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aspect ratio, the ratio of wingspan to average chord 

wing chord 

local lift coefficient 

local lift slope 

wing lift coefficient 

complete elliptic integral of the second kind with pammeter, 
k (see eq. (14)) 

perpendicular distance between a vortex line and a point (see 
fig- 2) 

distance from a point in the plane of symmetry t o  the lifting 
line, Jv 

wing semispan 

free-stream velocity 

induced downwash velocity a t  the lifting line; downwash is 
defined as negative 

induced downwash velocity at a point P in the plane of sym- 
metry; downwash is defined as negative 

distance downstream from the lifting line (see fig. 3) 

distance to the right along the wingspan (see fig. 3), also 
the semispan of a differential horseshoe vortex (see fig. 
1)  

integration variable referencing a span location 

distance above the lifting line (see fig. 3)  

angle of attack 
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r 
E 

P 

angle of attack induced at the lifting line, ai = C L / X A R  
for an elliptically loaded wing 

local circulation 

downwash angle, E m w/V; downwash is defined as 
negative 

normalized downwash, € / a i ,  downwash is defined as nega- 
t ive 

normalized downwash integrals (see eqs. (17)) 

dimensionless vertical coordinate, x / s  

dimensionless spanwise coordinate, y/s 

stagger angle (see fig. 3); note that 8, > 0 downstream and 

angles between a vortex line segment endpoint and an ar- 

8, < 0 upstream 

bitrary point (see fig. 2) 

Heuman’s lambda function, tabulated in reference 8 

dimensionless streamwise coordinate, z/s 

complete elliptic integral of the third kind 

dimensionless radius from the lifting line to a point P in tJhe 
plane of symmetry, T / S  

gap angle (see fig. 3); note that is the gap ratio, 
5 = x/s 

angle between the wing tip and the midspan viewed 
from a point P in the plane of symmetry (see fig. 
3) 
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DOWNWASH IN THE PLANE OF SYMMETRY 

OF AN ELLIPTICALLY LOADED WING 

James D. Phillips 

Ames Research Center 

SUMMARY 

A closed-form solution for the downwash in the plane of symmetry 
of an elliptically loaded line is given. This theoretical result is derived 
from Prandtl’s lifting-line theory and assumes that (1) a three-dimensional 
wing can be replaced by a straight lifting line, (2) this line is elliptically 
loaded, and (3) the trailing wake is a flabsheet which does notJ roll up. 
The first assumption is reasonable for distances greater than about 1 
chord from the wing aerodynamic center. The second assumption is 
satisfied by any combination of wing twist, spanwise camber variation, 
or planform that approximates elliptic loading. The third assumption 
is justified only for high-aspect-ratio wings at low lift coefficients and 
downstream distances less than about 1 span from the aerodynamic 
center. 

It is shown, however, that assuming the wake to be fully rolled 
up gives downwash values reasonably close to  those of the flat-sheet 
solution derived in this paper. The wing can therefore be modeled 
as a single horseshoe vortex with the same lift and total circulation 
as the equivalent> elliptically loaded line, and the predicted downwash 
will be a close approximation independent of aspect ratio and lift 
coefficient. 

The flat-sheet equation and the fully rolled up wake equation are both 
one-line formulas that predict the upwash field in front of the wing, as well 
as the downwash field behind it. These formulas are useful for preliminary 
estimates of the complex aerodynamic interaction between two wings (i.e., 
canard, tandcm wing, and conventional aircraft) including thc cffccts of gap 
and stagger. 



INTRODUCTION 

The downwash field that surrounds a wing has been a topic of study 
since the first practical airplane because of its critical effect on longitudinal 
stability. Much of the past research was concerned with determining 
the downwash at the normal location of the horizontal tail on a conven- 
tional aircraft. Unconventional configurations, that is, canards and tandem- 
winged aircraft, allow increased flexibility for the designer but require a 
broader knowledge of the wing downwash field to predict the longitudinal 
stability. 

Most of the past theoretical invest,igat,ions of downwash are based 
on Prandtl’s lifting-line theory, in which the wing is replaced by a 
line of superposed element,al “horseshoe” vortices. The sum of the 
horseshoe vortices is chosen to match the span loading of the wing. 
The span loading, in turn, is a function of planform shape, air- 
foil, and twis t  distribution and, in general, requires the solution of 
an integral equation. The solution is particularly simple if t,hc load- 
ing is elliptical, in which case the downwash is uniform across the 
span. 

Once the span-loading distribution is established, the dow nwadi is 
obtained by integrating over the span the contributions of each elernentl:tl 
horseshoe vortex to the induced velocity at a specified point in sp:tce. 
Only a few special cases of this integral have been solved analytically. 
Exact solutions for elliptic loading have been given for the longitudinal 
axis (y = 0, z = 0) and the latreral (y-z) plane by Glauert (ref. 1, 
pp. 164-166) and others, Silverstein and Katzoff (ref. 2) performed the 
int,egration numerically for various taper ratios, as well as elliptic loading, 
and presented the results in graphical form for use in design. These results 
are only shown, however, for lhe usual posiliou of a horizoulal lail twiiiucl 
a wing. 

This paper presents the exact solution for the downwash in thc en- 
tire plane of symmetry (x-z plane) of an elliptically loaded line. The 
solution is a one-line formula requiring only a calculator and tables 
of elliptic integrals to  apply. It is formulated in terms of intuitive 
geometric angles, providing a mental pic1 ure of the physical sit 1 i ; i t i o r i .  
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This is a valuable feature because significant trends can be seen im- 
mediately. 

Acknowledgment is gratefully made to Dr. K. ‘1. Jones for 
his valuable comments on this paper. Dr. Heinz Erzberger also 
deserves a special note of thanks for his help in translating reference 
7. 

LIFTING-LINE THEORY 

The basic lifting-line theory is described in most elementary texts on 
aeronautics (e.g., ref. 3, pp. 131-136). It is presented here for completeness 
and to introduce a few basic equations which are needed in the next 
section. 

The fundamental idea is to replace a wing of finite span by an infinite 
sum of differential line vortices. According to Helmholtz’s laws, these line 
vortices must be closed loops. Prandtl builds the wing-circulation distribu- 
tion from rectangular-shaped vortex loops he named “horseshoe” vortices 
(see fig. 1). 

Each horseshoe vortex is made up of four line segments forming a closed 
loop. The segment of this loop at  the lifting line is called the bound vortex; 
the sides of the loop, which extend t o  infinity downstream, are called the 
trailing vortices; and the closing segment at infinity is called the starting 
vortex. 

The velocity induced by a differential vortex-line segment at a specified 
point is given by the Biot-Savart law: 

where 53 is the velocity induced by the differential vortex segment, d7; r is 
the circulation around the vortex segment; and P is a position vector from 
the vortex segment to the point of interest. 

Since horseshoe vortices are made solely of straight-line segments, it  
will prove useful to integrate the Biot-Savart law for the velocity induced 
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Figure 1. - Prandtl's lifting line theory. 

by a generic straight-line segment at a point, P : 

-0 r 
I?llpI = -(cos 81 + cos 8 2 )  

47rh 

where k ,  61, and 82 are defined in figure 2. For a semi-infinite vortex 
line segment (such as a trailing vortex), 81 = 5 ,  02 = 0, and 'tup = 
I'/47rh. 

It can be shown that the induced downwash at a point on the span 
depends only on t)he trailing vortex system. Applying the Biot-Savart, 
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Figure 2. - Biot-Savart law for a straight line segment. 

law (eq. (2)) for the trailing vortex system of a differential horseshoe 
vortex (two semi-infinite vortex lines) and integrating across the span, the 
induced velocity and the induced angle of attack (approximately) are given 
by 

Assuming that the flow is locally two dimensional, the section lift coefficient 
at a spanwise location is given by 

In general, cy in equation (4) can also be a function of span; for example, if 
the wing is twisted. 

The circulation at y is related t o  the lift coefficient by the Kutta- 
Joukowsky theorem: 

1 
r(Y) = ~“(Y)C“(Y)V 

where c is the section chord at span location y. 

(5) 

Equations (3)-(5) can be combined into a single integral equation called 
the Prandtl lifting-line equation. The standard solution of this equat.ion for 
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an arbitrary load distribution is a Fourier series - a tedious calculation. 
Prandtl discovered an elegant solution which also produces the minimum 
induced drag for a given span and total lift. This is the case of elliptic 
loading: 

the 

r =4s- cL .dl - (5)” 
T A R  

After substituting equation (6) into equation ( 3 )  and performing 
indicated integration i t  is seen that the induced angle of aktack 

is a constant over the span equal to C L / r A R .  When this result is 
substituted into equation (4), it is seen that the local l i f t  coefficient 
is also a constant along the span. Equation (5) now shows that tlhe 
circulation is only a function of spanwise chord distribution, so that 
a straight, untwisted wing of elliptic planform will give the desired 
lmding. 

The assumptions made are that t>he chord is small relative to the span, 
that  the span is straight, and that the wing loading is symmetric about 
the midpoint. The first assumption implies that the velocity calculation 
is inaccurate very close to the chord. Silverstein et al. (ref. 4, p. 3 )  
show that for the two-dimensional case, the lifting-line approximation is 
very accurate at a distance more than 1 chord length behind the trailing 
edge. It is reasonable to assume this will be true upstream as well, since 
the two-dimensional solution is antisymmetric longitudinally about the span 
line. 

A further assumption is that the trailing vortices extend downstream 
to  infinity as straight lines. This assumption is quite accurate for the 
purpose of calculating the span load-distribution, because the induced 
velocity is determined on the span line. For a downwash calculation 
behind the airfoil, this assumption is less justified, because the vor- 
tex sheet is, in reality, unstable and rolls up into two discrete vortex 
cores. 

Exyerimenha1 invesligalions of dow nwash have beeu only yualilalively 
useful in validating these assumptions because of the difficulty in correcting 
for the effects of wind-tunnel walls. One of the earliest studies was done 
in 1925 by Fage and Simmons (ref. 5 ) ,  who measured the downwash in 
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various lateral planes both in front of and behind a rectangular wing. In 
1936, Muttray (ref. 6) measured the downwash behind both rectangular 
and elliptical wings in the plane of symmetry and compared the results 
with various approximate theories. And in 1938, Silverstein et al. (ref. 
4), in validating thc mcthod used to producc the dcsign charts of rcfcrcncc 
2, measured the downwash in three lateral planes behind a 45.75-ft,-span, 
2:l-tapered wing placed in the full-scale wind tunnel at NASA Langley 
Research Center. The Langley results are qualitative because no wind- 
tunnel correction was attempted. It is demonstrated, however, that the 
rolling up process is far from complete at the normal position of a horizontal 
tail. 

DOWNWASH INTEGRAL 

Once a solution for the Prandtl lifting-line equation is found, that is, 
once Ihe load dislribulion is known, Ihe downwash al  an arbilrary poinl is 
calculated by integrating the Biot-Savart law over the entire vortex field. 
This is the basis for reference 2, which presents downwash charts for use in 
design. In general, the problem is only tractable if it is treated numerically. 
Exact solutions are known for only a few special cases involving elliptic 
loading. 

The assumption of a uniform load distribution, that is, a single horse- 
shoe vortex with an appropriate strength, is often used to approximate the 
downwash because it is simple and spans the entire three-dimensional space. 
The uniform span loading does not, however, go continuously to zero at the 
wing tips as it must for real wings. Fortunately, any physically realizable 
load distribution can be represented as an integral of differential horseshoe 
vortices. 

Applying equation (2)  for a single horseshoe vortex with semispan y at 
a point (2, x) in the plane of symmetry gives 

Note tha t  the origin is at midspan in the plane of symmetry, x is 
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downstream, and x is up in the plane of symmetry. 

For a known loading, I' is replaced by -%dy. Differentiating the el- 
lipt ic loading expression (eq. (6)) gives 

where ai = CL/TAR. 

Defining Z = €/ai  where E m w/V, substituting -%dy from 
equation (8) for I' in equation (7), and integrating over the semispan 
yields 

r 1 

The exact solution of equation (9) is the subject of this paper. 

The solutions for two special cases of equation (9) have been given by 
Glauert and others. The first special case is along the z-axis for which 
equation (9) simplifies to 

By a trigonometric substitution, the solution for equation (10) (ref. 1, p. 
163) is 

Note that in equation (ll), '5 goes to zero for z = hco and unity ( E  = a i )  
for z = 0. 
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The second special case is along the z-axis. Equation (9) simplifies 
t o  

Again, Glauert gives the solution (ref. 1, p. 166): 

where k2 = s 2 / ( x 2  + s2) and E(k )  is the complete elliptic integral of the 
second kind defined by 

x 
d6 

J1- Psin20 
E(k)  = J’ 

0 

Equation (13) shows that the downwash is zero far upstream, twice ai 
far downstream, and &GO at the  lifting line. Relmbold (ref. 7)  has 
pointed out that equation (9) is bounded by equation (13), that is, the 
downwash is maximized along the x-axis. This observation has practical 
consequences in that the destabilizing effects of the downwash are reduced 
if a horizontal tail or canard is placedfar above or far below the main wing 
wake. 

SOLUTION IN THE PLANE OF SYMMETRY 

The downwash integral (eq. (9)) is more easily understood and 
solved in terms of a geometric picture (see fig. 3). The coor- 
dinate system is a right handed one with origin at  the midpoint of a 
lifting line of semispan s; 5 extends downstream; y extends out the 
right wing; and x is positive extending vertically up. Note that z 
and z are in directions opposite to those in their usual definitions for 
flight mechanics. This avoids sign confusion in the following deriva- 
tion. 
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Figure 3. - Lifting line geometry. 

Normalizing the length variables by the semispan s, yields the dimen- 
si o nl e s s quantities 

E = x / s  
rl = Y/S 
( = x/s 
p = r / s  

where r2 = x2 + z 2 .  

The point P ,  at which the downwash is desired, is specified by two 
coordinates, x and z .  Four auxiliary variables are also needed: r is 
the distance from the lifting line to P ;  and QP, 8,, and & loosely 
correspond t o  the familiar Euler angles and are defined by equations 
(16). 

tan$, = p - l  0 5  q I p  5 Tr/2 

tan$, = 5-l - d 2 1 4 p I . r r / 2  

The angle 0, also corresponds to the “angle of stagger” from early biplane 
theory, and t a n &  is also the inverse of the gap ratio, historically an 
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i important parameter for determining the induced drag of biplanes and 
canards. 

The solution for the entire plane of symmetry (eq. (9)) proceeds 
from the idea that the answer must collapse to the z-axis solution (eq. 
(11)) when x = 0 and it must collapse to the x-axis solution (eq. (13)) 
when x = 0. This can be made t o  happen, for example, if equation (9j 
can be separated into three terms, one resembling the z-axis integral (eq. 
(lo)), one resembling the x-axis integral (eq. (12)), and one a residual 
integral which must be zero when either x or x is zero. With this in 
mind, the bracketed part of equation (9) can be rewritten successively 
as 

r 1 

r 1 

r 1 

Breaking out the integrals from equation (9) according to the last three 
terms above yields 
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Equations (17a) and (17c) can be immediately solved because they 
are very similar in form to equations (12) and (lo), respectively. 
First turning to  equation (17a) and noting that the complete ellip- 
tic int,egra,l of the second kind from equa,tion (13) m n  he writken 
in terms of the parameter $p where k = sin@p, the first int>egral 
is 

where from the geometry Z / T  = sin O f ) .  

Equation (17c) is identical to equation (10) and hence the solution is 
the same as that of equation (11) except that it can be rewritten in a simpler 
form using the geometry of figure 3: 

(19) 
- 
€3 = -(1 - lCOS&)) )  

Equation (17b) is more difficult to solve. Substituting equat.ions (15) 
into equation (17b) yields 
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A relatively modern table of elliptic integrals (ref. 8) yields a closed 
form solution. Equation 213.02 of reference 8 (p. 48) gives the solution 
as 

(21) 

where a2 = 1/(1 + c 2 ) ,  k2 = l / (p2 + I ) ,  and I I ( a 2 , k )  is the 
complete elliptic integral of the third kind. The II(a2, I C )  term 
can be evaluated in terms of another tabulated function, Heuman’s 
lambda function, according t o  equation 413.01 of reference 8 (p. 
228): 

where A, is Heuman’s lambda function and 

a2 - k2 J a2(1 - k 2 )  
sin? = 

From equations (15) and (16), a = sin $, and k = sin $,. Substituting 
these into equation (23) and using the geometry of figure 3, one can  
show, surprisingly, that 7 = 8,. Substituting into equation (22) 
yields 

Substituting again into equation (21) yields 

After considerable algebra this simplifies to 

- 
€2 = lcos I * A0 ( B P ,  &)  



Combining equations (18), (19), and (25) gives the complete solu- 
tion 

The complete elliptic integral of the second kind, E($,), and Heuman’s 
lambda function, Ao(B,, ?,bP), can both be found tabulated in reference 8. 
Both functions are slowly changing and, therefore, highly amenable to a 
Taylor series approximation in a region of interest. 

GENERAL CHAFtACTERISTICS OF THE SOLUTION 

The downwash formula just derived (eq. (26)) is significant as 
a theoretical contribution because it is the exact solution for the 
downwash of an elliptical wing planform. It has practical value for 
estimating the downwash of real wings which are generally designed 
with nearly elliptical loading to obtain the benefit of low induced 
drag for a given span and lift. It is also valuable as general design 
knowledge in that the entire downwash field in the plane of symmetry 
can be examined for useful trends that have practical consequences in 
design. 

A few preliminary analytical checks of the solution are appropriate. 
As planned, the solution in the plane of symmetry (eq. (26)) collapses 
to the x-axis solution (eq. (13)) with x = 0 and collapses to the z-axis 
solution (eq. (11))  with x = 0. The solution is symmetric about the x- 
axis and asymmetric about the x-axis as required by equation (9). Along 
the x-axis, the downwash reaches its maximum far-field value of twice the 
induced angle of attack at the lifting line. Above or below the z-axis the 
downwash decreases. These characteristics are all consistent with existing 
theory. 

Figure 4 shows curves of constant normalized downwash (E = €/ai) 
plotted in the plane of symmetry which has been scaled by the semispan. 
The abscissa is the normalized z-direction and the ordinate is the normal- 
ized x-direction. An iterative process using equation (26) has been used to 
generate these curves. 
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F'igure 4. - Constant downwash contours. 

The following general points are illustrated in figure 4. First, all the 
curves eventually pass through the lifting line along the $-axis in a manner 
similar to the downwash field produced by an infinite vortex line perpen- 
dicular to a uniform stream. This follows from the fact that close to the 
lifting line, the downwash field approaches the limit of two-dimensional 
flow. Second, the curve '5 = -2.0 is a boundary between curves that in- 
tersect the positive J-axis and those that do not, indicating again that the 
maximum far-field downwash is twice the induced angle of attack at the 
lifting line. Third, the upwash is considerably smaller than the downwash at 
comparable distances upstream and downstream, respectively. This reflects 
the effect of the trailing vortex system on the region upstream from the 
wing. 
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Figure 5. - Constant gap contours. 

Two important trends affecting design are also evident in figure 4. First, 
in the normal location of a horizontal tail, that is, from = 0.5 t o  [ = 
1.5 and from s = 0 to = *0.5, the downwash is a strong function 
of height and a mild (although not negligible) function of downstream 
distance. To avoid interference it is therefore desirable t o  place a horizontal 
tail as far downstream as possible and as far above or below the x-axis 
as possible. Second, in the upstream region of a close-coupled canard ( e  = -0.5), the upwash is a strong function of both height and upstream 
position. In general, placing a canard closer to the lifting line increases the 
upwash. 

An illuminating way to present the same information contained in the 
prcvious figure is t o  plot downwash (7) vcrsus horizontal position ( e )  with 
curves of constant gap ratio (s), as shown in figure 5. This is the tradi- 
tional presentation because it can be generated directly from the downwash 
equation, in this case, equation (26). 
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Figure 5 illustrates Helmbold’s observation that the dow nwash 
is maximum along the x-axis. This can be seen by noting that 
the curve for 5 = 0 bounds all the other curves. This figure 
also clearly shows the effect of gap ratio on the downwash. For 
a horizontal tail in the normal position ([ = 1.0), a variation in 
gap ratio from 0 to 0.25 results in a downwash reduction of w 
23%. 

The downwash is linearly related to the important longitudinal stability 
parameter, e, so the trends described in this section influence directly the 
static longitudinal stability of airplanes. 

SIMPLE APPROXIMATIONS 

Since the elliptic integrals appearing in the exact solution are such 
slowly changing functions, keeping only a few terms of the Taylor series 
gives excellent results. For example, a Taylor series approximation to the 
complete elliptic integral of t.he second kind about the point & = 7r/4 is 
shown: 

E($p)  m 1.35064 - 0.71196 - Ak - 0.85054 - Ak2 (27) 

where Ak = sin$, - 0.70711. 

Heuman’s lambda function can be approximated by taking a Taylor 
series about the point 8, = O,T& = n/4 and neglecting variations in 

: 

Ao(B,, $I~) [0.40093 + 0.38138 IBPI] - sgn(6) (28)  

whcrc 8, is in radians. Notc that ( is ncgativc upstrcam and positivc 
dow nstream. 

A traditional approximation for the downwash (ref. 6) is a single horse- 
shoe vortex with reduced span and increased a~erage circulation relative to 
elliptic loading such that the total circulation, as well as the total lift, is 
preserved. Since the Cola1 circulation of an elliptic wing is jus1 the midspan 
circulation, graphically, the span loading is rectangular, with the same 
area underneath as that of the elliptic wing and the same height as the 
midspan of the elliptic wing. This occurs with a span ~ / 4  times the elliptic 
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wingspan. Substituting the elliptic midspan circulation from equation (6) 
for r in equation (7), substituting t s  for y in equation (7), and normalizing 
gives 

Assuming no energy losses, the total circulation of an elliptic wing 
is preserved in the fully rolled up vortex sheet. Hence, equation (29) 
describes exactly the far downstream conditions or vanishingly low aspect 
ratio wings or inEnitely large lift coefficients. In fact, this downwash 
model is often used when the wake is substantially rolled up (ref. 9). 
If the wake is only partially rolled up, equation (29) is still used for 
simplicity, but its accuracy under these conditions has not been precisely 
known. 

Selected curves from figure 5 are repeated in Egure 6 in order 
to  compare the exact solution (eq. (26)) with the Taylor series ap- 
proximation (eqs. (26)-(28)) and the fully rolled up wake model 
(eq. (29)). The solid lines in figure 6 represent the exact solu- 
tion, the plus symbols represent the Taylor series approximation, 
and the dashed lines represent the fully rolled up wake approxima- 
tion. 

Both approximations are very accurate in the upwash region. The 
fully rolled up wake model is also an excellent approximation downstream 
(the error is less than 5%) for gaps greater than 0.25. As the 
gap declines from 0.25 to 0, however, the disparity with the flat- 
sheet solution increases until it is about 20% on the x-axis (zero gap). 
In comparison, the Taylor series approximation is excellent in the 
downwash region for small gaps, but it gradually loses accuracy for large 
gaps- 
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EXACT SOLUTION, EQ. (26) 

FULLY ROLLED UP WAKE, EQ. (30) 
TAYLOR SERIES, EQS. (26)-(28) 

I ' ' ' ' l ' ' ~ ' I  

-1.00 -.75 -.50 -.25 0 .25 .50 .75 1.00 1.25 1.50 
1 t  = xts  

Figure 6. - Comparisou of downwash formulas. 

CONCLUDING REMARKS 

A closed-form solution for the downwash in t,he plane of symmetry 
of an elliptically loaded line has been given (eq. The formula 
is derived from Prandtl's lifting-line theory and is based on the same 
assumptions. 

(26)). 

This formula will describe real wing behavior most accurately in the 
downstream region from 1 chord behind the wing trailing edge to 1 span 
behind the lifting line and in the upstream region greater than 1 chord 
forward of the lifting line. The solution is less accurate within 1 chord of 
the lifting line because of the real two-dimensional airfoil distort4ions of the 
flow field, which have been neglected in using the lifting line. The solution 
is also less accurate far downstream because the wake has been assumed to 
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extend downstream as a flat sheet, when in fact it is unstable and gradually 
rolls up into two vortex cores. The rolling up process cannot be neglected 
if the aspect ratio is small (AR < 4) or if the lif t  coefficient is large (C,  > 
1 .O). 

An approximation derived by simply extending the fully rolled 
up elliptic wing wake into the lifting line (eq. (29)), gives results 
within 5% of the flabsheet solution everywhere in the plane of sym- 
metry except downstream and close to the longitudinal (5) axis. The 
discrepancy between the fully rolled up wake equation and the flat- 
sheet solution is about 20% at its greatest and occurs on the x-axis. 
For rough estimates of the downwash, the fully rolled up wake model 
gives acceptable results which are independent of aspect ratio and l i f t  
coefficient. 

Both equations (eqs. (26) and (29)) are simple one-line formulas and 
are therefore useful for preliminary estimates of the downwash. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, California 94035, October 5, 1984 
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