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ABSTRACT

A regl-time control system consists of a synergistic pair, that is, a controlled
process and a controlier computer. We have defined new performance measures
for real~time controller computers on the nasis of the nature of this synergistic pair.

In this paper we present a case study of a typical critical controlled process in
the context of new performance nieasures that express the performance of both
controlled processes and real-time controllers (taken as a unit) on the basis of & sin-
gle variable: controller response fime., Controller response time is a function of
current system state, system failure rate, electrical and/or magnetic interference,
etc., and is therefore a random variable. Control overhead is expressed as a mono-
tonically nan-decreasing function of the response time and the system suffers
catastrophic fallure, or dynamic fadure, if the response time for a control task
exceeds the corresponding system hard deodline, if any. A rigorous probabilistic
approach Is used to estimate the performance measures.

The controlled process chosen for study is an aircraft in the final stages of des-
cent, just prior to landing. Control constraints are particularly severe during this
period, and great care must be taken in the design of controllers that handie this pro-
cess. First, the performance measures for the controller are presented. Secondly,
control algorithms for solving the landing problem are discussed and finally the impact
of our performance measures on the problem is analyzed, showing that the perfor-
mance measures and the associated estimation method have great potential use for
designing and/or evaluating real-time controllers and controlled processes. Also, one
application for the design of controller computers, presented in detall, is checkpoint-
ing for enhanced reliability.

Index Terra- Controlled process(es), controller computers, hard deacdlines, response
time, performance measuses. allowed state space, aircraft landing, chackpg&ntir&.
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1. INTRODUCTION

Any real-time system can be regarded as a composite of controlled subsystems
(henceforth celled contralled processes) and contreller subsystem(s). Tradition-
ally, the performence of real-time control computers has been analyzed separately
~om that of the correspending controlled processes. For example, the response delay
caused by the controller Is neither studied rigorously nor refiected carefully into the
design of control algorithms for the controlled processes. The design of the con-
troller Is frequently based on ad hoc requirements imposed by control designets.
While this yields acceptable results in the control of non-critical processes, such an
approach needs to be improved in the design of controllers for critical processes e.g.
alrcraft. What is called for is a procedure for specifying and evaluating controller
performance, enabling systematic appiication and providinQ objective results that
lend themselves to formal vaildation. The use of computers as real-time controllers is
becoming increasingly attractive due to continuing advances In the development of
inexpensive, powerful microprocessors and memories. However, performance meas-
ures presently used to characterize real-time computer systems are adapted ver-
sions of those employed for more conventional computers. There is a considerable
mismatch between the requirements of real-time applications and what is provided by

these measures.

To solve this problem, several contortions of the conventional measures have
been proposed. Generally, these involve representing real-time computer performance
as a vector »€RP, made up of such traditiohal indices as (conventional) reliability,
throughput, survivability, availability, etc. However, it is impossible to compare two
performance vectors (and therefore the corresponding computer systems) without an
associated metric. One straightforward apvproach is to use a linear metric(i.e. inner
product) to map the vector into a scaiar that is then claimed to represent the perfoi-
mance of the system. For example, the mapping can he carrled out by assigning

weights to the various components of the performance vector and adding them to



produce the scalar. That Is, If the weight vector is w’ = (w,, . . »wp ), then the

mapping is f:RP »Rwith J {p)=wip.

This process of ascribing weights is largely subjective and Is therefore inaccu-
rate to begin with. Even If the weight ascription were completely objective, serious
practical difficulties would remain. For example, since the components of the perfor-
mance vector are mutually dependent (sometimes in a very complex manner), the
welghts (that are supposed to define the sensitivity of the scalar to the respective
vector components) must be modified by (often very complex) correction factors to
account for this coupling.? Furthermore, relating the resulting scalar to "real-world"

performance parameters (such as operating cost, etc.) is difficult,

The performance measures we Introduced in [1] are desianed to get around
these difficulties by expressing the performance objectively in terms of the
response time of the computer-controller. From the point of view of the controlled
process, the computer controlling it is a black box whose behavior is exemplified by
its response time and reliability. It is well known that controller delay has a detrimen-
tal effect on process behavior, our measures take the form of a quantification of this.
The performance measures are considered in Section 2 in some detail prior to the

presentation of an idealized case~study of their avplication.

The case-study is that of a real-time computer in charge of an aircraft in its
final phase of flight, just priol; to touchdown. There are stringent control constraints
that must be met. These consist of limits on the speed of touchdown (both horizontal
and vertical), the angle of attack, a, and the pitch angle, ¥. For a definition of these
angles, see Figure 1, These constraints are vafiousiy intendad to safeguard against
running out of runway, undercarriage collapse, stalling, and landing either on the air-
craft nose or tail. Insofar as this is a control prohlem with severe constraints, the

2 This Is because the welghts are supposed to represent the total derlvatives of the mapped scalar to
thelr respective components. However, slnce the components of P are not arthogonal, thls Is not true for
the unmodified welghts: they represent the partlal derivailves which are not equal In this case to the
res pectlve total derlvatives.



problem is typical of many other critical applications, such as the control of nuclear
reacrors, the gengaration and distribution of elactrical power, lite-support systems,
etc. Since our objective hern is to illustrate the use of our performance measures and
not to solve a control problem, the aircraft system is somewhat Idealized in this

paper.

Figure 2 shows the block diagram of a typical control system. The inputs to the
controller are from sensors that provide data about the controlled process, and from
the environment, This is typically fed to the computer-controller at regular intervals,

Data rates are usually low: generally fewer than 20 words a second for each sensor.

Central to the operation of the system is the trigger generator. In most systems,
this Is physically part of the controller itself, but we separate them here for purposes
of clarity. It is the function of the trigger generator to initiate exacution of a con~

troller job (defined latar), Triggers can be classed into three categories.

(1) Time-generated lrigger: These are generated at regular intervals, and lead to
the corresponding controller job being initiated at regular intervals. In contral

theoretic terms, these are open-loop triggers,

(2) State-generated trigger: These are closed-loop triggers, generated whenever
the system is in a particular set of states. For practicality, it might be neces-~

sary to space these triggers by more than a specified minimum duration. If time

is to be regarded as an implicit state variable, the time-generated trigger is a

special case of the state-generated trigger, One can also have combinations of

the two.

(8) Operator-generated Irigger: The operator can generally over-ride the

automatic systems, generating and cancelling triggers at will.

The output of the controller i fed toc the actuators and/or the display panei(s).

Since the actuators are mechanical devices and the displays are meant as a human



interface, the data rates here are usually very low. Indeed, as we have pointed out
elsewhere [13], a computer control sysiem nxhibits a fundamental dichotomy, with
the 1/0 being carried out at rather low ratas and the ecomputations having to be car-

ried out at very high rates owing to real-time constraints on control,

The controller in our case-study Is a real~time ccmputer. It executes pre-
defined control jobs. There is a certaln number of control jobs In any control system

that are executed repeatedly.

A control system executes "misslons.” These are periods of operation bet'ween
successive periods of maintenance. In the case of alrcraft, a misslon Is usually a sin-
gle flight. The operating interval can sometimes be divided down into consecutive
sections that can he distinguished from each other. These sections are called
phases, For example, Meyer ef, al [6] define the following four distinct phases in the

mission lifetime of & civilian alrcraft:

(a) Takeoff/cruise until VHF Omnirange (VOR)/Distance Measuring Equipment (DME)

out of range.
(b) Cruise until VOR/DME in range again.
(¢) Cruise until tanding is to be initlated.

(d) Landing.

The phase to be considered here is landing, it takes about 20 seconds. The

controller job that we shall treat is the control of the aircraft elevator deflection dur-
: 3
ing landing.

The specific system employed is assumed to be organized as shown in Figure 3.

Sensors report on the four key parameters: altitude, descent rate, pitch angle, and

8 The output of the controller |s assumed to be fed Into a peripharal processor that Is dedlcated to
controlling the actuator -~ In this case the elevator.



pitch angle rate every GO milli~seconds.* We have & time~generated trigger, with a
thne period of 6C milli~seconds. cvery 60 nilli-secunds, the controller computes the

optimal setting for the elevator, which is the only actuator used In the landing

phase.® The execution time for the computation is nominally 29 milli-seconds,
although this can vary in practice due to fallures, Since the aircraft Is a dynamic
system, the effects of controller delay are considerable -~ as we shall sce In this

paper.

Since the process being controlled Is critical (i.e. in which some failures can lead
to catastrophic consequences), variations of controller delay and other abnormal
behavior by the controiler must ve explicitly considered. For simplicity, we do not
allow job pipelining In the controller; in other words a controller job must be complated
or abandoned before its successor can be initiated. The following controller abnor-

malities can occur:
()  The controller orders an incorrect output te the actuator.

(ii) The controller takes substantially more than 20 milli-seconds (the nominal exe-
cution time) but less than the inter-trigger interval of 60 milli~seconds to com-

plete executing.

(i) The controller takes more than 60 milli-seconds to complete executing. In such
a case, the abnormal job is abandoned and the new onc initiated. We say that

a control trigger is "missed" when this happens.

An analysis of controller performance during the landing phase must take each of the

above abnormalities into account.

4 The sensors and actuators are assumed to have thelr own dedlcated processors for 1/0 DU oS LS,
Whan we speak of ''cantroller delay," we also Include the delay in these processors, Also, the perlod of 50
mllli-seconds Is arbltrary, and the choice of this period does not alter the method developed hare.

S 7here are other actustors used aboard the alrcraft for purposes of stabilliy, horlzontal speed conirel,
ete, We du not however consldsr them here, concentrating axclusively on tie control of the elevator.



This paper Is organized as follows. In Scction 2 we present the performance
measures that will be: used, and Secotion 3 cantains a deseription of the gontrolled
system. In Section 4, we derive the measures assoclated with the ccntrolled procass
(the aircraft), and in Section & we consider one example of their application for the

deslgn of real-time controllers. The paper concludes with Section 6.
2. PERFORMANCE MEASURES

2,1, Review of the Perfcyrmance Measures

For completeness, we review briefly In this section the performance measuras to

be used, which were introduced by usin[1].

The measures are all basad on a single atiribute: computer controller response
time distribution, A real-time computcr controller In general ©xhibits stochastic
behavior.® Real=time computer controliers repeatedly execute predefined control jobs

which are lnlt'iated elther by environmental stimuli or internally.

Central to our performance measures are the cencepts of dynamic foilure and
allowed or admissible state-space. Every critical process must operate within a

state-space circumscribed by given constraints. This is the allowed state-space.
Leaving this state-space constitutes dynamic foilure.” In the example we treat
here, the states are the altitude, the vertical speed, the pitch angle, and the pitch
angle rate. Each of these has a constraint. For example, the aircraft must not touch

down with too great a downwar< velocity or the undercarriage will collapse.

The performance of the controlied process naturally depends on the speed of
the controller, If the controller takes longer than a certain duration to formutate the
control, dynamic failure becomes possible. This duration is the hard deadline,

6 This Is partlally because fallures are assumed to occur randomly over the operating interval. The
fallure law for the components of the computer Is assumed to be knowr. Furthermore, execution of contro!
tasks |s stochastic due to the bSlocklng at shared resources, condltional Eranches |n task code, etc.

7 Dynamlc fallure Is so termed since It Is a fallure that can occur as a result of the controller not
rasponding fast pnough to the environmant. It expresses the fact that slowness of the controller can be a
cause of catastrophic fallure.



We define a cost function (,(¢) associated with contreller response time ¢ for
controllar job «. The cost funetion takee tha following form:

galf) If 0<£s8Ty, (1
Cal§) = if £>Tun

0 vtherwisa
where g 4{») Is a suitable continuous non-decreasing function of ¢ and 714, is the hard

deadiine assoclated with the job «. Clearly, since the environment influences the
quality of system performance the cost function is implicitly a function of the system
state. Also, if 14, is a finite quantity in some region of the state-space, the jobh is
eriticel in that region. The determination of the hard deadline is treated In detall in

Sectinns 2.2 and 2.3. .

For controller response times less than the hard dea;.‘line, the cost function in
(1) above Is continuous, monotonically non~decreasihg, and therefore always
bounded for finite response time. For consistency, it Is assumed that the costs

accrue as the execution procaeds.

The functions (called the finite cost functions) g, can be obtained using the
performance indices of the controlled process. These performance indices are well~
known to controi theory and express the consumed energy, fuel, time, or some other
physlcal parameter associated with the trajectory of the system as it travels from its
initlal to its final state. See, for example, [2,3], for details. The cost of running the

controlled process over, say, an interval of time [to,tf ], is usually expressed by:

by
© = [ELf, (x(t)u(t),t)iy(r) t ==t ]t (2)
to

where FE[«|s] represents conditional expectation, f, Is the instantaneous index of
performance at time £, and x(¢)€R™, u(z")G_Rl and y(¢£)ER™ represent the state,
input, and measurement vectors respectively. A good representation for g,(£) is

given by:



Vol8)~¥a(0) forO0=sé<T
ga(t) = a( )0 a\ ) - da (3)
I heruniae

where ¥,(7n) = expected contribution of u,, to O If response time of that particular
exeacution of job a=7, and uy, = control inptit subvector assoclated with job a. Note
that the input vector u for job o consists of the control input subvector, u;,, as well

as the environment (random) Input subvector, ug,.

A version Is an instance of the executlon of a task., Verslons are numbered in
sequence of Initiation: successive verslons of task I heing denoted by ¥, ..., W,.

The response time assoclated with a version Vij Is denoted by RE‘SP(?&_;).

Let g,(¢) represent the number of versions executed for task i over the interval

ro,t), and = the number of distinct tasks. Then define

<

NOEDNVI)

1

gt(t) if 0<t:<tdi
g1(ba) it £ty

1

i

gq(¢) I

where I'; = ) ki (RESP(i;)) and h;(¢) = (
=1

For an Illustration, see Figure 4. Ciearly, h; is the cost function C; "hard-limited" at

gi(tg). 'y is essentlaily the finite operating cost assoclated with task I,

Remark: It might legitimately be argued that to associale a contribution Lo finite cost after the
hard deadline has been missed is inconsistent with the notion of hard deadlines being "absolute” in
the sense that missing a hard deadline, by definition, bas catastrophic consequences (e.g., an air-
plane crash). By this argument, 2; (£ )=0 Tor all £ >#4;. However, such an assignment would, while
paeifying the purists, lead to unpleasant anomalies, not the least of which js Lhat a very poor sys-
tem. which almost always misses deadlines would exhibit a smaller Iinite operating cost than a
counterpart that almost always fulfills them.

Also, assume that the computer system is modelled as a Markov process. This is
clearly possible, The num:er of states® depends on the extent to which the system
Is capable of graceful degradation, Let B be the set of states where the probabhility
of failure is unity. These states represent the states when the extent of

8rhe word "state” used here has a different connotation from the "state" discussed in the preceding
sact/ons. The latter has a control-thecoretic meaning. On the olher hand, the state of controlier computers
usually means the number of functionlng processors, buses, memorles, jobs, etc, However, both forms of
usage conform to the essentlal concept of "ctate," as a codlfication of relevant system condltlon. For this
reason, the same word has been used for the two dlfferent purposes, followlng the usual practlice. Its In-
terpretation shauld be made from the context,



hardware/software collapse Is so great that there is a zero probability of successful
execution of any task In finite time, Let L{t) denotc the probability distribution of the

operating interval duration betwean two successive «orvice stages,

Our performance measures are then:®

Probability of Dynamic Failure, pg,,: This is the probability that over the operating
Interval, at least one hard deadline is missed for whatever reason., This probability
incorporates within it the probability of stalic faiiure, which is the probabllity that
so massive a hardware failure has occurrad that the system utilization Is greater than
unity, Static fallure probabllity has erroncously been treated in most of the literature
as expressing the total probability of failure. This Is most decidedly not the case in

real-time systems.

Mean Modified Cost, ¥ = fEiS(t)l system never enters state set BldL(t)
0
It can be shown that, for physical systems, this integral always exist since the life-

time is always finite with probability 1.

The performance measures can be used to rank rival computer systems and to
help design improvements to exlisting systems in the context of the control applica-
tion. Typically, the probability of dynamic failure Is used as a pass/fall test for can-
didate controllers. This test can be very severe: for example, 1079 is the speclfica~
tion for failure probability adopted by NASA for computer controllers of the next
decade handling a 10~hour civilian flight. The mean cost is then employed to rank

controllers that have passed the dynamic failure criterion. For fuller details, see [1].

Note that all parameters associated with these performance measures can
either be definitively estimated or objectively measured. Also, the measures speciii-
cally incorporate the controlled process into a determination of the controller's

9 There are other performance measures developed (1 [1], but nat consldered here. For our purposes,
the measures /lsted lisre are sufficiant,

10



capabilities. This is, as far as we know, & novel approach which ensuras that the per=
formanca measures are not generally, hu® instead specifically, indicative of the von-
troller performanca in a glven application, For this reascn, these measures are intrin-

slcally more reliabl2 than othors in nuse.

2,2, Hard Deadlines

Roughly speaking, hard deadlinas are deadlines that must be met if catastrophic
fallure is to be avoided by a critical process. in dthar words, it is the deadline that, Iif
met by the controller in (correctly) formulating its response, ensures that the system
remains In its aliowed state~space. Traditienny, it has been assumed by computer
englneers that the hard deadlines for each critical controller Job are somehow
"glven', Unfortunately, this prestupposecs a precise definition of the hard deadline

and a means for abtaining It, Nelther seems to exist in the literature.

At first glance, It might seem that the hard deadlines can he obtained relatively
easlly from an analysis based on the state equations of the controlled process, This
is the case when individual ceontroller actions are decoupled from each other and the
ptocess Is simple. For an example in which this is the cace, see [1]. However, when
there Is a considerable coupling between Individual controlier jobs, l.e., when two or
more controller jobs mutually affect each other, or when no closed-form solutions are
available for the process state equations, obtaining a hard deadline for each can be
difficult. Far example, in the aircraft landing problem, the controller has over the
twenty seconds or so that it takes to complete the ianding, to compute the elevator
deflection a numbher of times (in our example about 380 times). The constraints are
on the final values (except for the angle of attack), lLe., as long as the aircraft
touches down on the runway without over- or under-shoot, with an acceptable velo-
clty and at a proper pitch angle, dynamic fallure has not occurred. The problem here Is
that it Is not just a single controller action that determines whether catastrophic

failure will oceur or not; it is the cumulative effect of, in this case, 330 or so distinct

11



controllar actions. How than Is cna to allocate deadlings to the Individual actions?

It is clear that we need a more carefully defined framework to handle these
problems in a feasible manner, For this it is convenient to represent the controlied
process by a state-space mowul, Lot thae state of the systenm at time { be denolud
by x(t). State transitions are characterizad hy a mapping ¢ T"TxXxU » Xwhere T ¢
Rreprasents the time region, Xo I1? the stato space, and Ur R™ the input space; that

Is,
x(t1) = @ty Lo x(£o), W) (4)

where uc'U ropresents the controls (inputs) appliad to the procoss In the interval
[tgk)). Let U be the admissible Input space (l.e, the range of Inputs that It is pos~-
sible to apply), and X, <X the allowed state-space. Then, the hard deadline associ-

ated with controller job « triagered at {; when the system Is in state x(tg) is given
By
Taa(X(t0)) = 'i'r}rf,'mq) {Tlp(totT Lo, x(£g), 1) & Xy) (8)

Thus, for every point In the state space, we have for each critical controller job a

corresponding hard deadline,'®

It shouid be noted that the calculation in (8) is performed over the entire admis~
sible state and input space and Is thus difficult to achieve, One might wish to per-
form the calculation over only a subset of the admissible input or state space. To
allow for this, the notlon of conditioncl hard deodlines can be employed. Let us

assume that the sets w<() and owX, are specified, and also that x(t¢)co.

10 wotice In thls context that It Is not possible tor the hard deadllne as defined above to be negative
uniless thls is the first Instance during the current mission that the controller job Is baing executed. This ls
because If thls were the case, fallure would already have occurrad on the previous execution of the con-
troller job by dellnltion, Also,the deadline on the tirst Instance of executlon of the control function cannct
ba neg atlve, s/ nce that would mean that the controllar-process system hid bsan Improperly deslgned,

12
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The ¢enditional har?, dondlinet! of job o, denoted by 744 . 13 defined as

TaateolX(Ee)) < inf sup {rlp(torT, Lo, X{to), W) o} (6a)

For the purposes of the cuse-study In this paper. however, vwe shall restricy our-

salves Lo the unconditloned hard daadlines.

As it stands, the exprassion for the hara desdline (and for the conditional doad-
lires) Is not easy to obtain for tha entire state-space. In fact, it is almost impossible
to obtain In closed form in all but tho simpler control systems. We shall later see how

"o obtain a good approximata expression of 74,.

Also, If the envitonment is stochastic In character and not deterministic, the hard
deadline Is a random variable, Assuming that the environment is stochastically sta-

tianary leads to the existence of the distribution function of the hard deadline.

2.3, fiaevrss State~Space and Its Decomposition

As we said above, it Is difficult to detormine the hard deadline and the finlte
cost functlon as a function of the state over the entire state space. To take our
prasent example of an alrcraft, the solution of the state equations Is nhot obtalnable
In closed form when controller delay is considerad, To obtain the functional depen-
dence of the hard deadlines or the finite cost function of each controller jJob on the
current state vector is therefore Impossible to do analytically, and prohibitively

expensive to do numericaily for a large number of sampie states,

To get around this problem, we divide the allowed state-space down into sub-

spoces. Subspaces are aggregates of states in which the system exhibits roughly

the same behavior.'? In each subspace, each critical controller job has a unique hard

11 Yntike the unconditioned hard deadllne, It s possible for the condltional hard deadline to be nega-
tive since no specltic relatlonsil p Is required betwaen the subsets ¢ and 0.

12Even if there do nat exist clear boundarles for these subspaces, one can always force the admissl-
ble state space to be dlvidad Into subspaces so that & sufflclent satety margin can be provided, This Is a
designer's cholca for approximation,

73



deadline,

Remarks: Ia some subrpaces, a joh deseribed in genernl az "critient” might not be eritizal in the
gense that even if the exccution delay associsved with iL iy infimity, calestrophie failure does not
occur. That iy, the sssociated hard deadline may be infinity for a particular subspace. Whal sdoes
usually hagpen in these circumslances is that the system moves into a new subspace — ¢ at the
Jeust townrd the subspece boundury — in which the dangers of catastrophie failure are greater. In
this subspace, the requirements on controller delay are mmore strinpent, and there might well be a
hard dcadline, representing u critieal task. Thus a "eritical” job need not be truly critical in every
subspace, it only has Lo map into & critieal {usk = defined in the sequel = in at least one subspace.
Also, subspucey are job-related, ive, the same sllowed stute ypace can divide into a different set of

subspaces for cach control job.

For convenience, a controller '"task" is defined as follows.
Definition: A controller task, often abbreviated to "task", is defined as a controller

job operating withir a designated subspace of the allowed state space.

Let 5, for i=0,1,...,5 be disjoint subspaces of X; with Xy = C)b; and let J denote a
eontroller job. Then, we need the projection:(J, Xi) -» (( T, ;S‘;)l. (74, 81) oo (Ts) S6))
where T; is the controller task generated by executing J in 8;. With each controller
task, we may now define a hard deadline without the coupling proklem mentioned
above. We denote it by tJ; for critical task T; (for convenience, however, the super-
script J will be omitted In the sequel). We will see that a critical job carn possibly

map Iinto a non-critical task for one or more allowed subspace; It only needs to map

into a critical task in ot lecst one such subspace to be considered critical.

A, Allowed State~Space

The admissible state-space Is the set of states that the system must not leave
if catastrophic failure is not to occur. Consider the two sets of states X} and X3

defined as follows.

(i) X,} is the set of states that the system must reside In if catastrophic fallure is
not to occur immmediotely. For example, we may define in the aircraft landing
problem, a situation in which the aircraft flies upside down as unacceptable to
the passengers and as constituting failure. Notice that terminal constraints are

not taken into corsideration here unless the task in questinn is executed just

14
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prior to mission tcrmination.

(i) X7 is the set of accepiable states given the terminal constraints, l.e., it is the
set of states from which, given the constraints on the control, it becomes possi-

bla to satisfy the terminal constraints,

Note that leaving X} means that no matter how good our subsequent control, failure

has occurred.'® On the other hand, changing the control available can affect the set

Xj. The admissible state space is then defined as X, = X} n X7

Obtaining state-space X7 can be difficult in practice. The curse of dimensional-
Ity ensures that even systems with four or five state variables make unacceptable
Jemands on computation resource: for the accurate determination of the allowed
state-space. However, while it can be very difflcult to obtain the entire allowed
state-space, it Is somewhat easier to obtain a reasonably large subset, XjCX,. By
defining this subset as the actual allowed state-space, (l.e,, by artificially restricting
the range of allowed states), we make a conservative estimate for the allowed
state-space. Note that by making a conservative approximation, we err on the side
of safety. Also, the information we need about X; may be determined to as much pre-

clslon as we are willing to invest in computing resources.

In what follows, to avoid needless pedantry, we shall refar to the artificially res-

tricted allowed state-space, X§, simply as the "allowed state-spaca."

B. On Obtaining the Subspaces

While the methods used to isolate the subspaces for each particular control
application will probably be cifferent, the basic approach is much the same in all
cases. Let N(x) represent a neighborhood of xe€Xy, CX(¢) and ty;(x) denote respec-

tively the cost function and the hard deadline associated with T; where ¢ represents

18 Strictly speaking, of course, there can be no subsequent control! slnce by |eaving X}; the system has
falled catastrophically before the next control could ba lmigtemented.,
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ithe controller response time, and d:XxX » R is a metric function. Then the sub-

spaces 3, ¥, . .., 3 of X; can be obtained by the following steps.
S1. Choose a set of { points, p;eXy, i=1,2, ../

S2. Construct a neighborhood around each of these points, N(p;) for p,, such that

(I) Al N(p;)'s are disjoint and X, <|UN(p;).

1
() Veai(x) = tyi(p;)| = K, for all x&N(p;) and for come X,>0.
(i) d{CX(£), OB (&) = Kaof:(¢) for all xeN(p,) and for some

monotonicaliy non-decreasing positive function f;(¢) and K, > 0.

sa. it d(CM, C) = Kaof (£) for i=1,.2,...,(/~1}), some Kz> 0, and monatonically
non-decreasing positive function f"(g‘) then merge N(p;) and N(p;;,) forming

subspaces S = (Sg, Sy, ..., Sg).

S4. if S satisfies all the requirements of the application jobs then successful

decomposition else choose a different set of points and go to S2.

The job of dividing X iL.ito S= (S, Sy, ..., S;) is sometimes made easy by the
existence of nhatural cleavages in the state-space, when the latter is viewed as an
influence on system behavior. In most cases, however, such conveniences do not

exlst, and artificial means must be found. The problem then becomes one of finding

discrete subdivisions of a continuum.

The method we employ is to quantize the state continuum in much the same way
as analog signhals are quantized into digital ones. Intervals of hard deadlines and
expected operating cost (i.e. the mean of the cost functlion cenditioned on the con-
troller delay time, and using the distribution of the latter) are defit ** Then, points
are allocated to subspaces corresponding to these intervals. To tak concrete

example, consider a state-space XCR" that is 10 be subdivided on the basis of the
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harc deadlines. The first step is to define a queantization for the hard deadlines. Let
this be A, Then, defline subspace S, as containing all states in which the hard dead-
line lles in the interval [(i—1)4, iA). Aliernatively, one might define a sequence of
numbers Ay, B ..."3uch that the subspaces were defined by intervals with the A's as
thelr end~points, Tﬁ‘i"é would correspond to quantizing with variable step sizes. The
subspace In which the job under consideration maps into a non-rritical task is a spe-

clal case and is denoted by S,.

Subspaces can also be defined based cn a quantization of the expected
operating cost or on hoth the operating cost and the hard deadlines, We provide an
example of subdivision by hard deadlines in Section 4.

The size of each subspace will depend on the process state equations, the
environment, and how much computing effort it is judged to be worth spending on
obtaining the subspaces. Maturally, all octher things being equal, the smaller a sub-

space the greater the accuracy of the inherent approximation.!4

In the rest of the paper, to illustrate the derivation of the performance meas-
ures, we carry out their evaluation when the controlled process is an aircraft in the
phase of landing. Also, an optimal checkpointing is considered for the design of a reli-

able controlier.

3. The CONTROLLED PROCESS

The controlled nrocess is an aircraft, in the phase of landing. The model and the

optimal control solution used are due to Ellert and Merriam [4].
The aircraft dynamics are characterized hy the equations:
2 () = b2y (8)+6197(8) +01gz (i )+ 0y m(t€) (6a)
zp(t) = 2,(t) (6b)

14 The errar that ensues as a result of quantlization of the state space can be estimated |n the same way
that quanti zatlon error s estimated In slgnal procossing theory.
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za(t) = bgama(t)+baszalt) (6c)

z4(t) = x5{t) (6d)
where xp is the pitch angle, x, the pitch angle rate, .. ; the altitude rate, and x, the

altitude. m., denotes the elevator deflection, which is the sole control employed. The
constants b;; and ¢, are given in Table 1. Recall that £ denotes controiler response

time,

The phase of landing takas about 20 seconds. Initially, the aircraft is at an alti-
tude of 100 feet, travelling at a horizontal speed of 256 faet/sec. This latter velo-
clty Is assumed to be held constant over the entire landing interval, The rate of
ascent at the beginning of this phase is -20 feet/sec. The pitch angle is ideally to
be held constant at 2° Also, the motion of the elevator is restricted by mechanical
stops. It is constrained to be between ~35° and 18°. For linear operation, the eleva~
tor may not operate against the elevator stops for nonzero periods of time during this
phase. Saturation effects are not considered. Also not considered are wind gusts and

other random environmental effects.

The constraints are as follows: The pitch angle must lie between 0° and 10° to
avoid landing on the nose~wheel or on the tail, and the angle of attack (see Figure 1)
must be held o less than 18° to avoid stalling. The vertical speed with which the air-
craft touches dewn must be less than arcund 2 feet/sec so that the undercarriage

can withstand the force of landing.

The desired altitude trajectory is given hy

{
100e~¢/® 0st<15 (7)
hy(t) = l 20—t 152t =20

while the desired rate of ascent is

, ~R0e /% 0si=15 8)
ha(t) = { -1 15<4 <20 (

The desired pitch angle is 2° and the dasired pitch angle rate is Q° per sec,



The performance Index (for the aircraft) chosen by Ellert and Merriam and suit-
ahly adapted here to take account of the nonzero controller response tima £ is given
by

b

0(¢) = [en(t.6)dt (9)

ty
where / represents time, and (£, £, ] Is the Interval under consideration, and where

em (£,8) = Sl’h(t)[hd(t)“‘%(t)]z‘*'%(t)[’;d(t)"xs(t)]2"“%“)[9’2::(5)"'22(”]2
+ pp(t) [21g(8) =2 (8)F+Im (¢ .8)]%

where the d-subscripts denote the desired {i.e. ideal) trajectory, To ensure that the

touch~-down conditions are met, the weights ¢ must be impulse weighted. Thus we

define:
pnlt) = palt) + ¢4, 6(R0O-L) (10a)
#r(E) = pg(t) + @a, 6(R0—E) (10b)
pult) = oy, (£)6(R0~£) (10¢)
eit) = g(t) (10d)

where the functions ¢ must be given suitable values, and ¢ denotes the Dirac~delta
function. The values of the ¢ are given based on a study of tha trajectory that

results. The chosen values are listed in Table 2.

The control law for tite elevator deflection is given by:

my{t,€) = wsPK; Ts (k11 (t —£)~k 1) (£ )z (£ )~k 12t —§)z(t —£)
~k (gt =)z gt —§) ke 14(t —€)m4(t —£)]
where the aircraft parameters are given by: K, = —0.95sec™, 7, = 2.5 sec,
ws = 1 radian sec”! and the constants k_are the feedback paramecters derived (as
shown in [4]) by solving the Riccatian differential equations that result upon minimiz-
ing the process performance inde_x. For these differential equations we refer the

reader to [4].

19



4, DERIVATION OF PERFORMANCE MEASURES

We consider here only one controller task: that of computing the elevator
deflection so as to follow the desired landing trajectory. The inputs for the controller

here are the sensed values of the four states.

We seek the following information. As the controller delay increases, how much
extra overhead Is added to the performance index? Also, it Is intuitively obvious that
too great a delay will lead to a violation of the terminal (landing) conditions, thus
resulting in a plane crash. This corresponds to dynamic failure, and we are naturally

interested in determining the range of controller delays that permit a safe landing,

Consider first a formal treatment of the problem. The control problem is of the
linear feedback form, The state equations can be expressed as:
x(t) = Ax(t) + Bu(t)
where the symbols have their traditional meanings. Define the feedback matrix by
Z(t). Then, cleatly,
u(t) = E(£ -£)x(t —¢)
For a small controller delay (i.e., a small £), the above can be expanded in a Taylor
series and the terms of second order and higher discarded for a linear approximation.
By carrying out the obvious mathematical steps, we arrive at the equation:
x(t) = E(t £)x(t) + B(¢)
as representing the behavior of the system (assuming the given initial conditions).
For further details, see Figura 5.
Given & closed-form expression for the k,;(t) that appear in E{(f,£), we could
then proceed to study the charactaristics of the system as a function of the matrix
E. However, in the absence of such closed formulations for the k;;, we must take

recourse to the less elegant medium of numerical solution.

The procedures we follow for obtaining the numerical solution are as follows.

First, the feedback values are computed by solving the feesdback differential

20



equations that define the k;;, These are not affected by the magnitude of the con-
troller dalay. Thea, the state equations are voived s situltaneous differential equa-
tlons, These are used to check that the terminal constraints have heen satisfied, and
in the event that they are the performance functional Is evaluated. This procedure
must be repeated for each new subspace. Since the environment is deterministic in
this case (nho wind gusts or other random disturhances are permitted in the mode!(6)),
the hard deadline associated with each process subspace is a constant and not a

random varlable.

The trajectory followed by the aircraft when the delay is less than about 60
milli=seconds follows the optimal trajectory clesely although the elevator deflections
required would be intuitively assumed to increase as the delay increases. Also, the
susceptibllity of the process to failure in the presence of incorrect or no input Is

expected to rise with the introduction of random environmental effects.

The contro! that Is required for various values of controller delay is shown in Fig~
ure 6. Due to the absence of any random effects, elevator deflections for all the
delays considered tend to the same value as the end of the landing phase (20
seconds) s approached, although much larger controls are needed Initially. In the
presence of random effects, the divergence between controls needed in the low and
the high delay values of controller delay is even more marked. We present an exam-
ple of this in Figure 7. The random effect considered here is the elevator heing stuck
at ~85° for 60 milli~-seconds 8 seconds into the landing phase due to a faulty con-
troller order. The controiled process is assumed in Figure 8 to be in the subspace in
which the landing job maps into a non-critical process (defined in the sequel as Sp).
The diagrams speak for themselves. We shall show later that this demand on control
is fully represented by the nature of the derived cost function. Also, above a cer-
tain threshold value for controiler delay, we would expect the system to become
unstable. This is indeed the case in the present problem, although this point occurs

beyond a delay of 60 milli~seconds for all points in the allowed state space (obtained
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In the next scection), which cannot by definition occur here.

4,1, Allewed State Space

In this subsection, we derive the allowed state space of the aircraft system. To
do so, note that in Ellert and Merriam's model, X} does not exist. The reason Is that
the state equations do not take into account the angle of attack. In the idealized
model we are considering, it is implicitly assumed that the constraint on the angle of
attack Is always honored, so that the only constraints to be considered are the ter-

minal constraints,

The terminal constraints have been given earlier but are repeated here for con~
venience. The touchdown speed must be less than 2 feet/sec in the vertical direc~
tion, and the pitch angle at touchdown must lie between 0° and 10° To avoid
overshooting the runway,; touchdown must occur at between 4884 and §120 feet in
the horizontal direction from the moment the landing phase begins. The horizontal
velocity Is assumed to be kept constant throughout the landing phase at 256

feet/sec.15 Thus, touchdown should occur between 19 and 20 seconds after the

descent phase begins.'® The only control is the elevator deflection which must be

kept between -35° and 15°.

The set of allowed states is generally found by sclving the differential equa~
tions for the system backwards from the point of landing. However, this can be com-
putationally expensive, so we follow a cheaper alternative. The Initial conditions of
the process as it enters the landing stage are known. Also known is that the con-
troller is triggered every 60 milli~seconds. It is assumed that the computations take a
minimum of 20 milli-seconds to complete. Using these data, it becomes possible to

determine that portion of the allowed state-space that the controlled process is e

16 we do not conslder here how that Is to be done; In practlce this wlll constitute a second controllsr
Job, We do not treat this here.

16 1his makes time an "Impllctt" state varlable.
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likely to enter to a good approximation. In Figure 8, we plot the range of allowed
state valuns that we ~btain, As indeed it should be, the allowed state-s: ace is a

function of time,

4,2, Designation of Subspaces

We subdivide the allowed state-space found above using the method described
In Section 2. The criterion used Is the hard deadline, since the finite cost function
(derived In the next subsection) is found not to vary greatly within the whole of the
admissible state~space, The value of A chosen is 60 milli-seconds, |n other words,

we wish to consider only the case where a trigger is "missed,”

The allowed state-space In Figure 8 is subdivided into two subspaces, S; and
S,. These correspond to the deadline intervals [80, 1.20) and [120, =). 3 is the
non-critical region corresponding to the [120, =) interval. Here, even if the controller
exhibits any of the abnormalities considered in the Introduction, the airplane will not
crash. In other words, if the controllers orders an incorrect output, exhibits an abnor-
mal execution delay or simply provides no output at all before the following trigger,
the process will still survive at the end of the current Inter-trigger interval Iif, at the

beginning of that inter.al, it was in 5.

On the other hand, if the process is in 8, at the beginning of a inter-trigger
interval, it may savely endure a delay in controller response. However, if the controlier
behaves abnormally in either providing no output at all for the current trigger cycle or

in ordering an incorrect output, there is a positive probabllity of a air crash.

Notice that we explicitly consider only missing a single trigger, not the case
when two or more triggers might be missed In sequence. This is because dynamic
failure Is treated here as a function of the state at the moment of triggering. if two
successive triggers are missed, for example, we have to consider two distinct

states, namely the states the process is in at the moment of those respective
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triggers. To speak of deadline intervals beyond 120 milli=scconds is therefore mean~
ingless in this case since the triggers occur once cvery 60 milli-seconds. This Is why

the second deadline interval considared is [ 120, =), not [ 120,180).

The hard deadline may conservatively be assumed to be 60 nilli=soconds in 8.

By definition it Is infinity in £

4,3, Finite Cost Functions

As Indicated In the preceding section, the finite cost does not vary greatly
within the entire allowed state~-space. It Is therefore sufficient to find a single cost

function for Sy or S,.

The determination of the cost function is carried out as a direct application of
its definition. That is, the process differential equations are solved with varying
values of £, The value of ¢ cannot be greater than the Inter-trigger interval of 60
milli~-seconds since, by assumption, no job pipelining is allowed and the controller ter-

minates any execution in progress upon recelving a trigger. The finite cost function

Is defined as!”

v

g (§) = ¥(¢) - ¥(C) (12)
This function Is found by computation to be approximately the same over the entire

allowed state~-space as defined in Figure 8.

In Figure 9, the finite cost function Is plotted. Tnt: costs are In arbitrary units.
Bear in mind that these measures are the result of an Idealized model. We have, for
example, ignored the effects of wind gusts and other random effects of the environ-
ment. When these are taken into account, the demands on controller speed get even

greater, i.e. the costs increase.

17 Recall that N 7¢ f ) represants the contrlbutlon to the performance functlonal by a version that takes .f
units of time to compute, Since there ls only one controller job under conslderation, the subscrlpt on ¥ has
been suppressad,
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The reader should compere the nature of the cost function with the plots show~
Ing alevator deflaction in Figure 6, and natice the correlation between the marsinsl
incroase In cost with Increased exaecution delay and the margiral increase in control

needed, also as a function of the exccution delay.

6. APPLICATION EXAMPLE FOR CONTROLLER DESIGN: CHECKPOINTING

With stringent requirements on the reliability of any computer controlling a
highly critical system, It becomes necessary to obtaln mechanisms to identify and
correct controller errors, Two characteristics must be exhibited by any such mechan~
Ism: a hlgh probability that errors once existing are caught In time, and a fast means

for recovering from the error. In this section, we deal with the laties,

One commonh recovery method is the use of the reeouery block or recovery
region which establishes checkpoints and saves the current job states during normel
exccution. When an error is detected, the system rolls back to the state saved at
the previous checkpoint and the affected task~-version is resumed, Clearly, check-
points can enhance the rellability of execution and reduce the recovery overhead.
They can also, however, lesd to increased controller overhead since the insariion of
checkpoints Increases controller delay. It is therefore important to carefully check
during design If any overall benefits accrue from the Installation of checkpoints, and
not to include them anyway through an ad-hoc design procedure. Checkpoints should
be regarded as useful supplementary devices to enhance reliahility in certain cases,
not as a panacea for rellability problems. It Is the purpose of this section to demon-
strate the use of the performance measures described above In a study of the
effectiveness of checkpointing, Specifically, we shall in this section consider (a)
whether checkpointing Is Indicated In our aircraft landing problem, and (b) if so, what

the optimal number of checkpoints is.
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Savaral methods for analyzing the rmllback racovery system have been proposed
[8 = 12). They in general compute the opiimum inter-chackpuint intarval for minim'tm
total execution time. In [12], a complete exprassion for the charactaristic function
of total axecution time Is given which takes into account liiperfections In the check~
points, the occurrencae of error during recovory, and multi-step rollback. Howevaer,
when mean time betwaen fallure (MTRE) Is many ordors of magnitude larger than both
the nominal task execution time (¢) and the duration of the phase (£,), the model for
solving the probability distribution of the task exccution time and the probability of

dynamic failure with checkpoints can be simplified.

Let #/THF=10* hours. This Is a reasonable assumption givzen contemporary pro-
cassors ([7], pag= 161). Then In the landing phase, the ratlo of ¢ to MTHF Is of the
order of 1079, It Is therefore an acceptable approximation to atsume In computing

the execution time that no further errors oceur during error=rece very,

Let the occurrence of error be a Poiwsun process with rate A=1/M7TE). Let
ty, t., t,, denote the time needed to set up rollhack, restart, and checkpolint. Also,
we assume that the saved state may bhe contaminated with probabllity p, which
means the system can be recovered using rollback with probabllity p, =1-p,, and has

to restart with probability pg. Thus, we have the total execution ti ye f one version,
€1y

€1 = £+ nlyy + bree (18)
where n !s the number of checkpnints Inserted and £, Is the time overhead used for

recovery. .. Is & random variable which depends on the probability of failure, p,;

and pg.

0 if no error occurs
o L {(14)
ty +tron if error occurs and the version is recovered by rollbac

koo =
[ts.;.tmﬂ it error occurs and the version restarts

where t.,, and ly. are the computation undone b.:zause of rollback and restart,
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raspactively. Lat t,, be the intarval hatween checkpoints and equal to £/ {n+1).

Tha density function of {,o; and fyen are given By [ {t) s Ae M (L ~p M“"") for

Dby ] and foare(E) = Ae M/ (5 = e M) for £L0,¢], respectivaly.

Let the density of total execution time solved from above equation be St

Then the mean execution cost and the probability of dynamic failure are given by

g, = \
COST = 3! [ () ()t (16)
j=1'0
d " .
Pan = 1.0= ] (10~ {fe(t)fit ~pdy) (16)
=] t4,

where g, Is the number of versions executed for 7, during a phase, hy; tha cost func-
tlon for executing the j-th verslon of T,, {}; the deadline associated with the j-th
version of Ty, and pJ; Is the probability of static failure for the j-th version of 7, dur~
Ing ¢ which can be regarded as the probabllity of resource exhaustion, unsuccessful

recovery, sticeaesslve failures during recovery, ete,

Using the cost function and hard deadlines given in the above section, and
assuming that p,’} Is the probability of having an error during racovery, the improve-
ment in the probabllity of dynamic failure, pgy,, upon Insertion of checkpoints are
shown in Table 8.'® The probability of dynamic failu, does indeed decrease as more
checkpoints are inserted. Unfortunately, \ne mean execution cost Increases In as
this is done. Through the cost functions it is possible to express the precise extent

of this cost Increase, and declsions about tradeoffs can be made,

When the nominal execution time Is 20 milli-seconds as assumed in the rest of
this paper, all that checkpoints do is tu Incroase the overhead, i.e. the mean finite
cost, No discernible drop exists in the probability of dynamic failure when check-
points are added. The marginal gain in reliability for any payment in finite operating
cost Is therefore about zero, This was only to be expected sineg the nominal execu-
tion time is one-third that of the hard deadline and the probabilily of dynamic failure

18 Since the landing job Is noncritical In So, the issue of chazhpointing does not arlse there, Al! re~
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without checkpoints was vanishingly small,

However, as the nominal execution time increases (the hard deadline being
assumed to be its S, value of 60 mili-seconds), the beneafits of checlipoint‘ing
emerge, This Is made cloar through the fourth column in Table 3 where we present the
marginal tradeoff ratio hetween the benefits gained in the form of improved reliability
and the loss In the form of increased controller overhead. As is evident from this, for
20 milli=seconds nominal execution time, the optimal number of checkpoints Is zero.
For 80 milli~s=econds, there is something to be gained in relinbility by putting in one
checkpoint, for 40 milli-seconds, there is 8 gain to be ad on adding up to two check-
points although the marginal gain falls off sharply after the first, For a nominal execu~
tion time of 50 milli~seconds, the benefits continue rather steadily until four check~
polnts have been added. The fifth checkpoint provides some noti 2able improvement
in reliahility, although the marginal gain is distinctly smaller than for the first four. The
recommendations for design are now rather clear: use no checkpoints If the nomlnal
execution time Is 20 milli-seconds, and use Table 3 to decide on the optimal number

of checkpoints for the other cases.

6, DISCUSSION

In this paper, we have presented a case-study of the determination of perfor-
mance measures introduced in [1], and considered an Important application in con-

trolier design.

Central to our paper is the idea that it is possible to objectively quantify the
performance of a controlier. Owing to this objectivity, there are many possible exten-
sions to this work, One extension, presently under study, is the issue of distributed
control, and the cost of transmitting global status information to all the local controli-

ers. For guaranteed reliability, the local controllers require a complete knowledge of

marks In thls sectlon are therefere concerned with the characteristics of the process in Sl.
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the global state of the system. This, however, has a cost In terms of the exira
response times aexhibited by the overail centrollar, If the local controllers hava less
than complete Information, their actions cannot be optimal and might even be
Incorrect. However, tha response time of the controller could he significantly reduced,
with errors occurring rarely enough to make that an improvement. Readers will recog~
nize this formulation as an example of the anplication of Markov decision theory with
costly information with the cost functions for the controller jobs now providing the

cost of status information,

Other applications include the quasi-optimal allocation and reallocatlion of control
Jobs to different processors in a multiprocessor controller, the dynamic control of
queues in controllers, and the objective ranking of rival computer systems as con-

trollers of any specific process,
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Figure 4. lllustration of Cost Functions.
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where

@y = [1=-chik,,(¢)] (6n—k1(t)cf —c 121f!%&(t)"'zbllkll(t)’*'klz(t)"ci?lklgl (£)3]

@z = [1-cfik, (t)g]? [12=cfik1a(t)~c B ﬁbukxa(t)H’xakn(t)'*‘kza(t)—cxznki?l(5)3]
@15 = [1~c fik 1 (£)€]7 [b\gc igxk1a(t)+b13k11(t)+k23(t)"0 Bk 1y (£)k 18]

@1y = [1=c fik ) (¢)¢]! [—k14(t)—b 11k14(f)$"k24(f)$+0flklx(t)k 14(¢)¢]

When the execution delay is ¢, the approximate state equations are

¢y [h(“"'ff%(t)‘gd(t)*‘buk1(t)+k2(t)"c Flkl(t)kll(t);]
0
0
0

x(t) = E(t £)x(¢) +

Figure 5. The Approximate State Tiquations
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Figure 6. Elevator Deflection.



0.2t 0.42

-0.00

£.42

!

0.2

-0.00

DEFLECTION [RAC)

-0.21

-0.42

-0.63

CEFLECTION (RO

-0.42 -0.21

-0.63

'0.42

021

o

0.42

0.21

-0.00

DEFLECTION [RAO)

~0.21

-0.42

-0.63

-0.00

DEFLECTION (RADS

-0.21

-0.42

-0.63

8:00 12,00 16.00
TIHE (SEC)
(a) ¢=0
LI
:\!\,.
L
8.00 ) o
TINE (SEC)

(c) £ = 50 msec.

|
!
8.00 12,63 16,00
TINE (SEC!

(b) ¢ = 40 msec,

|
L T—
M?rh‘ "

|

(d) £ = 80 msec.

Figure 7. Elevator Deflection with Abnormality.



3 © —
1d N 0 %]
LY - s e
~ /
~ j———1
2 N —]
3 S N =
>,
~
20 >
.vunlw—.n“w— //
~ N
] \
m N
13 //
o \
N
N
N
AN
.w N —
// n
—_———X\
\\ //
\\ 4
w- Vs ‘\In
8;&1 \ LN‘./

~ \ o
~ .II//I/I ﬂ‘"““‘oﬂ»\s\%‘ \\ |
%«o‘&\o«\ - //F//l,.\\\\
° %N“\\
59 S
28 SR
A E N SSRN
I 6¢¢ N
.9«9@9 / //
va,#‘ /// | N\ } t
gotoo! 00708 00709 00°0¥ 000 a0

(1) 30nITI1TH

16.00

12,00

TIME (SEC)

4.00

20.00

.00

8.0

<30.00

Figure 8(a). Allowed State Space: Altitude.
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Feedback Term Value
by -0.600
bio -0.760
Dya 0.003
bas 102.4
ban -0.4
Gy -2.374

Table 1, Feedback Values

Weighting Factor Value
p1(t) ‘ ~ 99.0
vat,(t) 20.0
pa(t) (0=t <15) 2.0

pa(t) (16st<20) 0.0001
Pa,t, 1.000

@4 0.00005
Pat, 0.001

Table 2. Weighting Factors




n MEAN COST Dayn Tradeoffx107
0 0.12848 0.3086I-15 -
1 0.12909 0.308B6E-15 0.0
2 0.12971 0.3088L-15 0.0
3 0.13033 0.3088E-15 0.0
4 0.130958 0.3086E-15 0.9
5 0.13187 0.3086E-15 0.0
(a). Nominal execution time 20 msec.
n MEAN COST Dayn Tradeoffx107
0 0.2€1568 0.370375-07 -
1 0.26431 0.37037F-=-08 121.5
2 0.26709 0.37037E-08 0.0
3 0.26991 0.37037E-08 0.0
4 0.27272 0.37037E-08 0.0
5 0.27567 0.37037E-08 0.0
(b). Nominal execution time 30 msee.
n MEAN COST Payn Tradeoffx 107
0 0.55352 0.30555E-086 -
1 0.55472 0.43055E-07 2177.0
2 0.55586 0.30555E-07 109.8
3 0.55694 0.30555E-07 0.0
4. 0.55795 0.30555E-07 0.0
5 0.55891 0.30555E-07 0.0

(e). Nominal execution time 40 msec.

Table 3. Checkponints




n MEAN COST Payn Tradeoffx107
e —— — ——— —

0 0.89694 0.46666E-06 -

1 0.90848 0.35868R-06 95.8

2 0.92025 0.26166E-06 80.6

3 0.93231 0.16666E-06 78.7

4 0.94466 0.71666%K-07 76.9

5 0.95730 0.48666F-07 19.8

(d). Nominal execution time 50 mseec.

Py =0.9, MTBF =10* hours , t,, =0.1 msec. t,=R.0 msec. £,=R.0 msec,

Tradeoff ratio for n checkpoints (n=1)

. COSTwith n chechpoints - COST with n-1 checkpaints

Payn With n-1 checkpoints - pyy, with n checkppints

Table 3. (Cont.) Checkpoints
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