm{I}_{3}$	Ratio of cross-section moments of inertia $\mathrm{I}_{2} / \mathrm{I}_{3}=\frac{\int \mathrm{Z}_{3}^{2} \mathrm{dA}}{\int \mathrm{Z}_{2}^{2} \mathrm{dA}}(\text { Preset }=1.0)$	
ZDQ(10)	$\mathrm{D}_{\dot{\varphi}}$	$\begin{aligned} & \int \phi_{\mathrm{w}}^{2} \mathrm{dA} \text { for the cross section. } \phi_{w} \text { is } \\ & \text { warping function. (preset }=7.463 \mathrm{D}-8 \text {, } \\ & \text { elliptic cross section) } \end{aligned}$	in ${ }^{6}$
ZJ(10)	J	Torsional constant.	in ${ }^{4}$
		$\begin{aligned} & :=\int\left[\left(Z_{2}+\frac{\partial \phi_{w}}{\partial Z_{3}}\right)^{2}+\left(-Z_{3}+\frac{\partial \phi_{w}}{\partial Z_{2}}\right)^{2}\right] d \mathrm{dA} \\ & \text { (preset }=2.118 \mathrm{D}-4, \text { elliptic cross } \\ & \text { section) } \end{aligned}$	
D2(10)	D_{2}	$\begin{aligned} & \int Z_{2} \phi_{w} d A \text { for cross section. (preset }= \\ & 0.0 \mathrm{DO}) \end{aligned}$	in ${ }^{5}$
D3(10)	D_{3}	$\begin{aligned} & \int_{0.0 D O} z_{3} \phi_{w} d A \text { for cross section. (preset }= \\ & 0 . \end{aligned}$	in ${ }^{5}$
CW(3, 10)		Twist angle. (preset $=0.0 \mathrm{DO}$)	deg
$\operatorname{CDW}(3,10)$		Twist velocity. (preset $=0.0 \mathrm{DO}$)	deg/sec
CDTW $(3,10)$		Twist damping coefficient. (preset $=0.0 \mathrm{DO}$)	$\frac{\mathrm{ft}-\mathrm{lbs}}{\mathrm{rad} / \mathrm{sec}}$

TIP MASS ROTARY INERTIA OPTION

Fortran	Math
Symbol	Symko

ITPROT
Control word to include or exclude tip
Units mass rotary inertia.

ITPROT $=0$, rotary inertia excluded
ITPROT $=1$, rotary inertia included
(preset $=0$)

Fortran Symbol	Math Symbol	Description	Units
NUMTIP(10)		Set to 1 for tip mass rotatozy inertia simulation for the $k^{\text {th }}$ element. $(\text { presct }=0)$	N. D.
$\operatorname{TIPINR}(3,10)$		Principal rotatory inertias of tip mass about undeformed element axis. $\operatorname{TIPINR}(I, K)$ is inertia about $I^{\text {th }}$ element axis for the $\mathrm{k}^{\text {th }}$ element tip mass.	slug ft^{2}
LIBRATION DAMPER OPTION			
Fortran Symbol	Math Symbol	Description	Units
IDAMP		Control word to exclude or allow libration damper motion. $($ Preset value $=0)$	Integer, N.D.
		IDAMP $=0$ No damper motion	
		IDAMP $=1$ Damper mution	
IDPHLD		Control word for simulation of constant relative angular velocity of libration damper mas: or system of booms.	
		IDPHLD $=0$ No simulation (preset)	
		IDPHLD $=1$ Constant angular velccity for da	
NDAMPR		The number of damper boom elements composing the libration damper.	Integer, N.D.
PHIS	$\phi_{\text {s }}$	Stop angle f $\cap \mathrm{r}$ libration damper. (preset $=35.0$)	deg
PHILD	$\phi_{\text {LD }}$	The angular deflection of the libration damper boom relative to its equilibrium position. Also Euler angle in definition of libration damper frame (Z) with respect to body Y frame. (preset $=0.0$)	deg
DPHILD	$\phi_{\text {LD }}$	Angular velocity of libration damper boom relative to the body. (preset $=0.0$)	deg/sec

Fortran Symbol	Math Symbol	Description	Units
BETLD	$\beta_{L D}$	Euler angle of libration damper Z frame with respect to the body Y frame. (preset $=0.0$)	deg
GAMLD	$\boldsymbol{\gamma}_{\text {LD }}$	Euler angle of 1 'bration damper Z with respect to bodv Y frame. $($ preset $=0.0)$	deg
YIZ M ($1, \mathrm{n}$) 2	$\left\{y_{e m}\right\}$	Coordinates of the origin of the libration damper Z frames as defined in the body Y frame. (preset $=0.0$)	feer
		NOTE	

YIZM locates the point of rotation of damper in the main body frame.
ZBZ locates the root of tue elements with resp_st to the point where rotation takes place (which is specified by the VIZM array) for those elements composing the damper. In short, the $\mathrm{Z} B \mathrm{Z}$ array locates the element roots with respect to whatever frame you are in.

For non damper elements use ZBZ array only.
For damper elements use Z $3 Z+Y I Z M$
(one vector for each boom)

NOTE

The 2 after the parentheses indicates that it is the sfcond coordinate which varies. Also, since ZL0, ZL1, ZLA, and the ZBZ's are i, nut for both fixed elements and damper booms, the order in which their values are punched on an input card is important. The order is: data for element booms first, followed by data for damper booms. For example, if the user were to set NELMTS 1, NDAMPi 2, (implying the spacecraft has a total of three appendages) :und the following card is also input; $\mathrm{ZBZ}(1,1) 2 \quad 5.0 \quad 7.0$ 8.0 the program would interpret this as the " 1 " axis of the one rigidly attached element is located 5 feet from the origin of the body frame, the " 1 " axis of the 1 st lioration famper frame is lncated 7 fuet from the origin of the body irame, and the " 1 " axis of the 2nd libration damper frame is located 8 feet from the origin of the body frame.

Fortran Symbol	Description	Units
DIN(k, j)1	Component of the $k^{\text {th }}$ element (libration damper) tip displacement in the $j^{\text {th }}$ bending mode as measured in the element frame (Z) along the 3 axis of the element frame. (preset $=0.0$)	feet
DINDOT $(k, j) 1$	Component of the $k^{\text {th }}$ element (libration damper) tip velocity in $j^{\text {th }}$ bending mode as measured in the element frame (Z) along the 3 axis of the frame. $($ preset $=0.0)$	$\mathrm{ft} / \mathrm{sec}$
$\operatorname{DCUT}(\mathrm{k}, \mathrm{j}) 1$	Componint of the $\mathbf{k}^{\text {th }}$ element (libration damper) tip displacement in the $j^{\text {th }}$ bending mode as measured in the element frame (Z) along the 2 axis of the frame. $($ preset $=0.0)$	feet
DOUTDT(k, j)1	Component of the $\mathrm{k}^{\text {th }}$ element (libration damper) tip velocity in the $j^{\text {th }}$ bending mode as measured in the element frame (Z) along the 2 axis of the frame (preset $=0.0$)	$\mathrm{ft} / \mathrm{sec}$

NOTE

In the above arrays, the " 1 " following the parentheses indicates that the first integer in the parenthesis varies as the numbers are read off across the card. For example, the card:
$\operatorname{DIN}(k, 2) 1 \quad 1.0 \quad 3.0 \quad 4.5 \quad 2.0$
would bc interpreted by the program as:

$$
\begin{aligned}
& \operatorname{DIN}(1,2)=1.0 \\
& \operatorname{DIN}(2,2)=3.0 \\
& \operatorname{DIN}(3,2)=4.5 \\
& \operatorname{DIN}(4,2)=2.0 \text { etc. }
\end{aligned}
$$

The arrays DIN, DINDOT, DOUT, and DOUTDT are both input and output of the program. Thus if the user wished to start a problem with initial tip deflections and velocities for the libration damper elements, these quantities would be input. Otherwise they are internally set to zero at the start of the problem and are output only.

Fortran Symbol	Math Symbol		Description	Preset Value	Units
ZK1D	$k_{1 D}$	Torsio damper	pring constant for libration		$\mathrm{ft}-\mathrm{lb} / \mathrm{rad}$
ZK2D	$k_{2 D}$	Stop s	constant for libration damper.		$\mathrm{ft}-\mathrm{lb} / \mathrm{rad}$
ZMDO	$\mathrm{M}_{\text {ko }}$	Saturat hyster	moment for magnetic libration damper.	$1.02 \mathrm{D}-3$	ft-lb
ZMDBO		Initial librati	ment for magnetic hysteresis amper.	0.0	ft-lb
DECAY	σ	Expone hyster	decay factor for magnetic libration damper.	20.0	N.D.
DPRMI ${ }^{\text {i }}$, ${ }^{\text {j }}$		Moment librati axes of	finertia of the hub of the amper about the Z frame damper.	0.0	slug ft^{2}
CNV	$C_{n v}$	Dampi dampi	oefficient for viscous libration damper.	0.0	$\begin{gathered} \mathrm{ft}-\mathrm{lb} / \\ \mathrm{rad} / \mathrm{sec} \end{gathered}$
EARTH ORIENTED SATELLITE OPTION - ATTITUDE AND BODY RATES					
Fortran Symbol		Math Symbol	Description	Preset Value	Units
ALFAE		α	Roll Angle. The intermediate Euler angle in a 2-i-3 rotation of the local vertical to body frame.	0.0	deg
BETAE		β	Pitch Angle. The first Euler angle in a 2-1-3 rotation of the local vertical to body frame.	0.0	deg
GAMAE		$\boldsymbol{\gamma}$	Yaw Angle. The last Euler angle in a 2-1-3 rotation of the local vertical to body frame.	0.0	deg

Fortran Symbol	Math Symbol	Description	Preset Value	Units
$\begin{aligned} & \operatorname{OMBC}(i) \\ & (i)=1,2,3 \end{aligned}$	$\omega_{\mathrm{i}_{\mathrm{B} / \mathrm{C}}}$	Components of satellite angular velocity with respect to the local vertical frame, with components expressed in the body frame.	0.0	deg/sec
IBTEST		Terminates case (within stack) when BETAE goes from - to +. Used in boom deployment. (Preset value IBTEST $=0$ By-passes option IBTEST $=1$ Employs option	0	N.D.
BOOM DEPLOYMENT FROM SUN PULSE OPTION				
Fortran Symbol		Description		Preset Value
ISDPLY	ISDPLY $=0$ By-passes subroutine			0
	ISDPLY = 1 Employs subroutine			
ISAXIS	Axis of rutation of spacecraft. (Should be either 1, 2, or 3)) 3
NCROSS	Number of sun crossings before deployment begins.			5
STANG	Delay angle. (deg)			
ANGTOL	Angle tolerance. (deg)			
NPRINT	Number of print-outs from (NCROSS-1) crossings to NCROSS (the last) crossing .			2
IRAXIS	Spacecraft body axis upon which sun sensor is located.			3

SPINNING BODY OPTION ATTITUDE AND BODY RATES

Fortran Symbol	Math Symbol	Description	Units
PSII	ψ	First Euler angle in a 3-1-3 rotation from local inertial to body frame. (preset $=0.0$)	deg
THET1	θ	Intermediate Euler angle in a 3-1-3 rotation from local inertial to body irame. (preset $=0.0$)	deg
PHII	ϕ	Final Euler angle in a 3-1-3 rotation from local inertial to body frame. (preset $=0.0$)	deg
OMEG(i) $(i)=1,2,3$	$\boldsymbol{\omega}_{\text {i } B}$	Components of satellite angular velocity with respect to inertial space, with components expressed in body frame. Spin axis is the third body axis. (preset $=0.0$)	deg/sec
ETTA ZETTA	η (2nd angle) ? (1st angle)	Angles which specify a preferred inertial direction of the body spin axis with respect to inertial space. This is a 3-2 rotation from the local inertial frame. (preset $=0.0$)	deg deg
NUTATION VISCOUS RING DAMPER OPTION			
Fortran Symbol	Math Symbol	Description	Units
IVISCS		Control word to employ viscous ring nutation damper into program. $($ Preset value $=0)$ IVISCS $=1$ Employs subroutine IVISCS $=0$ By-passes subroutine	Integer, N. D.
VISCTY	$\boldsymbol{\gamma}$	Kinematic viscosity of iiquid in nutation damper. $($ preset $=3.0)$	Centistokes
RADTBE	¢	Radius of nutation damper tube.	inches

Fortran Symbol	Math Symbol	Description	Units
PXI	B	Fraction of spin period after sun line reference point established when control torque is applied to Y_{1} body axis. Absolute value should be greater than one print interval. (preset $=0.4$)	N.D.
PXO	C	Fraction of spin period after sun line reference point established when control torque is removed from Y_{1} body axis. (preset $=0.5$)	N. D.
CMX	$\mathbf{M}_{i \mathbf{i y}}$	Control moment along Y_{1} body axis. Input as a positive number means moment applied about positive Y_{1} hody axis. Input as a negative number means moment applied about negative Y_{1} body axis. $($ preset $=0.0)$	$\mathrm{ft}-\mathrm{lb}$
NPULSE		The number of sequential moment pulses applied to the body once the control system is activated. The application rate is one pulse per spin period. $($ preset $=4)$	Integer, N.D.
Constant Torque Levels About Body Axes			
Fortran Symbol	Math Symbol	Description	Units
ITORK		ntrol word to apply torque about body axes. reset value $=0$)	Integer, N.D.
		ORK $=0$ No torque applied	
		ORK $=1$ Torque applied	
CMTORK(3)		rque magnitude applied to body axes. $\text { reset }=0.0 \text {) }$	ft-lb

Fortran Symbol	Math Symbol	Description	Units
		IPLPRP = 1 One pulse	
		IPLPRP $=2$ Two pulses	
		Only one or two pulses are allowed. (Preset $=1$)	
TVECTR $(3,2)$	$\left\{D_{v}\right\}$	Unit vector defining the direction of the force applied to the body due to thrusting. This vector is defined in the body frame. (preset $=0.0$, $0.0,1.0$)	N.D.
TLOCAT(3,2)	$\left\{{ }^{\ell} \mathrm{T}\right\}$	Location in the body frame of the point application of the force due to thrusting. (preset $=0.0$)	feet
TTIMES(4.2)		Times to define thrust variation measured from the problem starting time (see page A-16).	sec
	t_{1}	TTIMES (1,I) Start of pulse	
	t_{2}	TTIMES (2,I) End of exponential rise	
	t_{3}	TTIMES (3.1) End of linear thrust	
	t_{4}	TTIMES (4,l) End of pulse $I=1$ or 2	
TPARAM(4,2)		Parameters to define thrust variation	
	A	TPARAM (1,I) Coefficient during exponential rise	lb
	B	TPARAM (2,I) Exponential decay constant during exponential rise	$\sec ^{-1}$
	C	TPARAM (3,1) Coefficient for linear slope	lb/sec
	D	TPARAM (4,I) Exponential decay constant during exponential decay	$\sec ^{-1}$
REFANG(2)	$\mathbf{A}_{\text {R }}$	Angular delay from the Y_{1} axis crossing the sun line to the initiation of the pulse.	deg

JET DAMPING OPTION

Fortran Symbol	$\begin{gathered} \text { Math } \\ \text { Symbol } \end{gathered}$	Description	Preset Value	Units
IJTDMP		Control word to invoke jet damping option	0	Integer, N.D.
		IJTDMP 0 No jet damping		
		IJTDMP 1 Jet damping		
		NOTE: Jet damping implies thrusting and therefore IPULSE >0		
TANKCG(3)		Position vector to center of mass of fuel to be expended during thrusting.	0.0 D0	ft
FUELPP(2)		Fuel to be expended during one thrust pulse		slugs
FUELM		Total mass of fuel. (SLUGS)		slugs
RGYFL(3)		Square of the radius of gyration of the fuel mass about its own center of mass		$\mathrm{ft}^{\mathbf{2}}$

ANGULAR MOMENTUM OPTION

Fortran Symbol Math Symbol	Description	Units

IHC\&IC N.A. Control word to calculate and print the N.D. angular momentum of the system.

Fortran Symbol	Math Symhol	Description	Units
DVMOM()	$\left\{\dot{\omega}_{w}\right\}$	Momentum wheel acceleration (negative for deceleration). $I=1,2,3 \text { (preset }=0.0,0.0,0.0$	deg/sec ${ }^{2}$
VSUR(1)	$\left\{\omega_{w}\right\}_{\text {UP }}$	Upper limit of momentum wheel speed. $I=1,2,3$ (preset $=1$. 0D6,	$\begin{gathered} \mathrm{deg} / \mathrm{sec} \\ \mathrm{D} 6,1.0 \mathrm{D} 6) \end{gathered}$
VSDR(I)	$\left\{\omega_{w}\right\}_{L O}$	Lower limit of momentum wheel speed. $\mathrm{I}=1,2,3$ (preset $=-1.0 \mathrm{D} 6$	$\begin{gathered} \mathrm{deg} / \mathrm{sec} \\ \mathrm{OD},-1.0 \end{gathered}$

MAGNETIC MOMENT OPTION

Fortran Symbol (i) $=1,2,3$	Math Symbol	Description	Preset Value

NOTE

An IGRF 1965 Geomagnetic Field model includes 80 spherical harmonic coefficients is used (REF6).

SPACECRAFT ACCELERATION OPTION

Fortran Symbol	Math Symbol	Description	Preset Value	Units
IACOMP		Control word to activate the acceleration computation for both hub and element tip accelerations ($=1$).	0	N.D.
IHUBAC		Control word to activate the acceleration computation and printout for the hub ($=1$).	0	N.D.
ITIPAC		Control word to activate the acceieration computation and printout for the element tip $(=1)$.	0	N.D.

Accelerometer Location Variables

Fortran Symbol	Math Symbol	Description $\quad \begin{gathered}\text { Preset } \\ \text { Value }\end{gathered}$	Urıts
NUMHUB	N	Number of accelerometers and points within the hub where acceleration vectors are to be computed.	N.D.
YHUB(I, J)1	\{ $\mathrm{y}_{\text {hub }}$ \}	Coordinates of the jth $\quad 0.0$ accelerometer in the Y body frame: $I=$ coordinate number $\quad(i=1,2,3)$	feet
		$\begin{aligned} & \mathrm{J}=\text { accelerometer } \\ & \quad \text { number }(\mathrm{j}=1 \text { to } \mathrm{N}) \end{aligned}$	
ALFAEA(J)	α_{a}	Second Euler angle defining the orientation of the No. 1 axis (sensitive axis) of the jth accelerometer to the y body frame (rotation about y_{1}).	deg
BETAEA(J)	β_{a}	First Euler angle defining the orientation of the accelerometer relative to the y body frame (rotation about y_{2}).	deg
GAMAEA(J)	γ_{a}	Third Euler angle definirg 0.0 the orientation of the accelerometer relative to the y body frame (rotation about y_{3}). $\beta-\alpha-\gamma$ or 2-1-3 rotation.	deg
ZXI* ${ }^{\text {(k, n }}$)	$X_{n}(1,0)$	Shape function evaluated at 1.0 D 0 for $z_{1}=1.0$ for k th element $n=1,2,3$ and nth mode. $n=1,2,3$. Normalized cantilever beam eigenfunction is used for the preset valı.e.	

[^0]
NOTE

The value of it should not exceed the number of frequencies that can beasonably be expected to exist in the data. The range of permissible values for N are from 1 to $10.1 \leqslant \mathrm{~N} \leqslant 10$.

There are two precautions the user should take when employing the Fast Fourier Transform onalysis option. First, the data points to be analyzed in the Fast Fourie: Transform are controlled by the values of TSTOP and FREQ, i.e.,

$$
\mathrm{N}=\text { Sample size }=\frac{\mathrm{TSTOP}}{\text { FREQ }}+1
$$

In other words, the data set input to the FFT subroutines is exactly the same as that appearing in the normal printout. Therefore, the input TSTOP value should at least cover more than the two longest vibrational periods of the data set to be analyzed. The value of FREQ should not be too coarse in order that the higher harmonics can be picked up by the analysis. Furthermore, it is preferred that the data set to be analyzed is in steady state condition. Therefore, it is recommended that the user first run the program without using the FFT analysis option to obtain a general idea about the periodic behavior of the data sets to be analyzed, and then run the program with the FFT option inputting the appropriate TSTOP and FREQ values. Second, because the data sets gener ited by FSD program are all deterministic, the autocorrelation function analysis may noi be neeessary; hence, IAFM(4) should be set equal to c.

ATMOSPHERIC NENSITY MODEL OPTION

Fortran Math

IDRAG

IJACCT

Control word to inclide or exclude atmosphere models. Set to 1 for 1962 standard atmosphere. Set to 2,3 or 4 for JacchiaRoberts atmospheric model (see below). Preset = 1

Modified Julian date of first data on Jacchia-Roberts file (10300 corresponds to March 19, 1969). Note: inp ${ }^{+}$value is used $\mathrm{o}^{\cdot} \cdot$ for IDRAG3.

Fortran Symbol	Math Symbol	Description	Units
$K P(21,8)$		Three hour magnetic activity indices for 21 day period. Note: input values are used only for IDRAG 2 or 3.	
TC(20)		Exospheric temperatures. Note: input values used only for IDRAG 2 or 3.	
ER(3)		Earth's rotation rate for rotating atmosphere calculation. $\begin{aligned} \text { (preset }= & 0.0 \mathrm{D} 0 \\ & 0.0 \mathrm{D} 0 \\ & 7.29211 \mathrm{D}-5 \mathrm{rad} / \mathrm{sec}) \end{aligned}$	
		NOTE	
	DRAG 2 file is in E. For ACCT is read fro	modified Julian date for the Jacchia-Rober nally set to the simulation date defined by RAG 3 the input modified Julian date delined ed. For IDRAG 4 the Jacchia-Roberts data unit 15 (360/95).	
Linear Varyirg Drag Loading (for tethered mass)			
XLTest		Linear varying drag loading is calculated for any element whose length is greater than XLTEST. $\quad($ preset $=1.0 \mathrm{D}+06)$	feet
		NOTE	
	arrays fo to appr	ressure calculations can be input but are riate values in BLOCK data.	
GROUND SIMULATION OPTION			
Fortran Symbol	Math Symbol	Description	Units
IGRUIND		Control word to activate the ground simulation environment. IGRUND $=1$ Activates option IGRUND $=0$ Does not activate option $($ preset $=0)$	NA

Fortran Symbol	Math Symbol	Description	Units
[GASBR		Control word to activate the air bearing ground simulation. If IGRUND $=1$ and IGASBR $=0$, the spin platform (single axis) capability is used. If IGRUND $=1$ and IGASBR $=1$, air bearing (3 axis) capability is used. (preset $=0$)	NA
IALTUD		Control word to activate the computation of the local verticle direction of the gravitationai acceleration at the ground testing site altitude. If IALTUD $=0$, gravitational acceleration input is necessary; if IALTUD $=1$, the altitude input is necessary.	NA
ALFAEG	α_{G}	First rotation angle of 3-1 rotation from local geographical frame to the body frame (or the right ascention angle), see page A-19. (Preset $=0.0 \mathrm{D} 0$)	deg
DELTAG	$\boldsymbol{\delta}_{\mathbf{G}}$	Second rotation angle of a 3-1 rotation from local geographical frame to the body frame (or the declination angle of spin or number 3 body axes in local geographical frame). (Preset $=0.0 \mathrm{DO}$)	deg
ALTUDE	h_{G}	The altitude of the ground test site. Used to compute the gravitational acceleration at the altitude when IALTUD $=1$. (Preset = 0. 0D0)	km
OMGY(1-3)	$\left\{w_{G}\right\}$	Angular velocity vector of body axes expressed in the local geographical frame. (Preset $=0.0 \mathrm{D} 0$)	deg/sec
GACC(1-3)	$\left\{A_{G}\right\}$	Three components of acceleration vector input along the three axes of the local geogranhical frame. $A_{G I}$ is along the east local horizontal, $A_{G 2}$ is along the north local horizontal and A_{G} is along the local vertical direction. $\begin{aligned} (\text { Preset }= & 0.0 \mathrm{D} 0 \\ & 0.0 \mathrm{D0} \\ & 32.145(552 \mathrm{D} 0) \end{aligned}$ 66	$\mathrm{ft} / \mathrm{sec}^{2}$

SECONDARY BODY SIMULATION

The effect of a rigid secondary body connected to the primary body through a three degree of freedom rotary (universal) joint can be simulated. The connecting joint has either one, two, or three degree of freedom selected by input. The suspension simulation for the secondary body includes a bilinear spring, viscous damping, and angular stops (limits) for each axis.

A rasiering capability of the secondary body is included so that the azimuth angle can be swept through at a specified rate: and at the angular stop an incremental step change in elevation may be made. The secondary body then moves in the opposite azimuth direction to the opposite stop. etc. Rastering stops when the number of input elevation steps have been completed.

Fortran Symbol	Type	Preset Value	Description
12BDY	I*4	0	Control word to add secondary body to simulation
			I2BDY 0 No secondary body I2BDY I Secondary body present
NDOF2	I*4	0	Number of degrees of freedom of secondary body
			NDOF2 1 Rotation about the 2 axis of seconda:y body. NDOF2 2 Rotation about the $3 \& 2$ axes of secondary body. NDOF2 3 Rotation about the 3.1 \& 2 axes of : ~ ndary body.
SECM	R*8	0.0D0	Mass of secondary body. , ss). NOTE: The mass of the secondary body must be included in the system mass ZMS.
$\mathbf{S E C l}(3,3)$	P*8	0.0D0	Mass moments of inertia of secondary body about its own center of mass. (slugs- ft^{2}).
ZBAR2(3)	R*8	0.0D0	Location of the secondary body center of mass measured from the pivot point which is the secondary body fixed reference frame origin (ft .).

Fortran Symbol	Type	Preset Value	Description
Y102(3)	R*8	0.0D0	Location of the pivot point for the secondary body measured in the main body reference frame. (ft.).
SBK 1 3)	R*8	0.0D0	Spring constant for secondary body suspension. Applies to angles less than the stop angle. (ft-lb/rad).
SBK2(3)	R*8	0.0D0	Spring constant for secondary body suspension. Applies to angles greater than the stop angle. (ft-lb/rad).
SBSTA(3)	R* δ	0.0D0	Stop angle for secondary body suspension. (rad).
SBDM(3)	R*8	0.0D0	Damping coefficients for secondary body motions. (ft-lb-sec/rad).
GAM20	R*8	0.0D0	Rotation about the three axis in a 3-1-2 angle set from the main body frame to the secondary body equilibrium frame. (deg). NOTE: The secondary body equilibrium frame is that orientation at which spring have zero restoring torque.
ALP20	R*8	0.0D0	Rotation about the one axis in a 3-1-2 angle set from the main body frame to the secondary body equilibrium frame. (deg).
BET20	R*8	0.0D0	Rotation about the two axis in a 3-1-2 angle set from the main body frame to the secondary body equilibrium frame. (deg).
GAM2I	R*8	0.0D0	Initial condition for rotation about the three axis of the secondary body. Measured from the equilibrium frame to the secondary body fixed frame. (deg).
ALP2I	R*8	0.0D0	Initial condition for rotation about the one axis of the secondary body. Measured from the equilibrium fram to the secondary body fixed frame. (deg).

SECONDARY BODY SIMULATION (Cont.)

Fortran Symbol	Type BET21	Preset Value	Description
O.0D0	Initial condition for rotation about the two axis of the secondary body. Mea- sured from the equilibrium frame to the secondary body fixed frame. (deg).		
NOTE: The motion of the secondary			
body is simulated in terms of a			
3-1-2 set of angles from the equi-			
librium trame to a secondary body			
fixed frame. If only two degrees			
of freedom are specified. the sim-			
ulation uses a 3-2 set of angles.			
If one degree of freedom is speci-			
fied the simulation uses a rotation			
about the 2 axis.			

Plotting locations for secondary body variables

Fortran
Symbol
KPLOTS (236) Rotation of secondary body about 3 axis
$\gamma_{\text {SB }}$
KPLOTS (237) Rotation of secondary body about the carried 1 axis ${ }^{\alpha}{ }_{\text {SB }}$

KPLOTS (238) Rotation of secondary body about the carried 2 axis $\beta_{S B}$

Plotting locations for secondary body variables (Cont.)

Fortran			
Symbol			Description
KPLOTS (239)			Relative angular rate of secondary body about 3 axis $\dot{\gamma}_{\text {SB }}$
KPLOTS (240)			Relative angular rates of secondary body about the carried 1 axis of secondary body $\dot{\alpha}_{S B}$
KPLOTS (241)			Relative angular rates of secondary body about the carried 2 axis $\mathcal{F}_{\mathrm{SB}}$
KPLOTS (242)			Component of secondary body relative angular velocity on 1 axis of secondary body ω_{ISB}
KPLOTS (243) \quad C			Component of secondary body relative angular velocity on 2 axis of secondary body $\omega_{2 S B}$
KPLOTS (244) \quad C			Component of secondary body relative angular velocity on 3 axis of secondary body $\omega_{3 \text { SB }}$
Secondary Body Rastering Input			
Fortran Symbol	Type	Preset Value	Description
IRAST	I*4	0	Control word to invoke prescribed rastering motions for secondary body.
			$\underline{I R A S T}=0$ No rastering
			IRAST $=1$ Rastering prescribed
IARST(3)	I*4	0	Control word to specify type of rastering cycle to be invoked on each axis.
			$\operatorname{IARST}(1)=0$ No motion
			$\operatorname{IARST}(\mathrm{I})=1$ Motion of Type 1

Thrusters and momentum whee's can be activated from either positive or negative going zero crossings of spacecraft state variables such as accelerometer readings. body components of spin vector, body components of earth's magnetic field, and body components of the sun vector. A fixed time delay is permitted by input starting from the time zero crossing of the state variable. Also, a simple filter of the form:

$$
\frac{\mathrm{K} \tau \mathrm{~S}}{(1+\tau \mathrm{s})^{2}}
$$

where $K=$ gain factor, input
$s=$ Laplace cperator
$\tau=$ time constant, input
is included to take out any d.c. bias that may be present in the state variable. The momentum wheel speed is driven in a triangular wave form between limits (VSUK and VSDR) at the frequency specified by input.

Fortran Symbol Type	Preset Value	Descripion
$\operatorname{IACFLT}(20) \quad \mathrm{R} * 8$	0	Control integers for filtered sensor signal to actuate momentum wheel cycling or pulsed thrusting.
$\operatorname{IACFLS}(1)=0$		No filtered sensor simulation.
$\operatorname{IACFLT}(1)=1$		Filtered sensor simulation.
$\operatorname{IACFLT}(2)=1$		Pulsed thrusting to be simulated.
$\operatorname{ACFLT}(2)=2$		Momentum wheel cycling to be simulated.
$\operatorname{IACFLT}(3)=1$		Sensor measures magnetic field.
$\operatorname{IACFLT}(3)=2$		Sensor measures an acceleration component.
$\operatorname{IACFLT}(3)=3$		Sensor measures body angular velocity.
$\operatorname{IACFLT}(3)=4$		Sensor measures solar intensity.
$\operatorname{IACFLT}(4)=0$		Use natural initial conditions for filter integraters.
$\operatorname{IACFLT}(4)=1$		Use input initial conditions for filter integrater.
ACPARM(20) $\mathrm{R}^{*} 8$	0.0D0	Numerical data required for filtered sensor signal simulation.
ACPARM(1)		Filter gain.
ACPARM(2)		Filter time constant.
ACPARM(3-5)		Unit vector defining sensor direction in the body frame.
ACPARM(6-8)		Sensor position in the body frame. (for acceleration sensor).
ACPARM(9)		Cycle half period for momentum wheel cycling.

Actuator Initiation from Zero Crossing of Filtered State Variables (Cont.)

Fortran		
Symbol	Type	Preset Value

ACPARM (10) Time delay for initiation of actuator after zero crossing.

ACPARM(17) Initial condition for filter integater.
ACPARM(18) Initial condition for filter integrater.
ACPARM(19) Upper bound for filter ir tegrater.
ACPARM(20) J ower bound for filter integrater.
Plotting locations for filter state variables
Fortran
Symbol Description
KPLOTS(245) Sensor output
KPLOTS(246) Filter output
KPLOTS(247) Filter first integrater output

DUAL-SPIN SPACECRAFT CONTROL SYSTEM (DE-B)

The input Fortran symbols for the DE-B control and active nutation damper system are given below. A block diagram of the control system is given in Appendix A, page A-22 along with some mathematical description of the formulation.

Fortran Symbol	Type	Preset Value	Description
KNTRL(10)	0	Vector of control integers for DE-B control system simulation	
KNTRL			
(1)			

Fortr:in Symbol	Type	Preset Value	Description
(2)			KNTRL(2) $=2$ Offset pointing damper circuit
(3)			$\begin{aligned} & \operatorname{KNTRL}(3)=0 \text { No } \\ & \operatorname{KNTRL}(3)=1 \text { First order tachometer } \end{aligned}$
(4) - (8)			Not used
(9)			$\operatorname{KNTRL}(9)=1,1$ is starting integer for noise generator. I must be odd and should have 6 or 7 digits.
(10)			$\operatorname{KNTRL}(10)=0$ No noise channels KNTRL(10) $=3$ Noise generated for sensors \& bial voltage. Use only 0 or 3 .
CPARM(43)	R*8	$\begin{aligned} & (1-30) 0.000 \\ & (31-40) 1.000 \\ & (41-43) 0.000 \end{aligned}$	Control system parameters for $\mathrm{DE}-\mathrm{B}$ control system simulation
CPARM	Math Symbol	Units	Description
(1)	$\tau_{\text {s }}$	sec.	Sensor time constant
(2)	τ_{1}	sec.	Lead term in pitch compensation
(3)	τ_{2}	sec.	Lag term in pitch compensation
(4)	$\tau_{\text {F }}$	sec.	Tachometer time constant
(5)	$\mathrm{K}_{\text {s }}$	volts/rad.	sensor gain
(6)	K_{c}	volts/volt	Pitch amplifier gain
(7)	K_{a}	volts/volt	Power amplifier gain
(8)	K_{f}	volts/(rad/se	ec) Tachometer gain
(9)	K_{b}	volts/(rad/se	ec) Motor back EMF constant
(10)	K_{t}	ft.lbs/volt	Motor torque constant
(11)			Not used for input

CPARM	Math Symbol	Units	Description
(12)	$\mathrm{V}_{\text {lim }}$	volts	Voltage limit in compensation amplifier
(13)	$K_{\mu l}$	volts/volt	Gain in primary damper circuit
(14)	$\tau_{\mu l}$	sec.	Time constant in primary damper circuit
(15)	$V_{\text {b }}$	volts	Bias voltage
(16)	$\tau_{\text {co }}$	ft-lbs	Coulomb friction torque
(17)	$\begin{gathered} \Omega_{\min } \\ \tau_{\mathrm{c}}=\tau_{\mathrm{c} 0} \end{gathered}$	$\mathrm{rad} / \mathrm{sec}$ $\frac{\Omega_{\omega}}{\Omega_{\min }+\left\|\Omega_{\omega}\right\|}$	Test relative wheel speed to avoid coulomb friction torque discontinuity at zero speed
(18)	ρ_{5}	volts/voits	In fourth order sensor. See p. A-22.
(i9)	$\mathrm{K}_{\mu 2}$	sec.	Gain in offset pointing damper circuit
(20)	$\tau_{\mu 2}$	N.D.	Time constant in offset pointing damper circuit
(21)		N.D.	Sign of damper circuit output set 1.0 or -1.0
(22)		volts	Roll sensor output limit
(23)		ft.-lbs.	Motor torque output upper limit
(24)		ft.-lbs.	Motor torque output lower limit
(25-30)			Not used
(31-33)			Noise model SIGMA for pitch, roll and vo. age bias respectively
(34-35)			Not used
(36-38)			Noise model LAG for pitch, roll and voltage bias respectively
(39-40)			Not used

CPARM	Math Symbol	Units	Description
(41)		rad.	Pitch sensor bias
(42)		rad.	Roll sensor bias
(43)			Not used
Fortran Symbol	Type	Preset Value	Description
SVCS(20)	R*8	0.000	Initial conditions for control system state vector
SVCS		Units	Description
(1)		volts	Pitch sensor output
(2-4)		volts	Pitch sansor dynamics
(5)			Not used
(6)		volts	Roll sensor output
(7-9)		volts	Roll sensor dynamics
(10)			Not used
(11)		volts	State variable for pitch compensation amplifier
(12)			Not used
(13)		velts	Tachometer output
(14)			Not usted
(15)		$\mathrm{rad} / \mathrm{sec}$	Wheel speed
(16-18)			Not used
(19)		volts	Nutation damper
(20)		volts	Nutation damper

Fortran Symbol	Type	Preset Value	Description
GNIC(10)	R*8	0.0D0	Initial conditions for noise model chatnels.
			GNIC(1) Pitch channel
			GNIC(2) Roll channel
			GNIC(3) Bias voltage channel
			GNIC(4-10) Not used
CSUP(20)	R*8	1.01)-2	Upper bound on difference bet veen , dicted and corrected control system state vector. Location in CSUP corresponds to the location of the variable in the state vector initial condition array SVCS
$\operatorname{CSDN}(20)$	P:8	1.0D-4	Lower bound en differance between predicted and corrected control system state vector. Locetion in CSDN corresponds to the location of the variable in the state vector initial condition array SVCS

In addition to the input described above, the following m 'st be given:
IWHEEL I Makes vall to momentum wheel subroutine (WHEELS)
XMOMIN(2) - Inertia of momentum wheel (slug-ft ${ }^{2}$)
It is recommended that integration control bounds ue given for critical control variables to prevent integration time step from exceeding the time constants of the closed-loop system. For example, if fastest component in the control system has a tirne constant of .1 sec ., it is unreasonable to expect accurate simulation resuits with a larger time step. Setting the integration bounds to some reasonable (small) fraction of the nominal value (eg 10^{-2} to 10^{-4}) will ensure that the integration errors are of the same order (e.g. 2 to : 'lace accuracy). The time stop corresponding to this level of accuracy will be determined internally.

The output for the DE-B control system simulation includes both printed data and plots. The printed output is as follows:

Fortran Symbol

PTCH Out
Pitch channel sensor outpui
Units

Roll channel sensor output
volts

Fortran Symbol	Description	Units
COMP Out	Output of compensation amplifier	volts
T.ACH Out	Output of ta nometer	volts
TMOTOR	Torque output of momentum wheel motor	ft-lbs
WHL SPD	Momentam wheel speed	$\mathrm{rad} / \mathrm{sec}$
NUTD Out	Nutation damper phase shift circuit output	volts
The output available for plotting is the entire state vector for the control system. The locations and definitions of these variables are as follows.		
KPLOTS Address	De \cdots-ntion	Units
216	Pitch semsur output	volts
217-219	Pitch sensor dynamics	volts/sec, etc.
220	N 1 i used	
$22!$	Roll sensor output	volts
222-224	Roll sensor dynamics	volts/sec, etc.
225	Not used	
226	Output of pitch compensation amplifier	vcits
227	Not used	
228	Tachometer output	volts

TWO AXIS GIMBLE SIMULATION (No Active Control)

Fortran Symbol	Type	I reset Value	Description
IGMBL	I*4	0	Control word for two axis gimble simulation IGMBL 0 No gimble simulated IGMBL 1 Gimble simulated
AZIN(3,3)	R*8	0.0D0	Moments of inertia of the azimuth platform about its own center of mass (slug-ft ${ }^{\mathbf{2}}$)
AZAX (3)	R*8	0.0D0	Position vector in the body frame to the origin of the gimble motion reference frame. This position is a point on the azimuth motion axis. (ft)
AZCG(3)	R*8	0.0D0	Position vector to the azimuth platform center of mass in the azimuth motion reference frame. (ft.)
AZMS	R*8	0.0DO	Mass of the azimuth platform (slugs)
$\operatorname{ELIN}(3,3)$	R*8	0.0D0	Moments of inertia of the elevation platform about its own center of mass. (slug-ft ${ }^{2}$)
ELAX (3)	R*8	0.0D0	Position vector in the azimuth motion reference frame. This position is a point on the elevation motion axis. (ft)
ELCG(3)	R*8	0.0D0	Position vector to the elevation platform center of mass in the elevation motion reference frame. (ft)
ELMS	R*8	0.0D0	Mass of the elevation platform (slugs)
GMK 1(2)	R*8	0.0D0	Spring constant for two axis gimble suspension. Applies to angles less than the stop angle. ($\mathrm{ft}-\mathrm{lb} / \mathrm{rad}$) GMK 1(1) Azimuth Axis GMK 1(2) Elevation Axis
GMK 2(2)	R*8	O.CD0	Spring constant for two axis gimble suspension. Applies to angles greater than the stop angle. (ft-lb/rad) GMK2(1) Azimuth Axis GMK2(2) Elevation Axis
GMDMP(2)	R*8	0.0D0	Viscous damping constant for two axis gimble Sh.,pension. ($\mathrm{ft}-\mathrm{lb}-\mathrm{sec} / \mathrm{rad}$) GMDMP(1) Azimuth Axis GMDMP(2) Elevation Axis 79

TWO AXIS GIMBLE SIMULATION (No Active Control) CONT.

Fortran Symbol	Type	Preset Value	Description
GMSTP(2)	R*8	0.0D0	Stop angle for two axis gimble suspension. (rad)
			GMSTP(1) Azimuth Axis
			GMSTP(2) Elevation Axis
AZIMO	R*8	0.0100	Rotation about the three axis in a 3-1-2 angle set from the main body frame to the gimble motion reference frame. (deg)
			NOTE: The gimble motion reference frame is a main body fixed '. ame
ROLLO	R*8	0.000	Rotation about the one axis in a 3-2-1 angle set from the main body frame to the gimble motion reference frame (deg)
ELEVO	$\mathrm{R} * 8$	0.0D0	Rotation about the two axis in a 3-1-2 angle set from the main body frame to the gimble motion reference frame (deg)
AZIMI	R*8	0.0D0	Initial azimuth angular position for the azimuth platform (deg)
AZIMID	R*8	0.0D0	Initial azimuth angular velocity for the azimuth platform (deg/sec)
ELEVI	R*8	0.0D0	Initial elevation angular position for the elevation platfor:m (deg)
ELEVID	R*8	0.0D0	Inicial elevation angular velocity for the elevation platform (deg/sec)
GMUP(2)	R*8	1.0D-3	Integration upper bounds for gimble angles and angular rates
			GMUP(1) (rad)
			GMUP(2) ($\mathrm{rad} / \mathrm{sec}$)
GMDN(2)	R*8	1.OD-5	Integration lower bounds for gimble angles and angular rates
			GMDN(1) (rad)
			GMDN(2) (rad/sec)

TWO AXIS GIMBLE SIMULATION (No Active Control) CONT.

Plotting locations for two axis gimble motion variables

Fortran
Symbol

Description

KPLOTS(297)
KFLOTS(298)

KPLOTS(299)
KPLOTS(300)

Azimuth angle for the gimble azimuth platform
Azimuth angular rate for the gimble azimuth platform

Elevation angle for the gimble elevation platform
Elevation angular rate for the gimble elevation platform
(LEF` BLANK)

CONTROL SYSTEM FOR TWO AXIS PLATFORM MAGNETIC TRACKING

Fortran Symbol Type	Preset Value	Description
IPLTCS(1-20) I*4	0	Control words for gimble platform control system simulation
IPLTCS(1)		Control word to invoke the two axis platform control system option
		IPLTCS(1) 0 No control system
		IPLTCS(1) 1 Control system
		NOTE: If a control system is invoked the gimble simulation must also be invoked
IPLTCS(2)		Control word to specify magnetometer is mounted at the tip of an element
		IPLTCS(2) 0 Magnetometer in body
		IPLTCS(2) K Magnetometer on Kth element
		NOTE. K is defined in terms of the internal program element orderirg system
IPLTC3(3)		Control word for guassian noise transfer function for the three axes of the magnetometer
		IPLTCS(3) 0 No transfer function
		IPLTCS(3) 1 Transfer function
IPLTCS(4)		Number of magnetometer samples to be averaged for smoothing of magnetometer output
		IPLTCS(4) N average N samples
		$\mathrm{N} \geqslant 1$
IPLTCS(5-20)		Not used
PCSPRM(100) R*8	0.0D0	Platform control system parameters
PCSPRM(1-9)		Not used
PCSPRM(10)		Sampling time for PID digıtal controller (sec)
PCSPRM(11)		Azimuth axis quantatisation level for platform position (rad)
PCSPRM(12)		Azimuth PID integratur upper saturation limit (rad)
PCSPRM(13)		Azimuth PID integrator lower saturation limit (rad) 82

CONTROL SYSTEM FOR TWO AXIS PLATFORM MAGNETIC TRACKING (CONT)

Fortran Symbol Type	Preset Value	Description
PCSPRM(14)		Azimuth PID proportional sain K_{p}
PCSPRM(15)		Azimuth PID integrator gain $\mathrm{K}_{\mathbf{I}}$
PCSPRM(16)		Azimuth PID derivative gain K_{D}
PCSPRM (17-20)		Not used
$\operatorname{PCSPRM}(21) \quad \mathrm{R} * 8$	0.0D0	Elevation axis quantatisation level for platform position (rad)
PCSPRM(22)		Elevation PID integrator upper saturation limit
PCSPRM(23)		Elevation PID integrator lower saturation limit
PCSPRM(24)		Elevation PID prcportional gain K_{p}
PCSPRM(25)		Elevation PID integrator gain $\mathrm{K}_{\mathbf{I}}$
PCSPRM(26)		Elevation PID derivative gain K_{D}
PCSPRM(27-29)		Not used
PrSPRM(30)		Integration upper bound for magnetometer first order lag transfer function
PCSPRM(31)		Integration lower bound for magnetometer first order lag transfer function
PCSPRM(32)		Magnetometer one axis bandwidth
PCSPRM(33) $\mathrm{R}^{*} 8$	0.0D0	Magnetometer two axis bandwidth
PCSPRM(34)		Magnetometer three axis bandwidth
PCSPRM(35)		Magnetometer sampling rate (sec)
PCSPRM(36)		Computational delay (sec)
PCSPRM(37-40)		Not used
PCSPRM(41)		Azimuth platform amplifier gain $\mathrm{K}_{\mathbf{A}}$
		83

Fortran Symbol Type	Preset Value	Description
PCSPRM(42) R*8	0.0D0	Azimuth platform motcr torque constant $\mathrm{K}_{\mathbf{T}}$
PCSPRM(43)		Azimuth platform back EMF constant K_{B}
PCSPRM(44)		Azimuth platform motor torque upper limit L_{1} (ft-lbs)
PCSPRM(45)		Azimuth platform motor torque lower limit L_{2} (ft-lbs)
PCSPRM(46)		Azimuth platform coulomb friction torque constant (ft-lbs)
PCSPRM(47)		Azin:uth platform minimum angular rate for coulomb friction torque (rad/sec)
PCSPRM(48-50)		Not used
PCSPRAi(51)		Elevation platform amplifier gain $\mathbf{K}_{\mathbf{A}}$
PCSPR M (52)		Elevation platform metor torque constant $\mathrm{K}_{\mathbf{T}}$
PCSPRM ${ }^{(53)}$		Elevation platform back EMF constant K_{B}
PCSPRM(54)		Elevation platform moter orque upper limit L_{1} (ft-lbs)
PCSPRM(55)		Elevation plat? ${ }^{\text {rrm }}$ motor torque lower limit L_{2} (ft-lbs)
PCSPRM(55)		Elevation platform coulomb friction torque constant (ft-lbs)
PCSPRM(57) R*8	0.0D 0	Elevation platform minimum angular rate for coulomb friction torque (rad/sec)
PCSPRM(58-79)		Not used
PCSPRM(80)		Amplitude of sinusoidal noise added to one axis magnetometer measurement (gauss)
		Amplitude of sinusoidal noise for two axis (gauss)

CONTRCL SYSTEM FOR TWO AXIS PLATFORM MAGNETIC TRACKING (CONT)

CONTROL SYSTEM FOR TWO AXIS PLATFORM MAGNETIC TRACKING (CONT)
Input

Symbol

> Description

KPLOTS(307)	Elevation PID digital controller output
KPLOTS(308)	Azimuth platform drive motor torque
KPLOTS(309)	Elevation platform drive motor torque

TWO AXIS DAMPER GIMBLE SIMULATION (No Active Control)

Fortran Symbol	Type	Preset Value	Description
ICMBLD	I*4	0	Control word for two axis damper zimble simulation
			IGMBLD 0 No gimble simulated
			IGMBLD 1 Gimble simulated
DELIN (3,3)	R*8	0.0D0	Moments of inertia of the elevation platform about its own center of mass (slug- ft^{2})
DELAX (3)	R*8	u.OD0	Position vector in the azimuth mot:on reference frame. This position is a point on the elevation metion axis. (ft)
DELCG(3)	R*8	0.0D0	Position vector to the elevation platform center of mass in the elevation motion reference frame (ft)
DELMS	R*8	0.0D0	Mass of the elevation platform (slugs).
DMK1(2)	R*8	0.0D0	Spring constant for two axis gimble suspension. Applies to angles less than the stop angle ($\mathrm{ft}-\mathrm{lb} / \mathrm{rad}$)
			DMK1(2) Elevation axis
DMK2(2)	R*8	0.0D0	Spring constant for two axis gimble suspension. Applies to angles greater than the stop angle. ($\mathrm{ft}-\mathrm{lb} / \mathrm{rad}$) DMK2(2) Elevation Axis
DMDMP(2;	R*8	0.0D0	Viscous damping constant for two axis gimble suspension (ft-lb-sec/rad)
			GMDMP(2) Elevation axis
DMSTP(2)	R*8	0.0D0	Stop angle for two axis gimble sufpension (rad)
			GMSTP(2) Elevation axis

Fortran Symbal	Type	Preset Value	Description
DLEVI	R*8	0.0D0	Initial elevation angular position for the elevation platform (deg)
DLEVID	R*8	0.0D0	Initial elevation angular velocity for the elevation platform (deg/sec)
DMUP(2)	$\mathrm{R} * 8$	1.0D-3	Integration upper bounds for gimble angles and angular rates
			DMUP(1) (rad)
			DMUP(2) ($\mathrm{rad} / \mathrm{sec}$)
DMDN(2)	$\mathrm{R} * 8$	1.0D-5	Integration lower bounds for gimble angles and angular rates
			DMDN(1) (rad)
			DMDN(2) ($\mathrm{rad} / \mathrm{sec}$)
Plotting locations for two axis gimble motion variables			
Input			
Symbol			Description
KPLOTS(310)			A rimuth angle for the gimble azimuth platform
KPLOTS(311)			Azimuth angular rate for the gimble azimuith platform
KPLOTS(312)			Elevation angle for the gimble elevation platform
KPLOTS(313)			Elevation angular rate for the gimble elevation platform

Fortran Symbol	Preset Value	

CONTROL SYSTEM FOR TWO AXIS PLATFORM (DAMPER) MAGNETIC TRACKING

Fortran Symbol Type	Preset Value	Description
DCSPRM(13) R*8	0.0D0	Azimuth PI. integrator lower saturation limit
DCSPRM(14)		Arimuth PID proportional gan K_{P}
DCSPRM(15)		Azimuth PID integrator gain K_{I}
[CSPRM(16)		Azimuth PID derivative gain $K_{\text {d }}$
DCSPRM(17-20)		Not used
DCSPRM(21)		Elevation axis quantatisation level for platform position (rad)
DCSPRM(22)		Elevation PID integrator upper saturation limit
DCSPRM(23)		Elevation PID integrator lower saturation limit
DCSPRM(24)		Elevation PID proportional gain Kp
DCSPRM(25)		Elevation PID integrator gain $\mathrm{K}_{\mathbf{I}}$
DCSPRM(26)		Elevation PID derivative gain K_{D}
DCSPRM(27-29)		Not used
DCSPRM(30)		Integration upper bound for magnetcmeter first order lag transfer function
DCSPRM(31)		Integration lower bound for magnctometer first order lag taansfer functic:1
DCSPRM(32)		Magnetometer one axis bandwidth
DCSPRM(33) $\mathrm{R}^{*} 8$	0.0D0	Magnetometer two axis bandwidch
DCSPRM(34)		Magnetometer three axis bandwidth
DCSPRM(35)		Magnetometer sampling rate (sec)
DCSPRM(36)		Computational delay (sfc)
$\operatorname{DCSPRM}(3 ;-40)$		Not used

CONTROL SYSTEM FOR TWO AXIS PLATFORM (DAMPER) MAGNETIC TRACKING (CONT)

Fortran Symbol Type	Preset Value	Description
DCSPRM(41) R*8	0.0D0	Azimuth platfurm amplifier gain K_{A}
DCSPRM(42)		Azimuth platform motor torque constant K_{T}
DCSPRM(43)		Azimuth platform back EMF constant K_{B}
DCSPRM(44)		Azimuth platform motor torque upper limit L_{1} (ft-lbs)
DCSPRM(45)		Azimuth platform motor torque lower limit L_{1} (ft-lbs)
DCSPRM(46)		Azimuth platform coulomb friction torque constant (ft-.bs)
DCSPRM(47)		Azimuth platform minimum angular rate fer coclomb friction torque ($\mathrm{rad} / \mathrm{sec}$)
DCSPRM(48-. 0)		Not used
DCSPRM(51)		Elevation platform amplifier gain $\mathbf{K}_{\mathbf{A}}$
DCSPRM(52)		Elevation platform motor torque constant K_{T}
DCSPRM(53)		Elevation platform back. EMF constant $\mathrm{K}_{\mathbf{B}}$
- $\mathrm{TO}_{\text {SPRM(54) }}$		Elevation plat:orm moior torque upper limit L_{1} (ft-lbs)
DCSPRM(55)		Elevation platform motor torque lower limit L_{1} (ft-lbs)
DCSPRM(56)		Elevation plaiform coulomb friction torque constant (ft-lbs)
DCSPRM(57) R*8	O.0D0	Elevation platform minimum angular rate for couloriab friction torque ($\mathrm{rad} / \mathrm{sec}$)
DCSPRM(58-79)		Not used
DCSPRM(80)		An.plitude of sinusoidal noise added to one axis magnetometer measurement (nauss)
DCSPRM: ${ }^{17}$		Amplitude of sinusoidal noise for two axis (gauss) 90

CONTROL SYSTEM FOR TWO AXIS PLATFORM (DAMPER) MAGNETIC TRACKING (CONT)

Fortran Symbol Type	Pre set Value	Description
DCSPRM(82)		Amplitude of sin: ${ }^{\text {soidal }}$ noise for three axis (gruss)
「こSPRM(83)		Phase of sinusoidal noise added to one axis inagnetometer measurement (deg)
DCSPRM(8i)		Phase of sinusoidal noise for two axis (dey)
		Phase of sinusoidal noise for three axis (deg)
DCSPRM(96)		Frquency of sinusoidal noise added to one axis magnetometer measu: $: m e n t$ (cps)
DCSF'RM(87)		Frequency of sinusoidal noise for two axis (2 p. ,
DCSPRM(88)		Frequency of sinusoidal noise for three axis (cps)
DCSPRM(89)		Not used
DCSPRM(90-95)		Used internally. Not input
DCSPRM(96-100)		Not used
Plotting locations for damper nlatform rontrol system variables		
Input Symbol		Description
KPLOTS(314)		Output of first order lag transfer function for magnetometer one axis
KPLJTS(315)		Output of first order leg transier function for magnetomster twin axis
KPLOTS(316)		Output of first order lag transfer fun $\stackrel{\text { tion }}{ }$ © cr magnetometer three axis
KPLOTS(317)		Azimuth error cutput
KPLOTS(318)		Elevation error output
KPLOTS(319)		Azimuth PID digital controlle: output
KPLOTS(320)		Elevation PID digital contre!' : output
KPLOTS(321)		Azimuth platform drive motor torque 91

Input
Symbol
KPLOTS(322)
Elevation platform drive motor torque

AXIS MOMENTUM WHEEL CONTROL

Fortran S,mbol Type	Preset Value	Description
IAMWH(1-10) I*4	0	Control words for axis momentum wheel simulation
IAMWH(1)		Basic control word for axis momentum wheel simulation
		IAMWH(1) 0 No simulation
		IAMWH(1) 1 Simulation
IAMWH(2)		Control word for roll axis momentum wheel
		IAMWH(2) 0 No roll axis wheel
		IAMWH(2) ! Roll axis wheel
IAMWH(3)		Control word for pitch axis momentum wheel
		IAMWH(3) 0 No pitch axis wheel
		IAMWH(3) 1 Pitch axis wheel
IAMWH(4)		Control word for Yaw axis momentum wheel
		IAMWH(4) 0 No Yaw axis wheel
		IAMWH(4) 1 Yaw axis wheel
AMWHPR (200) R*8	0.0D0	Physical parameters for axis momentum wheel simulation
AMWHPR(1-4)		Not used
AMWHPR(5)		Expenential decay coefficient for integrator saturation smmulation
AMWHPR(6-11)		Not used
AMWHPR(12)		Upper saturation limit for roll axis integrator
AMWHPR(13)		Lower satura+ion limit for roll axis integrator
AMWHPR(14)		Proportıonal gain in roll axis controller
AMWHPR(15) R*8	0.0D0	Integrator gain in roll axis controller
AMWHPR(16)		Derivative gain in roll axis controller
AMWHPR(17)		Filter gain for roll angle error
		03

AXIS MOMENTUM WHEEL CONTROL (CONT)

Fortran Symbol Type	Preset Value	Description
AMWHPR(18) R*8	0.0D0	Filter bandwidth for roll angle error
AMWHPR(19-21)		Not used
AMWHPR(22)		Upper saturation limit for pitch axis integrator
AMWHPR(23)		Lower saturation limit for pitch axis integrator
AMWHPR(24)		Proportional gain in pitch axis controller
AMWHPR(25)		Integrator gain in pitch axis controller
AMWHPR(26)		Derivative gain in pitch axis controller
AMWHPR(27)		Filter gain for pitch angle error
AMWHPR(28)		Filter bandwidth for pitch angle error
AMWHPR(29-31)		Not used
AMWHPR(32)		Upper saturation limit for yaw axis integrator
AMWHPR(33)		Lower saturation limit for yaw axis integrator
AMWHPR(34)		Proportional gain in yaw axis controller
AMWHPR(35)		Integrator gain in yaw axis controller
AMWHPR(36)		Derivative gain in yaw axis controller
AMWHPR(37) R*8	0.0D0	Filter gain for yaw angle error
AMWHPR(38)		Filter bandwidth for yaw angle error
AMWHPR(39-4\%)		Not used
AMWHPR(41)		Roll axis amplifier gain for controller output
AMWHPR(42)		Roll axis momentum wheel motor torque constant
AMWHPR(43)		Roll axis momentum wheel motor back EMF constant

AXIS MOMENTUM WHEEL CONTROL (CONT)

Fortran Symbol Type	Preset Value	Description
AMWHPR(44) R*8	0.0D0	Roll axis momentum wheel torque upper limit
AMWHPR(45)		Roll axis momentum wheel motor torque lower limit
AMWHPR(46)		Roll axis momentum wheel coulomb friction torque constnat
AMWHPR(47)		Roll axis momentum wheel minimum angular rate for coulomb friction torque
AMWHPR(48)		Roll axis momentum whee! moment of inertia
AMWHPR(49-50)		Not used
AMWHPR(51)		Pitch axis amplifier gain for controller output
AMWHPR(52)		Pitch axis momentum wheel motor torque constant
AMWHPR(53)		Pitch axis momentum wheel motor back EMF constant
AMWHPR(54)		Pitch axis momentum wheel motor torque upper limit
AMWHPR(55)		Pitch axis momentum wheel motor torque lower limit
AMWHPR(56) R*8	0.0D0	Pitch axis momentum wheel coulomb friction torque constant
AMWHPR(57)		Pitch axis momentum wheel minimum angular rate for coulomb friction torque
AMWHPR(58)		Pitch axis momentum wheel moment of inertia
AMWHPR(59-60)		Not used
AMWHPR(61)		Yaw axis amplifier gain for controller output
AMWHPR(62)		Yaw axis momentum wheel motor torque constant
AMWHPR(63)		Yaw axis momentum wheel motor back EMF constant 95

AXIS MOMENTUM WHEEL CONTROL (CONT)

Fortran Symbol Type	Preset Value	Description
AMWHPR(64) R*8	0.0D0	Yaw axis momentum wheel motor torque upper limit
AMWHPR(65)		Yaw axis momentum wheel motor torque lower limit
AMWHPR(66)		Yaw axis momentum wheel coulomb friction terque constant
AMWHE ? 67)		Yaw axis momentum wheel minimum angular rate for coulomb friction torque
AMWHPR(68)		Yaw axis momentum wheel moment of inertia
AMWHPR(69-100)		Not used
AMWHPR(101)		Integration upper bound for filtered angle error
AMWHPR(102)		Integration lower bound for filtered angle error
AMWHPR(103)		Integration upper bound for momentum wheel speed
AMWHPR(104)		Integration lower bound for momentum wheel speed
AMWHPR(105-110)		Not used
AMWHPR(111)		Initial condition for roll axis momentum wheel speed
AMWHPR(112-120)		Not used
AMWHPR(121)		Initial condition for pitch axis momentum wheel speed
AMWHPR(122-130)		Not used
AMWHPR(131)		Initial condition for yaw axis momentum wheel speed
AMWHPR(132-200)		Not used

AXIS MOMENTUM WHEEL CONTROL (CONT)

Plotting locations for axis momentum wheel control

Input
Symbol
KPLOTS(323)

KPLOTS(324)
KPLOTS(325)
KPLOTS(326)
KPLOTS(327)
KPLOTS(328)

Description
Roll ans filter output of error signal
Pitch axis filter output of error signal
Yaw axis filter output of error signal
Roll axis momentum wheel speed

Pitch axis momentum wheel speed
Yaw axis momentlim wheel speed

(LEFT BLANK)

ARBITRARILY ORIENTED MOMENTUM WHEEL CONTROL

Fortran Symbol Type	Preset Value	Description
IAMPRM(10) I*4	0	Control words for arbitrarily oriented momentum wheel simulation
IAMPRM(1)		Control word to invoke simulation
		IAMPRM(1) 0 No simulation
		IAMPRM(1) 1 Simulation
AMPARM(200) R*8	0.0DC	Physical constants for arbitrarily oriented momenturn wheel simulation
AMPARM(1)		Not used
AMPARM(2-4)		Direction cosines of the momentum wheel axis in body frame
AMPARM(5-7)		Weighting factors for roll(5), Pitch(6) and YAW(7) angles input to filter
AMPARM(8)		Exponential decay coefficient for integrator saturation simulation
AMPARM(9-31)		Not used
AMPARM(32)		Upper saturation limit for integrator
AMPARM(33)		Lower saturation limit for integrator
AMPARM(34)		Proportional gain in controller
AMPARM(35)		Integrator gain in controller
AMPARM(36)		Derivative gain in controller
AMPARM(37)		Filter gain for angle error
AMPARM (38)		Filter bandwidth for angle error
AMPARM(39.60)		Not used
AMPARM(61)		Amplifier gain for controller output
AMPARM(62)		Momentum wheel motor torque constant 98

ARBITRARILY ORIENTED MOMENTUM WHEEL CONTROL (CONT)

Fortran Symbol Type	Preset Value	Description
AMPARM(63) R*8	0.0D0	Momentum wheel motor back EMF constant
AMPARM (64)		Momentum wheel motor torque upper limit
AMPARM(65)		Momentum wheel motor torque lower limit
AMPARM(66)		Momentum wheel coulomb friction torque constant
AMPARM(67)		Momentum wheel minimum angular rate for coulomb friction torque
AMPARM(68)		Momentum wheel moment of inertia
AMPARM(69-100)		Not used
AMPARM(101)		Integration upper bound for filtered angle error
AMPARM(102)		Integration lower bound for filtered angle error
AMPARM(103)		Integration upper bound for momentum wheel speed
AMPARM(104)		Integration lower bound for momentum wheel speed
AMPARM(105-130)		Not used
AMPARM(131)		Initial condition for momentum wheel speed
AMPARM(132-200)		Not used
Plotting locations for arbitrarily oriented momentum wheel		
Input Symbol		Description
KPLOTS(329)		Filter output of control system angular error
KPLOTS(330)		Momentum wheel speed

END OF INPUT

The end of the input cards is indicated by two cards: the first one with a 1 punched in column one; the second one with the word END punched in columns one through three.

PART 4

DEFINITION OF PRINTED COMPUTER OUTPUT DATA

Fortran Symbol	Description	Units
DATE	Year, month, day	YY MM DD
TIME	Time, in hours, minutes, seconds from start of day.	HHMMSS. XX
$\begin{aligned} & \text { XSAT1 } \\ & \text { XSAT2 } \\ & \text { XSAT'3 } \end{aligned}$	Aries inertial components of satellite position vector.	km
XSATDT1 XSATDT2 XSATDT3	Aries inertial components of satellite velocity vector.	km/sec
DELTAT	Integration step size at the time of print out	sec
SA(i, j)	Transformation matrix from body frame to Aries frame.	N.D.
RMAG	Magnitude of satellite position vector.	km
LAT	Geodetic latitude	deg
LONG	Longitude, measured east from Greenwich Meridian	deg
ALFAE BETAE GAMAE	Euler angles; orientation of gravity gradient satellite body axes with respact to local vertical frame. Output only for earth-oriented satellite.	deg
PSI1 PHII THET1	Euler angles; orientation of spin stabilized satellite body axes with respect to local inertial frame. Output only for spin stabilized satellites.	deg

Fortran
Symbol
Description
Units

W1BC	Body frame components of satellite	$\mathrm{d} \cdot \mathrm{g} / \mathrm{sec}$
W2BC	angular velocity measured with re-	
W3BC	spect to the local vertical frame. Output only for earth-oriented satellite.	
RRATE	Roll, pitch, and yaw angle rates. Output	$\mathrm{deg} / \mathrm{sec}$
PRATE	only for earth-oriented satellite.	
YRATE		
W1B	Body frame components of satellite angu-	deg/sec
W2B	lar velocity vector measured with re-	
W3B	spect to inertial space.	
DOUT(k, j)	Component of the $\mathrm{k}^{\text {th }}$ element (libration damper) tip displacement in the $j^{\text {th }}$ bending modes as measured in the element frame (Z^{1}) along the 2 axis of the frame. (INOPT = 2 only)	feet
DOUTDT(k, $\mathbf{j})$	Component of the $k^{\text {th }}$ element (libration damper) tip velocity in the $j^{\text {th }}$ bending mode as measured in the element frame (Z^{1}) along the 2 axis of the frame. (INOPT = 2 only)	$\mathrm{ft} / \mathrm{sec}$
$\operatorname{DIN}(\mathrm{k}, \mathrm{j})$	Component of the $k^{\text {th }}$ element (libration damper) tip displacement in the $\mathrm{j}^{\text {th }}$ brjnding mode as measured in the element frame (Z^{1}) along the 3 axis of the frame. (INOPT = 2 only)	feet
DINDOT(k, j)	Component of the $\mathrm{k}^{\text {th }}$ element (libration damper) tip velocity in the $j^{\text {th }}$ bending mode as measured in the element frame $\left(Z^{1}\right)$ along the 3 axis of the frame. (INOPT = 2 only)	feet
A(k, j)	Component of the $k^{\text {th }}$ primary element tip deflection in the $j^{\text {th }}$ bending mode as measured along the 2 axis of the element frame.	feet

Fortran Symbol	Description	Units
ADOT(k, j)	Component of the $k^{\text {th }}$ primary element tip velocity in the $j^{\text {th }}$ hending mode as measured in the element frame along the $\underline{2}$ axis of the frame.	$\mathrm{ft} / \mathrm{sec}$
B(k, j)	Component of the $\mathrm{k}^{\text {th }}$ primary element tip deflection in the $j^{\text {th }}$ bending mode as measured along the 3 axis of the element frame.	1-et
BDOT (\mathbf{k}, \mathbf{j})	Component of the $k^{\text {th }}$ primary element tip velocity in the $j^{\text {th }}$ bending mode as measured along the 3 axis of the element frame.	$\mathrm{ft} / \mathrm{sec}$
UD(i, k)	Total tip displacement, for the bending modes simulated, of the $k^{\text {th }}$ libration damper element, measured along the $i^{\text {th }}$ axis of the element frame. (INOPT = 2 only)	feet
$\mathbf{U D}(\mathrm{i}) \mathrm{DT}(\mathrm{k})$	Total tip velocity, for the bending modes simulated, of the $\mathrm{k}^{\text {th }}$ libration damper elemert, measured along the $i^{\text {th }}$ axis of the element frame. (INOPT = 2 only)	$\mathrm{ft} / \mathrm{sec}$
$\mathbf{U}(\mathbf{i}, \mathrm{k})$	Total tip displacement, for the bending modes simulated, of the $k^{\text {th }}$ primary element, measured along the $i^{\text {th }}$ axis of the element frame.	feet
U(i)DOT(k)	Total tip velceity, for the bending modes simulated, of the $k^{\text {th }}$ primary element, measured along the $i^{\text {th }}$ axis of the element frame.	$\mathrm{ft} / \mathrm{sec}$
Z LD(k)	Length of the $\mathrm{k}^{\text {th }}$ element, libration damper. (INOPT $=2$ only)	feet
Z LK(k)	Length of the $\mathbf{k}^{\text {th }}$ primary element.	feet

Fortran Symbol	Desoription	Units
PHILD	The angular deflection of the libration damper boom relative to its equilibriura position. (INOPT $=2$ only)	deg
DPHILD	Angular velocity of li .ation damper boom relative to the body. $\text { (INOPT = } 2 \text { only) }$	deg/sec
OME ${ }^{\text {a }}$	Spatial average angular velocity of the nutation damper fluid relative to the body. (INOPT = 1 only)	Ueg/sec
VSUBL	Average linear velocity of the nutation damper fluid relative to the damper tube wall. (INOPT = 1 only)	$\mathrm{ft} / \mathrm{sec}$
MSUBM1 MSUBM2 MiSUBM3	Body frame components of torque exerted by the nutation damper fluid upon the satellite. ($\mathrm{NOPP}=1$ only)	ft-lb
CME	Control moment along Y_{1} body axis. (INOPT = 1 only)	ft-lb
SIMPX	A function related to total impulse for control moments applied along Y_{1} body integral of the applied moment. (INOFT = 1 only)	ft-lb-sec
SUNVEC1 SUNVEC2 SUNVEC3	Components of sun to satellite unit vector, body frame.	N.D.
$\begin{aligned} & \mathrm{XMB1} \\ & \mathrm{XMB} 2 \\ & \mathrm{XMB} \end{aligned}$	Body frame components of magnetic torque acting on satellite.	ft-lb
SMAGI1 SMAGI2 SMAGI3	Components of Earth's magnetic field strength, Aries inertial frame.	Gauss

Fortran Symbul	Description	Units
SMAGB1	Components of the Earth's magnetic field strength, body frame.	Gauss
SMAGB2		
SMAGB3		
SOLILL	Solar illumination	N. D.
	$0=$ Occulted	
	1 = Full sunlight	
RWHEEL1	Body frame components of reaction torque	ft-lb
RWHEEL2	exerted by the momentum wheels upon	
RWHEEL3	the satellite.	
EPSERR	Angular error between desired and actua: direction of spin axis. (INOPT $=1$ only)	deg
SUNANG	Angle between sunline and orbit normal.	deg
SB(BODY)	Sun to satellite unit vector in body frame.	N. D.
SD(INERTIAL)	Sun to satellite unit vector in inertial coordinates - print out when boom deployment from sun pulse is used.	N. D.
$\operatorname{FTAKIN}(10,3)$	Thermal force in flexible element 1-2 plane direction before satellite shadowing and thermal lag.	lb
FTAKOT(10,3)	Thermal force in flexible element 1-2 plane direction after satellite shadowing and thermal lag.	lb
FTBKIN(10,3)	Thermal force in B direction before satellite shadowing or thermal lag.	lb
FTBKOT(10,3)	Thermal force in flexible element 1-3 plane after satellite shadowing or thermal lag.	lb
TENSN(10)	Element root tension.	lb
$\begin{aligned} & \text { YCEMS(i) } \\ & i=1,2,3 \end{aligned}$	Displacement components of certer of mass with respect to original body axes due to flexible appendage motion	feet

Fortran Symbol	Math Symbol	Description	Unit
BNMTA(10)	Elem flexi	root bending moment in lement 1-2 plane.	ft-ib
BNMTB(10)	Elem flexib	root bending moment in lement 1-3 plane.	ft-lb
MOMENT1 MOMENT2 MOMENT3	Right motio gyros check	d side of Euler equations of plied to the spacecraft hub with ic terms also included. Used in	$\mathbf{f t - l b}$
HAMILT	Rela	Hamiltonian of entire system.	ft-lb
HVECTR1 HVECTR2 HVECTR3	$\left\{h_{i}\right\}$	Angular momentum vector of the spacecraft in inertial frame	$\mathbf{l b - f t - s e c}$
HBODY1 HBODY2 HBODY3	$\left\{{ }^{h_{B}}\right.$ \}	Angular momentum vector expressed in spacecraft body reference frame	ft-lb-sec
HMAG		Magnitude of the anguiar momentum vector	lb-ft-sec
NUTANG	θ	Angle between the angular momentum vector and the spin axis (3 axis)	deg
EPSERH	N. A.	Angular error between the initial angular momentum vector direction and actual direction of spin axis (INOPT = 1 only)	deg
CW(k, j)		angle of the ${ }^{\text {th }}$ thexible t with the j twist mode	deg
CWD(k, j)		derivative of twist angle of xible element with the j orde	deg/sec
STAG PR	Stagn	pressure (IDRAG $\geqslant 1$)	$\mathrm{lbs} / \mathrm{ft}^{2}$

Classical Orbital Parameters After Thrusting

The change in the orbit velocity vector at the time of thrusting will be reflected in the change of the values of classical orbital parameters. The standard printout will be interrupted and a set of new orbit information will be printed immediately after the impulsive thrusting. If the sun reference option is used (ISPLSE=1), the number of pulses together with the mean time (hour, minute, second) for the orbit update will always be printed. In this case, the orbit update message printout will be controlled by input word ISPNP. For instance, if the IPULSE is specified as 21 and ISPNP=5, the orbit update message will be printed at $5,10,15,20$, and 21st pulse.

Fortran Symbol	Math Symbol		Description	Units
ACCOB(I)	\{ir $\}$	Accele of mas inertia	ion vector of center expressed in Aries rame ($\mathrm{I}=1,2,3$)	$\mathrm{ft} / \sec ^{2}$
ACCRED(J)	${ }^{\text {h }}$ 1	Jth acc $(\mathrm{J}=1,$	rometer reading UMHUB)	$\mathrm{ft} / \mathrm{sec}^{2}$
HUBACC(1, J)	$\left\{\mathrm{x}_{\mathrm{h}}\right.$ \}	Accele presse frame ($\mathrm{I}=1$,	ion vector ex- A Aries inertial a point in the hub ; $\mathrm{J}=1$, NUMHUB)	$\mathrm{ft} / \mathrm{sec}^{2}$
TIPACC(I, K)	\{ ${ }^{\text {a }}$ T	Accele elemen Aries ($\mathrm{I}=1$,	ion vector of kth ip expressed in rtial frame ; $K=1$, NELMTS)	$\mathrm{ft} / \mathrm{sec}^{2}$
BIXX	$\left(y_{2 l p}^{2}+\right.$	Lp $)^{\text {din }}$	Instantaneous moment of inertia with respect to No. 1 body reference axis	slug- $\mathbf{i}^{\mathbf{2}}$
BIYY	$\left(\begin{array}{l} y^{2} \\ 1<p \end{array}+\right.$	Lp $) \mathrm{dm}$	Instantaneous moment of inertia with respect to No. 2 body reference axis	slug-ft ${ }^{2}$
BIZZ	$\left(y_{1 L p}^{2}+\right.$	Lp $)^{d m}$	Instantaneous moment of inertia with respect to No. 3 body reference axis	slug-ft ${ }^{2}$

Fast Fourier Transform Analysis Output

The related printer plots for the Fast Fourier Transform are the power spectrum density function and the crosscorrelation functions together with the results of harmonic analysis (frequencies, amplitude and phase angles). These are printed immediately following the regular printer plot of the FSD program. The data set to be analyzed and the autocorrelation function plot are also available. When the Fast Fourier Transform analysis option is used, increasing the $1 / 0$ time estimate by a factor of 50 percent is recommended.

DE-B Cuntrol System Printed Output

Fortran Symbol	Description	Units
PTCH Out	Pitch channel sensor output	volts
ROLL Out	Roll channel sensor output	volts
COMP Out	Output of compensation amplifier	volts
TACH Out	Output of tachometer	volts
TMOTOR	Torcue output of momentum wheel motor	ft.-lbs
WHL SPD	Momentum wheel speed	rad'sec
NUTD Out	Nutation damper phase shift circuit output	olts

Secondary Body Printed Output

GAMSB	Rotation of secondary body about 3 axis	deg
ALPSB	Rotation of secondary body about the carried 1 axis	deg
BETSB	Rotation of secondary body about the carried 2 axis	deg
OM1SB	Component of secondary body relative angular velocity on 1 axis of secondary body	$\mathrm{deg} / \mathrm{sec}$
OM2SB	Component of secondary body relative angular velocity on 2 axis of secondary body	$\mathrm{deg} / \mathrm{sec}$
OM3SB	Component of secondary body relative angular velocity on 3 axis of secondary body	$\mathrm{deg} / \mathrm{sec}$

Fortran Symbol Descrirtion Units

SEN OUTP Sensor output (zero crossing of state variable) depends on | state |
| :---: |

FIL OUTP Filter viitput (zero crossing of state variable) variable

TWO AXIS PLATFORM (and DAMPER) CONTROL SYSTEMS PRINTED OUTPUT

Fortran Sy nbol	Description	Units
SN , GF1	Filtered body frame components of earth's	
SM.IGF2	magnetic field	Gauss
SMAGF3		
GMBL AZ	Gimble platform azimuth angle	die
GMBL AZD	Gimble platform azimuth. angular velocity	deg/sec
GMBL EL	Gimble platform elevation angle	deg
GMBL ELD	Gimble platform elevation angular velocity	deg/sec
4ZIM ERR	Gimble platform azimuth error angle	deg
ELEV ERR	Gimble platform elevation error angle	deg
AZIM PID	Gimble platform azimuth PID output	Depends on PID gain constants
ELEV PID	Gimble platform elevation PID output	
AZIM PIOT	Gimble platform azimuth motor torque	ft-lbs
ELEV MOT	Simble platform elevation motor torque	ft-lbs
AXIS MOr	W WHEEL PRINTED OUTPUT	
Fol an S mbol	Description	$\underline{\text { Units }}$
FTR KOLL	P.uli filtered error output	deg
FTR PITCH	Pitch filtered error output	deg
FTR I AW	Yaw filtered error output	deg

ARBITRARILY ORIENTED MOMENTUM WHEEL PRINTED OUTPUT

Fortran Symbol	Description	Units
FTR ANG	Filtered error output	deg
ARB MWS	Momentum wheel speed	$\mathrm{deg} / \mathrm{sec}$
MOT TK	Motor torque	ft -1bs
CONT INT	Output of PID control system integrator	Depends on PID gain constants
CONT DER	Output of PID control system differentiator	
ELEMENT THERMAL EXPANSION PRINTED OUTPUT		
Fortran Symbol	Description	Units
TEMP(1-10)	Average temperature of element	${ }^{\circ} \mathrm{R}$
ZLKP(1-10)	Axial velocity of element due to temperature effects	$\mathrm{ft} / \mathrm{sec}$
ZLKDP(1-10)	Axial acceleration of element due to temperature effects	$\mathrm{ft} / \mathrm{sec}^{2}$

Adams-Moulton Numerical Integration Control Message Output
The Adams-Moulton numerical integration control message is presented in a table format immediately following the nominal FSD printout and before the printer plot in each stacked case sequence. This table is the summary of the performance of mumerical integration within a stacked case run. The definitions of the variables in the table are as follows:

Variable \quad Description
KCUT Number of times the integration step size is reduced for a particular equation

UPPER Upper integration bound for a particular equation
LOWER Lower integration bound for a particular equation
DEPEND Dependent array value of a state variable at the starting time of a stacked case sequence

DERIVE Derivative array value of a state variable at the starting time of a stacked case sequence

GENERAL REFERENCES

1. Avco Corporation, AVSD-0191-71-CR, User's Mamual for IMP Dynamics Computer Program, Volume I, E. A. Lawlor, L. Beltracchi, L. Turner, and M. Weinberger, March 1971.
2. Avco Corporation, AVSD-0191-71-CR, User's Manual for IMP Dynamics Computer Frogram, Volume II, Integral Evaluation Computer Program, E. A. Lawlor, March 1971.
3. Avco Corporation, Contract No. NAS 5-24008 Mod 15, Modification of the FSD Program for Linear Thrusting and Angular Momentum Computation User's Manual, K. Yong and E. A. Lawlor, November 1974.
4. Avco Corporation, Spacecraft Configuration Plot Program, A. Anderson, February 1973.
5. X-732-73-151, A User's Guide to the Flexible Spacecraft Dynamics Program-I, August 1973.
6. E. G. Stassinopolus, G. D. Mead, ALLMAG, GDALMG, LINTRA, Computer Programs For Geomagnetic Fields and Field Line Calculations, NSSDC-72-12 FEB 1972.
7. X-712-76-4, A User's Guide to the Flexible Spacecraft Dynamics Program-II, March 1976
8. Avco Corporation, Modification of the IMP Dynamics Computer Program for Limited Dual Spin Capability, E.A. Lawlor, February 1972.

APPENDIX A

COORDINATE SYSTEMS AND OTHER RELATED MATERIAL

ARIES FRAME:
RIGHT HANDED ORTHOGONAL REFERENCE FRAME
ORIGIN: CENTER OF EARTH
\vec{i}_{11} POINTS TOWARD VERNAL EQUINOX
\vec{T}_{2} EQUATORIAL PLANE, PERPENDICULAR TO \vec{i}_{n}
\vec{i}_{31} POINTS TOWARD EARTH'S GEOMETRIC NORTH POLE
the local inertial (l-frame) is obtained by a parallel translation Of the aries frame frona the earth Center to the satellite center OF MASS.

Figure 1. Aries Coordinate System

L: LOCAL INERTIAL FRAME
Y : BODY FRAME

SEQUENCE OF ROTATIONS
$\psi \rightarrow \theta \rightarrow \phi$
ALONG AXIS (3) (1) (3)
FOR SPINNING BODY: Y_{3} TAKEN AS SPIN AXIS

$\theta=$ ANGLE BETWEEN SPIN AXIS AND THIRD INERTIAL DIRECTION

Figure 2. Euler Angles for a Spinning Body

$T_{3 C}$ POINTS FROM EARTH CENTER TO CENTER OF MASS OF SATELLITE,
AND IS PARALLEL TO THE RADIUS VECTOR $\overline{\mathrm{R}}$
$T_{2 c}$ PERPENDICULAR TO INSTANTANEOUS ORBITAL PLANE
ITS DIRECTION IS DEFINED BY $\vec{R} \times \vec{V}$. \vec{V} IS THE INERTIAL VELOCITY OF THE CENTER OF mASS OF THE SATELLITE.
$T_{1 C}$ COMPLETES RIGHTHANDED ORTHOGONAL FRAME
FOR A CIRCULAR ORBIT I icc LIES ALONG V
FOR AN ELLIPTIC ORBIT, IICC LIES ALONG V ONLY AT APOGEE and perigee. Tic always lies in instantaneous orbital PLANE AND mAKES AN ACUTE ANGLE WITH V
the local "Vertical" frame (c) has unit vectors $\boldsymbol{T}_{1}, \bar{i}_{2 C}, \bar{i}_{3 c}$ and is Centered at center of mass of satellite
the "Vertical" used here is direction of giavity force for a SPHERICAL EARTH.

Figure 3. Lc al Vertiral Coordinate System

DIRECTION COSINES OF \vec{D} WITH RESPECT TO LOCAL INERTIAL FRAME:

$$
\sin \eta \cos \zeta
$$

$\operatorname{SIN} \eta \operatorname{SIN} \zeta$
$\cos \eta$
Figure 4. Error Angle for Spin Axis

C: LOCAL "VERTICAL" FRA,ME
Y: BODY FRAME
SEQUENCE OF ROTATIJNS $\quad \beta \rightarrow \alpha \rightarrow \gamma$
ALONG AXIS (2) (1) (3)

Figure 5. Euler Angles for Gravity Gradient Stabilized Vehicles

$\begin{array}{ll}y_{1}, y_{2}, y_{3} & \text { COMPONENTS OF AN ARBITKARY VECTOR, ON THE } \\ & 1,2,3 \text { AXES OF THE BODY Y FRAME }\end{array}$
Figure 6. Origin of Libration Damper Z Frame

y_{1}, y_{2}, y_{3}	COMPONENTS OF AN ARBITRARY VECTOR, ON THE 1, 2, 3 AXES OF THE BODY Y FRAME
z_{11}, z_{21}, z_{31}	COMPONENTS OF AN ARBITRARY VECTOR, ON THE 1,2,3 AXES OF THE LIBRATION DAMPER Z FRAME. Z_{11} POINTS IN AXIAL DIRECTION OF DAMPER BOOM, OUTWARD FROM SATELLITE CORE
$\gamma_{\text {LD }}, \beta_{\text {LD }}, \phi_{\text {LO }}$	EULER ANGLES

Figure 7. Orientation of the Libration Damper Z Frame with Respect to Body Y Frame

Figure 8. Origin of Boom Element Frame

$\begin{array}{ll}y_{1}, y_{2}, y_{3} & \text { COMPONENTS OF AN ARBITRARY VECTOR, ON THE } \\ & 1,2,3 \text { AXES OF THE REFERENCE Y FRAME }\end{array}$
$\alpha_{k}, \beta_{k}, \gamma_{k} \quad$ EULER ANGLES
Figure 9. Orientation of Element Frame (Z') with Respect to Reference Y Frame

$z_{i k}, z_{2}^{\prime} k, z^{\prime}{ }_{3 k}$	COMPONENTS OF AN ARBITRARY VECTOR, ON THE
	$1,2,3$ AXES OF THE $Z_{k}^{\prime}\left(k^{\mathbf{4}}\right.$ ELEMEND FRAME

Figure 10. $k^{\text {th }}$ Element Coordinate System

Figure 11
ORIGNAA $\vec{\sim} \cdots: \therefore$ OF POOR QUGLITY.

DIRECTION COSINES OF $\vec{\eta}$ WITH RESPECT TO BODY

$$
\begin{aligned}
& \eta_{\mathrm{x}}=\sin \eta_{\mathrm{D}} \cos \zeta_{\mathrm{D}} \\
& \eta_{\mathrm{V}}=\sin \eta_{\mathrm{D}} \sin \zeta_{\mathrm{D}} \\
& \eta_{\mathrm{z}}=\cos \eta_{\mathrm{D}}
\end{aligned}
$$

Figure 12. Axis of Ring Damper η Unity Vector Perpendicular to Plane of Ring Damper

reference point in spin period defined when:

$$
\begin{aligned}
& S_{2 v}=0 \\
& S_{1 r}<0
\end{aligned}
$$

Figure 13. Sun Sensor Reference Point in Spin Period

Figure 14. Time History of Control Morient about Y, Body Axis

$$
\begin{aligned}
& Y_{1}, Y_{2}, Y_{3} \\
& B_{1 Y}, B_{2 v}, B_{3 r} \\
& m_{1 Y}, m_{2 Y}, m_{3 r}
\end{aligned}
$$

BODY AXES
COMPONENTS OF \vec{B}_{Y} ON BODY AXES
COMPONENTS OF \vec{m}_{r} ON BODY AXES

Figure 15. Dipole Moment of Satellite and Earth's Magnetic Field Flux in Body Frame

$T_{1 L}, T_{2 L}, T_{3 L}$ BV:

BE:

BN:

UNIT VECTORS, ARIES EQUATORIAL INERTIAL FRAME VERTICAL COMPONENT OF FIELD, POSITIVE AWAY FROM CENTER OF EARTH
PARALLE: TO EQUATORIAL PLANE, TANGENT TO CONSTANT LATITUDE CIRCLE, POSiTIVE IN EASTERLY direction

COMPLETES RIGHTHANDED ORTHOGONAL TRIAD, POSITIVE TOWARDS GEOGRAPHIC NORTH

Figure 16. Components of Magnetic Field

[^1]Figure 17. Coordinates for Spherical Harmonics

Thrust Loading

The time history of the thrust loading is as shown in Figure 18.

Figure 18. Thrust Time History

The analytic expressions for the thrust loading time history are as follows.

$$
\begin{array}{ll}
t<t_{1} & F(t)=0 \\
t_{1} \leq t \leq t_{2} & F_{1}(t)=A\left[1-e^{-B\left(t-t_{1}\right)}\right] \\
t_{2} \leq t \leq t_{3} & F_{3}(t)=F_{1}\left(t_{2}\right)+C\left(t-t_{2}\right) \\
t_{3} \leq t \leq t_{4} & F_{3}(t)=F_{2}\left(t_{3}\right)\left[\frac{t_{2}-t}{t_{4}-t_{3}}\right] e^{-D\left(t-t_{3}\right)} \tag{1}\\
t>t_{4} & F(t)=0
\end{array}
$$

The total impulse under the thrust loading time curve is obtained by integration. The impulse is used to apply the increment in velocity to the trajectory of the
spacecraft. The mean time, at which the velocity increment is applied, is obtaine as follows.

$$
\begin{equation*}
\bar{t}=\frac{\int_{t_{1}}^{t_{4}} t F(t) d t}{\int_{t_{1}}^{t_{4}} F(t) d t} \tag{2}
\end{equation*}
$$

The appropriate expressions for the three pieces of the thrust loading time curve are given below.

For

$$
\begin{align*}
& t_{1} \leq t \leq t_{2} \\
& I_{1} \triangleq \int_{t_{1}}^{t_{2}} F_{1}(t) d t=A\left[\Delta \dot{\tau}_{21}-\frac{1}{B}\left(1-e^{-8 \Delta t_{21}}\right)\right] \tag{3}\\
& M_{1} \triangleq \int_{t_{1}}^{t_{2}} t F_{1}(t) d t=A \Delta t_{21}\left[\frac{\Delta t_{21}^{2}}{2}+\frac{1}{B} e^{-8 \Delta t_{21}}\right]-\frac{F_{1}\left(t_{2}\right)}{B^{2}}
\end{align*}
$$

For

$$
\begin{aligned}
t_{2} \leq t & \leq t_{3} \\
I_{2} & \triangleq \int_{t_{2}}^{t_{3}} F_{2}(t) d t=F_{1}\left(t_{2}\right) \Delta t_{32}+\frac{i}{2} C \Delta t_{32}^{2} \\
M_{2} & \triangleq \int_{t_{1}}^{t_{3}}\left(t+\Delta t_{21}\right) F_{2}(t) d t \\
& =F_{1}\left(t_{2}\right) \Delta t_{32}\left[\Delta t_{21}+\frac{1}{2} \Delta t_{32}\right]+\frac{1}{2} C \Delta t_{32}^{2}\left[\Delta t_{21}+\frac{2}{3} a t_{32}\right]
\end{aligned}
$$

For

$$
\begin{align*}
t_{3} \leq t & \leq t_{a} \\
I_{3} & \triangleq \int_{t_{3}}^{t_{4}} F_{3}(t) d t=\frac{F_{2}\left(t_{3}\right)}{D}\left[1-\frac{1-e^{-D \Delta t_{43}}}{D \Delta t_{43}}\right] \\
M_{3} & \triangleq \int_{t_{3}}^{t_{4}}\left(t+\Delta t_{32}\right) F_{3}(t) d t \tag{5}\\
& =\frac{F_{2}\left(t_{3}\right)}{D^{2}}\left[D \Delta t_{31}+2-\frac{\left(D \Delta t_{41}+2\right)\left(1-e^{-D \Delta t_{43}}\right)}{D \Delta t_{43}}\right]
\end{align*}
$$

where $\Delta t_{21}=t_{2}-t_{1}, \Delta t_{31}=t_{3}-t_{1}, \Delta t_{41}=t_{4}-t_{1}$ etc.
Thus, the mean time for which the impulsive thrusting j^{n} applied is given as

$$
\begin{equation*}
\bar{t}=\frac{I_{1}+I_{2}+I_{3}}{M_{1}+M_{2}+M_{3}} \tag{6}
\end{equation*}
$$

The magnitude of change of velocity at $\overline{\mathrm{t}}$ is given as

$$
\begin{equation*}
\Delta V=\frac{I_{1}+I_{3}+I_{s}}{M_{s}} \tag{7}
\end{equation*}
$$

where $M_{s}=$ Mass of the entire spacecraft.

Figure 19. Transformation Between Local Geographical Frame G and Body Frame Y

Figure 20. Type 1 Rastering Cycle

Figure 21. Type 2 Rastering Cycle

MATHEMATICAL FORMULATION FOR DUAL SPIN CONTROL SYSTEM SIMULATION

A block diagram of the system to be simulated is given in Figure 22. This block diagram is represented as a set of first order ordinary differential equations, which are integrated in parallei with the equations of motion for the rest of the spacecraft. using the same time step and integration algorithm. (The subroutine ADMIMP.)

For the most part. the: control components are linear dynamic systems. For such components. the stated transfer functions have been converted to state variable equations using standard techniques. This transformation, however, is not always unique. Hence, it is necessary to state the exact form utilized in each case.

In the equations following. the subscripts 1. 2 etc. .re used primarily for convenience. However. the ordering of variables is the same as in program code. Hence a fourth order model with state variables $x_{1} \ldots x_{4}$ may appear in program code as $x_{6} \ldots x_{9}$. The actual subscripts used in program code are given in the section on program inputs. Also, in this section. the symbols u and y denote (respectively) the input to and output from the given transfer function. In the system simulation, the blocks are coupled together.

Pitch or roll sensor (Ind order model)
The transfer function

$$
\frac{K_{5}}{\left(1+S T_{s}\right)^{2}}
$$

is represented as

$$
\frac{d}{d t}\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left[\begin{array}{cc}
-\frac{1}{T_{s}} & \frac{K_{s}}{T_{s}} \\
0 & -\frac{1}{T_{s}}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}+\left\{\begin{array}{l}
0 \\
\frac{1}{T_{s}}
\end{array}\right\} u
$$

Pitch or roll sensor (th order model)
The transfer function

$$
\frac{K_{s}}{\left(1+2 S_{s} T_{s} s+T_{s}^{2} s^{2}\right)^{2}}
$$

is represented as

$$
\begin{aligned}
\frac{d}{d t}\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\} & =\left[\begin{array}{cccc}
0 & \frac{1}{T_{5}} & 0 & 0 \\
-\frac{1}{T_{5}} & -2 \frac{S_{3}}{T_{5}} & \frac{K_{5}}{T_{5}} & 0 \\
0 & 0 & 0 & \frac{1}{T_{5}} \\
0 & 0 & -\frac{1}{T_{5}} & -2 \frac{s_{5}}{T_{5}}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\}+\left\{\begin{array}{l}
0 \\
0 \\
0 \\
\frac{1}{T_{5}}
\end{array}\right\} u \\
y & =x_{1}
\end{aligned}
$$

Nutation Damper Phase Shift Circuit

The transfer function

$$
\frac{K_{M} S}{\left(1+S T_{M}\right)^{2}}
$$

is represented as

$$
\frac{d}{d t}\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left[\begin{array}{cc}
-\frac{1}{T_{M}} & \frac{1}{T_{M}} \\
0 & -\frac{1}{T_{M}}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}+\left\{\begin{array}{c}
\frac{K_{n}}{T_{M}} \\
-\frac{K_{M}}{T_{M}}
\end{array}\right\}, y=-x_{1}
$$

(the minus sign includes the sign inversion corresponding to path A in Figure 22)

The inversion of sign at various roll angles and the switch between primary and secondary damper may be simulated by changing the input parameters.

Tachometer

The transfer function

$$
\frac{K_{F}}{1+S T_{F}}
$$

is represented as

$$
\begin{aligned}
& \frac{d}{d t} x_{1}=-\frac{1}{T_{F}} x_{1}+\frac{K_{F}}{T_{F}} u \\
& y=x_{1}
\end{aligned}
$$

For the reference control system, the tachometer is significantly faster than the other dynamic elements. This causes the tachometer equation to dominate the time step control in numerical integration, while having little effect on system performance. Replacing the above transfer function with the static operator $y=K_{F} U$ permits a significant reduction in program execton time. This alternative model is optionally available in the modified program.

Pitch Compensation Amplifier

In unsaturated operation, the transfer function

$$
\frac{K_{c}\left(1+5 T_{1}\right)}{\left(1+5 T_{2}\right)}
$$

is represented as

$$
\begin{aligned}
& \frac{d}{d t} x_{1}=-\frac{1}{T_{2}} y+\frac{K_{c}}{T_{2}} u \\
& y=x_{1}+K_{c} \frac{T_{1}}{T_{2}} u
\end{aligned}
$$

Saturation occurs if

$$
|Y|>V_{\text {hIM }}
$$

If this occurs. Y is replaced by $V_{\text {bim }} \operatorname{sign}\left(Y^{\prime}\right)$.

FIGURE 23. Gimble Simulation Reference Frames

APPENDIX B

EXAMPLES OF RAE, IMP-I ANL DE-B SPACECRAFT INPUT

ORIGNE: :

RAE SPACECRAFT INPUT

JF POOR QUnLis

IMP-I SPACECRAFT INPUT

DE-B SPACECRAFT \& CONTROL SYSTEM INPU:

UNGGinis Pa*: F
OF POOR QUALI:

DE-B SPACECRAFT \& CONTROL SYSTEM INPUT (CONTINUED)

[^0]: *When other than a normalized er atilevel beam sliape function is desired, the user should input the appropriate values of ZXI, ZXIP, ZXIPP and ZZNP.

[^1]: $\phi=$ GEOGRAPHIC LONGITUDE
 $\theta=$ GEOGRAPHIC COLATITUDE $=90^{\circ}$-LATITUDE
 $r=$ RADIUS VECTOR

