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Abprresh®

Self-excited rotor whirl represents a serious hazard in the
operation of turbomachines. The reported investigation has,
therefore, the objective to measure the lateral forces acting

on the rotor and to determine the characteristic pressure
distribution in the rotor clearance area. A description is
presented of an approach for calculating the leakage flow in

the case of an eccentric rotor position on the basis of empirica
loss coefficients. The results are reported of an experimental
investigation with a turbine stage, taking into account a varia-
tion of the clearance characteristics.
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i TNTRODUCEION Jis

in an eQW¢noew¢ng effort vo glgnificantly raisge the ocubtput of

1
urbines there appear. o an
lated to the

c¥
o

(A Long on rotors
iwn@d. Thigs eu%putwdep@ndent
8 not caused by bearing

B,..»

f selfng@ner@ted vibrati@ng
ingbabillity, but by forces produced ag a conseguence of the
clearance flow generated between rotor and housing [1-4]. The
lopment oFf these Toree

D

3 8 is generally summarized under the
concept of clearance excisation,

cal descwription of the vibravional system is already
[9, 10], for multi-supported shafis
the treatment asgumes knowledge of the support characteristic
the clearance excitation forces. Recently, several imporivan
have been published (for insgtance, [6]) in the area of friction
bearing research; with their help, bearing insgtability (oil whip)

can be substantially avoided by means of constructive measures. In
addition, it is possible to determine system damping, which in a

vibrating turbine shaft iz predominanily caused by the bearings. In

r

ox

otor ingtability due %o clearance
exeivation, the exciting forces are determined almost exclusively
via theoretical statemenss based on Thomes® [1] fundamental
congiderations. Only recently have measurements become available
[5] that allow a reliable estimation of the limiting outpus.
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The clearsnce excitation for
= variabie around the perimeter - that oveura her a deflestion

s between turbine rotor and esesing. Due ta the changing
rance losg, the rotor blades are subjected (o d.ffering /2
peripheral foreces, the resultant of which has an éxeiting

s o
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effeet, for a shafé vibrating in the same ponse as

steges the wovor's peripheral

g very larse, the Liow through the scal

¢ spiral type. Por an cceenbrie wotvor position, the
e!

3G

conscqguence is a pregsure Aistribution that varies along the
"
1w

perimeter = duec to the different flow crogs-gections - which in
the case of banded "buckets® cougiderably magnifies the exeiting

Torees,

The goal of this study is the measurement of the transverse
forgces acting on the roter, as well ag the devermination of the

c A

eristic pressure distribution in the robtor clearvance. In
n, a procedure iz provided with which the elearance Tlow,
d torgional forces, can be calculated for eccentric
sioning, by means of empirical loss coefficients. The
ns the variable clearance thw@ughpz* and the
tribution at the scaling eclearance und

rOLOY POsL
result contal
presggure dig
congideration. This provides the two characiverist
clearance Tflow through which transverse Forces pv
the lateral deflection act on the rotor.

Em o

»
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i
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portional %o



FUNDANENTAL, CONSIDZERATIONS AND STATUS OF RESEARCH /3

N
°

2.1, CGonewral derinition based on a wotor model

The complex configurasion of a turbine wotor can be represenied

Pigure 2.1 Rotor model

ongtant cross-section, provided the subdivisions

=3
[¢]

by sections of
are gufficie nuiy small, The dynamics of each sgection is
deseribed by a system of differential eguations which can be
solved closed, in the linear case. Matrix transfer procedures
are best sulted to the desecription of such elastomechanic
problems. They allow & particularly clear expression of the

Pigure 2.1, above, sh cws 2 simpl
fundamental svudies. ¥ the spa!

z-axis describes the shaft's stauic;a;y rest position. I we
represent the shaft's deformed cenver-1line in a top and side pro-

jection, according to Figure 2.2, below, then we have, for wthe
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Pigure 2.2 Force definition on rotor model

ternal Torces aecting on the rovor arve defined as
e n @f the coowdlnaue The same applles

[
[eto
(o]

0 for external moments, in the Plﬁhuahaﬂd@d gystem chosen.

Assuming small dynamic disp
moments occurring in additi
agssumed to be linear. In terms of
vector X ag a function of the motio

desecribed as follows, in matrix notavions

If we now congider only the foreces I and momenis M acting Ffrom
the outside on the surbine shafi, then the load veetor < and
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Considering the symmetry conditions - applicable beeause of /5
the problem's isgovropy- the forces and moments caused by %

flow will in general be described by the coefficients of the
deflection’ mabtrix and the veloeity mabtriz Ry . The

vhis maveix have the dimensions of

i
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damping constant. For a shaft x

iven by the coordinate system 0 be
inetroduced later, which votates with the v1brational motion.
:Q1 ’q?, 9 .qlrc FQ,I =Qy g ﬂ-%,t
- 9 94 "9 Gqa « Oz Qg -0 @
e Bo-R B R g = by =ty by byfc (2.5
] R P R Pag ba !'3,3 4313, ks

ear
spatial coordinate system x,y in 2 similar menner. In general,
the symmetry conditions expressed above are not sasisfied here,

On the other hand, assuming poinit-bearings, the external moments
vanish, In addition, forces due to the bearings® $tilt as a rule
can be neglecited. The deflection matriz & and the velocity

[+
2

patrix L for the bearing forces then are

3
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The boawdings® characterictic guantivles eore composed of Lour
ppeing end domping consbanbe 5 ] the

t8 resulis ig already avallab

Ie pointed out that in those papers the direstion of
vrobation is defined inversely, with the conseguence thot the
signs must be changed during vhe transfer o the coevdinate

system chosen here.

2.2 Simple rotor stability behavior

In turbiae engineering, the foree G,, described by b
coefficient Ao ig of decisive significance., It acts

perpendicularly to the direction of deviation and for a

'2
i

N
o
-

codirectionally vibrating shaft

(53
@
[0]
6a
o
s
3
@
L'

&c the damping force.
This can incite the system vo seli-generated vibration., Flgure
2.3y below shows, in a derined coordinave system x, ¥ the
interseetion point, displaced by the guantity ¢ with the angle
Vs Tor a shalt ros ing with eangular veloeity w., The bemporal
derivative of the angle U represents the circular Ifrequency W,

of the vibrational movement.

/
V.

¢
Tigure 2.3 Vector diagram for circumpolar vibrations
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Fggufe 2.4 Stability chart for the symmetrical unit-mas
riction bearings. So, = 0.2; b/d = 0.5

atio b/d is kept constanit. Below the
curve the shaft is stable, while above i%
instability begins. The sﬁe@p drop of the rotational rate - ywhich in-

and the bearing's width v
characveristic 1lin

=3
[j-:a
[
ﬂ.—Zn
S
6a

¢reasess with /mk - characierizes instability due the friction
bearing's so-called oll whip.

ntial information regarding the construction of a turbine shait
can be d vived from stability charts of this kind. However, a

(7 tively accurate vibration calculation is possible only when
's geometry heg been defined more accurabtely, by
ion into individual Tields, and once the shafsing's

o ok
o
B—* =3



2.3 Flow-gencrased foreces - Research stabus
then turbine rotors arve mounited in casings, at the non-conbtact
ng clearances of the stator and the rot0L, of necessity
cleazan@o widthe will differ along the circumference. This leads
t0 clearance loss and tangential force differences at the rotor
$0 a reg ul@i ng transverse force at the shaift. In
2l pregsure distribution appears at the
& ree that acts on the
rosor. Tor a vibration calculation, both components - the
transverse foree from clearance loss QS and that from the
pressure distribui

L8
sealing clearances, which generates a

ion QD - must be added.

Q"Qs*Qo. (2.5)

the extent that those forces Q are linear and a funetion of
the deflection e, the constanis g = Q/e of the deflection matrix
of equation (2.3) arve easily determined.

The flow velocity caused by these foreces in the usual turbines
are two owders of magnitude higher than the rotvor's vibration
veloecity. It is for this reagon that forces from the matrix in
tio (2.3) that are proporiional to the veloeity, can g
1ly be neglected.

2¢3,1 Torces from the variable bangential Tforce at the roior
grid

2¢3.1:1, Eccentric vrotor position

jo
AW ]



Kel o

Pirat physical oxplanotion of an oxeisotion Ffowree [1] otavts
from the premise that o turbince robtor as chown i 2
below, will esperier a

Por o swmall 1

t') &

=

5

in Pigurc 2.5,
ence uneoven tangential forees, Tfor a deflection
eal scealing clearance (V¥ = 0), due o the low
16 p@'ipheral foree will be larger, while it

MK

ey at the diametrically opposed

/10

R
1
[

Figure 2.5 Derivation of the clearance excltation forces

The peripheral or tangential force U

i
obtained from the specific work, a

of a turbine stage is
fa
(1]

the throughput, ﬁg and the

iﬂ
tangential wveloecity, u:

U-”'T- ( 2.6 )

The dependence of the internal btangential force U. on the

sealing clearance width can be represented i‘hew by the minimum

work, ag [lhjg or as in [1], by a qua R
1 ve

ne 088, m otsh
effecms can be combined in tvhe btangenbia

=10 sp°
locity lost due ©o

14



Upo® U= L (2.7 )

where ul iz the sangenbial Toree without clearance losses. IFf we
derfine the izentropic bangential fowvee, U_, that would be
ubbﬁ&ﬂ@d wxﬁh a l@ g=frec £low, then the internal and the

well ag the clearance loss can be

@

oY)
ﬁegweuenuod ag force ratios
/11
= L i by 0 ep® ty ¢ 2.3
g U i

Por the local taungential Tforce we thereby obtain the simple
equasion

[y d .
all; ‘Ljﬁ=!£(ﬂu'§v)§- € 2.9)

The invegral of this force along the rotor perimeter yields -
Pigure 2.5 - the forces aecting on the

uging the coordinatves of
tangential efficiency, 0, cancels ous

2.

votor; the constant

5y Ay
ol oo
Qug ==) dliginy = PP Ceon SMEp O, .
% Sag ‘ ( 2,10 )
T u T
Q?.s o me. LosG © ”}"}}j {’sp cos P dq\ . }
) 0

This inbtegral can be solved only if the local clearance loss
along the perimeter of the variable sealing clearance iz known.

There are equations for the dependence of clearance loss on
clearance width in several of the papers comparatively reviewed
by Winser [11]. According to Traupel [14], clearance loss can be
expressed as the ratio of lost work, asp,caused by the sealing
clearance to the available isentropic heat gradient, Ahs,

15



/12

then the clearance loss, g_ , is identical %o equation (2.8),
=)
Pacl

where the tangential Toree, reduced by the clearance eriect
takes the value of equation (2.6).

The stage clearance loss is cowmposed of a loss at the stator

blades, ¢'_ .., and a loss at the rotor blades, "

Sp sp’

(,—‘
£
~l

{
£sp {sp ¥ SS? A 1[‘{5;7 '

It depends primarily on the ratio of the cleavance area, AS , GO
the grid transverse area, A, and on a factor K, which essentially
depends on the design and the inclination of the seal.

A
I

iR

&0 2 & &0 $9° 13 29 o b4
Ar , Af et

Pigure 2.6 Clearance loss coefficlient
("buckets” without shroud band)

16



Por blades or "buckets" without shwroud band, according to Figuve
2.6, above, K' or, regpectively, K", depend only on the angle
Ao, or vespectively, AB, on flow deflection. Por buckebs with
shroud bands and svator bases a dependency resulis on the

o

already menti n@d inelination of the stator, 2&h'ﬁ/®12, or the
=] &

rot0or, ¥es vively, 2Ah" /wga according to Figure 2.7, below.
Here

0 az 00 0c 07 0
l:\h3 Ahs

etre, w‘lz

Figure 2.7 Clearance loss coefficient
("buckets” with shroud band)

we must appropriately use the inclination at thebase of the
blade for Lhe stator, and for the robor that at the blade head.
For labyrinth seals the clearance loss is reduced depending on
the number of c1eafance peaks, z', or respecvively, z". For the
areas, in the general case of a chamber step according to
Pigure 2.5, we shall have

Al=1TdmCS.|ﬂ°(41 A”=Wam\-$:ﬂ/?’g,
A

- ds .

{ i
Asp="’7dns1

17



e thus obtain, for the elearance lLogs,

A K‘ dn u Kn dl. u
§°i’ \/-'.,ml‘&d dm /3’? dh Lu ° (2,132

Consequently, the cleavance loss at the stator and at the rotor

depend lineawly on the clearance width., If we assume -
neglecting compensating flows - that the dependence is
applicable also %o local clearance widihs

= g - econg,
( 2.14)

B§ = Ceos O J

according to Figure 2.5, then we obtain, from equation (2.10)

/14
Qs = 0, \
* T [ S N ég] L 2.15)
Q"'s 27 s EE’ \E gin ey C{m ' \rﬁ Sl“/~5 dm 'I

Because of the direct proportionality between clearance loss and

clearance width, the force venishes in the direction of
deflection.

The clearvance excitation force, QZSg depends linearly on the

eccentricity ¢/1" mentioned, the isentropic tangential Fforce, U_

and the coefficient KZS’ which basically describes the
construction form of the seal.

Ciog
ﬁ?: . 1'(2_5 % , ( 2.16)
N i NI
K n.’!.[ K éﬁ.L S, S ( 2.7 )
2 2 \’é' smo(., dm L \’wsvu:@, Jm ’

In the dimensionless representation of equation (2.16), K2
indicates the slope of the excitation force mentioned, st/Ua,
over the relative eccentricity ¢/l and is therefore veferred i
as clearance excltabtion coefficlent Kog®

18
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In prineinlc, non=lincar eleorance loss cquations could also be
uged fox vhe inbogration of the loeal tangential fowree, such as
thooe eonvained in the 2nd edition of [14]1, for instance. Thic

effoet is discussed in section 4.4.2, in connecebion with a
meagured efficiency distribution. It is shown there that even
with a non-lincar approach for Cap (s), forces can develop thab
depend linearly on the eccenuw¢cluy €, Just asg here.

L

2.3.1.2, Rotor-to=-housing inclination

<
f=o
=
31<]
(o]

n the rotor can also be caused by an inclinatvion
tor with respect %o the housing, if the axial seall
iy

]
effeet of the cleawvaunce ig gignificant. In general, according o
Pigure 2.5, the inclination of the rotor along the shaft’s

bending line is coupled to a certain ecceniricity. I we star

from the premise that the radial clearance width is lawge in
comparison to the axial sealing clearance, then the clearance
loss will be determined only by the axial clearvance. For this
type of consiruction clearance loss equations exist, as in [14],
conforming to Pigure 2.7 that make it possible to calculate the
forces acting on the rotor, which in this case will be due only
$0 the inclination. The local axial clearance of the rotor

Scx™  Bgu= @ COSQ with a _ﬁ%& gao( ( 2.18 )

shroud band towards the housing changes along the perimeber
according to Pigure 2.5, for an inclination of the disge equal to tha
bending angle o. The magnitude of the non-vnilformity a depends
the angle of inclination o, and on the diaaeter d1 of the
seal, The clearance loss is again baken ag linecar W 5
to the ratlio of the seal area and the rotor area,

Ses KQ d L

® o e o= ( 2.18



As was the eage For the radial sgeal, the elearenee logs
gcoerficioils Kq vor the axial wovor geal depends on the alrcady
rererrod o rovor incelination EAn“/w 2 and eon bo bakon from

Plgure 2.9

)

Iq annlogy Go an ececenbrie rojor position, a local tangential
owrce ean be Formed that depends on the elearance loss, Eg@,a

and the ilsentropic vangent ia? foree US (cquation (2.12)). =

Inteogration along the perimeter ylelds the transverse forees

acting on the rotor,

Ql%;r, = D 1
| . " o Ko d j ( 2.20)
Qag = 7 U Sin By dm

/16

In accordonece with ite definition in the deflection matrix, the
foree Q3 has a destabilizing effect on the rotor. It depends
linearly on relative deflection a/l"” and on the isentropic
tawg@nclal forece, and it can be represented by the coecilicien
3 as the slope of the dimensionless exciting foree, over the

rels, e deflection,
% @ K, % W ( 2.21 )
; Ko d
¢ = A R A
e = 7 s Aoy’ ( 2.22 )
The execit

ting Torce due o0 the inclinavion of

be caleculated only for a purely axial e

clearance loss equations given. However, it would be on the sufe

side to consider this effect, in addition to the clearance

excitation 0©@ffieient for a radial secal. TFor a clearance that
1

a
positiom ag shown in Figur@ 2.5, due to the inclination a
non-uniform clearance loss will occur along the perimeter. For

20



shis woacon the inlet turbine stages will be’
cubjeet o greobor omeitation forecs, beeause of Hhe

I ",

falo

tribub!

K?z

2:3.2 DPorees duc o vhe pressure dig on at the sealing

Trutnowsky [15] provides a comprehensive review of the
@ﬂlgulab‘@ﬂu for non-contact seals. While most of the procedures
~ibed there devermine only the vhroughpus of a clearance
iform along the entire perimeter, we are interesved

=
®
E.'.'a E,s.
@
=
cb:;

here primarily in the effects by means of which transverse
forces act on the rovor due to cle: rance Ilow.

Por an ececentric pogition of the vobtor with respeet to the

housing, not only the throughput but also the pressure gradient
along the direction of flow changes with the local clearance

widsvh, Assuming that at the exit the flow will be subjeet %o
atmospheric pressure, a characterisitic pressure distribution /17
ose

will develop along the perimeter, whose maximum value will

coinecide with the narrowest clearvance. This effect was first
described by Lomakin [17] using a smooth cleavance with pure 1y
axial flow. A similar derivation can be found in [18]. Be use

da

of the asgsumption of a purely axial flow withoub cowpenwau%on ab
the perimeter, the pressure drop is linear. IT we apply this to

o

the shroud band of a turbine rotor, as in Pigure 2.8, below, we

«-—-b—w

7 /,;*/227////)7;’1
=512 AR 1
t

stator | {p, | Rotor fp, d

Pigure 2.8 Rotor clearance

lav
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plag)-p, . 1= 2

By =y 1 yg Cofilng - { 2.23 )

The friction coefficient A from pipe hydraulics is assumed
constant, here., In addition, entrance losses and a possible

A

pressure recovery at the exit have been neglected,

The in“@gra“lon of a variable pwe sure variation yields, Tirst,

b 2w b2

W = “jjolp cos g -°jfp(z,(p) cosg v dyp da
0 : d 0

b 2g b 2w (2.2¢)
D" -j[dP Simg - affP(a,lf) sing ¥ dy da,
00 00
/18
Using equation (2.23), we obtain the Forces
ﬁ’
Ui = - (py () 2 dye
3 [t+3 Kb LT ( 2,25 )
Qp = ,@'
The force Q;py because of its negative sign, acts against the
deflection ¢ and at larger pressure differences Py = By = s they

occur, for instance, with boiler feed pumps - have an essential
effect on the system's vibration behavior. Because of a

simplified integration of the pressure variation, this Torce
depends linearly on the eccentwicity, while the dimensions o
clearance d,y b and g occur in some non-linear terms. Since the

<P
&

presgure variation is symmetrical with respect to the
deviation,, the force QQD’ perpendicular to it vanishes.
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gale 38y f@w instanec
Bﬁ@r@ughly invostigated by Stingelin [2?] - £OoNeTAtes @ Pressurc
oximwn ahead garances, Here, 00, QQD Yorees
are developed that ecould initianbe a vibrational system. However,
thoy boecome imporbent only for sufficiently long clearances with
a very small radial clearance width, which in general can no
longer be implemented in theblade channel of a turbomnachine,

O
il

[
)

In turbine stages e large veleclty component in a tangential
directionoccurs ceapeeially ahead of the rotor's seal clearance,
with the consequence that the clearance flow is no longer axial
but develops a diagonal flow. With eccentric rotor

@@giﬁi@ni ng this leads o veriable cross-sections along a stream

&
tube, A problem that can be adap ed to ours was bvreated by
Kicsewebier and Welter [191, who caleulated transverse forces
acting on a conical piston with longit uiinal flow againat it, as
in Pigure 2.9:

=
fnle
U]

gure

With the flow as shown, forces act in the deflection direction
that can cause hydraulic lock in valves, for instance.

I we Ly the basic geometrical velations from [19] %o a /19

...

cylinder eccentrically placed with respeect to the housing, with

e diagowal Tlow againsgt ibt, then the lowest flow will occur
ready beforve the narrowest clearance (¢ = 0), causing a

pressure maximum according to the qualitative representavion in

23



Pigure 2410 (D), below.

Insegrasvion of this pressure distribution along the perimeter
vields, besides the wresbtoring force, also an exei‘iag TOrCe.
Similar conziderations Tfor the flow affected by btorsional forces
and for purely axial flow can also be traneferred to the
labyrinth seals vegularly used in turbines, if one assumes thab
the pressure drop caused by the seal peaks depend on the local
radial clearance width (ef. also section 3.3.1).

Kostyuk [21], however, starts from the premise that at a seal
peak the kinetic energy is compl euely turbulent. Without the
effect of an arrviving torsional flow, under this asaumption
there are no transverse Torceg to aet on the wobor, if it is
digplaced with regard to the housing in a direction parallel %o
the axis. If the shaft is inelined with respect to the housing,
vibration-causing forces are generated, due to the non-uniform
clearance widith in the Tlow direction. Assuming a spiral flow
pattern through the cleavance, which cculd be cauged either by
shaft rotation or an incoming rovational flow, Rosenberg [28]
sudied a labyrinth seal with two peaks.

He obtained the pressure distribution (b) in Fizure 2.10, which
agreed well with his own measurements. But since hewre the flow
line pattern ls fixed, only qualitative statements

may be made about the effect of torgional flow.
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Aeeording vo Alford [20], Cor o lobyrinth coald in which tho
ombroneo eloarance width io ouodlor thon thot ab the omis,
troncverse Lorecs dovolop duc o tho disploeemont cffect of the
vibrosing rotor, whieh con cuzeite the oystom to self-gencrabod
vibroation. Whilc Alford oduits no compengasting Llow in the
labyrinth chambors, uwndewr thooe econditions, Spurk ond Keipew
f21] obtain the opposite 1t by baking this offeect inbo
congcideration.

Hochreuthor [29] pewfox
flow, which starts by solving "’h@ do

8 0f r@%at;@ng D@uﬂdafy con
Lor bovh laminar and vturbulent Tflow, aec
procedure was then widened to include 1

a

]
here, @@mpl@te turbulence oi the kinebtie onergy was agsumed at

2:3:3. Processes at the meridian channel and the clearance
ensrance
If the cleavance w is variable along the perimeter, the
local throughput w vary, as will the tengential elficlency at
the wovor blades of a turbine stage, This was taken into
conzideration in equation (2.7), in section 2.3.1. For consvant
pregsure bla.ing without shroud band, Pilvz [12] investigated
both effeets, by devermining pressure changes in the blad639 in
addition to changes in the local triangle of velocities. Here -
least for blading withouv shroud band - pressure-caused
t on the rotor. With an occasio le gevere
tion of the three=dimensional ulcw, Piltz calculaied
Qll the c@@ffiei@n‘ts for the deflection and velocity matrices in
2.3). However, he showed by means of vibration /21
ns that at leagt for a central rotor arrangenent

a
between the bearings, the additional effects debermined by him

ED
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Tf we sbtart from tho premige thabt desplive loecal veloelity
variations the pereontage weaction iz congtant along the
periphery, even for an cccentrlie wotor poasition, then - in
conbrast o [12] - by inmtroducing empirical clearance loss
coecffiecients, all effeebs that ean cause local variations of the
peripheral force have been btaken Iinto consideration.
Disvegarding 5 i

balancing flows, thig is valid especially alseo for
an efficliency distribution measured as & function of ©
cYai ]

rance widvh, which was used to calculate local

At constant pressure ahead of and behind the vurbine step, a
variation in the percent reaction along the periphery -

ording to seetion &.4.1. - caused by the local clearance
88, 1ls conecelivable. Heve the turbine stage percent reaction
s calculated from the pressure gradient and the turbine's

o
o @
Q

futo  fm=d

throughput. The only quantity variable aTgng the periphery to be
congidered here is the sbtator's clearaunce throughput according
to eguation (4.13). It turns out that i can very subsbtanvially
affect the resulv, if one disregards balancing flows ahead of
the stavor. Thusg, Tor a large local stator clearance, a larger
pressure gradient should be observed at the rotor. This would
digsplace the local stator to rovtor clearance loss ratio, which
could affect the Fforces from the variable btangential or
p@ripheral foree vo very dif;erlng degrees. The pressure
distribution in the sealing clearances ecould be affected also.
However, a variable percent reaction in the blading’s Tlow
channel does not necessarily have to cause compressive forces,
since varying pressure digtributions could cancel each other, in
the case of banded "bucket"-channels.

Sinece the effect of a perecent reaction varying along the

periphery is not yet sufficiently established theoretically, nor
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documented by meaguwcnento, we L1 have bo negleeb it, ab
wepent. It can in addition b asoumod that presgsure diffcrences
idian channel will cancel oub wmueh more roadily due to

©

componsating flows in btangential directlon, than in radial /22
= gleavonces, sinee the relavive cccenbricity - referred

to channel helight - will be gmellor. Only in extreme cases, with

hish tangential veloecities in the meridian chanwncl, compressive

forees will be exerted on long, eyliadrical rotor parts, such as

those observed during flow control in test bturbines [5] with

R

standing blading (i.e., large flow-0ff veloeities).

The influx conditions at the clearance entrance are of great
importance to the development of a pressure distribution in a
radial cleavance. La Roche [23] investigated the effect of a
point of irwvegularity in the side-wall of the bladed flow
channel, betweecn the stavor and the rotor, both theoretically

and experimentally. To begin with, he showed that the off-set
height 4 (s

ee Figure 2.8) is of subsvantial significance to the
co i

(e
initial pressure at the clearance and henece also 1 ts

The caleculations and basic experimentavion were performed by La
Roche for a bidimensional model in whi@h the flow was
perpendicular to the off-get. Apparently an optimum off-set
helight could be found, h@r@, for which the losses would be
minimized., In contrast to the usual construction, it was
characterized by a negavive value for the off-set and a
well-rounded entrance edge. However, transfer to an off-set with
an obligue infiux still appears to be somewhat of a problem,
even though La Roche obtained good agreement with the
bidimensional model, with a2 uniform-pressure bturbine.

Since the overla ppi ng U of the rotor "bucket" height, as
compared to the stator blading, varies ag the loecal wradial
clearance width, for an eccentric rotor position, La Roche's

equations should be included in the calculations of loeal

27



clearance logses., It bturns oub, however, %
strongly dependent on secondary effeets (dis ¢
the rotor bladeg, wall boundary layew at vhe sbtabtor, forim o0f
shroud band edge), which make a relisble applieation 3

hile the off-zet certalinly has an effect, for the above reasons
La Roche's results can not be applied %o this study.

@
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3 CALCULATTION PROCEDURE IPOR THE TRANSVIRSE FORCES AT
TURBINE GRIDS, CAUSED BY THE CLEARANCE vLOV

By introducing the appropriate control surifaces, it is possible
t0 repregent a seal clearance of arbiitrary geometry as a
of contiguous gvream tubes with variable crosg-sections. If we
congider average velocities, at certain reference points i
clearance, then they can be de@crLbed by the continuity
equation, as a function of the local cross-gection. The
throughput and the pressure drop along a stream tube can be
caleculated by meang of the energy equation, using empirical loss
coefficients: the flow directions are detvermined with the aid of
the theorem of momentum, under special consideration for the
torsional effeect at the entrance. The application of energy and
momensum equasions to such gtream tubes thus does not require a
knowledge of the processes inside the flow domain under
consideration. It does, however, assume loss coefficlentvs, to be
determined from lmown empirical laws,

From this view, the separation of clearance flow from the flov
along the meridian channel must be possible; thisg will occur
only if the blade ends are fitted with shroud bands or similar
Teatures. Free-standing “"buckets” or blades, coupled to the loss
of volume, also show losses at the blade ends, caused by the
energy exchange between the clearance flow and the main Tlow.
Por this reason, such construciions shall be precluded, here.
For the same reasons we must establish restrictions for blading
with discontinuous shroud bands, or for stator bobtoms with
balance holes, since the continuity equation of a stream tube
can not be applied in the menner described, due to z pressure
equalizing flow.

In the calculation method below, we study the clearance flow for
a gtationary displacement of the wotor with respect to the
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which would allow the devecrmination of all the
ients for the deviation matrix (2.3). However, because of
» much greater significance to the vibration behavior, we

he

f‘a

i
ere the forces velevant to an eccenbtric /24
the clearance flow to the
always small, we shall
consider the latier independent of the wotor's eccenbriciity, as
a first approximation. In addition, the caleulation method shall
be limited vo cases in which the cleawrance flow may be
congidered incompressible.

e
shall only determine
rotor position. Since the wravio of

main £low in the meridian channel ig

@0 m'

3.1, Definition of the control spaces at the seal clearance

The non-contact seals predominantly used for turbines are shown

7 s/,

*AE A

AN

turbine step

Figure 3.1 Seal clearance at a

in Figure 3.1, above. For reasons of operating safety the
clearance at the radial entrance T and exit A is usuvally much
larger than the radial cleavnce S, which in the newer machines
is faghioned in labyrinth form.

Some constructions show a plain clearance at the robtor, in which
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ing effect can 2lgo be accomplished by an enbrance
(B). We shall consider, ag & general case, the robtor
clearance in Pigure 3.1, where eibther a plain or a labyrinth
clearance can be used at section S. However, bthe ealeulation
procedure chosen will also be applicable o the seal clearance
at the stator, if the corwvesponding radli are used. By /25
appropriate modifications to the boundary conditions, it i
ble %o eliminate the radial entrance or exit, which allows for

Q
o
[}
(@]
N
=
[
o)
©
)
o
]

posal
other areas of application, such as shaft seals of the housing.

The flow processes ab a seal clearance may be consgidered
unidimensional, provided the control spaces can be varied according

the course of the flow lineg. These are described by suppors
reference points which in the entrance and exit lie on constani

<

radiis; in the radial clearance they lie on planes perpendicular to
the axis of rotavion. In the tangential direction the support
points ave variable and are determined by the local angle of the
flow=1ine tangent o the reference line. The variable
cross—~sections of a stream tube are then given by the distances
between neighboring support points on the perimeter and by tho
local clearance width., In this procedure, the flow anzlcs ave
obtained by iteration of the basic eguations for a strcam tubes
they are assumed known, in the following sections.

3.1.1., Location of the support points

The clearance is divided into J stream tubes in the peripheral
direction, as shown in Pigure 3.2, below, where the selection of

o

their reference points is arbitrary, since the sitream tube's width
or ccrvain calculation cases it
may be appropriate to arrange the support points locally closcry %o

0
the perimeter, here we have established a uniform subdivision on

is also defined, thereby. While fo

E-ﬂn
)

the radius »E of the entrance. The support points located on th
radius have the subscript E Eyo being characterized by the subs rirt

2, s

k in the periphral direction. With the constant step width
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Pigure 3.3 Locabtion of support points in the flow direetion



bpgyy = 2T (k= 1.
({)E"'l & ? (] }’)
10 suppor s polints at the cntrance are determined by vthe angle at

Peap™ PEap-r ¥ A‘?E‘:,k? (k=20 k)

/27
Starving with these support point loecations the renaining points
in the flow direction are determined using only the local flow
ig reagon, together with the angle at the center,
wp in the flow direction the corresponding distances, Ay - more
precisely determined in section 3.1.,2. = also change

The clearvance (T, S and A) iz divided respectively into nE, nS
and nA support poiuts, in the flow direction, as shown in Figure
3.3, above, characterized by the subscript i. Using the
peripheral angle | as an example, the complete indexing is shown
for the radial clearance S. We have left it out whenever there
is no possibility of confusion. If we require the support points
to liec on a flow line, the tangents to the flow lines are given
together with the corresponding flow angles. These can be
approximated by straight line segments, if appropriate
agsumpiions are made regarding the intersection of two
consecutive tangents.

If we subdivide the radial entrance B of radius rp to rg into nE
support points, as in Figure 3.4, below, then at constant step
width,

fve -1l
nE -1

PPN

Arg =

/28
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Pigure 3.4

2
q &Y

&

Ty ® it 2 L qun('i’s-n %) y (i=2,...n8)

are fixed. With kmown Tflow angles O s the location of the

support points is then determined by the peripheral angles

Aﬂ: ﬂ"s
_t o " § = Ct ol 3.
11 OB [ FIRY t N elq Feptp T v, S TELE Y (5:2)

(4'. -5,... nE) (k= 1,.--} )

For the angular composition shown in Pigure 3.4, this equation
is valid only as an approximation, asgsuming small step width,

Arx,

In radial clearances; according to Figure 3.5, below, the same
guations are used for plain clearances. However, in order to
obtain a better comparison with measurements, a variable
subdivision of the support points wag chosen. If the peripheral
angles remain unchanged as the flow moves around the corners,
then we have, for all support points k at the beginning of the
radial clearance

(954.!( - (?EHE'K
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Tox a labyrinth, support points eon bo derinod only immed
o remends & e - n Qe o
at vhe peak, clnec no ugesul aggumpbions regawding & velo

distribubion con be made in the chombe
the welatior  "» bosween the cupport point locsbion and
a ionid 8

& % (%)
angles abt the ~ 20k acquire particular signiflicance. Starting
with the lagt -'ab EnE,k of the cnbrance, it iz aszcumed,
according to .. e 3.6, above, that the Llow in the Lirst
chamber becom” - Gurbulent, following o path at the perimeter of
the labyrin.h chowber that iz proportlonal vo the height h of
the chawmber cnd o Bhe flow angles at the end of the radial
entrance.

D847 Penpht ‘%}' etg ohg oy + b <bg otg,

] { 5 1 W 4k

According to thisg, as in the case of the smooth clearanece, the

o

£low 1ln@ iz composed of straight line segments, where the point
by

the Tflow lines can be changed by means

of the

the weighting factor 0 <8 <1, which in Pigure 3.6 is drawn Tor
g = 0050

o At + .
Psip™ Psiqn ¥ ' [0 go et sy gy, G by gl € 30

In the radial exit, the peripheral angles can be caleulated in
1 i

the same menner as in the envtrancc. I
precedes the exit, than as a Lirst
no change in the peripheral angle at the corner to the ex

& smooth radia
@

QAs = Wousk 1

while in a labyrinth the width of the last chamber mush s

nto congideration:
AE:\S '
it OPO A -
+ cf-‘ d% ShS‘k

‘{)Aﬁk = ({)5 Bk
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approximation there will be



veripheral angles we shalld have, in analogy to

o
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Thug, the pasth £ ll@W@d by the fluid from the clearance entrance
5 A cermined only by local flow angles and the
reference lines. Obviouzly, campllca@ed
clearance Torms can also be gtudied in this manner, provided an
lationship can be found between bthe Tflow angles ab
ints and the peripheral angles. Move precise

¥ pecially in the case of labyrinth seals - can be
made only when it becomes possible to obtain empirical
information from flow lines rendered vigible.

’

3.1.2. Calculation of the control surlfaces /31

In order to determine the local flow cross-sections, some
;ions have o be made regarding the corresponding width of

o

2,
ts
the stream tube, raAp. If, in agreement with Pigure 3.7, below,

y % Mel

: (B0 k.
q),‘ e ik

o

Pigure 3.7 Determination eof channel widith

we place the lateral Limit of the control space between two
support points, then we shall have, taking into consideraition

b
the definition of the peripheral angle as shown in Figure 3.2
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(%, 27 945 * +2m)
(‘?i,,kw = Giud ) (k2 i) ( 3.6 )

Ligpg 21 ~ Qiies) »

>
-t>
Ll
x>
3
pof> pol> e

1 arance widths remain consstan

[0]

peripheral angle ¢ and the eccentricity, e. To reduce the
(ke

xit Spo while the vradlal clearance ig dependent on both uhe
e

Tormal

gtructure, we desisted at this point from also including an

inclination of the rotor with respect to the housing. Because of
B
L

the bending line of the vibrating bturbine shaft, the
inclinations in the domain of the steps ave small, in any

event.
Por this reason we may negleet the effect, at vthis point.
The local radial clearance widith according to Figure 3.2 can be
satisfactorily appro i ated by
§ =8 -eesy
/32
where it iz assumed that at a support point w, k& that width will
corregpond to the average value of Awl i Por a2 sufficiently
2

narrow subdivision at the perimeter, this approximasion ha
effect on the final result, in comparison to an exact

integration. Thus we have, Tor the local surifaces of all st

tubes,
AEA;,u = Peig Ye Dleyy S
- y g - € €08 (e ;
As,;,k Mg % Dogy (8- oesipld,

Pojy = pomsy, Ty Baig B e
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The conbraction cocfliclionts n foﬁmeo@ howe moke 4% poosible

8
plamn clooronces and turbulent Llow with p = 1; wo shall bogin
by asouming thot the roforonec cvoss-sectlon iz completely
£illed by the stream; Tor labyrinth scals, Neumonn's [24]

meagured valucs ean be used. At congvans seal peak width 4, the
effcetive Tlow crogs-section deecrveases with increcasing radial
cloaraonee width g, as shown in Figure 3.8.
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Pigure 3.8 Contraction ecoeffTicients (from [24])

Aececording vo i, taking the stream contraction into aeccount, a
cleavance that is variable along the perimeter becomes somewhab
more uniform. It wemains t0 be established, however, whether

this contrzetion coefficlient is irrvestrictedly applicable also

50 a seal peak with a diagonal flow through it.

3.2 Basic stveam tube equations /33

&

An essent advantage of the decomposition into individual
atream tubes ig that the basic equationg of fluid flow mechaniecs
can be satisfied unidimensionally for every control space.

g.:a
g_a
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i mekes 1% posgible &
labyrinth theory, as well ag the

neiple, one could algo caleulate ecompressibl
gtream tube, using procedures already known [15
context of this sbudy assumes inecomprossible £l
parsicularly permigsible, counsidering the relatively Low
pregsure drop end Maech numbers ¥a < 0.5 ot the clearances
considerecd, espeeially that of the wrobor.

3.2.1. Boundary conditions a

cp;a

clearance entry and exis
The pressures and velocities caused in the blade stream must be
known immediately at the clearance entrance and exit. Sterting
from these conditions, the throughput of each stream tube will
result from the losses in the clearance. Once the average
cross-gection ealeulations have been performed for & turbine
step (ef. seevion 4.4,1,), it can be generally assumed that the
£low will obey the potential vortex law. Through it we obtain,
from a tangential component Com at velocity C av a raGius v

&l e §
m
he tangential component c, at radius r:

i

CM L Cum rm °
I we further assume that the axial veloecity ¢ sin o is constant
along the radius, then we have

C SR = Cp Sin ot .

et the density be uniform throughout the channel; we can then
pply the energy equation

L
2}

P4 O
Crg czlmt g

/3

It iz thus possible to calculate the velocity ¢, the pressure p

L

and the angle of flow o at a radius r.



. " 2’

Q ,2’ 2
Pﬂﬂwfm[ cm], (5.8)
§ = ma,s'nf?fi‘&m@%mg.

As a Tirgt appzozimhuL@ vhis yields the pressures and
velocities before the clearance, at the wadil rp O the entrance

lle may now assumne that av the clearance entrance, according to
Pigure 3.3,a flow line exigts that separatez the mass stream
flowing through the stream tube from the main flow. Thereby the
clearance throughput is no longer determined only by the static
pressure drop, but also by the energy of the incoming

velocities, whose Llmpulse determined the flow direction insgide
he clearance. By the same token, shearing forces due to mixed

%
friction at the separating flow line could act on the clearance
£low, which can be neglecied here, however, in comparison to the
incoming impulse., The effect of an overlapping in La Roche's
senge (ef, seection 2.3.3.) shall be neglected, at this point.
But ould be described generally by mersng of the loss
coefficients vo be introduced later.

fmlo

At the exit, the clearance flow becomes mixsd with the meridian
channel flow; here, because of the differences in velocity,
mizxed friction forces from the main Tlow will act on the
clearance’s stream tubes. It is conceivable that during this
process part of the kinetic energy of either the clearance flow
or main flow is converted into pressure. However, according +o
the transverse pressure equation of flow mechanics (ef. [16]),
it can be assgumed - for most seal consgtructions - that the

xiting clearance Tflow will be subject to the static pressure

¢

®

behind the clearance,

hi



The pr@@@quu deseribed above for the elearanee cmvrance and /35
exit are expressed below in cnergy and impulse cguations. To
thiz end we mugt Lirvet introduce formal coerfficlients Tor the

sure losg and incowing impulsc, whose magnit 1
4,

ety
examined more closely only in section 3.3.

3:2:2, Continuity equation

For each support point i the continuliy equation can be
satisfied with the throughput of stream tub@ k. It may be
assumed that in the cross-gsection, perpendicularly to the flow

direction A; oLﬂUo . there is an average velocliy, since in
Qu

]

equation (3. 7) we already introduced contraction coefficients
M: 4. Ghat take into account a variable velocity distribution
&gl

within the effective flow cross-section. Therefore the

W _ 'ﬂ.'ly
b)k 9 A ‘:‘lk Sinot bk

can be calculated Tor all support points in the clearances T, S
and A, from the throughpub mk of the gtvream tube and at constant
density.

3:.2:.3. Energy equation

In cach stream tube, the energy equations can be set up Trom one
support point vo the next. According to section 3.2. we must
digtinguish here between three basic types of conirol spaces,
which are summarized in Figure 3.9, below., The pressure losses
caused by friction against the channel walls or by velocity
vortexing can be assumed to be proportional to the kinetic
energy of the flow, with a loss coefficient I,

42



2 6. ( 5.0 )

Depending on the defindtion in the energy cquation, this
pregsure loss can occur ahead of ox behind the weference point
at which the average velocity ig w_.

Plain clearance, Labyrinth. Elbow

Pigure 3.9 Control spaces in a stream tube

The control spaces were selected such that the velocities atb
locations T and II could be determined with the continuity
equation, from the local surfaces and flow angles. The tobval
pressure loss occurring in the conbtrol space is composed of two

portions, proportional to the kinetic energy of the entrance and

exit velocity. Hence the energy equation is

P A2
3T tTY ng) = %‘- v S uf (14§5)
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Iy

e loss coerfficients ¢ deponrd essentially on the losal
clearance form and the lengeh of the stream tube under
consideration. They awe digcussed in more detall in seection 3.5.
For a plain radial clearance, ascording %o Pigure 3.5, two
eighboring conbtrol spaces will have loss coefficients of the
same mezgnivude ahecad and behind a support point, because the

are of @qual length duc vo the composition of the

=3
=
[o]

=
o]

a9

pn
=
4z}

o)

flow line. Hence we hav

S2i ™ S14um, (am1,.0=1). ( 3.12 )
This equation can alsc be used ag an approximation for the
cleavrance in the radial entrance and exit, as in PFigure 3.4. In
a labyrinth, the loss coefrficient Ty in energy equation (3.11)

describes the portion of kinetic enewrgy that is conserved due 1o
incomplete voritexing. Cry degcribes the entrance loss caused by
the Tlow towards the peak. However, since losses are smaller
during flow accelerasion than they ave for flow revardation, in
a labyrinth we can generally set Cpr T 0,

With a diagonal or transverse flow around a corner, as in Figure
3.8, the determination of the loss coefficients i i
problematic. Here we can define coefficients z” and c¢ Tor the
pressure losses, caused by the normal, or respectively, the

vengential velocity componenvs. The energy equation then becomes

% 4 2 [z B 2 1=
=§-‘3+°2j”1 [,“‘“‘“!“ §7) + coso (»IB] (33 )

O R !

The above deseription makes a simpler estimate of the pressure
loss at a covner possible; for r? = Cw we obtain the same
relationship of equation (3.11), in which the entire pressure
loss in the control room is divided into inflow and oubflow



veloeity componenss.

ith the general ene

degeribe the pre

Nm
wu

Sy equations
Figle) dﬂ@:p (sece Tab

(3.11) and 3.13) we ecan
1o

r_-

i
5

3.1, below) along the

TABLE 3.1 Unergy equations for the stream tube
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support points az a funeh i@n of the stream tube 8 h*@url ub,
the loecal flow cross-seetions and angles, and the empirleally
determined pregsure loss coefiicilents. TFor the angles we
introduced the transformation

4
pre ol 14 Gtgzﬁé

we shall need later. The relationships of the

1 fific
for smooth clearances in accordance with equation (3.12) is also
tro i,

taken into consideration. Introducing the control magnitude
/i
£, =1 Plain clearance
¢ =0 . ( 3.14 )
L Labyrinth (g7y=0).

the equations given can be applied also ©o a labyrinth with a
logs-free afflux to the seal peak. In general the loss
coefficients contain the subseript of the support point under
consideration; a complete compilation is presented in Table 3.5.
By addition of all the energy equations in Table 3.1, we obtain
a single equation that allows us to determine the throughput of
a stream tube as a function of the toval pressure differential
available, provided the areas, angles and loss coefficients are
mown. Since the kinetic energy (velocity energy) of the
tangential components before and after the clearance have no
effect on the wvhroughput (ef. section 3.2.6.), we define the
total pressure loss without that porition:

Apg = p=~pa + %—c’é sin‘et (1= o) ~ % e sino, (1 ~fen )

( 3.15)

/40
The throughput equation then is of the form
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bpg = mg:g?é cofing Ub@éjg? + %éi@%“‘g&)

BT LB { 3.6 )
N 2.
Y Lgl traded

s

e

fal
&

&

m
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However, sinee the angles are also ion of the throughpub

- ag we ghall gee in the Tollowing section - zome special
section 3.2.5.) must still be applied %o

congideratior
these caleula
pressure dig

seal clearance

(see
ong. Accordingly, Table 3.1 provides the entire
bution through all support pointg 1 e

8
& 8
a'c
BE

a
i
L
s
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3.2.4, Momentum eguation

The change in a momentum entering and leaving a control surface
ig equal to the sum of all external forces acting on the control
space. If the momentum change is to be calculated in this manner,
the external forces have t0 be sufficiently known. On a conbrol
pace as shown in Pigure 3.9 there act - disregsrding
sravitational and centrifugal Torces - compressive foveces at the
imits as well as supporiting forces due %o friction against
channel walls, Applying the momentum theorem perpendicularly to
the entrance and exit surlaces is unfavorable for the control

= 09 i’:‘)

space selected, since it requires knowledge of the pressures
acting on the end planes AI and A. 11’ from the energy eguation.
If the momentum theorem is applied in th@ tangential direction,
then these compressive forces are eliminated. Then only the much
smaller forces acting on the lateral 1 mits of the stweam tube
musv be determined by iteration from a pressure distribution
along the perimeter.

f

T we bake into consideration variable radil at the entrance and
s

I~

2

exit of a co ol space; as in Pigure 3.9, then the momentum

b7
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cquilibrium for the fowees acting at the support

¢

T D 5

-—

317 )
had ‘15&&03&1“ ?ESI Cgﬂ&ﬁ S@g

The first term convalins the changes in torsgional forces from
entrance I to exit 11, where the differing radili have an effeect
only in cleavances with a radial flow direction. The next term
refers to the compressive and SUPPOY

"

orting forces effective at the

o
en@rry vovt@x1nw act against the flow directvion, in a fivst
approximation. Por the momentum equation above it must be azsumed
that no moments are exerved on the control space due vo the
forces acting on it, which ig plausible if we take into
conzideration the impulse Torces normal to the peripheral
direction.

From congiderations based on a ilmple control space, it can be
reagsoned that frictional forces ag well as those that balan

the flow during vortexing, must be proporiional to the
throughput and the velocity defined as reference veloeity in the
energy equation., Thus, by means of coefficienits 7T we can in
general encompass the supporit forces

Sm:hwm'g ( 3.18 )

that are active due to wall friction. The magnitude of these
impulse loss coefficients T is determined in section 3.3 in
connection with the pressure loss coefficients ¢.

The compressive forces P acting on the conbtrol space are
determined from clearance geometry and the pressure
distribution. Hence, the calculation of the compressive forces

48
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ig poseible only when the prossure disgbribubion in all sbtrec
tubes has beon determined. The variation of the p
vhe porimeter can be represented at loeations 1 by means

Touvricr sewries

P4) = G+ Qa4 0y 082¢ k.. + Gy COSMY

) 13 + ( 3!19 )
+ byding + bysin2p +... + by, sinmy .
From J known pressures P34 in a support pl i and the
§ b

corregponding peripheral angles wi g @ maximumn of m = (j/2)-1
| It

coerficients can be determined for the funcition po(W), for
insvance by a least squares £it method. However, since due
vhelr iterative determination (section 3.5.) the pressures
not given exactly, a curve=Citting with Tfewer coefficients
lead to betitor convergence of the calculation procedure,

especially Tor labyrinths.

5

m

o
!
=

According to Pigure 3.10, the resulting tangential compressive

¥y

Pigure 3.10 Compressive forces acting on the control space



force P iz cowmposced of the Lfowveos P_ and Pb’ acving Lrowm both

gldes on the frec portions of the gbtream tube. To ©

added the supporting Toree St’ exerved on the fluid

congequence of the channel curvature. For a simple eca

of these forces it iz assumed vhat the pregsure Aistrib
2

f=So

the variable clearance v
over the width Az., For a sniooth

atvain an exact MOTHtWOﬂ with sufi
support points in the flow direction
because of the unknown pressgure dl@tribution ingide the chamber,
no more precise considerationg are possible. With a variable

ath of & suppory plane i are constant
¢

clearance width

Sy =h + s =e cosy

which takes into congideration the height of the labyrinth
chamber, the individual forces can be determined across the
width Az.

% = Az gﬂ(‘?ﬂ} P(‘(’a’ 3
Pi» Az gﬁ“?b) pley o { 3.20)

D (o b
S = Aflj 95 o) dy = dz efP(‘v) sing deg .
Pa d‘? Po

/A3
By introducing the coefficients I and bm of the pressure
distribution (3.19), these Forces can be calculated within the
prescribed interval w 0 wb in the control space. The
determined integrals occurring Tfor the support force St are of
the form
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¢
qu €os k@ sin @ dp,

o

jb 89 x¢p P sing ng,

o3

Their solution is generally possible, with the usually tabulated
Tormuias, for any number of coefficients and shall be agsumed
lnown, here. The resuliting vangential compressive foree acting
on the control space now is
/4

Pix = 43; { (h+s) [ plga) - pige) |

= @[@5% Plel ~ cos Py P(‘Pb\] ( 3.21)
T ply) sinp dip } :
Ka bk

It can be shown that if we assume p(y) = constant, the resulting
compressive force vanishes. In a labyrinth the effect of the
compressive forces increases with increasing chamber height and
for variable radial clearance widths is dependent on the local
gradient ds/dy. However, the sum of all the compressive forces
along the perimeter must be zero. For the radial entrance E and

)]

0]

xit A the calculation performed above for the compressive

b

oreces acting on the free portion of the control space is much
impler, since the supportive forces S (3.20) vanish, because
T the constant clearance width.

O@

Onece all external Torces in the impulse moment equation (3.18)
have been calculated, that equation can be used %o calculate the
flow angles at a support point II, if that angle is known for
the immediately preceding support point I. Since at the entrance
the flow angle is given by the main flow in the meridian
channel, in conformance to Figure 3.3, the angles at all other
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support points can be caleulated. Using continulty cquation
(3.9), we obtaln the systom oF cquations of Table 3.2 fox the
angular changes along the stream tube k. The impulse losa
coefficients 7 are indexed hewe in a menner similar to that of

AE«'»« e 4= 554'
Cég XE i A ToZ ety ®gy B
Ei TEiea +Sﬁ364

* &A&A (P o +Pi+4) ‘:ﬂ

e 1+ ?Eiaq

Afm 1- {5 A
261 LTSES ot Qq 1
cf%oa51 e Tt € Mg g e 1. {w CE 5
g
As Ssi Q Asi :
G S 144 2 [Hi M’S’ : L1 o+ 3 FS)‘“\ <
+g At A g Lgs:w - ! n 4+f!.SS|oa f U:.-,
AA 1- {SA e AM
ctg o = = = ctg X g ——
CRC I N R A
Anie 1y A= £ ) <
ety Ola s, il -—-§—* chq ety 3
AAQYMM 1 j“l’m :
g AA'H N ) -
+1l;i4+"‘- B’H . + %ioq s
§iea Tane <
N = ? L
cla Zay= G %as * G Pa Run <
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the cloorance oxris, Bhe flow ongle of the last support loeation
inercasos, due $0 the mixed frietvion foreo RM,’ whoge mognisude

ig devermined in scetion F.9.4. in conncetion with the loss
coorTicionts.

1% can be inforred direetly from the momentum cquations tvhat /46
for a reduevlon of the erogs-sectional arcag A, frow one suppors
point to the next, tvhe flow gle mugt increase, Beecause of

ax
fri@ti@n ox vortexing, T > 0, of the veleoeity energy a
nal Tforee iz obtained also for const&nt

3.2.5. Throughput caleculation

oict = A. [-m e e S
9 ik ik e €08 g by, e Cik ( 5.22)

Here, the coefficlents b indicate the sngular changes due to the
support forces, while the coefficients ¢ reflect the effeect of
external compressive forces. Based on the impulse equations in
Table 3.2, these coefficients were calculaited for all the
suppors pointe in a stream tube, as shown in Table 3.3.

eguation (3.22) iz replaced in the energy equation in Table
3,1, an equas or the calculation of thz

12t in comparison to equation (3.16) contains a
comblnarlon of the coefficients mentioned above, instead of the

angle s

s,..-
f=to
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o for Tiow onglc eoleulosions from (3.22)

LB 3.3 Coofficiond
1= {es :
bE'1 4e gwa ng * @
[ 4“5@«' § b@ 191 1 T
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Bivs Yoiug Te fiioa o Ca Cei ey g VE.M%M
4= fge b 1
ba = a.) C, G Sa - .,
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weted very simllarly to caech other and can

Yhe gumg S ave consbmv
be cimply weprosonbed using the formad in Table ot

/48
PABLE 3.4 Sums o caleulate throushpubt with equation (3.23)
2 ] T
[ Swg (.it;, Bdsa Sos
Ty Z z 2
9 Aaq ied Agi v Af;mﬂ
0G4 %
ol Y Ss,m §sa
I CR At A v |t o
fig, 5 Si §ire $us
2 i 2
gj),s Ad g/’m‘u EWA
P o+ A% + AF
Af, =N Adrs iwa
e o b/ 1= /.. L y:.-. bz .
Qb 55 withsvg; ~ Yea 5: Si Ai AL
Sue® Sy witn: Yy o2becep Y m2b0s; Y 20k <
: B 2 a8 -l
Se® S with: Yym cei YT s Yt
g
Sy = fie oo * ; (SE; e Keuﬁe,;m) * fes Yeue
Mbeg
& % ) (s )« ¢
S D (56 Yt s ) i o
1«{\-
¢ L
* §£s ym * Z (jn;. V:u * fnin yxmo) * jwa Haa
Aty
By combining the ene:my and momentum: equations, the throughput is
now given by a single equation, readily solved by iteration. It
is possible in p:v:incipleg however, to Tirst calculate the /}j-:g_
angles

from Table 3.2 and then the throughput using equation
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(3.16), OF course, in that ease the ealeulations requircd
inerecase considerably, depending on the magnitude of the
vorgional forces ab uhe enbrance, However, the undewlying
agsumption in throughput caleulations according to the above
equation is a kunowledge of the loecal Tlow erosg-

iose coefficients, which can be obtained by iteration from the
course of the Lflow linsg

E..a

3.2.,6., Digcussion of the basic equations using = simple
glearance shape

A dimensionless deseription of the basic equations
tube ig possible only if the boundary conditiong ah
b

®
B O
fe

behind the clearance are eliminated, while retaining the effect
of the seal geometry, Since as will be shown later, the loss
coefrficients introduced depend on the local flow angle and
Reynold's number, a complete similarity can not be atvained for
different initial pressures and velocities

The total pressure differenvial from egquzation (3.15) is chosen
as the reference magnitude, which besides the stavic pressure
difference contains only the axial componenits of the velocities
ahead of and behind the clearance. To describe the torsional
forces, the dynamic pressure of the tangential component of the
corresponding velocity is related to this total pressure
differentials

T 3.24 )
C. - ) (
- L‘a
o2 2.
Cx, _3 Cp 05”4y (325
A LE

While the magnitudes included above are independent of the
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eloarance Lorm, o roreorence surface must bo dofined Tor the

(BN
throushpus

fow 28 58, . ,(3J93
/50
Tor a cenbral robtor position, let 8y be the smallest clearance
width at o radius rp. ¥rom the pressure drop App we ean now
desermine a throughput,
g = Ao ¥ 2g tpp ( 3.27)

which ecorregponds to a meximum value, if we start
premise that only the veloeity energy at vhe sma 6
crogs=-seetion AB iz completely turbulent. We thus obtain a
reference magnitude to judge the guality of the seal., On the
other hand, with the introduction of the weference area
mentioned,; we can plot the vafiable throughput mk of the
stream pipe, as a funcition of the seal clearance's perimeter. To
obtain a simple description of a stream tube’s basic equatvionsg,
we shall neglecet here the compressive forces at the surfaces of
the control space, which appears permissible at least for smooth
cleaveances (ef. seection 3.6). IFf we Turthermore consider a flow
not arfecved by mixed friction forces at the exit, then in
equation (3.23) the sums Sb and Sbc are eliminated. With the
reference magnitudes introduced earlier, we now have for the

throughput
X
LI (e [ﬁ"i(g‘i‘ -S,] - C; (1-¢%) ( 3.28 )
W “
B S, A
g g

Since the sums 5, and Sb in Table 3.4 are quite large, we shall
show the esgenu121 relationships with the example of a labyrinth
with n sealing peaks and without radial entrance or exit. Here
we need congider only the coefficients Lom and EbE of the

veloeity ahead of the clearance, as well as the presgsure loss
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3,

and impulse loss eocfficlients g, or respectively, ¢, at the
peaks. We thus have the Tollowing conditiong:

i=h

'nE* 0‘ nA DD,’

AEQS ASq 2 Ad ) Al\mu AS,G 2 An 9

Y o © -

§ e = S?&e “ fue =0, S:A = Sun 8 £ fun & &y

Sen = §fn = 1.

/5%

Por the coefficients of Table 3.3 we now have

b51 - ‘1"@@{}), i
bsyag = (1= {eel Tﬂ;(hg.\, (i=2,.n),
s

From this we obtain the sums of Table 3.4,

where for 1 = 1 the product above takes the value

-”- (1 b) -1

U=q 3

IT we take the dependence on the peripheral angle into account,
described by the subscript of the stream tube k, then we have,
using equation (3.28), the referrved throughpub

b 10 G {003 S (s ] 0-57)]
g ; (gt'k %‘k) o { 5.29)
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The Stru@ture of the egquation ig maintained even if we vake into
£icients defined in the provious
» more general elearvance Torms. In this case, Just
and the denominatvor will become

, a

G tion we assume equally sized Llow
cross-gections at all peaks, then the throughput - for complete
vortexing of the veloecity energy - will be proporitional to 1//Mm
in the lmown manner, where n is the number of seal peaks. /52
Assuming equal total pressure differeniials, a decrease in
throughput could occur due to an afflux affected by torsional
foreces, if the expression in the rounded bracket of equation
(3.29) becomes less than zero. For this, the relationship
between the coefficients ¢ and T -~ which will be discussed in
more detail in section 3.3.2., - is of primary importance.

The local flow angles can be determined,; in the example chosen,
at an arbitrary support point 1 >x >n in sitream tube k, from
Table 3.2

N Hemh

cly Ry = CECQSGKE =.=- A gca) W {1- Svk\ ( 3.30 )

In a2 similar menner it is possible to calculate local pressures
in the clearance from the differences for location x,k in

-

AZL

0 Rl R T T P
- 3 i 1+ g ot t ety
Px,k PA+ Zg Z(Sb A;, b) - X s ( 3.31)
b X k

With the throughput (3.29) and the flow angles above it is now
possible to describe the pressure distribution only in terms of
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loss cocefficicents and the loeal suvrfaces. Ag a gpeelal case, and
as ghall be shown yet (ef. equation (3.49)), we can assume a
dependence of the momentum lose coefficients T on the pressure
loss coefficients ¢, of the Torm

- 2 & R
-wh= 1-¢ and (1-fel = 1-¢; s
In this manner the throughput would be independent of the
magnisude of the relative afflux energy Cg, and we obtain, from
equation (3.29),

=3.
x~

(3.32)

1
m - ARy
B 22(3“ Z%k)

/53

Under these assumptions, the flow angles calculated above (3.30)
can be described very simply as a function of the face areas A
of the control spaces and the loss coefficients, for a .ocation

X
=

» 2 xf’ 1] \
d’%zogx‘k = (¢ Ax,k (1=g(fa) W ““So‘k)z %'ék . (3.33)
V=9 (2] by

According to this equation, for equal surfaces, with increasing
torsional effects at the entrance and larger pressure 1loss
coefficients, there will be smaller flow angles in the
clearance. Along the cleavanc: (x>1), however, with complete
vortexing (g=1) a purely axial flow will be achieved, with
ctg a =0, Pressure at the support points can be rendered in a
dimensionless manner with equations (3.31) to (3.33)
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4
- =53 + L, he,
'PR'K = —?A - /\h’,k g Ahk

o . ( 3.34 )
bps P
Pl "lk

il

Here the effect of

recognized,; since now it ig limited %o changes in the local
surfaces (3.7), which depending on the course of the flow lines
(3.3) are a function of the angles (3.33). It can be shown,
however, that for stream pipesg with decreasing cross-sections

w0
£

O

®

gional influx can no longer be dirveectly

there is a pressure increase, compared to those in which the
crogsg-gections increase in the flow direction. If, for an
eccentrically positioned rotor, we svart from vhe premise thatb
the flow through the clearance proceeds in the same directlion
snywhere along the perimeter, then there will be a higher
pressure ahead of the narrowest clearance than behind it, due to
the surface ratios. For the rest, equation (3.3%) applies to any
clearance form, provided the local flow cross-sections and loss
coefTicients are known., This equation is hence particularly well
suived to qualitative studies unaffected by a balancing flow
(ef. mection 2.3.2.)

If one assumes that the flow through the clearance is purely
axial, then for equal radial clearance widths, the
cross-sections along a stream tube become constant, and we /gi
obtain the pressure disgtribuition

Pak™ Pa -1+ = Gik

( 3.35 )

For constant voritexing coefficients ¢, there hence will be no
pressure differences along the perimetver even for eccenbric
rotor positions. However, 1f the pressure loss coefficient ig
inversely proportional to the clearance width - as in the plain
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to describe flow processes within the
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r angular changes aeccoxrding to the momentum
shooreim. Prom the corresponding reference veloeities it

ficionts, while the seccond digploys the magnitudes
)

f=o

(=]
=2

possible to readily recognize the gignificance of the individual
subseripts, in conjunction with the location designations shown

Below we shall debtermine the presgure loss coefficients ¢ along
the stream tube with equations from the literature, while the
momentur loss coefficients T can be determined only by means of
analogy consgiderations. Since the welation between these two
magnitudes is very essential to the throughput of the stream
tube, an addivional condition at the clearance entrance must be
satizgfied, which establishes the relation between the incoming
veloelty energy and the entrance momenium (ef. section 3.3.2.3.)

/56

3:3.1 Pressure loss coelfficients
F3e3e1lel. Plain clearance

The loss coefficlent ¢, already introduced for the energy
equation (ef. equation 3.10), can be determined - in the case of
a plain clearance - according to the laws of hydraulics: from

the lengih 1, the hitdraulic diameter Qdef and the tube's
friction coefficient A. According to [16], the hydraulic
ameve

is defined as the ratio of four times the flow cross-section to
the wetted perimeter, and corresponds here to twice the
clearance width. The tube's friction coefficient depends on the
tube wall roughness and on Reynold'’s number

Re = =

p:
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ally smoobth walls, measgured values os
ef. Truckenbrodt [16]) can be uvsed., At tho seal

€0
\ﬂ\nminur
fatst

A déé‘“‘ ;\\

t zzll \ \\@zu!em
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Pigure 3.11 Tube friction coedf ient

©fic
hydraulically smooth walls

clearances in turbine statvors, we shall assume here, withoutv
restrictions, the calculation procedure for turbulent /57
flow. Thus we have, for the friction coefficient in von Karmean's
form

ff s 20 lg(Refd) - 10. ( 3.36 )

Since the flow lines in the clearance can be represented
sectionally by straight lines, the flow paths 1 can be
represented (see Figure 3.12, below) as a funciion of the flow
angle and the distance a to the reference line. We then

obtain, for the loss coefficients in the case of plain

clearances
a
o, = A{Rel =
g,k (Rel 8 snetyy, !
Entrance: 53 gy 3 a® pry



) 9 8 cACY e ¢ . a
Radial clearvangcos T8 5 0cosyy bR b

b A e

Pigure 3.12 Tor the caleulation of loss coefficients
in a plain clearance

/58

t was asgsumed that both channel

{20

In the considerations above
walls were abt rest. In owder to take into consideration the
modified pre~sure lossg Tor rotating channel walls, we start from
the premise - as we did before - that the velocities w and their
directions o represent average values across the clearance.
Thus, the relative motion will then affect only the dirvection of
the stream tube and the pressure drop. The resistance forees -

which in a friction bearing, for instance, ~ause the
characteristic pressure build-up ahead of the narrowest

clearance - are disrvegarded here, because of "¢ considerations
in section 2.3.2.

According to Pigure 3.13, below, at the wall rotating with a
vangenitlal velocity u, the relative velocity v will exist, as
opposed to the absolute velocity at a fixed wall, w. If we
congider only a wetted surface of the clearance; then the
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Pigure 3.13 7Velocitlies ¢ ring channel wall rotation

hydraulic diameter becomes dhydw = U g, Accordingly, the

friction coefficient moving along the fixed wall from I to II
will be only half that of eguation (3.36). At the wrotabing
surface, the fluid traverses the pavth from I to II' at relative
velocity v and suffers the pressure drop
2 ‘

»} m Y “"f}gw?;l;:@” .

o ™ 2 U3 sinf
in the process, as a Tirst approximation.
IT we assume an avevage friction coefficient A for the pressure
loss of both clearance suvriaces, then the total pregsure loss -
using the definition in equation (3.10) - will be /59

, 1 ‘ e U
ga“ig(“%‘(’%@ ) { 3.37 )

The coefficient £ to be used for the pressure loss at a fixed
channel wall iz that of equation (3.36). The loecal relaisive
velocities v and thelr angles B are easily calculated, from the
geometry in Pigure 3.13, as a function of the absclute vel@city ﬁ

s angle o and the btangential velocity u. Ab leagt for flows with
a strong torsional effeet, the eguaitioc:i. above will provide an
estbimate of the modified pressure loss



Tho procosoes taking place in o labyrinth chamber with incomplete
vorgesxing of uho veloeitics wowe Investigoted in debail by Groddeelk

=%

ion bebtwoen the £luid
the seal peak and that at rest in the chamber,
neo accouns the Triction againsgt the Tixed channel
wall, the impulee equation was satisfied wita the stipulation that

[ikels
[261. Uaing an oxpregsion for the mixzoed friect
e

i)

E)

the prosegure :wmalined constant during vorbtexing. By means of a

friction eoefdiciont A, - which conbaing both the wall friction and
o=

vhe mizxed friction - it ig possible to caleulate the veloelty

reduced along the length i in the chamber,

[',,IK L) wl N

1**&%%

as a function o1 the velocliiy w, at the preceding peak. Taking
this residual veloclty into account, the energy equation becomes

Uitk the definition of equation (3.11), we obitain Groddeck's loss

goefficient
2
-t
S Ve ng s i { 338 )
/69
By applying the impulse eguation normally to the flow, Groddeck
pendency on the pressure increase in the

alac cbbalins a de v &
labyrinth chamber, due to the broadening of the stream upon
leaving the peak. This causes an additionnl inecrease in the

¥
)

throughput, which according to Groddeck, however, can be
neglecved in most practical cases. The effset of wall robvation
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vhe eage of the
wwWever, sinee a
ion and those due

could be handled by Groddeek’
plain clearancce. Ve shall disrag&r@ it howo,
goparation betweon the logsern eaused by Lrie
0 vortexing is posgible onld : {
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gous consideration, Neumeann [24] took into wccount -
pbiric labyrinth - the portion of flow energy, (which in
contrast to a true labyrinth is retained) Ffor which the veloclity
energy is completely turbulent. When he 1g1ied it o a seal
with a number 3 of pealks, he obtained a so-called excess
pregoure factor, which can be de@@ribed by means of the loss
coefficient ¢, defined in equation (3.10):

For a large number of seal peaks 2 - o, according vo [24] this
excess presgsure ractor is a linear fun.sion of the rabio between
clearance width and distance & of the peaks

kg = 14w,

where the proportionality factor m can be determined from
comparavive studies between diopiric and true labyrinths. We
then obtain as loss coefficient for a seal peak,

[=so

1 2
- . ( 3.39 )
H (1+m%) :

This pressure loss coefficient after Neumann is shown in Figure
3.14, below, in comparison to Groddeck's equation (see equation
(3.38)). With the ratio /g, both equation: . a function only

of the seal's geometry, while at least for 1. hydraulically /61
smooth tube there is always the additional influence of the
Reynolds number, For the resistance coefficient AL’ Groddeck
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Pigure 3. lb Loss coefficient for a labyrinth seal
__ after Neumann [24]; === awt Groddeck [26]

gives a value of 0.1. Neumenn, using Egli's method (ef. also
[15]) finds a proportionality factor of m = 16.63 from his own

caleulations [25], it is m = 8.9. At swall clearance widths g or
egpectively, large distances i between the seal peaks, the
imltung value ¢ = 1 is attalned, corresponding to complete
vorvexing. Bguationg of this kind can be used also, as
approximations, for flow affecied by torsional forces, if
ingtead of the chamber width we use the length of the local flow
lines in accowrdance with Figure 3.12. Using a local cleavance

7idth 8 at a seal peak, according to [24] the pressure loss
¢

[

coefTicient for a labyrinth will be
1
m A?m/SchszM,
Hence, a more marked vortexing of the velocity is achieved for
small Tlow angles.

/62
3:3¢1.3. Enbrance, bend and exit losses
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Aecording 0 Pigure 3.3, the flow changes ecouwse Four Himes,

perpendicularly to the weferonce edges. While at vhe cnbrance
and the exit the flow through the turbine gbators is of

Parel

mportance to the loss coefficlientis defined here, at the Llow
avound edges in the radial elearance (bend loss) only the local
seometry can be of significance.

futo

If we agsume that at the clearance enbrance the availa
veloclisy energy is {fu 1gy uged, vhen the loss ceeA?iel@n%S will
be taken as cfy C%E 0 (ef. equation (3.50)). 8,

must take an entrance losg into account, relative to the
velocity at the Tirst support plane. Since the tangenvial
components does nect change direction in space, we can set the
losg coefficient c%E = 0, while the loss coefficient for the
normal component ig roximately gwr = 0,2,
although much larger values are also possible. In prineiple,
loss coefficients could occur here that are dependent on, say,
clearance throughput ow, according vto section 2.3.3., on local

overlapping.

]

£

o
03]
@
5
©
=2
ci
(o]
[y
®
£
=]
g

If swo plain clearvances follow one another, then we can start by
applying the bend losses from tube hydraulics. It must be
remembered though, that the flow around such a2 bend ig diagonal
and additionally, that it can show very variable entrance and
exit surfaces., However, with the energy equation given in
(3.15), the possibility exists to consider separately the losses
in tangential and in normal direction; here the toval pressure
lozs a% a bend can be expressed as a function of influx and
cubflow velocities. The pressure losses caused by the peripheral
or tangential component of the velocity can be disregarded as zV
= 0, following the same considerations as earlier. This means
that if the control space's entrance and exit surfaces ave
equal, the peripheral velocity is fully maintained. Considering
only the normal component, we can use conventional bend losses,
although according to [16] these strongly depend on the
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congtruction form. o

uge congbanb values g

the efifeet of variable su
zima

carances, we eould

+0, ab the periphery, where /;2

cc eharacteristics can be deseribed
3 »

[

a2t leacht approximately by o corresponding subdivision into local
influx and outflow velocities.,

If a labyrinth seal follows a radial entrance, then the veloeity
i

vorbexing at support loeation Eﬂﬁ can be expressed in a manner
Gttt

similar vo that used for a seal peak. I we assume the pessure

loss coefficients to be the same for the bangential and the

&
Ges= §fs = €25

then, in analogy to equation (3.40), we should have

1

Se r ) ( 3.61)

»m
1e Mg 5 -ewsQecy

%X

In addition, it would be possible here to provide loss
coefficients Cam for the entrance loss at the first peak.
However, with ggE = ;gE = 0 we ghall have to assume that the
presgure loss occurring here is negligible compared to the
vortexing of the flow-off velocity at support locaision E T An
analogous procedure iz possible if a plain seal (outlet) AOllOW@
a labyrinth seal, In this case we describe the vortexing at the
lagts peak by

fea= G ™ Ess

where the coefficient CSA is to be calculated using equation
(3.40). With CAS = CKS = 0, any loss at the entrance o the
radial exit can be neglected, once again.
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Behind the scal eleawvance, the flow in the wmeridian channcl
transfers no velocity energy (QCA = 0) o the elearancc Llow.

Henee the gtatic pressure of the main stream will K

the exiting flow. Under certain condivions, which depend very
strongly on the geometry of the clearance exitv, a povrtion of /64
the exiting flow energy can be vransformed into pressure. This is
taken into account by means of exit losses CWA = Z%A < i, which

very significantly afifeet the pressure distribution within the
clearance. In the normel case, however, with CWA = 1, we have %o
agsume that the veloeity is completely turbulent, av the exit.

m{w = wy) o+ 91A1°PEAE' S =0
and vthe energy equation
! 1.2 1.2 L
EFI“Pﬁ)§ =gV g Y Pvy

we obtain, considering a constant flow cross-section Ap = Aps =
A sin o, the frictional force

g"Pvﬁ

72



"
3

tion of the pressure loss

o

5 8 Lune

A differaer

f‘.) ,_,

t derivation iz possible, using the losgs-cnerzy b
Trom vhe deerease in the gpecific kinetie energy p (l/p)

0
0] Of K G
multiplied by the mass inslde the stream tube under cons &derab¢0n,

Since ©hiz loss-work must, in turn, be equal to tho producth
besween the Trictional force and the ¢
obtain the same result above. Using the cont
(3.9) and the pressure loss from equation (3,10
the frictional force

« 9
s WY 5
S 4 ( 3.42)

at any arbitrary support point., A comparigon with the expression
chosen for eguation (3.18) provides a simple
between the impulse loss coefficient 7 an
coefFicient ¢ arfter equation (3.36)

= 4
ﬁﬁ =7 §Qh° ( 3.43)

it iz assumed here, however, that both channel walls are at

2 ..

rest. The suppori force generated by the friction against the

rosabing wall is determined similarly to the previous
derivation, from a stream tube with an ineclination angle B8,

So = Pone B = £V %E = Asmﬁ ( 3.04 )
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: 0 e

by the angle o - are desecribed by means of cguation (32.18), in
the impulse equations for the btangential direction. The above
frietional force on the robtating part, however, according to
Pigure 3.13 acts at the support point abt an angle B. In order to
determine an impulse loss coefficient CP which covregponds to
definition (3.18) at both channel walls, we must hence introduce
a correction factor. As a function of the pregsure loss
coefficient ¢ Tor two walls at rest (equation (3.36)) we then
obtain

§R"ZT§ (1+ & 2L ). ( 5.45 )

Por large tangential velocities and small torsional effeect, the
iterative consideration of any rotation, using vthe impulse loss
coefficient above, can fall for numerical reasons. In
calculations for such cases, the frictional force from eguaticn
(3.44) would have to be introduced directly in the impulse
equation.,

/66
3:3.2.2, Considerations based on the energy egquation

Especially in the application to flow around bends, we may
assume - certainly for a central votor position - that in the
tangential direction there is no pressure loss, but merely a
decrease in that velocity component. Consequently, the energy
equation (3.16) can be divided into two partial equations, for
the pressure loss in normal direction and the velocity decrease
in tangential direction.

i

)] _ R R 2 2 .2 2
'»§’(P1“"Pnb = 7 v sin un(1+§n} - 3 vy sin “t(1°§1)1
2

0 - %wicosﬁml(wg%) - 12’“’1: cosoqy {163 ).



: ¥ t ag the impulse
if external compressive forees are n@gl@cved,

{ 3.47 )

nships can also be applicd to a plain clearance,

coefficients - yields more precise resulss, there. Inereasing
the number of support locationg, Tor the same clearance length,
the flow pathe in a control space will be shoriter, and henee the
ure loss coefficients will be smaller. Test calculations
show that using equation (3.47), the number of support locations
has no noticeable effect provided ¢ < 1 is maintained. In
convrast, this is not valid for equation (3.43), obtained from &
ginplitied description, on a straight stream tube. Nevertheless,

1 lead to the same resuli, provided the pressure loss
coefficients are sufficiently small.

"d

3¢3.2:3. Considerations on a labyrinth clearance /67

The support forces that cause a decrease in the torsional effect in
a labyrinth have already been taken into consideration by impulse
equation 3.17). Since the afflux from the labyrinth chamber to an
immediately subsequent seal peak was agsumed to occur without
logses, the support force acting on the entire control space (of.
Pigure 3.9) can be determined by a consideration of only the
processes of velocity energy vortexing inside the chamber. If it is
b ere

18

in a labyrinth chamber asg that in Figure 3.15 the
to the turbulence of veloelty w., then the

I’

&
gure change due
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Figure 3,15 Direction change in
the labyrinth chamber

residual veloclity w

x Can be determined by the energy equation

2 2
% wp (1-¢g) = %WK

independently of the pressure loss coefficient . Eliminating the
chamber velocity, the impulse equations in the tangential direction
and perpendicularly to it will be - provided that for a concentric
rotor position and constant chamber pressure we disrvegard the
compressive forces on the conirol space's surfaces -

on

i WL[(-ﬂso(I—CDSnx%\H-S!] ngco.s og = 0,
i vy [ o Sin oty Vo ] = § gin oty = 0.

The angle Che depends on the processes in the labyrinth chamber and
can be determined precisely only from measured flow line courses.
It is posgsible to determine - depending on this angle - the
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ca e mends 8. 3 e E e & s e Q
supporting force ¥ and ibs angle ag, /68

Ly cee €05 tp = 006 N = £y
3% 7 T o= sinog Y= ¢p L ( 3.48 )

§ e ﬁq;yf.{'ﬁcg 1;11;§1- cas{ong =) 4‘(4"’;'1) ’

Since impulse equation (3.17) already inelndes the assumption
%)

that the support foree works against the velocliiy Wy av the seal
pealk, it is necessary vo introduce a corrvection factor y thab
will take into account the redirection of flow inside the

Py o

1
labyrinsh chamber. With the definition of the support force by
equation (3 18) and the direction established in equation
g the impulse equation for the bangential direction,

Cam
W
E-—B
~J
A
=
2
B
[
Q

impulse loss coefficients

8
o
o’
ﬁ'
E-m
<
=
®

- cos O .
su 1~gd1«§ where g - EE??’ ( 3.49)

According to Figure 3.14, for v >1 the stream tube would be
redirected in a peripheral direction, Tfor instance, through
rotation of the channel walls; for v <1, larger afflux angles %o
the next seal peak would be attained. The labtter is conceivable
if the vortexing of the tangential component were enhanced, for
ingtance by building special devices, such as crossbhars, into
the labyrinth chambers. On the one hand, this would improve

turbulence within the labyrinth cheamber. On the other hand, in
this manner the velocity becomes only partially turbulent, which

corresponds to redirection without pressure loss. This effect is
more thoroughly studied in section 3.6, using a calculation

example .

For a total loss of the veloecity energy ¢ = 1, equation (3.49)
lways provides, with impulse equation (3.17) - independently of
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the corrvection Factor v - « Llow that is normal to the nexs seal
peak; in conbrasgsht, without wedireevion and without veloelity
vurbulence (v = 1, ¢ = 0) the same Tlow angle as that as the
previous peak will be %eo@aued. Thug, tvhe offe

redirection facvor introduced inecreases with lower turbulence
coefficients r. Tor the usual seal consiructions h@wever, iv /69
should be v = 1; then the game impulse losgs £
obtained ag was found from energy conside fationsg in Bh@
previous section.

Figure 3.16, below, shows the effect of the redireetion Ffactowr
on a gtream tube. For the game arfflux angle and the same
velocitles at the seal peaks, we calculated the outflow angle

and the magnitude and direction of support force 8, Tfrom Bhe

ansﬁfoo

Figure 3.16 Stream tube changes due to the
constant y (z=0.33 ag=200; A A 4)

above relationships. Due 0 redireetion within the chamber, the
stream tube is changed considerably. However, as a Tirst
approximation we shall agsume that the flow-line cours

=Y
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ﬂ.:a

strietly speaking valid enly for v = 1 - can be calculated ag
oublined in zeetion 3Jel.1. D velocity

surbulence, the outflow ongle always be@@mes 1arg©r and Jdepends
divection v. Through the impulse eguation, an angular

e}
()
<
o
‘E'fu
=
[09]
"c}
h’
C v
ae-ﬂ
c..J

on the

e
2
L3

change coupled o the gtream tube throughput which, on the
other hond, depends substantially on the flow angle within the
clearance., This relat i@nghip i% deseribed by the digecharge

equation (3.29).
/70

Por a welative afflux energy Cg, the round brackets contain a
combination of the pregsure and impulse loss coefficients, which
we simplified here for the case of two seal peaks (n = 2, CZ

, = 1)

e

D= {gi-ﬂ;&} b (1"“{_9)2 [%4 + “"Eﬂf’] }'

s8s coefficient of equation (3.49), we obtain

lo
ase, for instance, that the afflux energy and the

torsional Tforce can be used complesely, Ffor Lop = EbE = 0,

Do fo- et g1}

Since ¢, <1 must be, a redirectlon to the tangential direetion
y>1 with D<O would bwring a throughput decreage, as a
conseguence, according to equation (3.29), and viceversa. The
cause Tor this lies in the modification of the outflow angle
which occurs (see Figure 3.15)) due to the throughput-related
redirection. For vy = 1, with D = 0 we obtain the special case

Ao

already mentioned in section 3.2.6. Physically, an effeect of the
afflux torsion on the throughput is not meaningful, since it
must be assumed that an additional support forece, acting cn the

gtream tube due %o the redireetion, iz balanced by
correspondingly changed boundary conditions at . the clearance
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enkrance. L, in analogy teo cguation (3.49), we assume the

T=Fee ™ Yo VIl o

then for D = 0 (i.c., no effect of the afflux torsion on the
a

©
<
Q
L]

shroughput), we can define the faect

1

@’cﬁ’ T bo mz °
12 (65

for the labyrinth clearance considered in equation (3.29).

-

/28,

P
2

p=to
¥s

£

Fox Yom <1, the torsional effect supplied at the clearance
less than the flow before the entrance makes possible; hence the
impulse coefficient has o be corrected by

Ece =1 = Yee M“S?E

b

In contrast, .° the flow is redirected in an axial direction in
the labyrinth chamber, with v <1, then it may be assumed that atb
the entrance a smaller prcoportion of the velocity enerzgy will be
supplied to the tangential component., The equabion

Y ot 4 (e ¥
fee 5"8%‘3“ gae)

takes this into accownt. The condiivion (3.50), above, must be
satisfied Tor cach of the stream tubes variable along the
perimeter, which is weadily possible, in connection with the
iterative determination of the loss coeffiei

more general clearance form with radial entrance and exit,

Ped

ients, also for the
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simulsaneously with the loss coefficients. To beg
force above only acts to modify the outflow angle
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$0 the position of the narrowest clearance width. Taking this
modified outflow angle into consideration, larger mixed
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fricvional Toreces in the tangential direct
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outflow angles corrected by these additional forces, tre
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This simplified description at least permits a qual tive

£ the mixed friction beyond the clearance; aceording

he mixed friction coefficient we can use A 0.1,
able 3.2, the ouiflow angle ecaused by the mixed
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depends strongly on the oxit loss (and honec,

shroughput. Sinec iv, in
also on vhe

L
outflow angle). at the exit a similar condition ouzht o be

Tor the entrance, in the previous

(] section, by
s apsumed that the throughput rcmaling

3.3.4. Determinavion of logs coelfficients from a meagured

presgure distribution

o

If vhe pregsure distributions are known from measure
few essential reference planes, then it should be po

devermine the logs coefficientvs from these in such a

there is agreement between measurements and theory. However,
knowledge of the course oF the flow lines iz assumed, here,
since small changes in the torsional forces can decisively
affect the pressure drop in the stream tube. If one makes
agsumptions regarding the impulse loss coefficienvs or thelr
relationghip vo the pressure loss coefficients, then it must be
possible to determine them from the measured pregsure

disvributions, by means of the existing theory. To this end we

s
can apply the same iterative calculation procedure we use in

section 3.5, in which we calculate the loss coeffic
Table 3.1, by means of the pressure differences obta

neasurenents. In this menner, we obtain the pressure loss
coefficients Tor cach measurement plane or, in conjunction with

Table 3.2, also the impulse loss coefficients. The

Kl

guantities can be determined simvlvancously only if

two
y fow

instance, the Tlow lines are rendered visible so that the
change becomes known, and the losses become known by pressure

neagurements. In a labyrinth, however, the assumpilions made on

the ccmposi'io of the flow lines from Tflow angles
addivionally of inportvance, as are t.ose made aboub
contraction.

82

are
Stream

manner vhatb



WO
®
il
(-3
2
]
[
Q
=
{0
o)
!
Ca.a
Q
=
:
(@]
=5
‘gs
(@]
o
&3
b ]
=
)
<
o
2
@3
©
S
@)
O
]
@
(<0
e
=
2
e
=3
&
53
Q
(<)
[@]
3

=1

n addision to the cugsed below, there are

algo mowmenss thab % on the cecentrically located wotor, duc %o

she elearance flow. They ave generated cspecial

cggive fowce

$0 difiezen@ey in the pressure drop are relavively small, within
dial

(Y
iy by the

¥
g on the seal's front side, while moments due
clearvance. Because of the mode of construection of
turhim@ steps, such moments can occur especially in the case of

Pressure digtribution Snill S";cngly dependzs on the estimabed
valueg Tor the bend-losses, and because the effect of such
moments presumably is onl 8

1 evaluation, in the co

F.4.1s Transverse forces from the pressure distribution

The general integrals for the forees due o the variable
pressure pl(z, ), acting along the perimeter and the lengih of a
eylinder were indicated in equation (2.2%). Since the caleculated
pressure distribution is given only at suppori points, an
appropriate interpolation procedure must be found to solve these

integrals. Por the longitudinal direction z, as an approximasion

M

he pressure caleulated for the support point should be con- /74

stant across the control space's width, Az, Hence the forces
acting on the rotor can be expressed ags sume that resulit ifvom

"emratiom of the pressure distridbutions p(w) for each
e

L [
gupports plane,

2%
Qo = - i (A?‘a “‘EJPW’@ cas ¢ d‘?)a

anr

Qz@ ==/ (Aa‘.-b 1;,! plipl siny dp ) ,

Ly

( 3.52 )

P 5
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The pressure digtribuvions eawn be deseribed by means of o
Pouricr geries, ©o be debermined fox the support polnts given in
analogy o equation (3.19). I we seleet a2 dimensionless
deseription of the pressurc distribuvion, according to equation
(3.34), then we have

Pﬁﬂs Fa 4

g a Ay + Agcosp v Aycos 204, Ay eosmy

pg » - 0 [
+ Bysing +B,sin2¢p4... Bysinmy (333
2 Pix~ PA
Bps”
r ] support points, the number of coefficients is m = (j/2)+1,

$0 Ma in i the functions p(w) as exactly as possible. If we
herewlit ser, the

Fourier %ve

sain
h integrate eguation (3 52) along the perimen
exrn

18 of higher owrder cancel ov . ag is readlily shown.
e

Thus ithe compregsive forces acting on a »otor are obtained as a
Pl
LR

sum of the first Fourlier coefficients A1 or respectively, B, of
each supporc plane i of a radial clerance, multiplied by the
widths Az of their control spaces,

nS-f,,

Qug = -Bpg 5 T z (At dey + f Argy, éﬁfm)a

( 3.54)
Qi = -Bpa T&“’:Z; {Bﬂ dazyv § By, bey ).

/15

erent definitions for the conirol space in a

28
ith and 2 plain clearance, we again introduced the contiol
vy ng as in equation (3.14). Because of the dimensionl~ss

description of the compressive forces, the above transverse

are & linear function of the total pressure drop and als

of the shroud band radius, while the effect of the total width,

b

m

LAz, is coupled to the amplitudes of the pressure

distributions.

L1l rovor eccentriclty e = s, in general the pressure



differences at the clearance onNLrance can amouns only o APBs
making & double : )

e amplitude 2A <1 possgible. Asguming o linear
pregsure deecrease in axial direction we then obtain o Toree

¢ . (3-55)

o

This meximum attainable compressive Torce = in which the
ric1cy hag been assumed to be lineayr = can be

el

rence magnistude for the above transverse forces

3.4.2. Transverse rforces Ifrom the clearance loss

The local tangential force changes with the variable nlearance
vhroughput at the envrance to the rovor blading. The integral
the components of this forece along the perimeter yields the

trangverse rforces acting on the rotor, as indicated in genecral

"; (=]
in equation (2.10). This vequires a knowledge of the local
clearance loss, which can also be calculaved from the ratio
_— @@
A7 W { 3.56 )

The function g(y) takes into account that the decrease in the
1

tf"-

sangential force included in C is not directly proporiional
o the throughput ratio . Any 1nd1eabﬁon on thig - also
wailable in [14] - can be made only based on eff

f.\3 <o

c
measurements for the entire turbine step. It must be assumed,
however, that the function g(yu) is different T

rotor clearance losses, since the tangen Ei al Torce at the

9

of
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blading is afx@ct@d in one ease by the approaching mass L£low and
s
[}

With the above definition of the clearance losg, we ODb&i for
vhe integral of equavion (2,10), bearing in mind the gquan
alon

ng the perimeter,

g { 3.58 )

The local throughput per arc length can be described by means of
a er series

Qé.ﬂm m Lo+ Cy cosn + G cos2p + ... Crpcosm @
& D, gk Dz .!%'m2.cp+ Dmsin Wy ( 3.59 )

X,
. Ay b

whose coefficients are determined by the calculaived throughputs
mk/Awk per arc length of the stream tubes. While at the wotor
clearance we must use the channel widths Ay and the tangential
angles ¢ of the Tirst support location, E By xo at the stator it

&

is appropriate to use values Tor the last support location,
Aop e IT in equation (3.58) as a first approximavion we set

s = 1, then its integration will yield the transverse forces
acting on the rotor, with the higher-order Fourier coefficients
canceling out, agains

= >

( 3.60 )
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Phe eleavance hwouﬂh@uu for the oanblire seal can algo be
i ation of equation (3.59), with the sum of the

gbrecam tubes of course yielding the same

<
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D
Q
<
;;,
tg
=
<
@
©
=
o
et
= k‘

i
2y . ¢ 3.61)

o

n principle, the above

transverse forces can also be determined
as the sum of the individu

=l

orces abt each support location,

f..’)

although this could lead %o larger errors, depending on thelr
nunber. For the descripition of the transverse forces due %0
clearance logs referred to, the ratio of the isentropic
vangential fowce to the turbine step's throughput must be knowns
may be assumed to be proporivional vo

&5

the afflux velocity.

<

for teet calculations it
the tangential componen:

t_

< oo

F.4e3. TForces due to friction on the rovor surface

The frictional forces atb Lhe rotor surface also cause a
resulting transverse force; however, for the usual cases of
calculation, it is two orders of magnitude smaller than those
mentioned previously. Equation (3.18) shows an expression for
the frictional force acting on any arbitrary suppors point on
the rotor surface, defined asg positive in the direction convrary
%0 that of rotation. If the componenvs of this force are added
for all support points in the entrance, tvthe radial clearance and
the exit, then we obtain the resuliting transverse forces

1]

b [nE n$ nh
-). (Z Sg, o e, k*.'Z Ssp 8005y, *’ZS@\WS‘“‘PAL,&)*

k=
(ZS‘M%'{&‘W%*i&o%%)

( 3-62 )'

Qe
Qan =

L
1’\4...
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sor 1 subjecved because oF
milar manner,

cbional moment o which the ¥o%
these Towrces can be ealculated in a g

E.- o

?(}: SE&,}:TE?L *Z Ssa,x'@ +"i' Sa Ta-) . (3.63)

L] av]

The efficiency decrease for the turbine step resuliting thereby
is negligibly small, at least for the rotor.

receding sections regquires
gure 3,17, which also
il

are the number of subdivisions w direc ion and j in

{=to
ju
Ty
=
®
= =) 02
=3
[o]

tangential direction, as we 5 geometry, including
all radil, clearance widths, length and recess oxr chamber

heights, Next come the pressures, velocities and angles for the
main flow ahead of and behind the seal, as well as the average
density and kinematical viscosgity. In addition, the input must
include the bend logs coefficienis and the consvants Tor the
calculaiion of the turbulence or vortexing coefficients in the
Jabyrinth,.

S
ablished Tor each giveam btube with itvs sunport

cations ¥, channel widths AY and surfaces
step, the losgs coefficients along each
lined. According to section 3.3., they depend
13 and hence, both on the angles and the local
Reynold’s number. Onee the loss coefficients have been
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determined -~ initially for constont throvshput - with suificicnt
precision, the throughput of the stream ©
X ’iV@ly improved beJ@nd the defined leve

]
sec i 3 2.5, This proee@s is performed independently Tor all
gtream tubes k, as indicated in Figure
subgcript Tield.
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/89
In a further block, the geomebry of the stream btube is
calculated in accordance with section 3.1 and subsequenily the
vhroughput is corrected (to level M2). Since through the channel
width the stream tubes affect each other, the calculavion mush
be performed each time for all stream tubes. IL the differsnce
between the new throughpub Lb and old throughpui ﬁ& of a utream
tube is too large, then the loss coefficients must be
recalculated, beyond level M.

Once the throughpuis, angles, loss coefficients
all stream tubes are precisely known, the pressure distribution
is calculated. Once the Fourier coefficients have been obvained,
this allows the detvermination of the compressive forces aching
at each suppori location on the convrol space surfaces. These
primarily change the geometry of the stream tubes; for this
reagon the iteration need not start from the beginning, but from
index P. Subdividing throughput calcul uions into two partvial
iterations, starting at index Ml or respecitively, M2, was chosen
only to save calculation time, since the loss coefficients

ery little.

For normal application cases the convergence is very good.
However, for large btorsional effects atv the entrance and large

sceenvricities, the flow angles vary considerably along the

perimeter, causing significant changes in the channel widths. It
ig recommended not to parform further iterations directly with
the new value, but with a weighted sverage of the old and the

S0
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lueg. Thile the ond resuls will be abtvained
owly, & divergonee caused by excessive changes
in the ihdi”iaual values will be avelided Bher@byo A gimilaw

(o

2,

IEOGOduPO mey also be necessary in the isterative caleulation of
the compressive fowees, especially Tor large labyrinth chawmbers

o ]

t the end of the overall ite ve forces QD
acting on the rotor can be calculated from the pressure
digsribution, and the forces QS causged by the variable
vangensial force, from the variations in the clearance
through ut. No new initial values need be set to calculate

8

ration, the compressi

@

/§=@,
Based on the similarity of conditions, favorable initial wvalu

are obtained rather by increasing the eccentriciiy gradually

Since the course of vhe fo {

rees in general is only weakly
non=linear, a few individual forces can cause an increasge beyond
the deviation as required for the vibration calculations in
section 2,1,

3.6, Testing the calculation procedure using simple clearance

The essential paramevers describing the clearance flow affected
by tvorsional forces can be studied in Figure 3.18, using simple
clearance Torms. The clearance's diameter and length were chosen

or theilr similarity to a test turbine, but without radial
entrance or exit. Besideg the radial clearance width and the
chamber height h, the geometry of the seal remaing unchanged and
is supplemented only in Figure 3.37 with a radial entwvance and
exitv.

Table 3.6 clarifies the most important eguations for the

91
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TABLE 3.6 Loss coefficlents,
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Labyrinth clearance

(28=2, j=20)

examples or clearance orms
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fflux conditvions and dimen-
sionless quantivies for calculatn
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E W& w Eg(5g) from eq.(3.43)(3.47)
fos® e ® e Labyrinth 5. (m) from eq..i(?‘,lg.())
GCa = §en =1 clear.: g (tgo7) Exom eq.(3.49)
S@,. (Ha o ga v (5) from Fig. 3.8
gadz ,  vaagatol
ma ) Ce mmT
Cp = H %Lﬁ Cry,
f
t\’-ﬂl MQ H
Ce ™ Gnomy o7 Cwn :
é)pg = ’PE'“”PA ¥ % ﬂ,fai’, ] ACM,
Ug 2hg
W~ W "ACM"Cw@%M‘ﬁ,
an ,... Cn, @T‘g,ozg '”“ﬁ;‘ i
Aoy Wa  AgV2e deg
¥ L q * o v PR
N o B M g
08 Poor Qw LTy



caleulotion of loso cocfficients, and the boundary eonditions
o 2 Plow unarfoeted by the cloaransce £Low. A /62
Ty COMponcens C, ig aogoumed ahecad of the
elearanee; ia ﬂ@fMul d&poebiow, which is fully used with the
fLicienty Ccﬂa Dehind vhe clearance, only a normal
vel@@’?y @xi@@s; however, because ECA = 4, it hag no effect on
the elearaonce flow. By changing the aifflux angle, it is now
ribe QQQVl ;ions such ag they may occur ahead of

wbine step. Under these conditions,
pregsure drop, the available tobval
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corregponds (¢ Bh B,
sinece Hie tangenitial or ”erif@ral velocity disappears, beyond

Y
the clearance. The rel.ative afflux energy Cﬁ can be wmodified by
either the angles G OF the pressure decrease APye

Tor dimensionless deseriptions 0%, the transverse forces acving

3

according to esaustion (3.55). This a
vely eorreet manner the ravio between the compressiv

on the rotor ave expressed in terms of the foree QB ag the unit,
lgo reflacts in a

wm

quaultat

foreces QD and the forces Q. 7rowm the clearance loss. To claw fy
the resulis, we have in part also providsd the dimensionless
pressure distributions pg along the perimztsr, 24 asupport
locavions i, according to Flgure 3.18. Next Ho0 these pregsw::
ibutions, the throughpubt of the gtream pubes, M* = ﬁk/ﬁB
also been recorded, here refevred to the toval througﬂput

according to equation (3.27).

=y
o
[0

088 €O
acving on the wotor. Inisial



invagtigase the depondonece of the Covcen on the o7 renbriclty and

the pregsure difference, since they are ineluded in tho

rererence guantity. For o purely axial afflun, Piguwre 3.19 shows
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Figure 3,19 Plain clearance, Pigure 3,20 Lebyrinth, s=lmm,
s=lmi, 0p=90 , Apy,=50mbar, ;=0 H=bym, 05=90 , Apy=50 whar, gy~
dat ) K2
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the variation of the restoring foree “QID {ef. definition in
Figure 2.5) across the eccenvricity. Since the compressive force
Q?D vanishes perpendicularly to the deviation due %o a

symme trical pressure distribution, the for cauzed by the
variable tengenvial Force at the turbine blading must be
anvlled; because of the agsumption regarding the velocity
inereage Acu in Table 3.6. The approximate inbtegration of the
pressure varistion in equation (2.25) yields a lineer dependence
~3,

on the ecrentriclty. which in compax

[

28

O
(74]

¢

Q
calc:. Zions is valid only for small deviations. Due o the
we.o iyl maeall clearance length the effeetv of a baleancing flow

%4



is negligi
variation

was

agsumed

a

.

coefficient A(Re

dependence on the eccentricity
calculations were performed for the labyrinth clearance, in
Pigure 3,20, to the incomplete velocity vortexing in

labyrinth chamber,

the

which varies
the effect of the equalizing flow is

for the plain clearance. In accordance with equation (3.35),

taking in
varies with the local clearance widih
purely axial flow, since the surfaces

reduced in the

)

ble, in comp
from equation
Taking intvo

above.

Due

account a var
larger restoring forceg are obta

arison to the calculation of
(3 35), for which a purely axial
riable tube T

to congideration 2 contraction coefficient u that

ganmne nmannerx,
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at all seal peaks are

en eifect,

€/9=0,0 1.0
P
0.5

9

£0 2

=100 [ 100

/50,9 1.0
Pﬂ
0.5

P

~1Ce ] 100

. E/S=0.7

Plain clearance, s =

(¢ - &

a restoring force =Q1D acts on the rotor,
nearly linearly across the eccentricity. Here ton,
only slightly larger than

for a
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Por a flow affected by torsional foreces, Figure 3.21, above,
shows that there are transverse forces acting on the rotor, in
the direction of the deviation, Ql and perpendicularly to it,
qu The cause for these forces can be seen Trom the pressure
variations, next to the figure. For & central positioning, e/s =
0 and the throughput and the pressure along the perimever are

constant. The strongest pressure decrease occurs between the

t
conditions ahead of the clearance, p”* = 1, and the first support
location, p; (ef. also Figure 3.18), whils pressure losses along
the clearance and to the end state, p* = 0, are relatively
small. For an eccentric rotor position, this pressure decrease
varies in an inversely proportional manner with the local
clearance width, which is smallest for ¢ = 0., Due %o the
torsional effect, there is a spiral flow in the clearance, which
results in variable cross-sectionsg along the stream tubes, and
causes the characteristic pressure maximum ahead of the
narrowest cleavance, as seen in the direction of torsion. As a /86

consequence, compressive forces arise, Q perpendicular to the

g
deviation, which for a plain clearance aig of the same magnitude
as the restoring forces -Q;y. The local throughput (broken line)
modifies the tangential forces at the rotor blading, whose
resulsant generates a force QZs” perpendicular to the
deviation, and the much smaller force lep which acts in the
direction of the deviation. If the variations in the throughput
were symmetrical around Yy = 0, then according to equation (2.15)
that force would have to vanish. Across the eccentricity, the
transverse forces are linear, with a small departure at QlD“
This is also true of the flow with torsional effect, in a
labyrinth clearance. Because cf this it is possible %o build
dimensionless increases QX of the forces across the deviaition
e, using the reference quantity of equation (3.55), and in
accordance with Table 3.6. In all further calculations, this
increase is determined from this force only fTor a relative

eccentricity e/s = 0.5. We thereby also obtain an approximately
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average value for a minimally linearized increase.

The effect of the radial clearance width is shown - with a view
towards a vibration calculation - on the basis of an increase g=
Q/e of the force 0, assumed linear across the deviation g.
Qualitatively this also corresponds to the representation of

transverse forees for equal rotor eccentriciity. As Figure 3.22

o ' 8e0.5 [l 1.0
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Pigure 3.22 Plain clearance

shows, for a plain clearance the forces from the pressure
distribution increase steeply for smaller radial clearance
widths., The amplitudes of the pressure variations depicted are
approximately equal, since they are valid, in each case, for
half the maximum ecceniriciiy, e/s = 0.5, For smaller clearance
widths, the pressure loss increases along the clearance, thus
increasing the pressure level at the entrance, p;g
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As already explained in section 3.3.2.2., in a plain clearance

and with decreases in the radial clearance width, under some
circumstances inadmissibly large values can arise for the

pressure loss coefficient ¢ in a control space., Since the

pressure losses depend on the flow paths within the conitrol

space, if necessary the number of support locations in the flow
direcvion may have to be increased. Using equation (3.47), the
calculations here were performed for all clearance widths with

nS = 11 support points. However, no deviations worth mentioning /87
were observed for radlal clearance widihs s > 0.5 mm, even for nS
= 3, The determination of impulse loss coefficients from
sectionally straight stream tubes in accordance with equation
(3.43) is also valid only for correspondingly short flow paths.
However, the use of this relationship yields the same result -
for a sufficiently large number of support locations - and was
applicable, in particular and without restrictlons, to nS = 3
and 8 = 1 mn,

For labyrinth clearances the number of support locations is
detvermined by the number of seal peaks. In addition, only
pressure loss coefficients ¢ <1 can occur. As Figure 3.23 shows,
the increase in the forces due to the pressure distribution,

with small radial clearance widths is very much less than with a
.plain clearance. While the exciting force QZS is independent of the /88
radial clearance width, in accordance with equation 2.15, this results

in a change based on the variable pressure loss coeficient. By disregarding
the flow contraction ® = 1, the exciting force QZS is proportionally increased
to the throughput. However, the pressure distribution forces are not
similarly altered, as the cross-sections along the flow tube become more

equal because of the flow contractiong (s), which is dependent on the

local clearance width (c.p. fig. 3.8). A flow contraction which is constant
along the perimeter would therefore cause an increase in the exciting force
from the pressure distributor.
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For a flow affected by torsional forces, the influence of a pressure drop
on a plain clearance is shown in fig. 3.24, while fig. 3.25 shows the in-
fluence on a labyrinth. The lateral forces QS from the asymmetrical tan-
gential force at the turbine blading indicate a parabola-shaped curve, as
they are solely dependent on the throughput (which represents the square
root of the pressure drop), based on the assumptions of tangential force
according to table 3.6 (c.p. equation 3.27). Calculation of the exciting
force st with a calculation of clearance loss according to Traupel
(equation 2.15), results in reduced forces, as complete vorticity at both
seal peaks is assumed.
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Assuming a purely axial flow, the restoring force TR i nearly /89

according to the pressure distribution shown in equation .37 with a pressure
drop of 4 Pg- This dependence also seems to be valid for a flow affected by
torsional forces, at least for a labyrinth. However, the exciting force QZD
at the two clearance dividers is non-linearly dependent on the pressure

loss, as the relative afflux energy changes simultaneously, for which the
significant influence is shown in the following figures. The pressure

drop4 pp = 50 mbar, which could be chosen from the weak reaction stage at

the rotor clearance, was chosen as the initial value for further sample
computations.

As all parameters contained in the reference values were changed, an

additional dimensionless representation according to table 3.6 may

be selected, in which the forces QX and the throughput n is plotted on the /90
same scale. The relative afflux energy CE was varied (see Figure 3.26) with

the ang1e<¥E ahead of the clearance, and with the pressure dropzzpB, starting
from the average value marked. The pressure distributicns depicted next to

the figure show the effect of the
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afflux angle, due to which the location of the pressure maximum
is displaced towards the direction of torsion, with a

simultaneous increase in amplitude.

The local throughput changes in the same manner, with increasing
torsional effects at the entrance. Because of the spiral flow
within the clearance, the flow paths become longer, which leads

to a slight decrease in the throughput of reference, ﬁxg as g
function of the relative afflux energy, CEQ Variations in the /91
angle or the pressure gradient do not yield the same results

here either, for the transverse forces, since Reynold's number

and hence the friction coefficient A changes somewhat with the
throughput’'s absolute quantity. However, within the range



depicted, the relative afflux energy CE is characteristic for
the generation of the compressive forces that act on the rotor,
On the other hand, this also follows from the calculation of
flow angles using equation (3.33), which for a given geomeitry
and pressure loss coefficients are only a function of Cﬁo It
follows that exciting forces QZD from the pressure distribution
are generated only in turbine steps with small reaction. Thus,
besides a high tangential velocity ahead of the clearance, a
relatively low pressure gradient must exist simultaneously. In
contrast, the restoring forces QlD” due to the changed friction
values depend only on the relative afflux energy.

The exciting force QZS” acting in the same direction as the
compressive force Q,ps also increases with the relative afflux
energy, on the basis of our assumptions regarding the tangential
force at the turbine blading, in accordance with Table 3.6. As
the angle ap varies, this increase is caused by the velocity
difference, Acug for an approximately constant clearance loss.
In contrast, as the pressure difference ApB changes, the
velocity difference Acu remains consvant, while the clearance
throughput changes. Obviously, both effects cause the force le
- which acts in the direction of the deviation - to follow the
same course,

In a similar representation, Figure 3.27 shows the effect of the
afflux energy in a labyrinth clearance. Here, variations in the
afflux angle and the pressure gradient yield exactly the same
results, since the loss coefficients depend only on the
geometry. Thus, at the clearance, for different throughputs but
the same relative afflux energy, the flow angles will be the
same, Due to stream contraction, the throughput (for the same
reference quantity ﬁB) is smaller than it is for a pla.:
clearance, and hence the transverse forces Qs generated ave

smaller. Since according to equation (3.40) the turbulence g

coefficients ¢ depends on the flow angle, the throughput becones

100

Lo
[ 4



Constant flow angle oj y=0p, App=50mbar

/

. .

" .

G
7 T
ﬁﬁf*’ﬂiizgﬁéﬁﬂ__ﬂ

el

Transv.fces. Q/QB, ih:
N 0.2 .
Sy
., T.B

Y
i)

8.8

0

Transv.fces. Q/QB, Throughput M/MB

e
2 == Q15
i = e s e T
o -8 4.
! of W ® | o 15
o. PO T Y o ' t. | & 8 &
Rel.afflux energy CE® Rel.afflux energy CEX

without pressure

equalizing flow
Figure 3.27 Labyrinth, s=1 mm PFigure 3.28 Labyrinth, s=1 mm
H=4mm, CE=09 CA=1D Ql(m1=9)n H=lmm, EE=00 CA=10C1(m1=9)9
v =1 v.=1, u(s)

smaller with Cga Compared to the restoring force "QlD" the
excitation force QZD from the pressure distribution is
relatively small. However, Figure 3.28 shows that this changes
considerably, if it is assumed that no compressive forces are
acting on the surfaces of the control spaces (cf. Figure 3.10).
Because of the chamber height, these forces are much larger for
a labyrinth than for a plain clearance. They act at the
perimeter, in the direction of the lower pressure and modify the
stream tubes in such a way that not only does a pressure
equalization take place, but there also is a phase displacement.
This effect shall be further elucidatved with the variation of

101



chamber height. Because of the unordered flow in the labyrinth
chamber, we could assume that the compressive foreces acting on

the stream tubes are much smaller than indicated by equation /93
(3.21)., On the other hand, it is conceivable that the effect is
balanced by a corresponding chenge in the local loss co-
~fficients. If we neglect the pressure equalization flow in the
labyrinth chamber, as above, the transverse forces acting on the
rovor are of approximately the same magnitude as in the plain
clearance, in accordance with Pigure 3.26.

Figure 3.28 shows a strongly simplified calculation, under the
assumption that all flowangles in the clearance are constant and
correspond to the afflux velocity angle. This allows a closed
golution for the pressure variation with equation (3.34), since
the local surfaces for zll stream tubes are given., The

excitation forece from the pressure distribution, increases

QZDP
considerably as the angle decreases. In fact, the maximum of the
pressure distribution could be displaced so far, by prescribing
the flow angle, that the force QlD will azt in the direction of
the deviation. Such a calculation could be very illuminating,
qualitatively (cf. Rosenberg [28]). However, the excitation

forces it yields from the pressure distribution, Q are too

9
large unless one assumes an average flow angle tha%Dis
considerably larger than the afflux velocity angle. It is
possible %o perform an approximated calculation for this average
flow angle, as a function of the relative afflux energy, in
accordance with equation (3.33), for instance assuming constant

flow cross-sections and loss coefficients,

Flow=1line course in a rolled out (to scale)
seal clearance (Figure 3.18)

without pressure equalization flow
—————— with pressure equalization flow for h=12mm
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In Figure 3.29, above, the height of the labyrinth chamber was
varied (cf. Figure 3.18). While the forces related to the
clearance loss, st were only marginally affected, especially
the excitation force, QZD” related to the pressure distribution,
decreased very markedly with increasing chamber height. An
explanation for this arises out of the course of the flow-lines
in a rolled-out, true to scale representation of the clearance
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ag that shown atv the bottom of page 102, above, for a large
chamber height, in comparison to a calculation without pressure
equalizing flow. Due to the lateral forces acting on the free
portion of the control spaces, the flow lines are deflected
gsomewhat more strongly just ahead of the narrowest clearance
location (¢ = 0). Based on this minimal variation in the outflow
angle and the channel width of the stream tubes, the pressure /95
variations in the labyrinth chamber are substantially affected,
gince the cross-sections normal to the direction of flow appear
squared in the energy equaition. Viewed in the tangential
direction, ahead of the narrowest clearance are generated
smaller exit velocitlies, and hence smaller pressure losses,
whereby the characteristic pressure maximum in the labyrinth
chamber is weakened with increasing chamber height. For very
large chambeyr heights, even negative excltation forces Qop may
occur, The calculation with a chamber height h = 0 corresponds
to the same assumptions made for a plain clearance; taking the
pressure equalizing flow into consideration changes the
transverse forces by a maximum of 5%.

In subsequent test calculations, we shall now investigate the
effect of changes in the loss coefficients., Starting from the
standard case, Figures 3.30 and 3.31, below, show the variation
in entrance and exit losses for both clearance forms. With
increasing entrance loss g the throughput and the transverse /96
forces acting on the rotor become smaller. Maintaining the exit
loss Th <1, the static pressure at the end of the clearance is
lowered, since a part of the velocity energy is used as pressure
again. This increases the throughput, which may become larger
than the reference throughput (ﬁx >1), since the latter is
calculated only for a loss Ly = 1. With increasing throughput,
the averwuge flow angles in the clearance also become larger (cf.
equation (3.30)). This, in turn, displaces the maximwm in the
pressure distribution, peripherally to the location of the
narrowest clearance, causing an increase in the restoration
force -Qypo while the excitation force QZD becomes smaller,
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Assuming similar effects as in Figure 3.29, this could become
negative for the labyrinth.

/97
Figure 3.32, below, shows the effect of the friction coefficient
A, which in the normal case is calculated from the local
Reynold's number. For the restoring force a maximum is obtained,
which also occurs with a purely axial flow. At low friction, the
throughput increases, and at A = 0 it takes the value of the
reference quantity, m* = 1, in which only the exit loss was
taken into consideration. The pressure distributions choser. show
very clearly that at lower friction coefficients, the decrease
in the torsional effect in the clearance also is smaller,
whereby the compressive foree QZD increases. In Figure 3.33,
below, the pressure loss or, respectively, the impulse loss
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coefficients are caleulated from equations (3.37), or
respectively, (3.45), to investigate “he effect of a rotatl
channel wall, The throughput has a fla

=
- 61

at maximum at a tangential
veloeity of 60 m/s, which can be attributed to changes in the
loss coefficients caused by the friction path (ef. Fligures 3.12
and 3.:3). Correspondingly, the compressive forces acting on the
rovor ave affected in a manner similar

&

to the effeect caused by a
change in the friction coefficient A,
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Figure 3.34 Labyrinth, s=1 mm, H=dmm

In Figure 3.34, above, a loss coefficient cl constant along the
perimeter was assumed, at the first seal peak. In contrast to
purely axial flow, because of the variable flow cross-sections,
different pressure distributions occur within the clearance. For
a flow without loss (c1 = 0) the throughput attains its limiting
value, m* = 1, since the stream contraction was disregarded,
here. While the restoration force ”QlD disappears completely for
Ly = 1, the excitation energy Q2D retains a finite value,
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However, this value can increase no further with larger numbers
of seal peaks, since due to complete turbulence, the flow with
an impulse loss coefficient of El = 1 runs normal to the second
seal peak - l.e., purely axial flow. The pressure level in the
labyrinth chamber is significantly affected by the loss
coefficient and attains the values, approximately, that would be
expecied for purely axial flow (cf. eguation (3.35)). Assuming a
pressure loss coefficient constvant along the perimeter, the
excitation force from the pressure dfstrioution is larger, here,
than the resitoring force, which also substantially changes the
relations in Figure 3.27 or 3.28, respectively.

For a varliable pressure loss coefficlent I, (from egquation

(3.40)), Figure 3.35 shows the effect of the coefficient Hy o
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It is inveresely proportional to the loss coefficient, as can
already be seen from the behavior of the throughput. In a manner
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imilar to that of the friction coefficient for the plain
clearance (FPigure 3.32), the restoration force =0,. has a

iD <
maximum that can be displaced with changing afflux torsion. Due
to the pressure equalizing flow, the excitation force Qp ig

congsiderably smaller than Tor the plain clearance.

In Figure 3,36, below, the factor y was modified, which in
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equation (3.49) describes the relatvionship between the pressure
loss and the impulse loss in the labyrinth chamber. Starting
from the standard value y = 1, it was assumed that the flow, for
instance due to the shaft’s rotation, suffers a small decrease
in the torsion (y>1). The pressure level in the chamber is
thereby raised, since the pressure loss at the second seal peak
increases because of the increased velocity (ef. Figure 3.16).

109

/99,



3

Because of the changed pressure distribution, somewhai larger
excitation forces Q2D are generated. If the velocity is
redirected, in the labyrinth chamber, without further pressure
losses (v <1), then only a little of the velocity energy can be
destroyed at the clearance exit. This causes a lowering of the
pressure level in the labyrinth chamber, with a simultaneous

displacement in the location of the pressure maximum. A strong

2]

reduction in the torsional efiect on the flow, caused for
instance by crossbars within the labyrinth chamber, leads %o a
considerable reduction in the excitation force QZDp taking into
consideratvion the lateral compressive Torces acting on the free
portions of the control spaces., This force can even adopt
negative values, as has been observed during tests with these
fittings [30]. The calculations above were performed, as a first
approximatvion, with the composition of flow-lines from the /100
tangents to the flow angles, with a weighting factor g, = 0.5,
described in equation (3.4). Changes in this factor, even in
extreme cases, caused no deviation worth mentioning in the
remaining calculation examples. Taking into account the pressure
equalizing flow in the application case described (y <1) is also
only approximately valid, since by adding features in the
chamber, additional compressive forces act on the stream tube.
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FPigure 3.37 Plain clearance with radial
entrance and exit (cf.Figure 3.18)
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Pigure 3,37, above, showsg two further clearance Forme, in which

the flow's radius remained as in Figure 3.18. Form A

approximately corrvesponds to the shroud band on a rotor, while /101
Torm B could be uged as the stator clearance of a turbine step in
chamber construction, The effect of the radial entrance in form

A is shown in Pigure 3.36, below. With a modification to the
entrance clearance - to correspond to the axial clearance

between stator and rovor blading - the forces due to the

pressure distribution, Qps remain nearly constant, even though
very large pressure differences occur in the entrance clearance,
due to the higher velocities. In contrast, the forces Qs
decrease, due to the lower clearance loss in a smaller axial
clearance, something confirmed also by measurementis to be
discussed later.
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Figure 3.38 Clearance as in Fig. 3.37(A)
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/102
In the case of clearance form B, the clearance of the radial

exit = which in a turbine corresponds to the axial clearance -
was changed simulitaneously with the entrance clearance, as shown
in Figure 3.39, above. The veloclty difference Ac, , which
according to Table 3.6 determines the transverse forces arising
out of the rotor blading's variable tangential force, is caused
here by the tangential velocity behind the clearance. If the
entrance or exit clearance is reduced, the clearance throughput
will be lowered and this will lead to a decrease in the
excitation force QZSu Because the afflux is parallel to the
axis, the forces le and QZD vanish, since the pressure
equalizing flow occurs in peripheral or tangential direction,
symmetrically to the deviation. The transverse force Qp acts in
the direction of the deviation for small exit clearances, since
here the pressure distribution depends very strongly on the exit
velocity. Assuming even larger pressure loss coefficients zZ at
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the elbows, a decrease in the restoration force occurs, which
eventually disappears completely, if only pressure losses occur
that are independent of the local clearance width.

While we have assumed, so far, that the tangential velocity of
the main flow behind the clearance has no effect on the
clearance flow, in Figure 3.40, below, we took into account a
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mixed friction force in the sense of section 3.3.4. It increases

proportionally to the coefficient AA and causes an asymmetry in
the clearance flow.,

/103

Because of it, the force le and the excitation force QZD are
additionally generated from the pressure distribution. Since

under the assumptions stated the mixed friction force affects

the clearance flow significantly only at the exit, its effect is
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on

relatively small. From this we may conclude that the excitati
rated

forces related to the pressure distribution are mainly gene
at the rotor clearance of a turbine step. At the stator
clearance, besides the excitation forces caused by the clearance
loss, transverse forces are generaived by the pressure
distribution that may act against or even in the direction of
the deviation, if we take a radial entrance or exit into
account.
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/104
L BIPERIMENTAL DETERLINATION OF THE TRANSVERSE FORCES ACTING ON
THE ROTOR

In agreement with their definition, the individual coefficients

J

of the mavrixz s proporitional to the deviation (see equation
2.9%) can be determined by means of the measurement of the
teungverse foreces acting at the turbine rotor, as a funcition of
itg static displacement., In contrast, the forces proportional ©o
the velocity, in matrix ¥ can be determineu only from a
predetvermined vibratory rotor movement. Kinetic tests (ef.
Wokhlrab, [30]) make it possible to study the simultaneous effect
0¥ all the coefficients of the matrices proportional to the
deviation and to the velocity, from the fading of the aisturbing
vibration for known system damping. This study focuses only on
the static method, which has the advantage - besides the
separate determination of the forces proportional to the
deviation - that the effect of a pressure distribution inside

the seal clearance is relatively easy to investigate.

4.1, Test assembly

L,1.,1, Installation construction

The transverse forces caused by the flow medium at a turbine
stop are many times smaller than the rotor's inertia,
representing at most 10% of the tangentlal force acting on the
rotor. Since the clearances between rotor and housing are very
small, special problems arise in the exact positioning of the
rotor. The force measuring apparatus is arranged around the
rotor in its stationary position; an eccentric positioning can
be simulated by moving the housing.
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Figure 4,1 Test assembly schematic

Figure 4.1, above, shows a schematlc representation of the
arrvangement chosen. From the fixed piping a, the fluid (air)
streams into the housing b. This is placed on a twofold support
¢ in such a manner that it can be displaced both in axial and in
horigzontal direction in relation to the stationary rotor. This
makes it possible to vary the axial clearance between the /105
bladings, and the eccentricity of the rotor with respect to the
housing. In an expansion of this arrangement, the housing b can
also be rotated in the horizontal plane, making it possible to
adjust the rotor's inclination with respect to the housing. The
rotor d is held in the bearings e, whose retaining rings are
fixed to the bar structure f£. The latter connects the two
bearing brackets and exits the housing without contact.

By means of pressure gauges Ql and QZ” which in principle
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Figure 4.2 Test installation
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5

(to Figure 4.2, above)

are very rigid spring dynamometers, the bar structure is
horizontally and veritically fixed. Moments acting through the
bearing on the structure, on the one hand are picked up by the
guide g, which is freely movable over ball rollers h. On the
other hand, cables i, prestressed at location j, prevent
rotation in the horizontal plane. In the coordinaite system
referred to the test apparatus, for a turbine rotaving to the
right, the excitation force is indicated at gauge Q, and the
restoration force at Qe Through a bending coupling j, the rotor
d is connected to a vibration generator, at which the tangential
force UB is measured. Force measurements at Ql and QZ are not
affected by the coupling, since its spring rigidity is very low.
In addition, such side effects are eliminated by calibration of
the pressure gauges under actual conditions. The frictional
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moment of the turbine bearings is transferred to the guide g via
the rod structrre and hence can aifect only the tangential Tforce
UB” but not the force measurements atv Ql and on

3

Figure 4.2, above, shows the test assembly bullt, with the
construction elements a through | corresponding to the schematic
on page 117. In order to relieve the vertical pressure gauge
from a part of the rotor weight, a balance beam & provides a
counterweight, through two ball-bearings, at the rod arrangement
Lo, TLe pressure gauges are fixed to the rod arrangement through
cross guides of two ball boxes each. The distance and the angle
of the pressure gauges can be adjusted - by means of a
tightening screw and three lifting screws u - in such a manner
that all guide elemenis are perpendicular to each other. The
longitudinal guides used permit a nearly frictionless rotor
suspension, which is also free of play due ©to the prestressing
applied. The central rotor d positioning with respect to the
housing and that parallel to the axis, is established prior %o
assembly by means of four dial gauges and can be reproduced
after assembly.
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b,1.2. Installation operation

The test turbine was operated on an open circuit, with the air
supply being provided through the compressed air pipeline of the
Technical Iniversity of Munich's heating power plant. Figure
b.3, below, shows a diagram of the plant, approximately to
scale, with a schematic of the air supply lines.

A two-stage cell compressor g transiers the air through filter b
into pressure tank c. From there, a pipeline (nominal diameter
80) leads through a restrictor ¢ to the quick-acting gate valve
e, After a long diffusor g with subsequent straightener, the air
reaches the afflux tube (nominal diameter 230) to the turbine h.
Together with the vibration generator k, they are mounted on a
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Figure 4.3 Arrangement of the installation

baseplate. The spent air is blown into the machine room via a /110
silencer., On one side of the control panel m are mounted the
essential control elements for the test turbine h. The pressures
are recorded at a U-tube wall n, and can be fovographed with a
camera p, from the measuring site. The measurement amplifying

and indicating instruments are located approximately at g.

Shielded cables lead from there to a recording facility r

equipped with selector switch, digital volimeter and printer.

L,1.3, HMeasurement instruments and test method

The forces were determined by means.of Hotvinger pressure
gauges, whose gpring elements are outfitted with wire strain
gauges. The table below provides a review of the gauges used and
their spring rigidity, the possible measurement ranges - which
are much larger than the forces acivally measured at the
facility. The precision is not affected hereby, since a
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Forece Measurement range Spring rigldity

Q, 20 kp 800 kp/cm
Q, 10 kp 350 kp/cm
Uy 50 kp 1600 kp/cm

calibration is always performed in the range indicated by the

tregsing, Because of the relatively high pressure gauge
spxw
disregarded, The wire strain gauges were balanced with a
Wheatstone bridge and recorded on the indicator of a carvier
frequency amplifier. Since due to the eccentric rotor vibration
high frequency oscillations with large amplitudes are
superimposed on the signals to be measured, the working range
chosen Tor the amplifiers had to be very large., With a low-pass
f£ilter in line behind them and digital readouvt, it was possible
to attain the required measurement precision.

Po,tot

P2,tot P2, st

T

Figure &.4 Test turbine longitudinal section
with measurement pointvs

Pigure 4.4, above, shows the pressure measurement points on a
longitudinal section of the turbine, The static pressure Py st
9

and the totval pressure p ahead ci the step are measured

o,tot
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with two Prandtl-tubes, arranged rotated by 90°, The pressures
Po. st and Pa.vob behind the step are measured in the same /111
manner. For control purposes, several drill holes Po.w are made
on the inside of the outflow channel wall. For standing blades,
large underpressures were cbserved at this flow guide, due to
the high exit velocity, which depending on the rotor's
eccentricity, showed an uneven distribution along the perimeter.
In order not to affect the measurement of the transverse forces
with this additional effect, the flow guide was bolted to the
housing. During some of the measurement series, an atiempt was
mnade to measure the pressure Py between the stator and the
rotor, in a ring chamber above the rotor's covering. However,
this was in part very imprecise, since the corresponding housing
portions could not ke sealed off in the manner desired. During
tests with shroud band, the pressure distribution in the rotor
clearance was measured using a maximum of 24 wall holes,
pd91a245 their exact location and size is described in section
L,2,

All pressure measurements are performed with U-tubes, which are
fotographed for fast and reliable recording. Figure 4.5, below,
shows such a fotograph, for instance one taken in measurement
sequence 115 (e = 0,7 mm), At the extreme left are the mercury
columns for the restrictor pressures Pgi» Ppo and the pre-step /1;@
pressure p, ¢ of the turbine. Next to these, to the right,
appear the pressure differentials in the two Prandtl tubes ahead
and behind the turbine step. The pressure Pyy (center) had to be
measured with a mercury column, here. To the right are collected
the pressures Py along the shroud band, whose single-arm

manome ter shows different levels for the labyrinth chambers Ki,
K2 and K3. The barometric pressure is recorded from an aneroid
barometer b, Asides from this method of evaluation, the most
important pressures were also recorded by means of the pressure
sensors of the data acquisition system used, whose code number
(at bottom) appears on every fotograph. However, because the

122



5 R gt FoI
s i Soe fed
# el e N . -
it P a4y iy S % S e
/ww /MW A e L po P
ik 2 5 sy Sy ey %
«ﬂf e Fi e g s g £33 A L et
X o 3 : Sk ol
& e e - 3 £ & ¥ 3 A%
Sl e o it o et sl a1 e i
s M £ £ Y e £ suf §3 o84 £
@ MM; £33 49 s L& et L el ERe e W
i i el &5 E P G el et i
o ™y e B Gl N & sy ol R G
~ e 5 5 P s P s 5
MW 5 S 7% — S —_— o e sood g = 3
XM» sy o v Ry s sy £ o
b By e e - i Tty il
wﬁ ey . sy Ty Foi
&€ e @ Sed Ha
3 8% s Y =% ol &%
ﬁW» E & @ 88 sl %
§ FoF T T med £
E S8 L e TS 33
i E g f s
e St e = e
s o sod E N
L S B B o E
gt oy £t £ % i G
R 2] g L et
g = T By
sy ey W et s .- o o
i3 L H H a3 ke el L s
i ot o 5 i o 7% ol
i S Fae B &8 i Bty AR
S Sad a5y L b o
= et o ek g
- - -
- 20 Tk
Ty 5% £ s g
St e Sed B i
@ 3 st iy
% dped fisd &3
o B S . fe 3 i
£ & F4% & e E S
gt SHE = Sen S
pa s et £ : fi & Y Fuly
i S ook = N e @ :H
% i . 4 g i g : 5
= 5 S % e g % % ot et Eor
S fog i £F L L] s L E R St EE
i s o &5 3 S N L e
: ] 3 T £ B St S sed aad
E i = . . 4 « b
b ey 3 s L8 e 5y .
% £ Gy s L3 A e R R
e G =~F R e S
S5y 3 g OF e £o5 % ¥
L Foy P s Y e B B
8 G S5 By £ % s Ty o 5 Fal
N 5 & S e W3 s W o
o S e oy L e B sey $
S R T oepn g pet e e
- = L3 B Yy Foil 55 Lot
St e B o LA Sday A B
ki s el £ o st
o SR S N e e
$ Tt 2 s 3 2%, L, i
B = b 3 L8 A e
B % 0 % Tl sk 27
s e & Felg E e f
S Tis 3% 5%
a3 g S g
5 s 5 % 0y &
473 e pe = L SRl g
= N P ot P s N i
St E b i AL & L3 A EH
.| 4 T % ot Tk DY
st o &3 A e sy RS W
Eaft T o S i W
Hd T S i W i
s 5 L 5 TR TR
3 s it 4 o5 5 % O
o Py 2% o e Fes bt ey g
Fes Pt £% gt o & e P
15 i e 2 FEL A &5 o i
E L% &% sl ey 3 i o g S
il e S ek oy
S, é F st . o o
i BN b wry 02 #H AS g feily
5 < &% T Y e Wy
- o soy s [
. £ e i
S agmd £ oyt & 0 gt T -
Sy werd S SR B S 0 & e
o 4 e s st g B fao
¢ fe L gL s Ay B3 Fok e e
fi g G R Tar AL s 5
fok E 5 L o &
ek s ood 3 b send
s sy sl L] =
e 83 # o3 b
T = s i
e g ed oy E B
s ot 2 g i g e o g Sy
% . Sed Ha o 2 Ry fie s i
et wed ol S & & e




/113
At the beginning of a test sequence, the static rotor was placed
in the desired position with respect to the fixed housing parts,
and the arrangement checked for freedom from friction. For a
precise adjustment of the central position with respect to the
movable housing, alvrflow was established across the step without
rotatvion; hereby it was possible to reduce measurement errors
caused by arrangement elasticlty to a minimum. Once the dial
gauges were removed, the rovor was brought to operating speed
and the pressure geuges were calibrated using weights. It was
then possible to change the housing position without modifying
the operating conditions and record all forces, temperatures and
~ressures for each position. Thus a measurement sequence yields
the variations in the transverse forces across the deviation and
on the basis of repetitive measurements provides relatively
precise average values for all turbine data. Within the
precision of the measurements, these were independent of the
eccentricity = or respectively, inclination = of the rotor.

L,2 Test program

The constant-pressure step represented in Figure 4.6, below, was
used primarily to investigate the effect of the seal form on the
clearance excitation forces. With the rotor suspension chosen,
it was possible to measure simultaneously the forces acting in
the direction of the deviation and perpendicularly to it;
because of the test arrangement, the moments acting on the rotor
were not included. Because of the non-variable compressor, the
turbine throughput was fixed at approximately 0.4 kg/s. For an
operating speed of 8,000 rpm, the pressure coefficient ¢ was 5.2
to 6.2. The Reyncld's numbers calculated from the afflux
velocity and the blades’ chord length was approximately 8°¢10%,

From measurements performed with standing blades - listed
completely in one report [5] - it was possible to derive
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essential trends in the clearance excitation forces, which also

served as orientation for the remainder of the test program.

Because they are more applicable, we shall mention here only

tests with rotating blading,

taken into account.

which are in agreement with the

/115

measurements above, once differences in operating conditions are

The seal geometry was varied by placing certain inserts in the

turbine housing, shown in Figure 4.7, above, for blading with
shroud band. Table 4.1, below, provides an overview of the

sequentially numbered insert conditions,

indicating the

characteristic magnitudes. The variations in the radial
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TABLE 4.1 Test program
Insertion condition Geometry
EB 50 S" Form"
21 1,1 1,0 A
22 w/o shroud~band 1,55 1,5 A
23 0,55 , 5 A
24, 25 51ain shroud | 1,1 1,0 B1
28 ~band B2
two
26, 27 | ceal peaks 1,1 1,0 c
three
29 seal peaks 1,1 1,0 D

clearance widths were performed only for blading without shroud

band (form A); for reasons of tolerances, the stator clearance
was slightly larger than that for the rotor. Since distinet

pressure differences could already be observed along the rotor
shroud band for standing blading, special attention was paid to
banded blading. First,

the plain clearance was investigated with

a simple gauge ring Bl, for different operating speeds. However,

the pressure drop in axial direction could be measured more
accurately only after adding a second gauge ring, B2. To
conclude the test program, two labyrinth seals commonly used
with turbines (C and D) were installed at the rotor. In
addition, this made it possible to study the effect of rotor

inclination with respect to the housing.

4.3, DMeasurement evaluation

L.3.1. Turbine data and force measurements

The turbine's mass flow is determined from the temperature at
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the measurement orifice, tBlp and ithe pressures
according vo DIN® 1952

p1 2nd Pgos

. P A2 Y
m_o‘Em;D Vzg(P‘Bq”?a?), (4'1)

The pipe diametver is given as D = 80 mm and the opening ratio of
the orifice as m = d%/D? = 0.366. The density p can be
calculatved from the gas equaition, as a function of temperature
at the orifice. The expansion coefficient e(sz/pB19 m) and the
throughput coefficient o(Re, m) were determined from DIN 1952,
vaking into consideration the temperature dependence of the
kinematical viscosity for Reynold’'s number. Because of the
dependence of Reynold's number on the mass flow, iteration is
necessaryo

The turbine's isentropic gradient is obtained from the pressures

. £ Sa TP
popstp PZ;st and the temperature Py by

bhg = ¢l [1 °( )§§i] ( 4.2)

The force UB at the brake's lever arm 1b is Tirst recalculated
using the calibration factor of the gauge, then the turbine
step’'s tangential force

e 0 (4.3)
U =g U

is determined. With the angular velocity w at the rotor, we
obtain the effective efficiency

e Yo dnf2

e b, o (4.8)

DIN = Deutsche Industrie-Ncrm = German Industrial Standards
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Correspondingl: , the I .ternal efficiency can be calculated from
the temperatuvvre. T .ad T, (ahead of and behind the step):s

0 o et =T;) ( 4.5)
Blag
/117
Frou the tangential velocity u = wer we can now calculate the
reterence quantity US - from equation (2.,12) - for the measured
excitatio. forces. To determine the theoretical excitation
forces r.quires knowledge of the step's triangle of velocities.
From the mass flow ﬁog the surface Ao and the density Pyo We
obtain the afflux velocity at the stator blading,

m ( 4.6)

Qom-_—...,.

Ao Qo '

According to Traupel [14], the blading efficiencies can be taken
0.89 and n"” = 0.82 for the existing step. From the

as n’
energy equation we obtain the stator exit velocity

- 2 (4.7 )
7 q(an + &)

as a function of the stator blading's isentropic gradient

R-q

Ah = cp T, [1 -(2)_'?1.

L 6.8 )

An iterative solution is possible for the pressure Pyo if the
stator’s exit surface A1 sin 0y has been very precisely
determined, for instance through measurements of %the individual
channel widths. From the continuity equation we ncw calculate

the velocity

. .
c, = m - Mgy (4.9)

A1 Sl'n “4 ?4 !
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and the density from the gas equation, as
turbine condition

a

=

unetion of the

S P L ( 4.10)
%o Po T,
can be

The temperavure Tl calculated from the energy equation
for the stator blading,

AR = (T, =T) = by i + Fly/-1)

( 8.11)
From (4.10) we now obtain the density ratio
9 . E{ 1 _ { 4.12)
4q S0 €4 ] .
© P 1w£pmﬁn;-<&h5'] - E—(’]"ﬂ)
/118
If herefrom we now calculate the velocity c

, from equation (4.9)
and replaces this value in the energy equation (4.7), then we

obtain, with (4.8), the initial equation for the pressure Pys

1 Mé&,z Pol* . c? )‘Po ’% 1%
E-(A'Sinm,qo) (—ﬂ:) [(1’*1)(1*'2%.‘.0 (-—) + r}] -

( 4.13)

If we solve the right-hand side for Pyo an estimated value El

can be improved by iteration. We then obtain the step's
percentage eaction

hl ( 4.14 )
he ©

Lb

K= {e

[~

However, the result of this calculation strongly depends on the

surface Al sin 0y and the stator's exit angle contained in it.
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Disregarding the stator clearance losgs in equation 4.9 yields a
much lower percentage weaction for the existing test step, while
for loss-free flow (n® = 1) there is an increase again. Since
the two effects approximately cancel each other, all Turther
measurements - considering the possibility of further sources of
error - were performed assuming n' = 1 and ﬁs = 0, It was
observed, in addition, that even small changes in the throughput
or the turbine's pressure gradieni had a large effect on the
percentage reaction, following the above calculations. However,
the latter is needed in the theoretical determination of the
pressure distribution across the shroud band and hence also
impairs the comparison between theory and measurements.

With the known pressure py we obtain the velocity c, from
equation (4.7) and the complete triangle of velocities

: 2

Wy =6+ U - 2uc, Cotat,

W= (2% ahg v wr ), ( 4.15)
3 2

& w oy U o 2 U cosB,

ey

o, = actan
2 wocosd, U °

as a function of the tangential velocity and the angles
indicated in Figure 4.6. We thus obtain the peripheral
efficiency

N = Alereoso, = cjeosy) ( 4.16 )
Ahg

for the sitep, assuming C, = Coo Furthermore, the abscissa values
for Figure 2.7 can be given, to facilitate calculation of the
theoretical excitation constants from equation (2.15). Since no
equations are given in [14] for the clearance loss for plain
clearances, as an approximation to it we used the value for a
single seal peak.

130



In each measurement sequence, the calibration factors for the
pressure gauges were determined first, by linear regression on
the electrical readings obvnined for different calibratvion
weights. After recalculation of the measured itransverse forces,
thelr increases g across the doeviation ¢, or respectively, a
were calculated by linear vogiression. For better applicability
of these resulits, in conformo..ce to the theory (see eguation
(2.,16)), these increases nvc wrelated to the ratio between the
isentropic tangential force and the rotor "bucket” length. We
thereby obtain the so-called clearance excitation and

restoration coefficients K, through Kug which describe the

1
in a dimensionless form. The most

step'’s transverse forces,
important operating parameters and measurement results here
discussed for the test turbine, are compiled for selected

measurement sequences in tables in the Appendix.

4,3,2, Relationship between excitation forces and efficiency
measurements

The measuremen’ of the clearance loss can be accomplished
indirectly, via the efficiency ng =N, - Csp” where the
peripheral efficiency is determined neglecting the additional
losses due to extrapolation to radial clearance width s = 0.
Since the excitation forces are very sensitively affected by
efficiency variations, exact measurements are necessary, for
many radial clearance widths. It hence seems appropriate to
proceed inversely, i.e., to establish cowmparisons to efficiency
variations based on the many excitvation force measurements
available. It can be shown at least for blading without shroud
band that the efficilency varies non-linearly with the radial
clearance width. This can be taken into account by means of a

polynomial of the clearance loss
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bep = a8 + a, §% + gaga ( 6.17 )

as a function of the clearance width. I{ we assume, disregarding
equalizing flows, that this clearance loss is valid also for
local radial clearance widths § according to equation (2.14),
then the integration of equation (2.10) yields the transverse
forces acting on the rotor,

]

3 2 5 N (4.18)
Qe = -ii [(04*2%5*3035 le + T a¢€ 1

Since the clearance loss was assumed proportional to the local
clearance width, the force in the direction of deviation
vanishes. While for a linear equation a, = a3 = 0 = as we
already establighed - the force is independent of the radial
clearance width s, this effect can already be noticed for a
parabolic equation ay = 0, However, it is only for higher-order
clearance loss equations that an "s“-ghaped course of the
excitation force across the eccentiricity is obtained.,

If we assume that the excitation forces QZD caused by pressure
distributions can be disregarded for bladings without shroud
band, then the coefficlients of equation (4.18) can be determined
by the least squares method applied to the measured excitation
forces Q2 :sto Here we obtain a family of curves of the
excitation forces as a funetion of radial clearance width s,
across the eccentricity, whose coefficients determine the course
cgp of the clearance loss that would result as a consequence of
the excitation forces. By Turther adapting this course to the
neasured efficiency

Q
r’o"qu”Ssp 8'9» (4.19)
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/121
we can determine wvhe peripheral efficiency U and a facvor ygby
which the clearance loss égp from the excitvation force
measurements would have tc be corrected. For YQ = 1, there would
be complete agreement (see Figure 4.8, below) between excitation

Figure 4.8 Variation of the effciency across
the radial clearance width

force and efficiency measurements. For a <1, the measured
excitavion forces are larger than the forces that can be
explained based on the clearance loss, which leads to the
conclusion that there are additional effects, for instance due
to the pressure distribution, at work. In general the factor
will be Yq >1, since the local clearance loss can be reduced by
means of equalizing flows along the perimeter. In this case the
measured excitation forces are smaller than those one would
calculate from a precise course of the efficiency ni(s).

It was assumed, in the evaluvation of the results, that the

effrctive efficlency determined from output measurements at the
electric dynamometer are to be set equal to the internal
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effieiency, n; = Ny The meagurement of the internal effieciency

CD

from the bOﬂD@Pabl° g ahead of and behind the turbine is
arfected by measurement errors that are teco large, Tor these

congsiderations. But it is to be cexpected %iat the friction ap
the test turbine's ball bearings will affectv the effieclency g
in the same manner for all parameter changes.

Egspecially important to the above correlation is the assumption
es

at
that viewed across the perimeter, vhe smallest clearance L. gs

will also occur at the narrvowest clearance width. Because of the

13

sorsional effect on the flow, according to section 3.6 this will
not azlways be true. As Figure 4.9, below, shows, a small phase
digsplacement occurs also because the clearance loss zccurving /122

Stator

b' e

Figure 4.9 Flow=line course

at the stator reduces the tangential force only after an arc
length b . Because of %this, in conirast to equation (4.18) there

are transverse forces Q active here that must be taken into

ls
account, in the correlation with the efficiency variations. The
measured restoration forces Q1 however point towards the fact
that in spite of the relatively large flow-line advance (ws

be/dm ~170) this effect is small.

L.3.3. Pressure distribution at the shroud band
The purpose of the pressure measurements at the rotor seal
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anee is the determination of the forces arising there.
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the housing wall are constant across the local clearancs widih,
this funetion can be determined from a limited number of

measurement poinvs. For the axial direction it is assumed - Tor
a plain clearance - that in conformance to Figure 4,10, below,
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FPigure 4,10 Evaluation of measured pressure curves

the neasured pressures Py correspond to the average values
across the widths Az; for a labyrinth, instead, constant
pressure may be assumed along the chamber width. On this base i%
is possible to calculate the compressive forces acting on the
rotor as was done in section 3.4. Since in the peripheral direc-
tion a maximum of only eight measurement points is available

for a pressure curve p(y), it is described by means of three
Fourier coefficients from equation (3.55). This corresponds /;gg
to the fitting of a sinusoidal function of variable amplitude,
with phase displacement with respect to the course of the local
clearance widths it will be recorded with the measurement values

submitted latver.

Based on the assumptions regarding the course of the pressure
curve, the forces determined from it could be subject to
systematic error. Despite some deviations, the prescription of a
sinusoidal pressure curve in the tangential or peripheral
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direction appears to lead to only small errors, since higher
order Fourier coefficlents (equation (3.54)) drop out during

integration. In contrast, the result is severely affected by how

the widthe Az in Figure 4.10 are established, since the pressure

curve is non-linear in axial direction., It would be possible in

prineiple to fit a two-dimensional function p(z,¥) to the

neagurement points, but it would lead to substantial calculation

efforts, since the parameters would no longer be independent of

each other. This would make restrictionsg necessary such that no

increased precision in the results could be expected, in
comparison to the above evaluation. Qualitatively, moreover,
measuremnents with only one measurement plane perpendicular %o
the carrying axis (ef. Figure 4,10b) yield useful results,

Within a measurement sequence, the pressure variations are
b

recorded for each eccentricity and the forces QD are computed,
from whose course across the eccentriciiy ithe increases qp are

calculated by linear regression. Whether the rotor is displaced

in a positive or a negative direction (c¢f. Figure 2.5), for a
corresponding definition of the tangential angles the same
pressure curves should be obtained. However, due to minute
differences in the seal’s microgeometry, in part substantial
deviations can occur. Therefore, in order to obtain
representative descriptions of the pressure course, pr¢ 'sures
for equally large positive and negative eccentwicities re

averaged.,

bh.h, Transverse forces from an eccentric rotor position and
comparison to the efficiency curve

Starting from the central position of the turbine step within

the housing, the eccentricity could be adjusted to up to 75% of

the radial clearance width, in both directions. The transverse
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forces acting on the rotor were measured at 15 points, within
this range; the course of the forces was approximately linear
across the deviation (ef.[5]), for all parametver combinations
here investigated. The pressure gradient at the turbine occurred
as a function of the throughput, which was fixed because the
compressor could not be varied. Correspondingly, similar test
conditions are best differentiaited for equal throughput, which
is recorded in the Appendix, together with other measured
turbine step parametvers. However, the necessarily somewhat
different turbine operating conditions had only little effect on
the consideration of the dimensionless slopes K

through K4 of
the forces across the deviation.

1

4ol,1, Blading without shroud band

Figure 4.11, below, shows the clearance excitation coefficients
determined from force measurements for rotor blading
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Figure 4,11 Rotor without Figure 4.12 Rotor without

shroud-band shroud-band
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without shroud-band. For the turbine step investigated, the
clearance loss increases as the axial clearance increases,
thereby causing an increase in the clearance excitation
coefficients Kgo In contrast vo the linear theory of equation
(2.17), they depend strongly on the radial clearance widvh. The
restoration coefficients =K1 shown in Pigure 4.12, above,
increase from an axial clearance 8oy = i mm on, which can be
attributed to the flow line displacement illustrated in Pigure
4,9, or to differences in the pressure distribution in the

stator clearance. We can not state here, with any certainty,
whether these restoration forces - which according to equation
(2.15) should vanish - are caused by stator or rotor clearance
losses. Such a stavement is possible only if the housing portion
of the rotor clearance can be displaced independently from that
of the stator, eccentrically to the rotor (cf. [30]). For a /i25
very small axial clearance there may be a finite value for the
restoration coefficient, which could be measured somewhat more
clearly during tests with standing blading [5]. For this extreme
position of the rotor with respect to the housing, due to the
step’s construction there will be a clearance loss only at the
rotor blading, which according to equation (2.15) should not

give rise to restoration forces. It is thus not impossible for
transverse forces to be caused by a non-uniform pressure
distribution along the perimeter, even for blading without
ghroud-band.

In order to explain the relatively large deviations of the

measured clearance cxcitation coefficients in Filgure 4.11 from
those expecied in theory, we performed a correlation between the
excitatlion forces and the measured efficiencies, in accordance

with section 4.3.2. Figure 4,13 below, shows the course of the

thus referenced excitation forces for various radial clear- /126
ance widths, across the eccentricity. The family of curves

plotited corresponds to the function (4.18), whose parameters
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from clearance loss,[14],eq.(2.15)
were determined from the measurement points, by linear

regression, as a function of the two variables g and s. Since
the course of the excitation forces is linear across the
eccentricity, a second order polinomial (4.17) will be
sufficient for the clearance loss. However, a higher-order
polinomial was able to explain measurements for a standing rotor
[5] very well, even though there the course of the excitation
forces is non-linear across the eccentricity, characterized by a
steeper slope for increasing eccentricity,

It is possible to establish a comparison between the parameters
of the functions (4.18), determined from excitation force
measurements, and the measured efficiencies, for all axial
clearances investigated. Startiing from the calculated peripheral
efficiency (for s = 0), the broken straight line records the
course of the clearance losses from [14], which for this turbine
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Figure 4.14 Blading without shroud=band

step agree only very little with the measurements. The slope and
curvature of the curves plotted were determined for each axial /;gz
clearance from the measured excitation forces. If together with
equation (4.19) we were %o introduce a correction Tactor y =1.2,
the agreement between these curves and the measured efficiency
would improve. In other words, the excitation forces are only
83% of the forces one should calculate, from the actual course
of the efficiencies. Taking into consideration the certainty
required for vibration calculations, the excitation forces in
bladings without shroud-band can be calculated from a known
efficiency curve, using equations (2.16) or (4.18).

4.4,2, Blading with shroud-band
In order to reduce clearance losses, the blading is fitted with
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shroud-bands. Figure 4.15, above, shows the course of the
measured efficiencies for equal radial clearance widths, as a
function of the axial clearance. The efficiencies are
significantly improved with respect to blading without shroud
band. The recessed labyrinth with three peaks is the most
favorable: here the seal effect of the radial clearance is
little affected by variations in the axial clearance. Due to the
smaller clearance losses, smaller clearance excitation forces
are to be expected for banded blading. Figure L4.16, below, /128
shows however that the clearance excitation coefficients are
much larger than for blading without shroud-band., As shall be
explained in section 4.5, because of a pressure distribution
that varies along the perimeter, in the rotor clearance, the
measured forces are approximately twice as large as those
calculated from equation (2.17) from the clearance loss only.
With increasing axial clearance the clearance excitation /129
coefficients become larger; there is a qualitative relationship
to the efficiencies of Figure 4.15. Because for increasing
clearance loss - i,e., smaller efficlency - the clearance
excitation coefficients become larger in the same manner.
However, an exact correlation between the excitation forces and
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the efficiencies is possible only, when the dependence of the
curve on the radial clearance width is known. Figure 4.17,
below, shows the restoration coefficlents across the axial
clearance, which depend strongly on the form of the rotor
clearance. For a plain rotor clearance, the restoring forces are
largest and can be primarily attributed to a pressure
distribution over the rotor shroud-band, as the comparison to
blading without shroud-band shows.

L,5, Pressure distribution over the rotor shroud-band and
comparison with theory
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h.5,1, Shroud-band with plain clearance

Figure 4,18 shows a two-dimensional representation of the
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Figure 4.18 Pressure distribution across a plain
shroud-band, e = 0,7 mm

pressure course, measured for an eccentricity of 0.7 mm at a
plain rotor clearance, both along the perimeter and in axial
direction. The static pressure drop at the rotor blading's
external section was approximately 60 mbar, in this measurement
sequence (cf. Appendix), with an afflux velocity of 140 m/s.
Starting from the entrance edge (z = 03 cf. Figure 2.8), the
pressure courses for five measurement planes normal to the axis,
in accordance with Figure 4.7 (B2), are shown along the shroud
band; the axial direction was considerably magnified in
comparison to the perimeter. The clearance at the entrance side
of the shroud-band here is only half as large as the average
radial clearance width. In agreement with the definition in
Figure 2.5, the smallest local radial clearance width is found
at the tangential angle | = 0. Because the flow is subjected to

143



torsional effectvs, there is a pressure maximum just before the
narrowest clearance, whieh Ffor individual measurement planes

along the shroud-band travels almost 80° against the direction

of rovation, Due to the characteristlc pressure maximum in 130
front of the narrowest clearance, a forece zets on the rotor that
hag a component in the direction of the ceviation, and another

one perpendicular to it. In tangential direction the pressure
curve does not correspond %o a pure sire function, since the

maxima are steeper than the minima.

Pigure 4.19, below shows, for threec selected measurement
sequences, the effect of the axial clearance on the measured
pressure courses, with the fitted sine functlon plotted in each
cagse. Measurement sequences 90 and 93 are only gqualitatively
comparable to sequence 89, already in axonometric
representation. Because of a defective seal, the turbine’'s
throughput and hence also the pressure and the velocity in front
of the clearance were much smaller, as can be seen from the
recorded pressure Pl of the central section.

/132

To calculate the theoretical pressure courses - also plotted on
Figure 4,19 - the pressure and the velocity were recalculated,
from the turbine step’s central section to the entrance radius,
using the potential vortex law (cf. section 3.2.1.). The loss
coefficients introduced in section 3 to describe the clearance
flow affected by torsional forces, were used; theilr effect has
already been thoroughly investigated by means of test
calculations. The radial clearance was subdivided in the flow
direction in such a manner that the pressure courses represented
are valid for the position of the measurement planes. In
addition, we plotted the course of the throughput - variable
along the perimeter - and for small axial clearances, the course
of the pressure at the end of the radizl entrance. Due to the
manner of construction of the seals studied, the radial exit .can
be ignored.
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MEASUREMENT: For housing insert B2, fitted to sine function

o RG89 O] Rgy =o 1R_99
g 4 g B o ® =E
E o 8 Eer =
[J] 'g ] o
!Si & R a ] s . ’5‘ 8
- - - - - i o O - m - - - e el
A #ﬁug\‘"m& L@ A Pt @ = P1
0)04 PR U © = P2 @) odaw P2
of P -
A A N, A
& S Q
) § = g
4 a\ 4
[+] Q
i ¥ ?
2]
¢ ¢
=180 =Qo Q B 18 00 -0 0 g0 160 -480 -Go o0 go 18
Perimeter Perimeter Perimeter
CALCULATION: EEE =0 g{xqe agés :ggg=0‘2 {,::Msl k'lRe)
[ * 9 v .
Bl s0  Cipoheosles0  Liact
n u o~
] o3 He
o) 9 '8
& \ G B
~3 s —$ S
) \ ) o "1 e
5:‘; 8 2] ‘z’ Sg Pan, 5 Hg 5
@ .// £ g’l o 5 a ’é’ﬁ g
o T
3:.4!‘—/"'” = %?_""F”“ﬁ <] §o W‘:‘:
a N * A %
& S 8 2 8w w1 S
0 ) T \\ y
" s B I = P @
L. § gi= L 18 gl— A8
1 / N, /’ * ¥ N, o ¢ + *, S/ ‘
Sl = S d a L -
8 g ® = 8 3 . g
-180 -0p 1} 0o 160 =180 -~do [¢] g0 160 =~18¢ =80 [ Bo 180

Perimeter Perimeter Perimeter
S.x 20,5 mm Sqx 21 MM Sex =& MM
o L 02 B3 x4 + 8 Meas. plane

© radial entrance (calculation)
== local throughput (calculation)

Figure 4,19 Pressure distribution for a plain rotor
clearance, for various axial clearances

Wthen the axial clearance is changed, it must be remembered that
from Figure 4.7, simultaneously the position of the measurement
drill-holes with respect to the shroud-band is displaced. For
the gauge ring B2 considered here, with five holes perpendicular
to the axis, one can obtain for Sax - 4 mm, for instance, the
interesting special case in which the drill-holes of the first
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plane are already over the radlal entrance. In agreement with
theory, we obtain here a nearly constant pressure course along
the perimeter. By decreasing the axial clearances, the
veloclities at the shroud-band's front side increase and cause
very large pressure differences along the perimeter, as shown by
the calculations for Soy = 0.5 mm, for instance. A direct
comparison with measurements is notv possible, since the
drill=holes for the first measurement plane are already over the
shroud-band (ef. FPigure 4.7). This measurement plane's low
pressure must be atitributed, at the tangential angle V¥ = 180¢°,
for instance, to a flow separaition due to cross-section

ax 0.5 mm
for the radial entrance, to the locally large radial clearance §

enlargement, which passes from a clearance width s

= 1,7 mm, During calculations, this would be taken into account
by means of contraction coefficients. In addition, the bend-loss
coefficients could not be counsidered constvant, as here, bdbut
dependent on the local geometry.

/133
Experiments with modified afflux conditions are particularly
suited to test the calculations procedure. In a turbine, these
conditions can be affected by the percentage reaction, which
essentially can be modified with the rate of rotation and the
pressure differential for the entire step. Starting from a
central operating condition, the pressure curves for both
possibilities of variation are shown in Figure 4.20;5 the simple
gauge ring Bl (see Figure 4.7) was used. It has only two
drill-holes in the frontal and back measurement planes, which
however are so arranged along the perimeter that the course of
the curve can be determined from positive and negative
eccentricity. With increasing pressure differentials the
amplitudes of the pressure curves become larger and at lower
rotation rates the position of the pressure maxima shifts.

Figure 4.21, below, shows the slopes of the transverse forces
acting on the rotor, as a function of its pressure differential.

Due to the reduced number of measurement points, these forces /134
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were determined based only on the pressure curves of the central
measurement plane. Since according to Figure 4.18 the course of
the pressure is non-linear in axial direction, the transverse
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forees thus determined must be considered only qualitatively;
nevertheless, the same assumptlions were made in the comparative
calculations shown. The clearance execitvation and restoration
coefficients measured increase with incy oasing rotor pressure

ced for the two

o
2o

radients. However, different tendencies are
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es. The cause for thi
£ficlents brought about
F.24), but must be
atbributed mainly vto the effect of the afflux velocity C, o

pressure gradicent variation possibiliti

m
@

o
<
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not so much the change in the loss e

co
the rotating channel wall (cf. Figure

During the teste performed at consvant rate of rotvation n =
8000/min, the relative afflux energy was of approximately the
same magnitude (ef., Appendix) and hence, according to Figure
3,26 and equation (3.55), the compressive forces are a2 linear
function of the pressure differentlal. In contrast, during the
variation of the rotation rate the afflux velocity c, was nearly

constant, due to which according to Figure 3,24 the excitation
forces increase parabolically with the pressure differential.

Both tendencies were well described by meang of the calculations
performed using the data in Figure 4.20. If more precise resulis
can not be expected, it is only because due to a measurement
uncertainty of 1% in the throughput and a reading error of 1 mm
Heg in the pressure differential for the step, the pressure
difference P; = P, ZTor the rotor may already be affected by an
error of 5 mbar. Systematic errors that could be included in the
simplified calculation of Py from equation (4.13) have not been
taken into consideration here,

' /135

Figure 4.22, below, shows the clearance excitation constants
over the axial clearance, for measuremeni sequences with
approximately equal throughput. On the one hand, these constants
were determined from the transverse forces acting on the entire
step (qz)° In comparison to them, the portion q£D has been
plotted which on the other hand is obtained by integration of
the measured pressure distribution over the rotor shroud-band.

Starting from the measurement point at s = 0.5 mm, a constant

ax
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course across the axial clearance may be assumed for the slope
of these forces, which is qualitatively confirmed by
measurenents with the housing insert Bl (ef. Appendix, MR 62 to
64), These slopes qu are also confirmed very clearly by
calculation. Besides the compressive forces, the calculated
slope qg contains the portion qgsp caused by the variable rotor
clearance loss. The transverse forces arising from the stator
clearance loss, represented by the difference qé = Q5 - q%u were
not calculated here (however, see Qgs in Figure 3.39 for a
gualitative comparison).

/136
Figure 4.23, above, shows the restoration coefficients on a
similar plot; the portion due to the pressure distribution was
again plotted as a qualitative course from comparable
measurements. The restoration coefficients calculated from the
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rotor clearance pressure distribution agree with the
c

measurements only for large axial clearances, due %o the

o

deviation explained on the basis of Figure 4.19. The transverse
forces (a ) for the entire step increase with increasing axial
Cl@&f&ﬂ@@& evidently the portion qi = Q4 = qg can nov Je
neglected here., TFor the small axial clearance 8oy = 0.5 mm, a
transverse force acting in the direction of deviation is
generated in the stator clearance, which based on a sample
calculation for a similar clearvance form, had already been shown
in Pigure 3.39 (Sax ~SA)., The restoration constant q{ calculated
only from the rotvor clearance flow is always somewhat lower than
the porition qID from the pressure distribution, for torsional

flow,

b,5.2., Labyrinths with two seal-peaks

The pressure curves measured in the chambers of the dioptric
labyrinth (ef. Figure 4.7 C) for an eccentric rotor position are
shown in Figure 4.24 Tor three axial clearance widths. Also
drawn was the pressure Pl in front of the rotor, calculated for
the central section from measured values; it increases with
decreasing axial clearance, because a betiter seal effect is then
achieved. Recalculated for the radius of the clearance entrance,
a pressure is obtained that for a large axial clearance
approximately corresponds to that measured in front of the first
seal peak. Noticeable pressure differences are observed in this
chamber only for a very small axial clearance. For Sox =

2,0 mm, the measured value deviates a little from the Titted
swne function, which can be attributed to an untight seal at Y =
0 and ¢y = *+180. Due %o it, locally higher velocities and hence,
somewhat lower pressures, could occur. In the chamber between
the two peaks the pressure curve's amplitudes depend only little
on the magnitude of the axial clearance. Behind the last peak /138

the pressure is nearly constant along the perimeter and
corresponds approximately to the pressure P2 measured in the
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MEASUREMENT: for housing insert C with fitted sine function
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Figure 4.24 Pressure distribution for a rotor
clearance with two seal peaks, e = 0,7 mm

central section, behind the rotor.

For the labyrinth, a calculation of the pressure curves depends
very much - as shown in section 3.6 - on the assumpiions made
for the pressure and impulse loss coefficients at the
seal-peaks. Assuming a constant contraction coefficient u = 0.7,
the calculations were performed with the pressure loss
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coefficients from equations (3.40) and (3.41). Through the
constants applicable to the seal geomeiry, these coefficlents
depend on the local cleawvance widths and flow angles. The
impulse loss coefficlent was determined as a factor vy = 1 from
equation (4.49), as a function of the corresponding pressure
loss coefficients. Based on the considerations in relation %o
Pigure 3.29, a pressure equalizing flow was not taken into
consideration. In addition, the channel widths for the
individual stream tubes were assumed to be constant, based on
the same assumption, i.e., that this effect is balanced by
corresponding local variations in the loss coefficients.

In agreement with the measuremeais, a relatively low pressure
level is observed in the central chamber, caused by the first
peaks’'s low loss coefficient and the changes in the flow angles
within the clearance. The amplitudes for these pressure curves
are approximately as high as those measured. The very small
axial clearance Sax = 0.5 mm caused considerable pressure
differences in front of the first peak (cf. Figure 4.19), due to
the variable velocities in the radial entrance. With the
existing empirical loss coefficients, no better agreement
between measurement and theory can be attained in this chamber.
It remains unclear, in addition, whether the assumption is
warranted that the pressure in the chamber before the first
seal-peak remains constant, with turbulence and simultaneous
redirection of the velocity. It would be conceivable that due to
cross~-currents within the chamber, the pressures determined
through existing measurement drill-holes (cf. Figure L4.7) are
not representative for the entire chamber.

/139
By means of section 3.3.4., the loss coefficients can be
determined in such a way from the available measurements, that
complete agreement exists beitweepn the measured and the
calculated pressure curves. But this approach also depends on
assumpvions that limit the general validity of the result.
Agreement will especially not be achieved, with the contraction
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coefficients chosen, if we start from a relationship between

pressure and impulse loss coefficients described by means of a

factor y assumed constant along the perimeter (cf. equation

(3.49)). Because according to Figure 3.36, the pressure curves

are considerably affecved by even small changes in the flow

angle.

Assuming constant impulse loss coefficients, for instance, the
pressure loss coefficients shown in Figure 4.25 (A) below
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are obtained, which are confirmed qualitatively also for other
assumptions regarding the impulse loss coefficients.
Disregarding small deviations obtained for the limiting values C
= 0and ¢ = 1, the measured pressure curves are described
exactly by means of these coefficlents. However, no unequivocal
dependence on the local geometry can be formulated, described
for instance in terms of clearance widths, flow angles and
distances between peaks, or also by the seal peaks' edge
sharpness. For a large axial clearance, the loss coefficients
“Es
the equations taken from the literature (Figure 4.25 (B)) - as
shown in Figure 4.24 - yield useful results that are sufficient
for turbine steps, since for the usual axial clearance

for the radial entrance become very small., For this reason

construction approaches, the axial clearance at the radial
entrance is much larger than the radial clearance width,

Figure 4.26 shows the measured clearance excitation constants as
a function of the axial cleairance, in comparison to calculations
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performed with the datva from Figure &.24, While the transverse
force out of the pressure distribution is nearly constant, the
total force increases, because the clearance loss increases with
increasing axial clearance width. This course is confirmed also
by calculations containing only the portion of clearance flow
coning from the rotor. The excitation force from the stator seal
can be determined as the difference (q, - qg) between the /140
measured total force and the forces determined from the rotor's
clearance flow. While the stator clearance loss of the turbine
steps studied is just as large as the rotor's (c¢f. Appendix),
due to the equalizing flows only weak excitation forces are
generated here,

/ik1
The restoration constants are shown over the axial clearance, in
Pigure 4.27, above. The transverse force out of the rotor
clearance’s pressure distribution is larger, at s = 0.5 mm,

ax
than the total force measured at the runner, since the stator

clearance has the same effect as in Figure 4.23. The
theoretically determined restoratvion force increases very
steeply at small axial clearance widths, which may be attributed
to the course of the pressure ahead of the first seal peak (see
Figure 4.24). Disvegarding a small axial clearance, the
calculation procedure provides good agreement with measurements,
despite the uncertain loss coefficients for the transverse
forces (q:'L'Dp qED) out of the rotor clearance's pressure
distribution., Taking into consideration the transverse forces
generated in the stavor clearance (cf. qualitatively Q; and Qg
in Figure 3.39), the forces measured for the entire turbine step
(q1, q2) can also be completely explained.

/ik2
4.5.3, Off-set shroud band with three ses . peaks

While the dioptric labyrinth was somewhat more favorable as to
its seal erffect than the plain shroud band, it was possible to
considerably increase the step’'s effiency by means of the
off-set labyrinth common in turbine construction (cf. Figure
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Figure 4.28 Pressure distribution for a rotor clearance
with three seal peaks, e = 0.7 mm

first seal peak and between the first and second peaks (see
Figure 4.7 (D)). From the results obtained for the dioptric
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labyrinth, it can be anticipated that the pressure is constant,
beyond the last peak and corresponds to the pressure P2 measured
beyond the rotor.

Along the perimeter the pressure distributions are similar to
those for the diopitric labyrinth; ©
chamber before the first peak again lead us to suspect an

he meagurements in the

untight seal. The pressure course for an axial clearance Soy = 3
mm constitute an exception. Here the clearance between the last
peak and the front of the shroud-bend shoulder becomes very
small, and the pressure in the chamber increases, due to the
better seal effect, In this arrangement of the seal peaks with
respect to shroud-band shoulder, the position of The pressure
maximum is also displaced considerably against the direction of

torsion.

The theoretical pressure curves were calculated under
assumptions similar to those made for the dioptric labyrinth,
with the constants for the variable loss coefficlents given
according to the seal peak positions. Here oo, because of the
small clearance at the radial sntrance, excessive pressure
differences occur, while the agreement is better for the
amplitudes and phase angles of the pressure curves corresponding
to the central chambers. For the large axial clearance Say = 3
mm, the pressure levels in the individual chambers can be
reflected by corresponding loss coefficients. The pressure
distributions along the perimeter, however, agree only little
with the measurements, since the flow cross-sections changed due
to the peak positions were not taken into account. In addition,
from the position of the measured pressure maxima it must be /144
concluded that due to the oblique oncoming flow at the last

peak, a redirection of the flow occurs in tangential direction.

The slones of the measured excitation constants are shown in
Figure 4,29, in comparison to the calculated values. The portion
due to the pressure distribution is practically independent of
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the axial clearance, as was true of other clearance forms. The
slope of the excitation force at the stator - formed as the
difference dp - q£ between the measured value for the entire
step and the value calculated for the rotor - agrecs with the

results for plain rotor clearances and for the dioptric

labyrinth.

The restoration constants decrease with increasing axial
clearance, under the effects of compressive forces, as shown in
Figure 4,30, The restoration constants calculated from the rotor
pressure distributions agree only qualitatively with the
measured values, due to deviations in the pressure curves
already explained in connection with Figure 4.28. The difference
4 - q{u between the measured total force and and the /;gg
compressive force, corresponds to the compressive forces
generatved in the stator clearance, if we disregard the small
restoration Torces out of the rotor clearance loss. This course,
which can also be recognized in Figure 4.27, is qualitatively
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confirmed by the complete calculaition in accordance with Figure
3.39 for a stavor clearance with radlial entrance and exit,

It was also possible for the set-off shroud band ©to determine
the loss coefficients in such a manner that the measurements are
reproduced exactly. However, it is not possible to provide a
generally valld dependence on the local seal geometry, which is
here expanded with the shroud-band shoulder. It should
nevertheless ve expected for the calculated transverse forces ©o
provide better agreement, for t.e axial clearances that are
usually much larger than the radial clearance widths. Special
cases, though, resulting from the position of the seal peaks
with respect to the shroud band shoulder - as occur in Figure
L,28 for P 3 mm - are excepted.

L,6, Forces due to a rotor-to-housing inclination
<

»°

Normally, according to Figure 2.5, an inclination of the rotor
with respect to the housing occurs only coupled to rotor
eccentriclity, with the ratio of the axial clearance change a to
the eccentricity e being a function of the deflection bending
line, the rotor diameter and the arrangement of the turbine step
between the bearings. In order to test whether *“he forces due to
both kinds of deviation are additive, a separate and a common
displacement were performed on the test turbine. Figure 4.31,
below, shows a plot of the relative excitation force Q2/Us over
the eccentricity e (MR 76) and the force QB/US over the
inclination a = 0.535e (MR 80). Furthermore, the displacement
was performed in such a manner that under the action of both
effects the forces became larger in one case (MR 84), but
smaller in the other (MR 83). Within the measurement precision,
they can be readily composed from individual measurements, with
the same conclusions also being applicable to the restoration

159



ORIGINAL PAGE 1g
DF PQOR QUALITY

Tnstall'n B é MRJ'MW
e e ] ]

Rotor &* Q

Stator == 008 U _ ‘
Clear.width e*stmm| ,

Axial clea¥. sh,aznm ‘ i
Rot 'n Fate n-8000%m ['

MR _TUskp] : Uz_: 0% F‘,‘, / %

M

=
T

MR7G

MRE3)

=3
{e2]
<O
i~
|
.
+—+
F"
o~

feslls -}

L l=1

5

O (~2

(=304}
o

PO RN

»fp C)
~z]~a3it)

84 81 6

04 etmm] 0,8
A

? x> MR B0

%

7/ 22053

|

U e ~/4}-————~ -008- o - - - p—

Figure 4.31 Relative excitation forces over the
eccentricity and the inclination of the rotor with
respect to the housing

0w 0,
n - -
Mo g
N
g . V)
o~ ’T‘ - Y =
T) Gt (2 22)
1 aus E
2 _
ﬁ hh[ N M /’L
~ I’IJ—*—--J .d{._‘. = .E “ - -
o © o - @ f==
Ui Rl W g N /
3 g /
o _ ~
o & [ J4
Yy
8] 3 f
n Qo w
M a. U ., 1
0{ T . 7 l
oo 5 - /
g gl |
oo o e s T 3 Sot T E T, i
Axial clear.(mm Axial clear (mm)
- FOrce meas.(entire stage) «m= FOTCe meas.(entire stage)

T from press.distrib.(shroudband) from press.distrib.(shroudkznd)

Figure 4.32 Two seal peaks Figure 4.33 Two seal peaks

160



forces Ql and respectively, QAa The ratio of the two deviations
selecited here covresponds approximately to the maximum to be /ilf
expected Tor a high-power turbine. The excitation forces for the
steps at the turbine entrance were increased here by

arproximavely 10%, with those at the exit being correspondingly
reduced (cf. Figure 2.5).

Figure 4.32, above, shows a plot of the dimensionless slope of
the excitation force generated due to the rotor's luclination.
The clearance excitation coefficient decreaser strorn.ly with
increasing axial clearance and then attains : ..+ tant limiting
value: the portion originating in the pressure aistribution acts
similarly. In the calculation of the theoretical coefficient
according to equation (2.22), it was assumed that the entire
clearance loss at the rotor was due to the axial seal effect,
For this reason, for the large axial clearance the sum of the
theoretical forces out of the clearance loss and out of the
pressure distribution yields excessively high values, Due to the
linear clearance loss equation, the theoretical coefficient is
independent of the axial clearance. The restoration coeffi- /147
cients are shown in Figure 4.33, above. The forces originating
in the pressure distribution depend particularly strongly on the
axial clearance width, here.

The pressure differences generated due to an inclination of the
rotor with respect to the housing are shown in Figure 4.34,
below, for various axial clearances. In accordance with its
definition, the axial clearance - now variable along the
perimeter because of the inclination - is smallest at ¢ = 0.
Correspondingly, this is also where the highest velocities
occur, which cause a minimum in the pressure curve in the
chamber before the first seal peak. For a large axial clearance
this effect no longer exists, due to the smaller pressure
differences. The position of the now only weakly marked pressure
maximum in the central chamber depends on the axial clearance
width. The pressure differences are small in comparison to those
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v
clearance with two sea

generated for an eccentric ro. r position, even though very
large axial clearance changes were tested, such as would hardly
be possible with a vibrating turbine shaft.

Assuming a linear clearance excitation theory, it is possible ¢
formulate a relationship between the excitation force caused by
the inclination. of the rotor, and efficiency curve. From
equations (2.19) to (2.22) we obtain the slope of ithe local
clearance loss over the axial clearance,

S K.’!s
Sax Zu_r,/(." _Z_Z—

as a function of the clearance excitaticn coefficient K3
caused by the changes in the local tangentiecl force. It can be
determined as the difference KBs = K3 = 3D between the total

clearance excitatici: coefficient and the portion due to the
pressure distribution, from the available measurements. Figure
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.35, above, shows the efficiency curve, ag a function of the
axial clearance. Starting from the calculated tangential
efficiency for the step, the linear efficiency decrease which
results from the clearance loss due to the shroud-band entrance
shoulder, is plotted, according to equation (2.19). The slopes /149
detvermined from the excitation force measurements are
qualitatively in agreement with the non-linear efficiency curve.
However, there are deviations for large axial clearances, caused
either by compressive forces at the stator clearance, or due to
the fact that an inclination of the rotor can also cause small
radial clearance changes. If we take these side effects into
consideration, the relationship between the excitation forces
and the efficiency course seems sufficilently confirmed also for
the case of an inclination between rotor and housing.
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5 SUMMARY

The rotorc of thermal turbomachines can become endangered by
self-excited vibrations that may impose severe outputb
restrictions on the affecied power plants, if these vibrations
are caused by clearance excitation., For a theoretical
description of the system, 1t is necessary to know the
transverse forces that act in dependance on a deviation of the
rotor from its centered position with respect %o the housing.
The component perpendicular to the direction of deviation
acquires special significance, since in circumpolar vibrational
nmovement it act 3 by setting up vibrations in the turbine shaft.

The excitation force can be described as the resultant of the
turbine stage’'s tangential force, which becomes variable for an
eccentric rotor position. Therefore, for a given rotation rate,
it is a function of the stage's output and of the course of the
clearance loss over the radial clearance width. In the case of
blading with shroud-band, the excitation forces can be
considerably enhanced due to a variable pressure distribution in
the rotor's seal clearance. This effect was studled in detail by
means of a calculation procedure in which the torsionally
affected flow at the clearance - caused by the main flow, in
turbine stages - was especially taken into account.

Sample calculations show that the excitation forces due to a
pressure distribution in the seal clearance increase with
increasing pressure gradient and especially, with increases in
the tangential velocity before the clearance. However, the
characteristic quantity is the relative afflux energy, to be
obtained from the dynamic pressure of the tangential velocity
before the clearance, related to the pressure gradient operating
at the seal clearance. Correspondingly, because of the large
relative afflux energy at turbine stages in impulse
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n /151
reaction svages. However, the form of the seal clearance and the

congtruction, larger excitvation forces become active due

TV

f2e

pressure distribution over the rotor's shroud-band, than

empirical loss coefficients, which describe the clearance flow
ag a function of the geomeitry, also have a significant effect on
the magnitude of the exclitation forces.

The experimental studies were performed on an impulse turbine
stage, varying the rotor's clearance form. The rotor was mounted
in a kind of two-component balance, connected to a
dynamometrical brake; the transverse forces were measured as a
function of its deviation with respect to the housing. By means
of efficiency measuremenis at various radial clearance widths,
it was possible to show that for blading without shroud-band the
excitation forces could be calculated from the clearance loss
alone. In contrast, for the bladings with shroud-bard
investigated, in spite of lower clearance losses, larger
excitation forces were observed; these could be explained by
means of measurements of the pressure distribution at the rotor
clearance.

Considering the complexity of the flow processes in a seal
clearance, the agreement between the measured pressure curves
and the theory is relatively good; minor deviations - especially
for small axial clearance widths, can be explained in terms of
the simplifying assumptions made regarding the loss
coefficients., For the usual constructions, the transverse forces
acting on a turbine stage - caused by the clearance loss, on the
one hand, and the pressure distribution along the rotor
perimeter, on the other - can be determined with sufficient
accuracy
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6 DESIGNATIONS USED
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surfaces, flow cross-sections

specific work, axial clearance change due to inclination
seal clearance length

relative afflux energy

absolute velocity at blading

specific heat capacity

diameter

insert condition to describe stage geomeiry
eccentricity of the rotor with respect to the housing
control magnitude (plain clearance - labyrinth)
chamber height

isentropic gradient

clearance loss coefficients

coefficient for the transverse forces of the flow medium
blade length, flow paths in the control space
measurement sequence number

mass, constant for seal peak loss coefficients
throughput

rotation rate

output, compressive force on control space

pressure

transverse force of the flow medium

coefficient for the transverse force depending on the
deviation

Reynold's number

radii

support force

clearance width

temperature

distance of the seal peaks

tangential or peripheral force, isentropic tangential
force



v, w
w

X, Vo3

Q R
™

Y
©
Y

= Wk E 6 € D w > ¥ I

tangential or peripheral velocity
velocities within the clearance
relative velocity at the blading
spatial coordinates

number of seal peaks

flow angle, angle of rotor inclination
flow angles at turbine blading

pressure loss and impulse loss coefficients
efficiency

isentropy exponent

friction coefficient

contraction coefficient

density

tangential or peripheral angle, bending angle
pressure coefficient of the turbine stage
angular velocity

load vecior

load matrix proportional to the deviation
load matrix proportional to the velocity
percentage reaction

Subscript and superscripis:

X dimensionless representation

- clearance width variable along perimeter

statvor

” rotor

1 in the direction of deviation

2 perpendicular to direction of deviation (preceding
the direction of rotation)

A radial exit

(o]

reference magnitude

@]

from pressure distribution
E radial entrance
i,n support point in flow direction

k,jJ support point in tangential direction
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S radial clearance
s originating in clearance loss

Stage control surfaces:

0 before the statvor
1 between bladings
2 behind rotor
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8  APPENDIX: TABLE OF MEASURED VALUES

The Table below lists the mid-section magnitudes of the test
turbine and the slopes of the forces over the eccentricity for
selected measurement sequences. The stage geometry is described
by means of the insert as defined in section 4.2. The individual
magnitudes are explained in the sequence of the computer
print-out, with a listing for the equation number.

MR Measurement sequence number
SAX axial clearance

NB operating speed

M throughput, (4.1)

DHS isotropic gradient, (4.2)
PSI  pressure coefficient, ¢ = 2Ahs/u

Us isentropic tangential force

ETAE effective efficiency, (4.4)

KTAU tangential efficiency, (4.5)

REAK percentage reaction, (4.14)

REAM percentage reaction from measurement Pyy (cf. Figure 4.4)

KSI ratio c=c"/gsp, corresponds to qgs/qZS

Q2S  theoretical excitation forece, (2.15)
US/L reference magnitude U_/1 for following constants
Q2 excitation coefficient (entire stage)

Ql restoration coefficient (entire stage)
Q2D excitation coefficient from pressure distribution
QiD restoration coefficient from pressure distribution

CES relative afflux energy for rotor clearance, (3.24),
recalculated for external tadius using (3.8)

PO pressure before turbine stage P,

DP02 pressure difference P, = by

DP12 pressure difference p, - p, from (L.13)
TO temperature before stage [ °C)

co afflux velocity, (4.6)
ci stator exit velocity, (4.15)

c2 velocity behind rotor, (4.15)
AL2 outflow angle, (4.15)
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MR SAX
=a MM

Insert

39 0,8
40 1,0
4} R0
42 3,0

Insert

17 068
16 1.0
16 2,0
15 3,9

Insert

30 1,0
3% 2.0
27 2,0
3R 2,0

Insert

89 1,0
60 §,0
66 3,0
6% 340
66 0,43

39 0,5

--Throughput corrected MR 90 to

90 1.0
91 2,0
38 3,0
93 4,0

Insert

08 0,9
75 1,0
76 2,0
77 3,0
78 4,0

Insert

113 0,5
116 1,0
115 240
116 3,0

NG

YPH KGYS RY/KE wea
cond. 231

8000
8go0
8000
8060

cond., 211

8guo
8000
8900
8Q0¢

cond. 221}

8009
8000
8Q0¢
800D

cond. 251

%000
6000
80uQ
8009
8000
6000
80090

cond. 281

68000

#0009
8000
8000
8609

cond. 271

8ULVY
80UQ
8000
BUUO
BY0Q

cond. 291

8000
8guo
8009
8000

]

v3089
0389
2389
¢3089

0393
2363
0393

DHS  PSI Ua ETAE ETAL ETAU REAK REAM KSI Q25

w/o shroud band (s=0.5 mm) 'Form A

14,8 5,50 78,58 ,720
16,7 5,40 78,2 72}
14,8 58] 78,7 4,719
14,7 8,48 78,8 4716

1704 (748
1694 730
1718 L T69
s 720 L7850

12282
123
1239
v2)2

w/0o shroud=-band (s=1.0 mm),

14909 8437 77,3 ,628
lagl 85426 75,8 ,394
14,0 5420 76,7 ,379

¢392 14,1 5,25 75,6 ,578
w/o shroud-band (s=1.5 mm),

1398
» 398
0399
0998

1360
0308
¢388
vhee
2429
429
1429

0423

0326
03223
0230
MRS

«R00
910
017
018
b}t

0400
907
407
oh07

14,0 84522 76,3 ,52])
14,0 5,22 T0,2 4459
19,0 8421 70,1 44506
14,0 5,22 76,3 440

Plain shroud-band, Form

12,318430122,8 ,498
12,0 B34 84,5 617
13,6 5,00 Tie5 677
1349 8493 9107 4659
16,7 6422 977 707
10,9 6412 96,) 4660
16,2 6,02 96,5 ,659

Plain shroud- band,

16,9 6429 97,7 ,707

10,0 3,72 4%94% 4671
10,0 3,76 45,) ,660
10,1 7.7 48,6 o650
16.3 Bgol “@.5 oﬁ“@

Two seal-peaks,

16,2 6,03 88,6 ,608
16,8 bRt 95,3 6064
16,8 6,24 98,4 ,652
10,7 6,2) 95,1 o642
16,7 6520 92,0 (6358

1666 764
1651 o769
21644 .771
1639 ,769

0337 (772
0357 ,772
033]1 (772
357 772

e b56 56"
2617 4709
|923 W T69
p560 752
0599 742
21538 4747
0522 782

s 770 5761
93—~
(748 708
0722 ,706
§ 746 o708
o790 , 789

Form C

e T3L 725
s 727 4736
§ 706 o738
0 70y L 737
0704 737

136058
eldl
o117
0121

1jus
e lU3
W 105
9305

Bl

1091
0337
ede3
0339
1169
0 187
8332

Form B2

sl71

098
e ldl
9100
e 091

c2Ba
e2}7
¢230
g 201
2200

Three seal-peaks, Form D
14,8 5,52 02,3 ,700 (776 750 43175

1448 5,52 82,6 508
19,9 5,54 8246 4,687
1449 5,56 82,8 .69

e 702 796
s 7064 L1756
e 756 (754

sl”
elio
gl

.069
1068
,068
4068

057
+ 37
037
57

Form A

33 %2323

004}

046
0056
2087
0089

20178
01068
4190
493
2198

057

038
007
e 49

(68

30
050

Y
450

»30
049

043
X
082

042

Poas VR cwon opoo cpee on N/MH

769
663
5¢5
T8
Tl
Te?
Tek

Tob

343
3¢d
36
246
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MR US/L Q2

aqb

Q2D ~QiD CES PO LPOZ DPY2 YO €0 €1} €& Ake

=a N/HM N/MP N/ZME NZMR NJMM eeo NMPAR HOBAR MBAR € M¢S M/8 M/8 GRO

Insert cond.

39 4,) 3
LI TS ¢
4l 44l 10,7
0

O,
8y
O,
42 4ol )e

Insert cond.

17 441 6,0
16 4.0 0,}
16 3,9 8,86
15 4,0 . Boh

Insert cond. 221

30 4,0 5.0
3L 4,0 069
87 4.0 6,3
32 "og 70&

Insert cond.

59 08 9,0
60 4.4 }0,}
66 3,8 10,7
68 4,0 La.4
64 3,1 10,3
6¢ 5.} i@o@
08 5.0 1942

Insert cond. 281

89 5,1 9,9

-—-Throughput correcte

90 2.3 7.5
28 2.3 8,7
98 2,4 9,7
92 2.4 9B

Insert cond.

68 Ge7 T4C
75 5.0 10,C
TO 5,0 }2,3
77 5.3 &0
76 5.0 3.2

113 4e3 0,7
116 4,3 8]
112 4,3 9.4
110 4,6 Be6

231

211

0s9
Qed
1.}
be?

”90@
0.5
0.2
1ed
251

398

Ted

le%

w/o shroud-band (s=0.5 mm), Form A

Lok 1163 1B7 393 22 g6 165 43 06
Lo# 1362 108 37,9 26 26 148 4y 0D
16 1163 166 38,0 26 26 143 &5 04
fo6 1362 108 37,3 26 &n 148 43 65

w/o shroud-band (s=1.0 mm), Form A

w 1.8 3129 §79 2445 25 25 180 37 T3
m 2.0 1125 173 20,0 25 8 151 25 74
"~ 2el 1123 175 19,2 24 @5 150 36 75
» 240 13285 178 19.9 24 28 i50 35 14

w/o shroud-band, (s=1.5 mm), Form A

88009
332 2

b s 88

1138 178 17,3 25 @b 15% 36 7O
1133 178 17,% g5 &8 15y 26 10
1134 178 17,4 23 &8 151 34 76

2
4
268 1135 175 17,3 25 @28 151 234 7O

1]

¥

o}
a.a

Plain shroud-band, Form Bl

2.6 1092 149 13,0 84 26 163 72 23
200 1100 156 17,2 84 2k 142 47 40
1.8 1117, 170 23,3 21 24 146 36 15
1350 202 2044 21 26 158 41 64
1,7 116) 214 33. 286 159 45 59
18 1158 211 3 é z 60 159 44 6)
109 3154 207 2 0 86 160 42 63

Plain shroud-band, Form B2

4 O WO 3 P
a
-
L+

Ted 9o Xi 1160 213 34.2 25 206 160 46 B8
J MR 90 to 93-=- ° )

4,6 6} 2.8 1067 $19 11,3 25 22 126 27 114
3,9 3,0 aon 1067 120 18,0 26 22 126 27 109
349 5,40 2,8 3069 121 1}.0 26 42 129 27 112
3,6 4,8 2,3 1070 123 10,7 26 22 131 27 112

Two seal—peaksﬁ Form C

5,0 9,7 led 3175 208 50,2 24 24 145 49 50
6¢3 8,0 lo% 1167 213 43,0 2% 206 155 4B 37
540 Ggb 16 1166 213 42,) 23 26 iS5 48 87
94 340 1D 2165 212 60,0 25 26 156 47 I8
5¢3 4ol 105 1165 211 39,8 235 &6 150 47 58
Three seal-peaks, Form D

400 0,2 1,6 1164 191 31,3 23 45 149 39 60
307 434 1,7 11664 19) 31,3 23 &9 150 3% 66
392 Q3 1,6 1166 191 31,6 23 g5 150 39 OO
3ol »35) 106 1160 192 32,7 23 &5 149 40 06





