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ABSTRACT

The Space Shuttle aerodynamics and performance communities were challenged to verify the

Space Shuttle vehicle (SSV) aerodynamics and system performance by flight measurements.
Historically, launch vehicle flight test programs which faced these same challenges were unmanned
instrumented flights of simple aerodynamically shaped vehicles. However, the manned SSV flight
test program made these challenges more complex because of the unique aerodynamic configuration

powered by the first man-rated solid rocket boosters (SRB). The analyses of flight data did not
verify the aerodynamics or performance preflight predictions of the first flight of the Space

Transportation System (STS-1). However, these analyses have defined the SSV aerodynamics and
verified system performance. The aerodynamics community has also been challenged to understand
the discrepancy between the wind tunnel and flight defined aerodynamics. This paper presents the
preflight analysis challenges, the aerodynamic extraction challenges, and the postflight analyses

challenges which led to the SSV system performance verification and which will lead to the
verification of the operational ascent aerodynamcis data base.

INTRODUCTION

The challenge of the Space Shuttle program was to develop a reusable spacecraft which would

experience a conventional launch through a high dynamic pressure environment, perform an on-orbit
mission and return to a conventional aircraft type landing. These requirements were satisfied by

a complex configuration comprised of the first winged orbital spacecraft (Orbiter), first man-
rated SRB, and external fuel tank (ET) (figure 1). During the development of this vehicle, the
aerodynamics and performance communities were challenged to assure flight safety by analysis and
to verify the SSV aerodynamics and system performance by flight test. Historically, flight test
programs of launch vehicles have been unmanned instrumented flights. However, the Space Shuttle
program management decided to perform an orbital manned mission on the first mission of the flight
program. This decision was based on program mission requirements, compressed development
schedules, and impact of vehicle loss.

PREFLIGHT ANALYSIS CHALLENGE

The manned SSV flight test program challenged the ascent communities to insure flight safety.
Extensive preflight analyses were performed to identify the SSV system performance and structural
sensitivities to potential inflight dispersions. Once these sensitivities were identified ascent

trajectory profiles were designed which satisfied the STS mission requirements and maintained
adequate margins of safety. Initial ascent trajectory design concepts for the SSV employed a
gravity turn technique to maximize vehicle performance. This concept maintained a zero angle-of-

attack (a = 0) throughout the first stage of flight. While this design approach was found to be
adequate for earlier generation launch vehicles, the resulting structural load environment for the
SSV was unacceptable. Therefore, the primary challenge for the ascent community was to identify
the ascent flight constraints within which the SSV trajectory profile could be designed to provide
adequate margins for the vehicle structure while minimizing the impact to the STS performance
capability (illustrated in figure 2 and 3). With the cooperation of the structural, aerodynamic

and trajectory design communities, an approach l using structural load indicators was developed

which modeled each of the critical SSV structural areas (see figures 4 and 5) in terms of the
external forces on the element: thrust; aerodynamics; and inertia. These structural load
indicator models were evaluated for various flight conditions to derive the flight constraint
envelopes. To insure adequate structural margins, the structural load indicator models were

evaluated using a six degree-of-freedom ascent trajectory simulation to determine sensitivities
and criticality of the various indicators to potential inflight dispersions. Figure 6 illustrates

the constraint envelope and inflight dispersions evaluated in terms of flight conditions. Figure

7 presents the measured wind dispersions used in figure 6 to provide protection for inflight winds
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and maintain a high launch probability. Figure 8 presents the resultant flight constraint
boundaries and trajectory design dynamic pressure and angle-of-attack requirements. These
analyses pointed out the sensitivity of the SSV to the Orbiter aerodynamics which resulted in the

requirement to extract the Orbiter aerodynamics from flight measurements.

By the mid 1970"s, to provide adequate structural margins on the Orbiter wing and

Orbiter/ET/SRB (element) attach struts, an angle-of-attack of -2 0 was required during the

transonic regime of the ascent trajectory. This more negative a profile was achieved at the cost
of approximately 700 pounds of payload capability relative to the initial trajectory design. In
the late 1970's, the aerodynamic data base uncertainties were increased from a level which
considered only wind tunnel data scatter (tolerance) to a level which also considered model scale
to full scale aerodynamic uncertainties (variations). This increase was made to protect the SSV
against the potential modeling and scale effect uncertainties associated with the complex SSV
configuration. This change in the potential inflight dispersions resulted in an ascent trajectory

profile design with a = -3 0 and a further loss of payload capability of approximately 800 pounds

relative to the a = -2o design. Thus, the trajectory design for the STS-1 had protected the SSV
against aerodynamic uncertainties and inflight dispersions to provide adequate performance,

acceptable structural loads and to insure high launch probability.

AERODYNAMICS EXTRACTION CHALLENGE

Since the preflight analyses were based on ground test defined aerodynamics, the aerodynamics
community was challenged to develop techniques to extract the aerodynamic characteristics of the

SSV, elements and components from flight data. An extraction procedure was developed which

substituted known or measured quantities into the equations of motion  and solved for the

aerodynamic forces and moments. The SSV was instrumented to measure the required quantities:
linear and angular accelerations, angular rates, thrust vector of each Space Shuttle main engine
(SSME) and SRB (i.e., magnitude and direction), and trajectory parameters. These measurements
could not be used directly to extract the aerodynamic characteristics, but required some
adjustments. Analysis techniques were developed to account for vehicle characteristics,
instrumentation location and instrumentation system biases. The SSME thrust vector analysis
combined the elasticity of the Orbiter thrust structure and measurement of thrust vector control

(TVC) actuator stroke to determine the direction of the thrust vector. Similarly, the structural
characteristics of the SRB were combined with the SRB TVC actuator stroke measurement to determine
the SRB thrust vector direction.

Since the center of gravity (cg) of the SSV moves during flight, techniques were required to

relate the accelerometer measurements to the cg location. Acceleration measurements were taken at
several locations on the Orbiter and SRB. The acceleration analysis used all compatible
measurement in a least-squares procedure to define the SSV cg acceleration. Since the Orbiter is
not a rigid body, accelerometer misalignment studies were required to determine the effect of body

bending on the aerodynamic extraction results. These analyses indicated that the expected
misalignments would not effect the aerodynamic extraction results.

Flight measurement of the SSV trajectory parameters and configuration parameters were
required to relate the extracted aerodynamics to the ascent aeordynamic design data base. An air
data system was designed into the tip of the ET to provide pressure measurements from which the
angle-of-attack, angle-of-sideslip, dynamic pressure and Mach number could be determined (figure
9). An extensive wind tunnel calibration program was conducted to provide correlation between

these pressure measurements and the required trajectory parameters. 3 Also, flight measurement of
the Orbiter elevon position was required. Measurements of the elevon actuator stroke were made
and converted to elevon angular position data. Also, techniques were developed to extract elevon
hinge moments from actuator pressure measurements and strain gauge measurements. The flight
elevon position analysis combined the position measurement, the extracted hinge moments, and the
aeroelastic characteristics of the elevon support structure to determine the aeroelastic elevon

position.

Since preflight analysis had identified structural sensitivities to the element (Orbiter, ET

and SRB) aerodynamics, extraction procedures were developed to define the element aerodynamics.
The element extraction procedure required the same measurements as previously described. However,

to isolate one element from the SSV the measurement of the interface loads were required. Each

Orbiter to ET strut and each SRB to ET strut (figure 4 and S) (except the forward ball fitting)

were instrumented. From the measurement of the strut loads, each body axis interface force could
be determined. A precise calibration of each flight test strut assembly was performed. These
calibrations were used to determine the flight measured strains. As with other measurements,
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biases were required to be removed. Removal of the airload and inertial load acting on each strut
was required. The initial weight of the Orbiter prior to SSME ignition was used to determine the
Orbiter strut bias. A pre-ignition SRB strut bias could not be determined since a preload was
present on the SRB struts on the pad which was released at lift-off. The SRB strut bias was
determined by using the strut calibration zero load point and the strut measurement at SRB

separation.

Prior to the first flight of the SSV the capability to extract the SSV, element and component

(elevon hinge moment) aerodynamics was achieved by the aerdoynamics community. Although preflight
analyses had indicated that the wing and vertical tail (components) were critical structure at
some flight conditions, no procedures were developed to extract these component aerodynamics. The
available strain gauge instrumentation was considered a structures community responsibility.
Furthermore, the limited amount of pressure instrumentation was considered verification data and
no procedures were developed to model these data.

POSTFLIGHT ANALYSIS CHALLENGES

The aerodynamics and performance communities were further challenged by the anomalies which

occurred during STS-1. The first-stage trajectory was steeper than expected (lofted) which
resulted in a SRB staging altitude approximately 10,000 feet higher than predicted (figure 10).
Post flight extraction of the aerodynamic forces and moments revealed that significant differences
existed from the baseline longitudinal forebody and base aerodynamics of the SSV and elements
(figures 11 and 12).

These results challenged the aerodynamic community to understand these results and provide

models of the flight derived aerodynamics. The performance communities were challenged to
reconstruct the observed trajectory anomalies and verify subsystem models for trajectory design
and performance prediction.

Initially, the aerodynamics community thought that the extracted aerodynamic results were

incorrect because the observed discrepancies were larger than the conservative aerodynamic

variations. However, preliminary trajectory reconstructions supported the flight derived
aerodynamics, and extensive review of the extraction procedure, particularly thrust vectors,
resulted in only minor modifications. STS-2 and -3 resulted in similar extracted aerodynamic

characteristics. As the flight test program continued, the trajectory reconstruction analyses
developed confidence in the trajectory design. STS-4 was designed to provide the aerodynamics
community with flight data at a less negative angle-of-attack. After STS-4, gradient and
intercept analyses of the derivatives 003a and 3C/as) indicated that the wind tunnel data base
derivatives and absolute levels were incorrect as shown in figures 13 and 14. These results were

modeled into the present SSV and element aerodynamic data bases.

As these models were being developed, the aerodynamic community was attempting to understand

the discrepancy between wind tunnel and flight aerodynamics. Center-of-pressure analyses
indicated that a positive normal force increment was acting on the aft region of the SSV and
primarily on the Orbiter. Assessment of limited pressure instrumentation on the Orbiter fuselage,
wing and base indicated that a higher than predicted base pressure environment existed during
flight which had fed forward of the Orbiter base. A review of the plume simulation used for SSV
wind tunnel tests was conducted. Studies using an analytical program and flight test base

pressures concluded that the plume simulation parameter (used to set test conditions) was

deficient and required a temperature function to account for hot gas effects. 4 A post flight wind
tunnel test was conducted to simulate the flight base pressure environment. Preliminary results
seem to verify flight pressure measurements in the elevon region of the wing and aft fuselage
(figure 15 and 16). Analyses of the post flight wind tunnel test are continuing and will

determine what part of the observed difference was due to plume simulation deficiencies. The
remaining difference is assumed to be Reynold"s number effects. Since post flight wind tunnel
data analyses will not be complete for some time and since only limited flight pressure data was
obtained, problems in modeling the flight force and moment increments into the external pressure

distributions have prevented complete verification of the ascent aerodynamic data bases.

Since the SSV pressure distributions are questionable, the day-of-launch assessment of wing

loads is questionable. Wing pressure distributions are inputs to the current load indicator
equations. Techniques were developed to determine the wing load distribution from flight strain

gauge data. Attempts to modify the wind tunnel derived pressure distributions based on flight
pressure measurements have failed to match loads data extracted from wing strain gauge data.
However, the gauge data was questioned and a check calibration performed after STS-5 revealed that

179



several key gauges either had the wrong scaling factors or reversed polarity. After using the
check calibration data, the extracted wing loads comparisons did not improve. Currently, the
aerodynamics and structures communities are implementing plans to correlate calculated internal

stresses using revised pressure distributions with measured flight stresses. The results of this
effort will be verified SSV pressure distributions.

The performance communities' trajectory reconstruction work provided the basis for

verification of the SSV system performance. The trajectory reconstruction of STS-4 using flight
derived aerodynamics and post flight subsystem model updates (SSME Isp and thrust; SRB Isp and
thrust; and gimbals) matched the vehicle tracking data (BET), air data system parameters,
occurrence of flight events, ET propellants remaining at MECO (table 1) and attach structure
loads. Figures 17, 18, and 19 present the trajectory parameter reconstruction comparisons. These
reconstructions also provide load comparisons of previously critical structural loads (figure 20).
The trajectory reconstruction task also produced a reassessment of trajectory design constraints.
In terms of payload capability, the flight base aerodynamics increased the SSV performance

approximately 1000 pounds. However, the current evaluation of wing loads reflected a need to bias

the ascent trajectory profile to a = -5 0 to maintain acceptable margins. This angle-of-attack
requirement during the first stage cost approximately 1100 pounds of payload capability relative

to the a = -30 used during the flight test program. Figure 21 summarizes the impact of

maintaining structural margin requirements as a result of changes to the aerodynamic data base on
the ascent trajectory design and SSV performance from the early design phase of the SSV to the
current operational baseline. Therefore, verification of SSV performance was achieved by
trajectory and load reconstructions that modeled subsystem changes and accounted for as flown wind
profiles.

CONCLUSION

The Space Shuttle aerodynamcis and performance communities have met the challenges of the

Space Shuttle Program. From a trajectory design and performance point of view, the SSV
aerodynamic characteristics and paylaod capabilities have been defined, modeled and verified. In
addition the element aerodynamic characteristics have been defined and verified, which prior to
STS-1 were considered most significant to the SSV structure and to trajectory design. However,
the flight results changed the emphasis from the element aerodynamics to the external pressure
distribution of the Orbiter wing. Because of limited external flight pressure instrumentation,
flight strain gauge data must be used to extract the external pressure distributions. 	 Attempts
to model the strain gauge results failed to predict measured stresses when pre-STS-1 wing load
indicator equations were used. The aerodynamics community initiated regression analyses of flight
wing strain measurements to produce wing load indicators that would provide an adequate tool for
day-of-launch wing load calculations to insure flight safety. Once this method was shown to
provide excellent prediction capability, the structure community implemented the procedure for
critical wing structure. Also, the aerodynamics community initiated a cooperative effort of the,
aerodynamics and structures communities to define the SSV pressure distribution through an
iterative procedure of pressure distribution definition, internal loads calculations, and flight
comparisons. The initial step in this effort has pointed out that the current pressure
distributions are not adequate. Review of the effort to date, points out the need for the
structures community to insure that the effects of fuselage torison and bending on strain gauge
measurements are defined, understood and modeled. Therefore, the above cooperative effort will
provide definition and verification of the ascent aerodynamics pressure distributions which will
complete the ascent aerodynamics operational data base.

Finally, the efforts of the aerodynamics and performance communities to meet the Space

Shuttle challenges have provided the Shuttle Program management insight to trajectory design
constraints, performance improvements and limitations, effects of flight defined aerodynamics, and
day-of-launch risk assessments.
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Fig. 17 STS-4 Dynamic Pressure Reconstruction.
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Fig. 19 STS-4 Angle-of-side Reconstruction.

STS-4 ASCENT TRAJECTORY RECONSTRUCTION
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Fig. 18 STS-4 Angle-of-Attack Reconstruction,
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Fig. 20 STS-4 Attach Load Reconstruction.
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Desogm aq Based pm SSV Aerodynamic History.

Table 1. Summary of STS-4 Trajectory Reconstruction.

STS-4 RECONSTRUCTION SUMMARY

PARAMETER FLIGHT DATA RECONSTRUCTION

MAX q 711. (BET) 719.

MAX PITCH ATTITUDE + 3.8° +3.51
ERROR

STAGING H 154,450. (BET) 154060.

STAGING V 4277. (BET) 4287.

STAGING 6 R 28.8 28.4

3 g THROTTLE 458.6 458.4

MECO CMD 512.7 512.5

LIQUIDS REMAINING
LOX 8466. 8460.

L H 2 3513. 3540.
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