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BACKGROUND

Residual stresses are those contained in a body which has no

external traction or other sources of stress, such as thermal

gradients or body forces. When the body is externally loaded,

these stresses are called internal stresses, and, accordingly,

residual stresses may be considered as a special case for vanishing

external loads. Residual stresses result from non-uniform plastic

deformation which includes cold working, forming, forging, heat

treatment, etc. Their presence in manufactured components plays an

important role in determining the behavior of the component when it

is subjected to service loads and environment. It has also been

shown that the residual stress distribution directly affects the

growth rate and frequency of formation of stress induced cracks in

steels.

Only in the case of surface stresses in components made of

crystalline materials can nondestructive evaluation of stresses be

performeu by the X-ray diffraction method. Although considerably

improved in the last ten years, this method still suffers from

serious problems which severely restrict its applications.

Ultrasonic methods appear to hold the best promise in measurements

of bulk stresses in both crystalline and non-crystalline materials.
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Calculations have shown that ultrasonic velocity and changes are

linear functions of applied stress and combinations of second- and

third-order elastic constants. In the application of these

calculations to determine unknown stresses, both the velocity in

the absence of stress as well as third-order elastic constants have

to be known independently. In addition, the measured velocity

strongly depends on microstructural features which makes it

necessary to develop a calibration between velocity and stress in

order to be used in the determination of unknown stresses.

Development of prefered orientations (texture) during deformation

or fatigue, also severely modify the third-order elastic constants. 	 j

These problems can be solved when the differences between

velocities of shear waves polarized perpendicular to and parallel

to stress direction are used. Due to these differences, a shift in
Ee

phase will occur, and the out-of-phase components will interfere 	 y,

1".

and cause a change in intensity. This method, however, does not

have at present enough sensitivity, and requires an accurate 	 3

determination of the shear velocity in the absence of stress.	 1

	

The temperature dependences of the elastic constant of a	 E

solid are due to the anharmonic nature of the crystal lattice, and f

their measurements can therefore be used to evaluate bulk stresses..
1,2

Experiments performed earlier on aluminum ,copperand steel 'S

have demonstrated that the temperature dependence of ultrasonic
i

velocity is strongly affected by the presence of applied as well as

residual stresses in the solid. The results of these experiments
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also indicate that the temperature dependence is insensitive to
1

alloy composition and other metallurgical variables No studies,

however, were made to investigate the effect of anisotropy caused

by preferred orientations on the temperature dependence.

nn 700^a+rcroc

It is therefore the goal of this research program to

investigate the effects of preferred orientations on the

temperature dependence of ultrasonic velocity in low-carbon steels.

The main objective of the study is to establish the degree of

sensitivity or actually the degree of insensitivity of the

temperature dependence method to variations in preferred

orientations. The program also aims at measurements of the

absolute values as well as the stress dependences of the ultrasonic

velocities in the same specimens where the temperature dependences

are to be measured. Three tasks comprise the present program:

1. Velocity vs. temperature in 508 low-carbon steel specimens

cut at angles of 0, 30, 60 and 90 degrees from the rolling

direction. Ultrasonic velocity measurements are to be made

using a Pulsed Phase Locked Loop  which is capable of

measuring velocity changes of better than 1 ppm. The

measurements are to be performed in the temperature range
0

Of 50 C below or above room temperature. The results of

these measurements are to establish the degree of

sensitivity of the temperature dependence of ultrasonic

velocity.
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2. velocity vs. stress in the same specimens to be used in the

temperature dependence measurements. The experiments are

to be performed when the specimens are subjected to an

uniaxial stress perpendicular to the direction of wave

propagation. The applied stress is to be in the elastic

range up to 200 MPa. These results provide quantitative

determination for the changes of the acoustoelastic

constant with variations in preferred orientations.

3. Stress-strain relationships in the same specimens in order

to characterize their mechanical behavior. These

relationships yield the mechanical properties, yield stress,

ultimate strength and strain-to-fracture of this material.

RESULTS AND DISCUSSIONS

Task 1 of this project has been accomplished and the results

are shown in the following. A typical example for the change in

ultrasonic velocity with temperature in A508 steel is shown in Fig.

1. These measurements are obtained using the Pulse Phase Locked
2 2

Loop ( P L ) which is described in details in reference 6. The

temperture dependence is computed using the relationship

8V AF/F	 (1)
aT 

= V	
AT

where ^TF	
is the slope of the straight line representing the

data shown in Fig.	 1, and V is the velocity. The results of the
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temperature dependence of ultrasonic longitudinal velocity measured

on four specimens of A508 steed, cut at different angles are

summarized in Table I, and indicate that the temperature dependence

in the specimens remains unchanged as a function of orientation

within ±2%. This accuracy is equal to that estimated for

measuring the temperature dependence in these specimens. These

results are also confirmed by the results shown in Table II where

the temperature dependence of ultrasonic shear velocity is measured

in 6061-T6 aluminum when the polarization is parallel to and

perpendicular to the length of the specimen. In these

measurements, the propagation direction is always kept along the

thickness of the specimen. Again, the data of Table II indicates

that the temperature dependence remain unchanged and no anisotropy

effect could be detected in this aluminum using shear waves.

The variations of the temperature dependence cf ultrasonic

shear velocity in A508 steel as a function of applied stresses are

shown in Table III. These measurements . are made with the

propagation direction perpendicular to the direction in which the

stress is applied and the polarization direction either parallel to

or perpendicular to the stress direction. The quantity a in the

table represents the relative percentage of the change in the

temperature dependence with respect to that obtained when no stress

is applied. Again the results show that the temperature dependence

values at zero stress are equal (within experimental error)
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regPrdless whether the polarization direction is to parallel or

perpendicular to the direction in which the stress is applied.

The results in Table III are also platted in Figs. 2 and 3,

and show the variations of the relative changes in the temperature

dependence of ultrasonic shear velocity as a function of applied

stresses. Figure 2 shows the effects of applied tensile and

compressive stresses when the polarization is parallel to the

direction in which the stress is applied, while Fig. 3 shows the

same effects when the polarization direction is perpendicular to

that of stress. In both cases, the propagation direction is along

the thickness of the specimen and perpendicular to the direction of

stress. Figures 2 and 3 also show that the lines of best fit for

the experimental data do not pass through the origin and intercept

the a axis at equal values of about 0.9%. This intercept could be

due to misalignment in the load application system where bending

stresses could be introduced. These results, however, confirm the

results obtained using longitudinal waves, and the two sets of data

represent the complete set of calibration curves for this type of

steel.

The results and discussions concerning Tasks 2 and 3 are

described in the paper included in Appendix I. This paper was

published in the Proceedings of the 1984 Review of Process in

Quantitative Nondestructive Evaluation, and deals with the study

performed to establish a relationship between the acoustoelastic

constant and mechanical properties. The study was made on five

alumium alloys, where three of these represent the work-hardenable

group and the other two are heat treatable. In the first group the

-6-
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strength of the alloy is increased by strain or work hardening,

while the strength in the second group is developed when a eecond

phase is precipitated out of the solid solution phase.

The results obtained in this paper, show that there is a

strong relationship between the acoustoelastic constant and the

percentage of solid solution phase in aluminum alloys.

Furthermore, the results show that this relationship is sensitive

to the mechanisms which control the mechanical properties in these

alloys. In addition, the paper establishes a linear relationship
t
a

between the acoustoelastic constants and the yield strength and

hardness. The relationship depends on whether the alloy is

strain-hardened or precipitation-hardened.	 In the strain-hardened

alloys, the acoustoelastic constants increase as the amount of
r

solid-solution phase is decreased, while the behavior is opposite

in the precipitation-hardened alloys. These relationships indicate

the possibility of determining some mechanical properties using
i

nonuestructive methods.
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TABLE I

Varir..tion of Temperature Coefficient of U:,.rasonic
Longitudinal Velocity as a Function of Orientation

in Steel

Specimen
Orientation Specimen

aV
aT

Specimen
aV
aT

aV
Ave. aT

90° Al -0.650 A2 -0.674 -0.662

300 B1 -0.670 B2 -0.643 -0.6565

600 Cl -0.683 C2 -0.695 -0.689

00 D1 -0.645 D2 -0.632 -0.6385

Ave. aT -0.662 -0.661 -0.6615



TABLE II

TEMPERATURE COEFFICIENT OF ULTRASONIC SHEAR VELOCITY IN
6061-T6 ALUMINUM AT ZERO APPLIED STRESS

Polarization Parallel to Length Polarization Perpendicular
(aV/aT) 	 to Length (aV/aT)l

a/s.k	 a/s.k

	

-0.841
	 -0.856

	

-0.850
	 -0.849

	

-0.851
	 -:q . R52
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TABLE III

Variations of (dV/dT) of Ultrasonic Shear Velocity with Uniaxial Stress
Applied Perpendicular to Propagation Direction in Steel.

i

Applied Load -(dV/dT) 6 -(dV/dT)1 e

(m/s.k) (m/s.k)

TENSION

0 0.418 0.0 0.436 0.0

500 0.435 +4.1 0.422 -3.2

750 0.440 +5.2 0.418 -4.1

1000 0.454 +8.6 0.412 -5.5

1250 0.454 +8.6 0.410 -6.0

1500 0.460 +10.0 0.408 -6.5

COMPRESSION

0 0.452 0.0 0.442 0.0

300 0.447 +1.1

500 0.442 -2.2

600 0.458 +3.6

750 0.438 -3.1 r
800 0.461 +4.3 ='

1000 0.424 -6.2

1250 0.419 -7.3 0.480 +8.5

1400 0.416 -8.0

1500 0.492 +11.3

-11-
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Fig. (2)	 Relative percentage change in the temperature
dependence of ultrasonic shear velocity as a
function of applied tensile or compressive stress
in A 508 B steel. The stress is applied in a
direction perpendicular to the direction of
ultrasonic propagation and parallel to the
direction of polarization.
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REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION

JULY 1984

NONDESTRUCTIVE DETERMINATION OF

MECHANICAL PROPERTIES

Eckhardt Schneider l , Shyr-Liang Chu and Kamel Salama

Department of Mechanical Engineering

University of Houston
Houston, TX

INTRODUCTION

The propagation velocities of ultrasonic waves are determined by
the density and the elastic constants of the material under
consideration. The changes of sound velocities with applied or

residual stress are caused by changes of the interatomic potential,
resulting in changes of the elastic behavior. Based on the nonlinear

elasticity theory, Hughes and Kelly (1953) described the stress
dependence of the ultrasound velocities in terms of second and third

order elastic constants. It Is evident from the introduction of the

third order elastic constants, that these constants are more
sensitive to the changes in the elastic behavior than the second

order Young's - and shear moduli.

The purpose of this investigation is to study the sensitivity of

the acousto-elastic constant to changes in the microstructure. The
knowledge of this constant is extremely Important to the evaluation

of stress states using ultrasonic techniques. in particular, one

acousto-elastic constant was determined in A1-alloys containing
different amounts of solid-solution phases and was correlated with

the yield strength and the hardness of the material. The second
objective is to prove the possibility to determine some mechanical

properties of the material under consideration by measurements of the
acousto-elastic constants.

EXPERIMENTAL

The experiments were made using A1-alloys of types 1100 9 3003,
5052, 6061 and 2024. The chemical compositions of these alloys are
listed in Table 1. The first three alloys in this table are non heat

treatable alloys; their strength can be increased by strain or work

l institut fur zerst6rungsfrele Prufverfahren, Universitat Geb. 37,
6600 Saarbrucken, FRG.

P
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Table 1. Chemical composition and temper designations of the test

samples

Alloy S) Fe Cu Mn Mg Cr Zn Others At

t t 00 j	 1.0

'

0.05-0.20 0.05 0.10 0.15 99

3003 0.6 0.7 0.05-0.20 1.9-1.5 0.10 0.15 97-98

5052 0.45 0.10 0.10 2.2.2.6 0.15-0.35 0.10 0.15 96 -97

6061 0.4- 0.7 0.15-0.40 0.15 0.8-1.2 0.04-0 35 0.25 0.15 96-98

2024 0.5 0.5 I	 3.8-4.9 0.3-0.9 1.2 . 1.8 0.10 0.25 0.15 91-93

Al-Alloy	 i Maior
Elements Temper DesignationsT 

1100-0 Si. Fe Annealed

'
3005 Mn

 1
Siram-hardened

5052 MG Strain-hardened and stabilized

i	 6061-T6	 i S.. M6 Solution heat -treated and then artificially aped	 i

2024-1351 Cu. Mg Solution heat-treated . cold worked and stress relieved

hardening. The other two alloys 6061 and 2024 are of the heat

treatable type. Here the strength of the material is developed when

a second phase is precipitated out of the solid-solution phase.

Tensile test samples of each alloy were cut from 6.3 mm thick

rolled plates such that the rolling direction is parallel to the
specimen axis. In order to evaluate the acousto-elastic constants,

the velocity change of a 10 MHz longitudinal wave was measured as a
function of the applied tensile stress.	 The sound propagation
direction was perpendicular to the stress. The time-of-flight
measurements were performed using the pulse-echo-overlap method. The

acousto-elastic constant is determined by dividing the change of
stress by the change in normalized longitudinal wave velocity.

Experimental details like sample size, transducer holder, tensile
test and measuring technique are described elsewhere (Salama and

Wang, 1982). The yield strengths were determined from tensile tests.
Also the hardness values of the specimens were evaluated using

conventional techniques.

In order to evaluate the percentage of solid solution phases in

the alloys, samples are cut from the examined tensile test samples

and are polished on two surfaces perpendicular and parallel to the
sound propagation direction. After etching (0.5 ml HF, 15 ml "Cl.

-2-



25 µm

ORMINAL PACE
OF POOR QUALITI,

Fig. 1	 Micrographs and solid-solution phase percentage of the
examined Al-alloys.

Alloy 5052	 Alloy 3003	 Alloy 1100-0

Sold-Solution Phs_:	 99%	 96%	 92%

Alloy 6061-T6	 Alloy 2024-T351

Sold Solution Phase	 98%	 96%

2.5 ml	 HNO 3 ,	 remainder H2O;	 and cleaning with 5% NaOH), 	 the
precipitations appear as dark areas, while the solid-solution phase

is white.	 The areas of the precipitations were measured on both

surfaces of each sample and an average value was obtained.	 Relating
the averaged value to the entire area, the percentage of soiid-

solution phase was evaluated within 0.5^ inaccuracy. Fig. 1 displays

the micrographs as well as the amounts of solid-solution phase of the
examined alloys.

EXPERIMENTAL RESULTS

In order to obtain reproducible values for the acousto-elastic

constants of the strain hardened alloys, 	 it was found that the
specimens must be deformed by a certain amount of prestrain. In
these experiments, the specimens were first strained elastically and

then the applied stress was stepwise increased to produce different
amounts of prestrain. From the Figure 2, one can see that the slope

of the initial stress-strain line is changed by about 20% in the
second run and then reached a constant value after 0.25% prestrain.

The changes in sound velocity with stress after various amounts of
prestrain are plotted in Figure 3, where one can see that the slope
of these plots remain unchanged after the 0.252 prestrain.

In similar experiments with the precipitation hardened alloys,

it was found that the slopes of the stress-strain lines as well as
the acousto-elastic constants are not affected by this small amount
of prestrain, as it is shown in Table 2, 	 where the acousto-elastic
constants of one strain hardened (5052)	 and one precipitation
hardened	 (2024)	 alloy are displayed	 after	 various amounts	 of
prestrain.
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Fig. 2. Stress-strain diagram for M -alloy 5052
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Fig. 3. Longitudinal wave velocity vs. applied tensile stress after

different amount of prestrain.
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CAA

Table 2. Acoustoelastic constants and longitudinal wave velocities

after different amounts of prestrain.

AI-Alloy 5052

►iestrs in

♦

Velocity (T/sec) AC^ustoels .tiC
C-01anl (s 10 'Ups)

Abaolule Aelatl.e
Cho noe •

Absolute at"11"
Change •

0 6100 5 — 6 311 —

0 6100 9 4-0  007 6.06 +	 7.5

0.25 6104 7 + 0 02 06 + 10.7

0.67 6115	 1 +0 11 691 + 03

1.07 at 16 a + 0 14 7.06 + it 0

AI-Alloy 2024-7351

Velocity	 (m/sec) ACOJeIOelsslic
/reslra l n Constant (210'MOS)

Absolute
Relative

Absolute
Aele,lea

Change •0 CHsnVA •

0 6153.3 — 7.52 —

0 6153.4 + 0.002 7.54 + 0.3

0 28 6148 6 — 0 06 7.45 —0.5

054 6147 5 — 009 744 —1.1

In the case of the strain hardened alloy (5052) the acousto-
elastic constant reaches a constant value only after a prestrain of

0.25%. However the &;ousto-elastic constant of the precipitation
hardened alloy 2024, remains unchanged within the inaccuracy of about

1%.	 The sound velocity in 5052 is constant until 0.25% prestrain.
At higher amounts of prestrain a slight increasing of the velocity is

indicated.	 In 2024, however, the ultrasonic velocity seems to

decrease with prestrain.	 But these changes of the velocities are

within the measuring inaccuracy of about 0.1%.

In these measurements at least three samples of each alloy are

Investigated as described.	 The values of the acousto-elastic
constants of each alloy are found to be equal within t 1%. Table 3

includes the values of this constant for the five alloys investigated

along with the measured values of the y i eld strength and the Brinell
hardness.

Solid-Solution Acoustoelastic Y1eld Strength Brinell Number

At-Alloy Constant (500K9 load,
Phase W (x 104 Mpg (Mpg) 10mm ball)

5052 99 7.08 155 63

3003 96 7.74 100 40

1100-0 92 9.00 20 23

6061-T6 98 7.90 240 94

2024-T351 96 7.47 270 120

Table 3. Acousto-elastic constant, yield strength and Brinell Number

of the examined alloys.
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DISCUSSION

The AI-alloys investigated belong to two groups of alloys with

different mechanisms to control the mechanical strength. Basically,

the strengthening is caused by all processes which increase the

Inhomogenity of the material. In one type of alloys (1100, 3003,
5C52) work hardening Is achieved by the increase of the density of
lattice defects, especially the d!slocation density In the solid
solution phase. The interactions of the dislocations with each other
and with other defects make it more eifficult to dislocations to

move. In the other type of alloys (2024, 0061) the precipit ations of
second phase form obstacles for dislocation movements and result in

the subsequent increase of strength. The parameters which determine
the efficiency of the obstacles are the stiffness, shape, size and

distribution as well as the volume ratio of the second phase
precipitations in the alloy.	 Variations in these parameters change
the mechanical properties of the A1-alloys.

Figures 4 and 5 display plots of the measured yield strength

(Fig. 4) and hardness (Fig. 5) as a function of the percentage of

solid-solution phase, present in the alloys. From these figures one
can see that both quantities decrease with the increase of percentage
of solid-solution phase in the precipitation hardened alloys 2024 and

6061. This behavior is due to the decrease of second-phase obstacles
in the alloy with higher percentage of solid solution phase.	 In the

strain hardened alloys 1100, 3003 and 5052, however,	 yield strength
and hardness are'increased as the amount of solid solution phase is
increased. The reason for this behavior is not obvious. 	 A possible
explanation is based on the solid-solution hardening effect. It may
be assumed that the density of alloying atoms in the Ai-lattice of
5052 is bigger than in the alloys 3003 and 1100 respective-ly, so that
this basic hardening effect is more efficient in 5052 alloy.	 No
experiments, however, have been performed to test this hypothesis.

The plot of the acousto-elastic constants of the five alloys
Investigated versus the percentage of solid-solution phase is

displayed in Fig. 6. From the figure one can see that the acousto-
elastic constants of the A1-alloys change linearly as a function of
percentage of solid-solution phase. 	 Similar linear behavior has been

found for the third order elastic constants of the Cu-Ni system
(Salama and Alers, 1977). It is seen that the behavior of the

acousto-elastic constants In the strain hardened alloys 1100, 3003
and 5052 is opposite to those o f the precipitation hardened alloys

6061 and 2024.	 The increasing behavior of the acousto-elastic
constant as a function of percentage of solid-solution phase was also

found by Heyman et al. 	 (1983; in steel alloys containing different
amounts of carbon.	 The acousto-elastic constants are found to
Increase by about 20% when the ferrite phase is increased from 86 to
97%. The increase of the acousto-elastic constants In the two

precipitation hardened Al-alloys is approximately 5% when the solid

solution phase is increased from 96 to 98%. Comparing these results,
it seems that the rate of increase of the acousto-elastic constant
with percentage of solid-solution phase in the steel and in the

precipitation hardened A1-alloys is similar.
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Fig. 7. Acousto-clastic constant vs. yield strength of the examined

AI-alloys
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Figures 7 and 8 finally, indicate a strong linear dependence

between the acousto-elastic constants and the yield strengths and

hardness values.
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Fig. 8. Acousto -elastic con stant vs. Brinell number
of the examined Al Alloys.
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In conclusion, it can be "pointed out, that there is a strong

relationship bet-..c--n the acousto-elastic constants and the percentage
of solid-solution phase in Al-alloys. Furthermore, the results

ind i cate that this dependence is also sensitive to t he different

mechanisms which control the mechanical properties in these alloys.

This microstructure dependence must be taken into consideration
in the stress determination using ultrasonic techniques. Additional

investigations with shear waves are recommended in order to determine

the microstructure dependence of the third order elastic constants R,
m and n.	 Re-ent results on steels 	 (Schneider et al.,	 1984) show
that these constants can have different dependencies.

The linear relationship between the acousto-elastic_ constant and

the yield strength and hardness indicate the possibility of
determining some mechanical properties using nondestructive methods.

The relationship depends on whether the alloys are strain hardened or
precipitation hardened. In the strain hardened alloys, the acousto-

elastic constants increase as the amount of solid-solution phase is
decreased, while the behavior is opposite in the precipitation

hardened alloys. This difference in behavior can be correlated with
the difference in the mechanisms by which mechanical properties are

controlled in each type of alloys.
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