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ABSTRACT

This will be a technical discussion of the lessons learned during the seven years of software
development/testing which occurred on the Liquid Oxygen System for the Space Shuttle at KSC. Prob-
lems which were solved during these years came into four distinct phases: design/debug before simula-
tion runs, verification using simulation with models up through STS-1 launch, hardware usage from
first launch to STS-5 launch, future use (integrated automation, VAFB). Each problem/solution will
describe the apparent problem requirements/constraints, usable alternatives, selected action,
results.

INTRODUCTION

Seven years ago, NASA contracted the Martin Marietta Corporation to hire systems engineers to
work in the Liquid Oxygen (LOX) storage area of Launch Complex 39 for the purpose of servicing the

hardware required to support the Space Shuttle. The commonly accepted definition of system engineer-
ing duties outlined a rather clear guideline for management as they went about hiring the finest

available talent. Cryogenic experts, field engineers, eager college graduates, Saturn veterans, all
were interviewed. Both interviewer and prospect didn't need to discuss task definition and, there-
fore, concentrated more on job qualifications. After all, a LOX systems engineer was to write
procedures to maintain and operate the LOX hardware.

This was no simple task but by the same token this hardware was 15 years old by design and not
as complex as some state-of-the-art facilities. A working system of valves, pipes, pumps, trans-
ducers, controllers, and pneumatics was inherited from the Saturn program. The task seemed even
easier considering the 10,000 GPM pumping system was not to be used, only one LOX stage had to be
filled instead of three and the existing procedures were made available by the Government from a
previous contractor. The Space Shuttle philosophy made promises of being more operational by

reducing the amount of maintenance and redundancy of less critical components, thus reducing the
day-to-day work load of the systems engineer. The people selected for the original refurbishment of

the facility were a dedicated group and long hours became commonplace as the seaside environment had
taken its toll on the unused hardware. It took two years to complete the site activation work.
There were more major modifications than expected to accommodate the Shuttle's loading requirements
and procedures from the previous program were scrapped entirely by both the modifications and a new
style of procedural writing. The end result of the refurbishment was a staff of systems engineers
specialized in the operation of the hardware and ready to move into the operational phase.

It was soon obvious that the job of system engineering would have to expand. Interfaces with
the local facility contractors and the NASA design group were suddenly expanded to the designers of

the flight hardware, along with their respective NASA counterparts located in Houston, Huntsville and
Kennedy Space Center. Cryogenic engineering was increased to include the related engineering fields
of mechanical, electrical, pneumatic, and thermal as the decision was made for one console to have
loading responsibility. Routine operations were being moved to the Firing Room consoles to take
advantage of the new Launch Processing System (LPS) for daily tests which used to be run locally
using switches. And, most significantly, a complex software set designed to use LPS for all opera-
tions was provided to the systems man as his primary 'tool' for future work.

These new areas of responsibility triggered a new definition of systems engineer. The resulting
months of preparation for the STS-1 launch were spent exercising the software set against a high
fidelty math model, using a simulated loading environment to establish the appropriate man-to-machine
interface. The support of a new breed of software engineers was needed to develop, test, and demon-
strate the new tool's capabilities and limitations to the systems engineer. Training under fire for
a chosen few seemed to be the only method timely enough to safely satisfy the major objectives of a
LOX cold flow, tanking test, engine firing, TPS retest load and the first launch. In subsequent
launch flows, this broadened definition of a system engineer continued to increase as the mechan-
ically and hydraulically operated GOX arm was added to the LOX console, along with the responsi-
bility for a purge panels on the mobile launchers, and a new understanding of geysers with the re-
moval of the ET anti-geyser line.

*Senior System Engineer, MMC-KSC

539



Training continued, in parallel with the launch activities, to bring the new assignments of the
LOX engineer to a clear cut definition and to expand the talents and experience of the entire group.

This did not happen easily. Software engineers had a different perspective on what was efficient
than did a field engineer and quite often the two differed as to how the tool was to be used. Some
systems engineers likened the Firing Room CRT to a glorified video game and perferred to do only the
original tasks first defined as system work. A third generation of system engineer developed - the

console operator, a combination of both the software and the 'hardware expertise.

These are the words this author has used to answer the question, "What does a systems engineer
do?" This paper will answer the question, "What is the system engineer's tool?" In order to avoid
confusion, the liquid oxygen (LOX) system at Kennedy Space Center will serve as the example cryogenic

system. Actually the Liquid Hydrogen system was developed in a similar manner and contains many of
the same philosophies. The lessons learned in the development of this automatic software set will be
discussed in three phases - design and debug, verification against a mathematical model, and modifica-
tions due to hardware testing. This includes the first five developmental flights of the Space Shut-
tle. Then, a fourth phase, dealing with present and future modifications, will be discussed. Each
of these phases will present several examples of problems which were solved by meeting the require-

ments and constraints of the LPS system and the hardware. Each item was, in itself, a discovery,
since no one had previously used a computer to control the LOX system.

DESIGN AND DEBUG OF LOX SOFTWARE SET

The original LPS system was designed with the LOX and LH2 systems in mind. NASA felt that these
two systems were the most hazardous and complicated and therefore would serve as the pilot system for
the general architecture of an automatic software set. The design contractor was selected to do the
task and began creating the structure in 1976.

The LPS system restricted the use of a Firing Room console minicomputer to 3 CRTS, 3 keyboards,
6 concurrent programs and 4 sub-calling levels for an application program. A brand new language was
devised, GOAL, which was close enough to English that an engineer without a software background was

supposed to be capable of reading and understanding the programs. A Common Data Buffer, several
Front End Processors and Hardware Interface Modules connected the LPS system to the hardware. NASA
asked that a modular programming concept be used to reduce maintenance and increase reliability and
further restricted the number of concurrent programs to two, so that up to three systems could be

loaded into one console. It did not take very long to adopt a concept whereby all monitoring takes
place in one concurrency and all control and decision-making takes place in the other.

In the monitor concurrency, an overall system display was developed using the proto-type LPS
character set which provided symbols for valves, pipes, transducers, controllers, wires, switches and
various components which could easily be recognized on a 7x9 dot matrix character and could occupy

any position on a 34 line-by-73 column CRT. This overall page was to include any item which was es-
sential to the loading operation and eventually depicted all lines in the Ground Support Equipment
(GSE), Mobile Launcher Platform (MLP), Fixed Service Structure (FSS), Tail Service Mast (TSM),
Orbiter, Main Engines (SSME) and External Tank (ET) which were subject to cryogenic fluids (see Fig-
ure 1). Gaseous purges and other support functions were left off the overall and were added to other
displays which were divided into the three areas of the system - storage area, MLP, FSS/ET (see Fig-
ure 2-4). Also during the debug phase, a fifth display was added, power distribution, to complete
the original display set (see Figure 5). All of these displays were called as a sub-level program by
a display scheduler which tied up one entire concurrency. The schedular is seldom executing as its
main function is a switcher between the other displays, but it is always active as a top-level pro-
gram. The LPS system allows this display concurrency to be seen on any of the three CRTs at the LOX

console, but only one display can be seen at any one time by any position. This did not seem to be
a problem at the time since only one operator in a loading configuration would normally be watching

the display and his interests would be on the overall display most of the time.

An entire paper could be written on the human engineering involved in these displays. Many

hours were spent looking at all facets of update rate, color, size, location, identification,
familiarization, and standardization of each character on the display. These displays are one half
of the man-to-machine interface and, as such, take on a critical role in an automatic control system
because this is the only way to see if the operation is proceeding as planned. Virtually 80% of the
operating procedure is devoted to describing exactly what the operator should see happening on the
displays.

One other important feature was baselined in the displays to increase reliability and speed in
the daily operations and to give operator flexibility in loading operations - cursor control. This
allowed an operator, using the display page, to command a valve open or to adjust a pump setting sim-
ply by moving the console cursor (X-Y type) to the component and executing a single command. In real-
ity, the command was not sent from the display concurrency, but from the control concurrency. A sim-
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ple communications interrupt and parameter passing scheme allowed the control concurrency to be mas-

ter of all commands whether they be issued from the automatic software or from an operator input.
This allowed the display to continue updating all components rather than dedicating a fixed amount of
time during the commanded valve travel.

Over in the control concurrency, the actual commands to the end item were issued by a component
program. This is one of five types of programs in the control concurrency structure, defined as
follows:

Schedular	 - Allows Operator to select the desired test he wants to perform.

Sequencer	 - Controlling program for a particular test. Calls lower level programs in proper
sequence.

Component programs - Called by sequencer to perform a particular function, i.e., open a valve, close
a valve, purge on, purge off, power on, power off.

	

Task programs	 - Usually called by sequencer to perform software chores or special functions.

Interrupt programs - Called by sequence when a measurement deviates from a pre-determined state or
value. Provides message on CRT regarding faulty measurement and status of other
measurements pertinent to that component.

The calling heirarchy of these programs is shown in Figure 6. Calling is done automatically by
the sequencers for any lower level program, whereas calling for a sequencer is done manually by the
operator through a Programmable Function Panel (PFP). This panel is located immediately below the

CRT and provides six arm-and-fire buttons which are LED-labeled to prevent operator error. The PFP
options are updated by the manual standby sequencer in the manner shown in Figure 7. Note that two

actions are required to select a sequencer. This is now a NASA standard for all systems.
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Although component programs are most directly responsible for the command/response or an individ-
ual end item, it is the sequencers which perform the most critical functions of timing, sequencing,
safing, and redundant operations. The four sequencers used during a loading operation are fill,
replenish, drain, and revert. These four programs control and set automatic monitoring for the more
than twenty different configurations which are defined in the LOX Load/Drain criteria document.

The need for each program to know the current phase of the system gave rise to global flags in

the data bank. These came to be known as pseudo-function designators (FD) and could be read univer-
sally throughout the Firing Room so that other systems (e.g., LH , Integration) could also find the
necessary information about the LOX system status without disturbing the operators. This same type

of pseudo-FD was used for flagging failed measurements or commands (bypasses), for sending communica-
tion interrupts from console-to-console, for creating duplicate measurements, and for communicating
with the control logic (described later) programs resident in the console.

All together, pseudo discretes (500) and pseudo analogs (2) play an important part in automatic
software communication. As evidence of the necessity of these pseudos, NASA now reports weekly on the

limited remaining spares and as every other system increases automation, L02 system pseudos have ac-
tually gone down.

The fourth important piece of the LOX automatic software structure is a group of GOAL-like pro-
grams called control logic. These programs reside in the console on a high speed, high priority
basis to act as a double-check that no command is issued from the console nor does any primary condi-

tion exist in the hardware that would cause an immediately hazardous situation. These two distinctly
different types are called prerequisite and reactive control logic respectively. Prerequisite con-
trol logic is seldom violated, although always active, in an automatic system since the sequencers
activities are preplanned and have been tested many times before hardware use. Its primary function
is then to prevent the operator from manually commanding an incorrect action. Reactive sequences are
the backbone of automatic safing, usually sending an initial salvo of commands within 50 milliseconds
and then triggering a safing sequencer to bring the system to a totally secure configuration.

This software set totaled 202 programs with over 64,000 lines of code. The majority of this

code was written within the timespan of one year. Obviously, the job of debugging was considerable.
Some help was gained in the fact that these same concepts were used in the liquid hydrogen automatic
software set and had been tested against a Math Model simulator in the Firing Room. Debug became lit-

tle more than a successful compile and load as the schedule drove into the next phase of verifica-
tion. The classic definition of debug was not complete and as such debug continued long into the ver-

ification process. However, the basic structure described so far still exists as the structure stan-
dard for today's LOX operations as well as the standard for several other high energy systems as the
automation process at Kennedy Space Center continues.

VERIFICATION USING A MATHEMATICAL MODEL

This phase of the LOX software development lasted almost three years as engineers struggled
against an ever-changing maze of LPS system software, LOX system hardware and requirements, and a
sliding launch schedule. Engine and TPS development problems which slowed the entire Shuttle program
made it difficult to predict when this new set first would be used against the hardware. Firing Room
time was hard to get as everyone wanted to checkout the new LPS capabilities. Manpower was limited,
at first, because the complications of an automated control system required software engineers to aid
systems engineers in creating the automatic set.

Despite these complications a great deal was accomplished during this phase. The greatest
'aid' of all, the SGOS Math Model, was in the final stages of development and provided a high-
fidelity simulator to respond to the application set. This high-fidelity modeling is essential
to the verification of any hazardous software set. A great deal of timing problems was found
simply because some commands responsed in milliseconds and others would see no appreciable change
for up to one minute. Operator training became important and if a perspective operator watched
the model respond incorrectly to a given situation, it would be sheer guesswork to estimate the

effect of an incorrect real-time reaction. Details of the LOX model will not be discussed in
this paper, but can be found in "Mathematical Models For Space Shuttle Ground Systems" by E. G.
Tory.

The second major accomplishment of this phase was the establishment of software verification

procedures (SVP). This was a configuration - controlled document which listed the exact steps
required by an engineer to effectively test every line of code against the Math Model. Both NASA anc
contractor management could not justify the risk of leaving out unlikely branches of code from the
verification, so rather than accepting an improbable failure, a 12-volume, 7,000-page set of SVPs was
developed and executed. This, of course, required numerous informal runs before running the official
test with the signature authorities present. To this day, maintenance of the SVP is a task equal to
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the effort required to maintain the code. Many problems were found as the SVP sought to run all code
over and over again in different configurations to really provide all aspects were covered.

The third major accomplishment was the development and use of simulated loadings. Over thirty

simloads were performed before the first Shuttle tanking test at KSC, enough to try over 100 differ-

ent hardware 'failures'. This procedure, with over twenty different operators working together in
the same Firing Room configuration, using the same consoles and communications channels as a normal
launch day, was also used for almost 1000 man-hours of informal engineering runs. Once again, the
Math Model proved to be the tool capable of simulating realistic failures or anomalies, and then
responding to the workarounds initiated by the operator. Many a vehicle was "damaged" as the
simloads exercised the developing software set.

The verification process also brought some significant changes to the actual coding design. A
new flag for maintenance operations was invented as a way to short-circuit control logic which was al-
ways active but was designed with a loading day configuration in mind. An emergency button was added
to the PFP that could call a revert and bypass all control logic so that an operator would have total
cursor control capability. A hardwire panel was added to the console to provide control in the event
of a LPS failure and a hardwire recovery sequencer was coded to provide a faster recovery from such
an event. Every component program was rewritten to suspend interrupt processing during 'valve in
transition' when the first valve cycling test against hardware showed two interrupts for every valve
indicator in motion. Measurement sampling rates were increased from 1 sample per second to 100 sps
while a valve was in transition and then returned to 1 sps so that accurate data was automatically
recorded.

A significant change to the control logic design had to be found when ten prerequisite sequences
exceeded the size limitation of 256 bytes. The coding had already been written in the most stream-
lined fashion so the only alternative seemed to be a streamlining of the requirements. 	 Deleting
some requirements seemed too risky since control logic is the last line of defense and the impact
to the LPS to upgrade the size limitation was severe. The solution seemed to be to find a way to

consolidate a block of 'pump off' code which was common to all ten prerequisite sequences. Since
subroutines were not possible in control logic, this block of code was made into a reactive control
logic sequence which was always active and whose primary function was simply to set the correct
state of a 'pump off' pseudo discrete flag. Now the ten prerequisite sequences only had to status
the one flag thus reducing all the programs to less than 256 words. This became known as a "pseudo
reactive sequence" because it issues no commands and performs no safing and, as such, is treated
differently than all other reactive control logic programs.

Control logic also provided the best technique for a new vent valve cycling requirement which
came into effect a few months before the first launch. Simply stated, the ullage pressure in the Ex-
ternal Tank (ET) must be maintained above 1.7 psig when the liquid level is greater than 2%. A new
set of two low pressure measurements with a range of 0-5 psig were installed on the ET along with
the three original 0-30 psig high range instruments. Since this requirement applied to four differ-
ent sequencers and must be active during all transitions between loading and drain phases, interrupt
processing alone was determined to be risky in view of the likelihood of tank damage as a result of
a pressure undershoot. So three control logic programs were created as follows: one to open the
vent valve on the high limit of 8.0 psig based on any of the high range transducers, another to close
the vent valve when the primary low range transducer reached 2.2 psig using the primary command, :nd
the third to close the vent if the secondary low range transducer reached 2.0 psig using the second-

ary command. These trigger points were selected to allow adequate response time for the pneumatically
operated vent valve (2 seconds) and the control logic sequence (50 milliseconds). This concept fea-

tured a pair of totally redundant circuits on the low side which precluded any single-point failure
from threatening vehicle damage. Math model testing, SVP, and simloads were used to verify the proc-
ess and the decision was made to use this technique for the first loading with no other hardware
testing.

MODIFICATIONS DUE TO FIRST FIVE LAUNCHES

The LOX loading for the first space Shuttle launch on April 12, 1981 went extremely well. This

turned out to be the sixth loading that would be performed using the baseline STS-1 software set as
a launch scrub and two TPS tanking tests were added to the planned loadings. These loadings were far
from 'automatic' though as operators learned to manually adjust their new tool to the first-time
anomalies as they occurred.

The two biggest problems were two long-term control loops which had to be done manually and in

parallel by the same operator. The nose cone purge was designed for a hardware controller to maintain
55 to 110 degrees in the nose cap, but failed to respond fast enough to the cooling effects of the
vent valve cycling. This required the operator to manually adjust both the set point and the heater
panel output temperature and to constantly monitor for further adjustments throughout the six hour
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countdown. Also, the replenish control loop coded into the software failed to achieve the stabilized
values which had been seen during testing at the National Space Technology Laboratories. So the same
operator for the final three hours of the countdown had to manually monitor and adjust the replenish

valve to maintain a steady flight mass on-board.

The other operator was constantly occupied with the steady stream of interrupts, exception

monitoring and anomaly messages generated as a result of several blueline measurements being set too
tight to allow momentary spikes or glitches to pass through the wary eye of the computer. Limit set-
ting during debug and verification had not seen the kind of 'noise' and transducer inaccuracies which

were within specifications and acceptable for a loading environment.

Other annoyances came from the slower than expected update rate of the displays. It took fif-

teen seconds for an initialization each time the operator changed pages and then ten seconds for each
subsequent pass through the loop. Some measurements unexpectedly, needed to be constantly monitored
such as the nose cone temperatures and the pump bearing temperatures, but were not available on the
overall display. When the operator switched to a detailed area, say the storage area to check a pump
reading, there was a total loss of visibility to the rest of the entire system. Application programs
had no way of knowing when control logic programs had interceded, forcing the operator to presume
that his invisible safeguard was in operation. Communications between LOX automatic software and
Ground Launch Sequencer (GLS) automatic software were operational for a normal countdown, but incom-
plete as far as handling some abort and recycle conditions. Interfaces with GOX arm and ET power oper-

ators cluttered the communications net and seemed to indicate a need for greater software automation

in those areas.

Most of these items were corrected by the STS-2 launch in November, 1981, however two major pro-

jects were put in motion on the second software set which would take until the last developmental
flight (STS-5) to complete. Several years had passed since the original displays were built and the
addition of new items late in the development left some areas terribly crowded and other areas to-
tally blank. Display and color standards had been adopted by NASA, but had been waived to avoid
impacting existing displays, so there were several obvious items of non-conformance. Update rates,
limited visibility, and the status of related systems became a concern as described in the previous
paragraph. All these became of more concern when the decision was made to move the GOX arm system

into the LOX console and to absorb their software and displays. Clearly, a new display structure was
needed. Secondly, a top level decision to remove the LOX anti-geyser line, as a weight-saving meas-
ure, created a much tighter set of temperature requirements in all phases and meant a totally new
loading procedure.

Returning first to the display problems, it seemed certain that the learning experience of the

first six loadings should allow the console operators to redesign the overall layout so that it could
be made more compact. If this was done so as to create enough room to have a breakdown area included

in a split-screen effect, then each area could be seen without loss of visibility to the overall and
redundant displaying of items on more than one screen would be unnecessary. Pursuing this path soon

led to a single display with three sections - the top half was the overall, the bottom right quadrant
was the GOX arm system, and the bottom left quadrant was a selectable area which could show either

the storage area, MLP, FSS, Power, or the new LPS status page (see Figure 8). By adding in the new
color and display standards, the LOX loading displays took on an entire new look on the outside, but
that did not complete the job.

On the inside, a brand new structure was required to cyclically update the selectable quadrant
as a sub-level program from the overall, rather than directly from the schedular. Voting logic from
each valve with multiple indicators and bypasses was streamlined to be unanimous or show an un-

determined state rather than projecting a best guess to the operator. Code to determine signifi-
cant change from the previous reading on analogs was dropped as bit toggling was handled by a simple

formatting change. Console disk files were used as an innovative method for saving valve states while
bouncing between displays. Initialized displays stayed in an undetermined state until one pass

through the update loop to prevent the operator from quickly reporting an erroneous state. If sev-
eral measurements could be interpreted and condensed to one signal, this was done in the software and

shown on the display as one data point. New coding techniques got the loop update rate down to three
seconds and initialization time down to three seconds on sub-levels, with no initialization time for
the overall since it was displayed constantly. This entire project was phased in over three loadings
(STS-2 to STS-4), and resulted in a total achievement of the previously mentioned objectives.

During the same loadings, the loading criteria was rewritten for Orbiter chilldown and slow fill
phases. Test data from STS-1 showed sufficient cooling of the facility to allow the anti-geyser line
to take away any excess heat which may cause a geyser in the 120-foot long 17" feedline during slow
flowrates. But with the anti-geyser line removed for STS-5, temperatures were several degrees above

saturation. At first, a 2-minute hi-speed flush of the transfer line was tried. This took enough
heat out of the facility but could not relieve the latent heat of the Orbiter and engines. On the
next loading, the flush was followed by a low flow load to the enqine cut-off sensors (ECO) with a
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Figure 8

5-minute drain back through the engine bleeds. Each loading changed the valve actions, timers, and
redlines such that the same software was never used, yet each time the automated sequencer had the
flexibility to safely provide the required LOX on time to support launch for STS-5. Several modifica-

tions had to be made to the terminal count, abort and recycle operations to support the warmer LOX
coming down the main feedline prior to engine start. Good planning and the conscientious efforts of
the entire propulsion community, made the STS-5 tanking test and the subsequent loading for launch
the first truly automatic loadings of the LOX system at KSC. All of the procedures, requirements,
criteria, software, displays, and hardware modifications had come together in a way as to allow the
auto fill sequencer to be initiated at T-7 hours and automatically continue through post-launch
securing.

THE FUTURE OF AUTOMATIC SOFTWARE

The future of automatic software is now! Based largely on the remarkable success of the LOX and
LH2 systems, NASA and the operations contractors have formed an automation sub-panel which has estab-
lished the automation goals of every console in the Firing Room. It is important to realize that
while every system suffers the risk and effort that is required to leap from a cursor-controlled,
manually-operated software set to a fully automated one, the LOX system must continue to improve.
Software decays! It becomes outdated as the world of hardware, requirements and LPS changes around

it.

For STS-6, for example, a new lightweight ET, a new Orbiter, and a new MLP meant the operation
of configuration flags which a single sequencer could use so that it was capable of loading to any
configuration. Representatives from Vandenberg Air Force Base are part of the automation sub-panel
and, as part of developing their LOX software set, have submitted an idea for parameter-passed compo-
nent programs which this author believes will save maintenance costs over the life of the Shuttle pro-
gram. LPS is scheduled to provide more coding capabilities which will allow the continued develop-
ment of fault isolation and correction programs. The integration console is designed for the day

when a top-level manager program, communicating through linkers to all consoles, can kick-off the en-

tire 72-hour countdown with one button.
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Other changes to software, not driven by improving automation, but by improved hardware, will be
required. Already approved and in the working stages are a new chilldown sequence for STS-7, a re-
quirement to delete vent valve cycling and maintain sub-cooled LOX for STS-8, an increase of the vent
valve stroke limiter to 1.5" on STS-10, and the removal of the 2% liquid sensors on STS-13. Eventu-
ally there will be two launch pads, three MLPs, and four Orbiters being processed in parallel.

Controlling these cryogenic systems and other hazardous systems must be accomplished with auto-
mated software for the Shuttle program to meet the turnaround time objectives. Systems engineers
will continue to be essential to perform the classic functions of design, test, and maintenance of the

hardware and procedures, but we must also take an active part in design, test, and maintenance of our
most valuable tool - the software set.
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