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Introduction

An analysis for predicting the buckling load of a
compression-loaded orthotropic plate with a centrally
located cutout is presented in reference 1. In this ref-
erence, the classical two-dimensional analysis for deter-
mining the plate buckling load is converted to an ap-
proximately equivalent one-dimensional analysis by ap-
proximating the plate displacements with kinematically
admissible series. The accuracy of the one-dimensional
analysis is a function of the number of terms included
in these series. The objectives of this report are to de-
scribe the one-dimensional analysis for a particular dis-
placement series and to describe a computer program,
BUCKAO, associated with this analysis. The computer
program is both easy and inexpensive to use.

The main body of this report presents an overview
of the basic assumptions used in the analysis, the
derivation and solution of the governing equations, and
a description of computer program BUCKO. The details
of the analysis are presented in the appendixes along
with a user’s guide and sample problems. Symbols
appearing in the main body and appendixes are defined
in appendix A. The person interested in simply using
the computer program needs to read only the main body
of the report and the appendix containing the user’s
guide and sample problems. The remairing sections of
this report present the details required to modify the
computer program.

Analysis

The assumptions made in the one-dimensional anal-
ysis are outlined as follows. The plate is assumed to
be a balanced, symmetric laminate with uniform thick-
ness. The unloaded edges of the plate are simply sup-
ported and the loaded edges are simply supported or are
clamped. The cutout is centrally located with two mu-
tually orthogonal axes of symmetry that coincide with
the longitudinal and transverse axes of the plate. The
geometry and the loading conditions used in the analy-
sis are shown in figures 1 and 2, respectively. Loading
is applied by either uniformly displacing or uniformly
stressing two opposite edges of the plate. The plate has
length L = 2c and width W = 2b. The origin of the co-
ordinate system is at the center of the plate. The z-axis
is parallel to the loading direction and the y-axis is per-
pendicular to the loading direction. The unloaded edges
are free to expand in-plane in the y-direction. The plate
is assumed to deform irto a symmetric shape having
mutually orthogonal axes of symmetry that also coin-
cide with the plate axes. In-plane and out-of-plane dis-
placements are represented by truncated kinematically
admissible series which reflect the above assumptions.

In reference 1 a one-dimensional formulation of the
classical two-dimensional buckling analysis was derived

following the Kantorovich method (ref. 2, pp. 304-327).
The one-dimensional analysis consists of two parts: cal-
culation of the in-plane stress distribution prior to buck-
ling, hereafter referred to as the “prebuckling problem,”
and calculation of the plate displacements and load at
buckling, hereafter referred to as the “buckling prob-
lem.” The results from the prebuckling problem are
used with the principle of minimum potential energy
and the Trefftz criterion (ref. 3, pp. 365-367) to obtain
the stability equations for the buckling problem.

Prebuckling

As mentioned above, the in-plane displacements
.1 the middle surface of the plate, u® and v°, are
zpproximated by truncated kinematically admissible
series. These series contain terms that are products of
trigonometric functions in the y-direction and unknown
generalized displacement functions in the z-direction.
The series for the in-plane displacements are

N
u’(z,y) = A {"0(1) + E u2k —1(z)cos [(2!: - 1)%] }

k=1

N
v"(z,y) =A {voy + 2 v2k—-l(1) sin [(2k - l)';r_z'] }

k=1

(1)

where X is the loading parameter and N is the num-
ber of trigonometric terms used. Substituting these
series into the membrane potential energy functional
and integrating over y reduces the potential energy to
a one-dimensional form with the generalized in-plane
displacements ug(z), u2k—1(z), and vgk—1{(z) appear-
ing as unknowns. The constant vy is a parameter
which is selected to make the residual normal force on
the unloaded edges of the plate equal to zero. The
one-dimensional equilibrium equations are obtained by
applying the principle of minimum potential energy.
These equations constitute a system of simultaneous
linear second-order ordinary differential equations with
variable coefficients. The second-order system of equa-
tions is solved for the generalized displacements and
their derivatives, and these values are used to calculate
the prebuckling stress distribution. The derivation of
the one-dimensional prebuckling equations for N = 3 is
presented in appendix B. The N = 3 analysis is used in
computer programm BUCKO.

Buckling

The results from the prebuckling problem are used
to determine the buckling load of the plate. The
prebuckling stress distribution is substituted into the
functional corresponding to the second variation of the
potential energy due to membrane and bending action
of the plate. The out-of-plane deflection of the plate

va e it e St ———— T
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Figure 1. Geometry and coordinate system for a rectangular plate containing a centrally located cutout.
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(a) Uniform compressive edge stress.

Figure 2. Loading conditions.

(b) Uniform compressive edge displacement.
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middle surface w® is approximated by the truncated
kinematically admissible series

Z wok—1(x) cos [(2k ~ 1) ] (2)

where S is the uumber of trigonometric terms used.
Substituting this series into the functional and integrat-
ing over y produces a one-dimensional form in which
the generalized out-of-plane displacements at buckling
wak-1(z) appear as unknowns. The one-dimensional
stability equations are obtained using the Trefftz crite-
rion. These equations constitute a system of simultane-
ous linear fourth-order ordinary differential equations.
The corresponding analysis for § = 3 is given in ap-
pendix C.

Numerical Solution of the Differential Equations

The prebuckling and buckling equations are solved
numerically to determine the buckling load of the plate.
The prebuckling analysis yields 2N + 1 simultaneous
second-order homogeneous differential equations and
4N + 2 boundary conditions. Some of the equations for
the boundary conditions are nonhomogeneous. Com-
puter program BUCKO uses a subroutine called PAS-
VAR (ref. 4) to solve the prebuckii- z differential equa-
tions. This subroutine applies to both linear and non-
linear systems of simultaneous first-order ordinary dif-
ferential equations subject to two-point boundary con-
ditions. To use PASVAR, the system of second-order
differential equations is converted to the correspond-
ing first-order system of equations. An example of this
conversion is also presented in appendix B for the pre-
buckling analysis associated with NV = 3.

The buckling analysis yields S simultaneous fourth-
order ordinary differential equations. These differen-
tial equations are linear and homogeneous and have
4S5 homogeneous boundary conditions. These homo-
geneous equations and boundary conditions constitute
an eigenvalue problem for the loading parameter A in
equation (1). The smallest value of A for which a non-
trivial solution exists is taken as the critical value of the
loading parameter A.,. The corresponding critical load
P,, is given by the value of the applied loading scaled
by the critical value of the loading parameter. The sub-
routine PASVAR cannot solve eigenvalue problems and
is not used to solve the differential equations for the
buckling problem. Central finite differences are applied
to the buckling differential equations and the boundary
conditions. This algebraic eigenvalue problem is solved
for the critical buckling load of the plate. In the fol-
lowing discussion, the algebraic eigenvalue problem for
the buckling analysis is presented. Also, the modifica-
tions required to use PASVAR in solving the prebuck-
ling equations of the stress loading case are discussed.

Algebraic eigenvalue problem for buckling. The
differential equations of the one-dimensional analysis
can be expressed as

s
E {L2m—l,2n—l [w2n—1 (-’5)]
n=1

- AHam—1,2n_1[w2n-1(2)] } =0
(m=1,2,...,5) (3)

where Lom_1,2n-1(') and Hom_1 2n—1(-) are the differ-
ential operators and wa,_;(z) are the generalized out-
of-plane displacements at buckling. Using L,,(-) to rep-
resent any Lyn,—1,2n-1(-) operator, H;s(-) to represent
any Hap,—1.2n-.1(-) operator, and w(x) to represent any
generalized buckling displacement, the form of these op-
erators can be expressed as

Nz )W(I)+[f2
+ fa(z)w"(z )+[fs( z)w

Les(w) = w'(2)] + [fa(z)w()]"

"(2))" (4)

and

H,o(w) = pr(z)w(z) + [p2(z)w' (z))
+ [p3(z)w(2)] + pa(z)w'(z) (5)

where fi(z) and pi(z) are coefficients appearing in the
differential operators and primes denote differentiation
with respect to z.

In deriving the finite difference expressions for these
operators, the definition of the ith station derivative
based on equally spaced half central differences is used,
with the exception of the two terms in equation (5)
multiplied by p3(z) and py4(x). The definition of the ith
station derivative based on equally spaced full station
central differences is used for these terms, since they
are the only terms in equations (4) and (5) from which

w**1/2 and w*~1/2 unknowns would arise. Using this
scheme for obtaining the finite difference expressions for
higher derivatives and derivatives of composition func-
tions, the discretized form of the differential operators
given in equations (4) and (5) are

[Lrs(w)]* = + w*=2 (f,;“ /A“)
(5 o) 5
-2 (fs+fA")/A“]
w - (524 57 v ari v 2r}) /a2
+(f3*! +4f;+f;")/A4]
4wt [(f;+l/2+f§+1 +f;') /Az
-2 (13 + 1) [af]

+uwit2 (,;4»1 /A«a) (6)



(Hrs(w))* =+ w*™! [p‘{”’ /8% - (ot +y) /‘M]

141/2 1—-1/2 2
st [ (10 [

surtt [ a2 4 (54 +54) [28] (1)

where the superscripts refer to the finite difference sta-
tion. Applying equations (6) and (7) to the operators
appearing in equation (3) at each interior station and
applying the basic difference expressions for the deriva-
tives to the boundary conditions yields the algebraic
eigenvalue problem

(K{w} = Algl{w} (8)

The matrices [K] and [g] are square matrices of order
S(M —2), where M is the total number of difference
stations. The vector {w} contains the out-of-plane dis-
placements at the interior difference stations. Because
of the self-adjointness of the differential operators of
equation (3), the matrices [K] and [g] are symmetric.
In addition, since the bending energy is positive defi-
nite, the matrix [K] is also positive definite. The small-
est value of A for which equation (3) has a nontrivial
solution is the critical value of the loading parameter.

The finite difference and algebraic eigenvalue prob-
lem formulations for the one-dimensional buckling anal-
ysis corresponding to S = 3 are presented in ap-
pendix D.

Modifications for the stress loading case. The pre-
huckling displacement field for the stress loading case
can be determined only to within an arbitrary constant.
This constant represents a rigid body displacement. ln
the present analysis, the Jacobian matrix for the pre-
buckling differential equations (used in subroutine PAS-
VAR) is singular because the displacement field is not
unique. A procedure that corresponds to eliminating
rigid body displacements from the displacement field is
to reduce the number of prebuckling differential equa-
tions and to rearrange the unknown generalized dis-
placements. Appendix E describes these modifications
to the prebuckling equations for the stress loading case
for N = 3.

Description of Computer Program

Computer program BUCKO is written in FOR-
TRAN V for the Control Data Corporation (CDC)
CYBER 170-series computers and is operational on

[ S S = WAt S S | . ——-‘—C

the Network Oper iting System (NOS) level 1.4 at the
NASA Langley Research Center. The computer pro-
gram is composed of a main program, 10 subroutines,
and 107 function subprograms, totaling approximately
3600 lines of computer code. T4 main program, pro-
gram subroutines, and function subprograms are de-
scribed ir this section.

The purposes of the main program are to read the
input data file and to assemble the arrays used in
the prebuckling and buckling problems. To minimize
storage requirements, the arrays are stored in a master
vector. The locations of the variables contained in the
master vector are determined in the main program.

The subroutine PREBUK is the major subroutine
used in the prebuckling problem. This subroutine
computes the approximate prebuckling stress distribu-
tion. Subroutines JACOB1, JACOB2, F1, and F2
are used in subroutine PREBUK. Subroutines JACOB1
and JACOB2 determine the Jacobian matrices for the
system of differential equations corresponding to the
displacement loading case and to the stres : loading case,
respectively. Subroutines F1 and F2 calculate the co-
efficients of the differential equations corresponding to
the two loading cases. Function subprograms OMG1
through OMG16 calculate the variable coefficients in
the differential equations. The coefficients are functions
of the cutout shape f(z). The cutout shape is deter-
mined by the function subprogram R which is presently
set up for elliptical and rectangular shapes and may
be modified easily to include other shapes. Suhroutine
PREBUK calls subroutine PASVAR, which performs
the actual numerical solution of the prebuckling equa-
tions.

The major subroutine used in the buckling solu-
tion phase is BUCKL. This subroutine computes the
finite difference coefficients, assembles the finite differ-
ence equations, and computes the buckling load. Actual
calculation of the eigenvalues is performed by subrou-
tine SYMGEP, which is obtained from the NOS math
ematics library. From the eigenvalues, the critical value
of the applied loading is computed For the displace-
ment loading case, the buckling load is obtained from
the average normal stress acting at the loaded edges
of the plate. For the stress loading case, the buckling
displacement is taken as the average axial displacement
of the loaded edges of the plate. Other output gener-
ated by the program are the prebuckling stress distribu-
tion, the buckling mode shape, the buckling coefficient,
and average axial and transverse strains at buckling.
A user’s guide and program sample problems are de-
scribed in appendix F.
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Concluding Remarks

This report presented an approximate analysis for
predicting the buckling load of a rectangular orthotropic
plate with a centrally located cutout. The analysis
is applicable to plates that are compressed uniaxially
by either uniform edge displacement or uniform edge
pormal stress. The boundary conditions considered
are simply supported unloaded edges and clamped or
simply supported loaded edges. A computer program,
BUCKO, associated with this analysis was described.

Buckling results generated by the computer program
are values of the critical axial load, critical end short-
ening, buckling coefficient, buckling mode shape, criti-
cal average axial strain, and critical average transverse

strain.

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665
July 11, 1984
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Appendix A
Symbols

A

An, Azz,
A2, Aes

b
¢

[C] ’ C‘J

d
Denl,Den2
D

1

Dy, D2,
D2, Dgg

Fpy,Fp
£

FZOs"'inS
FyOw"aFys
Fzyl»--szyS

(9]
[G]

[G), Gi;
GB1,GB2
G}

Gz0,..,Gzs
GyOa e aGgS
szl,. . .,Gzya

Hp,,Hps
Hi;(1)

cutout dimension defined in figure 1

membrane stiffness coefficients of
plate

rectangular plate half-width
rectangular plate half-length

coefficients defined by equa-
tions (C32)

circular cutout diameter
terms defined by equations (B59)

finite difference coefficients defined by
equations (D13), (D14), and (D15)

bending stiffness coefficients of plate

finite difference coefficients defined by
equations (D4), (D5), and (D6)

function representing cutout shape
(see fig. 1)

coefficients defined by equation (4)
integrand defined by equation (C35)
integrals defined by equations (C33)

finite difference coefficients defined by
equations (D7), (D8), and (D9)

integrals defined by equations (C14),
(C15), and (C16)

system geometric stiffness matrix

system geometric stiffness matrix
before application of the boundary
conditions

coeficients defined by equations (C7)
integrals defined by equations (C33)

finite difference coefficients defined by
equations (D16), (D17), and (D18)

integrals defined by equations (C8),
(C9), and (C10)

integrals defined by equations (C33)

differential operators defined by
equations (C40)

H;

[Hys (w)]?

HIO: .. -7H25
H-yo,. . .,Hys
szh ey sz5

(K]
K]

L
Li;(")

[Les(w)]

M
N

Nz: Ny; Nzy
N
-NIO) ceey st

Nyo,..,,Nys
Nzyla- . -yNzyS

p(z)
Pp1, Pp12. P2
P}

Py

P!i
Pro,...,Pes
Pyo,..., Pys
ngx,n-,szs
Py:l’“-aPyzS
QB!)QBI?)QB?I
on,uans
QyOs" . ’QyS
szlv--,szs
Qyzl:- . -:Qyzs

Rp1, Rp1a, RB31

RZO!"‘)R"J
RyOy-o-yRu5
Rzytw- wR:v&
szlv-wRuz&

A

— B L i Bu ——

finite difference coefficients defined by
equations (D19), (D20), and (D21)

discretized differential] operators
defined by equation (7)

integrals defined by equations (C11),
(C12), and (C13)

system stiffness matrix

system stiffness matrix before applica-
tion of the boundary conditions

rectangular plate length

differential operators defined by
equations (C39)

discretized differential .perators
defined by equation (6)

number of finite difference stations

number of terms in the prebuckling
displacement series

membrane stress resultants

applied uniform stress loading

stress resultants defined by equa-
tions (B39), (B40), and (B41)

coeflicients defined by equation (5)
integrals defined by equations (C33)

finite difference coefficients defined by
equations (D10), (D11), and (D12)

applied axial force
residual force on the unloaded edges

integrals defined by equations (C17),
(C18), (C19), and (C20)

integrals defined by equations (C33)

integrals defined by equations (C21),
(C22), (C23), and (C24)

integrals defined by equations (C33)

integrals defined by equations (C2A),
(C26), (C27), and (C28)

—— g =

.



Y Ny

e

o’y o

Us
Uss
U, Um

uo’ ,UD

Up, Ugk—1, V2k-1

Vo

{w}

W2k-1

wy, W3, Ws

APPENDIX A
number of terms in the buckling X1
displacement series

z’ y1 z
¢ .
plate bending energy Y1, Y14
plate initial stress energy
membrane strain energy and mem- Yss
brane strain energy density G0, -+ fha
prebuckling displacements in the z- y
and y-direction, respectively A
generalized displacements for the
prebuckling problem s
displacement series parameter o o o
€2,€9,
buckling displacement vector e
. €1,-..,610
out-of-plane displacement
generalized displacements for the 0 0
: 1;-.+,023
buckling problem
values of the generalized displace- A
ments
Qla ey ﬂ16

rectangular plate width

external work

()

cutout dimension defined in figure 1
Cartesian coordinates

variables defined by equativns (B42)
through (B49)

a constant, see equation (E5)
variables defined by equations (E1)
displacement series parameter, 7/2b

distance between equally spaced finite
difference stations

variational operator
midplane membrane strains

coefficients defined by equa-
tions (B58)

coefficients defined by equa-
tions (B60)

loading parameter
integrals defined by equations (B6)

differentiation of ( } with respect to 2
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Appendix B
Prebuckling Analysis for N =3

The in-plane displacements prior to buckling are assumed to be

3
u’(z,4) = A {uo(z) + E ugk—1(z) cos {(2k — l)vyl}
k=1
3 ~Bl)
v’(z,y) = A {voy + Z vok—1(z) sin [(2k — l)vy]}
k=1

where ) is a loading parameter, ¥ = 7/2b, and the functions uo(z), u.(z), uz(z), us(z), v1(z), vs(z), and v;(z) are
the generalized displacements to be determined. The parameter v is a constant which is determined by requiring
that the unloaded edges have zero resultant forces acting on them. Substituting these expressions into the linear
strain-displacement relations from two-dimensional theory of elasticity yields

3
€2=2 {ué(Z) + > ugk-1(z) cos (2K ~ l)wl}

k=1

o

3
€5 =) {vo +7 Y7 (2k ~ 1)ugk—1(2) cos [(2k - l)vy]} (B2)

k=1

k=1

3
42y = {Z [v3k—1(2) — (2k — 1)yuzk—1/2)] sin (2k - 1)’13/]}

where primes denote differentiation with respect to z. The membrane strain energy for the plate, which is assumed
to deform symmetrically, is

+e b
Un =/ /( ) [A11(e2)? + Az2(e7)® + 2412(e3€) + Aes(72,)?] dy dz (B3)
—c flz

where f(z) is the curve shown in figure 1 and the A,; are the orthotropic membrane stiffness coefficients. Substituting
the expressions for the strains into the membrane strain energy and performing some algebraic manipulations yields

+c
— 12 ) i ! ’ ] ! ! /
Um = A Um (uo,uo,ul,ul,u3,u3,u5,u5,vl,vl,vg,v3,vs,v5) dz (B4)
-c

where

Um = [A11(up)? + A22v? + 2A12u4v0] Oy
+ [A11(4))? + A2av?o] + 2412701 01] 05
+ [All(“?s)2 + 9433773 + 6A13'7u§,v3] N6
+ [A11(u5)? + 254227708 + 10412770 vs] Qg
+ 2[Anugu) + Azavvov: + Ara (Yugyr + vou)] O3
+ 2[A1uhu} + 34227003 + A1z (3yubvs + voul)] Qs
+ 2 [A1ubul + 5Ag27v0vs + Ajg (Syubus + vous)] Mo
+ 2 [An vy us + 34237 v1v3 + Aray (ugv; + 3ujvs)] Q4
+ 2 [Anuuy + 1543377 vavs + A2y (3ugvs + Sujus)] Oy

Equation (B5) continued on next page
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+ 2 [Anuiug + 54272 v1vs + Aray (ugvr + 5ufus)] Qpa
+ {Aes (v — 7u1)?] g

+ [Aes(v3 — 3vu3)?] Qo

+ [Aes (v — 5vu5)?] e
+2[Aes(v] — yu1)(vs — 37u3)] 7
+ 2[Ace(vs — 3vuz)(v5 — Syus)] s
+ 2 [Ag6(v] — yu1)(vs — 5yus)] Qs

b
@)= [ dy=b s
b
Q@) = [ cos dy = {1-sinpr /()
b
N3(z) = /f(:) cos3vy dy = —%{l + sin[3vf(z)]}
M(z) =

cosyycos 3y dy = ——% {sin[2'yf(z)] + %sin[hf(:c)]}

J
Qs(z) = /f cos? vy dy = 1[b - f(z)] - %sin[hf(z)]
/f cos? 3y dy = 3lb = (@) - 13- sil6v/ (o)

Qa(z) = /f - sinyysin 3vy dy = -% {Sm[Z'vf -3 Sln[47f ]}
ff o sin’ vy dy = %[b - (@) + %sin[hf (2))
/f i3 dy = b= J(@)] + - sinl6 /(2]
Quo(= /f - cos5vy dy = 51;{1 - sin[57f(z)]}
O (z) = / o8 3y cos 5y dy = —é {sm[2'7f N+ = sm[87f }

£(2)
Qy2(z) = /f :z) cos~yycos5vy dy = -% {lsm[hf N+ 3 smlﬁﬁf (r)]}
Mia(z) = /f :z) cos’ 5y dy = 5[5 - f(@) - 56— sin[107/(z)]

Qu4(z) = /f :x) sin3vysin 5y dy = —4—1,7- {sm['hf -7 s1!![87f (2) ]}
() = | :,) sinysinsy dy = = { 3 sinlér/(a)] - § sinlor/ (2]

b, 1 1,
Qye(2) = /f © sin” 5y dy = ;b - f(2)] + 20, sin[107f(z)]

(B6a)
(B6b)
(Béc)
(B6d)

(36e)

(4,
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When the loading is a uniform compressive edge displacement, no external work is done to the system. However,
when the loading is a uniform compressive edge stress, that is,

N,(£e,y) = ~AN? (B7)

the external work is

+b

W, = AN f (2, ) dy (B8)
-b

The parameter J\?;’ is the applied stress shown in figure 2, and A is the loading parameter previously defined.
Substituting the displacements given by equations (B1) into equation (B8) for the external work yields

_ ~tb B
W, = —/\QN:/ [uo(z) + u1(z) cos vy + u3(z) cos 3y + us(z) cos 5yy|i 75 dy (B9)
The symmetry of the problem allows the external work to be expressed as
~ b —
W, = —2)2N? / [uo(z) + u1(z) cos vy + uz(z) cos 31y + us(z) cos Syy|= ¢ dy (B10)
0

By noting that

b
()= [ dy=1(~o
b

Da(c) = f cosy dy = Qy(~)
% (B11)

Qa(c) = / cos 3vy dy = Q3(—c)
0
b
Qiole) = / cos 5y dy = (o(~c)
0
the external work can be expressed as
W, = —2X2N2 [ (2)uo(z) + Q2(2)u1 (2) + Qalz)us(z) + Qo(z)us(2))Z21E (B12)
The total potential energy of the system is
V=U,-W, (B13)
which can be expressed as
+c .
V= ’\2 Um (uO) u{h ulsu'l» Us, u’3) Us, uf’,v v, v'l) V3, Ué, Us, vg) dz + 2/\2N: (Q]‘!lo + nzul + nau:‘ + 91005)::t:§
J —c
(B14)

The following crdinary differential equations and boundary conditions are obtained using the Euler-Lagr. nge
equations of variational calculus on equation (B14):
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Differential equations (—c < z < +c)

d
e ((A11ug + Aravo) T + (Apu) 4- Ar2yvr) Qg

+ (Anus +34127v3) Q3 + (Anug + 5A4199v5) o] = 0

Age[(v3 — 3vus) Q7 + (v) — yuy) Qs + (v5 — Syus) ys)
d
+ iz [(A11ug + Ar2v0) Qg + (A1 us + 3A507v3) Oy

+ (Anug + 541277s) Tz + (Anu) + Agy) Q5] =0

3Age7 (V] — yu1) Q7 + (v — 3yua) o + (vg — 5yus) N4l
d
+ 4 ((Av1ug + A12v) Q3 + (An1u] + Ar27yv;) Q4

(B15)

(B16)

Substituting the expression for Uy, given by equation (B5) into equations (B15) and (B16) gives

(B17)

(B18)

+ (Anug + 3A12703) Q6 + (An1uf + 5A4127s) Qy] = 0 (B19)

5Ae67 (V] ~ Yu1) Qs + (v — 3yuz) Qyq + (v5 — Syus) Nye]

d
+ o [(A11ug + A13v0) Q1o + (Aniu) + Ay e

+ (Anug + 34127v3) Oy + (Anug + 5Agg7vs) ig) =

(B20)

11
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7 [(Ar2up + A22v0) U2 + (Ar21] + Azayvy) Qs
+ (Ar2u3 + 3A22vv3) Q4 + (Ajul + 5A227v5) 2]

d
i {Aee [(v] — vu1) s + (v5 — 3yu3) Q7 + (v} — 5yus) 5]} =0 (B21)

37[(Arzug + Az2v0) 03 + (A1t} + Agpyy) Q4
+ (Ar2uy + 3A22703) Qg + (Ar2uf + 5A22vs) 0]

d
- {Aee [(v7 — yu1) Q7 + (v — 3yu3) g + (v§ — Syus) Muq]} = 0 (B22)

59 [(Ar2up + A22v0) Do + (Ar2u), + Azyvy) s
+ (Ar2ug + 3A22703) Qi1 + (A12u} + 5A492vv5) Oy3)

d /
— 7 {Aes [(v) — yu1) Qs + (v = 3yus) Qg + (vf — 5yus) Qye)} = 0 (B23)
dz
Boundary conditions (z = %c)

{ [(-411116 + A12v0) Q1 + (An1u] + Ar2yor) Qs

- +c
- + (A“UQ + 3A12yv3) N3 + (Auug + 5A127vs) o + QlN:] 6uo}_c =0 (824)
s {[(A11u6+.412v0)92+ (Anu] + Ajayvr) Qs
- +c
B + (A“‘UQ + 3A12’7U3) Q4+ (A]]‘ug + 5A12'1v5) 012 + QQN:] 6‘&1 }_c =0 (825)
: {[(A11u6+,412v0)93+ (Anuy + Ajayvy) Q4
5 - +c
+ (At + 3412709) D + (At +5Asa7os) M + Q2] bus ) =0 (B26)
- {[(A11u6+:41200) Mo + (Anruy + Apayvr) Qy2
~ +c
+ (A“ug + 3A12'7‘!)3) Q“ + (A“ug + 5A12'7’U5) Q13 + ﬂ,oN;’] 5U5}_c =0 (327)
- {l(vh = 7u1) Qs + (v — 3yus) Q7 + (v} — 5yus) Uys) 60y} =0 (B28)
{[(v} = yu1) Q7 + (v} — 3yuz) N + (vs — 5vus) Q4] 6v3}tﬁ =0 (B29)
{[(v'l - '7u;) 015 + (vé i 3’7‘!43) ﬂ“ + (vé - 5’7115) Q]a] 605}1-2 =0 (330)

The boundary conditions for the two loading cases investigated in the present study are given by

Uniform compressive edge displacement

u’(xe,y) = ;2%«\ Niy(£e,y) =0 (B31)
Uniform compressive edge stress
Nz(xe,y) = =AN?  Nzy(£e,y) =0 (B32)

12
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. Substituting the displacement series (eqs. (B1)) into the displacement boundary conditions given in equa-
tions (B31) and collecting like terms gives the following conditions:

1 R
uo(ke) = F=A  ug(de) =0

uy (:i:c) =0 U5(ﬂ:C) =0

[ ™)

(B33)

Using the consti.utive relations of two-dimensional orthotropic elasticity and the strain-displacement equations given
by equations (B2) yields

N: = A{(An1up + Aizvo) + (A11u] + Aryvy) cos vy
+ (A“ug + 3A12’T!)3) cos 3y + (Au‘ufr, + 5A12'7v5) cos 5’7y] (B34)

Ny = Mee [(v] — yu1) sinvy + (v§ — 3yu3) sin 3y + (vg — 5yus) sin 5yy] (B35)

Substituting these expressions into equations (B31) and (B32) yields the following conditions for the prescribed
normal stress boundary condition in equations (B32),

Auua(:tc) + Aj2vg = —N:
) Ant(xe) + Ajpyv(Ee) =0
. Anuj(tc) + 3A12yv3(%c) =0

H Apug(Ee) + 5A129vs(+e) =0
and for the shear stress boundary conditions in equations (B31) and (B32),

vy(£c) — yui(e) =0
- v(%c) — 3yua(tc) =0 (B37)
vg(£c) — 5yus(xec) =0
Inspection of the conditions given by equations (B33), (B36), and (B37) reveals that these conditions are admissible ;
since they satisfy the boundary conditions derived from the variational procedure.
Upon solution of the system of ordinary differential equations for a specific loading case, the stress resultants can
be obtained from the following equations:
= = A(Nzo + Nz1 cos vy + Nz3cos3vy + Nis cos 5yy) i
Ny = A(Nyo + Nyi1 cos vy + Nyz cos 3y + Nys cos 5vy) (B38)
Nzy = A(Nzy1sin vy + Ngyasin3yy + Nzys sin 5vy)

Y

where
Nzo = Apyug+ Aavg )
Nz = Apu) + Apyy
’ , (B39)
Nz3 = Ayyuy + 3412703
Nzs = Ajyug + 54,5905
& Nyo = Anaug + Azqvp )
¥
i Ny1 = Ajqu] + Ay
; ’ , (B40)
: Nya = Ajauj + 34352708
; Nys = Araul + 5Az5705 |
¢
E 13
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Nzyl = ‘ASS(U; - 'Yul)
Nzy3 = Age(vz — 3yua) (B41)
Nyys = Ags(vs — 5yus)
The differential equations given by equations (B17) through (B23) constitute a system of linear second-order
homogeneous ordinary differentizl equations with variable coefficients, and these equations are solved numerically for
the generalized displacements and their derivatives. To make use of existing computer subroutines, the second-order

system is converted to an equivalent first-order system. The undetermined functions appearing in the displacement
series are redefined as follows:

uo(z) = 1

w(z) = 12 vi(z) =ys

o) gy B (B42)
us(z) = va vs(z) = y7

In addition, the following functions are defined as

vs = (Any) + A12v0)1 + (Anyh + Ar27ys)22 + (A ys + 3412996)03 + (Anyy + 5A127y7) o (B43)
Yo = (Any) + A12v0)02 + (Anys + Ar27ys) s + (Anys + 3412796) N + (Anyy + 5A127y7) 012 (B44)
v10 = (Any} + A12v0) + (A1 vh + A127y5) Q4 + (A11ys + 3A1276) Q6 + (An1ys + 5A1277y7) (B45)
y11 = (Anyh + A12v0)o + (Anys + A127ys) Q2 + (Anys + 341276) 0 + (Anyy + 54127y7)s (B46)

V12 = Ass [(¥s — 37w3) Q7 + (v7 — 57wa) s + (v5 — vy2) Nl (B47)
v13 = Aee [(¥5 — Tv2) Q7 + (v5 — 37w3) Qo + (v7 — 5vya) Mu4) (B48)
14 = Ass [(¥5 — v2) Qs + (e — 373) Ca + (v7 — 5vv4) Q6] (B49)

Substituting expressions (B43) through (B49) into the governing differential equations yielas

Vs = (B50)

Yo = =MW1z (B51)
Y10 = =313 (B52)
11 = 5714 (B53)

7[(A12y) + A22v0) Qa + (A12y5 + Az27ys5) Qs
+ (A12y5 + 3vA22v6) Q4 + (A129; + 5vA22y7) Q1a) — 91, =0 (B54)

37 [(A12¥1 + A2av0) Qs + (A12y5 + Aaavys) Q4
+ (A12y3 + 3A227ye) Q6 + (A12v; + 5A4227y7) Q1) — ¥i3 =0 (B55)

57((A12y} + A23v0) o + (Arayg + A22vys) g
+ (A12y3 + 3Aaz7ye) Q11 + (A1ayg + 5A227y7) Qi3] — 434 =0 (B56)

The equivalent first-order system of differential equations is obtained by solving equations (B43) through (B46)
simultaneously for y}, ¥, ¥3, and y}; solving equations (B47) through (B49) simultaneously for yj, ys, and y%;

14
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and then substituting these values into equations (B54) through (B56) to obtain y},, ¥}3, and y},. The resulting

first-order system is given by

, Az $1ys + $2¥o + Savi0 + Gava

=-"""u+
2 Au 0 AuDenl

A2 S2ys + Ss¥o + Se¥10 + S7V11

! e c—
¥ 17y5 + A11D8nl

' 3A12 s3ys + SeYo + Sa¥i0 + So¥n1

Ys =~ Au e + AuDenl

5A1; Says + ¢7¥9 + So¥10 + S10Yn1

(U712
Ya Au Wt AuDenl

015y12 + O16y13 + 017914

! —
s =2 + AceDen2

016v12 + 018Y13 + 010¥14

' = 3
Ye s + AesDen2

017912 + 19113 + G20Y14

y7 = 5yyq + Ao Den?
va =0
yé = —TY12
Y10 = —313
Y1 = ~54
r _AnAxp-A
Y12 = _—All__—
' AnAdz

2 A
12 4 [Qav0 + v (Qsys + 3Nye + 5Q42y7)] + —Af’wg

1

- A? 3A
2 M2 [Q3v0 + v (Qays + 3sys + 5011y7)] + '—2’73/10

Via All
; _ Andzp-A
ha=TAT
where

1 = (11107 + 01208 + 136, 6 = (0612 + 011613 + M1305 )
g2 = {1302 — Q1169 — N106s ¢7 = —(hofz — 01105 — Q1204
¢3 = 1303 + D200 — Q067 g8 = 10014 — M12613 + D13l
¢4 = ~(1001 — Q163 — Q120; g0 = (1063 — 1106 — (1205
¢s = Mhof10 + D161 + D130, 610 = (1303 + Q405 + Qe )

Denl = 0021 + 03022 + 05023 — Q1 (02010 + 04012) — Qo (62012 + 6:040)

Den2 = 0506 + 0178015 + 01094

6, = 506 ~ QF b = Q382 — Nallyy
2 = 304 ~ Q306 610 = Q381 ~ Qeflio
03 = 1204 ~- N30 611 = (3o - QO
0 = 0,06 - 03 613 = Q410 — Q32
05 = 303 - N0y 613 = Q3 — Nallyo
0 = M 05 - O3 614 = Qa2 ~ Qo

67 = Q2 - Qs 01 = Myeflo - 03,
0 = N1 — Qea 016 = Qa5 — Qrlle

Ay
bA

2
12 5~ [Q1ovo + ¥ (2ys + 311ys + 5M3yr)] + —'111—27!111

A

017 = Mg — Qo
618 = Qs — N5

010 = Q7015 ~ QMg
B30 = Qs — 02

031 = Qefly3 ~ 0,

022 = Q303 ~ 201001y
f23 = Q43 ~ 20,03

}

)

’

(B57a)
(B57b)
(B57c)
(B57d)
(B57e)
(B57f)

(B57g)

(B57h)
(B5Ti)
(B57j)
(B57k)

(B571)
(B57m)

(B5Tn)

(B58)

(B59)

(B60)

15
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The boundary conditions for the two loading cases are obtained from equations (B33), (B36), and (B37) and are

summarized as follows:

Uniform compressive edge displacement

v (xe) = ?%
y2(£c) =0
ys(£c) =0
ya(£c) =0

015(£c)y2(ke) + Or6(£c)yra(Ee) + O17(Ec)yra(Ee) = 0
016(£c)y12(Ee) + O1a(c)yra(Ee) + ro(Ec)yra(Eec) = 0
017(2¢)y12(%c) + 10(e)yr3(Fe) + O20(£c)yra(c) = 0
Uniform compressive edge stress
61 (2e)ys(e) + 2 (£c)yo(e) + a(Ee)yro(Ee) + ¢a(£e)yr1(£e) = —N2Denl(xc)
s2(Ee)ye(£e) + gs(£e)yo(e) + go(Le)yro(ke) + gr(Ee)yir(£e) = 0
§3.(:tc)y3(:l:c) + g(Lc)yo(Ee) + sa(£ec)yro(£e) + so(Ee)yr1(£ec) =0

sa(Ze)ys(£e) + gr(Ee)ya(Le) + so(Le)yro(£e) + g10(£ec)y1a(2e) = 0

015(:l:c)y12(:l:c) + 016(ﬂ:c)y13(ﬂ:c) + 017(ic)y14(:i:c) =0
016(:tc)y12(:!:c) + Olg(ﬂ:c)ylg(:tc) + 019(:i:c)y14(:tc) =0
017(xc)yra(te) + Oro(Ec)yra(e) + O20(£c)yr4(Ee) = 0

(B61a)
(B61b)
(B61c)
(B61d)
(Béle)
(B61f)
(B61g)

(B62a)

(B62b)
(B62c)
(B62d)

(B62e)
(B62f)
(B62g)

For the uniform compressive stress loading, the differential equations and boundary conditions must be modified to
make use of subroutine PASVAR. The modifications are given in appendix E. After numerical solution of the first-
order system of equations, the stress resultants are given by equations (B38) and equations (B39) through (B41).

In terms of the first-order variables, equations (B39) through (B41) become

Noo = S1U8 + $2¥o + $3¥10 + SaV11
o —

Denl
Ny = $2¥s -+ (s¥o + Ge¥i0 + S7¥n1
=l Denl
Now = $3Ys + Se¥o + a¥10 + So¥11
w3 Denl
Nue = Sa¥s + Sr¥o + $a¥10 + S10¥11
25 Denl
AnAg - AL, Al
Ny = ——2y5+ —N.
v Ajy L P
AnAgg - AL, Aja
Ny = ————%qys + ——=N,
vl A TYs An zl
An g — A Az
Ny=3 + —=N.
y3 Al Au z3
AnAg - A), Ay
Nyg =5 + —=N,
v An Ap 2

18
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_ bi5y12 + 016313 + 017914

jvzyl -

Den2
Nowr = 616912 + O18y13 + Oro914
zy3 Den2
N = 517912 + 019313 + B20y14
zyd =
Den2

(B63i)
(B63j)

(B63k)

17
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Appendix C

Buckling Analysis for S =3

The prebuckling stress resultants used in this analysis are

3 A
Nz(z,y) = A {Nzo(l) + Z Nz(2k-1)(z) cos[(2k - 1)731]}
k=1

.

(C1)
k=1

3
Ny(z,y) =2 {Nyo(z) + Z Ny(2k—1)(z) cos[(2k — 1)79]}

3

Nay(z,9) =2 {Z N.y(2k—1)(z) sin[(2k — l)'yy]}
k=1

where ) is a loading parameter, v = m/2b, and the functions Nzo(z), N.i(z). Nza(z), Nas(z), Nyo(z), Nyi(z),

Ny3(z), Nys(z), Nzy1(z), Nzys(z), and Npys5(x) are determined from the prebuckling analysis given in appendix B

(see eqs. (B38) through (B41)). The series representation used for the out-of-plane buckling displacement is

3
w®(z,4) = Y wry-1 (@) cos{(2 ~ 1)) (c2)
7=1
where the prescribed trigonometric functions satisfy both the kinematic and natural boundary conditions for a
simply supported edge at y = £b. The initial stress energy (contribution of the prebuckling stress distribution to
the second variation of the potential energy) for the plate, which is assumed to deform symmetrically, is

+c b
Urs =/ /f’ ) [N, (wf’z)2 + N, (w“’y)2 + 2N,y (w"zw“’y)] dy dz (C3)
—c {z

where f(z) is the curve shown in figure 1 and ( ), and ( )y denote partial differentiation with respect to the z-
and y-coordinates, respectively. Substituting the series expressions for the stress resultants (eqs. (C1)) and buckling
displacement (eq. (C2)) into the initial stress energy (eq. (C3)) and integrating over the y-coordinate yields

+c
Us=A) {w}T[G){w} d=z (C4)
where
| |
{w}T = [wl(x)wi(-'ﬂ)wi'(z) I wa(z)wg()ws(z) | ws(z)ws(z)uws(z) (Cs)
[G1n G2 0 G4 Gis 0 Gyz Gig 0]
Gz 0 Gy Gas 0 Ga7 Ggs O
0 0 c 0 O 0 0
G Gas 0 Gy7 Ggg O
[G]= Gss 0 Gg7 Gsg 0 (06)
0 O 0 0
Grr G 0
Gss 0O
| Symmetric 0

Primes denote differentiation with respect to z. The nonzero expressions appearing in [G] above are given by

18
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G11 = NyoGyo + Ny1Gyr + Ny3Gys + NysGys
Gr2 = N3y1Goy1 + Niey3Gays + NoysGays

G14 = NyoPyo + Ny1Pyy + Ny3Py3 + NysPys
G15 = Nzy1 Pyz1 + Nay3Pyzz + Nays Pyzs

G171 = NyoQyo + Ny1Qy1 + NyaQys + NysQys
Gi18 = Noy1Qyz1 + Nzy3Qyzs + NuysQyas

Ga2 = NzoGz0 + N21Gyy + N23Gas + NpsGas
G24 = Nzy1Prys + NzyaPrys + Niys Prys

Ga5 = NyoPuo + Nz1 Pry + NagPrg + NpsPos
G271 = Nay1Quy1 + NiyaQzys + NoysQzys

Gas = N2oQz0 + Nz1Qz1 + Na3Qz3 + NusQus
G4 = NyoHyo + Ny1Hy + NysHys + NysHys
Gas = Npy1Hey1 + NayaHeys + NpysHoys
Gar = NyoRyo + Ny1 Ry + NyaRys + NysRys
Gas = Nay1 Ryz1 + Npy3Ryzs + NoysRyas

Gss = NyoHyo + NpyHzy + NogHys + NosHys
Gs7 = Nzy1Rzy1 + NaysRays + NaysRuys

Gss = NzoRyo + Nz1Ryy + NagRos + NisRys
G77 = NyoFyo + Ny1 Fy1 + Ny3Fya + NysFys
G718 = Nay1 Fry1 + NpyaFrys + Npys Frys

Gas = NyoFz0 + Nz1Fr1 + NagFas + NosFos

b 1 1
_ 2 = @ L
G0 = / oW dy = 3lb = f(z)] = - sinl2v/ ()]

b
G = /f cos® vy dy = % (2 - sin{vf(x)) {2 + cos? [1f(=)]})

()

b
1
Gz = / cos? yycos3vy dy = —
f

()

b
-1
G5 = / cos? yycos5yy dy = ——
!

(=)

159

420~

b
Gy = /f ~2sin? vy dy = %2- {[b - f(z)] + 2—l§sin [2'1f(z)]}

(=)

b
Gy = /!( )'12 sin? Yy cosyy dy = g {1 — sin® [7]‘(::)]}
z

b
Gys = / 42 sin? vy cos 3y dy = X (7 - sin® [vf ()] {7 + 12 cos? [/ (2)]})
1) 15

(2~ sin[vf(2)) {2 + cos® [7/(z)] + 12 cos* v/ (=)]})

{8 + 35sin [3f(z)] + 42sin [5vf(z)] + 15sin [77f(z)]}

(C8b)
(C8)

(C8d)

(C9a)
(C9b)

(C9c)

19
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b
Gys = / +%sin® vy cos 5y dy = {92 + 35sin [3vf(x)] — 42sin [57f(x)] + 15sin [7vf(2)]} (Cad)
e

420
b \ 1
Gry1 = —/f(z) Yycosyysin® vy dy = 3 {sin® [vf(z)] - 1} (C10a)
Guys = - /f : veosTysinsindoy dy = £ {sin[yf(2) - 1} - o fsmfyfe)] -1} (C1ob)
Gays = — /f :x) 7Y €os Yy sin yy sin 5y dy = 8i4 {4+ 7sin 3vf(z)] ~ 3sin [77f(2)]} (C10c)
b 1
Ho= [ 1 53 = 5lb— (@) - 5 sinles () (Cl1a)
H, = /f: )cos'yycos vy dy = ——{72 5sin(77f(z)] - 7sin(5vf(z)] - 70sin[y, (=)} (C11b)
oo = [ cof sy dy = L sl lsn’fons ()] -3} - (C1e)
z
H.s = /f:z) <:os‘2 3ycos5yy dy = m{n 55sin[vf(z)] — 22sin[57f(z)] - 5sin{117f(z)]} (C114)
b 1 1
Hy = /f - 9v%sin’ 3vy dy = 94° {§[b ~ @)+ 55 2, *inl6rS (I)]} (C12a)
H, = /fl:z) 97*sin® 3y cos vy dy = 560 7o~ {68 + 5sin[77f(z)] + 7sin[57f(z)] — 70 sin[yf(z)]} (C12b)
Hy = /I: ) 9% sin? 3yy cos 3y dy = {1 +sin’(37f(z)]} (C12c)
z
Hys = f:z) 9% sin? 3yy cos 5y dy = 220 {28 55sin(v f(z)] + 22sin[5~f(z)] - 5sin[11vf(z)]} (C12d)
b -3
Hyy = - . 37sinyysin 3y cos 3y dy = % (3 + - {5sin[77f(z)] — 7sin[5~f(x) ]}) (C13a)
Hyys = - f:z) 37sin® 3yy cos 3y dy = % {1 +5in®[34/(z))} (C13b)
Hyys =~ /f: )3ysin 3y cos 3y sin5yy dy = —{12 = 11sin[yf(z)] + sin[11vf(z)]} (C13¢)
z
b
Fpo= /ﬂz) cos? 5y dy = —[b f(z)] - sm[l()'yf( z)] (Cl4a)

. b
Fy= _;/( ) cos yycos? 5y dy = m{300 — 198sin[yf(z)] - 11sin[9vf(z)] - 9sin[11vf(z))} (C14b)
I(=

b
Fp3 = / cos 3y cos? by dy = 1092 Toao= {200 + 182sin[3~f(z)] — 39sin[7f(z )] = 21sin[13~f(z)]} (Cl4c)
f(=)

4
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b
F,s =/ cos®5yy dy = T {2 3sin[5vf(z)] + sin® Bvf(2)]} (C144d)
/(=)
P 2592 1
Fy =/ 254 sin® 5yy dy = - b— f(z) + qum[lo'yf(z)] (C15a)
(z)
- ; b
f Fy = / 254° cos yy sin® 5y dy = ﬁ{”“ 198sin[/(z)] + 11sin[97/(z)] + 9sin[11yf(z)]} (C15b)
f(z)

‘ b
N Fy3 = / 2572 cos 3yysin? 5yy dy = 1092{ -164 — 182sin[3~f(z)] + 39 sin[7+f(z))
L. f

()

+ 2sin[13v£(z)]} (C15c)
b
Fys = / 2542 sin® 5yy cos 5yy dy = %—7 {1 -sin®[5yf (=)} (C154d)
(=)
b -5
‘ Fryy = —/ 97 sin vy sin 5yy cos 5yy dy = @{30 — 1sin[9vf(z)] + 9sin[11vf(z)]} (C16a)
ol fl(z)
- N
; ; Frys = - /f( ) 57sin 3y sin 5y cos 5y dy = —{20 + 13sin(77f(z)] — 7sin[13f(z)]} (C16b)
o3 ¢
Frys = —/ 5vsin® 5y cos 5y dy = = {5)03[5'yf ()] -1} (C16c)
f(z)
b ~1 1
- P, =/ cosyycos 3y dy = -— {sin[2’7/(z)] + = sin[4’7f(z)]} (C17a)
: 1(z) 4y 2

b
P =/ cos? yycos 3yy dy = 1: (1 - §{3 sin[57f(z)] + 10sin[37f(z)] + 15 sin['yf(x)]}) (C17b)
I(z)

b
Py = /;(I) cosyycos? 3yy dy = oy (36 - %{5 sin(7vf(z)] + 7sin[5vf(z)] + 70 sin['yf(z)]}) (C17c¢)

b
P,s = / cos yy cos 3y cos 5y dy
f(‘)

252 355 (40 — 63sin[yf(z)] - 21sin[3vf(z)] - 9sin(77f(z)] - Tsin[9v/(z)]} (C174d)
. b —
: Py = / 3y?sinyysin 3y dy = % {sin[2’7f(z)] - %sin[&yf(:c)]} (Cl18a)
} ! :z)
_. ' P, = /j( )3"72 cos vy sin vy sin 3y dy = 35—7 (1 + Zl{sin[S'yf(z)] - 5sin['7f(:c)]}) (C18b)
b
Py = /f( )37 sin Yy sin 3y cos 3yy dy = :;—5 (3+ ~{5sin[7yf(z)] - 7sin[57f(z)]}) (C18c)

b
Py = / 3% sin ~y sin 3y cos 5y dy
f(z)

= % {~100 + 63sin[/(2)) - 21 sin[3v/(z)] - 9sin([77/(z)] + 7sin([9v/(z)]} (C18d)

21
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b
3
Py = —/ 3y cosyysinyysin3yy dy = ~3 (l + - {sm[5'7f )] = 5sin[vf( x)]}) (C19a)
f(=z)
. b
3
Poys = ._/ 3vcosyysin® 3vy dy = ~3 (17 + 2{5 sin[7vf(z)] + 7sin[5vf(z)] — 70sin[yf(z ]}) (C19b)
f(=)
b
Prys = — / 3y cos yy sin 3y sin 5y dy
!(2)

= ——{44 63 sin[ f(z)] — 21sin[3~f(z)] + 9sin[7yf(z)] + 7sin[9vf(z)]} (C19c)

b
Py =- /;( )75m Yycos3vyy dy = — (7 - —{35m[5'7j'(a:)] — 10sin[3~f(z)] + 15sin[vf( z)]}) (C20a)

15
b
Py = - /f( ) ~sin yy sin 3y cos 3y dy = ~% (3 + = {5sin[Tvf(z)] - 7sm[57f(z)]}> (C20b)
b
Pys = - / ~sin 4y cos 3yy sin Syy dy
f(z)
= 253 {68 63sin[vf(z)] + 21sin[3vf(z)] — 9sin|[7vf(z)] + 7sin[9vf(2)]} (C20c)
b
Q.0 = /;( )cos ~ycos 5y dy = ———{3 sin[4y f(z)] + 2sin[6f(z)]} (C21a)
b
Q. = /f( )cos ~ycos5yy dy = ——{8 -- 35sin(3~f(z)] + 42sin[5+f(z)] + 15sin[7yf(z)]} (C21b)
bI
Q3 = / cos vy cos 37y cos 5y dy
f(z)
= 25—2{40 63sin{yf(z)] — 21sin[3vf(z)] — 9sin[7vf(z)] — 7sin[9f(z)]} (C21¢)
b
Qs = / cosyy cos? 5yy dy = —{200 — 198sin[vf(z)] — 11sin[9v/f(z)] — 9sin{l1yf(z)]} (C21d)
£(z) 396~
b
Qyo = /f( )5'7 sinyysin 5y dy = —-{28m[6'yf )] — 3sin[4+f(z)]} (C22a)
b
Qu = /,( )5'7 sin yy cos yysin 5yy dy = ——{4 + 7sin[3vf(z)] — 3sin[7vf(z)]} (C22b)

|

}

| b

‘ Q3= / 5+ sin vy cos 3yy sin 54y dy
. l( )

252 L {68 — 63sin[yf(z)) + 21sin[3+f(2)] - Isin[7v/(2)] + 7 sinlgv/(z)]} (C22c)
b
Qys = /f - 5+ sin yy sin 5y cos 5y dy = % {20 — 11sin[9~f(z)] + 9sin[11vf(z)]} (C22d)
b
Quy1 = - /f © 5y cosyysinvysin vy dy = —{4 + 73in(3vf(x)] — 3sin|[7vf(z)]} (C23a)
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b
Qzy3 = — [ 54 cos vy sin 3yy sin 54y dy
f(z)

= ﬁi{“ 63sin[vyf(z)] — 21sin[3vf(z)] + 9sin[7vf(z)] + Tsin[9vf(z)]}

b
Qzys = -/ 5vcos yysin® 5y dy = @3{196 — 198sin[yf(z)] + 11sin[9vf(z)] + 9sin[11yf(z)]}
f(z)

~vsin® vy cos 5yy dy = - {92 + 35sin(3vf(z)] — 42sin[5~f(z)] + 15sin[7vf(z)]}

/f z) 420
Qyzz = — / ~sin ~yy sin 3yy cos 5y dy
!

= 512{100 — 63sin[vf(z)) + 21sin[3~f(z)] + 9sin[7vf(z)] — Tsin[9f(z)]}

o

Quzs = — ~ sin Yy sin 5yy cos 5y dy = {20 — 11sin[97f(z)] + 9sin[11vf(z)]}

f(2) 396

b —
Ry = / cos 3yycos by dy = ——-1—{4 sin[2vf(z)] + sin[8vf(z)]}
1) 16+

b
R; = / cos Yy cos 3yy cos 5yy dy
f (=)

252 ——{40 - 63sin[vf(z)] — 21sin[3~f(z)] — 9sin[7vS(z)] — 7sin[9vf(z)]}
b

R,z = / cos? 3y cos 5y dy
f(z)

——{72 - 55 sin|yf(z)] — 22sin[5vf(z)] — 5sin[11v/(z)]}

220
b
R:;5 = [ cos 3y cos? 5y dy = -1092 {200 + 182sin[3~f(z)] + 39sin[7~/f(z)] + 21 sin[13vf(z)]}
f(z)
b
Ryo = / 15+ sin 34y sin 5y dy = ——{sm[87j )] — 4sin[24f(2)]}
I(z)

b
R, = / 1542 cos vy sin 3y sin 5y dy
f(=)
= ;—{44 ~ 63sin[yf(z)] — 21sin[3~f(z)] + 9sin[7vf(z)] + 7sin[9f(z)]}

b
Rya= / 1542 sin 34y cos 3y sin 5yy dy = ﬁ’l{m - 11sin{yf(z)] + sin[11vf(z)]}
M=)

b -
Rys = / 15+ sin 3y sin 5y cos 5y dy = —316%7-{20 + 13sin(7vf(z)] - 7sin[13vf(z))}
Jf(z)

b
Ry = - / 5+ sin vy cos 3y sin 5y dy
I( )

= 2% {68 63sin(y/(z)] + 21 sin[3~f(z)) — 9sin(7~f(z)] + 7sin[9vf(2)]}

(C23b)

(C23c)

(C24a)

(C24b)

(C24c)

(C25a)

(C25b)

(C25¢)

(C25d)

(C26a)

(C26b)

(C26¢)

(C26d)

(C27a)

23
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b —5
Reyz = —/ 5+ sin 3y cos 3y sin 8yy dy = 22{12 11 sinfyf(z)] + sin[114f(z)]} (C27b)
f(z)

t

Riys = - / 5+ cos 3vyy sin® 5yy dy = i(_)sg-é {164 + 182sin(3~ f(z)] — 39sin[7~f(z)]
f(z)

— 21sin[13vf(z)]} (C21c)

b
Ryzy = - / 3~ sin yy sin 3y cos 5yy dy
f(=z)

= 8—14{25 — 63sin[vf(x)] + 21sin[37f(z)] + 9sin[77/9z)] — Tsin[97f(z)]} (C28a)
b
Ryz3 = — / 3~sin® 3yy cos 5y dy = 5i;a{zg — 55sin[yf(z)] + 22s'n|57f(z)] — 5sin[11yf(x)]} (C28b)
1(2)
b
Ryes = 'f 3ysin 3yysin 5y cos 5y dy = oo {20+ 13sinl71/(z)] - Tsin{137/ ()]} (C28c)
f(2) 364

The strain energy of the plate due to the out-of-plane bending action is
+c b
Ug = / / [Du (’w?ﬂ:)2 + Djq (wf’yy)Q + 2D12wf’nwf’yy + 4Dgg (wf;y)z] dy dz (029)
—c Jf(z)
Substituting the buckling displacement series (eq. (C2)) into this expression and integrating over y yields
+c
U = {w}T[C){w} dz (C30)
~c

where
[C11 0 Ciz3 Cis 0 Cig Ci7 0 Cyo]
Caa 0 0 Cas 0 0 Cas 0
Csz3 Cay 0 C3¢ Czy Cae
Ciy 0 Cy Cy7 0 Cyo

o

[C] = Css 0 0 Csg O (C31)
Ces Cer 0 Coo
Crr 0 Cp
\.Symmetric Coo

The nonzero expressions appearing in [C] are given by

2

Ci = DG Cs3 = Dy1Gxo Css = 4DggHyo

Cia = D12Gp2 C34 = D12Pp2 Css = 4DgeRyo

Ciq4 = Dy2Pp, C3s = D Pro Ces = D11Hzo

Cie = D;3Ppa; Cs7 = D12@B12 Ce7r = Dyghpia

Ci1 = D23Qp:1 C3p = D11Qx0 Ceo = D11 Rz (C32)
Cio = D12Q8n1 Cy4 = DyaHp Cr1 = DagFpy

Caz = 4DgeGyo Cie = Dy3Hp; Cr9 = D13Fp3

Cas = 4Dgg Pyo C47 = Dg3Rp, Cys = 4Dgs Fyo

Cas = 4DgeQyo Cao = Dy3Rpa Coo = D11 Fz0 )

Anr € e ot —n e
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where
N b '1 I
‘ Gpy = / teos? yy dy = — f() - .~ sm[2'yf(z)]} (C33a)
{ () 2 l 2y
b __,72 1
Gon == [ +cosy dy= 7 {{o- 10} - o sinfzs(a)] (C33b)
. f(z) il
‘ b 81'7" 1
[ Hp, =/ 819%cos®3yy dy = —— {[b - f(z)) - — sin[6'7f(:c)}} (C33c)
L 1(z)
o b 9
g Hpy = - / 97 cos? 3y dy = {[b [z - —;1 sin(6+f (1)1} (C33d)
: f'z)
- b
o Fg, = / 6254" cos® 5yy dy = 6257 {b fz) - —1—— sm[lO'yf(J: ]} (C33e)
) ) J(=)
b -2542 1
Fgy = ——/ 2542 cos? 5y dy = {b - f(z) - — sin[lO’yf(:c)]} (C33f)
J(z) 2 10'1
b _9..73
Pgy = / 9% cos yycos 3y dy = 5 {sin[4~ f(z)] + 2sin[2vf(z)]} (C33g)
A (=)
B b 9
i Pga = - /! ( )9'1’ cos vy cos 3y dy = g‘{sin[‘hf (z)] + 2sin(2v/ (=)} (C33h)
- I
P b
- Pggy = — / ~? cos yy cos 3y dy = %{sin[hf(:c)] + 2sin(2+f(2))} (C33i)
. J(=z)
‘ b ~225+3
y Ry, = / 225v% cos 3yycos 5y dy = T {4sin{2vf(z)] + sin[8vf(z)]} (C33j)
f(=z)
6 257
Rpi2 = - / 2542 cos 3yy cos 5yy dy = —IF“ sin[2vf(z)] + sin[8~f(z)]} (C33k)
f(=z)
b
Rga = - / 942 cos 3y cos Syy dy = 5_)1{4 sin[2~ f(z)] + sin[8~ ()]} {C331)
f(z)
b —-
- Qe = / 25~% cos yy cos 5y dy = = {3 sin[4vf(z)] + 2sin[6~f(z)]} (C33m)
J(x)
b 254
@bz = —/ 25+ cos yy cos 5y dy = —57{3 sin[4vf(z)] + 2sin[6~ f(2)]} (C33n)
f(=z)
b
Qen = - / 4 cos yy cos Sy dy = 2—1 {3sin{47f(z)] + 2sin[64f(z)]} (C330)
I(=z)
As in reference 1, the stability problem can be expressed by
: 6(Uis +Up) =0 (C34)
' This variational statement can be expressed as a functional containing the unknown functions in the buckling
* displacement and their derivatives, that is,
+c
; 6(Uis+Up)=6 | F(w,w),wy, ws, w3, wy, ws, w5, w5) dz =0 (C35)
'6 -C
3
\ 26
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The following ordinary differential equations and boundary conditions are obtained using the Euler-Lagrange

equations of variational calculus on equation (C35):

Differential equations (on —c <z <¢)

Boundary conditions (at z = tc

1
oF d8F)6w3:0 (_57)

a0l ~ dzdul

OF _daF Y o
duw,  dzow’)

Alternately, the system of ordinary differential equations can be written in operator form as

[Ln(') Lys(-) Lls(')] {wl(z)} [Hn(') Hys(:) His(Y)
L31(-) Las(-) Las(-)|§ wa(z) ¢ =A | Ha() Haa(')
Hs3(')

Lsy(-) Lss(-) Lss(-)] { ws(z) Hs(7)

where

Ci3(-) + C33(-)"]" = [Ca2(-)']' + [Cna

Cs4(*) + C36(-)"]" = [C25(")')' + [C1a

Ca1() + C9(")"]" = [Cas(-)']' + [C17

Cis(*) + C36(-)"]" = [Cas(-)'] + [C14

Cis(-) + Ces(-)"]" = [Cs5(-)') + [Cas
(
(.
(.
(

= [Ce7(") + Ceo(-)"]" = [Css(-)')' + [Car

Nt
L < ]
[ N
o
PRI
© ©
—~ o~
~
+ +
R
© ©
o~~~
e N
b
—= =
o
QD
[ - -]
A
< =
==
+ +
JRIRS
)

Cro(+) + Coo(-)"]" — [Css()') + [C77

and

[G12() + Ga2(")']' = [Gu(-
[Ga24(-) + Gas ()] = [Gra(:
[Gar(") + Gas()'] = [G1a(:

= [G15() + Gas())']' = [G1al-
( (

( (

~3

Hj;
Hjs
Hy,

(Gas() + Gss(-)') = [Gaa

()
()
()
()
()
()
()
)

26

)+ Gr2())
) +Gis(")]
)+ Grs()]
)+ Gaa()']
)+ Gas(+)] L
[Gs7() + Gsa(")') ~ [Gar () + Gas ("))
= [G1s(") + G2s(")']' = [G12(") + Gar(*)']
Hs3(') = [Gas (") + Gss(")']' = [Gar(-) + Gor(-)']
Hys (") = [Grs(-) + Gas(-)']' = [Gr7(-) + Grs(-)'] J

bw; =0

Swy =0 k

swp =0
7

Hss(-)
Hss(+)

() + Cia(1)"]
(-} + Cie(")"]
(-) + Cra(+)"]
() + C4(-)"]
(1) + Cas())")
() + Cao(")"]
(1) + Cs7(-)"]
() +Cer(")"]
()

Ve

+Cro(")"] )

|

(C36)

(Ca7)

(C38)

(C39)

(C40)
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The specific boundary conditions considered in this study are given in terms of the unknown functions as follows:

Stmply supported edges at z = ¢
w (iC) =0 w'l'(:tc) =0

! wz(xe) =0 wh(xc) =0 (C41)
ws(xc) =0 wg (+c) =0
Clamped edges at z = *c
co- wy(+c) =0 wi(+c) =0
o wa(e) =0  wh(ke) =0 (C42)
ws(+c) =0 wg(c) =0
i
i
{
i
i
!
!
27 ‘
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Appendix D

Finite Difference Equations for S =3

For the case of S = 3, the differential equations of the buckling problem are

Z {L3i—1,2;-1 [w2;-1(z)] = AH24-1,2,—1 [w2j-1(2)]} =0 (r=12,...,5) (D1)

J—

Expressions for the differential operators are given by equations (C39) and (C40). Applying the difference expressions

for the operators given by equations (6) and (7) to equations (C39) and (C40) yields the following finite difference
equations (superscript ¢ refers to the ith difference station):

[L”(wl)]i = E}w}" E‘l l- El ‘l+l Ei i+2 N
[L13(ws)]' = E{wy™? + E;w;; + an:, + Ejyw '“ + Eiywit?
[Lys(ws)]' = E‘lws + Ejqwy™! + Ejjui + 1'3'4"’:;'-l + E}5w§+2
(Lar (wr)]* = Fiw{™? + Fjwi™! + Fiw} + Fiw{*! + Fluwit?
[L3z(ws)]* = F§ '~2 + Fjwy™' + Fjwl + Fiwit! + Fiowyt? b (D2)
[Las(ws))' = Fijwi™2 + Flwi™! + Flwi + 1",",,w§-;"'1 + F'sw'.'*‘2
[Lsy (w)]* = Pw;™? + Pjw)™! + Pijw} + Pjw}*! + Piu;*?
[Lsa(ws)]* = P ‘“2 + Piwy™! + Pjw} + Pjwit! + Plowi*?
[Lss(ws)])* = Puw'-2 + Ptzw'_l + Plyw} + Plywgt! + Phwit? )

and
[Hyi(wy)]* = Dyw}™' + Diw} + Djwy*' )
(Hha(w3)]' = Djw§™" + Djw} + Dyws+!
(Hys(ws)]* = Dj,wi™" + Dizw} + Dj wit!
[Hs ()] = Gjw}™! + Gyw} + Giwy™!
[Hsa(ws)]* = Gywi™" + Gy} + Gs"’é“ ? (D3)
(Has(ws)]' = Giwi™" + Gxaws + GMW'H
[Hsy (1)) = Hjw]™ + Hjw} + Hjwi*!
[Hsalws)]* = ;w;‘,‘l + tliw} + H,',w:‘,“
[Hss(ws)]* = Hiwi™ + Higwi + Hi wit )
where
E; I-I/A4 W
By = (Clh+ 0l - 03 '?) [a% -2 (Chy + C35) [
Ey=Cj, - (40:3 - "H/z Chl/a) /A2 ( 3l +4Cy, + "“) /A‘ \ (D4)
E4 = (Cxa +Ct+l |+1/2) /A2 ( 53 + l+1) /A‘
- ] 4
Ei=Citl/A |
28
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s = Cis /A"
£ = (c16 +Ct - Ci') [ar-2(cy, Cgt) [
B =Ci, - (2016 +2C%, — CuH1/? c;';‘/’) /A2 + (3 +4Ce + Cig") [
By = (Cle+Ci - C33'*) [a? —2(Cig + Cit*) / a*
Bjo=Ci3'/a"
E}, =C3'/a?
Ei, = (Clo+Ci7" - 35"/ /a2 - 2(Ch + €35 ) /At
Eiy = Cl; - (2Cis +2C%, — Cig'/* - C%) /8% + (Ci§? + 40 + €37 /A4
Ej, = (Clo+ G5t - Cs'?) /62 —2(Cl + €35 [ *
Ejs = C55'/A*
Fi = C55' /A
F=(Cia+Cig* - C35'/*) [a? - 2(Ce + Cig?) /At
F3 = Ciy - (263 + 2016 - C35 '/ - C33'/%) 8%+ (Cit! + 403 + C35") /A
Fi=(Cl+Cid* -C33'%) [a?-2(cs +C33") [ *
Fi=Cit'/at
Fy=Cg'/A®
Fi= (Cle+Cia" - Ci3'/") [a? —2(Cie + Ci5") /A4
Fy=Ciy - (4Cs - G\ - C5'/%) /8% + (Ci§ +4Cis + C5*) [
Fi= (c.;‘6 +Cid - /A2 -2 (c66 + csg.”) /A"
Fio=Cg'/a*

-~

F}) =Cg' /A"

Fiy = (Cio+ Ci7' - Ci5™/?) /8% - 2 (Clp + €351 [ 28

Fis = Ciy - (2Cie +2C; - C5™/* - C33'/%) /a7 + (Gt + 4 + C&5*) [ a8
Fio=(Clo+ 0" - Cif'"%) [a? -2 (cho + Ci3*) [ 2*

Ffs = Cé;l/A4

P =Cy'/af

P = (Cir+ 05" - Ci'"%) [a?-2(Ch + C55") /At

P} = Cly - (2Ck; +20l - G '/ - €3 '1%) /a7 + (C3* + 403 + 35 /A0
Pi=(Ch+Cif' -Ci'/?) [ar-2(ci + ¢l [ at

P =Cit'/at

-

e

~

(D3)

(De)

(D7)

(Dgj

(D9)

(D10)

29
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Py =Ci5'/a
Pi=(Cor +Ci3" - Ci3'%) [a? -2 (cs;g +Ci') [

P} = Cjy - (2C4 +2C3, - Ci3'? ~ ¢ Css''?) /8% + (ci3? +4Ch +Ci5") /At ) (D11)
Py = (Chy + 03! = Cg'"?) /8% - 2 (Cly + Cig? ) /at
Plo = Cij'/a* )
Py =Cig'/at )
Pir = (o + Ci5* - C35'7%) /A2—2(059+c;;')/A4
i Piy = Ci; - (4035 - 052 - c‘“/”) /a%+ (C$‘+4C§9+C§;‘) /A f (D12)
Pu = ( Cio +Ci3' - Cig/?) [t 2 (ciy +C33') [l
=Cog' /A" J

Dy = G3;'/?/a?
D5 = -G+ (613" - 613%) [a - (63" + 6357 /a2 (D13)
D; =G5, /a?
Dy =Gy /a? - (G5 - G,s) /2A
Dy =-Gi, - (G322 + Gy'?) [a ( (D14)
Dy =at +”’/A2 + (et - 5) /2A

Diy = Gy'*/a% - (G37' - GY,) /24
Dis = =Gy - (635" + 653") /a?
D}, = G;'sH/?/A2 ( 27 "Gls) /2AJ

(D15)

—

G} = G3'*/8% ~ (G35 - Gy, /24
Gy =-Giy - (G52 + G337 /2 (D16)
Gy =G/ + (613" - 64,) /24
Gy = G55 /A2
Gy =~Gy+ (Gt - i) [a- (G +G55'/?) /a? (D17)
G G|+l/2/A2
Gla=G33'/7/8 - (G5! - Gy) f20
Glo = =Gl ~ (G55 +653"7) /a1 (D18)
Gi=Gii'? /a7 ¢ (Ggl - Gia) /2A

30
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3= 57/ - (G5 - Gy 28
H= -G}, - (63'* + 65"/ [ (L19)

=GR a + (G - Gy [28

Hi = Gi5'*/a% - (Gi5' - Gl ) /24
Hi= -Gy - (G342 +G3'"*) /a7 (D20)

Hy =G [a + (64! - 64) /28

{2 = Gf;;l/z/Az -
Hiy = -G + (G357 — G5 /& - (Gl +.635"7) [ o2
Hiy = Gg /*/A?
The Cyq and G, terms appearing in equations (D4) through (D21) are defined in appendix C by equations (C7)

and (C32).
Applying the difference expressions for the differential operators given in equations (D2) and (D3) to the governing
differential equations at each finite difference station on the interior of the one-dimensional domain results in a set

of homogeneous algebraic equations given by

[K){w} = \G){w} (D22)

The matrices [K] and [G) are of dimension 3(M ~ 2) by 3(M +2), where M is the number of finite difference stations.
To reduce the system of equations further and render them symmetric, the boundary conditions are applied. The
boundary conditions of interest in this study are given in appendix C by equations (C41) and (C42). The finite
difference expressions for the boundary conditions are obtained directly from the central difference expressions and

are summarized as follows:

Simply supported edges at z = *c

w! =M = Wl —w? Ml = M-l
1= W) 1 1 1 1

w) = w) w) = —w} wMtl = M1 (D23)

w=uwM= wl=-—wl WMol

Clamped edges at z = *c

wl =wM = w) = w? wM !l = M1
w) = wd w)=w] wdt =M (D24)
wi=wM =0 w = wi w?’“:wﬁ"‘l

In the boundary conditions given by equations (D24), the first derivative is defined at full stations instead of at half
stations to simplify implementation into the computer program.
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After applying the boundary conditions, the resulting system of equations constitutes a real, symmetric
generalized eigenvalue problem given by

3 7 r b
! I | |
, Ku | K | Kis| o5 g | g3 | G5 | 5
| | P | [ -
Ka1 | Kss | Kss w3 f=A g3 | 933 | 935 s (D25)
N R s
' | Ks1 | Ksz | Kis | [ 951 | gs3 | 955 |
, i where r s 3 Mot
wy ={w, Wy c-t Wy }
, @] = {wi wi --- w3’} (D26)
f = {uf o -+ ulf)
Because of the self-adjoint nature of the differential operators, it follows that
K3 =KJ3 g31 = 0i3
- Ksi=Kjs  gs1 =955 (D27)
.:‘ : Kss = Kj; gs3 = g3
: K Furthermore, as a result of the bending fuergy being positive definite, the matrix
_ l .
Ku | Kiz | Kis
- |
. | Kss Kss (D28)

Symmetric K5

is positive definite. The submatrices K,; (after assembly of the difference equations) are described in the following
matrix equations. In each of these matrices, the + symbol refers to the boundary condition on the loaded edges:

- the plus sign corresponds to the loaded edges being clamped, and the minus sign corresponds to the loaded edges
being simply supported.

r(E3+E}) E2 E} 0 0 0 0 0 0 0 0 0 1
3 3 3
E} E3 E} 0 0 0 0 0 0 0 0
4 4 4
E} Ef E} 0 o0 0 0 0 0 0
5 5 8
Ej E} Ef 0 0 0 0 0 0
Ky = ) ) : (D29)
EM-8 gM-5 gM-5 o 0
M-4 pM-4 pM-4
E} E} E} 0
M-3 pM-3 M-3
Eg" B Es
! M-3 M-3
: E} Eq
, -1, gM-1
: L Symmetric (E;w +Ey ) J
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Kiz =

KIS =

Kss =

L Symmetric

(E2+E2) E3 E};, 0 o 0 0
ES E3 E} E}, 0 o 0
E} B} E} E§ Ef;, 0o o0
0 E} EY E} E§ E} 0
0 6 0 0o 0 o0 0
0 0o 0 o 0 0 0
0 0 0 0o 0 0 0
0 0 0 0 0 0 0

S| o 0 0o 0 0 0

(B +E}) Ef, B}y, 0o o o0 0
E?Q E ?3 Ei’4 E?S o LY
BY, By Ely E}y Bjs 0 0

0 Elsl Elsﬁ E153 El54 E?S 0

0 0 o o 0o 0 0O

0 0 0 o0 0o 0 0

0 0 o 0 o o0 0

0 0 o o0 o o0 0O

L o 0 o 0 o o0 0O
r(F3+F3) F} Flf o o o
F} F$ F} o o0

Fg R} Ffy o0

Fg K Fio

o o o ©

APPENDIX D
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
M-5 oM-5 oM-5 pM-5 pM-=5
EM-5 pM-5 gM-5 pgM-5 gM 0 0
M-4 pM-4 pM-4 pM-4 pM-4
0 EM-t gM-4 gM-4 pM-4 pM 0
M-3 pM-3 pM-3 pM-3 M-3
0 0 EM-3 gM-3 pM-3 g EM
0 0 o EM-? gM-? gM-? EY-?
0 0 o EM-V EMU (EM-'agplY)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
M-5 oM-5 pM-5 pM-5 oM-5
Ey Ep™" Ey3° B Egg o 0
M-4 pM-4 pM-4 pM-4 pM-4
0 E\TT EpTT BT By By 0
M=3 oM-3 pM-3 pM-3 M-3
0 0 E)\7 EpTT ETt Ey Eyy
M-2 M-2 pM-2 M-2
0 0 0 E;TC EpRTT En Ea
M-1 pM-1 (pM-1, pM-1
0 0 o o EyTt BT (B3TlaEgT)
0 0 0 0 0 T
0 0 0 0 0
0 0 0 0 0
0 0 0 1] 0
M~5 M-=5 M-5
FM-5 pM-% pM 0 0
FM-4 pM-4 pM-4 0
M-3 M-3 M=-3
Fs Fg FIO
M-2 M-2
Fg Fy
(Fg*~t £ Fig~")

(D30)

(D31)

(D32)
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((FL+F}) F, Fi, 0 0 o0 o - 0 0 0 0 0 0 0 .
Fy Fy Fly Fly 0 o0 o 0 0 0 0 0 0 0
Fy Ffy Ffs Ffy Ffy 0 0 v 0 0 0 0 0 0
0 FY, P, Fiy Fiy Fig 0 0 0 0 0 0 0 [}
Kis = : ' : : : (D33)
0 0 0 0 o0 0 O FM-5 pM-5 pM-3 pM-s pM-5 4
0 o o o 0 o0 0. 0 FM-4 pM-4 pM-4 pM-4 pM-4 0
0 o 0 o0 0o 0 0 - 0 o FM-3 pM-3 pM-3 fM-3 FM-3
0 0o 0 0 0o 0 0 - 0 0 o FM-? pM-? pM-? -2
L o ¢ 0 0o 0 o0 0 9 0 0 o FM-U FM- (FM 2 R]Y)
" (PR +PY) Pl P 0 0 0 o0 0 0 0 0 0 1
Py Py, P 0 0 o0 0 0 0 0 0
Pfy PYy P 0 0 0 0 0 0 0
P}y P}y P50 0 0 0 0 0
Kss = ) ) ’ (D34)
pM-% pM-5 pM-5 0
pM-4 pM-4 pM-4 0
P P Py
pM-2  pM-2
L. Symmetric (Pll\él—l ipll\g—l)_

The elements of the matrices are defined by equations (D4) through (D12) and M is the number of difference
stations. The g;; aubmatripes are similar to the K;; submatrices with the E] being replaced by D], the F being
replaced by G7, and the P’ being replaced by the H] (see egs. (D13) through (D21)).
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Appendix E

Modifications for the Stress Loading Case

When specifying the stress loading case, differential equations (B57) and boundary conditions (B62) must be
modified to eliminate any rigid body displacements of the plate. The modifications used in this study are presented

in this appendix.
Examination of equations (B57) indicates that the first and eighth differential equations are independent of the
others. From the eighth differential equation, y§ = 0, the solution can be obtained directly as yg = ygg, a constant.
To separate the system and make use of PASVAR, the equations are redefined as follows:

Yo=u .

~ Ys = Ye Yo = Y11
Y1 =92 " .

- Y6 = Y1 Y10 = Y12
Y2=1Y3 - - ;
. Y7 =Y Y1 =13
Y3 = Ya . .

- Ys = Uro Y12 = Y14
Ya= Y5

Redefining the unknown variables leads to the following set of differential equations for PASVAR:

o _ —@'f S2ys8 + (597 + Geis + 7o

n= An vat Aj1Denl

7= _3:1112 i + S2Y88 + Czil;: ;eisfs + So¥o
7= _524:41112 i + S988 + g:f:l; ::!zs + 1099
7, = i + 615910 + 016911 + O17712

AseDenZ

016510 + 08911 + br0¥12
AesDenZ

¥s = 37§z +

017910 + 619911 + O20%12
AggDen2

fg = 57s +
7 = =1ho
173 = -3in

% = =591z

. AjAgg — A2 . - . Ay .
10 = —u——‘:uﬁ(nzvo + Y0554 + 370435 + 59206) + Xl—"wv

1 1
. Ay Agg — A2 - . - 34,3 .
= —’%—"-h(ﬂavo + 10ds + 3vQ6ds + 5791 76) + TI:‘WB
- Ay Agg — A2 - - - 5A12 .
ha = —"Z—lmh(nmvo + YQ129s + 3901185 + 57 hade) + 'A—lllz’nlo

(E1)

(E2a)

(E2b)

(E2¢)

(E2d)

(E2e)

(E2f)

(E2g)
(E2h)
(E2i)

(E2j)
(E2Kk)

(E21)

Upon solution of this system of equations, the displacement component g is obtained by direct integration of the
following differential equation:

q‘ B

g = _Aun | aves +abr + ¢sils + o
0T T4 ° Ap1Denl

v ey e oo 7 . . - - .

(E3)
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The expressions for the stress resultants given by equations (B63) become

N = S1¥88 + U7 + Gs¥s + Galio

=0~ Denl (Eda)
_ $2yss + ¢5Y7 + Se¥fs + Srilo
Nz = Denl (E4b)
_ $3yss + Se¥r + Sa¥s + So¥o
Nag = Denl (Ede)
_ Sayss + S7¥7 + ¢o¥s + S10¥0
N,s = Denl (E44d)
A1 Az — A7, Az
Nyo = A An Nzo (Ede)
AjAp—-A%, . A
Nyl =24 22 12 Yq + ;4—13-N,1 (E4f)
11
Aj1Aa-A%, . A
Nyg = 32—y + N (E4g)
11 11
ApAp—-A2, A
Nys = 522 j: 12 yis + A”N,5 (E4h)
11 11
_. B15910 + 016911 + O17612 .
Nays = Den2 (E4i)
_ bi6y10 + 018911 + O10f12 .
Naya = Den2 (E4j)
_ 017910 + O10911 + 020812
NzyS = Den2 (E4k)

The boundary conditions for the system of differential equations (E2) are obtained using plate equilibrium.
This procedure is described as follows. Using the expressions for the stress resultants given by equations (B39)
through (B41) with equations (B43) and (El) gives

Y88 = NzoQ + Ny1 Qg + NasQs + NzsQyo (E5)

As menticned previously, yss is a constant, and this expression represents the axial force divided by 2) at any cross
section of the plate. Thus, equating the applied fcrce at the loaded edges with equation (E5) multiplied by 2) yields

yss = —bN? (E8)
The 14 boundary conditions corresponding to the uniform compressive stress loading, given by equations (B32), are

NzO(ic) = —N: )
Nzyl (:I:c) =0
Nzi(£e) =0
Nzys(xe) =0 (E7)

st(ic) =0
N;g(ic) =0

The corresponding 12 boundary conditions for differential equations (E2) are obtained by eliminating two boundary
conditions from equations (E7). The boundary conditions to be eliminated are obtained directly from equation (ES)
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by specifying
__ _Yss
NzO(:tc) - 91 (:tc)
Nay(c) =0 (E8)

Nzs(c)=0
Equilibrium equation (E5) requires that N s(+c) = 0, since {2;0(%c) is nonzero. Thus, the boundary conditions of
differential equations (E2) are
1988 + G287 + Gadis + adfo = —NZDenl )
SaUss + $5Y7 + e¥is + S7¥s =0

¢alss + Ge¥r + Sa¥is + oo = 0

: (z ==¢) (E9)
015910 + 016911 + 017512 = 0
016910 + 018511 + 010712 =0
017710 + 019911 + 020512 = 0 )

The remaining step in solving the stress loading case is to determine the value of the constant vo. The correct
value of vy is defined to be the value which makes the residual normal force acting on the unloaded edges negligible
compared with the applied loading. The net residual normal force on the unloaded edges is

+c
Py(ib) =A [Amui,(z:) + Azgvo] dz (EIO)

-C

The applied load is

b
Pi(tc)=2 | Ni(tc,y) dy = 2hyss(e) (E11)
f(z)
The constant vg is related to the generalized displacements by
. Apl
vo = Any 26 ug(e) — up(~c) (E12)

When the plate is . tress loaded, the displacements of the loaded edges, u®(+c), are not known a priori. However,
the prebuckling problem is linear and vp can be obtained by interpolation.
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Appendix F

User’s Guide and Sample Problems

For a constant cutout size and plate width, the pro-
gram can calculate the bucklirg load and mode skape
for a plate for several aspect ratios. The buckling results
for the plate having the initizl half-length, STARTC,
are calculated. Then, the plate half-length is increased
by CINC, and the buckling results for the plate with the
new aspect ratio are calculated. This incremental pro-
cess continues until the buckling results for the plate
having the final half-length, STOPC, are calculated.
The program input data are siniple and are contained
on four card images. The data on each card image are
described as follows:

Card 1: CONV, CONF, NSTATS

CONV, CONF convergence tolerances on the pre-
buckling displacements and stresses,
respectively

NSTATS number of finite difference stations

The values ¢f CONV and CONF represent the final
maximum errors in the displacements and stresses cal-
culated by PASVAR. These values do not have to be
known exactly and should be specified in accordance
with the magnitudes of the displaceraeuts and stresses
expected. CONYV is much smaller than CONF since the
displacements are several orders of magnitude smaller
than the stresses.

Card 2: A, XI, B, STARTC, CINC, STOPC, IPRINT,
IBCON, ICTOUT, ILOAD

A, XI cutout dimensions (see fig. 1)
B plate half-width (s=e b on fig. 1)
STARTC initial value of the plate half-length

(see ¢ on fig. 1)

CINC plate half-length increment for
multiple aspect ratio calculations

STOPC terminating value of the plate half-
length
IPRINT output option:
1 minimum program output
2 maximum program output
38
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IBCON boundary condition op:ion:
1 loaded edges clamped
2 loaded edges simply supported
ICTOUT  cutout shape option.
1 ractangular cutout given by
z=Aand y=XI
2 elliptical cutout given by
(x/A)*x2 + (y/XI)¥x2 =1
ILOAD loading option:

1 uniform edge dispiacement
2 uniform edge stress

Card 3: All, Al12, A22, A66

All,A12,
A22,A66

membrane stiffness coefficients for
orthotropic plates

Card 4: D11, D12, D22, D66 ‘

D11,D12,
D22.D66

bending stiffness coefficients for
orthotropic plates

To execute multiple analyses, repeat cards 2, 3, and
4 for each additional problen.. The program execution
nalts on reaching the end of input data.

To 1illustrate program use, two sample problems are
presented.

Sample Probl: n 1

The buckling load, buckling coefficient, and critical
end shortening for & -quare orthotropic plate with a
centrally located circular cuiout are calculated. The
plate is 10 inches on a side, and multiple analyses
are executed for ratics of cutou! diameter to plate
width from 0 to 0.6. The stiffness coefficients of the
orthotropic plate are given by

[18.608 0.566 O
[A,j] = | 0.566 1.617 0
0 0 0.832]

x 10° Ib/in.

[15.582 0472 0 |
[Di,)=]0472 1348 0
0 0 0.693]

x 102 Ib/in.

All edges of the plates are simply supported. The
loacing is a uniform edge displacement. The corre-
sponding input data are



Card 1: 1.0 6.2E+5 62

Card 2:
Card 3:
Card 4:

Card 5:
Card 6:
Card 7:

Card 8:
» Co+d 9:
. Card 10:

. - Card 11:
Card 12:
Card 13:

Card 14:
Card 15:
Card 16:

Card 17:
Card 13:
N Card 19:

= Card 20:
. Card 21:
Card 22:

A

As described above, cards 2, 3, and 4 are repeated
The results from BUCKO are
summarized for ratios of the hole diameter to plate

: - for each

0.00.05.056.00.05.01221

APPENDIX F

18.698E+5 0.566E+5 1.617E+5 0.832E+5
15 .582F+2 0.472E+2 1.348E+2 0.693E+2

0.50.66.056.00056.01221

18.698E+5 0.566E+5 1.617E+5 0.832E+5H
15.682E+2 0.472E+2 1.348E+2 0.693E+2

1.01.056.05.00.05.01221

18.698E+5 0.566E+5 1.617E+5 0.832E+5

15.582E+2

1.51.566.

18.698E+5
15.582E+2

2.0 2.0 5.

18.698E+5
15.582E+2

2.562565.

18.698E+5
16 .582E+2

3.03.05.

18.698E+5
15.682F+2

cutout size.

width d/W belcw.

.472E+2 1.348E+2

5.00.05.01 2

.566E+5 1.617E+5
.4T2E+2 1.348E+2

£§00.05.012

0
0
0
0
0
0.5662+5 1.617E+5
0.
Y
0
0
0
0
0

472E+2 1.348E+2
6§.00.05.01 2

.566E+5 1.617E+5
.472E+2 1.348E+2

5.00.05.01 2

.566E+5 1.617E+5
.472E+2 1.348E+2

.693E+2

1

.832E+5
.693E+2

1

0
2
0
0
2
0.832E+5
0.
2
0
0
2
0
0

693E+2

.832E+5
.693E+2

1
832E+5

.692E+2

Sample Problem 2

The buckling load, buckling coefficient, and criti-
cal end shortening for a rectangular orthotropic plate
with a centrally located rectangular cutout are calcu-
lated. Buckling results are calculated for plates having
a width of 10 inches and lengths of 20 inches, 25 inches,
and 30 inches. The rectangular cutout is 2 inches wide
and 4 inches long with tuc 2-inch-wide side perpendic-
ular to the loading. The stiffness coefficients used in
sample problem 1 are also used for this sample prob-
lem. The loaded edges are clamped, the unloaded edges
are simply supported, and the loading is a uniform edge
stress. The corresponding input data are

Card 1: 1.0 6.2E+5 42
Card2: 2.01.065.010.02.5615.01 112
Card 3: 18.698E+5 0.566E+5 1.617E+5 0.832E+5

Card 4: 15.582E+2 0.472E+2 1.348E+2 0.693E+2

The results obtained from BUCKO are summarized
as follows:

R Buckling | Buckling | Critical end
. d/w load, Ib | coefficient | shortening, in.
0 2037 4.50 0.00110
1 1967 4.37 .00108
- 2 1777 3.93 .00106
3 1641 3.63 .00114
4 1560 3.45 .00126
.5 1512 3.34 .00145
6 1564 | 3.6 00186

;&f“"‘ B TP T -.,..

Aspect Buckling Buckling | Critical end
ratio load, 1b coefficient | shortening, in.
2.0 1997 4.37 0.00283
2.5 1729 3.82 .00280
3.0 1511 3.34 .00283
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