Lo
“N85-16891

SHUTTLE AVIONICS SOFTWARE
TRIALS, TRIBULATIONS AND SUCCESSES

0. L. Henderson
HONEYWELL INC.

ABSTRACT

The decision to use a programmable digital control system on the Space Shuttle engine
was a new application of digital control in the early 1970's. The use of digital
control was primarily based upon the need for a flexible control system capable of
supporting the total engine mission on a large complex pump fed engine. The mission
definition included all control phases from ground checkout through post shutdown
propellant dumping. £

The flexibility of the controller through reprogrammable software allowed the system
to respond to the technical challenges and innovation required to develop both the
engine and controller hardware. This same flexibility, however, placed a severe
strain on the capability of the software development and verification organization.
The overall development program required that the software facility accomodate signi-
ficant growth in both the software requirements and the number of software packages
delivered.

The above requirements became a serious challenge to the software development facility.
This challenge was met by reorganization and evolution in the process of developing
and verifying software. The resulting process consistently provided high quality
software on schedule throughout the balance of the shuttle program.

INTRODUCTION

In March, 1972, NASA selected the Rocketdyne Division of Rockwell International to
design and develop the Space Shuttle Main Engine (SSME) for the reusable Space Shuttle.
The engine development program was managed by NASA/Marshall Space Flight Center (MSFC)
and was supported by various engineering laboratories within the Science and Engin-
eering Directorate.

A digital computer control concept was selected as the basis of the engine control
system. Digital control was selected over the more classical engine control concepts
of valve sequencing or analog computer control because of the following advantages.

The engine was still in the early stages of development and the digital controller
allowed modified operational sequences and functional changes through software up-
dates. Time consuming and costly controller hardware modification could be avoided as
the engine matured. The concept of software modification provided flexibility and
adaptability during all stages of the engine development and use.

The digitally based systems also demonstrated the most economic means of providing
fast and flexible control and sophisticated monitoring and redundancy management
schemes for the complex operational sequence of the engine.

The above attributes of the system were reflected in the requirements for a software
development and test facility which could respond quickly and accurately to the needs
of a dynamic engine development program. The initial organization defined for this
facility had previously demonstrated iteself as being effective for the typical
embedded software program in a digital controller. The magnitude and scale of soft-
ware development required for the Main Engine Program soon made it evident that the
"classical" organization was not up to the task.

The following paragraphs describe the early problems and the solutions developed to

provide the required quality software needed to support the engine development prog-
ram.

19



DISCUSSION
EARLY HISTORY AND CHALLENGES

The initial organization defined for the software development was as shown in Figure
1. This organization was typical for an embedded software program delivered with a
hardware unit in the early 1970's.

The software group had a vertical organization for design coding and testing of soft-
ware programs. Requirements were from two sources: the controller hardware/software
relationships from the project systems group; and the engine system software needs
from the customers software requirements specification. The organization had a strong
knit team approach ard was staffed with experienced software designers who had the
background to efficiently develop and test a software program. This approach had
generally worked and was cost effective on the embedded software programs delivered in
previous control system applications.

The organization appeared to fit the program. The initial design definition was going
to lead to the Flight Configuration. The controller hardware being developed was the
projected flight control configuration and there was only one defined deliverable
software configuration.

The major challenges recognized relative to the controller software at this time were:

1. The engine being developed was the most complex high performance
engine ever built. Due to its high operating pressures, temperatures
and turbopump speeds very precise and rapid control of critical engine
functions were of prime importance.

2. Failure of a control function during engine hot fire development
testing could result in catastrophic damage. The system hardware
was redundant to provide safety against failure. The software,
however, was identical in the redundant channels of the controller.
A software error that was fatal in the first channel would also be
present in the second channel.

The above requirements dictated a conservative software design with significant
amounts of selfchecking and the ability to respond rapidly to a control perturbation.
It was also recognized that this software would require extensive testing and veri-
fication prior to use in an engine hot fire situation.

The philosophy on the testing was to do three levels of test. The first at the soft-
ware module level using a host machine. The second at the software systemverification
level in the controller hardware while the hardware was linked to a hybrid simulation
of the engine and vehicle interfaces. The final testing was to be performed at the
NASA Marshall Hardware Simulation Laboratory where the software again in the cont-
roller hardware was verified with an engine simulation containing the actual engine
control sensors and actuators.

This overall test philosophy proved to be correct and remained throughout the software
program development stages.

There was a third and significant challenge to the software development. This chall-
enge was not initially recognized for either its scope or magnitude. The problem
evolved from one of the significant advantages of using the programmable digital
controller. The control system allowed relative inexpensive flexibility in accomod-
ating changes in the engine and associated control scheme. This led to a staged
evolution of the overall system development. Innovative changes to the engine system

could be planned and implemented without schedule loss due to controller modifications.

The difficulty was in the demand this placed on the software development and veri-
fication operations. The changes and evoluation required ever increasing software
growth in program size and sophistication. This had been anticipated but the actual
growth was between 100 to 200% over early projections. The growth was primarily due
to the fact that as the engine/controller system matured it was recognized that a

more efficient and sophisticated control capability could be accomodated by the basic
digital control concept. The most severe demand on the software development, however,
was due to the fact that engine development dictated a controller and associated

20




software be available from the earliest stages. The early availability need resulted
in a semi-hardened controller hardware design and placed the rapid change requirements
on the software. This was further aggrevated as both the engine systems and the cont-
roller hardware definition changed as the engine matured. The above created an
incremental or multilevel approach to the engine testing and resulting controller
software needs.

Reasonable progress on the program dictated that there would be several iterations of
both the engines configuration and engine controllers as we progressed to the final
operational stage. These iterations had changing and or conflicting software require-
ments. Also several versions of the software configurations were required simultan-
eously to service the various engine test stands and development Taboratories.

The above scenario resulted in the requirement of simultaneous development, testing
and maintenance of two to three basic versions of the operational software in the
same facility with the same technical staff. Each basic version of the software had
20 to 30 revisions which required verification, certification and shipment.

The realities of the situation soon made it evident that the software organization was
not meeting the immediate or long term needs of the controller program or the engine
development program.

The initial concept of software development could not handle the environment. We saw
a degradation of the quality of the software documentation and numerous errors in the
shipped versions of software. Serious cost overruns and schedule slips developed.
There was a growing concern we would provide software that could result in a catas-
trophic engine failure.

DEVELOPED SOLUTION

The basic problem with the existing organization was that it had not been structured
to handle the large software development operation required to deliver and maintain
simultaneously several software definitions for a single target control system.

The problem was reviewed and broken down into the following elements:

1. Organization: The software design, development and test
responsibilities had been organized as a tight knit team with
overlapping and fuzzy responsibilities. The group worked well
on a typical single string embedded software development but
was inefficient for the large embedded program requiring multi-
ple simultaneous program design cycle iterations.

Their was a need for a better definition of the responsi-
bilities and interface between the Systems group and the
Software Design group. Software Design was accepting direction
from both the customer through the Customer Software Require-
ments Specification and from Systems through the Controller
Systems Requirements Specification. This direction at times
conflicted or overlapped due to the different stages of engine
system and controller development.

2. Change Control: Software requirements were changing rapidly.
Change and problem control were not rigidly documented and became
suspect when the volume of changes and problems increased. The
test plan or test tracking system defined could not handle the
heavy volume of test and retest that was building up on the pro-
gram. The software design documentation specification structure
was formalized and specific but the above problems caused this
documentation to degrade significantly in both its accuracy and
the ability to meet shipping schedules.

3. Quality Control: There was a need for an independent group
identified to review and pass on the accuracy or quality of the
software or its progress throughout the design process. Quality
was left to the individual designers for their portion of the
effort. Although the individual effort was good, the continuity
across the program was missing and overall quality suffered.

21




4. Management: The design process had grown so complex and
large that even though individuals in the organization felt
that they were accomplishing their tasks currently and report-
ing to be on schedule, the overall development was missing all
of the major milestones. The problem was isolated to the fact
that intermediate check points or gates in the design process
were non-existant. The designers did not understand they had a
problem until the last step which was to test their design,
against a program requirement, in the verification test facil-
ity.

The above reviews and problem identification resulted in a reorganization of the soft-
ware development groups and the development process. The reviews identified that the
environment of the project required multiple software programs in various stages of
maturity to be in the development pipeline simultaneously.

The software development was reorganized by borrowing from the structures and docu-
mentation requirements that had been proven for multiple phase hardware development
cycles. Specifically the development was changed to break the overall process up into
smaller operations which could be identified and managed independant of the proceed-
ing or following operation. Completion criteria and control documentation was then
identified for each of the operations. These changes allowed the tracking and manage-
ment of the multiple programs in process.

The software development was reorganized as shown in Figures 1 and 3. This organiza-
tion provided solutions to the specific problems we had identified in the previous
paragraphs. Originally it was felt that the change in organization and added controls
would significantly increase the cost of the operation, however, after some evolution
and refinement this organization proved to be able to deliver higher quality software
and software documentation at a comparable cost and always on schedule.

Referring to Figure 2, it can be seen that the new organization contained two new
groups, Test and Reliability. Also the roles of Systems and Software Design were
modified to fit the concept of the software development facility operating as a soft-
ware factory or production line.

The reorganization and the addition of several procedures and methods did not signi-

ficantly change the overall functions performed during the software development. The
changes were intended to break the overall development of the process into manageable
and traceable subunits with definitive completion criteria. Each subunit process had
a controlled source of incoming information and in turn became the controller source

of incoming information for the next step of the process.

The following paragraphs will describe the changes that were made and the problems
that were solved by these changes.

Systems Design

The Systems design group was identified as the primary customer interface. A1l cust-
omer direction and software design requirements flowed through the systems group.
This provided a focal point for the design requirements definition for the various
software packages being developed. The above procedures provided a unified and cont-
ro]]ed interface between the software process and the customer and hardware needs and
revisions.

The second significant change relative to the system group was that they were given
the responsibility for the generation of the Verification Test Requirements for the
software. This document defined the test or retest required for a base program or for
a revision. Generation of these documents significantly improved the quality of the
software testing. The software was not tested against a design requirement and not
the software design interpretation of the requirement.

Systems was also given the responsibility of defining the retest required against a
given operational program if that program was revised and updated. The organization
now had all external interfaces and software requirement documentation, both design

and test,focused in one group. This change eliminated the earlier conflicting require-
ments and definitions from reaching the design floor. The Systems group integrated

all design and test requirements into documents they controlled and maintained, the

22




software designers and software testers could work to a single consistent source of
direction.

Software Design

The Software Design group was also reorganized to provide a process which had small
identifiable design steps that the process development could progress through. These
steps were designed such that completion of a given step or function was identifiable
and had a testable criteria for completion. The Software Design process now included
the detail design, code and walk through of the design, testing of the design module
and integration of the module into the operational program as independant functions.

The functional and detail design were provided by the software design engineers and
the changes were documented via a software change memo. This memo identified the
module being designed in response to the specific design requirements and also incorp-
orated the new and/or modified software documentation required for the change.

The change memo was then used as the design print for coding of the changes. It was
also used as the document that directed change of both the source code for the oper-
ational program and the program design documentation.

The software change memo provided a definite vreviewable traceable definition of a
piece of the software design. Although it required considerable time and detailing
by the designer it allowed the use of junior grade engineers and/or technicians to

do the coding, the production of the software source change and the update of the
source configuration library. It also provided a document that could be reviewed
against the design requirement for correctness by the reliability group. After
review and completion of coding and mark-up of the redline source configuration, the
design walk through was completed. Members of software design, software production,
verification and systems group used the walk-through as a vehicle to verify the code,
met the design and the design met the intent of the requirements.

The code was then incorporated into the source and the module was tested as an entity
by the software group. It was then incorporated in the source being prepared for the
test floor and the software designer and coders would use abbreviated test document-
ation to perform integration testing of the change. This integration testing was the
final debugging of the particular change by the software group and determined if the
module was ready to be handed over to the test team for verification. After complet-
ion of integration testing the new test source program was presented to the Verifica-
tion Test Group. They would perform a standard verification acceptance test of the
new program. This standard test checked the critical paths and timing of the oper-
ational programs nad was the criteria for acceptance of a new software version for
detailed testing on the test floor.

Verification Test

The verification testing group was one of the two new sections created in the software

organization. Their responsibilities included the generation of detailed cookbook

type test procedures to be used in the testing of the software. The verification test

group was also responsible for identification, scheduling and control of all equipment

and documentation required to create and control the test facility. Their primary

function, however, was to perform the actual verification of the software program and

revisions. |

The verification was completed as a two step process. The first testing of a new
software program was called the dry run. The dry run test purpose was to identify any
problems with the software update code and test procedure or test implementation.
Problem resolution or debugging was not allowed during Dry Run Test. When a problem
was encountered an Internal Software Note (ISN) was generated and the testing contin-
ued through the procedure. The identified problems were then assigned to the res-
ponsible groups and worked off without interrupting the test flow.

After completion of Dry Run Testing and correction of all identified p.oblems, the
formal verification testing was initiated. This formal testing did not allow dev-
iation from procedures or expected results. Problems that occurred during this test
would require a formal review and retest after correction. No outstanding problem
was allowed after formal verification test completion unless it had been accepted via
the customer through a Software Waiver.

23



The verification test group solved three problems that had plagued the earlier develop-
ment. These were:

1. Under the original organization Software Design was to do
their own verification testing of the software. Experience
with that organization showed that the designers were not gen-
erating their test procedures to verify that the software met
the design requirements. The procedures were generated to test
that the software worked the way the software designer had des-
igned it. The new organization utilized test personnel to
generate detailed test procedures from test requirements docu-
mentation. These detailed cookbook procedures were purposely
generated with a minimum knowledge of the actual software des-
ign. The procedure writer used the software design documentation
only to find the names of subroutines or data words required
for a particular test sequence.

2. The second problem solved was the original organization put
an unreasonable amount of schedule pressure on the software
designer. The designer had to design, code and debug his pro-
grams. He was then required to generate a formal test procedure
and accomplish the verification testing. This effort did not
utilize the software designers major talent in the most efficient
manner. He spent toomuch time generating test procedure and
performin verification testing of the software. The new organi-
zation so?ved the problem by allowing the test group to develop
test procedures in parallel with the software design and also
relieved the software designer of test responsibility. The soft-
ware design group could go on to the next design cycle while

the test group verified the current design.

3. The third problem solved was the parallel operation signi-
ficantly collapsed the amount of time required to process a change.
Paralleling the design operation and the generation of test pro-
cedures provided adequate margin to allow the consistent delivery
of software updates to the Marshall Simulation Laboratories and

the Engine Test Stands.

Software Reliability

The final group in the new organization was a small group of reliability engineers who
functioned as a product assurance organization for the software operation. Their
duties included review and approval of the software change memos against the design
requirments. Theyreviewed all test procedure generation against the test requirements.
Verified that all required documentation updates and design walk throughs had been
completed prior to release of software to a source update. Verified that all test
paragraphs had been completed and the data was acceptable. Identified and tracked all
open problems against a source update through the use of Internal Software Notes (ISN)
and the ISN log.

The Internal Software Note was the key document in the tracking of the entire software
development effort, including the testing. While many of the ISNs are generated by

the test teams, they may be written by any member of any of the four groups who detects
a potential problem in a specification, the program, a test procedure, a flow chart,
test equipment or anything else that may affect the software or its verification.
Groundrules are that only one problem is documented on each ISN and that every problem,
proposed software change, procedure chance, etc., must be documented in an ISN. New
ISNs are collected each day and are reviewed by the ISN board.

The board is chaired by Reliability and includes members of the other three groups.
They determine the most Tikely cause of the problem and assign the ISN to one of the
four groups for action. At these daily board meetings all other outstanding ISNs are
reviewed to decermine if any are completely resolved and can be closed or should be
transferred to another group for further action. Approval of all four groups is
required to close an ISN.

Following the meeting, the additions, changes and closures are entered into a computer
program and an ISN lecg is printed showing all open ISNs and the groups responsible for

24




action. The reports highlight the number of known problems requiring resolution prior
to a shipment and any group that is developing a significant backlog.

Reliability was tasked with maintaining the ISN log and a 1og on the status of open
and completed testing. Software update could not be shipped from the facility until
these two logs had been closed through resolution of the open problems or a request
for outstanding problem waivers from Rocketdyne.

CONCLUSIONS

The process described above evolved from a need for extremely reliable software as a
part of a critical shuttle control system and early difficulties with this software
development effort. A significant measure of the success of the developed process is
that the earlier experienced problems did not exist through the balance of the dev-
elopment program. Since implementing the process, each software update and accompany-
ing documentation was delivered on or ahead of schedule.

The vast amount of engine hot fire time that the controllers and the associated soft-
ware have successfully supported demonstrate that the developed process has consist-
ently provided high quality operational programs. Successful completion of the Shuttle
launches further confirms that the software development program is sound.

It has been said that the real benefit of our exploration of space is not the explor-
ation ijtself, but the development of techniques needed to manage large, complex
processes where success is a must rather than a goal. The development of this software
design system is a case in point of the above statement. The key elements of this
success -- planning, organization, tracking and discipline are applicable to all soft-
ware processes. The concept of distinct groups with well defined responsibilities,
periodic status reviews, documentation control approvals and reviews, a formal track-
ing procedure and, providing authority consistent with responsibility, are not unique
in their application to the SSMEC program. The need for these elements of their
effective implementation was learned through experience on the program. The real
benefit from this experience is the continued use of these concepts on future scftware
development and verification programs.

25



92

MAIN ENGINE CONTROLLER
INITIAL ORGANIZATION FIGURE 1

PROGRAM MANAGER

PRODLCTION MANAGER
TECHNICAL DIRECTOR
l
I I l =
SOFTHARE SYSTEMS HARDWARE EVALUATION
DESIGN DESIGN LABS
CUSTOMER REQUIREMENTS CUSTOMER INTERFACE HARDWARE HARDWARE TEST

SOFTWARE DESIGN
SOFTWARE CODE
SOFTWARE TEST

HARDWARE REQUIREMENTS
SOFTWARE REQUIREMENTS




L2

SOFTWARE DEVELOPMENT ORGANIZATION

SOFTWARE MANAGER

FIGURE 2

-

SYSTEMS

+ DESIGN SPECIFICATION
+ TEST REQUIREMENTS

+ HARDWARE INTERFACE

+ CUSTOMER INTERFACE

+ RETEST DEFINITION

SOFTWARE

TEST

DETAILED DESIGN .
DOCUMENTATION .
CODE

PRODUCTION

PROBLEM RESOLUTION

TEST PROCEDURES

DEFINE TEST
HARDWARE

CONDUCT TESTS
DOCUMENT TESTS

RELIABILITY

+ APPROVAL OF;

- DESIGN SPEC

- DETAIL DESIGN

- TEST PROCEDURES
« VERIFY TEST RESULTS



82

PROJECT WORK FLOW

Document
ssigned by Discrepancie
5.4 Committee
SCM_\! Coded \2
Detailed and
Design Assembled
Direction Program 1 3,4
from \\ SCA
Cugtomer ) 1 o Source Test/ Document
Design Test < Change Retest and Ship
Specificationy—Requirement N Analysis
Test 3,4
Procedures
Test
Hardware
Definition
1 - Systems Group 3 - Test Group

2 - Software Group

4 - Reliability Approval Required

FIGURE 3



REFERENCES

W. T. Mitchell, "Space Shuttle Main Engine Digital Controller", Conference
on Advanced Control Systems for Aircraft Powerplants, Proceedings No. 274, North

Atlantic Treaty Organization, 1979.

R. M. Mattox, J. B. White, "Space Shuttle Main Engine Controller", NASA Technical
Paper 1932, November 1981.

W. T. Mitchell, R. F. Searle, "SSME Digital Control Design Characteristics",
Space Shuttle Technical Conference, NASA, JSC, June 28-30, 1983.

29



