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Abstract

Approximate solutions for potential flow past an axisymmetrlc slender body

and past a thin airfoil are calculated using a uniform perturbation method and

then compared with either the exact analytical solution or the solution

obtained using a purely numerical method. The perturbation method is based

upon a representatlon of the disturbance flow as the superposltion of
singularities distributed entirely within the body, while the numerical

(panel) method is based upon a distribution of singularities on the surface of

the body. It is found that the perturbation method provides very good results
for small values of the slenderness ratio and for small angles of attack.

Moreover, for comparable accuracy, the perturbation method is simpler to

implement, requires less computer memory, and generally uses less computation

time than the panel method. In particular, the uniform perturbation method

yields good resolution near the regions of the leading and trailing edges
where other methods fail or require special attention.

Research was supported by the National Aeronautics and Space Administration
under NASA Contract No. NASI-14605 for the first author and under NASA

Contract No. NASI-17070 for the third author while he was in residence at the

Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, VA 23665.
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Introduction

Many different methods have been developed to obtain an approximate

solution to potential flow problems involving fixed finite bodies. For a few

very special cases, analytical methods can be used to obtain an exact solution

to the exterior flow problem. However, in most cases, usually due to the

geometric complexity of the problem, approximate methods must be employed.

Two of the more widely used approximate methods are perturbation methods and

numerical methods. Perturbation methods take advantage of the fact that many

shapes of practical interest are either slender or thin and hence certain

simplifications can be made in the problem formulation. Many numerical

methods are based on the idea of approximating the body as a collection of

"simpler" shapes (e.g., panels) and then satisfying an appropriate boundary

condition on each of these simpler shapes. The primary purpose of this paper

concerns the results of comparing the approximate solutions obtained by a

uniform perturbation method and a standard numerical method (and exact

solutions, where they exist) to a variety of potential flow problems involving

either a slender body of revolution or a thin airfoil.

The perturbation method we shall use is based upon an approach suggested

by Handelsman and Keller [I] and developed more fully by Geer and Keller [2]

and Geer [3,4]. This method represents the part of the potential due to the

body as the superposltlon of potentials due to distributed point

singularities. These singularities lle entirely within the body. The

boundary condition on the surface of the body then leads to an integral

equation for the density of the singularity distribution. This equation can

be solved asymptotically as the slenderness ratio of the body approaches

zero. By demanding that the resulting asymptotic expansion be regular, the
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extent of the singularity distribution within the body can also be

determined. Thus, this method leads to an approximate solution for the flow

field which is uniformly valid over the entire surface of the body, including

the ends (e.g., nose and tail) of the body. Hence, as we shall see, it can

easily be used to compute the surface velocity (and hence the pressure

coefficient) on the body surface.

The numerical method we shall use is commonly referred to as a "panel

method" (see, e.g., Maskew [5]). Here the body is approximated by a finite

number of panels (or line segments, in two dimensions). Then the flow due to

the presence of the body is represented by a distribution of singularities

over these elements, with a polynomial variation of the density of the

distribution over each element. The boundary condition on the body surface

then leads to a system of algebraic equations for the polynomial coefficients.

In Sections 2 and 3, below, the specific problems that we shall consider

are formulated, and the uniform asymptotic solutions are presented. Surface

pressure coefficients computed from the perturbation and numerical methods are

presented in Section 4, while our results are discussed in Section 5.

2. Flow Past an AxlsyNNetrlc Slender Body

In this section and the next, we shall formulate two classes of potential

flow problems that we shall consider in detail. In particular, these include

flow past a slender body of revolution and the flow over a thin two-

dimensional airfoil. For each class of problems, we will summarize the

general uniform perturbation method of solution and present the relevant

formulas. We shall then apply the results to some specific examples.
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Consider the problem of determining the steady potential flow past a

slender body of revolution (see Figure I). We fix a cylindrical coordinate

system (r,8,x) within the body, with the x-axis coinciding with the axis of

the body and the origin at one end of the body, and assume, for simplicity,

that the incident flow is a uniform flow with speed U parallel to the axis

of the body. Then the surface of the body can be described by r = E_(x)

for 0 < x < I. Here € is called the slenderness ratio of the body and is

defined as the ratio of the maximum radius of the body to its length L. The

function S(x), which satisfies max S(x) = I for 0 _ x _ I, is a prescribed

function which describes the shape of the body, with _€2 S(x) being the

cross-sectional area of the body at the station x. Here we have non-

dimensionalized all lengths by referring them to L.

To determine the flow about this body, we represent the part of the

potential due to the body as the superposltion of potentials due to point

sources distributed along the axis of the body and lying entirely inside the

body. Thus, we write the potential _ as

1 8 f(_,E) 1

= u x- f . (2.1)
J_ • (x - _)2 + r

Here f(_,_) is the (unknown) density of the source distribution, while

and 8, which depend upon _ and are also unknown, determine the extent of

the distribution within the body. They satisfy the inequalities

0 < _ < 8 < I; (see Figure I).

The potential defined by (2.1) satisfies Laplace's equation outside the

body and reduces to the uniform flow potential at infinity. The boundary

condition that the normal component of the flow velocity must vanish on the

surface of the body, when used with (2.1), leads to the requirement
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2 ___I cl B
€ S'(x) = 2_ dx f (x - _) f(_,€)d_. (2.2)

a_/ (x - 0 2 + €2 S(x)

Equation (2.2) is an integral equation for the density of the source

distribution, from which f($,_), as well as a and B, can be determined.

For small values of €, the integral operator on the right side of (2.2)

can be expanded asymptotically as a power series in €2 and a power series in
2

g multiplied by log(g2). The coefficients in these series can be expressed

as certain linear operators applied to the density function f(_,_); (see,

e.g., Handelsman and Keller [1] for details). The form of this expansion

suggests that the solution for f(_,_) can be expressed in the form

f(x,€) = €2 fl0(X) + 4 (x) + 4 2 (x) + €6 (x)
f20 log € f21 f30

+ 6 log €2 (x) + c6(log €2)2 f32(x) + O(g8 log €2),f31

(2.3)

where each of the functions fn,m(X) is independent of €. By substituting

(2.3) into the expanded form of (2.2) and equating the coefficients of like

terms in g, the functions fn,m(X) can be determined recursively. In

particular,
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flo(X)=_s'(x),

d ISS" SS" SS'"+ SS''log[4x(l- x)
f20 (x) = - _d-x x 1 - x S(x) ](

l--x

+ S f {S'(x + v) - S'(x)- vS''(x)}v-2 dv
o

x

- sf {s'(x- v)- s'(x)+vS"(x)}v-2
o

f21(x)= _ (SS'')', f30(x) = 0

I I d " [S log[4X(l S- x)]-S]d I d (S2 f[6. ) d-x (f21f31 (x) = d-x (Sf20) --8 d--x

x

S S _)) + S _ {f21(x v) - (x) ++ f21Cx 1 - - f21 vfil(X)}V -2 dv0

ix 1- S _ {f21(x + v) - f21(x) - vf_l(X)}V-2 dv
0

d {S d2.... (SS'')} (2.4)
f32(x) 16 dx dx2

By demanding that each of the coefficient functions fn,m(X) is regular

on 0 < x < I, Handelsman and Keller [I] were able to show that a(€) and

8(E) can be expressed in the form
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2n 2na = a(_:)= a _: , 8 = 8(€)= 1- Z 8 € (2.5)
n=l n nn=l

where the coefficients a and 8 can be expressedin terms of S(x). Inn n

particular,they showed that

Cl _2 Cl c2 4 + Cl(Cl c3 + 2c22) 6 (l S(J)(0_- 16 € 64 _ + 0,_8j, c. = )/j!3

(2.6)

dl 2 dl d2 4 dl(dl d3 + 2d_) 6
8 = 1 - -_ € + i----_€ - 64 € + 0(€8) d = (-I)j s(J)(1)/j,' j

(2.7)

Thus, once S(x) is specified, a and 8 can be determined from (2.6)-

(2.7) and then used in (2.1), along with the expression (2.3) for f(x,€), to

yield the asymptotic expansion of the potential with an accuracy of

0(_ 8 log ¢2).

As applications of these results, we consider two specific examples.

These are:

I) Ellipsoid of revolution, for which

S(x) = 4x(l - x), (Figures 2a,b);

2) "Dumbbell" shaped body, for which

S(x) = 4bx(l - x)[l - bx(l - x)], b > 2, (Figures 3a,b).
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When these specific formulas for S(x) are used in (2.4), (2.6), and (2.7),

and then these results are used in (2.1), an explicit expression for the flow

potential is obtained for each example. In Section 4 we shall use these

formulas to compute the pressure coefficient on the surface of each body and

then compare these results with the pressure coefficient found by using an

exact solution and/or the panel method.

3. Flow Past a ThlnAirfoil

Consider now the problem of determining the steady potential flow about a

thin airfoil which is immersed in an otherwise uniform flow field. We

introduce an x,y-carteslan coordinate system fixed in the airfoil (see Figure

4) and let the surface of the airfoil be described by y = ¢[C(x) ± S(_x)]

for 0 < x < I. (Here we have again nondimenslonalized x and y by

referring all lengths to the chord L of the airfoil.) The parameter € is

called the slenderness parameter of the body, where C(x) and S(x) are

prescribed functions describing the camber line and thickness profile,

respectively, of the airfoil. In particular, for an airfoil that is symmetric

about the x-axis, C(x) = 0.

To determine the flow potential _ about the airfoil, it is convenient to

think of @ as the real part of a complex potential _(z), which is an

analytic function (outside the airfoil) of the complex variable z = x + iy.

Then we represent the part of the potential due to the body as the

superposltion of potentials due to (complex) point sources distributed along

an arc which lles entirely within the body (see Figure 4). Thus, we set



-8-

¢(z) = U{e-IY z 2_ f log(z - _)f(_,€)d_}, (3.1)
O&

where f(_,€) is the (unknown) density of the source distribution while

and 8, which are also unknown, determine the extent of the distribution

within the body. The parameter y represents the angle of the uniform stream

makes with the positive x-axls (i.e., the angle of attack). The real part of

this expression satisfies Laplace's equation outside the airfoil and reduces

to the uniform flow potential at infinity.

The only remaining condition to be satisfied is the vanishing of the

normal component of the velocity on the body's surface. This condition, when

used with (3.1), leads to a pair of coupled integral equations for the

(complex) source density f(_,_), from which _ and 8 can also be

determined. The case of a symmetric airfoil (C(x) = 0) was analyzed by Geer

and Keller [2], while the general case of a cambered airfoil was studied in

detail by Geer [3]. Using the results of these investigators, we find that

for small values of the slenderness parameter _,

f(z,€)= 1
/(8 - z)(z - =) {f0(z) + fl(z)€ + f2(z)c2 + 0(_3)}' (3.2)
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where,

f0(x) = i(_+ (2x - llslny)

1 _ x(l - x) ReLII(f0(x))}Refl(x) = - 2-_ S(x) {2_S'(x)cosy +

T[

rl 2 STImfl(x ) = _l(X) + _l(sin 2 8)d0
w 0

_l(X) =_ {ImL0(f0(x)) - 4_C'(x)cosy}

2 _=sln 2 8

x 2 cos 8- --_ S {ImL (f0(_)) - 4_C'(_)cosy} de
0 sin 2 8 - x. _=x

1 Ix(l-x) {ReLll(f(x))+ ReLl2(f0(x))}Ref2(x) = - 2--__ S(x) I

r2 2 ST {_2 (sln2 slnyImf2(x ) = _2(x) +---- 8) +---_ (S'(0)cos 2 8 + S'(1)sin 2 8)}d8
_ 0

_2(x) = _ {ImL0(fl (x)) + ImL0(f0(x))}

2 _=sln 2 0

x S2 cos 8 {ImL0(fl(_) ) + ImL0(f0(_))} d8 (3.3)
- _ 0 sln2 O - x _=x

and a and B are given by
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1 2 i 3 1 2 4
a = a(€) = _ dI E - _ Cl dl _ - I-_dl(d2 + 4ci)€ + 0(E5)

1 2 i ~ €3 1 ,~2_ 4
8 = B(€) = 1 - T_I _ - _ ci _I +'i-6"_1(_2+ 4ClJE + 0(€5)

= C(3)(0)/j'; d. = S(J)(0)/j'; c. = (-I)j C(J)(1)/j'; d_j = (-1)Js(J)(1)/jIcj " 3 " j "

(3.4)

In (3.3), 3 are certain linear operators which are defined by Geer [3]. The

constants r. are related to the total circulation r(_) about the airfoil3

by r(_) = r0 + rI € + r2 2 + 0(E3). If the airfoil has a sharp trailing

edge at z = I, then Geer [3] has shown that the Kutta condition leads to the

requirement that Imfj(1) = 0 for each j. Hence the constants rj are

determined uniquely for this case from the formulas (3.3). Thus, once C(x)

and S(x) have been specified, they can be used in (3.2)-.(3.4) and then these

results inserted into (3.1) to yield an approximate expression for the flow

potential which has an accuracy of 0(€3).

As applications of these results, we consider two specific examples.

These are the:

I) Symmetric second-order Joukowski airfoil, for which

C(x) = 0 and S(x) = X(I - x)3; (Figures 5a,b).

2) Cambered second-order Joukowski airfoil, for which

C(x) = ax(l - x) and S(x) = x(l - x)3; (Figures 6a-d).
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In the next section, we will use the formulas above to compute the surface

pressure coefficient for these examples, with different angles of attack.

4. Comparison of Perturbation and Numerical Results

In this section we shall compare the results of using the perturbation

formulas of the previous two sections and a low-order panel method code (see,

e.g., Maskew [5]) to compute the pressure coefficient Cp on the surface of a

slender body of revolution or a thin airfoil. These results will also be

compared with those obtained from an exact analytical solution to the flow

problem, when such a solution is available. In particular, using Bernoulli's

equation, we find

C = (2/pU2)(p - p_) = 1 - U-2 l_m 2, (4.1)
p

where p is the density of the fluid, p is the fluid pressure on the body

surface, p_ is the pressure at infinity, and the velocity _ is evaluated

on the surface of the body.

In Figures 2a,b, we compare the pressure coefficient on a slender

ellipsoid of revolution computed from the exact solution (see, e.g., Lamb

[6]), the uniform perturbation solution presented in Section 2, and the panel

method (using 300 panels). The length-to-dlameter ratios for the two examples

considered are 5 and 2.5, which correspond to values of € = 0.I and

= 0.2, respectively. We note that there is in general good agreement

between the two approximate methods of solution and that the uniform

perturbation method gives very good accuracy near the ends of the body, where

non-uniform perturbation methods often fail (see, e.g., Van Dyke [7]).
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Some results for the dumbbell shaped body are presented in Figures 3a,b.

Here the perturbation method is extended only up to terms which are

0(€4), while 300 panels are still used in the panel method. The profile

parameter b is chosen to be 3, while two different values of € are

considered. As the figures indicate, for small values of _, the two methods

agree well. Observe that, for these examples, as well as several other

similar cases we considered, each perturbation solution required only about 2

seconds of computing time, while each panel method computation required 5

seconds (for 180 panels) or 14 seconds (for 300 panels). All computations

were performed on a CDC Cyber 173.

The perturbation and panel method solutions for a symmetric second-order

Joukowskl airfoil are compared for two different values of € and an angle of

attack of 6° in Figures 5a,b. The panel method experiences some difficulty in

resolving the flow field near the leading edge of the airfoil, while the

uniform perturbation method produces a smooth solution. (This difficulty was

even more evident, in other cases we considered, as the angle of attack was

increased or the slenderness ratio decreased). In Table I, the llft

coefficients for several different cases are calculated using these two

methods and compared with the "exact" llft coefficient for this airfoil (see

Karamcheti [8]). From this table, we see that the perturbation method

produces a more accurate lift coefficient for the cases considered than does

the panel method.

The pressure coefficients Cp on a second-order cambered Joukowski

airfoil with two different thlckness-to-chord ratios and two different angles

of attack are presented in Figures 6a-d. The perturbation method is carried

to terms which are 0(€2), while the number of panels is 50 for each case.
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The corresponding llft coefficients are summarized in Table II and compared

with the "exact" solution for these cases. From Table II it is clear that the

panel method produces more accurate results for thicker airfoils, while the

uniform perturbation results are more accurate as the slenderness ratio is

decreased or as the angle of attack is increased. This observation is

consistent with the fact that the panel method again has difficulty in

resolving the flow near the leading edge of the airfoil. For these examples,

about 8 seconds of computing time were required for each perturbation

solution, while about 5 seconds were required for each panel method

computation.

5. Discussion

The examples and results displayed here have shown that the uniform

perturbation method can be used to describe accurately some aerodynamic

characteristics for slender bodies of revolution and for thin airfoils. When

compared with the exact solutions available, the results of several cases

similar to those presented here show that the perturbation solutions tend to

become more accurate as the number of terms in the perturbation expansion is

increased, which suggests that the perturbation solutions are convergent

series, at least up to some maximum value of €.

The uniform perturbation method is designed to provide an accurate

description of the flow field over the entire surface of a smooth slender

body, including the ends of the body. The panel method experiences some

difficulty in a region near the leading edge of a thin airfoil (which could be

corrected, of course, with the addition of more panels in this region or by a
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high-order panel method). This inaccuracy in the flow description leads to a

less accurate prediction of the llft coefficient. For thicker bodies of

revolution or thicker airfoils, this problem is less pronounced and, in fact,

the panel method gives more accurate results than does the (truncated)

perturbation expansion we have used here. Thus, we find that the panel and

uniform perturbation methods nicely complement each other, with the uniform

perturbation solution providing a more accurate description of the flow for

very slender bodies and the panel method being more accurate for thicker

bodies.

In addition to the accuracy considerations just mentioned, it should be

emphasized that the perturbation method often requires less computer storage

and execution time than does the panel method. The primary mathematical

operations involved in the computation of the perturbation solution are simply

some functional evaluations and numerical integrations. Since relatively

little storage is required for these computations, they could be performed on

a microcomputer, although we have made no effort to carry out our calculatlons

in this manner.

Our studies demonstrate that the uniform perturbation method can be used

to provide low-cost, accurate solutions to flow problems involving slender

bodies. Because of their low cost, these solutions could also be used

effectively to provide qualitatively reliable solutions in the initial stages

of design efforts for even thicker bodies of revolution and airfoils, with the

panel method being used only when more accuracy is required.
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Table I: Comparisonof values for the llft coefficientfor a symmetricJoukowsklairfoilwith different

slendernessratiosand angles of attack using the exact, perturbation,and panel methods.

Slenderness Exact Perturbation Panel

C£,pt - C£,ex C£
ratio C£ C£ × 100% ,pn - C£,ex x 100%

,ex ,pt C£,pn C£,ex C£,ex
£

y = 6°

0.01624 0.67278 0.67319 0.63080 0.06 -6.24
i

0.03248 0.68797 0.68961 0.65377 0.24 -4.97
I

0.04872 0.70234 0.70603 0.66472 0.53 -5.36

0.06496 0.71588 0.72245 0.67684 0.92 -5.45

y = 12°

0.01624 1.33819 1.33901 1.23750 0.06 -7.52

0.03248 1.36840 1.37167 1.29823 0.24 -5.13

0.04872 1.39698 1.40432 1.32128 0.53 -5.42

0.06496 1.42391 1.43698 1.34485 0.92 -5.55



Table II: Comparison of values for the llft coefficient for a cambered Joukowski airfoil with different

slenderness ratios and angles of attack using the exact, perturbation, and panel methods.

Slenderness Exact Perturbation Panel

C_'P t - C_'ex x 100% C£'pn - c_'ex x 100%
C_ratio C_,ex C%,pt C£,P n C_,ex ,ex

y = 0°

0.02688 0.15689 0.16101 0.14812 2.62 -5.59

0.05376 0.31268 0.32987 0.30390 5.50 -2.81 i

0.08064 0.46641 0.50658 0.46610 8.61 -0.07 _j

0.10752 0.61721 0.69115 0.63346 11.98 2.63

y = 6°

0.02688 0.82841 0.83332 0.77878 0.59 -5.99

0.05376 0.99734 1.01767 0.95359 2,04 -4.39

0.08064 1.16264 1.20984 1.12378 4.06 -3.34

0.10752 1.32350 1.40981 1.29947 6.52 -1.82

y = 12°

0.02688 1.49084 1.49649 1.38619 0.38 -7.02

0.05376 1.67107 1.69432 1.58984 1.39 -4.86

0.08064 1.84614 1.89984 1.76670 2.91 -4.30

0.10752 2.01528 2.11303 1.94816 4.85 -3.33
ii
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Figure Captions

I. An axially symmetric body immersed in a uniform stream, with an indication

of the coordinate system and the region of the singularity distribution.

2. Pressure coefficient Cp(X) for an ellipsoidof revolutionwith S(x) =

4x(l - x) and (a) _ = 0.i and (b) € = 0.2. The solid llne represents

the perturbationsolution, "o" representsthe exact solution,and

"Ill" representsthe numericalsolution.

3. Pressure coefficient Cp(x) for a dumbbell shaped body with S(x) =

12x(l - x)[l - 3x(l - x)] and (a) € = 0.03 and (b) € = 0.07. The solid

llne represents the perturbation solution and "IZI" represents the

numerical solution. The profile shape of the body is indicated at the

bottom of each figure.

4. A two-dlmenslonalairfoilimmersedin a uniformstream,with an indication

of the coordinate system and the endpolnts (a and 8) of the llne

singularitydistribution.

5. Pressure coefficient Cp(x) for a symmetricJoukowsklairfoilwith

C(x) _ 0 and S(x)= x(l - x)3 and angle of attack y = 6° for

(a) E = 0.01624 and (b) € = 0.04872. The solid llne represents the

perturbationsolutionwhile "IZI" representsthe numericalsolution.
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6. Pressure coefficient Cp(X) calculated from the perturbation solution

(solid llne) and the panel method (I_I) for a cambered second-order

Joukowski airfoil with C(x) = x(l - x), S(x) = x(l - x) 3, and

(a) y = 0°, _ = 0.02688; (b) y = 0°, _ = 0.08064; (c) y = 6° ,

€ = 0.02688; and (d) y = 6° , _ = 0.08064.
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