X-712-84-8

A USER'S GUIDE TO THE FLEXIBLE SPACECRAFT DYNAMICS AND CONTROL PROGRAM-V

(BASA-TA-87389) A USER'S GUILE TO THE FLEXIBLE SPACECBAFT DYNAMICS ABE CONTACL PROGRAM (NASA) 151 p HC A(8/EF A01 CSCL 09B

N85-12586

Uncias 63/61 11504

JOSEPH V. FEDOR

JULY 1984

Goddard Space Flight Center Greenbelt, Maryland 20771

X-712-84-8

A USER'S GUIDE TO THE FLEXIBLE

SPACECRAFT DYNAMICS AND CONTROL PROGRAM-V

Joseph V. Fedoz

July 1984

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

FOREWARD FOR USER'S GUIDE-V

The Flexible Spacecraft Dynamics Program (FSD program) is a second generation computer program having evolved from the Radio Astronomy Explorer (RAE) Dynamics program which had its inception in 1965. The main FSD program was written and developed by the AVCO Corporation, Systems Division, Wilmington, Massachusetts and was detivered to <u>Secondary</u> in 1970. Since that time many checkouts and numerous improvements have been made. The program has run on the iBM 360/91 and 360/95 machines at GSFC, requiring up to 600 bytes of storage with overlay capability. More recently, the program has been running on the IBM 3081 machine which has no restrictions on storage requirements. Currently, the use of the program has been extended to the VAX 11/780 machine. The operation of the program is user oriented. That is, the design of the program and input output is such that, aside from initial job control language cards, a dynamicst or an analytical control engineer can set up and run problems without programming assistance; no programming skills are required.

It is beyond the scope of this Guide to go into the many applications of this program. Examination of the input control words and various options does give an indication of its versatility. The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft. This program has been used to simulate the dynamics of antenna deployment and in-orbit attitude performance of the RAE-A, B, IMP-I, J, ISEE-A, C. Langley HAWKEYE. Air Force SCATHA. Italy SAN MARCO-D, Japan EXOS-B, ISPM. Dynamic Explorer-A, B, ISTP and CRRES.

With current emphasis on active control of pointed instruments on flexible spacecraft. recent additions have been in the controls area. Some additions to the current FSD program are as follows:

- 1. A two axis gimble platform and digital control system (proportional, integral and derivative controller) to track the earth's magnetic field from a spinning or non-spinning spacecraft. The magnetic field can be sensed on the spacecraft hub or at the end of a flexible boom. The control system coding is contained in one subroutine so that other control laws can be implemented without requiring changes in the overall program.
- 2. A two axis platform magnetic tracking system using the program subration damper degree of freedom for the azimuth gimble. This permits simulation of flexible elements on the azimuth platform as well as on the spacecraft while tracking the magnetic field.
- 3. Proportional, integral and derivative controller has been added to each axis treat putch and yaw of the earth pointing mode) to generate control torques from the respective momentum wheels. An arbitrarily oriented momentum wheel with control is also included. User formulated control laws are permitted.
- 4. Jet damping added to the thruster option to simulate launch vehicle dynamics.
- 5. Thermal expansion and contraction of flexible elements caused by changing sun angle, spacecraft or orbit shadowing.

ACUDING PAGE ELANK NOT FILMED

In addition to being used in Goddard related flight programs, the FSD program is being modified and maintained by the Systems Division of the AVCO Corporation, Wilmington, Massachusetts.

J. V. Fedor

- E. A. Lawlor¹
- J. P. Downey² A. H. Forbes²

¹AVCO ²Old Dominion Systems, Inc.

CONTENTS

Page

·.- •

FOREW	ORD
INTRO	DUCTION
PART 1	: ORBIT GENERATION
	Earth Properties
	Classical Orbit Parameter Options
PART 1	: CONTROL WORDS
	Tirae Control Words
	General Control Words
	Option Control Words
	Integration Control Words
	Integration Bounds
	Plot Control Words
	Diagnostic Control Words
	Core Properties
	Computation of Flexible Element Root Bendings Moments
	Computation of Element Root Tensions
	Thermal Lag – Element Bending
	Thermal Expansion and Contraction of Element Length
	Element Damping Coefficient
	Element Twist (Torsion) Option
	Tip Mass Rotatory Inertia
	Libration Damper Option
	Earth Oriented Satellite Option – Attitude and Body Rates
	Boom Deployment From Sun Pulse Option
	Spinning Body Option Attitude and Body Rates
	Spinning Body Option Attitude and Body Rates
	Nutation Viscous Ring Damper Option
	Nutation Viscous Ring Damper Option Attitude Control Moment Option Constant Torque Levels About Body Axes
	Nutation Viscous Ring Damper OptionAttitude Control Moment OptionConstant Torque Levels About Body AxesSpin Axis Moment Option
	Nutation Viscous Ring Damper Option Attitude Control Moment Option Constant Torque Levels About Body Axes Spin Axis Moment Option Thrust Loading Option
	Nutation Viscous Ring Damper OptionAttitude Control Moment OptionConstant Torque Levels About Body AxesSpin Axis Moment Option

Magnetic Moment Option	60
Spacecraft Acceleration Option	61
Accelerometer Location	62
Fast Fourier Transform (FFT) Analysis	63
Atmospheric Density Model Option	64
Linear Varying Drag Loading	65
Ground Simulation Option	65
Secondary Body Simulation	67
Slewing or Rastering of Secondary Body	70
Actuator Initiation from Zero Crossing of State Variables	71
Dual Spin Spacecraft Control System (DE-B)	73
Two Axis Gimble Simulation (No Active Control)	79
Control System for Two Axis Platform Magnetic Tracking	82
Two Axis Damper Gimble Simulation (No Active Control)	86
Control System for Two Axis Platform (Damper) Magnetic Tracking	88
Axis Momentum Wheel Control	93
Arbitrarily Oriented Momentum Wheel Control	98
End of Input	100
PART 4: DEFINITION OF COMPUTER PRINTED OUTPUT DATA	101
Classical Orbital Parameters After Thrusting	107
Fast Fourier Transform Analysis Output	108
DE-B Control System Output	108
Secondary Body Output	108
Two Axis Platform (and Damper) Control Systems	109
Axis Momentum Wheel	109
Arbitrarily Oriented Momentum Wheel	110
Element Thermal Expansion	110
Adams-Moulton Numerical Integration Control	
Message Output	111
GENERAL REFERENCES	112
APPENDIX A: COORDINATE SYSTEMS AND OTHER RELATED	
MATERIAL	A-1
APPENDIX B: EXAMPLES OF RAE, IMP-I AND DE-B SPACE-	
CRAFT INPUT	B1
UNTE I INTO A CONTRACTOR CONTRA TON CONTRA TON CONTRA TON CONTRA TON CONTRA C	U 1

A USER'S GUIDE TO THE FLEXIBLE SPACECRAFT DYNAMICS AND CONTROL PROGRAM-V

INTRODUCTION

This computer program was initially developed to simulate the dynamics of the IMP and RAE class of satellites. Generality was retained in its development so that it is applicable to the simulation of the dynamics and control of a large class of flexible and rigid spacecraft.

The program is applicable to inertially oriented spinning, earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects developed at orbital altitude are simulated. The effects include gravity gradient forces, solar pressure, magnetic torques and thermal bending due to solar heating. Body torquing devices in the computer program include momentum wheels, a viscous ring nutation damper, magnetic torquer coils and attitude control thrusters. For gravity gradient satellites, an option is available for simulating either a magnetic hysteresis or viscous libration damper.

The computer program has the capability of simulating up to ten flexible tubular elements arbitrarily oriented with respect to the body fixed coordinate frame. A finite series of shape function are used to describe the bending and twisting of the flexible elements. Higher order displacement terms are retained in order to achieve reasonable accuracy for large displacements.

The equations of motion are derived from variational principles, i.e., the principle of virtual work. The generalized coordinates include the three rotational and three translational degrees of freedom of the body fixed axes and the amplitudes of the shape functions for each flexible element. An additional generalized coordinate is necessary to describe the motions of the libration damper.

Generalized forces were derived and programmed for gravity gradient forces, solar pressure, bending stresses and structural damping. The induced temperature gradients and solar pressure generalized forces are derived from the instantaneous angle of incidence between the sun line vector and the deformed flexible elements. The effects of aerodynamic drag on the flexible motions of a spacecraft is also computed for low altitude orbits.

A special purpose computer program (Integral Evaluation Program) was also developed to compute input data for the dynamics computer program. This computer program evaluates definite integrals that evolve in the mathematical process of spatially integrating the internal and external forces acting on the flexible

elements of a satellite. The integrals are normalized products of the shape functions and their derivatives evaluated over the flexible elements lengths. For a given shape function, selected to represent the deformed shape of a flexible element, the integrals have to be evaluated only once. The integrals are read into the dynamics program either on cards or compiled into block data. The dynamics simulations can then be made without further recourse to the integral evaluation program. The shape functions are specified by the coefficients of polynomials. For a flexible element with no tip mass, a set of typical shape function used would represent cantilever beam bending modes. Other more appropriate shape functions would be specified for simulating flexible elements with tip masses. The dynamics program can use up to three shape functions or modes in simulation of the deflectional motion of the flexible elements. At times it is necessary to have different types of flexible elements with different stiffness characteristics on the same spacecraft. The dynamics program has, therefore, the capability of utilizing two different sets of values as determined by the integral evaluation program for two different families of shape function. An example of the use of this capability would be a spinning spacecraft requiring interlocked closed cross-section elements on the spin axis and utilizing wire elements on the transverse axes.

The input to the Flexible Spacecraft Dynamics program consists of four main parts, i.e.:

- 1. Input which is necessary to construct the orbit of the spacecraft.
- 2. Control words to invoke or delete various options such as gravity gradient effects, control torques, starting integration interval, etc.
- 3. Input to describe mathematically the spacecraft, appendages and control system.
- 4. Desired state variable output which is controlled by INOPT 1 or 2 and by KPLOTS array addresses.

The input to these portions is on punched cards, punched in columns 2 through 72. The Fortran input symbol can be punched in any of these columns followed by its input value. Since the program utilizes a nameless read, more than one input symbol and associated value can be punched on a card provided the symbol value pairs are separated by at least one blank. Within each main portion, the order of input is immaterial. A heading card can be inserted within the input deck provided an H is punched in column one. Comment cards can be inserted in the input dat eck with an "\$" or "*" punched in column one.

The input to the main parts will be described in detail.

PART 1

ORBIT GENERATION

There are two options for describing the orbit. They are:

- 1. Utilizing the internal orbit generator which generates a two-body (Keplerian) orbit at each time step in the program. Constant orbit drifting rates of longitude of ascending node and argument of perigee can also be input to the program providing better orbit simulation if long term study is required. For the majority of simulations, this simplified orbit is quite adequate. However, if a definitive orbit is desired, or the program is used during operational support of a mission, the second orbit option should be used.
- 2. An orbit tape can be read by the program via control words and Fortran I/O unit. The orbit tape is generated by GTDS (Goddard Trajectory Determination System) of Code 582 at GSFC for the satellite and time span in question.

The orbit option is set by two input control words, IORB and ITAPE. For internal orbit generation, set

IORB = 0, ITAPE = 0 (preset values)

For reading orbit tape option, set

IORB = 1, ITAPE = NM

where NM is the Fortran I/O unit number corresponding to the following JCL to be inserted for this option

//GO. FTNMF001 DD UNIT=2400, DSN=FSD. EPHEM, //VOL=SER=XXXXXX, LABEL=1, BLP), DCB= (RECFM=VS, BLKSIZE=2808, BUFNO=1)

In either case the following orbital input parameters are input: the parameters for which the earth is the central body are pre-set internally, so it is not really necessary to read in these values unless it is desired to change them. The user can also specify a central body other than the earth by reading in the appropriate parameters.

The orbital input parameters are as follows:

EARTH PROPERTIES

Fortran Symbol	Math Symbol	Description	Units
AEARTH	a _E	Semi-major axis of Earth. Internally set to 6378.165	km
ZMU	$\mu_{\rm E}$	Gravitational constant of Earth. In- ternally set to 3.986032D + 05	km^3/sec^2
ZJ20		Oblate Earth coefficient. Internally set to 1.082D-06	N.D.
FLAT	a a-b	a = Semi-major axis of Earth b = Semi-minor axis of Farth Flat is internally set to 298.3	N.D.
wwo		GHA of Aries at instant vernal equinox occurs in the year of simulation. Used for the (2, 2) term in the expansion of Earth's gravitational model (preset = 55.	0)
WE	ω _E	Earth's mean angular velocity about the sun. Internally set to 1.1407D- 05 Deg/sec.	deg/sec
TVER		Time in seconds from Jan. 1st at 00:00 to time of Vernal Equinox in the year of simulation. Internally set to 6873720.0 seconds.	sec
ECLPTC		Obliquity of the ecliptic. Internally set to 23.444 deg.	
J2		Oblate Earth coefficients. Internally	
J3		set as follows:	
J4		J2 = 1082.3D-06, J3 = 2.3D-06, J4 = 1.8D-06, J22 = 5.35D-06	
J22		Non-dimensional values.	

Classical Orbit Parameter Option

Fortran Symbol	Math Symbol	Description	Units
IKPLR	N. A.	Control word for Keplerian orbit parameter input	N. D.
		IKPLR = 0, input $\{\chi_i\}$ and $\{\chi_i\}$ IKPLR = 1, (preset) input Keplerian orbit parameters	

Fortran Symbol	Math Symbol	Description	Preset Value	Units
AS	a	Semi-major axis	8000.0	km
Е	е	Eccentricity	0.0	N.D.
EI	i	Inclination angle	0.0	deg
F	f	True anomaly	0.0	deg
BW	Ω	Longitude of ascending node	0.0	deg
w	ω	Argument of perigee	0.0	deg
BWDOT	Ω	Rate of change of longitude of ascending node	0.0	deg/day
WDOT	ŵ	Rate of change of argument of perigee	0.0	deg/day

The following cards are input only if IKPLR = 0, otherwise they are omitted.

XSAT (1-3)	{ X _i }	Components of initial position vector in the Aries (Equatorial) Inertial Frame. (preset = 8000.0, 0.0, 0.0)	km
XSATDT (1-3)	$\{\dot{\mathbf{x}}_i\}$	Components of initial velocity vector in the Aries (Equatorial) Inertial Frame. (preset = 0.0, 7.0587, 0.0)	km/sec

PART 2

CONTROL WORDS

TIME CONTROL WORDS

Fortran Symbol	Description	Units
IDATE	Year, Month, Day YYMMDD (This number should fall within the orbit described in Part 1). (i.e. it should be the same year as the value of TVER specified. preset = 760101)	Integers
TIME	Time in seconds from start of day. This is also the problem start time (preset = 0.0)	Seconds
TSTOP	Problem stop time. Specified as incremental time from TIME (preset = 3600.0)	Seconds
FREQ	Output data print frequency (preset = 60.0)	Seconds
GENERA	L CONTROL WORDS	
Fortran Symbol	Description	Units
IDATA	Control word for printing of input data by sub- routine ECHO (preset = 1)	
	If IDATA = 0 prints out original set of input parameters, in MLAST = 1.	nplies
	If IDATA = 1 prints out set of input parameters which were conditions of the previous case in the stack. MLAST = 0.	
	IDATA, unlike MLAST, is used in the case within the stack it applies.	k to which
MLAST	Control word associated with stacking of cases. If a card MLAST ≈ 0 is inserted within a case, the terminal conditions of this case are used as initial conditions for the next case which follows.	Integer, N.D.

Fortran Symbol	Description	Units
MLAST (con't)	If a card MLAST = 1 is inserted in each case, the first set of data for spacecraft descrip- tion is used in each case which follows the first except for those cards which override	N.D.

the originals in the first case. (Preset = 0).

NOTL

Stacking Procedure

The capability is provided to stack computer runs in order to simplify and speed the parametric analysis of spacecraft dynamics problem 3. Two types of problems can be processed: (1) Parallel stacking capability — series of simulations are being made with similar initial conditions and it is desired to change one or more parameters in each case, or (2) Series stacking capability — a continuous (in time) simulation is run where at specified times, changes in parameters are made but the dependent variables are carried over from the last time of one sequence to the beginning of the next sequence.

To run a stacked case, it is only necessary to insert a "1" card, i.e., a "1" punched in column one, after each set of input data. The simulation will continue until the TSTOP of a sequence is reached. The new data will be read in after the "1" card and the simulation will restart with the modified input data. An indefinite number of stacked cases can be processed providing there is sufficient computer time available.

deployment run is also considered to be a stacked case. The first sequences should have either MDPLY = 1 or DDPLY = 1 or both. Deployment is either initiated or terminated in a particular sequence by setting ZL1(k) equal to the desired deployment rate or equal to zero, respectively.

Note that it is important to specify an appropriate value of DELTAT for each sequence in order to start the Runge Kutta-Adams Moulton integration scheme. If no new DELTAT is specified in the new stack, the DELTAT value of the previous stack will be used for the new stack.

If it is desired to rerun the deployment sequence with a change in a parameter, set MLAST = 1 in the last sequence. This will restore the input set of initial conditions.

OPTION CONTROL WORDS

Fortran Symbol	Description	Units
INOPT	Control word for type of satellite being studied. (Preset value = 1)	Integer, N.D.
	INOPT = 1 Spin Stabilized Satellite	
	INOPT = 2 Gravity-Gradient or earth-pointing Sat' llite	
IHAMLT	Control word to call Relative Hamiltonian subroutine. (Preset value = 0)	Integer, N.D.
	IHAMLT = 0 By-passes subroutine	
	IHAMLT = 1 Employs subroutine	
IGRAV	Control word to incorporate or exclude gravity effects. (Preset value = 1)	Integer, N.D.
	IGRAV = 0 Gravity excluded	
	IGRAV = 1 Gravity included	
MDPLY	Control word for boom deployment subroutine. (Preset value = 0)	Integer, N.D.
	MDPLY = 0 Not a deployment case	
	MDPLY = 1 Deployment of booms required	
DDPLY	Control word for libration damper boom deployment. (Preset value = 0)	Integer, N.D.
	DDPLY = 0 Not a deployment case	
	DDPLY = 1 Deployment of libration damper boom required	
ISDPLY	Control word to begin boom deployment from a "see sun" pulse. (Preset value = 0)	Integer, N.D.
	ISDPLY = 0 By-passes subroutine	
	ISDPLY = 1 Employs subroutine	

Fortran Symbol	Description	Units
IDAMP	Control word to exclude or allow libration damper motion. (Preset value = 0)	Integer, N.D.
	$\mathbf{IDAMP} = 0$ No damper motion	
	IDAMP = 1 Damper motion	
IVISCS	Control word to employ viscous ring nutation damper into program. (Preset value = 0)	Integer, N.D.
	IVISCS = 0 By-passes subroutine	
	IVISCS = 1 Employs subroutine	
ISPIN3	Control word to call spin axis moment subroutine. (Preset value = 0)	Integer, N.D.
	ISPIN3 = 0 Bypass subroutine	
	ISPIN3 = 1 Employs subroutine	
IATTDE	Control word to call the attitude control subroutines. (Preset value = 0)	Integer, N.D.
	IATTDE = 0 Bypasses subroutine	
	IATTDE = 1 Employs subroutine	
IWHEEL	Control word to call momentum wheel subroutine. (Preset value = 0)	Integer, N.D.
	$\mathbf{IWHEEL} = 0$ Bypasses subroutine	
	IWHFEL = 1 Employs subroutine	
IMGMTS	Control word to exclude or allow magnetic moments. (Preset value = 0)	Integer, N.D.
	IMGMTS = 0 magnetic moments excluded	
	IMGMTS = 1 magnetic moments allowed	
ITORK	Control word to apply torque about body axes. (Preset value = 0)	Integer, N.D.
	ITORK = 0 No torque applied	
	ITORK = 1 Torque applied	

Fortran Symbol	Description	Units
IBENDM	Control word to calculate and print out flexible ele- ment root bending moments. (Preset value = 0)	Integer, N.D.
	IBENDM = 0 No calculation	
	IBENDM = 1 Calculate and print	
ITENSE	Control word to calculate and print out element root tensions. (Preset value = 0)	Integer, N.D.
	ITENSE = 0 No calculation	
	ITENSE = 1 Calculate and print	
IP LANS	Control word to invoke a thermal lag effect on appendages due to planet and satellite shadowing. (Preset value = 0)	Integer, N.D.
	IPLANS = 0 No lag invoked	
	IPLANS = 1 Lag invoked	
I SATSH	Control word to invoke thermal lag effect of appendages due to satellite shadowing (Preset value = 0)	Integer, N.D.
	ISATSH = 0 No shadowing	
	ISATSH = 1 Shadowing and lag	
IWRTTF	Control word to print out thermal forces before and after computation of thermal lag. (Preset value = 0)	Integer, N.D.
	IWRTTF = 0 No print out	
	IWRTTF = 1 Print	
LAFM(1)	Control word to print out unit sun vector in body frame. (Preset value = 0)	Integer, N. D.
	IAFM(1) = 0 No sun vector printout	
	LAFM(1) = 1 Prints out sun vector	
IAFM(2)	Control word for punch cards restart. (Preset value = 0)	Integer, N. D.

Fortran Symbol	Description	Units
	LAFM(2) = 0 No cards punched	
	IAFM(2) = 1 Cards punched	
laf m(3)	Control word for printing of output data. (Preset value = 0)	integer, N.D.
	IAFM(3) = 1 No pri-tout, printer plots only	
	IAFM(3) = 0 Printout and plots	
IAFM(4)	Control word to activate the data records and auto- correlation function plots for fast fourier transform analysis. (Preset value = 0)	Integer, N.D.
	IAFM(4) = 0 No data record and autocorrelation function plots	
	IAFM(4) = 1 Data record and autocorrelation function plots	
LAFM(5)	Control word to activate Adams-Moultion integrator message table. (Preset value = 0)	Integer, N.D.
	IAFM(5) = 0 No integrator message	
	IAFM(5) = 1 Integrator message printed	
IACOMP	Control word to activate the acceleration computation for both hub and element tip accelerations. (Preset value = 0)	nteger, N. D.
	IACOMP = 0 Bypasses computation	
	IACOMP = 1 Computes accelerations	
IHUBAC	Control word to activate acceleration computation and printout for the hub. (Preset value $= 0$)	Integer, N.D.
	IHUBAC = 0 No computation	
	IHUBAC = 1 Computes hub accelerations	
ITIPAC	Control word to activate acceleration computation and printout for the element tip. (Preset value = 0)	Integer, N. D.
	ITIPAC = 0 No computation	
	ITIPAC = 1 Computes tip accelerations	

Fortran Symbol	Description	Units
IPULSE	Control word to activate thrust subroutine. (Preset value = 0)	Integer, N. D.
	IPULSE = 0 Bypasses subroutine	
	IPULSE \ge 1 Employs subroutine	
ISPLSE	Control word to activate sun crossing time to start thrusting. (Preset value = 0)	Integer, N.D.
	ISPLSE = 0 Sun crossing not used	
	ISPLSE = 1 Sun crossing used	
IPLPRP	Control word for number of thrust pulses per spin period.	Integer.
	IPLPRP = 1 One pulse (Preset)	N.D.
	IPLPRP = 2 Two pulses	
ISPNP	Control word to print out orbit update message (only if $ISPLSE = 1$, $IPULSE > 1$). i.e., if $ISPNP = 5$, (preset) the orbit update message will be printed at every 5th pulse.	Integer, N. D.
IHCALC	Control word to calculate and print out the angular momentum vector of the system and system moments of inertia (preset value = 0)	Integer, N.D.
	IHCALC = 0 No calculation	
	IHCALC = 1 Calculates and prints	
IHREF	Control word to compute reference direction for EPSERR from the initial system angular momentum vector (Preset value = 0)	Integer, N. D.
	IHREF = 0 No calculation	
	IHREF = 1 Determines reference direction from initial angular momentum vector	
KPLR	Control word for Keplerian orbit parameter input (Preset value = 1)	Integer, N. D.
	IKPLR = 0 Input position an velocity	
	IKPLR = 1 Input Keplerian orbit parameters	

Fortran Symbol	Description	Units
ICSD	Control word to activate the Fast Fourier Transform analysis and plot. See p. 18 for KPLOTS control also (Preset value = 0)	Integer, N.D.
	ICSD = 0 By-passes subroutine	
	ICSD = 1 Employs subroutine	
IPRY	Control word to print and plot pitch, roll and yaw rates instead of OMBC values when $INOPT = 2$	
	IPRY = 0 No print out and plot	
	IPRY = 1 Print out and plots (preset = 0)	
ISCP	Control word to activate the spacecraft configuration plot op- tion. (Not available in current program)	Integer. N.D.
	ISCP = 0 By -passes subroutine	
	ISCP = 1 Employs plot subroutine	
IPUNCH	Control word for punched card output under normal case end. Set MLAST = 1 and IPUNCH = 1 (preset = 0)	Integer. N.D.
KNTRL(10)	Vector of control integers (10) for DE-B control system simulation	Integer. N.D.
I2BDY	Control word to add secondary body to simulation	Integer.
	I2BDY = 0 No secondary body	N.D.
	12BDY = 1 Secondary body present	
IRAST	Control word to invoke prescribed rastering motions for secondary body.	Integer. N.D.
	IRAST = 0 No rastering	
	IRAST = 1 Rastering Prescribed	
IARST(3)	Control word to specify type of rastering cycle to be invoked on each axis.	Integer, N.D.
	IARST $(I) = 0$ No motion	
	IARST $(1) = 1$ Motion of Type 1	
	IARST (I) = 2 Motion of Type 2	
	1 = 1 to 3	
	I = 1 motion about the 3 axis	

Fortran Symbol	Description	Units
	I = 2 motion about the 1 axis	
	I = 3 motion about the 2 axis	
IACFLT(20)	Control integers for filtered sensor signal to actuate momentum wheel cycling or pulsed thrusting.	Integer, N.D.
IDPHLD	Control word for simulation of constant angular velocity of libration damper.	Integer. N.D.
	IDPHLD = 0 No simulation	
	IDPHLD = 1 Constant angular velocity for damper	
IPLOT	Control word for plotting of output data.	Integer, N.D.
	IPLOT = 0 No plots	
	IPLOT = 1 Printer plots or FFT analysis. (Preset = 0)	Integer, N.D.
IGMBL	Control word for two axis gimble simulation.	Integer, N.D.
	IGMBL 0 No gimble simulated (preset)	
	IGMBL 1 Gimble simulated	
IPCTCS (20)	20 Control words for gimble platform con rol system simulation (preset = 0)	Integer, N.D.
IJTOMP	Control word to invoke jet damping.	Integer, N.D.
	IJTDMP 0 No jet damping (preset)	N.D.
	IJTDMP 1 Jet damping	
IGMBLD	Control word for two axis gimble (damper simulation)	Integer, N.D.
	IGMBLD 0 No gimble simulated (preset)	
	IGMBLD 1 Gimble simulated	
IPLDCS (20)	20 Control words for gimble platform (damper) simulation (preset = 0)	Integer, N.D.
ITHRM (20)	20 Control words for element thermal expansion – contraction simulation	
IAMPRM (1)	Control word for arbitrary oriented momentum wheel simulation (preset = 0) 14	Integer, N.D.

Fortran Symbol	Description	Units
IAMWH (10)	10 Control words for axis momentum wheel simulation (preset = 0)	Integer, N.D.
IOMKDM (1)	Control word to invoke use of reference frequency for damping coefficient (preset = 0)	Integer, N.D.
INTEGRATIO	ON CONTROL WORDS	
Fortran Symbol	Description	Units
DELTAT	Starting integration interval for Runge Kutta. (preset value = 0.01)	Seconds
DELMIT	Minimum value for time integration interval for predictor-corrector. If integration step size be- comes less than DELMIT, simulation stops. (Preset = 1.0 D-7)	Seconds
FACTOR	Percentage by which Δt is varied in the Adams- Moulton integrator. If the difference between extrapo- lated and interpolated values of the integrands is greater than the upper bound (on the difference) Δt is decreased; if the difference is greater than the lower bound, Δt is increased. (predictor-corrector) FACTOR is presently set to 0.3). i.e., $\Delta t_{n+1} = \Delta t_n$ (1 • FACTOR)	N.D.

Fortran Symbol	Description	Units
UP(i)	The upper bound on the absolute difference between the extrapolated and interpolated values used in the predictor-corrector of the integration routine.	Corresponds to specific variables
DN(i)	The lower bound on the absolute difference between the extrapolated and interpolated values. <u>NOTE</u>	Corresponds to specific variables

UP and DN are bounds on the difference between the extrapolated and interpolated values of the components of the state vector. They are set internally and are not required to be input. Unless the user fully understands their use, it is recommended that they be left undisturbed. The same applies to the integration bounds control words which follow.

INTEGRATION BOUNDS

Fortran Symbol	Description	Units
CONSA	This is the upper bound on the absolute difference between the extrapolated and interpolated values used in the predictor-corrector for the integra- tion of the elements in the first two rows of di- rection cosine matrix. The lower bound is auto- matically set two orders of magnitude below the upper bound. (Preset value = $1.0 \text{ D}-5$)	N. D.
COMEG	This is the upper bound allowed for the error in the predictor-corrector of the integration of the body components of inertial angular velocity. The lower bound is automatically set two orders of magnitude below the upper bound. (Preset value = $1.0 \text{ D}-7$)	rad/sec
DUC	This is the upper bound on the error for the predictor-corrector integration for the libration damper angle of gravity-gradient satellites. For the simulation of spin stabilized satellites with nutation damping, this represents the upper bound on the error for predictor-corrector integration for the viscous torque of the damper. (Preset value = $1.0 \text{ D}-2$)	rad

Fortran Symbol	Description	Units
DUC1	This is a lower bound for DUC. (Preset value = 1.0 D-4)	rad
DUCD	This is the upper bound on the error for the predictor-corrector integration for the angular velocity of the libration damper for gravity- gradient satellites. For the simulation of spin- stabilized satellites with viscous damping, this is the upper bound on the error for the predictor- corrector integration for the angular momentum of the viscous liquid. (Preset value = 1.0 D-3)	rad/sec
DUCD1	This is the lower bound for DUCD. (Preset value = 1.0 D-5)	rad/sec
DOOP	This is the upper bound on the error for predictor- corrector integration for the 2 axis components of damper element deflections. (Preset value = 1.0 D-1)	feet
DOOP1	This is the lower bound for DOOP. (Preset value = 1.0 D-3)	feet
DOOPV	This is the upper bound on the error for predictor- corrector integration for the 2 axis components of damper element velocity. (Preset value = $5.0 \text{ D}-5$)	ft/sec
DOOPV1	This is the lower bound for DOOPV. (Preset value = 5.0 D-7)	ft/sec
DIP	This is the upper bound on the error for predictor- corrector integration for the 3 axis components of damper element deflections. (Preset value = 1.0 D-1)	feet
DIP1	This is the lower bound for DIP. (Preset value = 1.0 D-3)	feet

Fortran Symbol	Description	Units
DIPV	This is the upper bound on the error for predictor- corrector integration for the 3 axis components of damper element velocities. (Preset value = 5.0 D-7)	ft/sec
DIPV1	This is the lower bound for DIPV.	ft/sec
ΑΟΟΡ	This is the upper bound on the error for the predictor-corrector integration for the 2 axis element frame component of antenna tip displacement. (Preset value = 1.0 D-1)	feet
AOOP1	This is the lower bound for AOOP. (Preset value = 1.0 D-3)	feet
AOOPV	This is the upper bound on the error for the predictor-corrector integration for the 2 axis element frame component of tip velocities. (Preset value = 5.0 D-5)	ft/sec
AOOPV1	This is the lower bound for AOOPV. (Preset value = 5.0 D-7)	ft/sec
ΑΙΡ	This is the upper bound on the error for the predictor-corrector integration for the 3 axis element frame component of tip displacement. (Preset value = 1.0 D-1)	feet
AIP1	This is the lower bound for AIP. (Preset value = 1.0 D-3)	feet
AIPV	This is the upper bound on the error for the predictor-corrector integration for the 3 axis element frame component of tip velocity. (Preset value = 5.0 D-5)	
AIPV1	This is the lower bound for AIPV. (Preset value = 5.0 D-7)	ft/sec
TWIUP	Upper integration bound for twist angle. (Preset value = 1.0 D-4)	deg

Fortran Symbol	Description	Units
TWIDN	Lower integration bound for twist angle. (Preset value = 1.0 D-6)	deg
TWDUP	Upper integration bound for twist velocity. (Preset value = 1.0 D-5)	deg/sec
TWDDN	Lower integration bound for twist velocity (Preset value = 1.0 D-7)	deg/sec
CSUP(20)	Upper bound on difference between predicted and corrected control system state vector. Location in CSUP corresponds to the location of the variable in the state vector initial condition array SVCS. (Preset value = 1.0 D-02)	
CSDN(20)	Lower bound on difference between predicted and corrected control system state vector. Location in CSDN corresponds to location of the variable in the state vector initial condition array SVCS. (Preset value = 1.0 D-04)	
SBUP(2)	Integration upper bounds for secondary body angles and angular rates. (Preset = 1.0 D-3)	rad rad/sec
SBDN(2)	Integration lower bounds for secondary body angles and angular rates. (Preset = 1.0 D-5)	rad rad/sec
ACPARM(19)	Upper bound for filter integrater.	

ACPARM(20) Lower bound for filter integrater.

Fortran Symbol	Description	Units
PCSPRM(30)	Integration upper bound for magnetometer first order lag transfer function (preset = 0)	gauss
PCSPRM(31)	Integration lower bound for magnetometer first order lag transfer function (preset = 0)	gauss
GMUP(1)	Integration upper bound for gimble angles (preset = $1.0 \text{ D}-3$)	rad
GMUP(2)	Integration upper bound for gimble angular rates (preset = $1 \neq 0.3$)	rad/sec
GMDN(1)	Integration lower bound for gimble angles (preset = $1.0 \text{E}5$)	rad
GMDN(2)	Integration lower bound for gimble angular rates (preset = $1.0 D-5$)	:ad/sec
DMUP(1)	Integration upper bound for damper gimble angles (preset = $1.0 \text{ D}-3$)	rad
DMUP(2)	Integration upper bound for damper gimble angular rates (preset = 1.0 D-3)	rad/sec
DMDN(1)	Integration lower bound for damper gimble angles (preset = 1.0 D-5)	rad
DMDN(2)	Integration lower bound for damper gimble angular rates (preset = 1.0 D-5)	rad/sec
DCSPRM(30)	Integration upper bound for damper related magnetometer first order lag transfer function (preset = 0)	gauss
DCSPRM(31)	Integration lower bound for damper related magnetometer first order lag transfer function (preset = 0)	gauss
THRMPR(2)	Integration upper bound for thermal expansion – contraction simulation (preset = 0)	°R
THRMPR (3)	Integration lower bound for thermal expansion-contraction simulation (preset	= 0) °R
AMPARM (101)	Integration upper bound for filtered error angle of the arbitrarily oriented momentum wheel (preset = 0)	deg
AMPARM (102)	Integration lower bound for filtered error angle of the arbitrarily oriented momentum wheel (preset = 0)	deg
AMPARM (103)	Integration upper bound for arbitrarily oriented momentum wheel speed (preset = 0)	deg/sec
AMPARM (104)	Integration lower bound for arbitrarily oriented momentum wheel speed (preset = 0)	deg/sec
AMWHPR (101)	Integration upper bound for filtered angle error of the axis momentum wheel simulation (preset = 0)	deg

AMWHPR (102)	Integration lower bound for filtered angle error of the axis momentum wheel simulation (preset = 0)	4-
AMWHPR (103)	Integration upper bound for axis momentum wheel speed (preset = 0)	ರೇಕ್ಷ/sec
AMWHPR (104)	Integration lower bound for axis momentum wheel speed (preset = 0)	deg/sec

PLOT CONTROL WORDS

Fortran Symbol	Description	Units
IPLOT	Control word for plotting of output data.	Integer, N.D.
	IPLOT = 0 No plots.	
	IPLOT = 1 Printer plots or FFT analysis. (Preset = 0).	Integer, N.D.

Fortran Symbol	Description	Preset Value	Units
IPLMOD	Control word for individual modal analysis plot	0	Integer N.D.
	IPLMOD = 0, No individual modal analysis plot		
	IPLMOD = 1, Store individual modal variables for plotting		
IKMOD	Control word to activate the flexible element requiring independent higher mode plots. E.g., if NELMTS = 7, NDAMPR = 0, Set IPLMOD = 1 and IKMOD = 5 in order to activate higher modal displacement plots for 5th elements	1	Integer N.D.

NOTE

Value of MODES for IKMODth element must be greater or equal to one and less or equal to 3.

The variables to be plotted by printer plot are controlled by KPLOTS array values. The dimensions of KPLOTS array is 253. The control of plotting is as follows

KPLOTS(I) = 0	do not plot Ith variable (preset value)
KPLOTS(I) = 1	plot Ith variable
KPLOTS(I) = 2	for plot and FFT analysis
KPLOTS(I) = 3	for FFT analysis only

All KPLOTS array addresses are integer variables with value of either 0 or 1. For the first ten KPLOTS array addresses, (i.e., I = 1 to 10), the variables plotted are functions of INOPT. For $I \ge 11$, the plotting variables are independent of the INOPT value. The KPLOTS array addresses are given in the following table.

For $I \leq 10$

KPLOTS Array Address	Fortran Variable : INOPT 1	Plotted vs. Time INOPT 2	Units
1	PSI1	ALFAE	deg
2	THET1	BETAE	deg
3	PHI	GAMAE	deg
4	OMEG1	OMBC1	deg/sec
5	OMEG2	OMBC2	deg/sec
6	OMEG3	OMBC3	deg/sec
7	PHILD	PHILD	deg
8	NUT ANG (deg)	PRAT	deg/sec
9	EPSERR (deg)	RRAT	deg/sec
10		YRAT	deg/sec

The definition of the Fortran variables are given in Part 4 of this document.

For I≥11

KPLOTS Array Address I	Description	Fortran Symboi	Units	Note
11	1st flexible element 1-2 plane tip displacement	U21	feet	
12	1st flexible element 1-2 plane tip velocity	U2DOT1	ft/sec	
13	1st flexible element 1–3 plane tip displacement	U31	feet	

KPLOTS Array Address I	Description	Fortran Symbol	Units	Note
14	1st flexible element 1-3 plane tip velocity	U3DOT1	ft/sec	
15	1st flexible element twist* displacement	no symbol	deg	
16	1st flexible element twist* velocity	no symbol	deg/sec	
17	2nd flexible element 1-2 plane tip displacement	U22	feet	
18	2nd flexible element 1-2 plane tip velocity	U2DOT2	ft/sec	
19	2nd flexible element 1-3 plane tip displacement	U32	feet	
20 :	2nd flexible element 1–3 plane tip velocity	U3DOT2	ft/sec	
• • •	etc.			
65	10th flexible element 1-2 plane tip displacement	U210	feet	
66	10th flexible element 1-2 plane tip velocity	U2DOT10	ft/sec	
67	10th flexible element 1-3 plane tip displacement	U310	feet	
68	10th flexible element 1-3 plane tip velocity	U3DOT10	ft/sec	
69	10th flexible element* twist displacement	no symbol	deg	

Individual twist modes are printed out and the sum of the modes is plotted. See p. 106 for output print symbols

KPLOTS Array Address l	Description	Fortran Symbol	<u>Units</u>	Note
70	10th flexible element* twist velocity	no symbol	deg/sec	
71	1st damper flexible ele- ment 1-2 plane tip displacement	UD21	feet	
72	1st damper flexible ele- ment 1-2 plane tip velocity	UD2DT1	ft/sec	
73	1st damper flexible ele- ment 1-3 plane tip displacement	UD 31	feet	
74	1st damper flexible ele- ment 1-3 plane tip velocity	UD3DT1	ft/sec	
75	1st damper element* twist displacement	no symbol	deg	
76	1st damper element* twist velocity	no symbol	deg/sec	
77	2nd damper flexible ele- ment 1-2 plane tip displacement	UD22	feet	
• • • •	etc.			
128	10th damper flexible ele- ment 1-3 plan بنه velocity	UD3D T10	ft/sec	
129	10th damper element* twist displacement	no symbol	deg	
130	10th damper element* twist velocity	no symbol	deg/sec	
131	Mode 1 1-2 plane tip dis- placement for element IKMOD	AK1	feet	$1 \leq \text{MODES} \leq 3$ $\text{IPLMOD} = 1$
when the scheme to be a	made an owned and and the sum of t	ha mada, u plattad	See n 106 for	autout point as eshale

*Individual twist modes are printed out and the sum of the modes is plotted. See p. 106 for output print symbols.

KPLOTS Array Address I	Description	Fortran Symbol	Units	Note
132	Mode 1 1-3 plane tip displacement for	BK1	feet	$1 \leq \text{MODES} \leq 3$
	element IKMOD			$\mathbf{IPLMOD} = 1$
133	Mode 2 1-2 plane tip displacement for element IKMOD	AK2	feet	$1 \leq \text{MODES} \leq 3$ IPLMOD = 1
19.		BK2	feet	
134	Mode 2 1-3 plane tip displacement for element IKMOD	DIV2	reet	$1 \leq MODES \leq 3$ IPLMOD = 1
135	Mode 3 1-2 plane tip	АКЗ	feet	$1 \leq MODES \leq 3$
	displacement for element IKMOD			IPLMOD = 1
136	Mode 3 1-3 plane tip displacement for	BK3	feet	$1 \leqslant \text{MODES} \leqslant 3$
	element IKMOD			IPLMOD = 1
137	Mode 1 twist displace- ment for element IKMOD		deg	
137	Mode 1 twist displace- ment for element IKMOD	CWK1	deg	
138	Mode 2 twist displace- ment for element IKMOD	CWK2	deg	
139	Mode 3 twist displace- ment for element IKMOD	CWK3	deg	
140	Mode i 1-2 plane tip dis- placement for damper element IKMOD		feet	
141	Mode 1 1-3 plane tip dis- placement for damper element IKMOD	DINK2	feet	
142	Mode 2 1-2 plane tip dis- placement for damper	DINK2	feet	
	element IKMOD	26		

Array Address I	Description	Fortran Symbol	Units	Note
143	Mode 2 1-3 plane tip dis- placement for damper element IKMOD	DINK2	feet	
144	Mode 3 1-2 plane tip dis- placement for damper element IKMOD	DOUTK3	feet	
145	Mode 3 1-3 plane tip dis- placement for damper element IKMOD	DINK3	feet	
146	Mode 1 twist displace- ment for damper element ZKMOD	CWK1	deg	
147	Mode 2 twist displace- ment for damper element ZKMOD	CWK2	deg	
148	Mode 3 twist displace- ment for damper element ZKMOD	CWK3	deg	
149 	Accelerometer reading value from 1 to 6 respectively	ACCRED1 ACCRED2 	· · · · ·	IACOMP = 1 IHUBAC = 1 The Max. No. of plot is NUMHUB
155	Instantaneous body moment of inertia about 1-axis	BIXX	slug-ft ²	IHCALC = 1
156	Instantaneous body moment of inertia about 2-axis	ВІҮҮ	slug-ft ²	IHCALC = 1
157	Instantaneous body moment of inertia about 3-axis	BIZZ	slug-ft ²	IHCALC = 1
158	Right ascension angle of angular momentum vector in Aries inertial frame	None 27	deg	IHCALC = 1 PLOTTED ONLY

KPLOTS Array Address I	Description	Fortran Symbol	Not	<u>e</u>
159	Declination angle of angular momertum vector in Aries inertial frame	None	deg	IHCALC = 1 PLOTTED ONLY
160	Magnitude of angular momentum vector	HMAG	ft-lb-sec	IHCALC = 1
161 170	Root tension history for element 1 to 10 respectively	TENSN1 TENSN2 TENSN10	lb lb	ITENSE = 1 plotting quantities ≤ (NELMTS+NDAMPR)
171	1-2 plane root bending moment for element 1	BNMTA1	lb-ft	IBENDM = 1
172	1-3 plane root bending moment for element 1	BNMTB1	lb-ft	IBENDM = 1
173	1-2 plane root bending moment for element 2	BNMTA2	lb-ft	IBENDM = 1
174	1-3 plane root bending moment for element 2 etc.	BNMTB2	lb-ft	IBENDM = 1
189	1-2 plane root bending moment for element 10	ENMTA10	lb-ft	IBENDM = 1
190	1-3 plane root bending moment for elemen. 10	BNMTB10	lb-ft	IBUNDM = 1
191	Right ascension angle of the unit sun line vector in body reference frame	None	deg	IAFM(1) = 1 PLOTTED ONLY
192	Declination angle of the unit sun line vector in body reference frame	None	deg	IAFM(1) = 1 PLOTTED GNLY

KPLOTS Array Address I	Description	Fortran Symbol	Units	Note
193 195	Magnetic field vector components in 1, 2, 3, body axis respectively	SMAGB1 SMAGB2 SMAGB3	GAUSS GAUSS GAUSS	IMGMTS = 1
196	Relative Hamiltonian of the system	HAMILT	ft-lb	IHAMLT = 1
197	Magnitude of root bending moment for 1st flexible element	None	ft-lb	PLOTTED ONLY
206	etc. Magnitude of root bending moment for 10th flexible element	None	ft-lb	PLOTTED ONLY
207	Momentum wheel speed 1-axis	WHL SPD1	deg/sec	
208	Momentum wheel speed 2-axis	WHL SPD2	deg/sec	
20 9	Momentum wheel speed 3-axis	WHL SPD3	deg/sec	
210	External moment about 1 body axis	MOMENT 1	ft-lbs	
211	External moment about 2 body axis	MOMENT 2	ft-lbs	
212	External moment about 3 body axis	MOMENT 3	ft-lbs	

KPLOTS Array Address I	Description	Fortran Symbol	<u>Units</u>	Note
213	Component of angular momentum on 1 body axis	HBODY 1	ft-lb-sec	IHCALC 1
214	Component of angular momentum on 2 body axis	HBODY 2	ft-lb-sec	IHCALC 1
215	Component of angular momentum of 3 body axis	HBODY 3	ft-lb-sec	IHCALC 1
216	Pitch sensor output		volts	IWHEEL 1
217-219	Pitch sensor dynamics			and KNTRL(1) 1 or 2
220	Not used			1 01 2
221	Roll sensor output		volts	
222-224	Roll sensor dynamics		volts/sec, etc	
225	Not used		eic	
226	Output of pitch compen- sation amplifier		volts	
227	Not used			
228	Tachometer output		volts	
229	Not used			
230	Momentum wheel speed			
231-233	Not used			
234	Nutation damper phase shift dynamics			
235	Nutation damper phase shift output			

KPLOTS Array Address I	Description	Fortran Symbol	Units	Note
236	Rotation of secondary body about 3 axis	GAMSB	deg	
237	Rotation of secondary body about the carried 1 axis	ALPSB	deg	
238	Rotation of secondary body about the carried 2 axis	BETSB	deg	
239	Relative angular rate of secondary body about 3 axis	GAMMAD	deg/sec	
240	Relative angular rates of secondary body about the carried 1 axis	ALPHAD	deg/sec	
241	Relative angular rates of secondary body about the carried 2 axis	BETAD	deg/sec	
242	Component of secondary body relative angular velo- city on 1 axis of secondary body	OM1SB	deg/sec	
243	Component of secondary body relative angular velo- city on 2 axis of secondary body	OM2SB	deg/sec	
244	Component of secondary body relative angular velo- city on 3 axis of secondary body	OM3SB	deg/sec	
245	State variable sensor output		varies	
246	State variable filter output		varies	
247	State variable filter first integrater output	- 31	varies	

KPLOTS Array Address I	Description	Fortran Symbol	Units	Note
248	Product of inertia	IXY	slug ft²	
249	Product of inertia	IXZ	slug ft ²	
250	Product of inertia	IXY	slug ft ²	
251	lst damper element 1–2 plane slope		rad	
252	lst damper element 1–3 plane slope		rad	
253	2nd damper element 1–2 plane slope		rad	
•	etc.		rad	
269	10th damper element 1-2 plane slope		rad	
270	10th damper element 1-3 plane slope		rad	
271	lst flexible element 1-2 plane slope	U2P 1	rad	
272	1st flexible element 1-3 plane slope	U3P 2	rad	
273	2nd flexible element 1–2 plane slope	U2P 2	rad	
	etc.			
289	10th flexible element 1-2 plane slope	U2P 10	rad	
290	10th flexible element 1-3 plane slope	U3P 10	rad	
291	1st mode 1-2 plane slope		rad	Mode output is for the element specified
292	1st mode 1-3 plane slope	32	rad	by input IKMOD

KPLOTS

Array Address		Fortran		
<u></u>	Description	Symbol	Units	Note
293	2nd mode 1-2 plane slope		rad	
294	2nd mode 1-3 plane slope		rad	
295	3rd mode 1-2 plane slope		rad	
296	3rd mode 1-3 plane slope		rad	
297	Azimuth angle for the gimble azimuth platform		deg	
298	Azimuth angular rate for the gimble azimuth platform		deg/sec	
299	Elevation angle for the gimble elevation platform		deg	
300	Elevation angular rate for the gimble elevation platform		deg/sec	
301	Output of first order lag transf function for magnetometer on axis		Gauss	
302	Output of first order lag transf function for magnetometer tw axis		Gauss	
303	Output of first order lag transf function for magnetometer three axis	fer	Gauss	
304	Azimuth error output		deg	IPLTCS 1
305	Elevation error output		deg	IPLTCS 1
306	Azimuth PID digital controller output	r		Units depend on PID gain constant units
307	Elevation PID digital controlle output	er		

KPLOTS

Array Address	Description	Fortran Symbol	Units	<u>Not</u>
308	Azimuth platform drive motor torque	г	ft-lbs	IPLTCS 1
309	Elevation platform drive mc*o torque	or	ft-lbs	
310	Azimuth angle for the gimble azimuth platform		deg	
311	Azimuth angular rate for the azimuth platform		deg/sec	IGMBLD 1
312	Elevation angle for the gimble elevation platform		deg	
313	Elevation angular rate for the gimble elevation platform		deg/sec	
314	Output of first order lag trans function for magnetometer or axis		gauss	
315	Output of first order lag trans function for magnetometer tw axis.		gauss	
316	Output of first order lag trans function for magnetometer three exis	fer	gauss	
317	Azimuth error output		rad	
318	Elevation error output		rad	
319	Azimuth PID digital controlle output	r		Units depend on PID gain constants
320	Elevation PID digital controlle	or output		
321	Azimuth platform drive moto torque	r	ft-lbs	
322	Elevation platform drive moto torque	or 34	ŕt–lbs	IAMWH(1) = 1 and IAMWH(2) = 1

Array Address	Description	Fortran Symbol	Units	Note
323	Roll axis filter output of errorsignal for momentum wheel control	r	rad	
324	Pitch axis filter output of errorsignal for momentum wheel control	or	rad	IAMWH(3) = 1
325	Yaw axis filter output of error signal for momentum wheel control	r	rad	IAMWH(4) ≈ 1
326	Roll axis momentum wheel s	peed	deg/sec	
327	Pitch axis momentum wheel	deg/sec		
328	Yaw axis momentum wheel s	peed	deg/sec	
329	Arbitrarily oriented momentu filter output of control system angular error			IAN PF M(1) = 1
330	Momentum wheel speed			
331	lst element temperature		°F	ITHRM(1) = 1 and ITHRM(11) = 1
	etc			etc
340	10th element temperature		°F	ITHRM(20) = 1

KPLOTS

Fortian Symbol	Description	Present Value
LCPU	CPU time in seconds allowed for print out, integer	

(Preset = 20).

DIAGNOSTIC CONTROL WORDS

Fortran Symbol	Description	Preset Value
IOUT	Control word to print computations as performed in the Simulator.	1
	IOUT = 1 No print of computations.	
	IOUT = 2 Print of computations at print frequency.	
	IOUT = 3 Print of computations for each call of DEREQ1.	
KLUGE	Control word to stop computing on this input set. If KLUGE = 1 and IOUT = 2, machine stops at time zero, before normal output is printed, and prints calculations.	0
ISWTCH	Control word to print energy related computations. If ISWITCH = 0 and IHAMLT = 1, energy computations are printed out. If ISWITCH \neq 0, no print of energy computations are made.	8
NOPT	A control word to give the number of times subroutine DEREQ1 was entered.	0
	NOPT = 0 No printout of number of times.	
	NOPT = 1 Prints out number of times.	

PART 3

SPACECRAFT DESCRIPTION & SIMULATION OPTIONS

CORE PROPERTIES

Fortran Symbol		Description	Units
BDYMI (i, j)	I _{ij}	Moments of inertia of satellite core about Y body axes. $i = 1, 2, 3$ $j = 1, 2, 3$	slug ft ²
SCO	s ₀	Projected area of central core of satellite Used for aerodynamics and solar pressure. (preset = 14.6)	ft²
ZMS	M _s	Mass of entire satellite (preset = 25.0)	slugs
HUBCDA (3)		C_DA values for spacecraft hub along three body axes. (preset = 1.0, 1.0, 1.0)	ft ²
HUBCP (3)		Body frame position vector of hub center of pressure. (preset = $0.0, 0.0, 0.0$)	ft ²

ELEMENT GEOMETRY AND PHYSICAL PROPERTIES

Fortran Symbol	Math Symbol	Description	Units
NELMTS		The number of elements rigidly attached to satellite core. (preset = 6, do not set to 0).	Integer, N.D.
ZL0 (k)	۹ ۵k	Length of the k^{th} element at start of problem time. (preset = 1.0, do not set to 0)	feet
ZL1 (k)	ė _k	Velocity of deployment of k th element. (preset = 0.0)	ft/sec
ZLA (k)	ë _k	Acceleration of deployment of k th element. (preset = 0.0)	ft/sec ²
ZBZ (1, k) 2 ZBZ (2, k) 2 ZBZ (3, k) 2	^z m1k ^z m2k ^z m3k	Coordinates of the origin of the k ele- ment frames as defined in the refer- ence Y body frame or invration damper Z frame. (preset = 0.0)	feet

Fortran Symbol	Math Symbol	Description	Units
ALFAEK (k)	α _k	Euler angle relating orientation of k^{th} element frame as defined in the refer- ence Y body frame or libration damper Z frame. (Around 1 axis, 2nd angle in 2 - 1 - 3) rotation. (preset = 0.0)	deg
BETAEK (k)	β _k	Euler angle relating orientation of k^{un} element frame as defined in the ref- erence Y body frame or libration damper Z frame. (Around 2 axis, 1st angle in 2 - 1 - 3 rotation.) (preset = 0.0)	deg
GAMAEK (k)	γ _k	Euler angle relating orientation of the k^{th} element frame as defined in the reference Y body frame or libration damper Z frame. (Around 3 axis, 3rd angle in 2 - 1 - 3 rotation.) (preset = 0.0	deg 0)
MODES (k)		Designation of bending modes for element	Integers
		0 = Rigid body	
		1 = Bending mode 1	
		2 = Bending mode 2	
		3 = Bending mode 3 (includes 3 modes)	
A (k,j)1	A _{ij}	Component of the k^{th} core element tip deflection in the j th bending mode as measured along the 2 axis of the ele- ment frame. (preset = 0.0)	feet
ADOT (k, j) 1	A _{ij}	Component of the k^{th} core element tip velocity in the j th bending mode as measured in the element frame along the 2 axis of the frame. (preset = 0.0)	ft/sec
B (k, j) 1	B _{ij}	Component of the k th core element tip deflection in the j th bending mode as measured in the element frame along the 3 axis of the frame. (preset = 0.0)	feet

Fortran Symbol	Math Symbol	Description	<u>Units</u>
BDOT (k, j) 1	B _{ij}	Component of the k^{th} core element tip velocity in the j th bending mode as measured in the element frame along the 3 axis of the frame. (preset = 0.0)	ft/sec

NOTE

In the above arrays, the "1" following the parentheses indicates that the first integer in the parentheses varies as numbers are read off across the input card. For example, the card:

would be interpreted by the program as:

$$A(1, 1) = 2.0$$

 $A(2, 1) = 4.0$
 $A(3, 1) = 5.0$ etc

The arrays A, ADOT, B, BDOT are both input and output of the program. Thus if the user wished to start a problem on case with initial tip deflections and on velocities of the rigidly attached elements, these quantities would be input. Otherwise, they are internally set to zero at the start of the problem and are output only.

Fortran Symbol	Description
LK (k)	This is a control word for the selection of one of two preset (Block 2) data sets for the k th element. Each data set contains <u>normalized mass integrals and normalized effective areas inte-</u> <u>grals</u> for flexible elements. The first data set is generated using cantilever beam modes. The second data set utilizes

spinning string modes with a tip mass.

LK (k) = 1 uses data set 1 LK (k) = 2 uses data set 2 (preset to 1)

Fortran Symbol	Description
	A data set can be generated for a specific antenna configuration by using the Integral Evaluation Program.
LLK (k)	This is a control word for the selection of one of two preset data sets for the k th element. Each data set contains <u>normalized in-</u> <u>ternal force integrals and normalized thermal force integrals for</u> flexible elements.

LLK(k) = 1 uses data set 1 LLK (k) = 2 uses data set 2 (preset to 1)

A data set can be generated for a specific flexible configuration by using the Integral Evaluation Program.

Fortran Symbol	Math Symbol	Description	<u>Units</u>
EMODLS (k)	Ε	Young modulus for k th element (preset = 2.0 D7)	lb-in. ²
RTUBE (k)	r	Mean radius of k th element (preset = 2.935 D-1)	inches
HTUBE (k)	h	Wall thickness of k th element (preset = 2.0 D-3)	inches
THERMC (k)	α_{T}	Thermal coefficient of expansion for k th element. (preset = 8.85 D-6)	in./in./°F
TIPMS (k)	M _T	Tip mass attached to k th element	slugs
SAO (k)	S _{co}	The projected area of a one foot length of element corrected for flow around a cylinder. Used in computing aerodynamic and solar pressure. (preset = 0.0)	ft ²
STMK (k)	s _{Tk}	The projected area of a tip mass corrected for flow around a spheri- cal body. Used in computing aero- dynamic and solar pressure.	ft ²

Fortran Symbol	Matn Symbol	Description	Units
RHOK (k)	ρ _k	Mass per unit length of the k th element. (preset = 4.36 D-4)	slugs/ft
POO	p _o	Solar pressure on a flatplate at normal incidence. (preset = 0.0)	lb/ft ²
DTOO	ΔT _o	Temperature differential across an ⁺ enna at normal incidence of sunlight. (preset = 0.0)	°F
CDAMP(n, k)2	C _{cr}	Damping ratio in n^{th} bending mode for k^{th} element. (preset = 0.0)	N.D.
SKOA(k, n)2	A _{kno}	The 2 axis component in the k^{th} element frame of the offset zero stress position corresponding to the n^{th} mode shape. (preset = 0.0)	ieet
SKOB(k, n)2	B _{kno}	The 3 axis component in the k^{th} element frame of the offset zero stress position corresponding to the n th mode shape. (preset = 0.0)	feet
AERO	C _D	Aerodynamic drag coefficients for the elements. (preset = 2.0)	N.D.
TDIS(k)		Factor to account for variations in temperature distributions for k th element. (preset = 2.0)	N.D.
Computation of F	lexible Eleme	ent Root Bending Moments	
Fortran Mai Symbol Symb		Description	Units
IBENDM	element	word to calculate and print out flexible root bending moments. value = 0)	Integer, N.D.
	IBEND	M = 0 No calculation	
	IBEND	M = 1 Calculate and print	

Fortran Symbol	Math Symbol	Description Unit	8
ZKBM(6)	X"(0)	Root curvatures of normalized shape function N.I for first three modes. Two sets are per- missible corresponding to data sets controlled by LLK(K) (internal forces).).
		LLK(K) = $1 \text{ ZKBM}(1-3)$ (preset = 3.5, -22.0, 61.7)	
		LLK(K) = 2 ZKBM(4-6) (preset = 3, 5, -22, 0, 61, 7)	

Computation of Element Root Tensions

Fortran Symbol	Description	Units
ITENSE	Control word to calculate and print out element root tensions. (Preset value = 0)	Intege, , N.D.
	ITENSE = 0 No calculation	
	ITENSE = 1 Calculate and print	

Thermal Lag-Element Bending

Fortran Symbol	Math Symbol	Description	Units
IPLANS		Control word to invoke a thermal lag effect on appendages due to planet and satellite shadowing. (Preset value = 0)	Integer, N.D.
		IPLANS = 0 No lag invoked	
		IPLANS = 1 Lag invoked	
TAUPL	$ au_{ m p}$	Characteristic delay time for computing planet shadowing switching times. (preset =	sec 1.0)
OCCRIT	O _{CR}	Threshold for invoking thermal lag for planet shadowing	N.D.

Fortran Symbol	Math Symbol	Description	Units
ISATSH		Control word for invoking satellite shadowing and thermal lag for satellite shadowing. (Preset value = 0)	Integer, N.D.
		ISATSH = 0 No shadowing	
		ISATSH = 1 Shadowing and lag	
RADSH	R _s	Radius of shading disk for satellite shadowing. (preset - 10.0)	feet
TAUK(10)	$ au_{k}$	Characteristic delay time for each element. (preset = 1.0)	sec
OCULTK(10)	0 _k	Threshold for invoking thermal lag switch- ing for each element (satellite shadowing)	N.D.
IWRTTF		Control word to write out thermal forces before and after computation of thermal lag. (Preset value = 0)	Integer, N.D.

Thermal Expansion and Contraction of Element

Fortran Symbol	Math Symbol	Description	Preset Value	Units
ITHRM(20)		Control words for element thermal expansion simulation	0	Integer, N.D.
ITHRM(1)		Basic control word for thermal expansion simulation		
		ITHRM(1) 0 No thermal expansion		
		ITHRM(1) Thermal expansion simulated		
ITHRM(2)		Internal. Not input		
1THRM(3-10)		Not used		
ITHRM(11-20)		Control words for individual elements according to internal numbering system	5	

Fortran Symbol	Math Symbol	Description	Preset Value	Units
		ITHRM(K + 10) 0 No thermal expansion for KTH element		
		ITHRM(K + 10) 1 Thermal expansi for the KTH element	on	
THRMPR(100)		Physical constants for thermal expansion simulation	0.0 D0	
THRMPR(1)		Solar radiation constant at the satellite		Btu sec-ft ² °R °R
THRMPR(2-3)		Upper and lower integration bounds		ft/sec
THRMPR (4)		Acceleration due to gravity at sea level		
THRMPR(5)		Stefan Boltzmann Radiation constant		Btu sec-ft ² °R ⁴
THRMPR(6-10)		Not used		
THRMPR(11-20)		Spc lific heat for individual element material according to internal numbering system		Btu lb °R
THRMPR(21-30)		Emissivity of individual element surface material according to internal numbering system		N.D.
THRMPR(31-40)		Absorbtivity of individual element surface material according to internal numbering system		N.D.
THRMPR(41-50)		Area of individual element surface for thermal absorption according to internal numbering system	0.0 D0	ft²
THRMPR(51-60)		Area of individual element surface for thermal emission according to internal numbering system		ft²
		44		

Fortran	Math		Preset	
Symbol	Symbol	Description	Vilue	<u>Units</u>
THRMPR(61-80)		Used internally		
THRMPR(81-90)		Element reference temperature for length calculation	ſ	°R
THRMPR(91-100))	Initial condition for element temperature simulation		°R
TYPICAL	INPUT FOR T	HERMAL EXPANSION SIMULAT	ΓΙΟΝ	
ITHRM(1) 1				
		NT OF EXPANSION PER DEG R		
THERMC(1-4) 1.0 ELEMEN	JD-3 TS IN SIMULA	TION		
ITHRM(11) 1 0 1				
		U / SEC FOOT**2		
THRMPR(1) 0.122	278			
		ELERATION FOR CONVERSION	ONLY	
THRMPR(4) 32.17				
		N CONSTANT BTU/SEC FOOT*	**2 - DEG R**	٠4
THRMPR(5) 0.470		LEMENT MATERIAL BTU / POU		
THRMPR(11-14) (LEMENT MATERIAL BIO / POU	ND - DEG K	
· · /		IENT SURFACE		
THRMPR(21-24) (
ABSORPT	IVITY FOR EI	LEMENT SURFACE		
THRMPR(31-34) (
		ITH ABSORPTIVITY FOOT**2		
THRMPR(41-44) (
AKEA A3 THRMPR(51-54) (ITH EMISSIVITY FOOT**2		
. ,		TURE FOR STANDARD LENGTH	4 71 0 DEG R	
THRMPR(81-84) :				
· · ·		E OF ELEMENT		
THRMPR(91-94) (500.0			
	TION BOUND	S		
THRMPR(2) 1.0D	-8 1.0D-10			

Plotting Locations for Element Temperatures

KPLOTS(331-340)

Element average temperature

ELEMENT DAMPING COEFFICIENT

Fortran Symbol	Туре	Preset Value	Descriptior	
IOMKDM(1-10)	[*4	0	Control word to invoke use of refer	ence
			IOMKDM(K) 0 Reference Frequency not use	d
			IOMKDM(K) 1 Reference Frequency used	
OMKDMP(3,10)	R*4	0.0 D0	Reference frequency (rad/sec) for calculation of model damping coeffi	cient
Element Twist (Torsion) Option				
Fortran Symbol	Math Symbol		Description	Units
ITWIST		motion for fl ITWIST = 0 ,	l to include or exclude twist exible element. twist motion excluded twist motion included	N.D.
NKT(10)		for a particu	mber of twist modes desired lar flexible element; i.e. , l, 2 or 3 for the k th element.	N. D.
ZA(10)			onal area for the k th flexible reset = 3.757 D-2)	in ²

Fortran Symbol	Math Symbol	Description	Units
I2OVI3(10)	I ₂ /I ₃	Ratio of cross-section moments of inertia. $I_2/I_3 = \frac{\int Z_3^2 dA}{\int Z_2^2 dA}$ (Preset = 1.0)	
ZDQ(10)	D _¢	$\int \phi_w^2 dA$ for the cross section. ϕ_w is warping function. (preset = 7.463 D-8, elliptic cross section)	in ⁶
ZJ(10)	J	Torsional constant. $\int \left[\left(\frac{\partial \phi_w}{\partial \phi_w} \right)^2 \right] \frac{\partial \phi_w}{\partial \phi_w} = \frac{\partial \phi_w}{\partial \phi_w} = \frac{\partial \phi_w}{\partial \phi_w} + \frac{\partial \phi_w}{\partial \phi_w} = \frac{\partial \phi_w}{\partial \phi_w} + \frac{\partial \phi_w}{\partial \phi_w} = \frac{\partial \phi_w}{\partial \phi_w} + \frac{\partial \phi_w}{\partial \phi_w} + \frac{\partial \phi_w}{\partial \phi_w} = \frac{\partial \phi_w}{\partial \phi_w} + \frac{\partial \phi_w}{\partial $	in ⁴
		$J = \int \left[\left(Z_2 + \frac{\partial \phi_w}{\partial Z_3} \right)^2 + \left(-Z_3 + \frac{\partial \phi_w}{\partial Z_2} \right)^2 \right] dA$	
		(preset = 2.118 D-4, elliptic cross section)	
D2(10)	D ₂	$\int Z_2 \phi_w dA$ for cross section. (preset = 0.0DO)	in ⁵
D3(10)	D ₃	$\int Z_3 \phi_w dA$ for cross section. (preset = 0.0DO)	in ⁵
CW(3, 10)		Twist angle. (preset = 0. 0DO)	deg
CDW(3, 10)		Twist velocity. (preset = 0. 0DO)	deg/sec
CDTW(3, 10)		Twist damping coefficient. (preset = 0.0DO)	$\frac{\text{ft-lbs}}{\text{rad/sec}}$

TIP MASS ROTARY INERTIA OPTION

Fortran Symbol	Math Symbol	Description	Units
ITPROT		Control word to include or exclude tip mass rotary inertia.	N. D.
		ITPROT = 0, rotary inertia excluded	
		ITPROT = 1, rotary inertia included (preset = 0)	

Fortran Symbol	Math Symbol	Description	Units
NUMTIP(10)		Set to 1 for tip mass rotatory inertia simulation for the k^{th} element. (preset = 0)	N. D.
TIPINR(3, 10)		Principal rotatory inertias of tip mass about undeformed element axis. TIPINR(I, K) is inertia about I th element axis for the k th element tip mass.	slug ft ²

LIBRATION DAMPER OPTION

Fortran Symbol	Math Symbol	Description	Units
IDAMP		Control word to exclude or allow libration damper motion. (Preset value = 0)	Integer, N.D.
		IDAMP = 0 No damper motion	
		IDAMP = 1 Damper motion	
IDPHLD		Control word for simulation of constant relative angular velocity of libration dam- per mass or system of booms.	
		IDPHLD = 0 No simulation (preset)	
		IDPHLD = 1 Constant angular velocity for date	mper
NDAMPR		The number of damper boom elements composing the libration damper.	Integer, N.D.
PHIS	ϕ_{s}	Stop angle for libration damper. (preset = 35.0)	deg
PHILD	ϕ_{LD}	The angular deflection of the libra- tion damper boom relative to its equilibrium position. Also Euler angle in definition of libration damper frame (Z) with respect to body Y frame. (preset = 0.0)	deg
DPHILD	ϕ_{LD}	Angular velocity of libration damper boom relative to the body. (preset = 0.0)	deg/sec

Fortran Symbol	Symbol	Description	Units
BETLD	β_{LD}	Euler angle of libration damper Z frame with respect to the body Y frame. (preset = 0.0)	deg
GAMLD	γ_{LD}	Euler angle of Foration damper Z with respect to body Y frame. (preset = 0.0)	deg
YIZ M(l, n)2	{y _{em} }	Coordinates of the origin of the libration damper Z frames as defined in the body Y frame. (preset = 0.0)	feet
		NOTE	

The sector of the sector

31041

NOTE

YIZM locates the point of rotation of damper in the main body frame.

ZBZ locates the root of the elements with resplicit to the point where rotation takes place (which is specified by the VIZM array) for those elements composing the damper. In short, the ZBZ array locates the element roots with respect to whatever frame you are in.

For non damper elements use ZBZ array only.

For damper elements use Z³Z + YIZM (one vector for each boom)

NOTE

The 2 after the parentheses indicates that it is the second coordinate which varies. Also, since ZLO, ZL1, ZLA, and the ZBZ's are i, but for both fixed elements and damper booms, the order in which their values are punched on an input card is important. The order is: data for element booms first, followed by data for damper booms. For example, if the user were to set NELMTS 1, NDAMPR 2, (implying the spacecraft has a total of three appendages) and the following card is also input; ZBZ(1,1)2 5.0 7.0 8.0 the program would interpret this as the "1" axis of the one rigidly attached element is located 5 feet from the origin of the body frame, the "1" axis of the 1st libration damper frame is located 7 fost from the origin of the body frame, and the "1" axis of the 2nd libration damper frame is located 8 feet from the origin of the body frame.

Fortran Symbol	Description	Units
DIN(k, j)1	Component of the k th element (libration damper) tip displacement in the j th bending mode as measured in the element frame (Z) along the 3 axis of the element frame. (preset = 0.0)	feet
DINDOT(k, j)1	Component of the k th element (libration damper) tip velocity in j th bending mode as measured in the element frame (Z) along the 3 axis of the frame. (preset = 0.0)	ft/sec
DOUT(k, j)1	Component of the k th element (libration damper) tip displacement in the j th bending mode as measured in the element frame (Z) along the 2 axis of the frame. (preset = 0.0)	feet
DOUTDT(k, j)1	Component of the k^{th} element (libration damper) tip velocity in the j th bending mode as measured in the element frame (Z) along the 2 axis of the frame. (preset = 0.0)	ft/sec

NOTE

In the above arrays, the "1" following the parentheses indicates that the first integer in the parenthesis varies as the numbers are read off across the card. For example, the card:

DIN(k, 2)1 1.0 3.0 4.5 2.0

would be interpreted by the program as:

DIN(1, 2) = 1.0 DIN(2, 2) = 3.0 DIN(3, 2) = 4.5DIN(4, 2) = 2.0 etc.

The arrays DIN, DINDOT, DOUT, and DOUTDT are both input and output of the program. Thus if the user wished to start a problem with initial tip deflections and velocities for the libration damper elements, these quantities would be input. Otherwise they are internally set to zero at the start of the problem and are output only.

Fortran Symbol	Math Symbol	Description	Preset Value	Units
ZK1D	k _{1D}	Torsional spring constant for libration damper.		ft-lb/rad
ZK2D	k _{2D}	Stop spring constant for libration damper.	2.0	ft-lb/rad
ZMDO	M _{ko}	Saturation moment for magnetic hysteresis libration damper.	1.02 D-3	ft-lb
ZMDBO		Initial moment for magnetic hysteresis libration damper.	0.0	ft-lb
DECAY	σ	Exponential decay factor for magnetic hysteresis libration damper.	20.0	N.D.
DPRMI(i	, j)2	Moments of inertia of the hub of the libration damper about the Z frame axes of the damper.	0.0	slug ft ²
CNV	C _{nv}	Damping coefficient for viscous damping by libration damper.	0.0	ft-lb/ rad/sec

. ...

-

EARTH ORIENTED SATELLITE OPTION - ATTITUDE AND BODY RATES

Fortran Symbol	Math Symbol	Description	Preset Value	Units
ALFAE	α	Roll Angle. The inter- mediate Euler angle in a 2-1-3 rotation of the <u>local</u> <u>vertical</u> to body frame.	0.0	deg
BETAE	β	Pitch Angle. The first Euler angle in a 2-1-3 rotation of th <u>local vertical</u> to body frame.	0.0 e	deg
GAMAE	γ	Yaw Angle. The last Euler angle in a 2-1-3 rotation of the <u>local vertical</u> to body frame.	0.0 e	deg

Fortran Symbol	Math Symbol	Description	Preset Value	Units
OMBC (i) (i) = 1, 2, 3	ω _{i_{B/C}}	Components of satellite angular velocity with re- spect to the <u>local vertical</u> <u>frame</u> , with components expressed in the body frame.	0.0	deg/sec
IBTEST		Terminates case (within stack) when BETAE goes from - to +. Used in boom deployment. (Preset value = 0	0	N.D.
		!BTEST = 0 By-passes option		
		IBTEST = 1 Employs option		

BOOM DEPLOYMENT FROM SUN PULSE OPTION

Fortran Symbol	Description	Preset Value
ISDPLY	ISDPLY = 0 By-passes subroutine ISDPLY = 1 Employs subroutine	0
ISAXIS	Axis of rotation of spacecraft. (Should be either 1, 2, or 3)	3
NCROSS	Number of sun crossings before deployment begins.	5
STANG	Delay angle. (deg)	
ANGTOL	Angle tolerance. (deg)	
NPRINT	Number of print-outs from (NCROSS-1) crossings to NCROSS (the last) crossing.	2
IRAXIS	Spacecraft body axis upon which sun sensor is located.	3

SPINNING BODY OPTION ATTITUDE AND BODY RATES

Fortran Symbol	Math Symbol	Description	Units
PSI1	¥	First Euler angle in a 3-1-3 rotation from local inertial to body frame. (preset = 0.0)	deg
THET1	θ	Intermediate Euler angle in a 3-1-3 rotation from local inertial to body frame. (preset = 0.0)	deg
РШ1	ø	Final Euler angle in a 3-1-3 rotation from local inertial to body frame. (preset = 0.0)	deg
OMEG(i) (i) = 1, 2, 3	ω _{iB}	Components of satellite angular ve- locity with respect to inertial space, with components expressed in body frame. Spin axis is the third body axis. (preset = 0.0)	deg/sec
ETTA ZETTA	η (2nd angle) ζ (1st angle)	Angles which specify a preferred inertial direction of the body spin axis with respect to inertial space. This is a $3-2$ rotation from the local inertial frame. (preset = 0.0)	deg deg
NUTATION VI	SCOUS RING D	AMPER OPTION	
Fortran Symbol	Math Symbol	Description	Units
IVISCS		Control word to employ viscous ring nutation damper into program. (Preset value = 0)	Integer, N.D.
		IVISCS = 1 Employs subroutine	
		IVISCS = 0 By-passes subroutine	
VISCTY	γ	Kinematic viscosity of liquid in nutation damper. (preset = 3.0)	Centistokes
RADTBE	â	Radius of nutation damper tube.	inches

Fortran Symbol	Math Symbol	Description	Units
RADRNG	b	Ra .s of nutation damper ring. (preset = 10.0)	inches
DENSTY	ρ	Density of fluid in nutation damper. (preset = 56.16)	lb/ft ³
ETTAD ZETTAD	η _D (2nd angle) ζ _D (1st angle)	Angles which specify the axis of the ring damper with respect to the body. This is a 3-2 rotation from the body frame to the dam- per axis. The Y_3 body axis initially coincides with the damper axis. (preset = 90.0)	deg deg
YARRA Y	Y ₁ , Y ₂ , Y ₃	Components of torque exerted by the liquid upon the satellite, directed along the damper ring axis. (preset = 0.0)	ft-lb
OMEGL	ω _L	Initial spatial average angular velocity of the liquid relative to the ring. (preset = 0.0)	deg/sec

ATTITUDE CONTROL MOMENT OPTION

Fortran Symbol	Math Symbol	Desc ription	Units
IATTDE		Control word to call the attitude control subroutines.	Integer, N.D.
		IATTDE = 0 By-passes subroutine	
		IATTDE = 1 Employs subroutine	
		(Preset = 0)	
DTMXA		Time increment from initial problem time to when the attitude control sys- tem is activated (time reference at beginning of stack for stacked cases) (preset = 1.0)	seconds

Fortran Symbol	Math Symbol	Description	Units
PXI	В	Fraction of spin period after sun line reference point established when control torque is applied to Y_i body axis. Absolute value should be greater than one print interval. (preset = 0.4)	N.D.
ΡΧΟ	С	Fraction of spin period after sun line reference point established when control torque is removed from Y_1 body axis. (preset = 0.5)	N.D.
СМХ	M _{iy}	Control moment along Y_1 body axis. Input as a positive number means mo- ment applied about positive Y_1 body axis. Input as a negative number means moment applied about negative Y_1 body axis. (preset = 0.0)	ft-lb
NPULSE		The number of sequential moment pulses applied to the body once the control system is activated. The application rate is one pulse per spin period. (preset = 4)	Integer, N.D.

Constant Torque Levels About Body Axes

Fortran Symbol	Math Symbol	Description	Units
ITORK		Control word to apply torque about body axes. (Preset value = 0)	Integer, N.D.
		ITORK = 0 No torque applied	
		ITORK = 1 Torque applied	
CMTORK(3)		Torque magnitude applied to body axes. (preset = 0.0)	ft-lb

SPIN AXIS MOMENT OPTION

Fortran Symbol		Description	Units		
ISPIN3		Control word to call spin axis moment subroutine. (Preset value = 0)			
	ISPIN3 =	= 0 By-pass subroutine			
	ISPIN3 =	= 1 Employ subroutine			
DTZMA		crement from initial problem time to edge of spin moment.	seconds		
PZDT	Duration	of spin moment.	seconds		
CMZO	a positiv	de of moment about the spin axis. Input as ve number means moment applied about the Y_3 body axis.	ft-lb		
THRUST LO	DADING OF	PTION			
Fortran Symbol	Math Symbol	Description	Units		
IPULSE	N. A.	Control word to act. the thrust application	N. D.		
		IPULSE = 0 No thrusting			
		IPULSE = 1 Apply thrust once			
		IPULSE > 1 Apply thrust IPULSE times (only if ISPLSE $\neq 0.$)			
ISPLSE	N.A.	Control word to activate sun crossing time to start the thrusting	N. D.		
		ISPLSE = 0 Sun crossing not used			
		ISPLSE = 1 Sun crossing used			
ISPNP	N. A.	Control word to print out the orbit update message (only if ISPLSE = 1, IPULSE >1) i.e., if ISPNP = 5, the orbit update message will be printed at every 5th pulse.	N. D.		
IPLPRI	N.A.	Control word for number of thrust pulses per spin record	N.D.		

Fortran Symbol	Math Symbol	Description	Units
		IPLPRP = 1 One pulse	
		IPLPRP = 2 Two pulses	
		Only one or two pulses are allowed. (Preset = 1)	
TVECTR(3,2)	{ ^D _v }	Unit vector defining the direction of the force applied to the body due to thrusting. This vec- tor is defined in the body frame. (preset = 0.0 , 0.0, 1.0)	N.D.
TLOCAT(3,2)	{ [¢] _T }	Location in the body frame of the point applica- tion of the force due to thrusting. (preset = 0.0)	feet
TTIMES(4,2)		Times to define thrust variation measured from the problem starting time (see page A-16).	sec
	t _i	TTIMES (1,I) Start of pulse	
	t ₂	TTIMES (2,I) End of exponential rise	
	t ₃	TTIMES (3.1) End of linear thrust	
	t ₄	TTIMES (4,I) End of pulse I=1 or 2	
TPARAM(4,2))	Parameters to define thrust variation	
	Α	TPARAM (1,I) Coefficient during exponential rise	lb
	В	TPARAM (2,I) Exponential decay constant during exponential rise	sec ⁻¹
	С	TPARAM (3,1) Coefficient for linear slope	lb/sec
	D	TPARAM (4,1) Exponential decay constant dur- ing exponential decay	sec ⁻¹
REFANG(2)	A _R	Angular delay from the Y_1 axis crossing the sun line to the initiation of the pulse.	deg

JET DAMPING OPTION

Fortran Symbol	Math Symbol	Description	Preset Value	Units
IJTDMP		Control word to invoke jet damping option	0	Integer, N.D.
		IJTDMP 0 No jet damping		
		IJTDMP 1 Jet damping		
		NOTE: Jet damping implies thrusting and therefo IPULSE>0	re	
TANKCG(3)		Position vector to center of mass of fuel to be expended during thrusting.	0.0 D0	ft
FUELPP(2)		Fuel to be expended during one thrust pulse		slugs
FUELM		Total mass of fuel. (SLUGS)		slugs
RGYFL(3)		Square of the radius of gyration of the fuel mass about its own center of mass		ft²

ANGULAR MOMENTUM OPTION

Fortran Symbol	Math Symbol	Description	Units
ШСАГС	N.A.	Control word to calculate and print the angular momentum of the system.	N. D.

Fortran Symbol	Math Symbol	Description	Units
IHCALC		IHCALC = 0 No calculation	
(cont'd)		IHCALC = 1 Calculate and print	
IHREF	N. A.	Control word to compute reference direction for the EPSERR from the system initial angular momentum.	N. D.
		IHREF = 0 No calculation	
		IHREF = 1 Determining reference direction from angular momentum.	

MOMENTUM WHEEL OPTION

Fortran Symbol	Math Symbol	Description	Units
IWHEEL		Control word to call momentum wheel subroutine. (Preset value = 0)	Integer, N.D.
		IWHEEL = 0 By-passes subroutine	
		IWHEEL = 1 Employs subroutine	
XMOMIN(i) (i) = 1, 2, 3	I _{wi}	Inertia of wheel about its spin axis. For $i = 1$, wheel is located on Y_1 body axis, $i = 2$ wheel is located on Y_2 body axis and $i = 3$, wheel is located on the Y_3 body axis. (preset = 1.0, 1.0, 1.0)	slug ft ²
VMOM(i) (i) = 1, 2, 3	Ω _i	Angular velocity of the i wheel with respect to the body. Input as a posi- tive number signifies that the angu- lar velocity vector points in the direc- tion of the positive body axis. Input as a negative number signifies that the angular velocity vector points in the direction of the negative body axis. (preset = 0.0, 0.0, 0.0)	deg/sec

Fortran Symbol	Math Symbol	Description Units
DVMOM(I)	{ώ _w }	Momentum wheel acceleration deg/sec^2 (negative for deceleration).I = 1, 2, 3 (preset = 0, 0, 0, 0, 0, 0)
VSUR(I)	$\{\omega_w\}_{UP}$	Upper limit of momentum wheeldeg/secspeed. I = 1, 2, 3 (preset = 1.0D6, 1.0D6, 1.0D6)
VSDR(I)	{ω _w } _{L 0}	Lower limit of momentum wheeldeg/secspeed. I = 1, 2, 3 (preset = $-1.0D6$, $-1.0D6$, $-1.0D6$)

MAGNETIC MOMENT OPTION

Fortran	Math		Preset	
Symbol	Symbol	Description	Value	Units
IMGMTS		Control word to exclude or allow møgnetic moments. IMGMTS 1 uses constant spacecraft dipole defined by DPMAG; IMGMTS 2 provides proportional magnetic coil spin up; IMGMTS 3 provides con- stant level magnetic coil spin up.	. 0	Integer, N.D.
MAGFLD		Number of harmonics included in the representation of the earth's magnetic field (preset =		Integer, N.D.
G(I, J) H(I, J)		Coefficients of earth's magneti field.	с	
COILS(3)		Peak coil dipole strength along body axes. For example, for spin up COILS(1) -1500.0 COILS(2) 1500.0 for spin down COILS(1) 1500.0 COILS(2) -1500.0 60		pole-∙cm

Fortran	Math		Preset	
Symbol	Symbol	Description	Value	Units
DPMAG(i) (i) = 1, 2, 3		Body frame components of the dipole moment of the satellite. Positive input means that the north pole of the dipole points in the direction of the positive body axis. For negative inputs, the north pole points in the direction of the negative body axis.	0.0	p ole-cm

NOTE

An IGRF 1965 Geomagnetic Field model includes 80 spherical harmonic coefficients is used (REF6).

SPACECRAFT ACCELERATION OPTION

Fortran Symbol	Math Symbol	Description	Preset Value	Units
ІАСОМР		Control word to activate the acceleration compu- tation for both hub and element tip accelerations (=1).	0	N.D.
IHUBAC		Control word to activate the acceleration compu- tation and printout for the hub (=1).	0	N.D.
ITIPAC		Control word to activate the acceleration compu- tation and printout for the element tip (=1).	0	N.D.

Fortran	Math		Preset	
Symbol	Symbol	Description	Value	Units
NUMHUB	N	Number of accelerometers and points within the hub where acceleration vectors are to be computed.		N.D.
YHUB(I, J)1	{Y _{hub} }	Coordinates of the jth accelerometer in the Y body frame:	0.0	feet
		I = coordinate number (i = 1, 2, 3)		
		J = accelerometer number (j = 1 to N)		
ALFAEA(J)	α _a	Second Euler angle de- fining the orientation of the No. 1 axis (sensitive axis) of the jth accelerom- eter to the y body frame (rotation about y_1).	0.0	deg
BETAEA(J)	β _a	First Euler angle defining the orientation of the ac- celerometer relative to the y body frame (rotation about y_2).	0 . 0	deg
GAMAEA(J)	γ_a	Third Euler angle defining the orientation of the accel- erometer relative to the y body frame (rotation about y_3). β - α - γ or 2-1-3 rotation	0.0 n.	deg
ZXI*(k,n)	X _n (1.0)	Shape function evaluated at $z_1 = 1.0$ for kth element and nth mode. $n = 1, 2, 3$. Normalized cantilever beam eigenfunction is used for the preset value.	n = 1, 2, 3	

Accelerometer Location Variables

Fortran Symbol	Math Symbol	Description	Preset Value	Units
ZXIP*(k,n)	X' (1.0)	Derivatives of shape func- tion evaluated at $\overline{z}_1 = 1.0$ for kth element and nth mode. $n = 1, 2, 3$. Norm- alized cantilever beam eigenfunction is used for preset value.	4.53D0 for	
ZXIPP*(k, n)	X''(1.0)	Second derivative of shape function evaluated at $\overline{z}_1 =$ 1.0 for kth element and nth mode. n = 1, 2, 3. Normalized cantilever eige function is used for the ore set value.	n = 1, 2, 3 n-	
ZZNP*(k,I,n) [z _{np}]	Axial displacement shape function evaluated at $\overline{z}_1 = 1.0$ for kth element. I = 1 to n; $J = 1$ to n. ZZNP should always be input as a square matrix.		

F: ST FOURIER TRANSFORM (FFT) ANALYSIS

Fortran Symbol	Math Symbol	Description	Units
ICSD		Control word to activate the FFT analyses subroutine. ICSD = 0 No FFT analysis ICSD = N FFT analysis activated (preset = 0)	
		The integer N requests that N frequencies be extracted from the selected KPLOTS data sets. Also, the following must be input for FFT analysis: KPLOTS(253)	
- <u>-</u>		set to 2 for plot and FFT analysis set to 3 for FFT analysis only.	

^{*}When other than a normalized cratilevel beam shape function is desired, the user should input the appro-priate values of ZXI, ZXIP, ZXIP and ZZNP.

<u>NGTE</u>

The value of 1¹ should not exceed the number of frequencies that can be asonably be expected to exist in the data. The range of permissible values for N are from 1 to 10, $1 \le N \le 10$.

There are two precautions the user should take when employing the Fast Fourier Transform analysis option. First, the data points to be analyzed in the Fast Fourier Transform are controlled by the values of TSTOP and FREQ, i.e.,

N = Sample size =
$$\frac{\text{TSTOP}}{\text{FREQ}} + 1$$

In other words, the data set input to the FFT subroutines is exactly the same as that appearing in the normal printout. Therefore, the input TSTOP value should at least cover more than the two longest vibrational periods of the data set to be analyzed. The value of FREQ should not be too coarse in order that the higher harmonics can be picked up by the analysis. Furthermore, it is preferred that the data set to be analyzed is in steady state condition. Therefore, it is recommended that the user first run the program without using the FFT analysis option to obtain a general idea about the periodic behavior of the data sets to be analyzed, and then run the program with the FFT option inputting the appropriate TSTOP and FREQ values. Second, because the data sets gener uted by FSD program are all deterministic, the autocorrelation function analysis may not be necessary; hence, IAFM(4) should be set equal to ϱ .

ATMOSPHERIC DENSITY MODEL OPTION

Fortran Symbol	Math Symbol	Description	Units
IDRAG		Control word to include or exclude atmos- phere models. Set to 1 for 1962 standard atmosphere. Set to 2, 3 or 4 for Jacchia- Roberts atmospheric model (see below). Preset = 1	
IJACCT		Modified Julian date of first data on Jacchia-Roberts file (10300 corresponds to March 19, 1969). Note: inp ^{.,+} value is used o ^{.,,,} for IDRAG3.	

Fortran Symbol	Math Symbol	Description	Units
K P(21, 8)		Three hour magnetic activity indices for 21 day period. Note: input values are used only for IDRAG 2 or 3.	
TC(20)		Exospheric temperatures. Note: input values used only for IDRAG 2 or 3.	
ER(3)		Earth's rotation rate for rotating atmos- phere calculation. (preset = 0.0D0 0.0D0 7.29211D-5 rad/sec)	

NOTE

For IDRAG 2 the modified Julian date for the Jacchia-Roberts data file is internally set to the simulation date defined by IDATE. For IDRAG 3 the input modified Julian date defined by IJACCT is used. For IDRAG 4 the Jacchia-Roberts data is to be read from unit 15 (360/95).

Linear	Varying	Drag	Loading	(for	tethered	mass)
				· · · ·		

XLTEST	Linear varying drag loading is calculated	feet
	for any element whose length is greater	
	than XLTEST. (preset = $1.0D + 06$)	

NOTE

The arrays for pressure calculations can be input but are preset to appropriate values in BLOCK data.

GROUND SIMULATION OPTION

Fortran Symbol	Math Symbol	Description	Units
IGRUND		Control word to activate the ground simulation environment. IGRUND = 1 Activates option IGRUND = 0 Does not activate option (preset = 0)	NA

Fortran Symbol	Math Symbol	Description	Units
IGASBR		Control word to activate the air bearing ground simulation. If IGRUND = 1 and IGASBR = 0, the spin platform (single axis) capability is used. If IGRUND = 1 and IGASBR = 1, air bearing (3 axis) capability is used. (preset = 0)	NA
IA LTUD		Control word to activate the computation of the local verticle direction of the gravitational acceleration at the ground testing site altitude. If IALTUD = 0, gravitational acceleration input is necessary; if IALTUD = 1, the altitude input is necessary.	NA
ALFAEG	α _C	First rotation angle of 3-1 rotation from local geographical frame to the body frame (or the right ascention angle), see page A-19. (Preset = 0.0D0)	deg
DELTAG	δ _G	Second rotation angle of a 3-1 rotation from local geographical frame to the body frame (or the declination angle of spin or number 3 body axes in local geographical frame). (Preset = $0.0D0$)	deg
ALTUDE	h _G	The altitude of the ground test site. Used to compute the gravitational acceleration at the altitude when IALTUD = 1. (Preset = $0.0D0$)	km
O MGY(1-3)	{w _G }	Angular velocity vector of body axes expressed in the local geographical frame. (Preset = 0.0D0)	deg/sec
GACC(1-3)	{A _G }	Three components of acceleration vector input along the three axes of the local geographical frame. A $_{G1}$ is along the east local horizontal, A $_{G2}$ is along the north local horizontal and A $_{G3}$ is along the local vertical direction. (Preset = 0.0D0 0.0D0 32.145(552D0) 66	ft/sec ²

SECONDARY BODY SIMULATION

The effect of a rigid secondary body connected to the primary body through a three degree of freedom rotary (universal) joint can be simulated. The connecting joint has either one, two, or three degree of freedom selected by input. The suspension simulation for the secondary body includes a bilinear spring, viscous damping, and angular stops (limits) for each axis.

A rastering capability of the secondary body is included so that the azimuth angle can be swept through at a specified rate: and at the angular stop an incremental step change in elevation may be made. The secondary body then moves in the opposite azimuth direction to the opposite stop, etc. Rastering stops when the number of input elevation steps have been completed.

Fortran		Preset	
Symbol	Туре	Value	Description
I2BDY	I*4	0	Control word to add secondary body to simulation
			I2BDY 0 No secondary body I2BDY 1 Secondary body present
NDOF2	I*4	0	Number of degrees of freedom of secondary body
			NDOF2 1 Rotation about the 2 axis of secondary body.
			NDOF2 2 Rotation about the 3 & 2 axes of secondary body.
			NDOF2 3 Rotation about the 3, 1 & 2 axes of s condary body.
SECM	R*8	0.0D0	Mass of secondary body. (28). NOTE: The mass of the secondary body must be included in the system mass ZMS.
SECI(3,3)	P*8	0.0D0	Mass moments of inertia of secondary body about its own center of mass. (slugs-ft ²).
ZBAR2(3)	R*8	0.0D0	Location of the secondary body center of mass measured from the pivot point which is the secondary body fixed reference frame origin (ft.).

SECONDARY BODY SIMULATIONS (Cont.)

Fortran Symbol	Туре	Preset Value	Description
YI02(3)	R*8	0.0D0	Location of the pivot point for the sec- ondary body measured in the main body reference frame. (ft.).
SBK 1(3)	R*8	0.0D0	Spring constant for secondary body sus- pension. Applies to angles less than the stop angle. (ft-lb/rad).
SBK2(3)	R*8	0.0D0	Spring constant for secondary body suspension. Applies to angles greater than the stop angle. (ft-lb/rad).
SBSTA(3)	R*8	0.0D0	Stop angle for secondary body suspen- sion. (rad).
SBDM(3)	R*8	0.0D0	Damping coefficients for secondary body motions. (ft-lb-sec/rad).
GAM20	R*8	0.0D0	Rotation about the three axis in a 3-1-2 angle set from the main body frame to the secondary body equilibrium frame. (deg). NOTE: The secondary body equilibrium frame is that orientation at which spring have zero restoring torque.
ALP20	R*8	0.0D0	Rotation about the one axis in a 3-1-2 angle set from the main body frame to the secondary body equilibrium frame. (deg).
BET20	R*8	0.0D0	Rotation about the two axis in a 3-1-2 angle set from the main body frame to the secondary body equilibrium frame. (deg).
GAM2I	R*8	0.0D0	Initial condition for rotation about the three axis of the secondary body. Measured from the equilibrium frame to the secondary body fixed frame. (deg).
ALP2I	R*8	0.0D0	Initial condition for rotation about the one axis of the secondary body. Measured from the equilibrium frame to the secondary body fixed frame. (deg).

SECONDARY BODY SIMULATION (Cont.)

Fortran Symbol	Type	Preset Value	Description
BET21	R*8	0.0D0	Initial condition for rotation about the two axis of the secondary body. Mea- sured from the equilibrium frame to the secondary body fixed frame. (deg).
			NOTE: The motion of the secondary body is simulated in terms of a 3-1-2 set of angles from the equi- librium trame to a secondary body fixed frame. If only two degrees of freedom are specified, the sim- ulation uses a 3-2 set of angles. If one degree of freedom is speci- fied the simulation uses a rotation about the 2 axis.
OM2I(3)	R*8	0.0D0	Initial conditions for angular rates of the secondary body about the secondary body fixed axes. (deg/sec).
SBUP(2)	R*8	2*1.0D-3	Integration upper bounds for secondary body angles and angular rates.
SBDN(2)	R*8	2*1.0D-5	Integration lower bounds for secondary body angles and angular rates.
Plotting locat	ions for secon	ndary body va	ariables
Fortran Symbol		Description	<u>!</u>
KPLOTS (23	6)	Rotation o Ŷ _{SB}	of secondary body about 3 axis
KPLOTS (23	7)	Rotation o ^α SB	of secondary body about the carried 1 axis
KPLOTS (23	8)	Rotation o β _{SB}	of secondary body about the carried 2 axis

Plotting locations for secondary body variables (Cont.)

Fortran Symbol	Description
KPLOTS (239)	Relative angular rate of secondary body about 3 axis $\dot{\gamma}_{_{\rm SB}}$
KPLOTS (240)	Relative angular rates of secondary body about the carried l axis of secondary body $\dot{\alpha}_{SB}$
KPLOTS (241)	Relative angular rates of secondary body about the carried 2 axis β_{SB}
KPLOTS (242)	Component of secondary body relative angular velocity on 1 axis of secondary body $\omega_{\rm ISB}$
KPLOTS (243)	Component of secondary body relative angular velocity on 2 axis of secondary body ω_{2SB}
KPLOTS (244)	Component of secondary body relative angular velocity on 3 axis of secondary body ω_{3SB}

Secondary Body Rastering Input

Fortran Symbol	Type	Preset Value	Description
IRAST	I *4	0	Control word to invoke prescribed rastering motions for secondary body.
			IRAST = 0 No rastering
			IRAST = 1 Rastering prescribed
IARST(3)	I*4	0	Control word to specify type of rastering cycle to be invoked on each axis.
			IARST(I) = 0 No motion
			IARST(I) = 1 Motion of Type 1
IARST(3)	I*4	0	invoked on each axis. IARST(I) = 0 No motion

Fortran Symbol	Туре	Preset Value	Description
			IARST(I) = 2 Motion of Type 2
			I = 1 to 3
			I = 1 motion about the 3 axis
			I = 2 motion about the 1 axis
			I = 3 motion about the 2 axis
			NOTE: The types of motion cycles are shown in Figure 20 and 21 on pages A-20, 21.
IRSCY(3)	I*4	0	Number of cycles of rastering motion to be per- formed on each axis.
DELA(3)	R*8	0.0D0	Angular motion to be performed during a single cycle of rastering motion for each axis. (deg).
TAUA(4,3)	R*8	0.9 D 0	Time increments to define rastering cycle for each axis. See Figure 20 and 21.
			TAUA (1, 1) = T_1
			TAUA (2, 1) = T_2
			TAUA (3, 1) = T_3
			TAUA (4. 1) = T_4
ANG20(3)	R*8	0.0D0	Initial angle for the start of the rastering cycle. (deg).

ACTUATOR INITIATION FROM ZERO CROSSING OF FILTERED STATE VARIABLES

Thrusters and momentum wheels can be activated from either positive or negative going zero crossings of spacecraft state variables such as accelerometer readings. body components of spin vector, body components of earth's magnetic field, and body components of the sun vector. A fixed time delay is permitted by input starting from the time zero crossing of the state variable. Also, a simple filter of the form:

$$\frac{K\tau s}{(1 + \tau s)^2}$$

where K = gain factor, input

s = Laplace operator

 τ = time constant, input

is included to take out any d.c. bias that may be present in the state variable. The momentum wheel speed is driven in a triangular wave form between limits (VSUR and VSDR) at the frequency specified by input.

Fortran Symbol	Туре	Preset Value	Description
IACFLT(20)	R*8	0	Control integers for filtered sensor signal to actuate momentum wheel cycling or pulsed thrusting.
IACFLS(1) = IACFLT(1) =			No filtered sensor simulation. Filtered sensor simulation.
IACFLT(2) = IACFLT(2) =			Pulsed thrusting to be simulated. Momentum wheel cycling to be simulated.
IACFLT(3) = IACFLT(3) = IACFLT(3) = IACFLT(3) =	2 3		Sensor measures magnetic field. Sensor measures an acceleration component. Sensor measures body angular velocity. Sensor measures solar intensity.
IACFLT(4) =	0		Use natural initial conditions for filter inte- graters.
IACFLT(4) =	1		Use input initial conditions for filter inte- grater.
ACPARM(20)) R*8	0.0D0	Numerical data required for filtered sensor signal simulation.
ACPARM(1)			Filter gain.
ACPARM(2)			Filter time constant.
ACPARM(3-5	5)		Unit vector defining sensor direction in the body frame.
ACPARM(6-8	3)		Sensor position in the body frame. (for acceleration sensor).
ACPARM(9)			Cycle half period for momentum wheel cycling.

Actuator Initiation from Zero Crossing of Filtered State Variables (Cont.)

Fortran Symbol	Туре	Preset Value	Description
ACPARM(10)			Time delay for initiation of actuator after zero crossing.
ACPARM(17)			Initial condition for filter integrater.
ACPARM(18)			Initial condition for filter integrater.
ACPARM(19)			Upper bound for filter ir tegrater.
ACPARM(20)			Jower bound for filter integrater.

Plotting locations for filter state variables

Fortran Symbol	Description
KPLOTS(245)	Sensor output
KPLOTS(246)	Filter output
KPLOTS(247)	Filter first integrater output

DUAL-SPIN SPACECRAFT CONTROL SYSTEM (DE-B)

The input Fortran symbols for the DE-B control and active nutation damper system are given below. A block diagram of the control system is given in Appendix A, page A-22 along with some mathematical description of the formulation.

Fortran Symbol	Type	Preset Value	Description
KNTRL(10)	I *4	0	Vector of control integers for DE-B control system simulation
KNTRL (1)			KNTRL(1) = 0 No control system KNTRL(1) = 1 Control system with second order sensors KNTRL(1) = 2 Control system with fourth order sensors
(2)			KNTRL(2) = 0 No nutation damper KNTRL(2) = 1 Primary damper circuit
			73

Fortran Symbol	Туре	Preset Value	Description
(2)			KNTRL(2) = 2 Offset pointing damper circuit
(3)			KNTRL(3) = 0 No KNTRL(3) = 1 First order tachometer
(4) – (8)			Not used
(9)			KNTRL(9) = I, I is starting integer for noise generator. I <i>must be odd</i> and should have 6 or 7 digits.
(10)			KNTRL(10) = 0 No noise channels KNTRL(10) = 3 Noise generated for sensors & bial voltage. Use only 0 or 3.
CPARM(43)			Control system parameters for DE-B control system simulation
CPARM	Math Symbol	Units	Description
	<u>oj</u>		Description
(1)	$\tau_{\rm s}$	sec.	Sensor time constant
			
(1)	$ au_{s}$	sec.	Sensor time constant
(1) (2)	$\tau_{\rm s}$ $\tau_{\rm l}$	sec.	Sensor time constant Lead term in pitch compensation
(1) (2) (3)	$\tau_{\rm s}$ τ_1 τ_2	sec. sec. sec.	Sensor time constant Lead term in pitch compensation Lag term in pitch compensation
(1) (2) (3) (4)	$\tau_{\rm s}$ τ_1 τ_2 $\tau_{\rm F}$	sec. sec. sec. sec.	Sensor time constant Lead term in pitch compensation Lag term in pitch compensation Tachometer time constant
 (1) (2) (3) (4) (5) 	$\frac{\tau_{s}}{\tau_{1}}$ $\frac{\tau_{2}}{\tau_{F}}$ K_{s}	sec. sec. sec. sec. volts/rad.	Sensor time constant Lead term in pitch compensation Lag term in pitch compensation Tachometer time constant sensor gain
 (1) (2) (3) (4) (5) (6) 	τ_{s} τ_{1} τ_{2} τ_{F} K_{s} K_{c}	sec. sec. sec. sec. volts/rad. volts/volt volts/volt	Sensor time constant Lead term in pitch compensation Lag term in pitch compensation Tachometer time constant sensor gain Pitch amplifier gain
 (1) (2) (3) (4) (5) (6) (7) 	τ_{s} τ_{1} τ_{2} τ_{F} K_{s} K_{c} K_{a}	sec. sec. sec. sec. volts/rad. volts/volt volts/volt volts/volt	Sensor time constant Lead term in pitch compensation Lag term in pitch compensation Tachometer time constant sensor gain Pitch amplifier gain Power amplifier gain
 (1) (2) (3) (4) (5) (6) (7) (8) 	τ_{s} τ_{1} τ_{2} τ_{F} K_{s} K_{c} K_{a} K_{f}	sec. sec. sec. sec. volts/rad. volts/volt volts/volt volts/volt	Sensor time constant Lead term in pitch compensation Lag term in pitch compensation Tachometer time constant sensor gain Pitch amplifier gain Power amplifier gain c) Tachometer gain

<u>CPARM</u>	Math Symbol	Units	Description
(12)	V _{lim}	volts	Voltage limit in compensation amplifier
(13)	κ _{μι}	volts/volt	Gain in primary damper circuit
(14)	$ au_{\mu 1}$	sec.	Time constant in primary damper circuit
(15)	V _b	volts	Bias voltage
(16)	$ au_{ m co}$	ft-lbs	Coulomb friction torque
(17)	Ω_{min}	rad/sec	Test relative wheel speed to avoid coulomb friction torque discontinuity at zero speed
	$\tau_{\rm c} = \tau_{\rm c0} - \frac{1}{3}$	$\frac{\Omega_{\omega}}{\Omega_{\min} + \Omega_{\omega} }$	
(18)	ρ,	volts/voits	In fourth order sensor. See p. A-22.
(19)	κ _{μ2}	sec.	Gain in offset pointing damper circuit
(20)	$ au_{\mu 2}$	N.D.	Time constant in offset pointing damper circuit
(21)		N.D.	Sign of damper circuit output set 1.0 or -1.0
(22)		volts	Roll sensor output limit
(23)		ftlbs.	Motor torque output upper limit
(24)		ftlbs.	Motor torque output lower limit
(25-30)			Not used
(31-33)			Noise model SIGMA for pitch, roll and vo. age bias respectively
(34-35)			Not used
(36-38)			Noise model LAG for pitch, roll and vol- tage bias respectively
(39-40)			Not used

CPARM	Math Symbol	Units	Description
(41)		rad.	Pitch sensor bias
(42)		rad.	Roll sensor bias
(43)			Not used
Fortran Symbol	Type	Preset Value	Description
SVCS(20)	R*8	0.000	Initial conditions for control system state vector
SVCS		<u>Units</u>	Description
(1)		volts	Pitch sensor output
(2-4)		volts	Pitch sensor dynamics
(5)			Not used
(6)		volts	Roll sensor output
(7-9)		volts	Roll sensor dynamics
(10)			Not used
(11)		volts	State variable for pitch compensation amplifier
(12)			Not used
(13)		volts	Tachometer output
(14)			Not used
(15)		rad/sec	Wheel speed
(16-18)			Not used
(19)		volts	Nutation damper
(20)		volts	Nutation damper

Fortran Symbol	Type	Preset Value	Description
GNIC(1))	R*8	0.0D0	Initial conditions for noise model channels.
			GNIC(1) Pitch channel
			GNIC(2) Roll channel
			GNIC(3) Bias voltage channel
			GNIC(4-10) Not used
CSUP(20)	R*8	1.0D-2	Upper bound on difference bet veen $_{1}$ dicted and corrected control system state vector. Lo- cation in CSUP corresponds to the location of the variable in the state vector initial condition array SVCS
CSDN(20)	P.48	1.0 D-4	Lower bound on difference between predicted and corrected control system state vector. Lo- cation in CSDN corresponds to the location of the variable in the state vector initial condition array SVCS

In addition to the input described above, the following m' st be given:

IWHEEL 1 Makes call to momentum wheel subroutine (WF	HEELS))
--	--------	---

XMOMIN(2) — Inertia of momentum wheel (slug-ft²)

It is recommended that integration control bounds we given for critical control variables to prevent integration time step from exceeding the time constants of the closed-loop system. For example, if fastest component in the control system has a time constant of .1 sec., it is unreasonable to expect accurate simulation results with a larger time step. Setting the integration bounds to some reasonable (small) fraction of the nominal value (eg 10^{-2} to 10^{-4}) will ensure that the integration errors are of the same order (e.g. 2 to $\pm p^{1}$ ace accuracy). The time stop corresponding to this level of accuracy will be determined internally.

The output for the DE-B control system simulation includes both printed data and plots. The printed output is as follows:

Fortran Symbol	Description	Units
PTCH Out	Pitch channel sensor output	vəlts
ROLL Out	Roll channel sensor output	volts

Fortran Symbol	Description	<u>Units</u>
COMP Out	Output of compensation amplifier	volts
TACH Out	Output of tax nometer	volts
TMOTOR	Torque output of momentum wheel motor	ft-lbs
WHL SPD	Momentum wheel speed	rad/sec
NUTD Out	Nutation damper phase shift circuit output	volts

The output available for plotting is the entire state vector for the control system. The locations and definitions of these variables are as follows.

KPLOTS Address	Description	Units
216	Pitch sensor output	volts
217-219	Pitch sensor dynamics	volts/sec, etc.
220	Not used	
221	Roll sensor output	volts
222-124	Roll sensor dynamics	volts/sec, etc.
225	Not used	
226	Output of pitch compensation amplifier	volts
227	Not used	
228	Tachometer output	volts

TWO AXIS GIMBLE SIMULATION (No Active Control)

Fortran Symbol	Type	I reset Value	Description
IGMBL	I* 4	0	Control word for two axis gimble simulation
			IGMBL 0 No gimble simulated
			IGMBL 1 Gimble simulated
AZIN(3,3)	R*8	0.0D0	Moments of inertia of the azimuth platform about its own center of mass (slug-ft ²)
AZAX(3)	R*8	0.0D0	Position vector in the body frame to the origin of the gimble motion reference frame. This position is a point on the azimuth motion axis. (ft)
AZCG(3)	R*8	0.0D0	Position vector to the azimuth platform center of mass in the azimuth motion reference frame. (ft.)
AZMS	R*8	0.0D0	Mass of the azimuth platform (slugs)
ELIN(3,3)	R*8	0.0D0	Moments of inertia of the elevation platform about its own center of mass. (slug-ft ²)
ELAX(3)	R *8	0.0D0	Position vector in the azimuth motion reference frame. This position is a point on the elevation motion axis. (ft)
ELCG(3)	R* 8	0.0D0	Position vector to the elevation platform center of mass in the elevation motion reference frame. (ft)
ELMS	R*8	0.0D0	Mass of the elevation platform (slugs)
GMK1(2)	R*8	0.0D0	Spring constant for two axis gimble suspension. Applies to angles less than the stop angle. (ft-lb/rad) GMK1(1) Azimuth Axis GMK1(2) Elevation Axis
GMK2(2)	R*8	0.CD0	Spring constant for two axis gimble suspension. Applies to angles greater than the stop angle. (ft-lb/rad) GMK2(1) Azimuth Axis GMK2(2) Elevation Axis
GMDMP(2)	R*8	0.0D0	Viscous damping constant for two axis gimble suspension. (ft-lb-sec/rad) GMDMP(1) Azimuth Axis GMDMP(2) Elevation Axis 79

TWO AXIS GIMBLE SIMULATION (No Active Control) CONT.

Fortran Symbol	Type	Preset Value	Description
GMSTP(2)	R*8	0.0D0	Stop angle for two axis gimble suspension. (rad)
			GMSTP(1) Azimuth Axis
			GMSTP(2) Elevation Axis
AZIMO	R*8	0.0[0.0	Rotation about the three axis in a 3-1-2 angle set from the main body frame to the gimble motion reference frame. (deg)
			NOTE: The gimble motion reference frame is a main body fixed frame
ROLLO	R*8	0.0D0	Rotation about the one axis in a 3-2-1 angle set from the main body frame to the gimble motion reference frame (deg)
ELEVO	R*8	0.0D0	Rotation about the two axis in a $3-1-2$ angle set from the main body frame to the gimble motion reference frame (deg)
AZIMI	R*8	0.0D0	Initial azimuth angular position for the azimuth platform (deg)
AZIMID	R*8	0.0D0	Initial azimuth angular velocity for the azimuth platform (deg/sec)
ELEVI	R*8	0.0D0	Initial elevation angular position for the elevation platform (deg)
ELEVID	R*8	0.0D0	Initial elevation angular velocity for the elevation platform (deg/sec)
GMUP(2)	R*8	1.0D-3	Integration upper bounds for gimble angles and angular rates
			GMUP(1) (rad)
			GMUP(2) (rad/sec)
GMDN(2)	R*8	1.0D-5	Integration lower bounds for gimble angles and angular rates
			GMDN(1) (rad)
			GMDN(2) (rad/sec)

TWO AXIS GIMBLE SIMULATION (No Active Control) CONT.

Plotting locations for two axis gimble motion variables

Fortran Symbol	Description
KPLOTS(297)	Azimuth angle for the gimble azimuth platform
KFLOTS(298)	Azimuth angular rate for the gimble azimuth platform
KPLOTS(299)	Elevation angle for the gimble elevation platform
KPLOTS(300)	Elevation angular rate for the gimble elevation platform

(LEF BLANK)

Fortran Symbol	Туре	Preset Value	Description
IPLTCS(1-20) I*4	0	Control words for gimble platform control system simulation
IPLTCS(1)			Control word to invoke the two axis platform control system option
			IPLTCS(1) 0 No control system
			IPLTCS(1) 1 Control system
			NOTE: If a control system is invoked the gimble simulation must also be invoked
IPLTCS(2)			Control word to specify magnetometer is mounted at the tip of an element
			IPLTCS(2) 0 Magnetometer in body
			IPLTCS(2) K Magnetometer on Kth element
			NOTE. K is defined in terms of the internal program element ordering system
IPLTC3(3)			Control word for guassian noise transfer function for the three axes of the magnetometer
			IPLTCS(3) 0 No transfer function
			IPLTCS(3) 1 Transfer function
IPLTCS(4)			Number of magnetometer samples to be averaged for smoothing of magnetometer output
			IPLTCS(4) N average N samples
			$N \ge 1$
IPLTCS(5-20))		Not used
PCSPRM(100) R*8	0.0D0	Platform control system parameters
PCSPRM(1-9)		Not used
PCSPRM(10)			Sampling time for PID digital controller (sec)
PCSPRM(11)			Azimuth axis quantatisation level for platform position (rad)
PCSPRM(12)			Azimuth PID integrator upper saturation limit (rad)
PCSPRM(13)			Azimuth PID integrator lower saturation limit (rad) 82

Fortran Symbol	Type	Preset Value	Description
PCSPRM(14)			Azimuth PID proportional gain Kp
PCSPRM(15)			Azimuth PID integrator gain K _I
PCSPRM(16)			Azimuth PID derivative gain K_D
PCSPRM(17-2	20)		Not used
PCSPRM(21)	R*8	0.0D0	Elevation axis quantatisation level for platform position (rad)
PCSPRM(22)			Elevation PID integrator upper saturation limit
PCSPRM(23)			Elevation PID integrator lower saturation limit
PCSPRM(24)			Elevation PID proportional gain K _p
PCSPRM(25)			Elevation PID integrator gain K ₁
PCSPRM(26)			Elevation PID derivative gain K _D
PCSPRM(27-2	29)		Not used
PCSPRM(30)			Integration upper bound for magnetometer first order lag transfer function
PCSPRM(31)			Integration lower bound for magnetometer first order lag transfer function
PCSPRM(32)			Magnetometer one axis bandwidth
PCSPRM(33)	R*8	0.0D0	Magnetometer two axis bandwidth
PCSPRM(34)			Magnetometer three axis bandwidth
PCSPRM(35)			Magnetometer sampling rate (sec)
PCSPRM(36)			Computational delay (sec)
PCSPRM(37-	40)		Not used
PCSPRM(41)			Azimuth platform amplifier gain K_A
			0)

Fortran Symbol	Туре	Preset Value	Description
PCSPRM(42)	R*8	0.0D0	Azimuth platform motor torque constant K_T
PCSPRM(43)			Azimuth platform back EMF constant K_B
PCSPRM(44)			Azimuth platform motor torque upper limit L ₁ (ft-lbs)
PCSPRM(45)			Azimuth platform motor torque lower limit L_2 (ft-lbs)
PCSPRM(46)			Azimuth platform coulomb friction torque constant (ft-lbs)
PCSPRM(47)			Azimuth platform minimum angular rate for coulomb friction torque (rad/sec)
PCSPRM(48-	50)		Not used
PCSPRM(51)			Elevation platform amplifier gain K _A
PCSPR M(52)			Elevation platform motor torque constant K _T
PCSPRM(53)			Elevation platform back EMF constant K_B
PCSPRM(54)			Elevation platform motor .orque upper limit L ₁ (ft-lbs)
PCSPRM(55)			Elevation platform motor torque lower limit L ₂ (ft-lbs)
PCSPRM(56)			Elevation platform coulomb friction torque constant (ft-lbs)
PCSPRM(57)	R* 8	0.0D9	Elevation platform minimum angular rate for coulomb friction torque (rad/sec)
PCSPRM(58-	79)		Not used
PCSPRM(80)			Amplitude of sinusoidal noise added to one axis magnetometer measurement (gauss)
			Amplitude of sinusoidal noise for two axis (gauss)

Fortran Symbol	Туре	Preset Value	Description
PCSPRM(82)	R*8	0.0D0	Amplitude of sinusoidal noise for three axis (gauss)
PCSPRM(83)			Phase of sinusoidal noise added to one axis magneto- meter measurement (deg)
PCSPRM(84)			Phase of sinusoidal noise for two axis (deg)
PCSPRM(85)			Phase of sinusoidal noise for three axis (deg)
PCSPRM(86)			Frequency of sinusoidal noise added to one axis magnetometer measurement (cps)
PCSPRM(87)			Frequency of sinusoidal noise for two axis (cps)
PCSPRM(88)			Frequency of sinusoidal noise for three axis (cps)
SPRM(89)			Not used
PCSPRM(90-	95)		Used internally. Not input
PCSPRM(96-	100)		Not used
Plotting locat	ions for	platform contr	ol system variables
Input Symbol			Description
KPLOTS(302)		Output of first order lag transfer function for magnet- ometer one axis
KPLOTS(302	:)		Output of first order lag transfer function for magnet- ometer two axis
KPLOTS(303	5)		Out it of first order lag transfer function for magnet- ometer three axis
KPLOTS(304))		Azimuth error output

KPLOTS(305)Elevation error output

 KPLOTS(306)
 Azimuth PID digital controller output

Input Symbol

Description

KPLOTS(307)	Elevation PID digital controller output
KPLOTS(308)	Azimuth platform drive motor torque
KPLOTS(309)	Elevation platform drive motor torque

TWO AXIS DAMPER GIMBLE SIMULATION (No Active Control)

Fortran Symbol	Type	Preset Value	Description
ICMBLD	I* 4	0	Control word for two axis damper gimble simulation
			IGMBLD 0 No gimble simulated
			IGMBLD 1 Gimble simulated
DELIN (3,3)	R*8	0.0D0	Moments of inertia of the elevation platform about its own center of mass (slug-ft ²)
DELAX(3)	R*8	ປ .0D 0	Position vector in the azimuth motion reference frame. This position is a point on the elevation motion axis. (ft)
DELCG(3)	R*8	0.0D0	Position vector to the elevation platform center of mass in the elevation motion reference frame (ft)
DELMS	R*8	0.0D0	Mass of the elevation platform (slugs).
DMK1(2)	R*8	0.0D0	Spring constant for two axis gimble suspension. Applies to angles less than the stop angle (ft-lb/rad)
			DMK1(2) Elevation axis
DMK2(2)	R*8	0.0D0	Spring constant for two axis gimble suspension. Applies to angles greater than the stop angle. (ft-lb/rad) DMK2(2) Elevation Axis
DMDMP(2)	R*8	0.0D0	Viscous damping constant for two axis gimble suspension (ft-lb-sec/rad)
			GMDMP(2) Elevation axis
DMSTP(2)	R*8	0.0D0	Stop angle for two axis gimble surpension (rad)
			GMSTP(2) Elevation axis

Fortran Symbol	Type	Preset Value	Description
DLEVI	R*8	0.0D0	Initial elevation angular position for the elevation platform (deg)
DLEVID	R*8	0.0D0	Initial elevation angular velocity for the elevation platform (deg/sec)
DMUP(2)	R*8	1.0D-3	Integration upper bounds for gimble angles and angular rates
			DMUP(1) (rad)
			DMUP(2) (rad/sec)
DMDN(2)	R*8	1.0D-5	Integration lower bounds for gimble angles and angular rates
			DMDN(1) (rad)
			DMDN(2) (rad/sec)

TWO AXIS DAMPER GIMBLE SIMULATION (No Active Control) CONT

Plotting locations for two axis gimble motion variables

Input Symbol	Description
KPLOTS(310)	Azimuth angle for the gimble azimuth platform
KPLOTS(311)	Azimuth angular rate for the gimble azimuth platform
KPLOTS(312)	Elevation angle for the gimble elevation platform
KPLOTS(313)	Elevation angular rate for the gimble elevation platform

CONTROL SYSTEM FOR TWO AXIS PLATFORM (DAMPER) MAGNETIC TRACKING

Fortran Symbol	Type	Preset Value	Description
IPLDCS(1-20)) i*4	0	Control words for gimble damper platform control system simulation
IPLDCS(1)			Control word to invoke the two axis platform control system option
			IPLDCS(1) 0 No control system
			IPLDUS(1) 1 Control system
			NOTE: If a control system is invoked the gimble simulation must also be invoked
IPLDCS(2)			Control word to specify magnetometer is mounted at the tip of an element
			IPLDCS(2) 0 Magnetometer in body
			IPLDCS(2) K Magnetometer on Kth element
			NOTE: K is defined in terms of the internal program element ordering system
IPLDCS(3)			Control word for guassian noise transfer function for the three axes of the magnetometer
			IPLDCS(3) 0 No transfer function
			IPLDCS(3) 1 Transfer function
IPLDCS(4)			Number of magnetometer samples to be averaged for smoothing of magnetometer output
			IPLDCS(4) N average N samples
			$N \ge 1$
IPLDCS(5-2	0)		Not used
DCSPRM(10	0) R*8	0.0D0	Platform control system parameters
DCSPRM(1-	9)		Not used
DCSPRM(10)		Sampling time for PID digital controller (sec)
DCSPRM(11)		Azimuth axis quantatisation level for platform position (rad)
DCSPRM(12	2)		Azimuth PID integrator upper saturation limit
			88

CONTROL SYSTEM FOR TWO AXIS PLATFORM (DAMPER) MAGNETIC TRACKING

Fortran Symbol	<u>Type</u>	Preset Value	Description
DCSPRM(13)	R*8	0.0D0	Azimuth PID integrator lower saturation limit
DCSPRM(14)			Azimuth PID proportional gain K _P
DCSPRM(15)			Azimuth PID integrator gain KI
F/CSPRM(16)			Azimu ⁺ h PID derivative gain K_D
DCSPRM(17-	20)		Not used
DCSPRM(21)			Elevation axis quantatisation level for platform position (rad)
DCSPRM(22)			Elevation PID integrator upper saturation limit
DCSPRM(23)			Elevation PID integrator lower saturation limit
DCSPRM(24)			Elevation PID proportional gain Kp
DCSPRM(25)			Elevation PID integrator gain K _I
DCSPRM(26)			Elevation PID derivative gain K _D
DCSPRM(27-	-29)		Not used
DCSPRM(30)	ŀ		Integration upper bound for magnetometer first order lag transfer function
DCSPRM(31)	1		Integration lower bound for magnetometer first order lag transfer function
DCSPRM(32)	I		Magnetometer one axis bandwidth
DCSPRM(33)	R*8	0.0D0	Magnetometer two axis bandwidth
DCSPRM(34)	I		Magnetometer three axis bandwidth
DCSPRM(35)	I		Magnetometer sampling rate (sec)
DCSPRM(36)	I		Computational delay (sec)
DCSPRM(37-	-40)		Not used

Fortran Symbol	Type	Preset Value	Description
DCSPRM(41)	R*8	0.0D0	Azimuth platform amplifier gain K A
DCSPRM(42)			Azimuth platform motor torque constant K_T
DCSPRM(43)			Azimuth platform back EMF constant K_B
DCSPRM(44)			Azimuth platform motor torque upper limit L ₁ (ft-lbs)
DCSPRM(45)			Azimuth platform motor torque lower limit L ₁ (ft-lbs)
DCSPRM(46)			Azimuth platform coulomb friction torque constant (ft-1bs)
DCSPRM(47)			Azimuth platform minimum angular rate for coulomb friction torque (rad/sec)
DCSPRM(48-	: 50)		Not used
DCSPRM(51)	I.		Elevation platform amplifier gain K _A
DCSPRM(52)	i -		Elevation platform motor torque constant K_T
DCSPRM(53))		Elevation platform back EMF constant K_B
℃SPRM(54))		Elevation platform motor torque upper limit L ₁ (ft-lbs)
DCSPRM(55))		Elevation platform motor torque lower limit L ₁ (ft-lbs)
DCSPRM(56))		Elevation placform coulomb friction torque constant (ft-lbs)
DCSPRM(57)) R*8	0.0D0	Elevation platform minimum angular rate for coulomb friction torque (rad/sec)
DCSPRM(58-	-79)		Not used
DCSPRM(80))		An.plitude of sinusoidal noise added to one axis magnetometer measurement (pauss)
DCSPRM(81))		Amplitude of sinusoidal noise for two axis (gauss) 90

Fortran Symbol	Тура	Preset Value	Description
DCSPRM(82))		Amplitude of sinusoidal noise for three axis (gauss)
PCSPRM(83))		Phase of sinusoidal noise added to one axis inagneto- meter measurement (deg)
DCSPRM(84))		Phase of sinusoidal noise for two axis (deg)
CCSPRM(85))		Phase of sinusoidal noise for three axis (deg)
DCSPRM(86))		Frequency of sinusoidal noise added to one axis magnetometer measurement (cps)
DCSF'RM(87))		Frequency of sinusoidal noise for two axis (cp.,
DCSPRM(88))		Frequency of sinusoidal noise for three axis (cps)
DCSPRM(89))		Not used
DCSPRM(90-	-95)		Used internally. Not input
DCSPRM(96-	-100)		Not used
Plotting locat	ions for da	imper n!atfoi	m control system variables
Input Symbol			Description
KPLOTS(314	•)		Output of first order lag transfer function for magnetometer one axis
KPLOTS(315	j)		Output of first order leg 'ransfer function for magnet- ometer two axis
KPLOTS(316	5)		Output of first order lag transfer function for magnet- ometer three axis

KPLOTS(317)Azimuth error output

KPLOTS(318)Elevation error output

KPLOTS(319)Azimuth PID digital controller output

KPLOTS(320)Elevation PID digital control! contput

KPLOTS(321)Azimuth platform drive motor torque91

Input Symbol

Description

KPLOTS(322)

Elevation platform drive motor torque

(LEFT BLANK)

 $C - \partial$

AXIS MOMENTUM WHEEL CONTROL

Fortran Symbol	Туре	Preset Value	Description
IAMWH(1~10)) I*4	0	Control words for axis momentum wheel simulation
IAMWH(1)			Basic control word for axis momentum wheel simulation IAMWH(1) 0 No simulation
			IAMWH(1) 1 Simulation
IAMWH(2)			Control word for roll axis momentum wheel IAMWH(2) 0 No roll axis wheel IAMWH(2) 1 Roll axis wheel
IAMWH(3)			Control word for pitch axis momentum wheel IAMWH(3) 0 No pitch axis wheel IAMWH(3) 1 Pitch axis wheel
IAMWH(4)			Control word for Yaw axis momentum wheel IAMWH(4) 0 No Yaw axis wheel IAMWH(4) 1 Yaw axis wheel
AMWHPR (2	200) R*8	0.0D0	Physical parameters for axis momentum wheel simulation
AMWHPR(1-	-4)		Not used
AMWHPR(5)	,		Expenential decay coefficient for integrator satur- ation simulation
AMWHPR(6-	-11)		Not used
AMWHPR(12	2)		Upper saturation limit for roll axis integrator
AMWHPR(13	3)		Lower saturation limit for roll axis integrator
AMWHPR(14	+)		Proportional gain in roll axis controller
AMWHPR(15	5) R*8	0.0D0	Integrator gain in roll axis controller
AMWHPR(16	5)		Derivative gain in roll axis controller
AMWHPR(17	7)		Filter gain for roll angle error

Fortran Symbol	Туре	Preset Value	Description
AMWHPR(18) R*8	0.0D0	Filter bandwidth for roll angle error
AMWHPR(19	-21)		Not used
AMWHPR(22	2)		Upper saturation limit for pitch axis integrator
AMWHPR(23)		Lower saturation limit for pitch axis integrator
AMWHPR(24	-)		Proportional gain in pitch axis controller
AMWHPR(25)		Integrator gain in pitch axis controller
AMWHPR(26)		Derivative gain in pitch axis controller
AMWHPR(27	')		Filter gain for pitch angle error
AMWHPR(28	5)		Filter bandwidth for pitch angle error
AMWHPR(29	-31)		Not used
AMWHPR(32	!)		Upper saturation limit for yaw axis integrator
AMWHPR(33	3)		Lower saturation limit for yaw axis integrator
AMWHPR(34	ł)		Proportional gain in yaw axis controller
AMWHPR(35	5)		Integrator gain in yaw axis controller
AMWHPR(36	b)		Derivative gain in yaw axis controller
AMWHPR(37	') R*8	0.0D0	Filter gain for yaw angle error
AMWHPR(38	3)		Filter bandwidth for yaw angle error
AMWHPR(39	9-4()		Not used
AMWHPR(41)		Roll axis amplifier gain for controller output
AMWHPR(42	2)		Roll axis momentum wheel motor torque constant
AMWHPR(43	3)		Roll axis momentum wheel motor back EMF constant

Fortran Symbol	Туре	Preset Value	Description
AMWHPR(44)) R*8	0.0D0	Roll axis momentum wheel torque upper limit
AMWHPR(45))		Roll axis momentum wheel motor torque lower limit
AMWHPR(46))		Roll axis momentum wheel coulomb friction torque constnat
AMWHPR(47)		Roll axis momentum wheel minimum angular rate for coulomb friction torque
AMWHPR(48))		Roll axis momentum whee! moment of inertia
AMWHPR(49	-50)		Not used
AMWHPR(51))		Pitch axis amplifier gain for controller output
AMWHPR(52)		Pitch axis momentum wheel motor torque constant
AMWHPR(53)		Pitch axis momentum wheel motor back EMF constant
AMWHPR(54)		Pitch axis momentum wheel motor torque upper limit
AMWHPR(55)		Pitch axis momentum wheel motor torque lower limit
AMWHPR(56) R*8	0.0D0	Pitch axis momentum wheel coulomb friction torque constant
AMWHPR(57)		Pitch axis momentum wheel minimum angular rate for coulomb friction torque
AMWHPR(58)		Pitch axis momentum wheel moment of inertia
AMWHPR(59	-60)		Not used
AMWHPR(61)		Yaw axis amplifier gain for controller output
AMWHPR(62)		Yaw axis momentum wheel motor torque constant
AMWHPR(63)		Yaw axis momentum wheel motor back EMF constant 95

Fortran Symbol	Туре	Preset Value	Description
AMWHPR(64) R*8	0.0D0	Yaw axis momentum wheel motor torque upper limit
AMWHPR(65)		Yaw axis momentum wheel motor torque lower limit
AMWHPR(66)		Yaw axis momentum wheel coulomb friction torque constant
AM\HF``\(67)		Yaw axis momentum wheel minimum angular rate for coulomb friction torque
AMWHPR(68)		Yaw axis momentum wheel moment of inertia
AMWHPR(69	-100)		Not used
AMWHPR(10	1)		Integration upper bound for filtered angle error
AMWHPR(10	2)		Integration lower bound for filtered angle error
AMWHPR(10	3)		Integration upper bound for momentum wheel speed
AMWHPR(10	04)		Integration lower bound for momentum wheel speed
AMWHPR(10	5-110)		Not used
AMWHPR(11	1)		Initial condition for roll axis momentum wheel speed
AMWHPR(11	2-120)		Not used
AMWHPR(12	21)		Initial condition for pitch axis momentum wheel speed
AMWHPR(12	2-130)		Not used
AMWHPR(13	91)		Initial condition for yaw axis momentum wheel speed
AMWHPR(13	32-200)		Not used

Plotting locations for axis momentum wheel control

Input Symbol	Description
KPLOTS(323)	Roll axis filter output of error signal
KPLOTS(324)	Pitch axis filter output of error signal
KPLOTS(325)	Yaw axis filter output of error signal
KPLOTS(326)	Roll axis momentum wheel speed
KPLOTS(327)	Pitch axis momentum wheel speed
KPLOTS(328)	Yaw axis momentum wheel speed

(LEFT BLANK)

ARBITRARILY ORIENTED MOMENTUM WHEEL CONTROL

Fortran Symbol	Type	Preset Value	Description
IAMPRM(10)	I*4	0	Control words for arbitrarily oriented momentum wheel simulation
IAMPRM(1)			Control word to invoke simulation
			IAMPRM(1) 0 No simulation
			IAMPRM(1) 1 Simulation
AMPARM(20	0) R*8	0.0DC	Physical constants for arbitrarily oriented momentum wheel simulation
AMPARM(1)			Not used
AMPARM(2-	4)		Direction cosines of the momentum wheel axis in body frame
AMPARM(5-	7)		Weighting factors for roll(5), Pitch(6) and YAW(7) angles input to filter
AMPARM(8)			Exponential decay coefficient for integrator satura- tion simulation
AMPARM(9-	31)		Not used
AMPARM(32	2)		Upper saturation limit for integrator
AMPARM(33	5)		Lower saturation limit for integrator
AMPARM(34	ł)		Proportional gain in controller
AMPARM(35	5)		Integrator gain in controller
AMPARM(36	i)		Derivative gain in controller
AMPARM(37	')		Filter gain for angle error
AMPARM (3	8)		Filter bandwidth for angle error
AMPARM(39	-60)		Not used
AMPARM(61)		Amplifier gain for controller output
AMPARM(62	?)		Momentum wheel motor torque constant 98

ARBITRARILY ORIENTED MOMENTUM WHEEL CONTROL (CONT)

Fortran Symbol	Туре	Preset Value	Description
<u> </u>			
AMPARM(63	5) R*8	0.0D0	Momentum wheel motor back EMF constant
AMPARM (64	4)		Momentum wheel motor torque upper limit
AMPARM(65	j)		Momentum wheel motor torque lower limit
AMPARM(66	i)		Momentum wheel coulomb friction torque constant
AMPARM(67	')		Momentum wheel minimum angular rate for coulomb friction torque
AMPARM(68	3)		Momentum wheel moment of inertia
AMPARM(69	9-100)		Not used
AMPARM(10)1)		Integration upper bound for filtered angle error
AMPARM(10)2)		Integration lower bound for filtered angle error
AMPARM(10)3)		Integration upper bound for momentum wheel speed
AMPARM(10)4)		Integration lower bound for momentum wheel speed
AMPARM(10)5-130)		Not used
AMPARM(13	31)		Initial condition for momentum wheel speed
AMPARM(13	32-200)		Not used
Plotting locations for arbitrarily oriented momentum wheel			
Input Symbol			Description
KPLOTS(329))		Filter output of control system angular error
KPLOTS(330))		Momentum wheel speed

END OF INPUT

The end of the input cards is indicated by two cards: the first one with a 1 punched in column one; the second one with the word END punched in columns one through three.

PART 4

DEFINITION OF PRINTED COMPUTER OUTPUT DATA

Fortran Symbol	Description	Units
DATE	Year, month, day	YY MM DD
TIME	Time, in hours, minutes, seconds from start of day.	HHMMSS.XX
XSAT1 XSAT2 XSAT3	Aries inertial components of satellite position vector.	km
XSATDT1 XSATDT2 XSATDT3	Aries inertial components of satellite velocity vector.	km/sec
DELTAT	Integration step size at the time of print out	sec
SA(i, j)	Transformation matrix from body frame to Aries frame.	N.D.
RMAG	Magnitude of satellite position vector.	km
LAT	Geodetic latitude	deg
LONG	Longitude, measured east from Greenwich Meridian	deg
ALFAE BETAE GAMAE	Euler angles; orientation of gravity gradient satellite body axes with re- spect to local vertical frame. Output only for earth-oriented satellite.	deg
PSI1 PHI1 THET1	Euler angles; orientation of spin stabi- lized satellite body axes with respect to local inertial frame. Output only for spin stabilized satellites.	deg

Fortran Symbol	Description	Units
W1BC W2BC W3BC	Body frame components of satellite angular velocity measured with re- spect to the local vertical frame. Out- put only for earth-oriented satellite.	deg/sec
RRATE PRATE YRATE	Roll, pitch, and yaw angle rates. Output only for earth-oriented satellite.	deg/sec
W1B W2B W3B	Body frame components of satellite angu- lar velocity vector measured with re- spect to inertial space.	deg/sec
DOUT(k, j)	Component of the k th element (libration damper) tip displacement in the j th bending modes as measured in the ele- ment frame (Z^1) along the 2 axis of the frame. (INOPT = 2 only)	feet
DOUTDT(k, j)	Component of the k th element (libration damper) tip velocity in the j th bending mode as measured in the element frame (Z^1) along the 2 axis of the frame. (INOPT = 2 only)	ft/sec
DIN(k,j)	Component of the k th element (libration damper) tip displacement in the j th bonding mode as measured in the ele- ment frame (Z^1) along the 3 axis of the frame. (INOPT = 2 only)	feet
DINDOT(k, j)	Component of the k^{th} element (libration damper) tip velocity in the j th bending mode as measured in the element frame (Z^1) along the 3 axis of the frame. (INOPT = 2 only)	feet
A(k,j)	Component of the k^{th} primary element <u>tip deflection</u> in the j th bending mode as measured along the 2 axis of the element frame.	feet

Fortran Symbol	Description	Units
ADOT(k, j)	Component of the k th primary element tip velocity in the j th bending mode as measured in the element frame along the $\underline{2}$ axis of the frame.	ft/sec
B(k, j)	Component of the k th primary element tip deflection in the j th bending mode as measured along the $\underline{3}$ axis of the ele- ment frame.	13et
BDOT (k, j)	Component of the k^{th} primary element tip velocity in the j th bending mode as measured along the 3 axis of the ele- ment frame.	ft/sec
UD(i, k)	Total tip displacement, for the bending modes simulated, of the k^{th} libration damper element, measured along the i^{th} axis of the element frame. (INOPT = 2 only)	feet
UD(i)DT(k)	Total tip velocity, for the bending modes simulated, of the k^{th} libration damper element, measured along the i^{th} axis of the element frame. (INOPT = 2 only)	ft/sec
U(i, k)	Total tip displacement, for the bending modes simulated, of the k th primary element, measured along the i th axis of the element frame.	feet
U(i)DOT(k)	Total tip velocity, for the bending modes simulated, of the k th primary element, measured along the i th axis of the ele- ment frame.	ft/sec
Z LD(k)	Length of the k th element, libration damper. (INOPT = 2 only)	feet
ZLK(k)	Length of the k th primary element.	feet

Fortran Symbol	Description	Units
PHILD	The angular deflection of the libration damper boom relative to its equilibrium position. (INOPT = 2 only)	deg
DPHILD	Angular velocity of light ation damper boom relative to the body. (INOPT = 2 only)	deg/sec
OMEGL	Spatial average angular velocity of the nutation damper fluid relative to the body. (INOPT = 1 only)	deg/sec
VSUBL	Average linear velocity of the nutation damper fluid relative to the damper tube wall. (INOPT = 1 only)	ft/sec
MSUBM1 MSUBM2 MSUBM3	Body frame components of torque exerted by the nutation damper fluid upon the satellite. (INOPT = 1 only)	ft-lb
CMX	Control moment along Y_1 body axis. (INOPT = 1 only)	ft-lb
SIMPX	A function related to total impulse for control moments applied along Y_1 body integral of the applied moment. (INOF T = 1 only)	ft-lb-sec
SUNVEC1 SUNVEC2 SUNVEC3	Components of sun to satellite unit vector, body frame.	N.D.
XMB1 XMB2 XMB3	Body frame components of magnetic torque acting on satellite.	ft-lb
SMAGI1 SMAGI2 SMAGI3	Components of Earth's magnetic field strength, Aries inertial frame.	Gauss

Fort ran Symbol	Description	Units
SMAGB1 SMAGB2 SMAGB3	Components of the Earth's magnetic field strength, body frame.	Gauss
SOLILL	Solar illumination	N. D.
	0 = Occulted	
	1 = Full sunlight	
RWHEEL1 RWHEEL2 RWHEEL3	Body frame components of reaction torque exerted by the momentum wheels upon the satellite.	ft-lb
EPSERR	Angular error between desired and actual direction of spin axis. (INOPT = 1 only)	deg
SUNANG	Angle between sunline and orbit normal.	deg
SB(BODY)	Sun to satellite unit vector in body frame.	N. D.
SD(INERTIAL)	Sun to satellite unit vector in inertial coordinates - print out when boom de- ployment from sun pulse is used.	N. D.
FTAKIN(10,3)	Thermal force in flexible element 1-2 plane direction before satellite shadowing and thermal lag.	lb
FTAKOT(10, 3)	Thermal force in flexible element 1-2 plane direction after satellite shadowing and thermal lag.	lb
FTBKIN(10,3)	Thermal force in B direction before satellite shadowing or thermal lag.	lb
FTBKOT(10, 3)	Thermal force in flexible element 1-3 plane after satellite shadowing or thermal lag.	lb
TENSN(10)	Element root tension.	lb
YCEMS(i) i=1, 2, 3	Displacement components of center of mass with respect to original body axes due to flexible appendage motion	feet

Fortran Symbol	Math Symbol	Description	Unit
BNMTA(10)		root bending moment in lement 1-2 plane.	ft-ib
BNMTB(10)	Element root bending moment in flexible element 1-3 plane.		ft-lb
MOMENT1 MOMENT2 MOMENT3	motion ap	d side of Euler equations of oplied to the spacecraft hub with ic terms also included. Used in	ft-lb
HAMILT	Relative	Hamiltonian of entire system.	ft-lb
HVECTR 1 HVECTR2 HVECTR3	{h _i }	Angular momentum vector of the spacecraft in inertial frame	lb-ft-sec
HBODY1 HBODY2 HBODY3	${h_B}$	Angular momentum vector expressed in spacecraft body reference frame	ft-lb-sec
HMAG		Magnitude of the angular momentum vector	Ib-ft-sec
NUTANG	θ	Angle between the angular momen- tum vector and the spin axis (3 axis)	deg
EPSERH	N.A.	Angular error between the initial angular momentum vector direction and actual direction of spin axis (INOPT = 1 only)	deg
CW (k, j)	Twist : elemer	angle of the k^{th} flexible at with the j th twist mode	deg
CWD(k, j)	Time o k th fle: twist n	lerivative of twist angle of xible element with the j node	deg/sec
STAG PR	Stagnation	n pressure (IDRAG \geq 1)	lbs/ft ²

Classical Orbital Parameters After Thrusting

The change in the orbit velocity vector at the time of thrusting will be reflected in the change of the values of classical orbital parameters. The standard printout will be interrupted and a set of new orbit information will be printed immediately after the impulsive thrusting. If the sun reference option is used (ISPLSE=1), the number of pulses together with the mean time (hour, minute, second) for the orbit update will always be printed. In this case, the orbit update message printout will be controlled by input word ISPNP. For instance, if the IPULSE is specified as 21 and ISPNP=5, the orbit update message will be printed at 5, 10, 15, 20, and 21st pulse.

Fortran Symbol	Math Symbol	1	Description	Units
ACCOB(I)	{ ï }	of mass e	ion vector of center xpressed in Aries rame (I = 1, 2, 3)	ft/sec ²
ACCRED(J)	^a h1		rometer reading	ft/sec ²
HUBACC(I, J)	{ x _h }	pressed in frame of a	ion vector ex- n Aries inertial a point in the hub ; J = 1, NUMHUB)	ft/sec ²
TIPACC(I, K)	{ ^a T}	element ti Aries iner	ion vector of kth ip expressed in rtial frame ; K = 1, NELMTS)	ft/sec ²
BIXX	$\int_{S} \left(y_{2 Lp}^{2} + y \right)$	2 3 L p)din	Instantaneous moment of inertia with respect to No. 1 body reference axis	slug-f. ²
BIYY	$\int_{S} \left(y_{1 lp}^{2} + y \right)$	$\binom{2}{3 L p} dm$	Instantaneous moment of inertia with respect to No. 2 body reference axis	slug-ft ²
BIZZ	$\int_{S} \left(y_{1 Lp}^{2} + y \right)$	$\left(\begin{array}{c} 2\\ 2 & L \end{array}\right)^{dm}$	Instantaneous moment of inertia with respect to No. 3 body reference axis	slug-ft ²

Fast Fourier Transform Analysis Output

The related printer plots for the Fast Fourier Transform are the power spectrum density function and the cross-correlation functions together with the results of harmonic analysis (frequencies, amplitude and phase angles). These are printed immediately following the regular printer plot of the FSD program. The data set to be analyzed and the autocorrelation function plot are also available. When the Fast Fourier Transform analysis option is used, increasing the I/O time estimate by a factor of 50 percent is recommended.

Fortran Symbol	Description	Units
PTCH Out	Pitch channel sensor output	volts
ROLL Out	Roll channel sensor output	volts
COMP Out	Output of compensation amplifier	volts
TACH Out	Output of tachometer	vo!ts
TMOTOR	Torque output of momentum wheel motor	ftlbs
WHL SPD	Momentum wheel speed	rad/sec
NUTD Out	Nutation damper phase shift circuit output	olts
Secondary Body H	Printed Output	
GAMSB	Rotation of secondary body about 3 axis	deg
ALPSB	Rotation of secondary body about the carried 1 axis	deg
BETSB	Rotation of secondary body about the carried 2 axis	deg
OMISB	Component of secondary body relative angular velocity on 1 axis of secondary body	deg/sec
OM2SB	Component of secondary body relative angular velocity on 2 axis of secondary body	deg/sec
OM3SB	Component of secondary body relative angular velocity on 3 axis of secondary body	deg/sec

DE-B Control System Printed Output

Fortran Symbol	Description	<u>Units</u>
SEN OUTP	Sensor output (zero crossing of state variable)	depends on
FIL OUTP	Filter output (zero crossing of state variable)	state variable

TWO AXIS PLATFORM (and DAMPER) CONTROL SYSTEMS PRINTED OUTPUT

Fortran Sy nbol	Description	Units
SM AGF1 SMAGF2 SMAGF3	Filtered body frame components of earth's magnetic field	Gauss
GMBL AZ	Gimble platform azimuth angle	di e
GMBL AZD	Gimble platform azimuth angular velocity	deg/sec
GMBL EL	Gimble platform elevation angle	deg
GMBL ELD	Gimble platform elevation angular velocity	deg/sec
AZIM ERR	Gimble platform azimuth error angle	deg
ELEV ERR	Gimble platform elevation error angle	deg
AZIM PID	Gimble platform azimuth PID output	Depends on PID
AZIM PID ELEV PID	Gimble platform azimuth PID output Gimble platform elevation PID output	Depends on PID gain constants
		•
ELEV PID	Gimble platform elevation PID output	gain constants
ELEV PID AZIM MOT ELEV MOT	Gimble platform elevation PID output Gimble platform azimuth motor torque	gain constants ft-lbs
ELEV PID AZIM MOT ELEV MOT	Gimble platform elevation PID output Gimble platform azimuth motor torque Gimble platform elevation motor torque	gain constants ft-lbs
ELEV PID AZIM MOT ELEV MOT AXIS MOR N FUN For an	Gimble platform elevation PID output Gimble platform azimuth motor torque Gimble platform elevation motor torque	gain constants ft-lbs ft-lbs
ELEV PID AZIM MOT ELEV MOT AXIS MOP NTUN For an S mbol	Gimble platform elevation PID output Gimble platform azimuth motor torque Gimble platform elevation motor torque <u>MWHEEL PRINTED OUTPUT</u> <u>Description</u>	gain constants ft-lbs ft-lbs <u>Units</u>

ARBITRARILY ORIENTED MOMENTUM WHEEL PRINTED OUTPUT

Fortran Symbol	Description	Units
FTR ANG	Filtered error output	deg
ARB MWS	Momentum wheel speed	deg/sec
MOT TK	Motor torque	ft–lbs
CONT INT	Output of PID control system integrator	Depends on PID gain constants
CONT DER	Output of PID control system differentiator	guin constants

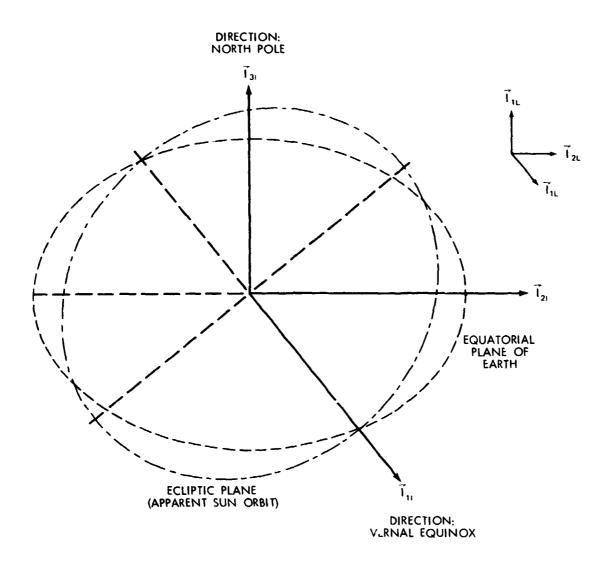
ELEMENT THERMAL EXPANSION PRINTED OUTPUT

Fortran Symbol	Description	Units
TEMP(1-10)	Average temperature of element	°R
ZLKP(1-10)	Axial velocity of element due to temperature effects	ft/sec
ZLKDP(1-10)	Axial acceleration of element due to temperature effects	ft/sec ²

Adams-Moulton Numerical Integration Control Message Output

The Adams-Moulton numerical integration control message is presented in a table format immediately following the nominal FSD printout and before the printer plot in each stacked case sequence. This table is the summary of the performance of numerical integration within a stacked case run. The definitions of the variables in the table are as follows:

Variable	Description
KCUT	Number of times the integration step size is reduced for a particular equation
UPPER	Upper integration bound for a particular equation
LOWER	Lower integration bound for a particular equation
DEPEND	Dependent array value of a state variable at the starting time of a stacked case sequence
DERIVE	Derivative array value of a state variable at the starting time of a stacked case sequence

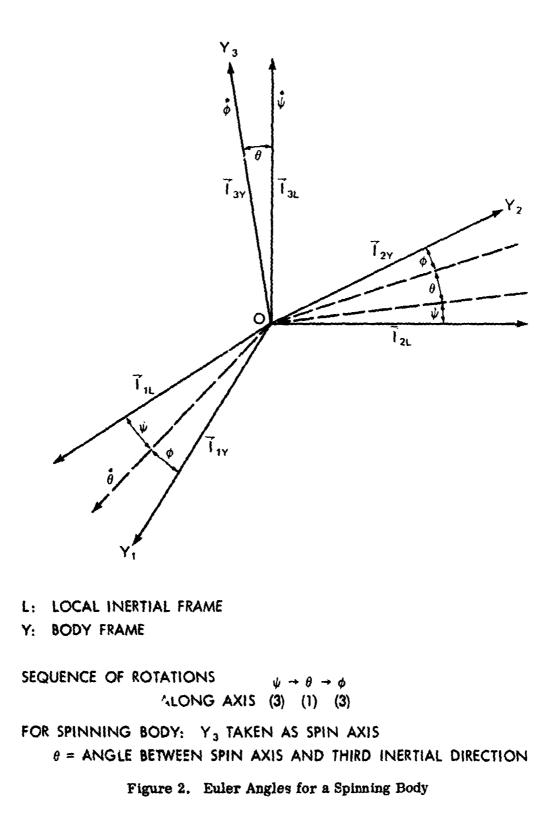

GENERAL REFERENCES

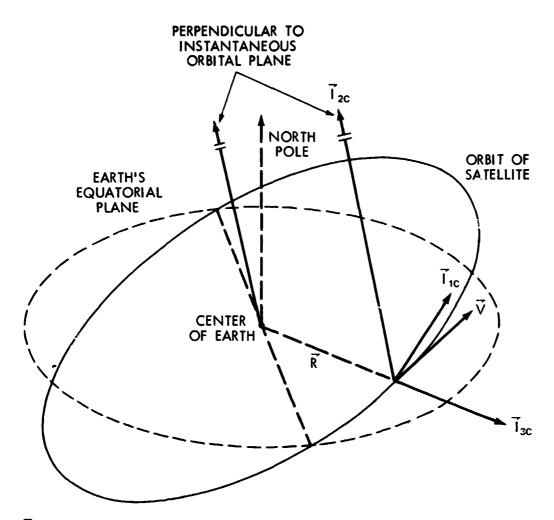
- 1. Avco Corporation, AVSD-0191-71-CR, <u>User's Manual for IMP Dynamics</u> <u>Computer Program, Volume I, E. A. Lawlor, L. Beltracchi, L. Turner,</u> and M. Weinberger, March 1971.
- 2. Avco Corporation, AVSD-0191-71-CR, User's Manual for IMP Dynamics Computer Program, Volume II, Integral Evaluation Computer Program, E. A. Lawlor, March 1971.
- 3. Avco Corporation, Contract No. NAS 5-24008 Mod 15, <u>Modification of the FSD Program for Linear Thrusting and Angular Momentum Computation</u> User's Manual, K. Yong and E. A. Lawlor, November 1974.
- 4. Avco Corporation, <u>Spacecraft Configuration Plot Program</u>, A. Anderson, February 1973.
- 5. X-732-73-151, A User's Guide to the Flexible Spacecraft Dynamics Program-I, August 1973.
- 6. E. G. Stassinopolus, G. D. Mead, <u>ALLMAG, GDALMG, LINTRA, Computer</u> <u>Programs For Geomagnetic Fields and Field Line Calculations, NSSDC-72-12</u> <u>FEB 1972.</u>
- 7. X-712-76-4, <u>A User's Guide to the Flexible Spacecraft Dynamics</u> Program-II, March 1976
- 8. Avco Corporation, Modification of the IMP Dynamics Computer Program for Limited Dual Spin Capability, E.A. Lawlor, February 1972.

APPENDIX A

COORDINATE SYSTEMS AND

OTHER RELATED MATERIAL


ARIES FRAME:


RIGHT HANDED ORTHOGONAL REFERENCE FRAME ORIGIN: CENTER OF EARTH

- **I**₁₁ POINTS TOWARD VERNAL EQUINOX
- \vec{I}_{21} EQUATORIAL PLANE, PERPENDICULAR TO \vec{I}_{11}
- **i**₃₁ POINTS TOWARD EARTH'S GEOMETRIC NORTH POLE

THE LOCAL INERTIAL (L-FRAME) IS OBTAINED BY A PARALLEL TRANSLATION OF THE ARIES FRAME FROM THE EARTH CENTER TO THE SATELLITE CENTER OF MASS.

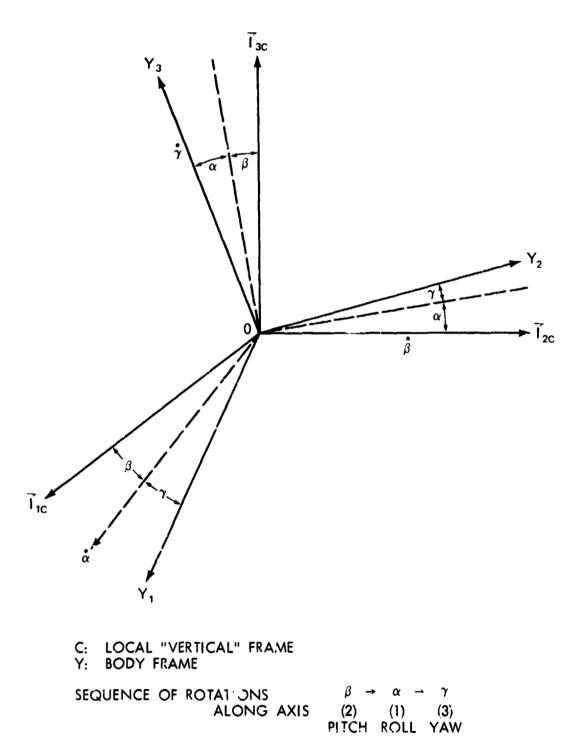
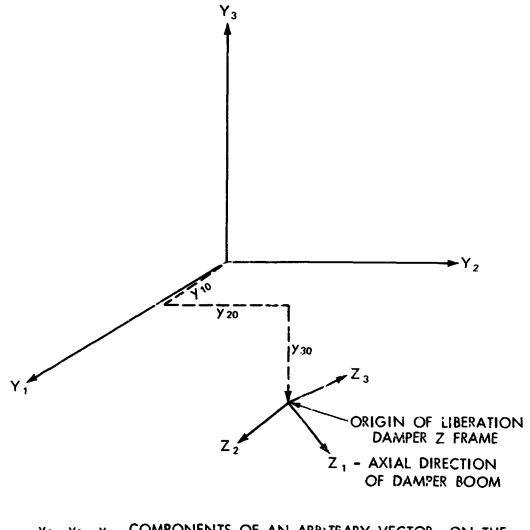
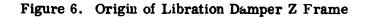
Figure 1. Aries Coordinate System

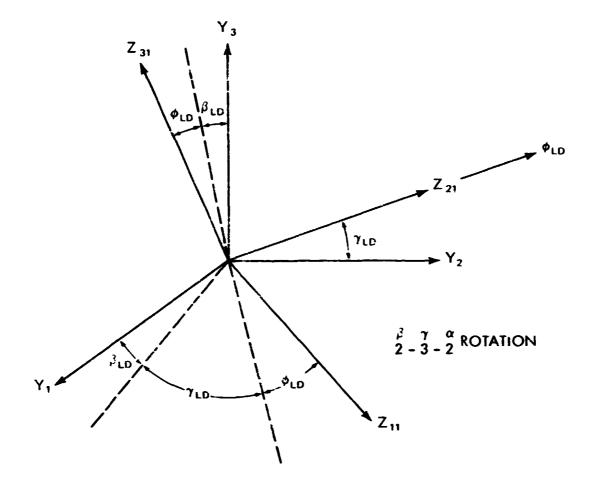
- \vec{I}_{3C} POINTS FROM EARTH CENTER TO CENTER OF MASS OF SATELLITE, AND IS PARALLEL TO THE RADIUS VECTOR \vec{R}
- \vec{I}_{2C} perpendicular to instantaneous orbital plane its direction is defined by \vec{R} x \vec{V} . \vec{V} is the inertial velocity of the center of mass of the satellite.
- Inc COMPLETES RIGHTHANDED ORTHOGONAL FRAME FOR A CIRCULAR ORBIT Inc LIES ALONG V FOR AN ELLIPTIC ORBIT, Inc LIES ALONG V ONLY AT APOGEE AND PERIGEE. Inc ALWAYS LIES IN INSTANTANEOUS ORBITAL PLANE AND MAKES AN ACUTE ANGLE WITH V

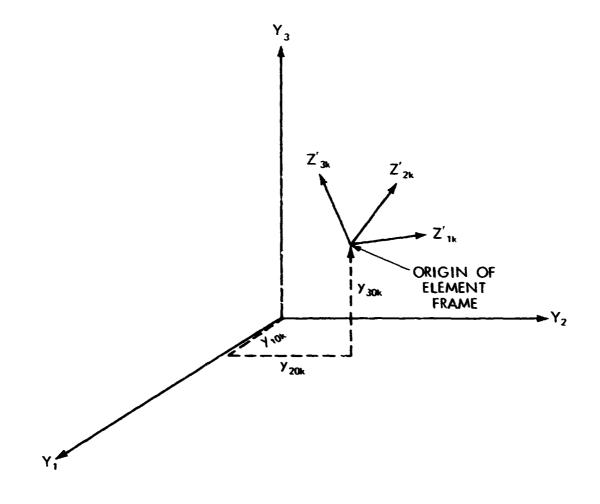
THE LOCAL "VERTICAL" FRAME (C) HAS UNIT VECTORS \vec{i}_{1c} , \vec{i}_{2c} , \vec{i}_{3c} AND IS CENTERED AT CENTER OF MASS OF SATELLITE

THE "VERTICAL" USED HERE IS DIRECTION OF GRAVITY FORCE FOR A SPHERICAL EARTH.

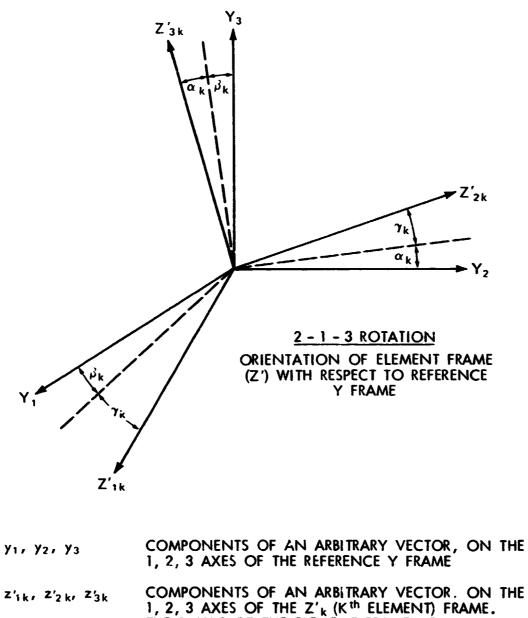
Figure 3. Lc al Vertical Coordinate System


Figure 5. Euler Angles for Gravity Gradient Stabilized Vehicles

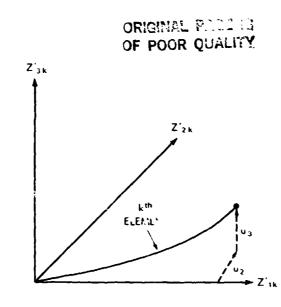


z1, z2, z3 CCMC ONENTS OF AN ARBITRARY VECTOR, ON THE 1, 2, 3 AXES OF THE LIBRATION DAMPER Z FRAME



- y₁, y₂, y₃ COMPONENTS OF AN ARBITRARY VECTOR, ON THE 1, 2, 3 AXES OF THE BODY Y FRAME
- Z₁₁, Z₂₁, Z₃₁ COMPONENTS OF AN ARBITRARY VECTOR, ON THE 1, 2, 3 AXES OF THE LIBRATION DAMPER Z FRAME. Z₁₁ POINTS IN AXIAL DIRECTION OF DAMPER BOOM, OUTWARD FROM SATELLITE CORE
- $\gamma_{LD}, \beta_{LD}, \phi_{LD}$ EULER ANGLES
 - Figure 7. Orientation of the Libration Damper Z Frame with Respect to Body Y Frame

- y₁, y₂, y₃ COMPONENTS OF AN ARB! TRARY VECTOR, ON THE 1, 2, 3 AXES OF THE Y FRAME
- z'_{1K}, z'_{2K}, z'_{3K} COMPONENTS OF AN ARBITRARY VECTOR, ON THE 1, 2, 3 AXES OF THE Z'_k (kth ELEMENT) FRAME. THE 1 AXIS OF THE ELEMENT FRAME POINTS ALONG UN-DEFORMED ELEMENT, OUTWARD FROM SATELLITE CORE
- Y 10K , Y 20K , Y 30K Y FRAME COMPONENTS OF Z ORIGIN


Figure 8. Origin of Boom Element Frame

COMPONENTS OF AN ARBITRARY VECTOR. ON THE 1, 2, 3 AXES OF THE Z'_k (Kth ELEMENT) FRAME. THE 1 AXIS OF THE ELEMENT FRAME POINTS ALONG UNDEFORMED ELEMENT, OUTWARD FROM SATELLITE CORE

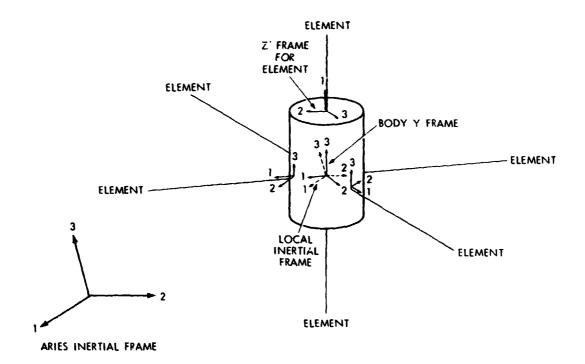
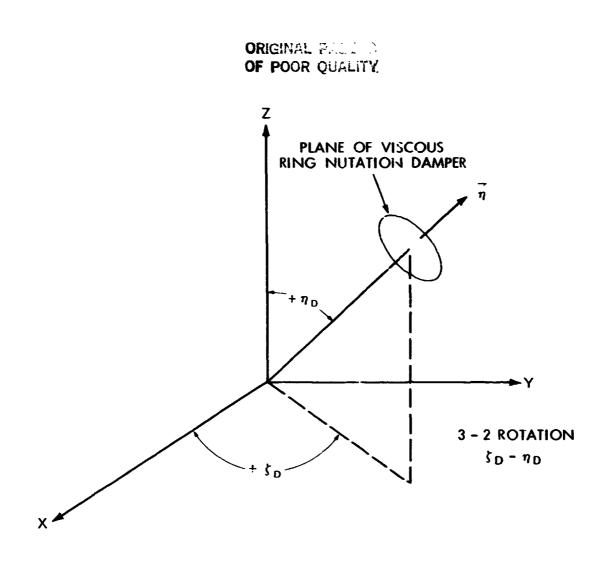
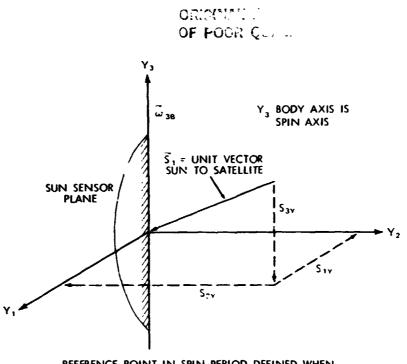

 $\alpha_k, \beta_k, \gamma_k$ EULER ANGLES

Figure 9. Orientation of Element Frame (Z⁺) with Respect to Reference Y Frame



z' _{1k} , z' _{2k} , z' _{3k}	COMPONENTS OF AN ARBITRARY VECTOR, ON THE 1, 2, 3 AXES OF THE Z'_k (k^{th} ELEMENT) FRAME
U ₂	ELEMENT TIP DEFLECTION, Z'zk COMPONENT,
U ₃	ELEMENT TIP DEFLECTION, Z'3k COMPONENT

Figure 10. kth Element Coordinate System



X, Y, Z SATELLITE BODY AXES

DIRECTION COSINES OF $\vec{\eta}$ WITH RESPECT TO BODY $\eta_x = SIN \eta_D COS \xi_D$ $\eta_y = SIN \eta_D SIN \xi_D$

$$\eta_z = \cos \eta_D$$

REFERENCE POINT IN SPIN PERIOD DEFINED WHEN:

 $S_{2Y} = 0$ s_{1v} < 0

Figure 13. Sun Sensor Reference Point in Spin Period

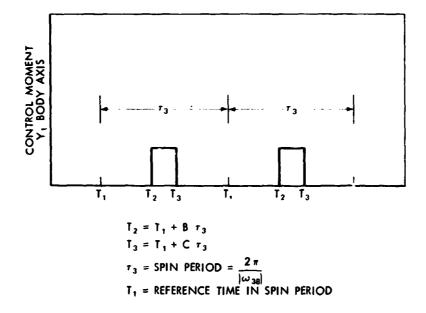


Figure 14. Time History of Control Morient about Y, Body Axis

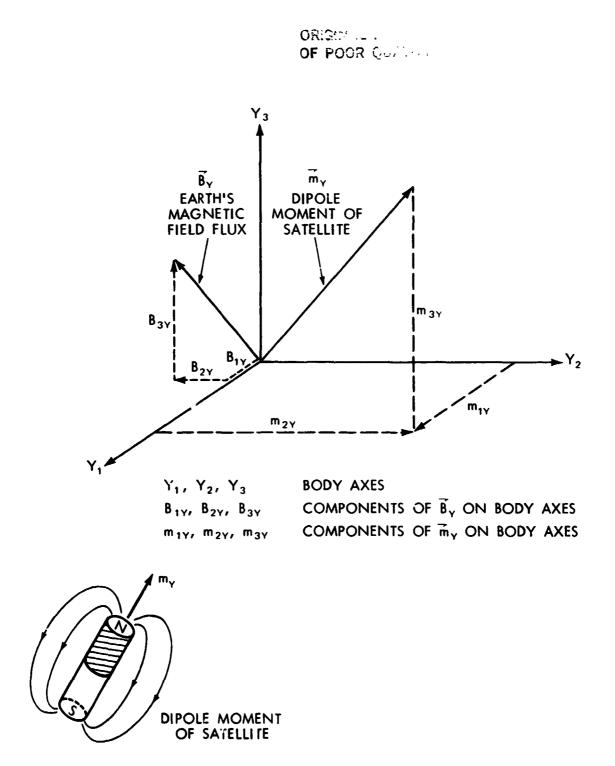


Figure 15. Dipole Moment of Satellite and Earth's Magnetic Field Flux in Body Frame

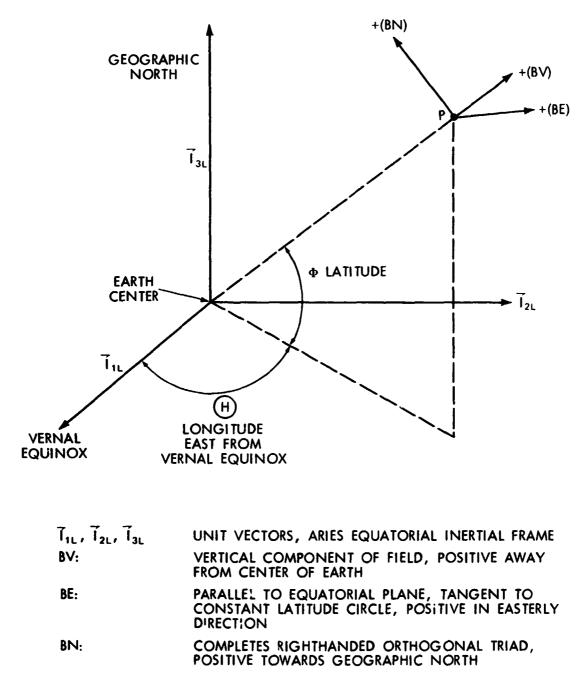


Figure 16. Components of Magnetic Field

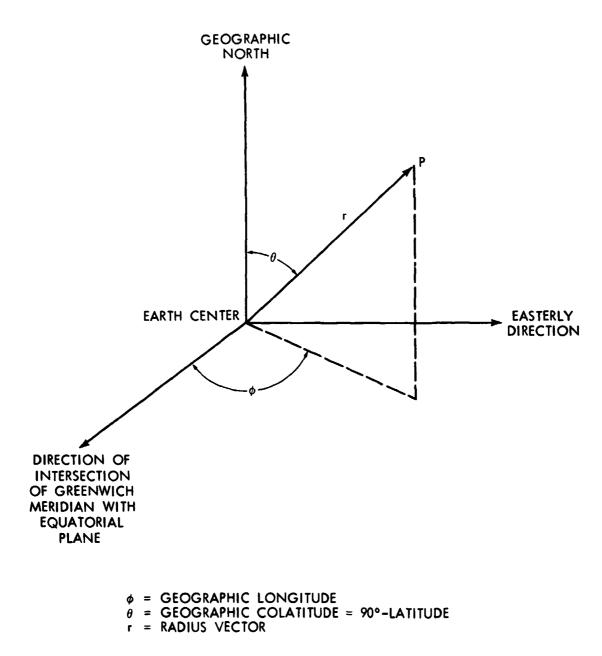


Figure 17. Coordinates for Spherical Harmonics

Thrust Loading

The time history of the thrust loading is as shown in Figure 18.

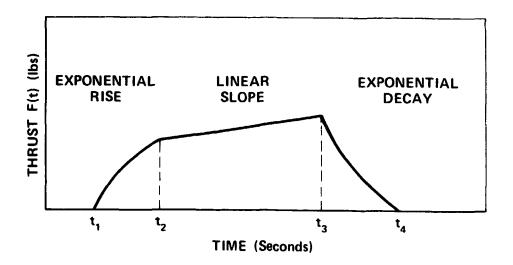


Figure 18. Thrust Time History

The analytic expressions for the thrust loading time history are as follows.

$$t < t_{i} \qquad F(t) = 0$$

$$t_{i} \le t \le t_{2} \qquad F_{i}(t) = A[I - e^{-B(t-t_{i})}]$$

$$t_{1} \le t \le t_{3} \qquad F_{2}(t) = F_{i}(t_{2}) + C(t-t_{2}) \qquad (1)$$

$$t_{3} \le t \le t_{4} \qquad F_{3}(t) = F_{2}(t_{3}) \left[\frac{t_{a} - t}{t_{4} - t_{3}}\right] e^{-D(t-t_{3})}$$

$$t_{2} < t_{4} \qquad F(t) = 0$$

The total impulse under the thrust loading time curve is obtained by integration. The impulse is used to apply the increment in velocity to the trajectory of the spacecraft. The mean time, at which the velocity increment is applied, is obtained as follows.

$$\bar{t} = \frac{\int_{t_1}^{t_4} t F(t) dt}{\int_{t_1}^{t_4} F(t) dt}$$
(2)

The appropriate expressions for the three pieces of the thrust loading time curve are given below.

For

$$t_{i} \leq t \leq t_{a}$$

$$I_{i} \leq \int_{t_{i}}^{t_{a}} F_{i}(t) dt = A \left[\langle t_{a} \rangle - \frac{1}{B} (1 - e^{-Bat_{ai}}) \right]$$

$$M_{i} \leq \int_{t_{i}}^{t_{a}} F_{i}(t) dt = A dt_{ai} \left[\frac{a t_{ai}}{a} + \frac{1}{B} e^{-Bat_{ai}} \right] - \frac{F_{i}(t_{a})}{B^{a}}$$
(3)

For

$$t_{x} \leq t \leq t_{3}$$

$$I_{x} \leq \int_{t_{x}}^{t_{3}} F_{x}(t) dt = F_{1}(t_{x}) \leq t_{3x} + \frac{1}{2} \leq \Delta t_{3x}^{2}$$

$$M_{x} \leq \int_{t_{x}}^{t_{3}} (t + dt_{x}) F_{x}(t) dt$$

$$= F_{1}(t_{x}) \leq t_{3x} \leq \Delta t_{x} + \frac{1}{2} \leq t_{3x} + \frac{1}{2} \leq \Delta t_{3x}^{2} \leq dt_{x} + \frac{2}{3} \leq t_{3x}^{2}$$
(4)

For

$$t_{3} \leq t \leq t_{4}$$

$$I_{3} \triangleq \int_{t_{3}}^{t_{4}} F_{3}(t) dt = \frac{F_{4}(t_{3})}{D} \left[1 - \frac{1 - e}{D_{4}t_{43}} \right]$$

$$M_{3} \triangleq \int_{t_{3}}^{t_{4}} (t + at_{3x}) F_{3}(t) dt \qquad (5)$$

$$= \frac{F_{4}(t_{3})}{D^{2}} \left[D_{4}t_{31} + 2 - \frac{(D_{4}t_{41} + 2)(1 - e^{-D_{4}t_{43}})}{D_{4}t_{43}} \right]$$

where $\triangle t_{21} = t_2 - t_1$, $\triangle t_{31} = t_3 - t_1$, $\triangle t_{41} = t_4 - t_1$ etc.

Thus, the mean time for which the impulsive thrusting in applied is given as

$$\overline{t} = \frac{I_1 + I_1 + I_2}{M_1 + M_2 + M_3}$$
(6)

The magnitude of change of velocity at \overline{t} is given as

$$\Delta V = \frac{I_1 + I_2 + I_3}{M_3}$$
(7)

where M_s = Mass of the entire spacecraft.

ORIGINAL FO

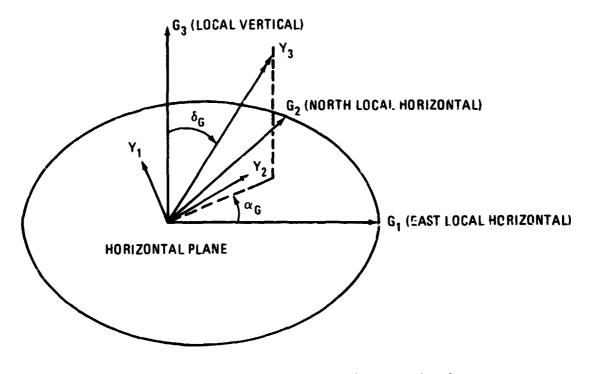
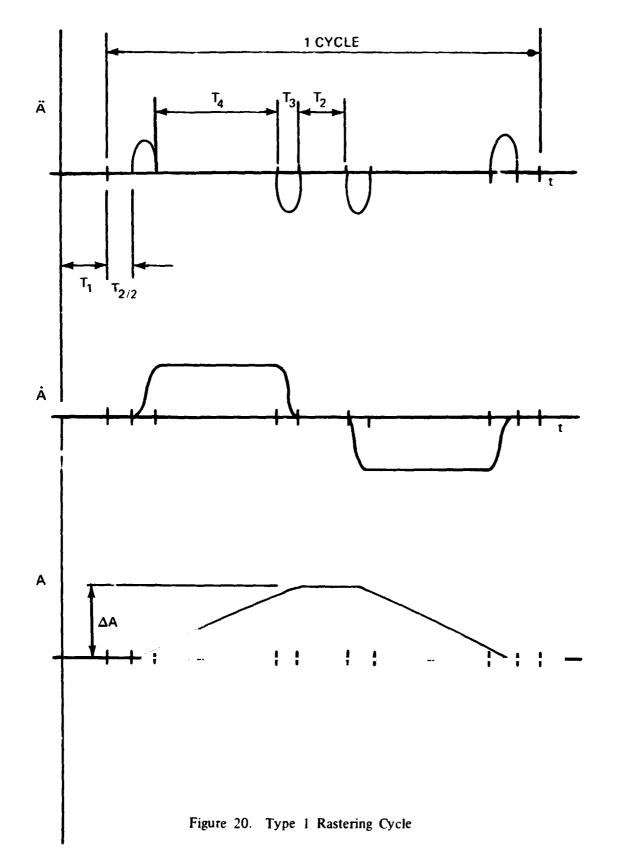
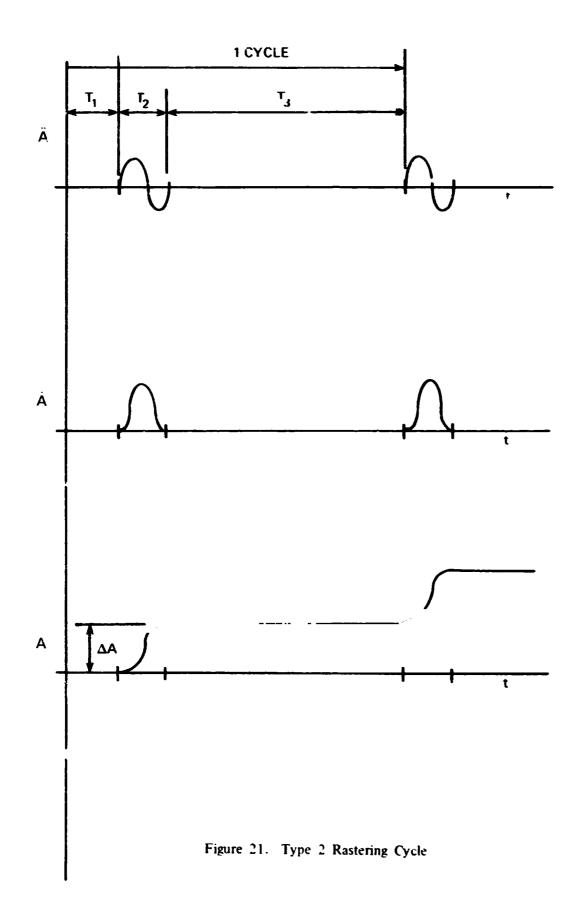
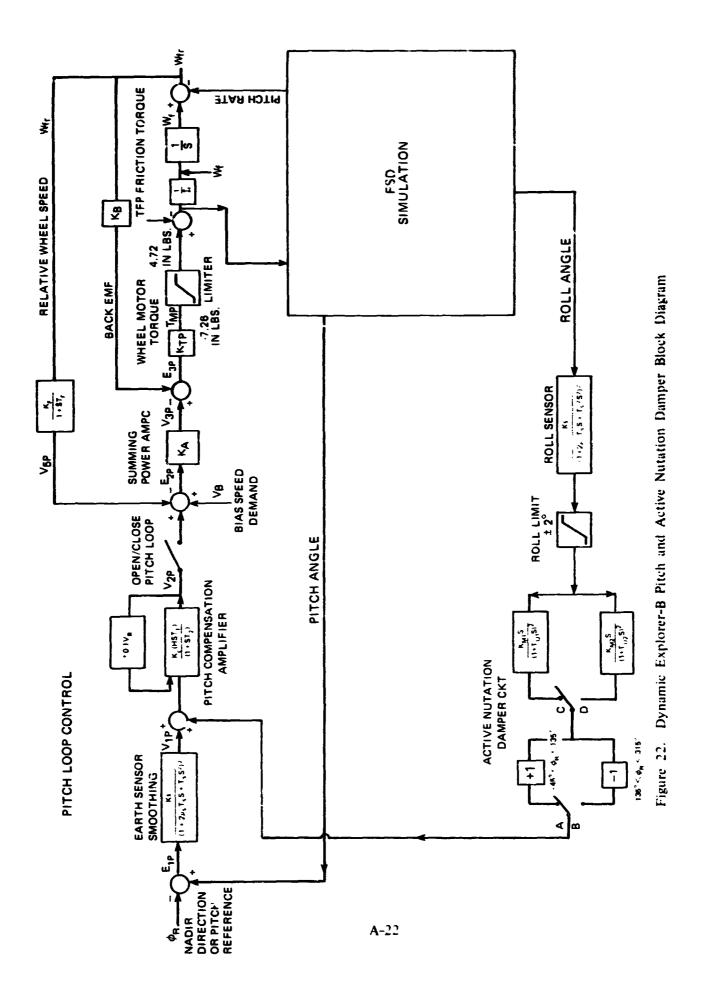





Figure 19. Transformation Between Local Geographical Frame G and Body Frame Y

MATHEMATICAL FORMULATION FOR DUAL SPIN CONTROL SYSTEM SIMULATION

A block diagram of the system to be simulated is given in Figure 22. This block diagram is represented as a set of first order ordinary differential equations, which are integrated in parallel with the equations of motion for the rest of the spacecraft, using the same time step and integration algorithm. (The subroutine ADMIMP.)

For the most part, the control components are linear dynamic systems. For such components, the stated transfer functions have been converted to state variable equations using standard techniques. This transformation, however, is not always unique. Hence, it is necessary to state the exact form utilized in each case.

In the equations following, the subscripts 1, 2 etc. are used primarily for convenience. However, the ordering of variables is the same as in program code. Hence a fourth order model with state variables $x_1 \ldots x_4$ may appear in program code as $x_6 \ldots x_9$. The actual subscripts used in program code are given in the section on program inputs. Also, in this section, the symbols u and y denote (respectively) the input to and output from the given transfer function. In the system simulation, the blocks are coupled together.

Pitch or roll sensor (2nd order model)

The transfer function

$$\frac{K_{s}}{\left(1+sT_{s}\right)^{2}}$$

is represented as

$$\frac{d}{dt} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{bmatrix} -\frac{1}{T_s} & \frac{K_s}{T_s} \\ 0 & -\frac{1}{T_s} \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{bmatrix} + \begin{cases} 0 \\ -\frac{1}{T_s} \end{cases} \mathcal{U}$$

$$Y = X_1$$

Pitch or roll sensor (4th order model)

The transfer function

$$\frac{K_{s}}{(1+2S_{s}T_{s}S+T_{s}^{2}S^{2})^{2}}$$

. .

is represented as

$$\frac{d}{dt} \begin{cases} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{cases} = \begin{bmatrix} 0 & \frac{1}{t_{s}} & 0 & 0 \\ -\frac{1}{t_{s}} & -2\frac{5}{T_{s}} & \frac{1}{t_{s}} & 0 \\ 0 & 0 & 0 & \frac{1}{t_{s}} \\ 0 & 0 & -\frac{1}{t_{s}} -2\frac{5}{T_{s}} \\ x_{4} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} + \begin{cases} 0 \\ 0 \\ 0 \\ -\frac{1}{T_{s}} \\ x_{5} \\ x_{4} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} + \begin{cases} 0 \\ 0 \\ 0 \\ -\frac{1}{T_{s}} \\ x_{5} \\ x_{4} \\ x_{4} \end{pmatrix} + \begin{cases} 0 \\ 0 \\ 0 \\ -\frac{1}{T_{s}} \\ x_{5} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_$$

Nutation Damper Phase Shift Circuit

The transfer function

$$\frac{K_{M}S}{\left(1+ST_{M}\right)^{2}}$$

.

.

is represented as

$$\frac{d}{dt} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{bmatrix} -\frac{1}{T_M} & \frac{1}{T_M} \\ 0 & -\frac{1}{T_M} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{K_M}{T_M} \\ -\frac{K_M}{T_M} \end{bmatrix} y = -x_1$$

.....

(the minus sign includes the sign inversion corresponding to path A in Figure 22)

.

The inversion of sign at various roll angles and the switch between primary and secondary damper may be simulated by changing the input parameters.

Tachometer

The transfer function

is represented as

$$\frac{d}{dt} x_{1} = -\frac{1}{T_{F}} x_{1} + \frac{K_{F}}{T_{F}} u$$

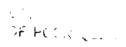
$$Y = X_{1}$$

For the reference control system, the tachometer is significantly faster than the other dynamic elements. This causes the tachometer equation to dominate the time step control in numerical integration, while having little effect on system performance. Replacing the above transfer function with the static operator $y = K_F U$ permits a significant reduction in program execution time. This alternative model is optionally available in the modified program.

Pitch Compensation Amplifier

In unsaturated operation, the transfer function

$$\frac{K_{c}(1+sT_{i})}{(1+sT_{2})}$$


is represented as

$$\frac{d}{dt} x_{1} = -\frac{1}{T_{2}}Y + \frac{K_{c}}{T_{2}}U$$
$$Y = X_{1} + K_{c} - \frac{T_{1}}{T_{2}}U$$

Saturation occurs if

$$|\vee| > V_{\text{LIM}}$$

If this occurs, Y is replaced by V_{lim} sign (Y).

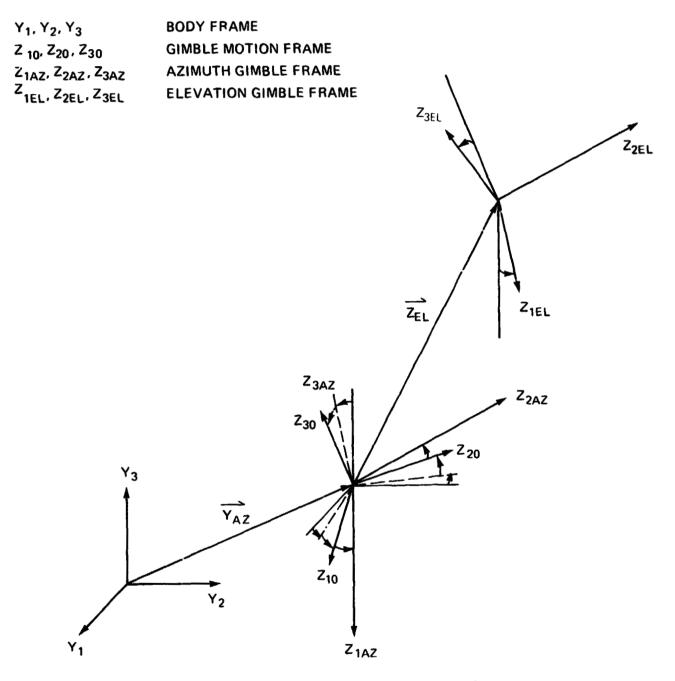
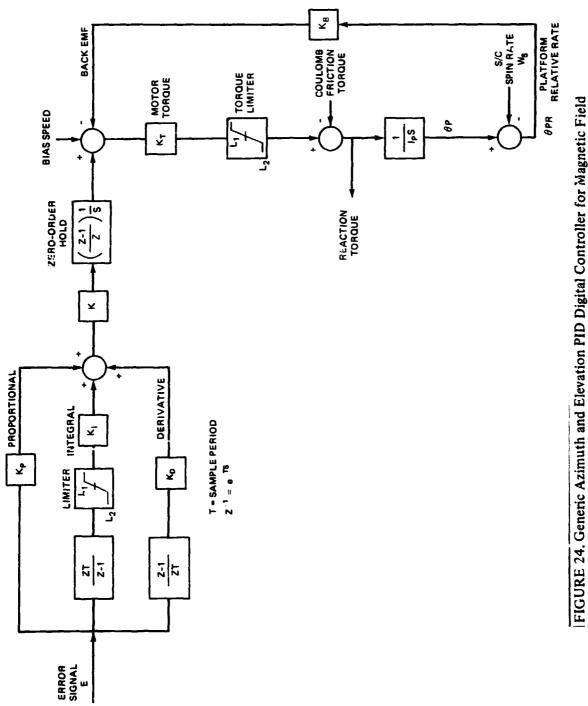



FIGURE 23. Gimble Simulation Reference Frames

APPENDIX B

EXAMPLES OF RAE, IMP-I AND DE-B SPACECRAFT INPUT

ORIGINAL T OF POOR QUALITY

RAE SPACECRAFT INPUT

INPUT CARDS READ Dataomassassos Dynamics Study for RAE-0 pair X-800m Deployment sossassosos	*DATA
DATA MISSISSESSESSESSESSESSESSESSESSESSESSESSE	+DA TA
DATAS AEARTH 1738-5700 880 68-CC0 FLAT 4829-3600 ZMU 4-9027760+03	●D# TA
000-0 05L5 000-0 SSL 010-0 &L 000-0 EL 000-0 SL 0ATAD	ATA
DATA* TVER 6.8040+06 ECLPTC 1.5350+00	CATA CATA
DATA& ITAPE 0 IORB 0 Data&H@@@@@@@@ Inclination = 64.0 deg. eccentricity = 0.005	+DATA
DATA # XSAT 2838.570 C.0 0.0	+DATA
DATA# #SATOT 0.0 -0.57612G -1.181222	+DA TA
DATA0 CD 0.0 AREA 10 7036 WAS5 14.1925 ICENS 0	#DA TA #DA TA
DATAS YEAR 1973.0 ZHONTH 4.0 CAY 17.0	PDA TA
DATAO IDATE 730417 Datao time 0.0	PDATA
DATA+ TSTOP 948.0	+DATA
DATAS FREQ 30.0	+DATA
DATAS IPLOT 2	+DATA
CATAG INCOT 2	PDATA
	+DATA
DATAS (GRAV 1	+DATA
DATA+ DELTAT 0.001	40A TA 40A TA
DATA6 80VHI 17.155 0.285 0.0 0.285 18.178 0.0 0.0 0.0 21.953	+DATA
DATA* 2MS 14-1925 Data* SCO 10-0036	+DATA
NATA NELNTS 6	+DATA
DATA+ NDANP9 2	+DATA
DATA+ ZLO 1.C 1.0 1.0 1.0 1.C 1.0 1.C 1.0	+DATA +DATA
DATA# ZL1 0.0 0.0 0.50 C.50 C.53 C.10 C.0 0.0 DATA# ZLA 0.C 0.0 0.0 0.0 0.0 C.0 3.0 0.0	+DATA
DATAB 282(1-1)2 1-384 -1-384 1-(97 -1-057 1-097 -1-097 0-0 0-0	+DATA
DATA+ ZB2(2.1)2 0.371 -C.371 0.C 0.0 C.0 C.0 0.0 0.0	+DA TA
DATA# 282(3.1)2 -0.227 -0.227 C.493 0.493 -0.383 -0.383 0.0 0.0	+DATA +DATA
DATA& ALFAEK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+DATA
DATAN BETAER C.0 0.0 -30.0 -1200 000 1200 000 1200 000 000	+DATA
DATA + VI2M(1,1)2 0.0	+CATA
DATA& VIZH(2.1)2 C.J	+DATA
DATA# VI2M(*,1)2 -1.846	+DATA +DATA
DATA0 MODES(1-2) 0 Data0 Modes(3-6) 1	*DATA
DATAN MODES(7-8) 0	+DATA
DATA+ ENCOLS(1-8) 1.1E7	PDATA
DATA& RTUBE(1-2) 0+2625	+DATA +DATA
DATA+ RTUBE(3-6) 0.290	+DATA
DATA# RTUBE(7-8) 0.290 Data# HTUBE(1-8) 0.0022	PDATA
DATA THERMC(1-6) 8.85E-6	+DATA
DATAB TIPMS(1-2) 0+0	+DATA +DATA
DATA+ TIPHS(3-6) 0.00513	PDATA
DATAS TIPNS(7-8) 0.0 Datas Sau(1-8) 4.030-2	+DATA
CATAO A(3.1)1 0.000 C.00C 0.0C0 0.00C	*DATA
DATA0 ADOT(3.1)1 C.0D0 9.0D0 C.0D0 0.0C0	+DATA +DATA
DATA 8(3,1)1 0.0D0 0.0D0 C.CC0 0.0D0	+DATA
DATAS BDOT(3+1)1 C+000 0+000 C+000 0+000 DATAS DIN(7+1)1 0+000 0+000	PDATA
DATAS DINDOT(7.1)1 0.00C G.00C	₽DATA
DATA DOUT (7.1)1 6.000 0.000	#DATA
DATA+ DOUTDT(7.1)1 0.000 C.000	+DATA
DATAS STAK(1-8) 0-0	PDATA
DATA# RHDK(1-2) 4.5652E-4 Data# RHDK(3-6) 4.3470E-4	+DATA
DATA RHOK (7-6) 4.563E-4	PDATA
DATA* POO 0-3	+DATA
DATA+ CDAMP(1,1-6' 0.0	+DATA +DATA
DATA* DT00 0.0 Data* AERO 0.0	+DATA
DATA BETLD 0.0	+DATA
DATAS GANLD 65.0	PDATA
DATAS PHILD 0.0	€DATA €DATA
04T4+ D#HLD 0.0	+DATA
DATA® PHIS 35.0 Data@ ZK1D 1.036E-02	+DATA
	. DATA
DATAO DECAY 20.0	•DATA
DATA0 2000 0.98E-03	+DATA +DATA
NATA® ZMDBO 0.0 Datas dprni((1.1)2 C.1 0.0 0.0	*DATA
DATAS DERNI(2.1)2 0.0 0.1 0.0	+DATA
DATA - DPRH 1 (3,1) 2 0.0 0.0 0.1	*DATA
DATA ALFAF 0.0	⇒DATA ¢DATA
DATA BETAE 30.0	DATA
DATA® GAMAE 196.0 Data@ GMBC(1) 0.0 0mBC(2) -0.02666	PUATA
DATA• OMBC(3) 1.5	*DATA
DATAS MLAST O MDPLY 1 DOPLY 0	+CATA +DATA
OATA+1	-UATA

ORIGINAL DE LES S OF POOR QUALLY

IMP-I SPACECRAFT INPUT

NFLT CARES READ NATAN XSAT 0.06949 251.30 12373.0	+DATA
ATAY XSATDT C+300175E25+6714 . 0+13384	*DATA
ATA4 CC 2.0 AREA 26.0 VHASS 15.5(58 IDENS C	*DATA
ATA YEAR 1575.0 ZMCNTH 3.C CAY 21.0391	*DATA
	*DATA
ATA ITAPE O	*DATA
ATA+ TSTCF0 396CC+0	*DATA
ATA+ ICATE 75G321	*DATA
ATA + TIME 32638.0	*DATA
ATA4 1510P 200.	*DATA
DATA4 FRED 1.0	+DATA
ATA4 IPLCT 2	*DATA
DATA4 INOPT 1	*DATA
CATAL IMAMLE O	+DATA
CATA4 IGRAV 0	*DATA
ATA4 MCCES(1-6) 1	+DATA
ATA4 MCPLY 1	#DATA
ATA+ CELTAT 0.01	*DATA
ATA+ FACTOR C+5	*DATA
ATA9 BCYMI 90x0 0.0 0.1 0.C SOAC CAS 0.0 0.0 117.0	*DATA
DATA4 SCC 26.5995	*DATA
ATA1 ZMS 19:5458	*DATA
CATA+ NELMTS E	+DATA
ATA+ ZLO 200. 200. 200. 200. 10. 10.	*DATA
DATA+ ZL1 0. 0. 0. C. C.1 0.1	*DATA
DATAN ZEZII.112 1.80547 -1.24210 -1.80947 1.24210 6.0 0.0	+DATA
CAT## ZEZ(2.1)2 1.2421C 1.8C547 -1.24310 -1.8C547 C.C C.O	+DATA
ATAN 2EZL3.112 -0.22006 -0.22006 -0.22006 -0.22006 -4.6 -4.6	
DATA4 ALFJEK(1-6) 0.0	+DATA
CATAN BETAEK C. C. O. O90. 90.	_ #CATA
DATAN GAMAEK 34.495 124.489 214.485 304.485 0.0 0.0	+DATA
CATAN ENDDLS(1-A) LASET	+DATA
CATAI ENCOLS(5-6) 3.CE7	+CATA
TATAS RTUBE(1-4) 0.25	
DATAN RTUPE(5-6) C.S6	+DATA
DATJ4 HTUBE(1-4) 2.0E-3	●DATA #DATA
DATA4 HTUEE(5-6) 4.0E-3	••••••
DATA4 THERNC(1-6) 8.65E-6	*DATA *CATA
CATA+ T1F#S(1-E) 0.0	
DATAY SAGLI-61 0.0416	+DATA +DATA
CATP4 STMK(1-4) 0. Datp4 rm <u>c</u> k(1-4) 4.3465/E-4	+DATA
DATA4 RHCK(5-6) 3.46-3	+DATA
DATA4 HHLK(3-C) 2.46C-3 DATA4 HCD 1.89E-7	+DATA
CATAN DICC 0.0	+DATA
DATA4 CCAMP(1.112 0.031 0.0C1 0.C01 5.001 5.7 0.7	
ATA+ CCAMP(2.1)2 0.001 0.001 C.CO1 C.001 C.7 0.7	+DATA
CATA* CCAMP(3.1)2_C.001_C.001_0.001_0.001_C.001_C.7_C.7	+CATA
CATAS AEFO 0.0	+0ATA
MTAL PSILORQ ITETL -SQ.Q EHIL 96.0	*DATA
MIPT POLLUKY IFEIN "FYRY ENNI 7597	+DATA
ATAY ETTA 90.0 ZETTA 50.0	
DATA4 ISPIN3 C	+DATA
CAT/+ ICAME.Q	+CATA
ATAN IVISCS 0	+DATA
CATAN LATIDE 0	+DATA
CATAN INHEEL O	*DATA
CATAL INGNIS Q	+DATA
DATA+ CPMAG 0.0 0.0 50.C	+DATA
	*DATA
CAT/+ MAGFLD 4	
GAT/# MAGFLD 4 Dat## Wlast 0	+DATA

ORIGINAL

· -- --

OF POOR QUALITY

DE-B SPACECRAFT & CONTROL SYSTEM INPUT

DE-B SPACECRAFT & CONTROL SYSTEM INPUT DE-B SPACECRAFT & CONTROL SYSTEM INPUT INPUT CARDS REAC Control of the state of the control sistem Control of the state of the control of the state of + CAT A + + CATA + DATA + CATA +CAT A +DAT A + CAT A +CATA +DATA +DATA +CATA +CATA +CATA + CAT A * CAT A * DAT A * DAT A * DAT A * DAT A * CAT A * CAT A * CAT A * CAT A \bullet CAT A \bullet DAT A \bullet CAT A CAT A \bullet CAT A \bullet CAT A \bullet + DAT A + DAT A + DAT A

URIGINAL PATE 5 OF POOR QUALINY

DE-B SPACECRAFT & CONTROL SYSTEM INPUT (CONTINUED)

. .

_____ +DAT A ----+DAT A +DAT A VERSICN JFR 1981

- ----

____ _ _