a Whirling centrifugal tmpeller in a volute*

Y. Tsujimotot
Osaka University
560 Toyonaka, Osaka, Japan
A. J. Acosta and C. E. Brennen
California Institute of Technology
Pasadena, California 91125

Destabilizing fluid forces on whirling centrifugal impeller rotating in a volute have been observed (Ref.1). A quasisteady analysis neglecting shed vorticity (Ref.2) or an unsteady analysis without a volute (Ref.3) does not predict the existence of such destabilizing fluid forces on whirling impeller.

The present report is intended to take into account the effects of a volute and the shed vorticity. We treat cases when an impeller with an infinite number of vanes rotates with a constant velocity Ω andits center whirls with a constant eccentric radius ε and a constant whirling velocity ω.

Major assumptions are as follows:
(1) The number of the vanes is so large that the impeller can be treated as an actuator impeller in which the flow is perfectly gaided.
(2) Flow is inviscid, incompressible and two-dimensional.
(3) The eccentricity e is so small that unsteady components can be linearized.
(4) Vorticity is transported on a prescribed mean flow, i.e., the operating point is near design flow rate.
(5) The volute can be represented by a curved plate (see Fig. 1).

[^0]```
Z = x+iy : stationary frame with its origin 0 fixed to the center of the whir-
 ling motion
```



```
 = Z-\varepsilon 生林 impeller and its axes parallel to those of Z.
r},\mp@subsup{r}{2}{}\mathrm{ : inner and outer radius of the impeller
 \beta(r) : vane angle measured from circumferential direction
 \varepsilon : eccentricity
 \omega : angular velocity of whirling motion
 \Omega : angular velocity of the impeller
 \Gammai : prerotation, Q: flow rate
v}=u+iv: absolute velocit
 (vir,vo)
\mp@subsup{\Psi}{}{\prime}=\mp@subsup{U}{}{\prime}+i\mp@subsup{V}{}{\prime}: velocity relative to x'y' frame
 (vr', vol
 w}:velocity relative to the impeller
 (wr},\mp@subsup{w}{0}{\prime}
 t : time, t=0 when 00' is in the direction of }
 n : circumferential mode number
```

Subscripts
1,2 : quantities at the inner and outer radius respectively
Superscripts
: steady component $\sim$; unsteady component

## BASIC EQUATIONS

Euler's equation in the rotating and translating frame fixed to the rotor is,

$$
\begin{equation*}
\frac{\partial U}{\partial t^{*}}+\nabla\left(\frac{\underline{w}^{2}}{2}-\frac{\left(U+\Omega \times \mathbb{Z}^{\prime}\right)^{2}}{2}+\frac{p}{p}\right)-w \times(\nabla \times \underset{\sim}{U})=f \tag{1}
\end{equation*}
$$

where $\partial / \partial t_{i \theta}^{*}$ is the time derivative in the rotating frame and $\underset{\sim}{\mathrm{V}}=\mathrm{i} \omega \mathrm{c}^{\mathrm{i} \omega t}$ and $\underset{\sim}{\Omega} \times{\underset{\sim}{x}}^{\prime}=i r d e{ }^{i \theta}$ are the translational velocity due to whirling and the rotational velocity of the impeller. In an actuator impeller with an infinite number of vanes,
the effects of the vorticity distribution on the vanes and the forces exerted by the vanes are represented by the vorticity $\nabla \times \underset{\sim}{x}$ and the external force $\underset{\sim}{f}$ respectively in the above equation. For inviscid flow through actuator impellers, $\underset{\sim}{f}$ and $\times(\nabla \times \underset{\sim}{\text { p }})$ are normal to the vane surface and the component of Equation (1) paralle1 to the vane surface is

$$
\begin{equation*}
\frac{\partial V_{s}}{\partial t^{*}}+\frac{\partial}{\partial S}\left(\frac{w^{2}}{2}-\frac{V_{t}^{2}}{2}+\frac{p}{p}\right)=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& v_{s}=\omega-r \Omega \cos \beta-\omega \varepsilon \cos (\theta+\beta-\omega t) \\
& w(r, \theta)=\omega_{r}\left(r_{2}, \theta-\varphi(r)\right) r_{2} /(r(s) \sin \beta(r)) \\
& V_{t}^{2}=r^{2} \Omega^{2}+\varepsilon^{2} \omega^{2}+2 r \omega \varepsilon \Omega \cos (\theta-\omega t) \\
& \partial / \partial t^{*}=\partial / \partial t+\Omega \partial / \partial \theta
\end{aligned}
$$

Integrating Equation (2) along the vane surface we get the following total pressure increase.

$$
\begin{align*}
\frac{P_{t 2}-P_{t 1}}{\rho}= & {\left[r \Omega v_{\theta}^{\prime}\right]_{1}^{2}-M\left(\frac{\partial}{\partial t}+\Omega \frac{\partial}{\partial \theta}\right) v_{r 2}^{\prime}-\varepsilon \omega(\Omega-\omega) \int_{1}^{2} \sin (\theta+\beta-\omega t) d S } \\
& +\varepsilon \omega\left[\left(r \Omega+v_{\theta}^{\prime}\right) \cos (\theta-\omega t)+v_{r}^{\prime} \sin (\theta-\omega t)\right]_{1}^{2} \tag{3}
\end{align*}
$$

where

$$
M=\int_{1}^{2} \frac{r_{2}}{r \sin \beta(r)} d r
$$

Downstream of the impellex, where $f=0$, Equation (1) can be expressed as

$$
\begin{equation*}
\underset{\sim}{w} \times(\nabla \times \underset{\sim}{\sim})=\frac{\partial \mathscr{U}}{\partial t^{k}}+\frac{1}{2} \nabla H^{\prime}, \quad H^{\prime}=\frac{p}{\rho}+\frac{w^{2}}{2}-\frac{V_{t}^{2}}{2} \tag{4}
\end{equation*}
$$

By multiplying $e_{x} d x+e_{y} d y=r_{2}\left(e_{y} \cos \theta-e_{x} \sin \theta\right) d \theta$ on both sides of the above equation we get the following vorticity distribution at the outer radius of the impellex;

$$
\begin{align*}
\zeta\left(r_{2}, \theta\right)= & -\frac{1}{r_{2} w_{r 2}} \frac{\partial H_{2}^{\prime}}{\partial \theta}-\frac{1}{w_{r 2}}\left(\frac{\partial}{\partial t}+\Omega \frac{\partial}{\partial \theta}\right) v_{\theta 2}^{\prime} \\
= & \frac{1}{r_{2} w_{r 2}}\left[r_{1} \Omega \frac{\partial v_{0 \prime \prime}^{\prime}}{\partial \theta}+\omega \varepsilon\left\{v_{r_{1}^{\prime}}^{\prime} \cos \left(\theta_{1}-\omega t\right)-v_{\theta 1}^{\prime} \sin \left(\theta_{1}-\omega t\right)\right.\right. \\
& \left.+\frac{\partial v_{\theta^{\prime}}^{\prime}}{\partial \theta} \cos \left(\theta_{1}-\omega t\right)+\frac{\partial v_{r}^{\prime}}{\partial \theta} \sin \left(\theta_{1}-\omega t\right)-r_{1} \Omega \sin \left(\theta_{1}-\omega t\right)\right\} \\
& \left.+\left(\frac{\partial}{\partial t}+\Omega \frac{\partial}{\partial \theta}\right) \frac{\partial v_{r 2}^{\prime}}{\partial \theta} \cdot M+\varepsilon \omega(\Omega-\omega)\right\}_{1}^{2} \cos (\theta+\beta-\omega t) d s \\
& -\frac{1}{w_{r}}\left(\frac{\partial}{\partial t}+\Omega \frac{\partial}{\partial \theta}\right) v_{\theta 2}^{\prime}+\frac{1}{w_{r}} \varepsilon \omega(\Omega-\omega) \sin (\theta-\omega t) \tag{5}
\end{align*}
$$

## ELEMENTARY FLO COMPONENTS

The flow tangency condition at the impeller outlet is,

$$
\begin{equation*}
v_{\theta 2}^{\prime}=r_{2} \Omega-v_{r_{2}^{\prime}} \cot \beta_{2} \tag{6}
\end{equation*}
$$

The first term on the right hand side of the above equation is cancelled by the flow component

$$
\begin{equation*}
v_{r}^{\prime}-i v_{\theta}^{\prime}=\frac{1}{2 \pi r}\left\{Q-2 \pi i r_{2}\left(r_{2} \Omega-\frac{Q}{2 \pi r_{2}} \cot \beta_{2}\right)\right\} \tag{7}
\end{equation*}
$$

and other disturbance components should satisfy the following equation

$$
\begin{equation*}
V_{\theta 2}^{\prime}=-v_{r 2}^{\prime} \cot \beta_{2} \tag{8}
\end{equation*}
$$

For the region outside the impeller we consider two types of elementary velocity disturbances satisfying Equation (8):

First, consider the following velocity field:

$$
\begin{equation*}
u^{\prime}-i v^{\prime}=\frac{i \Gamma}{2 \pi}\left\{\frac{1}{z^{\prime}-z_{0}^{\prime}}+e^{-2 i \beta_{z}}\left(\frac{1}{z^{\prime}}-\frac{1}{z^{\prime}-r_{2}^{2} / \overline{z_{0}^{\prime}}}\right)\right\} \tag{9}
\end{equation*}
$$

This velocity field has a vortex $\Gamma^{\prime}$ at $z^{\prime}=z^{\prime} 0_{0}$ and satisfies Equation (8) with no circulation/net flow around/from the impeller. Consider a vortex distribution $\Gamma(s)=I r^{\prime}(s)+\varepsilon I_{d}^{s}(s) \sin \omega t+\varepsilon \Gamma_{d}^{C}(s) \cos \omega t$ on the volute surface $\quad z_{0}(s)=z_{0}^{\prime}+\varepsilon e^{i \omega t}$. Assuming $\varepsilon \ll r_{2}$, we get the following steady and unsteady velocity components

$$
\begin{align*}
\overline{u^{\prime}}-\left.i \overline{v^{\prime}}\right|_{z^{\prime}}= & \frac{i}{2 \pi} \int_{0}^{S_{l}} \overrightarrow{l s}_{s}(s)\left[\frac{1}{z^{\prime}-z_{0}(s)}-\frac{e^{-2 i \beta_{2}}}{z^{\prime}} \frac{r_{2}^{2}}{\left(z^{\prime} \bar{Z}_{0}(s)-r_{2}^{2}\right)}\right] d s  \tag{10}\\
\tilde{u^{\prime}}-\left.i \tilde{v}^{\prime}\right|_{z^{\prime}}= & -\frac{i \varepsilon}{2 \pi} \int_{0}^{S_{l}} \Gamma_{s}(s)\left[\frac{e^{i \omega t}}{\left(z^{\prime}-z_{0}(s)\right)^{2}}+e^{-2 i \beta_{2}} \frac{r_{2}^{2} e^{-i \omega t}}{\left(z^{\prime} \bar{z}_{0}(s)-r_{2}^{2}\right)^{2}}\right] d s \\
& +\frac{i \varepsilon}{2 \pi} \int_{0}^{S_{l}}\left(\bar{l}_{d}^{S}(s) \sin \omega t+T_{d(s) \cos \omega t)}^{c}\left[\frac{1}{z^{\prime}-z_{0}(s)}-\frac{r_{2}^{2} e^{-2 i \beta_{2}}}{z^{\prime}\left(z^{\prime} \overline{Z_{0}}(s)^{-r_{2}^{2}}\right)}\right] d s\right. \tag{11}
\end{align*}
$$

where $z^{\prime}$ is fixed to $x^{\prime} y^{\prime}-p l a n e$. At $z=z_{s}=z^{\prime}+\varepsilon e^{i \omega t}$, which is fixed to the volute, we get the following expressions:

$$
\begin{equation*}
\overline{u^{\prime}}-\left.i \bar{v}^{\prime}\right|_{z_{s}}=\frac{i}{2 \pi} \int_{0}^{S \ell} \bar{\beta}_{s}(s)\left[\frac{1}{z_{s}-z_{0}(s)}-\frac{r_{2}^{2} e^{-2 i \beta_{2}}}{z_{s}\left(z_{s} \overline{z_{0}}(s)-r_{2}^{2}\right)}\right] d s \tag{12}
\end{equation*}
$$

$$
\begin{align*}
\tilde{u}^{\prime}-\left.i \tilde{v}^{\prime}\right|_{z_{s}}= & -\frac{i \varepsilon}{2 \pi} \int_{0}^{s e} \Gamma_{s}(s) \frac{r_{2}^{2} e^{-2 i \beta_{2}}}{z_{s}\left(z_{s} \bar{z}_{0}(s)-r_{2}^{2}\right)}\left(\frac{e^{i \omega t}}{z_{s}}+\frac{\bar{z}_{0}(s) e^{i \omega t}+z_{s} e^{-i \omega t}}{z_{s} \bar{z}_{0}(s)+r_{2}^{2}}\right) d s \\
& \left.+\frac{i \varepsilon}{2 \pi} \int_{0}^{s_{2}}\left(\Gamma_{a}^{c}(s) \cos \omega t+T_{d(s)}^{s} \sin \omega t\right)\left[\frac{1}{z_{s}-z_{0}(s)}-\frac{r_{2}^{2} e^{-2 i \beta_{2}}}{z_{s}\left(z_{s} \bar{z}_{0}(s)-r_{2}^{2}\right.}\right)\right] d s \tag{13}
\end{align*}
$$

In the same way the velocity component (7) has the following steady and unsteady components at the volute surface $z_{s}=r_{s} e^{i \theta_{s}}=z^{\prime}+\varepsilon e^{i \omega t}$.

$$
\begin{align*}
& \bar{v}_{r}^{\prime}-\left.i \bar{v}_{z_{s}}^{\prime}\right|_{z_{s}}=\frac{1}{2 \pi r_{s}}\left\{Q-2 \pi i r_{2}\left(r_{2} \Omega-\frac{Q}{2 \pi r_{2}} \cot \beta_{2}\right)\right\}  \tag{14}\\
& \tilde{v}_{r}^{\prime}-i \tilde{v}_{\theta_{z}}^{\prime}=\frac{1}{2 \pi r_{s}}\left\{Q-2 \pi i r_{2}\left(r_{2} \Omega-\frac{Q}{2 \pi r_{2}} \cot \beta_{2}\right)\right\} \frac{\varepsilon}{r_{s}} e^{i\left(\omega t-\theta_{s}\right)} \tag{15}
\end{align*}
$$

Next consider the velocity field due to shed vorticity. If we assume that the vorticity is transported on a streamline

$$
v_{r}^{\prime}-i v_{\theta}^{\prime}=(Q-i P) /(2 \pi r)
$$

we have the following elementary vorticity field

$$
\begin{align*}
\zeta_{n}= & \zeta_{c n} \cos \left\{ \pm \omega\left(t-\frac{\pi}{Q}\left(r^{2}-r_{2}^{2}\right)\right)+m\left(\theta-\frac{T}{Q} \log \left(r / r_{2}\right)\right)\right\} \\
& +\zeta_{s n} \sin \left\{ \pm \omega\left(t-\frac{\pi}{Q}\left(r^{2}-r_{2}^{2}\right)\right)+m\left(\theta-\frac{T}{Q} \log \left(r / r_{2}\right)\right)\right\} \tag{16}
\end{align*}
$$

and the corresponding velocity field

$$
\begin{equation*}
v_{r n}^{5}-i v_{\theta n}^{5}=\left(\zeta_{c m} Z_{R n}+\zeta_{s n} Z_{I n}\right) \cos (n \theta \pm \omega t)+\left(\zeta_{\sin } Z_{R n}-\zeta_{\operatorname{cm}} Z_{I n}\right) \sin (n \theta \pm \omega t) \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
& Z_{R n}=R_{R n}-i \Theta_{R n}, \quad Z_{I n}=R_{I n}-i \Theta_{I n} \\
& R_{R n}+j R_{I n}=-j[F(r)+G(r)], \quad \Theta_{R n}+j \Theta_{I n}=-F(r)+G(r) \\
& F(r)=\frac{1}{2} \int_{r_{2}}^{r} \exp \left\{j\left(I \omega \frac{\pi}{Q}\left(r_{0}^{2}-r_{2}^{2}\right)-n \frac{P}{Q} \log \left(r_{0} / r_{2}\right)\right)\right\}\left(r_{0} / r\right)^{n+1} d r_{0} \\
& G(r)=\frac{1}{2} \int_{r_{2}}^{r} \exp \left\{j\left( \pm \omega \frac{\pi}{Q}\left(r_{0}^{2}-r_{2}^{2}\right)-n \frac{\Gamma}{Q} \log \left(r_{0} / r_{2}\right)\right)\right\}\left(r / r_{0}\right)^{n-1} d r_{0}
\end{aligned}
$$

Equation (17) includes the effects of the vorticity in $r_{2}<r<\mathbb{R}$. Since $G(r)$ is convergent only for $n \geq 3$ as $R \rightarrow \infty$, we should artificially prescribe some appropriate finite value for R. Equation (17) does not satisfy Equation (8) and we should add a potential component

$$
\begin{equation*}
v_{r n}^{p}-i v_{\theta m}^{P}=-e^{-i \beta_{2}}\left(\zeta_{c n}+i \zeta_{s n}\right)\left[\left(\theta_{R}-i \theta_{r}\right) \sin \beta_{2}+\left(R_{R}-i R_{I}\right) \cos \beta_{2}\right]_{r_{2} r_{2}} \frac{e^{i \theta \mp i \omega t}}{Z^{\prime n+1}} \tag{18}
\end{equation*}
$$

such that

$$
\begin{equation*}
V_{m}^{\prime}-i V_{\theta n}^{\prime}=\left(V_{r m}^{p}-i V_{\theta n}^{5}\right)+\left(V_{r m}^{p}-i V_{\theta n}^{P}\right) \tag{19}
\end{equation*}
$$

satisfies the boundary condition of Equation (8). We may now note that there are steady and unsteady components as follows:
(i) Steady component; in Equations (16)-(19) we put $\omega=0$ and represent the related quantities with superscript and suffix $n$ ( $n=1,2 \ldots$ ) for each mode, $\overline{h_{c m}}$ etc.
(ii) Unsteady component: corresponding1y to the sign on $\omega$ and the mode $n$, we represent the related quantities such that $\widetilde{\zeta}_{\mathrm{cm}}^{ \pm}$etc.
On the volute $z=z_{s}=z^{\prime}+\varepsilon e^{i \omega t}$, the steady and unsteady velocity fields are expressed as follows:

$$
\begin{align*}
& \overline{u^{\prime}}-\left.i \bar{U}^{\prime}\right|_{z_{s}}=\sum_{n=1}^{\infty} \mathbb{d}\left[\left(\bar{\zeta}_{c n} \bar{z}_{R n}+\bar{\zeta}_{s m} \overline{\bar{z}}_{n n}\right) \cos n \theta_{s}+\left(\bar{\zeta}_{s n} \bar{Z}_{R m}-\bar{\zeta}_{c n}{\overline{Z_{I}}}\right) \sin n \theta_{s}\right] e^{-i \theta_{s}} \\
& \left.-e^{-i \beta_{2}}\left(\bar{\zeta}_{c m}+i \bar{\zeta}_{S m}\right)\left[\left(\bar{\Theta}_{R m} \bar{m} \bar{\Theta}_{m m}\right) \sin \beta_{2}+\left(\bar{R}_{R m}-i \bar{R}_{I m}\right) \cos \beta_{2}\right]_{r=r} / z_{s}^{n+1}\right]  \tag{20}\\
& \tilde{u^{\prime}}-i \tilde{V^{\prime}} \|_{z_{s}} / \varepsilon=\sum_{n=1}^{\infty} \mathbb{[}\left[\left(\bar{\zeta}_{c n} \bar{z}_{R n}+\overline{\bar{L}}_{s m} \bar{z}_{I n}\right)\left(-n \sin n \theta_{s}-i \cos n \theta_{s}\right)\right. \\
& \left.+\left(\bar{\zeta}_{s n} \bar{Z}_{R n}-\bar{S}_{c n} \bar{Z}_{I n}\right)\left(n \cos n \theta_{s}-i \sin n \theta_{s}\right)\right] \frac{1}{r_{s}} \sin \left(\theta_{s}-\omega t\right) e^{-i \theta_{s}} \\
& -\left[\left(\bar{\zeta}_{c n} \bar{Z}_{R m}^{\prime}+\bar{\zeta}_{s m} \bar{Z}_{r n}^{\prime}\right) \cos n \theta_{s}+\left(\bar{\zeta}_{s n} \bar{Z}_{R n}^{\prime}-\bar{\zeta}_{c n} \bar{Z}_{I n}^{\prime}\right) \sin n \theta_{s}\right] \cos \left(\theta_{s}-\omega t\right) e^{-i \theta_{s}} \\
& -(n+1) e^{-i \beta_{2}}\left(\bar{S}_{c n}+i \dot{L} \bar{S}_{S n}\right)\left[\left(\overline{\theta_{R n}}-i\left(\bar{\theta}_{I n}\right) \sin \beta_{2}+\left(\bar{R}_{R n}-i \bar{R}_{I n}\right) \cos \beta_{2}\right]_{r=r_{2}} \frac{e^{i \omega t}}{\bar{z}_{s}^{n+2}} \mathbb{J}\right.
\end{align*}
$$

In the region upstream of the impeller ( $x \leq r_{1}$ ), we consider a source $Q$ and prerotation of strength $\Gamma_{i}$ at the center of the volute. Then the velocity can be expressed in the series

$$
\begin{equation*}
v_{r}^{\prime}-i v_{\theta}^{\prime}=\left[\frac{\partial+i T_{i}}{2 \pi} \frac{1}{z^{\prime}+\varepsilon e^{i \omega t}}+\sum_{n=1}^{\infty}\left\{\bar{A}_{n}+\varepsilon\left(A_{n}^{s} \sin \omega t+A_{n}^{c} \cos \omega t\right)\right\} z^{n-1}\right] e^{i \theta} \tag{22}
\end{equation*}
$$

where $\bar{A}_{n}=\bar{A}_{R_{n}}+i \bar{A}_{I_{n}}, A_{n}^{s}=A_{R_{n}}^{s}+i A_{I_{n}}^{s}, A_{n}^{c}=A_{R_{n}}^{c}+i A_{I_{n}}^{c}$ are complex constants.
Now we have given all of the elementary flow components necessary for the construction of the entire flow field. Each of them contains several unknowns that are determined in the following sections.

The flow tangency condition on the volute surface is,

$$
\begin{equation*}
\varepsilon \omega \cos (\alpha-\omega t)+v^{\prime} \cos \alpha-u^{\prime} \sin \alpha=v_{n}=0 \tag{23}
\end{equation*}
$$

where $\alpha$ is the angle between volute and x-axis. If we put

$$
\begin{aligned}
& u^{\prime}=\bar{u}^{\prime}+\tilde{u}_{c}^{\prime} \cos \omega t+\tilde{u}_{s}^{\prime} \sin \omega t \\
& v^{\prime}=\bar{v}^{\prime}+\tilde{v}_{c}^{\prime} \cos \omega t+\tilde{v}_{s}^{\prime} \sin \omega t
\end{aligned}
$$

we get the following conditions,

$$
\begin{align*}
& \bar{v}^{\prime} \cos \alpha-\bar{u}^{\prime} \sin \alpha=0  \tag{24}\\
& \tilde{v}_{c}^{\prime} \cos \alpha-\tilde{u}_{c}^{\prime} \sin \alpha=-\varepsilon \omega \cos \alpha  \tag{25}\\
& \tilde{v}_{s}^{\prime} \cos \alpha-\tilde{u}_{s}^{\prime} \sin \alpha=-\varepsilon \omega \sin \alpha . \tag{26}
\end{align*}
$$

The steady velocity $\bar{u}, \bar{v}^{\prime}$ is given as a sum of the velocity components in Equations (12). (14) and (20). The unsteady components $\tilde{u}_{c}^{\prime}, \tilde{v}_{c}^{\prime}$ and $\tilde{u}_{s}^{\prime},^{\prime} \tilde{u}_{s}^{\prime}$ are the cosine and sine components of the velocity of Equations (13), (15) and (21). Equations (24)-(26) constitute integral equations for $\Gamma_{s}(s), \Gamma_{d}^{s}(s)$ and $\Gamma_{d}^{\mathcal{C}}(s)$.

## CONTINUITY EQUATION

The continuity equation across the impeller is

$$
\begin{equation*}
v_{r}^{\prime}\left(r_{1}, \theta_{1}=\theta+\Phi_{0}\right)=\frac{r_{2}}{r_{1}} v_{r}^{\prime}\left(r_{2}, \theta\right) \tag{27}
\end{equation*}
$$

where $\mathcal{S}_{0}$ is the angle between corresponding leading and trailing edges of a vane. At the onter radius the total of the steady velocity components given by Equations (7). (10) and (19) can be expressed as a Fourier series; namely,

$$
\begin{aligned}
& \bar{v}_{r^{\prime}}\left(r_{2}, \theta\right)=\frac{Q}{2 \pi r_{2}}+\sum_{n=1}^{\infty}\left(\bar{v}_{m}^{s} \sin n \theta+\bar{v}_{r_{n}^{c}}^{\infty} \cos m \theta\right) \\
& \bar{v}_{s}\left(r_{2}, \theta\right)=r_{2} \Omega-\frac{Q}{2 \pi r_{2}} \cot \beta_{2}+\sum_{n=1}^{\infty}\left(\bar{v}_{s n}^{s} \sin n \theta+\bar{v}_{s n}^{c} \cos n \theta\right)
\end{aligned}
$$

In the same way, the unsteady components of Equations (11), and (19) can be expressed as

$$
\left.\begin{array}{l}
\left.\tilde{v}_{r}^{\prime}\left(r_{2}, \theta\right)=\varepsilon \sum_{m=1}^{\infty} \llbracket\left(\tilde{v}_{m}^{c c} \cos n \theta+\tilde{v}_{m}^{c s} \sin n \theta\right) \cos \omega t+\left(\tilde{v}_{r n}^{s c} \cos n \theta+\tilde{v}_{m}^{s s} \sin n \theta\right) \sin \omega t\right] \\
\left.\tilde{v}_{\theta}^{\prime}\left(r_{2}, \theta\right)=\varepsilon \sum_{n=1}^{\infty} \llbracket\left(\tilde{v}_{\theta n}^{\infty} \cos n \theta+\tilde{v}_{\theta n}^{c s} \sin n \theta\right) \cos \omega t+\left(\tilde{v}_{\theta n}^{s c} \cos n \theta+\tilde{v}_{\theta n}^{s s} \sin n \theta\right) \sin \omega t\right]
\end{array}\right\}
$$

At the inner radius $r=r_{1}$ we expand Equation (22) in $\theta=\theta_{1}-\mathscr{S}_{0}$ rather than in $\theta_{1}$; then,

$$
\begin{align*}
& \bar{v}_{r}^{\prime}\left(r_{1}, \theta_{1}=\theta+\varphi_{0}\right)=\frac{Q}{2 \pi r_{1}}+\sum_{n=1}^{\infty}\left\{\overline{\bar{v}}_{r n}^{s} \sin n \theta+\bar{v}_{n}^{c} \cos n \theta\right\}  \tag{30}\\
& \bar{v}_{\theta}^{\prime}\left(r_{1}, \theta_{1}=\theta+\Phi_{0}\right)=-\frac{\Gamma_{i}}{2 \pi r_{1}}+\sum_{n=1}^{\infty}\left\{\bar{v}_{0 n}^{s} \sin n \theta+\bar{v}_{\theta n}^{c} \cos n \theta\right\} \\
& \left.\left.\tilde{v}_{r}^{\prime}\left(r_{1}, \theta_{1}=\theta+\Phi_{0}\right)=\varepsilon \sum_{n=1}^{\infty} \pi\left(\widetilde{v}_{r n}^{c c} \cos n \theta+\tilde{v}_{r n}^{c s} \sin n \theta\right) \cos \omega t+\left(\tilde{v}_{r n}^{s c} \cos n \theta+\tilde{v}_{m}^{s s} \sin n \theta\right) \sin \omega t\right]\right) \\
& \left.\left.\tilde{v}_{\theta}^{\prime}\left(r_{1}, \theta_{1}=\theta+\Phi_{0}\right)=\varepsilon \sum_{n=1}^{\infty} \pi\left(\tilde{v}_{\theta n}^{c c} \cos n \theta+\tilde{v}_{\theta n}^{c s} \sin n \theta\right) \cos \omega t+\left(\tilde{v}_{\theta n}^{c s} \cos n \theta+\tilde{v}_{\theta n}^{s s s} \sin n \theta\right) \sin \omega t\right]\right]
\end{align*}
$$

From Equation (27) we get the following relations

$$
\begin{array}{lll}
\overline{\bar{v}}_{r n}^{s}=\left(r_{2} / r_{1}\right) \bar{v}_{r n}^{s} & \text { (32) } & \bar{v}_{r n}^{c}=\left(r_{2} / r_{1}\right) \tilde{v}_{m}^{c} \\
\tilde{v}_{m}^{c c}=\left(r_{2} / r_{1}\right) \tilde{v}_{r n}^{c c} & \text { (34) } & \widetilde{v}_{r n}^{c s}=\left(r_{2} / r_{1}\right) \widetilde{v}_{r n}^{c s} \\
\approx_{\bar{v}}^{s c}=\left(r_{2} / r_{1}\right) \tilde{v}_{m}^{s c} & \text { (36) } & \widetilde{v}_{r m}^{s s}=\left(r_{2} / r_{1}\right) \widetilde{v}_{r n}^{s s}
\end{array}
$$

Equations (32) and (33) give the relations to determine $\bar{A}_{\text {Rn }}$ and $\bar{A}_{\mathbf{I n}^{\prime}}$ and Equations (34)-(37) determine $A_{R n}^{c}, A_{R n}^{s}, A_{I_{n}}^{c}$ and $A_{I n}^{s}$.

## STRENGTH OF SHED VORTICITY

If we use the expressions (28-31) in Equation (5), the steady vorticity components can be expressed as

$$
\begin{align*}
& \bar{\zeta}_{c m}=-\frac{2 \pi r_{2}}{Q} \Omega n\left(\frac{M n}{r_{2}} \bar{v}_{r n}^{c}+\bar{v}_{\theta n}^{s}-\frac{r_{1}}{r_{2}} \bar{v}_{\theta n}^{s}\right)  \tag{38}\\
& \bar{\zeta}_{s n}=-\frac{2 \pi r_{2}}{Q} \Omega n\left(\frac{M n}{r_{2}} \bar{v}_{r m}^{s}-\bar{v}_{\theta n}^{c}+\frac{r_{1}}{r_{2}} \bar{v}_{\theta n}^{c}\right) \tag{39}
\end{align*}
$$

where we have used $\omega_{r}=\frac{Q}{2 \pi r_{2}}$ because of the assumption on the transport of the vorticity. In the same way, if we express the vorticity by

$$
\begin{equation*}
\widetilde{\zeta}\left(r_{2}, \theta\right)=\frac{2 \pi r_{2}}{Q} \varepsilon \sum_{n=1}^{\infty}\left[\left[\left(\tilde{\zeta}_{n}^{c c} \cos n \theta+\tilde{\zeta}_{n}^{s s} \sin n \theta\right) \sin \omega t+\left(\tilde{\zeta}_{n}^{c c} \cos n \theta+\tilde{\zeta}_{n}^{c s} \sin n \theta\right) \cos \omega t\right]\right. \tag{40}
\end{equation*}
$$

and use the expressions (28-31) in Equation (5), we can express $\tilde{\zeta}$ in terms of the Fourier coefficients in Equations (28)-(31). Comparing Equation (40) and Equation (16), we get the following relations,

$$
\begin{array}{lll}
\tilde{\zeta}_{s m}^{+}=\frac{\pi r_{2}}{Q}\left(\tilde{\zeta}_{m}^{c s}+\tilde{\zeta}_{n}^{s c}\right) & \text { (41) } & \tilde{\zeta}_{s m}=\frac{\pi r_{2}}{Q}\left(\tilde{\zeta}_{n}^{c s}-\tilde{\zeta}_{n}^{s c}\right) \\
\tilde{\zeta}_{c n}^{+}=\frac{\pi r_{2}}{Q}\left(\tilde{\zeta}_{m}^{c c}-\tilde{\zeta}_{m}^{s s}\right) & \text { (43) } & \tilde{\zeta}_{c n}=\frac{\pi r_{2}}{Q}\left(\tilde{\zeta}_{n}^{c c}+\tilde{\zeta}_{n}^{s s}\right)
\end{array}
$$

## METHOD OF SOLUTION

We have used the following unknowns for the expression of the flow field
steady component unsteady component
$r \geqq r_{2}\left\{\begin{array}{cc}\Gamma_{s}(s) & \Gamma_{d}^{c}(s), T_{d}^{s}(s) \\ \bar{\zeta}_{c n}, \bar{\zeta}_{s n} & \tilde{\zeta}_{c n}^{+}, \tilde{\zeta}_{s n}^{+}, \tilde{\zeta}_{c m}^{-}, \tilde{\zeta}_{s m}^{-} \\ \bar{A}_{R n}, \bar{A}_{r n} & A_{R n}^{s}, A_{I n}^{s}, A_{R n}^{c}, A_{I n}^{c}\end{array}\right.$

These unknowns are determined by the following relations:

Steady Component
Eq. (24)
B.C. on the volute:

Continuity:
Vorticity:

Eqs.(32), (33)
Eqs.(38), (39)

Unsteady Component
Eqs.(25), (26)
Eqs.(34), (35), (36), (37)
Eqs.(41), (42), (43), (44)

These equations include integrals related to the vortex distribution on the volute surface, which should be evaluated by some appropriate method. Equations (24)-(26) are integral equations for the vortex distributions on the volute surface and could be reduced to simaltaneous linear equations by a singularity method. In the solution of the vortex distributions the "Kutta condition" at the trailing edge should be applied. Strictly speaking the circulation around the volute fluctuates and a free vortex sheet is shed from the trailing edge of the volute. Since we are mainly interested in the forces on the impeller, we will neglect the effect of the free vortex sheet but apply the following conditions at the trailing edge.

Steady part:

$$
\begin{equation*}
\Gamma_{s}\left(S_{R}\right)=0 \tag{45}
\end{equation*}
$$

Unsteady parts:

$$
\begin{align*}
\omega \int_{0}^{S_{\ell}} \Gamma_{d}^{c}(s) d s & =\Gamma_{d}^{s}\left(s_{\ell}\right) \bar{W}\left(S_{\ell}\right) \\
-\omega \int_{0}^{s_{\ell}} \Gamma_{d}^{s}(s) d s & =\Gamma_{d}^{c}\left(S_{\ell}\right) \bar{W}\left(S_{\ell}\right) \tag{47}
\end{align*}
$$

Now we can express all the relations as a set of simultaneous 1 inear equations which can be solved numerically. The steady component may be solved independently of
unsteady component, and the result used in the analysis of the unsteady components.

## UNSTEADY FORCES ON THE IMPELLER

By considering the balance of the momentum of the fluid in the impeller, we can express the forces on the impeller as follows;

Steady component

$$
\begin{align*}
\bar{x}-i \bar{Y}= & -i\left[\oint_{c_{2}} \overline{p_{t}} d \overline{z^{\prime}}-\oint_{c_{1}} \overline{p_{t}} d \overline{z^{\prime}}\right] \\
& +\frac{i p}{2}\left[\oint_{c_{2}}\left(\overline{u^{\prime}}-i \overline{v^{\prime}}\right)^{2} d z^{\prime}-\oint_{c_{1}}\left(\overline{u^{\prime}}-i \overline{v^{\prime}}\right)^{2} d z^{\prime}\right] \tag{48}
\end{align*}
$$

and unsteady component

$$
\begin{align*}
& \left(\tilde{x}_{c}-i \tilde{r}_{c}\right) \cos \omega t+\left(\tilde{x_{s}}-i \tilde{r}_{s}\right) \sin \omega t \\
& =-i\left[\oint_{c_{2}} \tilde{p_{t}} d \overline{z^{\prime}}-\oint_{c_{1}} \tilde{p_{t}} d \overline{z^{\prime}}\right]+\rho \omega^{2} \varepsilon \pi\left(r_{2}^{2}-r_{1}^{2}\right) e^{-i \omega t} \\
& \quad+i p\left[\oint_{c_{2}}\left(\overline{u^{\prime}}-i \overline{v^{\prime}}\right)\left(\tilde{u^{\prime}}-i \tilde{v}^{\prime}\right) a z^{\prime}-\oint_{c_{1}}\left(\overline{u^{\prime}}-i^{\prime} \overline{v^{\prime}}\right)\left(\tilde{u^{\prime}}-i \tilde{v^{\prime}}\right) d z^{\prime}\right] \\
& +i \rho \omega \varepsilon\left[\oint_{c_{2}}\left(\overline{u^{\prime}}-i \bar{v}^{\prime}\right) \cos (\theta-\omega t) r_{2} d \theta-\oint_{c_{1}}\left(\overline{u^{\prime}}-i^{\prime} \overline{v^{\prime}}\right) \cos (\theta-\omega t) r_{i} d \theta\right] \\
& -\rho \frac{d}{d t} \iint v_{r}^{\prime}\left(r_{2}, \theta-\Phi_{(r)}\right) \frac{r_{2}}{r \sin \beta(r)} e^{-i\left(\theta-\frac{\pi}{2}+\beta\right)} r d r d \theta \tag{49}
\end{align*}
$$

The total pressure is given by Equation (3) and the integrals can be evaluated analytically by using the expressions(28-31).

## CONCLUDING REMARKS

The unsteady forces can eventually be expressed in the form of stiffness matrix,

$$
\binom{\tilde{x}}{\tilde{y}}=\left(\begin{array}{ll}
\tilde{x}_{c} / \varepsilon & , \tilde{x}_{s} / \varepsilon  \tag{50}\\
\tilde{y}_{c} / \varepsilon & , \tilde{r}_{s} / \varepsilon
\end{array}\right)\binom{x=\varepsilon \cos \omega t}{y=\varepsilon \sin \omega t}
$$

The time average of the force component in the direction of whirling motion is given by $1 / 2\left(\widetilde{Y}_{c}-\widetilde{X}_{s}\right)$ and the sign of this quantity determines whether or not the fiuid forces have destabilizing effects on the whirling motion. The sum $y_{1 / 2}\left(\widetilde{X}_{c}+\widetilde{Y}_{s}\right)$ gives the time average of the force component in the radial direction and thus the hydrodynamic stiffness. The ultimate goal of the present study is to examine these factors for realistic impeller-volute combinations.

## REFERENCES

1. Chamieh, D. S., Acosta, A. J., Brennen, C. E., Caughey, T. K. and Franz, R., "Experimental Measurements of Hydrodynamic Stiffness Matrices for a Centrifugal Pump Impeller", Proceedings of NASA/ARO Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, NASA CP-2250, pp. 382-398.
2. Chamieh, D. S. "Forces on a Whirling Centrifugal Pump Impeller", Report E249.2, Div. of Eng. \& App1. Sci., Calif. Inst. of Tech., 1983: see also

Chamieh, D., Acosta, A. J., Brennen, C. E. and Caughey, T. K. 1980. "A Brief Note on the Interaction of an Actuator Cascade with a Singularity. Proceedings of NASA/ARO Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery", NASA CP-2133, 1980, pp. 237-248. Which formed the stimulus for the present work.
3. Shoji, H. and Ohashi, H. "F1uid forces on rotating centrifugal impeller with whirling motion", 1st Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A\&M Univ.. NASA Conf. Pub. 2133, (1980).

Shoji, H. and Ohashi, H. "F1uid forces on rotating centrifugal impeller with whirling motion", Japan Soc. Mech. Engrs. (in Japanese), Vol.47, No.1, B(19817), p. 1187.


Figure 1. - Impeller and volute configuration.


[^0]:    * Partial support by the Yamada Science Foundation, Japan and the National Aeronautics and Space Administration under Contract NAS8-33108.
    + Visiting Associate, California Institute of Technology (1983-84).

