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PREFACE

This volume is the second of two parts. Part I emphasizes the Laser Doppler
Velocimetry developed especially for this program. Part II presents detailed

cold flow measurements along with preliminary primary hot fiow data.
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ABSTRACT

The flow~field within a two-dimensional thrust augmenting ejector has
been documented experimentally. Results are presented on the mean velocity
field and the turbulent correlations by Laser Doppler Velocimeter, surface
pressure distribution, surface temperature distribution, and thrust perfor-
mance for two shroud geometries., The maximum primary nozzle pressure ratio
tested was 3.0, The tests were conducted at primary nozzie temperature ratios
of 1.0, 1.8 and 2.7, Two ejector characteristic lengths have been identified
based on the dynamics of the ejector flow field, i.e., a minimum length Ly be-
Tow which no significant mixing occurs, and a critical Tength L. associated
with the development of U'V' correlation in the ejector. These characteristic
Tengths divide the ejector flow field into three distinctive regions: the en-
trance region {x<{Lp) where there is no direct interaction between the primary
flow and the ejecter shroud; the interaction region (Lp<x<L.) where there is
an increased momentum of induced flow near the shroud suriace; and a “"pipe"
fiow region (Lo<x) characterized by an increased skin friction where x is the
distance downstream from the ejector inlet. The effect of the coflowing in-
duced flow has been shown to produce inside the ejector a centerline velocity
that has increased over the free-jet data. The normalized turbulent correla-
tions are found to be 25 percent Tower than those in free jets. The effects
of pressure ratio on the ejector fiow field are small. Present measurements
also show that the ejector performance was not influenced by the primary noz-

zle temperature ratio up to 2.7.
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NOMENCLATURE

P-Pampb Surface pressure coefficient

3p” /ex

Blue laser beam

M measured ; Primary nozzie discharge coefficient

M jsentropic
Primary jet width
Particle size

Laser beam diameter
Green laser beam

Ejector width

Shroud width, = H for constant area ejector

Mixing chamber length
Diffuser Tength

Length of entrance region

Ejector Tength for maximum velocity correlation.

the wail

Mass flow rate

Primary jet exit Mach number
Complex index of refraction
Static pressure

Po/Pamps pressure ratio
Ambient pressure

Dynamic pressure

Leading edge radius
Reynalds number

Facility span

Primary nozzle temperature ratio
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Ejector shroud surface temperature ratio
Ejector thrust

Primary nozzle thrust

Ensemble average

Velocity component in the x direction

Velocity component measured by the green and the blue beams
respectively

Primary jet exit velocity

Centerline velocity

r.m.s. value of the U velocity component fluctuation
Velocity component in the y direction

r.m.s. value of the V velocity component fluctuation
Velocity correlation

Ejector shroud downstream location

Coordinates

Diffuser half angle

h(x)JU2dy . Profile uniformity parameter

Toayyz °

Wavelength of Tight

Downstream distance measured from the mixing chamber entrance

Density
Air viscosity

n D/N, size parameter
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I. INTRODUCTION

The jet thrust augmentation of an ejector system is governed by certain
fiuid mechanics phenomena associated with the entrainment of surrounding at-
mospheric air by the primary jet flow and subsequent wmixing of this entrained
fluid with the primary jet. Previous research has provided considerable in-
sight into the operation of ejectors(1s293). These studies have shown that
the ejector thrust augmentation results from the 1low pressure on the shroud
entrance region caused by entrainment of secondary fluid. Pressure recovery
is achieved by turbulent mixing between the primary jet and the secondary
stream. The use of a diffuser further enhances thrust augmentation by reduc-
tion of the entrance pressure. Ultimately, these flow processes result in a
pressure distribution on the shroud and primary nozzle surfaces. The integra-
tud effect of the pressure forces over these surfaces gives a positive contri-
bution to the system thrust., The fundamental processes that relate entrain-
ment, mixing, and diffusion with the pressure distribution on the ejector
shroud and primary nozzie surfaces are not adequately understcod and are some
of the main objectives of the present research.

Large~scale testing and aircraft development programs which incorporate
thrust augmenting ejectors have didentified a number of problem areas which
must be solved to achiave full implementation of the ejector concept in V/STOL
app]ications(4a5). Among them is the requirement for high augmentation within
the lTimited volume available in high performance aircraft which results in in-
sufficient mixing and in flow separation. Although ejector aeometny is the
primary design variable, from a fluid wmechanics point of view it is valuable
to relate these problems to the shroud surface pressure distribution and tur-
bulent characteristics of the primary jet. For example, flow separation re-

sults from the finability of the boundary layer tc manage a Targe adverse
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pressure gradient encountered 1in a compact high performance ejector design.
It can be prevented using suitable boundary layer control devices(®). In or-
der to determine the need of these control devices and to optimize their de-
sign, more quantitative information 1is necessary on the flow processes near
the shroud surfaces.

For a given geometrical configuration insufficient mixing implies that
there is insufficient energy transfer between primary and secondary flow with
corresponding penalties in performance. Since the velocity distribution at
the entrance section of the ejector is not uniform, it is impertant to quan-
tify the combined effects of pressure gradient and turbulent structure on the
downstream evolution of the velocity distribution. Qualitatively, the effect
of adverse pressure gradient tends to increase flow non-uniformities while the
effect of turbulent mixing is to reduce them(1}). Consistent with this quali-
tative argument 1is the increased performance found with hypermixing noz-
zles{6:7) and pulsatile primary jets(S).

An important aspect of thrust augmenting ejector operation is the influ-
ence on performance of primary flow total pressure and temperature. There is
extensive literature on the effects of pressure ratio across the primary noz-
Zle on ejector performance at ambient total temperature(z). In contrast,
there is little information available on the effect of primary fiow total tem-
perature. This information is Timited to overall system performance and ejec-
tor shroud surface pressure distribution. There is no information however on
the effect of these parameters on the turbulent structure within the ejector.

A number of mathematical models have been used to investigate ejector
flows. One-dimensional analysis 1is useful in evaluating performance trends
associated with changes in the geometrical configuration(gsln) and thermody-

namic parameters of the ejector system(ll). The effect of the efficiency of

L e St e - an e < 2 dAMRT . L.




individual elements on overall system performance has aisoc been investigated
using one-dimensional ana]ysis(sslz). Other studies inciude phenomenological
mode1s(13~16) and finite difference algorithms (17:18)_  The latter provide
great flexibility 1in analyzing complex inlet geometries. The development of
mixing is 1incorporated through suitable turbulence modeling., Detailed mea-
surements of the ejector flow field including measurements of the turbulent
quantities are required to evaluate the accuracy of these models (3),

An experimental research program was initiated at the JPL Fluid Dynamics
Group to investigate the fluid dynamics of thrust augmenting ejectors. The
objectives of this research are:

(A) To determine the role of the entrained Tluid and its wmixing with
the primary Jjet on the shroud surface pressure distribution and on ejector
performance.

(B) To measiure the evolution of the various profiles and determine the
effect of the confining shroud surfaces on their evolution.

(C) To determine the effect of primary flow total pressure and tempera-
ture on the flow characteristics within the ejector and on its thrust perform-
ance.

{D) To provide basic data to support analytical research.

The emphasis in this investigation is on the basic fluid dynamics
phenomena which influence the thrust augmentation performance of an ejector.
The ejector configuration chosen consists of a primary two-dimensional jet
discharging into a rectangular ejector shroud. Simple shroud geometries are
being used in order to minimize instrumentation difficulties. They are a con-
stant area ejector and a constant area mixing chamber followed by a diffuser.
Measurements of the system thrust, shroud surface pressure distribution, mean

velocity field, and turbulent stresses field are reported.
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The velocity measurements were obtained using a two-component Laser Dop-
pler Velocimeter. The technique has been used based on the grounds: 1) It is
non-intrusive, 2) does not require calibration, 3) can measure velocity in re-
verse flow regions, and 4) has been used successfully to measure the velocity
field in flows with large temperature gradients(lg). Hot Wire Anemometry, the
only available alternative, has never been successfully used 1in non-uniform
temperature flow fields, Furthermore, probe calibration is required for velo-
city magnitude and direction; probe interference at the shroud can signifi-
cantly influence the resuits of the measurements, and does not give direction
discrimination in reverse flow regions. However, Laser Doppler Velocimetry
requires the flow to be seeded with particles. Thus proper seeding devices
must be built into the flow facility and the effect of particie concentration
and size on measurement accuracy needs to be evaluated.

This report includes results obtained in two different ejector shroud
geometries. It is organized as follows: The flow facility and instrumenta-
tion are described in Section IIl. A significant part of this section is devo-
ted to the Laser Doppler Velocimeter. A detailed description of the system,
data acquisition and data processing techniques is presented. The results de-
scribed in Section III 1include measurements of the ejector configuration and
free primary jet as well. When possible, the results of different measure-
ments are compared against each other to verify their accuracy. The results

are discussed in Section IV followed by a summary in Section V.
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IT. FLOW FACILITIES AND INSTRUMENTATION

Two different ejector Tacilities were designed and assembled during the
course of this program., The Tow temperature facility was designed first., The
description of the low temperature facility is given in reference (20) and
will not be repeated here. In this report the high temperature facility will
be described in detail. The details of the Laser Doppler Velocimeter and

other instrumentation are presented.

2.1 Ejector Facility

The two-dimensional ejector facility was designed as shown in figure 1.
The maximum primary nozzle pressure ratio of Pg/Pey = 4.0 and stagnation tem-
perature of 540°C can be obtained. A schematic diagram of the overall facil-
ity 1s shown in figure 2. A picture of the hardware is presented in figure
3.

Pressurized air from a compressor plant is used to drive the primary
flow. A venturi tube, located in the supply 1ine, directly measures the pri-
mary nozzle mass flow rate. Downstream of the venturi a combustor is used to
elevate the temperature to the desired value by burning methanol. The facil-
ity is Tocated in a test cell with adequate hot gas exhaust and breathing ori-
fices on the side walls and ceiling 1in order to prevent recirculation of the
hot gas inside the room. The ejector facility is mounted on linear bearings
to accommodate thermal expansion of the pipes and to measure the system
thrust. Flexible stainless steel hoses were used to couple the primary nozzle

with the suppiy 1ine to facilitate the thrust measurements as shown in figure

3.
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The primény nozzle is a siot-type two-dimensional nozzle. The exit area

is rectangular 0,762 cm x 50.8 ecm, the larger dimension being along the span

of the nozzle. Several elements of the primary nozzle are shown in figure 4.

The gas flow is fed into a stagnation section via a perforated tube. After a

perforated plate and two stainless steel screens the flow enters the

contraction section. The contraction is two-dimensional with an area ratio of

20 to 1. The internal contour of the contraction is formed by two circular

arc sections as indicated in figure 4. The external surface of the nozzle is

also contoured to provide a smooth flow path for the induced flow. Two large

end plates are used to confine the flow in the spanwise direction. These

plates are also used to support the shroud wails.

Two shroud geometries have been tested in this program. The geometrical

parameters defining each one of them are presented in Table 1 (see figure 1

for the nomenclature. One of the ejector walls is instrumented with pressure

taps along the mid-span plane as shown in figure 5. The other shroud surface

is instrumented with two pressure taps and several thermocouples (figure 5).

The shroud walls are attached to the end plates by a clamping mechanism which

Table 1. Ejector Geometry

Constant Area Diffused Flow
d(m) 7.62 x 10-3 7.62 x 10-3
H{m) 0.102 0.102
L{m) 0.305 0.305
L'm)  emea- 0.203
X(m) 0.102 0.102
R (m) 0.025 0.025
g (degree) = eamaa 5
S(m) 0.508 0.508

permits continuous adjustment of the Tocation of the shroud relative -to the

primary nozzle. Proper alignment of the shroud walls relative to the nozzle

© s A T S



omo_wrin, BT

0t

AIR
SUPPLY

Y PERFORATED PLATE

o

ANANEAY
SPRAY \}S \
INJECTORS — SCREENS

CONTRACTION AREA RATIO 20:1
EXIT AREA 0.3" x 20"

MAXIMUM PRESSURE RATIO 4
MAXIMUM TEMPERATURE 1000°F

Figure 4, Primary Nozzle Geometry

R



[PPSO SIS LTt S AR SR e IR 20 Ehe Sl & AL R Septy bRl SRR

ALL SP

Qfllljllllllllllllllill

TRET smUTTEaA R T ARAGpme T e e e

(a)
[ 1 | I | |
CSPTC TC TC TC TCSP

. ALL SP
%; S SR TR O N TR T O M AN TN BT 0 U W S Lt
(-'A
8 (b)

[l | | | ]

SPTC TC ¢ SP C A
TC

i SP LOCATION SURFACE PRESSURE TAPS
; TC LOCATION SURFACE TEMPERATURE THERMOCOUPLES
; Figure 5, Ejector Shroud Geometry and Instrumentation {a) Constant Area Ejector
i | (b) Diffused Flow Ejector




was obtained using the pressure taps on both shroud walls. The shrouds were
considered aligned when the static pressure difference between the two walls
measured at the same downstream position was smaller than 1 percent of the

local gauge pressure,

2.2 Laser Doppler Velocimeter

The velocity field in the ejector was measured with a Laser Doppler
Velocimeter (LDV). A commercially available two-component, two-color system
LDV system was employed. The final experimental configuration was chosen
after performing a large number of tests in the low temperature faci1ity.(20)
These tests were conducted in order to obtain the optimum performance
characteristics by varying the optical system, analog processing, seeding
materials, and processing software. A picture of the system in its final
configuration 1is shown in figure 6. Forward scatter configuration has been
used to reduce the dependance of the scattered signals on the complicated Tobe

structure of the Mie distribution, particularly in highly turbulent flows.

When the particles that cause scattering are in the range 0.6 < « < 5, where «
is the size parameter and n the complex index of refraction? 1ight scattering
is adequately described by the Mie theory. The intensity distribution of the
scattered Tight from such particles, termed the Mie distribution, is smooth in
the forward direction and compiicated in the back-scattering. The analog

processors were operated in the single burst mode wiaich suits the ejector

application, since it requires Tow particie density seeding.

2.2.1 Optical system

The optical system used in this experiment is a forward scatter system,
i.e., the receiving optics is Tocated 1in the direction of propagation of the

beams. Thus the transmitting and receiving optics are located at opposite
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sides of the facility as shown 1in figure 7, A schematic diagram of the
transmitting optics is given in figure 8. A two watt argon-ion laser is used
as the light source. Past a collimating lens, a color separator provides two
1ines of the laser, the 514 nm green line and 488 nm blue 1ine. Each beam is
sptit into a pair of equal intensity beams by a polarization rotator and a
beam splitter. A single 598 mm focal length 1lens 1is used to form the
measuring volume which contains the overlapping focal volumes of the blue and
the green beams. A flat first surface mirror is used to rotate the beams ape,
thus the measuring volume is formed in the test section as shown in figure 7.

The receiving optics components are shown schematically in figure 9.
The scattered 1ight from the particles is collected by a 761 mm focal length
lens after raflection from a mirror, A dichroic mirror is used to separate
the components of each color. Finally, the scatter Tight of each color fis
focused into a pin hole (250 pm) and photomuitiplier tube assembly.

The component of the velocity vector measured by the LDY and the Doppler
constant used to convert frequency into velocity vector are determined by
the transmitting optics. A diagram of the fringe formation is shown in figure
10. The fringes in the green focal volume form an angle of -45° with the
downstream direction and, therefore, the velocity component measured by the
green beams forms an angle of +45° with that direction. Similarly the blue
beams measure the velocity component forming an angle of -45° with the
downstream direction. The Doppler constant which is related to the fringe

spacing in the focal volume is given by the equation

K = A (1)
2 sin 9
p

where A is the light wavelength and 0=4.72° gives Doppler constants for the

green and blue velocity components Kg = 6.24 (m/sec)(iHz)~! and Kp=5.92

14
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(m/sec)(MHz)~1 respectively. The detailed geometrical characteristics of the
focal volume are given in Table 2.

The entire LDV hardware is mounted on an optical table that can be moved
by means of remotely operated stepping motors. Motion of the focal volume on
a Tixed span piane was obtained by the horizontal displacement of the optical
table. Motion along the span resulted from the displacement of the focusing
lens and the receiving optics along their optical axis. The table can be

moved in steps of 2.5 mm, with an absolute accuracy of 100 um.

Table 2. Laser Doppler Velocimeter Focal Volume Characteristics

Lens focal Tength, f = 598 mm

Beam crossing angle, a = 4.72°
Beam diameter, D = 1.3 mm

Focal volume length®, & = 7.3 mm
Focal volume width™, d = 0.3 mm
Fringe spacing®, df = 6.1 pm

Number of fringes, Ngfp = 48

*These values are mean and vary by 5% for the blue and the green focal

volumes,
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The optical configuration just described can be used to measure the
velocity field only at distances from the shroud wall greater than 1 cm. At
shorter distances the two beams are interrupted by the shroud as they enter
the test section, thus preventing the formation of the focal volume.
Measurements close to the shroud wall were made by operating the LDV in a
single component configuration. In this case, the green beams were positioned
on a plane parallel to the shroud wall; therefore, only the downstream
component of the velocity was measured. Measurements as close as 0.25 cm from

the wall were obtained.

2.2.2 Particle Generator and Injector

In order to measure the flow velocity with a Laser Doppler Velocimeter,
the air flow must be seeded with particles. It is the velocity of the
particles that is measured by the system. The objective of the seeding device
is to provide a spatially uniform concentration of particles, their size small
enough to follow the flow while providing sufficient scattered 1ight for an
adequate signal to noise ratio. The seeding technique used in the low
temperature facility is described in reference 20. In the high temperature
facility, silica particles were used. Their size distribution is shown in
figure 11. The mean particle diameter is 1.55 um which gives a terminal
settling velocity of 0.019 «cm/s or equivalently a response time of
19.4 ps.(21)

Both primary and induced flows were seeded with particles. A commer-
cially Tluidized bed aerosol generator was used to produce a highly concentra-

ted aerosol, 10° partic]es/cma. The aerosol was introduced in the flow using

spray bars of the same geometry as those used in the Tow temperature

facility.(zo) A schematic diagram of the aerosol injection system is shown
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in figure 12, The primary flow is seeded in the stagnation section upstream
of the perforated plate (figure 4). The induced flow spray bars are located
upstream of a perforated plate and a screen in order to minimize the flow
distortions {figure 13). As indicated in figure 13, the finduced flow is
confined into a Targe channel from the seeding point to the entrance to the
shroud. The size of the channel is Tlarge enough to minimize its influence on

the flow field.

2.2.3 Signal Processor and Data Acquisition

The measurement of the velocity can be obtained only after suitable
processing of the photomultiplier tubes output as the scattering particles
move across the focal volume. Two counter processors were used, one for each
velocity component. They were operated in the single-burst mode, i.e., only
one particle is present in the focal volume when the measurement is made. In
addition, the system is operated‘in the coincidence mode in which the output
of the processors is tested for coincidence in time so that the two components
of the velocity vector as determined by the optical setup are measured on the
same particie.

The signal processing 1s accomplished in four stages: analog process-
ing, burst processing, coincidence test and transfer to the computer. The
analog processing invalves suitable filtering and amplification of the signal
for optimum signal to noise ratic. Both high pass and low pass filters are
used. The Tow pass filter is used primarily for pedestal removal and low
frequency noise removal; Tow frequency noise is introduced by imperfections in
the optical system. The cut-off values used varied from 300 kHz to 1 MHz
depending on the flow velocity. The low pass filter is used for removal of

high frequency noise. Cut-off values from 2 MHz to 100 MHz were used
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depending on the flow velocity. The output of the filter is processed by an
amplifier. In the present experiments however, the gain was set at unity,
thus no amplification was needed for adequate operation of the system.
Typical signal to noise ratio past the amplification stage was in excess of
100, |

The burst processing encompasses the required electronics for the actual
measurement of the particle velocity. A Tlevel detector determines the
presence of a burst, Measurements are made of the total number of cycles in
each burst, i.e., the number of fringes crossed by the particie, and its total
time duration. The resolution of the time measurement is 1 nse-. Onily bursts
with more than 8 cycles are used for processing. The output of the burst
processor is in digital form, It feeds 1into the computer interface that
incorporates the coincidence test between the two processors. The coincidence
test consists of the initiation of a time window after completion of
processing by one of the processors. If data from the other processor is not
received before the end of the window, the data 1is discharged; otherwise,
coincidence is attained and the data from both processors is transferred to
the computer. A time window of 17 psec was used in ail the experiments.

The Laser Doppler Velocimeter operates in conjunction with a minicompu-
ter system. The data acquisition process 1is initiated by the minicomputer
software after allocation of a suitable memory buffer. Data transfer from the
signal processor to memory occurs under hardware control via Direct Memory
Access until one of two conditions is satisfied: 1) The memory buffer is
full, or 2) a specified elapsed time has passed (time-out). Preprocessing is
then initiated on the resulting variable size buffer which involves search and
removal of transmission errors, transformation of the data from signal pro-

cessor format to Doppler frequencies, and computation of a frequency histogram
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for each velocity component. The frequency histograms are displayed on the
computer terminal in order to verify proper gperation of the system. After
preprocessing is compieted, the data is transferred to magnetic tape for
additional processing. The data buffer used in these measurements corresponds
to 8,000 velocity measurements. The maximum elapsed time was specified as 60
seconds. These values are a compromise designed to minimize the uncertainty
of the results while maintaining the total time of the experiment within
reason. They also take into account the typical data rate.

Prior to every experiment utilizing the LDV system, several tests were
conducted to verify adequate operation of the system, e.g., the transmitting
optics alignment and overiapping of the green and the blue focal volumes. The
fringes within the focal- volumes were also inspected to prevent distortions
and intensity non-uniformities. The alignment of the receiving optics was
verified with the facility in operation. The high-pass and Tow-pass filters
in the signal processor were set to predetermined values depending on the
expected flow velocity. The gain of the amplifiers was adjusted for optimum
signal to noise ratio. The flow rate through the aerosol generator was set
for a data rate between 100 to 1000 particles per second. These data rates
are consistent with the buffer size and maximum elapsed time used in the data

acquisition software.

2.2.,4 Data Processing

The velocity data generated in these tests were processed using the same
minicomputer system used for data acquisition. Some valuable information was
generated by the data acquisition software, namely the computation of the
velocity histograms. The data processing software was designed to obtain the

mean and first order correlations of the measured velocity components and to
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transform these results to the physical frame of reference. In the computa-
tion of the mean velocity and correlations, a weighting factor is needed.
Several possibilities were investigated as reported 1in reference 20. The
conclusion of that study was that the uncertainty of the measurements will not
be improved by using velocity bias correction. Therefore, equal weight
averaging was used which results in a significant reduction of processing

time. Thus the expressions used to compute the mean and correlations are

N
Ueg _ 1L I (Unla,s (2)
"N op=l
N 2
UZgs _ L J  (Uq)g,B (3)
= N n=1
. N
Ug Ug 1 J§  (Uple. (Upls (4)
=N n=l

where the subscripts G and B refer to the velocity measured by the green and
the blue heams respectively.

A simple transformation relates the mean and the first order correla-
tions of the measured velocity components with those in the x and y
directions. This transformation is illustrated in figure 14, The equations

relating the mean and correlation of the various velocity components are

U =1Ug sinp + Ug cosp (5)
T =T cosp - Ug sinp (6)
L S R _
2 + 2 cos 2¢ + Ug Ug sin 2¢ (7)
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T = 52— e
Ug+U + Ug~U cos 29 - UgUg sin 2 ¢ (8)
T e e
TR
uvy = 2 sin 2 ¢ + Ug Ug cos 2 ¢ (9)

where ¢ is the angle between the direction of the velocity component measured
by the green beams and the downstream direction, positive in the counter-
clockwise direction. From these quantities, the rms value of the fluctuation
of the U and V velocity components and their cross-correlation can be

calculated using the following standard relationships:

T ] (10)

. - -

vi= Y-y (11)
oV = U -uv (12)

The reproducibility of the measurements was better than 1 percent. The
expected accuracy of the results was estimated as 2 percent for the measured
velocity components. The accuracy of the velocity correlations was estimated
as 10 percent. These estimates take into consideration several sources of

uncertainty including the effects of velocity bias and fringe bias{22-24),

2.3 O0ther Instrumentaticn

In addition to the velocity measurements, the ejector filow field was
documented with direct thrust measurements, primary nozzle mass flow rate
measurements and surface pressure measurements. Pressure measurements were

also used to monitor the operation of the primary nozzle. A number of
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temperature measurements were made to monitor the primary nozzle total
temperature and to characterize the ejector shroud surface temperature. The
pressure measurements were made with strain gauge pressure transducers. Their
accuracy is estimated at 0.1 percent of the measured value. The temperature
measurements were made with type K thermocoupies and commercial read-out
units. Their accuracy is ¥ 1 degree centigrade.

Measurements of the primary nozzle air flow rate were made using a
venturi tube. As indicated eariier, the venturi tube was located upstream of
the combustor in the primary nozzle supply line. This mass flow was corrected
due to addition of fuel for hot primary flow runs. The mass flow rate was
obtained from measurements of the pressure and temperature upstream of the
venturi and the pressure at the throat. One dimensional gas dynamics formulas
were used to calculate the ideal mass flow rate. A mass flow coefficient was
used to correct for real gas effects. Handbook values were used for the mass
flow coafficient(25),

The surface pressure distribution on the shroud was measured at the
points indicated in figure 5. Two pressure transducers and scanvalves were
used for the upstream and downstream pressure taps respectively. An overlap
of two pressure taps was used to verify proper operation of the system. The
results of surface pressure measurement were processed using the minicomputer
system. Computer software was developed to caiculate the surface pressure
coefficient. This software integrates the surface pressure around the Teading
edge and alung the diffuser to calculate the contribution of the pressure
forces on the shroud to the system thrust. The integrals were calculated
using Simpson's rule,

Two different techniques were wused for direct thrust measurements. In

the 1low temperature facility a load cell was used. This system has been
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described in reference 20. In the high temperature facility, however, a load
cell could not be used because of thermal expansion, Instead, measurements
were made using the system shown schematically in figure 15. In this
technique the thrust of the system 1is balanced by the 7orce acting on a
piston. Measurement of the differential pressure across the piston determines
the force acting on the system. Along with the force measurement, a linear
potentiometer gives the position of the facility relative to the supply pipes.
The assumption is made that there is a "zero" relative position at which the
contribution to the measurement of forces acting on the supply pipes is
negligible. Hence the measurement is made only when the facility is at this
position. The reproducibility of the results is very good. However, due to
uncertainties in the definition of the "zero" position as a function of supply

pressure, only relative measurements are presented.
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ITI, RESULTS

3.1 Facility Validation and Prelirinary Resuits

Tests were conducted to determine the flow Tield characteristics and
performance of the primary nozzle in both the low and the high temperature
facilities. Pitot tube surveys were made in the Tow temperature facility to
characterize the spanwise uniformity of the flow and to determine the free-jet
characteristics. The spanwise variations of the jet exit velocity were found
within 0.5 percent of the mean velocity. The free-jet results are presented
in figures 16 to 18. The evolution of the normalized width of the jet is
shown in figure 16. The jet width &6 is defined as the distance between points
where the velocity is one-half the local centerline velocity. As expected,
the jet width fincreases linearly with downstream distance sufficiently far

downstream. A Teast square fit to the data for x/d>10 gives

0.19 i;io £ 0,19 (13)

ajo

where xq/d = 3.0, The center]i?e velocity decay is shown in figure 17. The
centerline velocity decays as x~2 after the potential core. The self similar

velocity decay was found to be )

=X 7

%ﬁ; = 2.68 id_'o T 0.005 (14)

Comparison of these data with the results of other investigations is
made in figure 18, The continuous line on this figure was obtained from the
results presented in reference 26, which cover the Reynolds number range up to
Req = 3.4x10" (c.f. Reg = 8.5x10"  in the present measurements). The
self-similar growth rate and centerline velocity decay are in agreement with
the results of other investigations.(27-30) The location of the virtual origin

(xo) is also within the scatter of measurements.
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The tests conducted in the high temperature facility were T1imited to
spAnwise surveys of the pressure and temperature, and measurements of the mass
flow coefficient of the nozzle. The spanwise uniformity of the total pressure
and temperature were found better than 0.5 percent of the mean. The mass flow
coefficient results are presented in figure 19. The mass flow coefficient Cy
defined as the ratio of the measured mass fiow rate of the nozzle to the ideal
one-dimensional mass flow rate, 1is plotted as a function of nozzle exit
Reynolds number (Redigg) at temperature ratios tp =1.0, 1.85 and 2.73. At
sufficiently high Reynolds number and temperature ratios of 1.85 and 2.73,
these results show a mass flow coefficient greater than one. Although it may
seem striking, mass flow coefficients greater than one have alsc been reported
in axisymmetric configurations(31'34). They are the result of the negative
boundary layer displacement thickness which is caused by the combined effects
of heat transfer and rapid flow acceteration,

The ejector configurations investigated were chosen after analysis of
several preliminary tests on constant area ejectors at primary nozzle exit
Mach numbers from May=0.2 to 0.7. Tests were first conducted with an ejector
shroud of area ratio 16.7, a leading edge radius of 3.8 cm, and a mixing
chamber length of 30.5 cm. This configuration did not produce any thrust
augmentation, irrespective of the ejector shroud location relative to the
primary nozzle, to a maximum value of X/H=l. Flow visualization showed that
within the range of the Mach number tested, a reverse flow region existed on
one shroud surface while the flow remained attached to the other surface. The
particular shroud surface on which the flow remained attached appeared to
depend on conditions at the Tleading edge of the shroud. However, after the

flow was established, the wall at which the flow remained attached couid be
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changed by externally inducing separation on that wall. The flow then stayed
attached to the other wall even after the external disturbance was removed.

The area ratio was reduced to 13.3 while the length of the mixing
chamber was ma‘ntained at 30,5 cm. Flow separation was not encountered for
this area ratio with two leading edge radii of 3.8 ¢cm and 5.1 cm., The thrust
augmentation was found to improve by 10 percent as the shroud was moved from 5
cm to 10 cm downstream of the piimary nozzle exit.

The geometrical parameters characterizing the configurations tested are
given in Table 1. The non-dimensional values were: the area ratio H/d=13.3,
the distance from the primary nozzle X/H=1, the mixing chamber Tlength L/H=3,
shroud leading edge radius of curvature R/H=0.25, and the ejector aspect ratio
S/H=5, The constant area ejector terminates with the mixing chamber. The
diffused flow ejector had a 5° half angle straight wall diffuser at the end of
the mixing chamber. The diffuser area ratio was 1.30 and 1its normalized
length L°'/H=1,75., Tests in the Tow temperature facility were Timited to
primary nozzle pressure ratios from 1.06 to 2.0 (May=0.3 to choked condi-
tions) at ambient total temperature. In the high temperature facility, the
primary nozzle pressure ratio was varied from 1.06 to 3.0, The tests were
Timited to three vajues of the total temperature, namely ambient, 255°C, and
540°C, These values correspond to temperature ratjos of 1, 1.8, and 2.7

respectively.

3.2 Thrust and Surface Pressure Distribution

The thrust augmentation of both ejector configurations was determined by
direct thrust measurements. The results of these measurements in the Tow
temperature facility are presented in figure 20. The ejector thrust normal-

ized with the measured primary nozzle thrust 1is plotted versus the primary




0%

AR SO P T L S S AL PSS SRR LAY WS = (04 L ¢ N LGP Nl B 0 Rt T S A | S SN S PE—

1.4 | 1 1 | l T
| | K
) B E gl ® mEn
1.3 ® . -
Te o _o*- o -H0oHog
— L2 °© O o 9 " oo o z
T 0
0
1.1 _
1.0 l L1 1 ! L L1
0,02 0.04 0.06 0.080.1 0.2 0.4 0,6 0,81
L i 1 i i
0.2 0.4 0.6 0.8 1.0
Mex

Figure 20. Thrust Augmentation Ratio. Open Symbols Represent Constant Area Ejector. Sotid
Symbols Represent Diffused Flow Ejector




nozzle pressure ratio., The variation of thrust augmentation ratio with
pressure ratio was less than 2.5 percent of the mean., These variations were
within the general uncertainty of the measurement technique. Mean thrust
augmentation ratio = 1.21 for the constant area ejector and 1.32 for the
diffused flow ejector were obtained., These results were obtained for pressure
ratios as high as 2. Both ejector configurations were tested up to a pressure
ratio of 4.0 1in the high temperature facility. These measurements, however,
showed a rather large uncertainty (¥ 0.10) for the thrust augmentation ratio,
especially at elevated temperatures. Because of this Targe uncertainty,
possible variations of the thrust augmentation with pressure ratio could not
be resolved in this phase of the research.

The measured shroud surface pressure distributions are given in figures
21 to 26, Presented 1in these figures are the results of measurements
conducted on both shroud geometries at pressure ratios in the range from 1,06
to 3.0 and at temperature ratios of 1.0, 1.8, and 2.7. The results are
plotted in terms of the surface pressure coefficient defined as the pressure
differential between the measurement point and the ambient pressure normalized
by the dynamic pressure calculated for ideal, one-dimensional, and fully
expanded nozzle flow. Under these assumptions, the dynamic pressure is given
by the expression

x-t
Y. Po_. Y
qj = v -1 Pamb (Pamb) -1 (15)

where y is the ratio of the specific heats. This choice of parameters permits
a direct comparison among different pressure distributions in terms of the
thrust augmentation since the ideal primary nozzle thrust is proportional %o

the dynamic pressure.
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In comparing the pressure distributions on both confiqgurations, it
appears that the significantly lower pressures found in the diffused flow
ejector are the result of the pressure recovery along the diffuser.
Furthermore, while in the constant area ejector, the pressure recovery is
graduai along the mixing chamber; in the diffused fiow configuration, the
recovery in the mixing chamber is significantly Tower. The pressure distri-
bution on the leading edge has a pronounced peak (suction peak). The minimum
pressure is located, in all cases, around 30° from the mixing chamber
entrance. There is a significant pressure recovery within the first few
measurement stations in the mixing chamber. The effect of pressure ratio on
the surface pressure coefficient is limited to the leading edge region up to a
pressure ratio of 2,0, At higher pressure ratios there is a significant
reduction in the surface pressure coefficient throughout the ejector. The
effect is particularly pronounced at a pressure ratio of 2.0, The effect of
pressure ratio on the leading edge pressure distribution can be characterized
by the peak value of the pressure coefficient. These results are presented in
figure 27. There is a monotonic decrease of the peak value with the increased
pressure ratio. A large change in this peak pressure cofficient was observed
at the highest pressure ratio. Temperature ratio does not change the general
features of the surface pressure distribution. It does, however, reduce
slightly the magnitude of the surface pressure coefficients throughout the
shroud wall as the primary flow temperature is increased.

The measured surface pressure was used to calculate the thrust of the
system. The results of these calculations are presented in Table 3 where the
contribution to the thrust of the shroud surface pressure are normalized by
the isentropic thrust of the no:zle, keeping the mass flow rate of the primary

nozzle constant. To estimate the thrust augmentation ratio, the following

48




-0.25 A
O t =1.00
Ot =181
A
|
-0.15 AYS
"L
[} ) Cp D
% 0.10 —‘ A —
; | o 0
¢ O N
: o )
-0.05 -5 —
0 |
=z 1 2 3
pOlpamb

: Figure 27. Minimum Surface Pressure Coefficient as a Function of Pressure Ratio. Open Symbols
! Represent Constant Area Ejector. Solid Symbols Represent Diffused Flow Ejector

R AT T



:ﬁ.iﬁ&w .

assumptions have been made: uniform spanwise distribution of the surface
pressure, the forces acting on the external surface of the primary nozzle are
negligible, the viscous forces acting on the shroud surface are negiigible,
and the primary nozzle thrust efficiency equals unity. The overall effect of
these assumptions is believed to provide a negative contribution to the system
thrust. Thus the values in Table 3 are an upper estimate of the true thrust
augmentation ratio.
TABLE 3
Thrust Augmentation Ratio

Surface Pressure Measurements

Constant Area Ejector Diffused Flow Ejector
Pritp 1 1.8 2.8 1 1.8 2.8
1.06 1,24 1,22 1.22 1.40 1.39 1.38
1.38 1.26 1.26 1.24 1.42 1.42 1.41
1.93 1.27 1.26 1.26 1.42 1.42 1.41
2,41 1.29 1.32 1.32 1.44 1.49 1.48
2.88 1.40 1.43 1.45 1.59 1.62 1,57

For the constant area ejector, the above results at low temperature ratios are
in agreement with the direct thrust measurements obtained in the low
temperature facility (Figure 20). However, the values at a temperature ratio
of 2.8 are significantly larger than the values obtained in the thrust
measurements, One important effect shown by these results is the significant
increase 1in thrust augmentation ratio at a pressure ratio of 2.88. A
significantly increased radiated noise level was observed at this pressure
ratio although no quantitative measurements were made. This observation

suggests that the aeroacoustic interaction reported by Quinn(32) may be

50

e A miel A o

— > s oA A A - A il G i maa A - o

& RN




responsible for the increased thrust augmentation ratio. More work in this
area is planned during the phase II effort.

The ejector shroud surface temperature measurements are presented in
figures 28 and 29 for the primary flow temperature ratios of 1.8 and 2.7,
respectively. The absolute wall temperature normalized with the absolute
ambient temperature is plotted as a function of normalized distance alang the
surface. Little heating of the shroud upstream of &/H=1 was observed. For
the constant area ejector, a gradual rise in surface temperature occurs with
the temperature reaching its maximum value at the Tlast measurement point. In
the diffused Tlow ejector a sTight decrease in temperature is found 1in some
cases within the diffuser. The effect of increasing pressure ratio is to
decrease the temperature at a given location. At a pressure ratio of 2.9 this

trend is reversed and large increases in surface temperatures were observed.

These results indicate an fincreased rate of mixing consistent with the

observed aercacoustic interaction in the ejector(33).

3.3 Velocity Field Measurements

The velocity measurements were obtained with the Laser Doppler Velocime-
ter on both shroud geometries. Two velocity components were measured in the
Tow temperature facility at several pressure ratios. Single component data
were taken in the low and high temperature facility as well. These resultis
were obtained at a few pressure ratios and temperature ratios of 1.0 and 1.8.

The centerline velocity results are presented in figure 30 for pressure
ratios up to 2 and a temperature ratio tp=1. The downstream component of the
mean velocity normalized by the jet exit velocity is plotted versus the
downstream distance. Also plotted are the free-jet results. At a fixed

pressure ratio and downstream Tlocation, the effect of the confining shroud
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surfaces is to increase the normalized centerline velocity. The diffused fiow
ejector produces 4 Targer 1increase compared to the constant area ejector.
Within the diffuser the centerline velocity decreases at a faster rate than in
the mixing chamber. For Tixed geometry, an increase in pressure ratio results
in an increase in the normalized centeriine velocity.

The mean velocity results are presented in figures 31 and 32. The mean
velocity normalized with the centerline velocity is plotted versus normalized
position. The position across the ejector is normalized with the local width
of the ejector. The profiles in the mixing chamber are presented in figure 31
while the profiles in the diffuser .are presented in figure 32. For a fixed
geometry, possible pressure ratio effects are within the scatter of the
measurements. MNote that the highest pressure ratio is 2.0. However, the
profiles at the entrance of the mixing chamber show significantly larger
entrainment for the diffused flow ejector than for the constant area ejector.
The downstream evolution of the profiles shows the growth of the primary jet.
Downstream of £/H=1.5 including the diffuser, changes in the mean velocity
profites are small.

The results related to rms value of the fluctuation of U and V
components of the velocity and the cross-corralation U'V' are presented in
figures 33 to 38. These results are presentwd in the form of profiles of the
appropriate quantity normalized with the caaterline velocity. The U' velocity
profiles are presented in figure 33 for the aixing chamber, and in figure 34
for the diffuser. These results show a minimum at the centerline. This
feature is also observed in free—jets(27s28). The Tlarger than expected
scatter of thase results obscures possible pressure ratio effects. There is,
however, a reduction of the normalized U' values in the diffused flow ejector

compared with the constant area ejector. The normaliced V' fluctuation
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profiles are shown in figures 35 and 36. These measurements did not show a
Tccal minimum of V' on the centerline. There are some contradicting results
as to whether or not there is such 4 minimum 1in a free jet(28:29). The
normalized U'V" velocity profiles are shown in figures 37 and 38. Within the
scatter of the measurement, the normalized values of U', V' and T'V' are inde-
pendent of pressure ratio. Comparison between the results obtained in the
constant area ejector and diffused flow ejector shows no significant differen-
ces except for the abuve mentioned effect on the U' measurements. The
downstream evolution of &2 First order correlations presented above showed
the jet surrounded hy th= low turbulence induced flow at the entrance of the
mixing chamber., As the flow develops further downstream, siynificant turbu-
lent transport is found near the shroud. Downstream of £/H=1.5 the turbulent
correlation profiles do not change significantly, even within the diffuser.
The mean velocity results obtained in the high temperature facility are
presented in figures 39-41, The centerline velocity decay 1is presented in
figure 39. At a temperature ratio tp=1 the results are in good agreement with
those obtained in th2: 1.w temperature facility (figure 30). At temperature
ratio tp=1.8, significantly Tower values of the normalized centerline velocity
were found. The downstream evolution at tp=1.8 is very similar to that found
at tp=1l.0. The mean velocity profiles are present:! in figures 40 and 41 for
primary nozzle pressure ratios of 1.06 and 1.39 raspactively. Results on both
configurations at temperature ratios tp=1.00 and 1.8 are presented. These
measurements nad considerable scatter. The results obtained at a temperature
ratio Cp=1 dare in reasonable agreement with the results obtained in the low
temperature facility. Within the scatter of the measurement, the results at a
temperature ratio t.=1.8 indicate no significant effect of temperature ratio

on the mean velocity profiles.
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3.4 Entrainment and Mixing Results

The measured velocity profiles were used to calculate the mass flow rate
peﬁ unit span through the ejector. The assumption was made that the density
is constant across the flow, its value equal to the ambient value. This
calculation provides a test of the accuracy of the medsurements since the mass
flow rate through the ejector should be constant. The variations of the
calculated mass flow rate with downstream distdance ware always less than 2
percent of the mean. The calculated mass flow rate nornalized with the
isentropic mass flow rate of the primary nozzle is presented in Table 4. In
both configurations, the normalized mass flow decreases with pressure ratio.
The diffused flow ejector has a higher mass flow rate. The difference varies
from 17 percent at low pressure ratios to 27 percent at a pressure ratio of
2.0,

TABLE 4

Entrainment Ratio

Pa/Pamb Constant Area Diffused Flow
1.06 4,56 5.36
1.19 4.15 -
1.45 4,16 5.39
2.00 3.87 4.93

The effect of mixing on the downstream evolution of the mean velocity is
shown in Figure 42. In this figure, the velocity at three points in the pro-
file normalized with the volume rate average velocity, <U>, is plotted as a
function of downstream distance. At the entrance of the shroud, the veloci-
ties at y/h=0.0 and 0.4 decrease while at y/h=0,2 the velocity increases as a

function of downstream distance. For E/H=0.75 to 1.5 the trend is reversed

* Incomplete LDV data taken for entrainment calculations
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near the shroud surface. At the downstream end of the mixing section and in
the diffuser (£/H>1.5), no significant changes occur al igh the values are
different across the flow. Effects of shroud geometry on this evolution were
small and more pronounced at the entrance of the ejector. Similar results
were obtained at other pressure ratios.

The nonuniformity of the mean velocity profiles can be characterized by

the parameter A, defined by the relation(9):

A = _h(x) [ U (x)dy (16)
(Judy)?

This parameter was calculated by integration of the velocity profiles

over the measured portion of the cross section. The results for a pressure
ratio of 2.0 are presented in Table 5, As discussed earlier, the normalized
velocity profiles do not depend on pressure ratio. Therefore, neither should
A The effect of shroud geometry on A 1is Timited to the shroud entrance
region (£/H<1.5) where a significantly lower value s found in the diffused
flow configuration. At the downstream end of the mixing chamber and
throughout the diffuser, the values of A are indicative of a well mixed
profile. Also significant 1is the little variation in the value A observed
within the diffuser (g/H>3.0).
TABLE 5

Mixing Parameter A at Py/Pamp=2.0

£/H Constant Area Diffused Flow
0.00 1.28 1.15
0.75 1.20 1.12
1.50 1.09 1,08
2.25 1.05 1,04
3.00 1.03 1,03
3.75 —— 1,03
4.50 - 1.02

*Insufficient LDV data taken for entrainment calculations
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IV. DISCUSSION

(i) Interacting Regions

The test conducted with the constant area ejector of area ratio 16.7 did
not show significant thrust augmentation. The flow visualization results
suggest that the primary jet failed to 1interact with the shroud wall., The
small area ratio results showed significant thrust augmentation and as the
turbulent correlation measurements 1indicate, the interaction between the
primary jet and the shroud did occur. This aspect of the flow can be readily
understoad by <considering the non-interacting c¢ase shown in figure 43. A
fluid element following the trajectory A-B must have a total pressure equal to
the ambient pressure, Because the fluid element does not enter the turbulent
region, 1its total pressure remains constant. As the fluid element reaches
point B the static pressure becomes atmospheric and, therefore, fluid velocity
vanishes, i.e., incipient separation. MWe see then that for the ejector to
provide significant thrust augmentation, turbulent momentum transfer must
occur throughout the entire cross sec:ion at least in some portion of the
ejector. Because this mowentum transport is characterized by non-zero U'V"
velocity correlations, an estimate can be made of the minimum value of the
ratio L/H in order to achieve significant thrust augmentation. We use for
this estimate the well estabTlished free-jet results. The results of Gutmark
and Wygnanski(zg) show very small U'V' velocity correlations at y/x=0.2; thus,
by taking H=2y and L=x, we find L;;/H=2.5, where Ly is the minimum length below
which no significant thrust auvgumentation is observed. The value of this
parameter for the large area ratio configuration is Ly/H=2.67, and agrees with
our estimate. [t should be pointed out that the use of self-similar free-jet
results 1is justified only in large area ratio ejectors for which the

interaction occurs sufficiently rar downstream.
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{(ii) Flow Regions

The lateral momentum transport is related to the U'V' velocity correla-
tions presented 1in Figures 37 and 38, While at the entrance of the ejector,
turbulent transport is limited to the center of the shroud; further downstream

Uy

there are non-zero throughout the entire cross section. The UTVT

velocity profiles (figures 37 and 38) also show the existance of two regions.

At the centerline, a positive derivative of U'V'

with respect to y indicates a
reduction of momentum with downstream distance as shown in figure 42. Away
from the centerline, near the shroud surface, the derivative of U'V' with
respect to y is negative, which produces a positive contribution to the
downstream momentum. An increase of momentum with downstream distance near
the shroud is evident in the results presented in figure 42, As the flow
develops downstream, the position of the maximum U'V" moves outwards,
presumably until it reaches the shroud. At this point the second region
terminates and no further increase of momentum can be obtained. Therefore, a
critical Tength L. of the ejector ca> be defined as the length of the shroud

for which the maximum UV

first reaches the wall, This c-itical length can
readily be identified as the borderline between the shc t and the Tong
ejectors(33). Using again the well established free-jet results, an engineer-
ing estimate of this c¢ritical Tength can be obtained. For both twe-

dimensional and axisymmetric free jets, the maximum UTV'

occurs at y/x=0.08,
From this value it is found L./H=6.25 where H is the width or diameter of the
mixing duct in two-dimensional or axisymmetric configurations respectively.
This result is validated by the measurements of Qu1nn(34) in axisymmetric
cenfigurations and at low pressure ratios. The above estimates apply
primarily to constant area ejectors which do not have adverse pressure

gradient, The effect of diffusion will result in an increase in the value of

Lm and Lc. A proper value of the width H should be used to characterize not
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so much the width of the shroud but rather it should characterize the distance
across the flow between primary nozzle elements (muitinozzie} and/or the
wall.,

In considering the role of wmixing in ejector performance, the parameters
Lm and L; introduc~d above can  4lso be employed to define three distinctive
ejector regions. The entrance ragion, x<Ly, is characterized by the lack of
direct interactic:, between the shroud wali and the primary jet. This reqion
covers the 1leading edge of the shroud and a portion of the mixing chaabar.
The interaction region, Lp<x<lc, is characterized by the positive interaction
between the primary jet and the shroud vall. This interaction results in
positive pressure and momentum yradients rear the wall. Finally, the "pipe"
flow regiom, Lc<x, 1is characterized by a negative interaction of the
turbulence with the wall: negative in the sense that it causes an increase of
skin friction without a significant improvement in the uniformity of the
velocity profiles. Because the Jlengths of the ejectors tested in this
investigation are shorter than L., this third region could not be documented.

Thera is, however, considerable evidence of its existence(34).

(111} Flow Structure - Constant Area

The ejector geometries investigated in this program have length-to-width
ratios of 4.25 and © for the constanl. area and the diffused flow ejectors
respectively, They are, therefore, short ejectors from the point of view of
¢mixing development. The velocity field measurements show significant chinges
as compared to free-jet values. The centerline velocity decay (figurs 30) is
significantly reduced by the confining shroud. The reduced jet growth is the
result of the cotiowing induced Flow(33), The adverse pressure gradient
inside the mixing chamber may increase the jet growth rate. However, it

appears that the effect of the cofluwing stream dominates over the adverse
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pressure gradient. Peak values of the turbulent correlations normalized with
the centerline velocity are 25 percent lower than those found in two-
dimensional free jet3(28,29). However, if the measured profiles at £/H=0.0
are normalized with the velacity ditference between the jet and the coflowing
stream, the results are in good agreement with free-jet values. This suggests
that the underlying turbulent structure in the jet with cofiowing stream is
similar to that found in free jets. The effects of pressure ratio (up to
Po/Pamh=2) on the velocity field are small. The effect of temperature ratio
is significant in the centerline velocity decay. The observed reduction of
the centerline velocity can be the result of rapid cooling of the gas. The
increased density associated with the flow cooling will result in a velocity

reduction.

(iv) Flow Structure - Diffuser

The effect of diffusion on the velocity field can be determined by
comparison of the results obtained in the two geometries. As expected, the
effect of “iffusion is to increase the entrainment ratic of the ejector for
the same ejector width. The mean velocity profiles (figure 31) show that
while 1in the entrance region, the increase is primarily the result of an
increase of the coflowing velocity; in the interaction region, the increase is
primarily in the centerline velocity and the profiles remain similar in both
geometries. The evolution of the uniformity of the velocity is also different
in both geometries. The diffused flow ejector shows a significantly Tlower
value of the parameter A at the entrance. At the end of the mixing chamber
the same value of A is found in both geometries, indicating a slower rate of

mixing in the diffused flow ejector configuration.
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(v) Surface Pressure Measurements

The existance of these regions in the ejector is also shown by the
shroud surface temperature measurements (figurz=s 28 and 29). In the entrance
region the surface temperature is essentially ambient. A slight increase in
temperdture is the result of heat transfer by radiation and conduction
through the wall. In the interaction region the turbulent transport resuits
in a gradual 1increase in the surface temperature. The effect of pressure
ratio is to reduce the wall temperature as the pressure ratio 1is increased,
indicating reduced turbulent transport. Only at a pressure ratio of 2.9 is a
significant increase in surface temperature found. This result is consistent
with the dncrease 1in mixing proposed by Quinn(34) as a result of the
aeroacoustic interaction. The surface temperatures in the constant area
ejector reach higher values than 1in the diffused flow ejector. Furthermore,
the highest tenperature is reached in a shorter distance in the constant area
configuration. This result 1is consistent with the entrainment and mixing
results presented above. The constant area ejector has a Tlarger rate of
mixing and reduced entrainment ratio, both factors contributing positively to
an 1increase of the surface temperature, Of course, this argument applies to
the results obtained ai a pressure ratio less than 2.9.

The surface pressure measurements show a pronounced peak (suction peak}
on the leading edge (figures 21 to 28). The general features of this peak and
the mean velocity results at the entrance of the mixing section (figure 31)
are reminiscent of airfoil leading edge behavior. The transition to the
interaction region is not apparent from the surface pressure measurements,
Nitside the leading edge suction peak, pressure recovery in the diffused flow
ejector is primarily achieved in the diffuser. The recovery in the mixing

chamber is quite small. It is, in fact, smaller in the diffused flow ejector
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than in the constant area ejector. This result is consistent with the
increased rate of mixing found in the constant area ejector.

At low pressure ratio the surface pressure coefficients are independent
of pressure ratio except for the sTight increase in the peak suction shown in
figure 27. At a pressure ratio of 2.9 the surface pressure coefficient
decreases appreciably. In the diffused flow ejector this reduction is
primarily due to an fimproved performance of the diffuser. The pressure
recovery in the mixing chamber is similar to that found at other pressure
ratios. In the constant area ejector the increased suction is at a pressure
ratio of 2.9 in the mixing chamber. These results are in agreement with the
expected 1improvement in mixing associated with the aeroacoustic interac-
tion(34), Furthermore, the reduced pressure in the mixing chamber undoubtedly
is accompanied by an increased entrainment and impreved conversion from
internal to kinetic energy of the primary flow. The effects of primary fiow
total temperature on the surface pressure distribution are comparatively small
as can be seen in the peak suction values (figure 27). Only at high pressure
ratios (Po/Pamp>2) is the effect of temperature ratio more pronounced, causing
a reduced pressure coefficient as the temperature is increased.

The thrust augmentations at low primary nozzle pressure ratio (<2.5) of
the two ejector configurations are 1.21 and 1,32 (£0.05) for the constant area
and diffused flow configurations respectively. These results are confirmed by
the surface pressure measurements 1in the high temperature facility. These
values are independent of pressure ratio. Only at a pressure ratio of 2.9
does a 10 percent increase in the thrust augmentation ratio occur. There are
indications that this may be due to the aeroacoustic interaction(34) as
discussed above. The effects of primary nozzle temperature ratio on thrust

augmentation are small and within the uncertainty of the measurements.
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V. CONCLUSIONS

1. Two characteristic ejector lengths have been identified. They are
a minimum length Ly below which fiow separation occurs at least on one shroud,
and a critical Tength L; linked to the evolution of turbulent wmomentum
transport (U'V' velocity profiles) inside the ejector. This critical length
Lc characterizes the transition between short and iong ejectors as reported by
Quinn and Tonis(34), Conservative estimates of these Tengths are Ly/H=2.5
and Lq/H=6.2,

2. The above characteristic lengths divide the sjector flow field into
three distinct regions: the entrance region (x<Ly) where the primary jet and
shroud surface do not interact directly, the interaction region (Lp<x<Lc)
characterized by an increase in momentum near the shroud surface, and the
"nipe" flow region (Lc<x) characterized by an increased skin friction. The
first two regions are readily identified in the measured velocity field and
surface temperature results. The third region was not present in the
configurations investigated because the ejector length was shorter than L.

3. Primary Jjet growth is significantly reduced hy the ejector shroud
as a result of the coflowing induced flow. The gain in the associated
centeriine velocity at a fixed downstream location is a function of the
pressure ratio and the shroud geometry.

4, The normalized turbulent properties in the ejector are reduced by
tie coflowing stream as compared to free-jet values. This reduction is of the
order of 25 percent.

5. Normalized wean flow profiles and turbulent correiations are not
influenced by nozzle pressure ratios up to a value of 2.0.

6. Primary nozzle pressure ratio does not influence the thrust

augmentation ratio except at the maximum pressura ratio tested, 2.9, where an
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increase of 10 percent was observed. This increased augmentation is believed
to result from the aercacoustic interaction(33). This mechanism is supported
by the observed increase in the noise Tevel inside the facility and by the
surface temperature results.

7. Primary nozzle total temperature does not significantly alter the
thrust augmentation ratio within the accuracy of the present measurements up

to a value of 540°C.
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