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SOLID ROCKET MOTORCERTIFICATION TO MEET SPACE SHUTTLE REQUIREMENTS:

FROM CHALLENGE TO ACHIEVEMENT

John Q. Miller, National Aeronautics and Space Administration
George C. Marshall Space Flight Center, AL and

Ooe C. Kilminster, Morton Thlokol, Inc., Brigham City, UT

ABSTRACT

The Solid Rocket Motor (SI_M)for the Space Shuttle was by contract requirement, a state-of-the art

motor design to the maximum extent possible.

There were three design requirements for which there was no exlstlng solid rocket motor experience.
These were: the requirement for a unique thrust-time trace to meet unique Space Shuttle requirements,
the requlrement for 20 uses of the principal hardware, and the requirement for a moveable nozzle with
an 8° omniaxlal vectoring capablllty.

These three unique requirements are discussed and the solutions presented.

DESCRIPTION

THRUST-TIME TRACE

The development of the solid rocket motor thrust-time trace requirements and certification will be
discussed.

Requirement

- Establishment of the SRM thrust-time characteristic was based upon a residual force requirement
derived from Shuttle system flight synthesis (Flgurel).

acc_erate the Shuttle vehicle along a flight path ,,
after subtracting the thrust of the SSME's.
Associated with this requirement was a vehlcle
llftoff thrust to weight ratio of 1.5, a maximum
vehicle dynamic pressure of 650 psf, and a vehicle _ IJ

maximum acceleration limit of 3g. The specifica-
tion of SRM residual force requirements ehabled

the SRM contractor to conduct design trade studies _ u

which culminated in the definition of a thrust-
time history meeting system requirements. The
results of these studies led to a more conventional |

definition of SRt4 thrust-tlme history requirements i .A
(Figure Z) which are currently included in the SRM
Contract End Item specification.

Analytical Deslgn Approach

The large size of the SRM, combined with a
limited number of development tests (4), precluded
a "cut-and-try" approach to curve shape tailoring;
Rather, analytical assessments of the various
mechanisms that can affect curve shape had to be
made. Results of these assessments were then used

as guidelines in establishing reasonable Contract
End Item (CEI) specification limits on the nominal
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thrust trace shape. They also were used for contingency planning in the mandrel procurement, wherein
enough flexibility was built into the initial mandrel configuration to counteract the most probable
extremes in curve shape. The first two static tests (DM-I and DML2) showed that the actual curve

shape, while containi_g some variations, was sufficiently close to the original prediction to preclude
major mandrel modificatlon.

It was determined that the payload performance of the system was quite sensitive to the SRM thrust
trace shape. In order to achieve sufficient control of the trace shape, Rockwell International (RIg
and NASA decided to delineate requirements on the nominal thrust-time shape and also impose impulse

gate requirements at 20 seconds and 60 seconds through which the impulse-time performance must pass.

The basic predictability limits that apply to the thrust-time curve shape of a solid rocket motor
were analyzed based on previous large motor history. Results of this analysis were used to generate

-the envelope requirements within which the nominal thrust must fit and the impulse gate requirements
on nominal performance (Figure Z).
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Historicdatawereexamined to determine

the nature of the significant factors which
contribute to predictability of sol td motor

ballistic performance. Examination was _
limtted to those factors that contribute to

predictability of thrust-time curve shape "e.
and thus affect the mandrel design. Easily
countered factors such as the propellant burn _ _
rate were not considered, since a minor tailor- "
Ing of the propellant formulation can easily )
modify the burning rate in accordance with a

change in target rate. These changes can be
implemented at any time in the program.

One of the most widely recognized
factors that is not entirely predictable and
which affects curve shape is erosive burn-

ing. Examination of large motor data,
particularly Titan seven-segment data,
indicated that large motor erosive burning
did not significantly affect ballistic
performance. It was concluded that llmltlnl
the Shuttle port mass velocities to levels
at or below those experienced by the Titan"
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seven-segment motors would preclude or minimize erosive burntnq.

Early In this literature search, a peculiar factor affecting curve shape was recognized. In
many motors, both large and small, the actual trace shapes were more "humped" than the theoretical
trace. Generally, actual traces are Initially lower than the theoretical, higher tn the middle of
burn, and lower again near the end of web time. This phenomenon was given the acronym BARF--Burntng
Anomaly Rate Factor.

5ARF was found tn almost all of the 156 tn. motors. It was also found in all the AeroJet 260 in.
motors and apparently in the Titan seven-segment motor to a small degree. However, BARF did not occur
in the Titan II! C/D (five-segment motor). It is also found tn many smaller motors, a notable
example betng the 5 in. ctrcular perforation motor (5 in. CP) used by Thiokol for burn rate evaluation.
A stmtlar phenomenon Is found tn the Super SATES motor.

ORBed upon the frequency of occurrence of BARF tn large motors, it was decided that the BARF
phenomenon was a distinct possibility tn the Shuttle SRM and that planning for the mandrel fabrication
should include the flexlbllity to counter It, should it occur.

The other parameters which were considered potentially significant to a degree that could affect

mandrel design were predictability of Isp and nozzle throat erosion. It should be pointed out that
the Isp loss prediction technique was, at the time, In a relatively early stage of development. Since
then, the model has been improved such that the prediction of delivered Isp is well within l_.

Fro_ the standpoint of mandrel design, a low Isp Is far more of a problem than a high Isp because
the constraint imposed by the maximum deign pressure, used in the hardware design, precluded any
increase In mass flow rate during the first 20_seconds without an increase in throat area. Any
increase In throat area was precluded by harohware/schedule constraints. Thus the ability to recover

from the effects of low Isp impacts was considered In thls analysis.

It should be noted that a I% predictability d_racl_tlon was being imposed UDOn a baselln_

nominal vacuum Isp prediction of 262.2 seconds, which was itself felt to be slightly conservative
since, at that time, the Isp loss p_edlctlon technique indicated the Isp would be slightly higher.
The philosophy of introducing a small degree of conservatism into the prediction of Isp was suggested
by _SFC.

The nominal baseline vacuum specific impulse was conservatively predicted to be 262.2 seconds.
The throat _erosion rate was assumed to be 0.00B Ips; and accuracy of throat erosion predictability
was assumed to be + 15%, based upon Judgment of experienced nozzle designers.

It was assumed that Isp, EARF and throat erosion rate were Independent variables. This led to a
statistical approach in the analysis wheretn each effect was treated as an independent variable, and
its effect was assessed independently. Impact of BARF on thrust performance is presented in Figure 3.
The one percent low Isp would result In a untform one percent thrust reduction throughout operation.
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Effect of throat eros|on rate variation (+ 15%)
proved to be mtntmal ; at no ttme dtd the _hrust

deviation exceed 0.26% of nomt.1. -- _'_--
Since a mandrel modification after the first_ _ _+_._ _.mm_

s_tic test was allowed for tn the plan_tng, _ _'_ --_'_
analytical gratn design modifications were _m
undertaken to counteract the effects of the _u -+--m_m

assumedandlo,  sp. !)

Care was taken in the analytical redesign !
phase to limit the mandrel changes, stnce any
mandrel modification ts a relatively expensive, 1.

long lead ttme effort. Gtven thts constraint, i

It was |mposslble to completely counteract
these effects and small restdual impulse
deviations remained at the vartous gates is
well as small residual deviations tn the thrust-
ttme curve shapes. The total restdual thrust e w mm m _ .- m w m to m m m
and impulse deviations at the various times were

three components. These restdual deviations then formed"the base for
1 traits, a] though more t nfomatton was needed to completely quantify the 1 traits.

Figure 4 presents the baste grain design. No design modifications were necessary to counteract
low Isp or to counteract BARF.

@mid IlllllWY

At thls polnt, Infomatlon was not ava11- ---'_---l--"---'_'_i __' _ .Lm_-_--_(-m./.

able to completely quantlfy CE, specificatlon ._.. y "_j;

11mlts on impulse gates and the thrust envelope.
This was because the gratn design modifications
were to be made only after one motor flrtng and
there was a distinct possibility that It would
not be a nomtnal motor, due to normal ballistic
perfomance reproducibility. Further, the
accuracy of the data acquisition system
(_+ 0.5%) impact on these uncertainties needed
to be assessed and added into the specified
to1 erenc es.

The potential dispersion that a particular
motor could have from the nominal performance
of a population was estimated by reviewing
Stage I Minuteman data, A populatlon of 23
motors was examined to determine the coeff,l-
cient of varlatlon In Impulse ylelded at 38%
of web burn. Thls variation, when multlplled

L.Tmmwr _.(__._

FIGURE 4. BASIC GRAIN DESIGN

Irr Jl_ ,Imom_,'rl_

,ILm

/ I_MMIPI * 11

by an appropriate K factor, was assumed to represent the maxtmum ltmtt that the DM-1 tmpulse could be
dispersed from the true population nom|oal at 20 seconds (17.8% of web burn) and 50 seconds (53.3% of
burn)with a 90% confidence and 99% probability. The resulting dlkperston was 1.55%. This also ts a
reasonable estimate for the instantaneous thrust dispersion at any ttme.

The assessment of tmpulse reproducibility at a fixed percent web burn was made to factor out the
effect of burn rate, since predictability of nomtoal burn rate was not a pertinent variable fn this
study.

The total potential,dispersion tn tmpulse values at 20 and 60 seconds and tn the thrust ttme curve

were then estimated by'root-sum-squaring the residual components due to EARF, Isp p_edictabflfty,
throat eroston rate predictability, nomal motor reproducibility, and instrumentation accuracy.
Tables Z and I] .present the value of each component and the total (RSS) value, respectively, for
impulse gates and thrust-time curve, and compare these estimates to those flnally selected for the
CEI specification.
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TMLE I

POTENTIAL D_VlArl0N FilCH IqI(OICTEO INPOLS( AT 29 5EC. JO SEC. N_0 ACTION Tlfq(

P_t_ttll hv$1ttol Irm PrlMICtOd Normal

_,_,1 ,(,s)
Tim peealctee vocuvn oue to Ore "(6"---'_'-- or; to "OG;"e to _o_ ":-'TS_--T

_ s__L____ .__L_ __..__). BMF Is p Throat (ros ion Instr_wntotton liewe4vclblllty (R$S}

20 60.03 0.S11 1,017 0.06 O.S0 I.S_S • 2.0

60 161.74 0.178 0.479 O.1M 0.SO I.S_S , 1.7

Action Time 2Q1.07 0.070 0.07;_ 0,130 O.SO 0.0 , 1.0

5elect_ C[I

S_ectflcatto_ Lint t.
NI)ou t Populattem

_t_1 _±_
-2.0 (_ntmm)

_3.0, -1.0

-l.O _dtnla_

TMLE II

POTENTIAL DEVIATION FIIOFI PI_IC.TEO THleJST AT vAOIOU$ TIN(

N0_t na I Due to
Tree Pr_ltcto4 Due to Ore to Dine to

Vacuum ThrusL (Ib) SA_F LOw ]SO Throe_..Lr_s._. lnstrtmmtatto n

1 2.845,000 _o.E43 -o.718 o.o , o.s

10 3.065,000 +I.ONS -0.0S2 O.OS t _ O.S

20 3,1S7,000 -0.3P)4 -1.017 0.10 , O.S

30 2,729,000 _4). 46S *4.504 0.13 ,_ 0.S

40 2.4S3,000 -0,487 _5.992 0.17 t O.S

50 2,259.000 -0.4M +1.195 0.Zl , O.S

C_) 2,325 000 -0.233 -I.831 O.L_$ _' O.S

70 2.4_S,000 -0.321 -I._62 0.2S t O.S

80 2.523.000 -0.542 -2.324 O.L_3 , O.S

90 2,330,000 -1.428 -2.SU O.Zi t O.S

tO0 2,131,000 *1.243 -Z.IM2 O.Zt t O.S

110 1,081,000 *1.220 -Z. 3SS 0.26 t O.S

120 415o000 -3.299 -6,331 0._ t 0.S

Poto_ttil Oev4att(m FrOm Pr_l$ctod IMmtn41 ThrvSt, PqffCent flemteql

Due to Noto_

1.S

1.S

1.S

I.S

1.S

1.5

I.$

1.S

1.S

I.S

1.S

I.S

1.S

Selected C(1

5p_:t ftclttoel Lt|tt

1o101 klovt Po_vtlt+O_ Neml_41.

1 .S 3.0

2.1 3.0

I .t 3.0

4.8 3.0

_.2 3.0

2.0 3.0

2.4 3.0

2.7 3.0

2.J 3.0

3.4 3.0

).S 3.0

3.1 -3.6 *3.0

7.3 47.6 *S4.$

Test Results

_ta from the ftrst two stattc test. ftrtngs were anal_'zed and, based upon these data, the ?ollowtng
observations were drawn.

1. No erostve burning was observed.
2. The BARFphenomenondid not occur.
3. Vacuumdelivered spectflc 1repulse was about 265 seconds, based upon expended propellant

wetght.
4. Durtng the flrst 6 seconds, flow conditions tn the star regton produced head-to-aft end -

stagnation pressure drops In excess of theoretical one-dimensional predictions. The f_ow fteld tn the
star regton appears to offer the most reasonable explanation for thts phenomenon. The t'_ow tn the
val)eys at the aft end of the star, where the valleys end (Ftgure 4), must be dtrected radtally
tnwarcl towards a cent_'al core of axtal f_ow. _At the star/CP transition, thts core must be cons_r81ned
to the dtametm" of the CP. |f throughout the star the flow ts contained wtthtn approxtma_e)y thts
diameter, the effective port area for axial flow Is conslderabl.v less than the star cross-sectional
por_ area. The resulting pressure drops, due to axtal veloctt_y, would be of the magnitude observed.
Thts el_recttve port area then gradually Increases until around 6 seconds, when the full port area of
_he star _s u_tl tzed for axial flow and measured pressure drops are tn good agreement wtth theoretical
predfc_:tons.

Stnce there was such excellent agreement between the predicted curve shape made wt_h the analy¢t-
ca1 model and _est data, no major mandrel modification from the _-1 configuration was required to
sa_tsfy nomtnal curve shape and impulse gate requtrenents. F_gure S compares the pro_ect.ed f'tna]
flight motor configuration thrust-time perfomance with the CET thrust reclutremen_, and Tab]e II_
compares the projected 20 and 60 second _mpu_se values wtth specification requirements. As can be
seen, the nomtnal thrust performance 1t11 essentially satisfy the requtroments tn al] areas.
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SOLID ROCKET MOTOR CASE u

The overall design philosophy for the ,,
Sol Id Rocket Motor case was to develop a
simple, rugged and effective design based
upon the use of proven techniques and
concepts. Major emphasis was placed on $_ u

reusability and performance reproduci-
bil Ity. _ I_

Each motor case consists of 11 Indivl_ _
dual case segments that are assembled
into casting segments prior to p_'opellant u
loading. The casting segments consist
of two interchangeable center segments
and forward and aft segments. There are

four deliverable casting segments per ,
SRM.

The intent here is to discuss those

criteria, testing and certification require-
ments affecting the reusability of the SRM case.

Design Requirements

0 m

The design requirements for the Space Shuttle Tim
SRM case were evolved from three major sources:
t-Bose specified by the contracting organization(NASA),
those sel f-imposed by the motor manufacturer
(Thlokol) and those which inherently exist due to
fabrication, processing and transportation limits. _tt_ T,m

dm m iN m

Tlllt im¢)

FIIWm[ $. _q-3 I_rl IN|II_RV lqil_ICTlOe

T4BL[ III

FLI¢W_T NOT0¢ SRI_ I_tJIC[ C(I_AR[D WIT_

C[l R[0UIRBEI(TS MOMIIIAL, iO*F

\
\

\

11o

CEI lieoutt'W Imulse

sa.B3 ....

11i0.12 166.61)

_m.16 ....

I_'mlt c _KI ]repulse

$1.20

1M.a9

Z93.63

It is not within the scope of this paper to list

all requirements, but rather to llst only the requirements Which were consldered to be the ma_br
drivers in the evolution of the current case design.

Basic Strength/Toughness/Elongation

Minimum ultimate tensile strength - 195 ksi
Minimum tensile yeild strength - 180 ksi
Typical fracture toughness - go ksl'V_.
Minimum elongation - 8%
Minimum reduction in area - 25%

General Safety Factors

Before SRM separation
Yield factor of safety - l.lO
Ultimate factor of safety - 1.40 .

After SRM separation
Yield factor of safety - 1.10"
Ultimate factor of safety - 1.25"

Safety Factors for Pressures

Before SRB separation

Yield pressure 1 1,2 x limit pressure
Ultimate pressure • 1.4O x limt¢ pressure

After SRB separation (water recovery, etc.)
Yield pressure - 1.10* limit pressure
Ultimate pressure - 1.25" x limit pressure

* This is-a design goal only for water impact loads.

The SRM case and its components must be capable of reuse following recovery and retrieval after
submersion in sea water for up to seven days (168 hrs.) The SI_Icase and its components must meet the
refurbishment and reuse cycle that supports the Space Shuttle System turnaround time from lift-off to
lift-off.
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Design Description

The baseline SRM case design utilizes D6AC material with minimum yield and ultimate strengths of
180,000 psi and Ig5,000 psi, respectively.

D6AC was selected as the basellne material primarily for strength, high fracture toughness, cost,
and schedule credibility. The material has been used broadly in SRM applications, and its use has
resulted in a successful case program.

The baseline design has a cylindrical wall minimum thickness of 0.477 in. and a maximum expected

operating pressure (MEOP) of 936 psig. The minimum burst pressure is predicted to be l,llO pslg,
providing a 1.4 safety factor. The proof test pressure for each segment is I,IZ3 psig.

Figure 6 shows the case design schematically, with the basic dlmenslonal data.

The segmented concept consists of nine
cylindrical segments, plus a forward and
an aft segment. Clevis type mechanical
joints allow for a completely weld-
free case assmebly.

Segment Joint Testinq

The segment joint, which is utilized
to connect each segment to the adjacent
segment(s), is In the form of a tang and
clevis (Figure 7). This general type of
joint has been used successfully on both
IZO and 156 in. diameter test cases and on

the Titan Ill SRM. However, the man-
rating and reusability requirements of the
Space Shuttle SRM case created a need for
additional design features and further
testing.

Initially, the general structural
behavior of the joint was assessed in a
bench test program. In this program,
strength, fatigue, corrosive effects, and
selected manufacturing anomalies were
assessed through the use of full scale
tension sections of the segment joint.
A total of lO tests were conducted which
included combinations of: nominal, over-

sized holes, flawed, missing pins, abnor-
mally low toughness and highly corroded
specimens. A summary of the results

obtained is presented in Table IV. All
testing was highly successful and
resulted in predicted factors of safety
well above the required 1.4 value.

-i-i-LI iiiiiil!!i=
FOII_AIII_ V ",IOINT &TTACI¢ STIFFIEN_ RNCQ _ Y

F]EUIIE 6. SIPI CASE

Reusab11 lt_

FIGURE 7. SF_;I_IT JO|Jt _rTAIL

Technological excellence is required to develop a htghly reltable SRM booster on the basis of the
multiple reuse concept. Fracture control is an important area of technology that demands close
attention.

The need for a comprehensive, well controlled fracture control program is the underlying theme _n
all case design, fabrication, inspection and refurbishment efforts that relate to case reuse. Accord-
tngly, a program was developed that integrates checks and controls Into the cas_ design fabrication
procedure to Insure that the case will completely fulf111 the cycllc _reuse) mission requirements.

There are basically two methods of insuring that a crttical flaw does not exist in design hqrdware.
It must be precluded by nondestructive Inspection NDI techniques, or the hardware must be demonstrated
by proof testing prior to use. The requirements of the Space Shuttle program are such that both
techniques are employed.
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TML( IV

S_IOM, RY OF _q)|NT TESTS

Fal 1uric Factor

lest Load of

Sbuct_ Nm. 1Jel_ Test ( 106 ib) SafelLy Cycles

1 I S Pin - IMmtn41 litlrst 1.04 2.23 ---

2 2 S Pin - llmtnal Ilurst 1.00 2.27 ---

3 3 S Pin - Nomtnot Cyclic a_l |urst 1.01 2.17 240

4 5 S Pin - Oversize I_1i hrst 1.00 2.15 ---

(0.010 In, 1am dll)

S S 4 Pin - I_DtmNI Ikrst 0.80 2.1S ") ---

6 7 S Ptm * ks_tN Cyclic _ hrst I._S 2.20 110
(0.Or_ in. mll

tktcknoss - D6AC)

7 4 S Pin - 1st Flw Cyclic aM Burst 0. wl 1.72 160

(0.05_ deep - it

J_elers FIle)

8 8 S Pin - 2nd FI_w Cyclic aM I_rst O.8SS 1.83 160

(0.0_ (kip - [em)

9 9 S Pin - L_ K)£ - Cycltc aM Burst 0.82S 1.77 1

£Pm)

10 10 S Pin - Correslm Cyclic aN Burst 1.02S 2.20 240

I_mrks

Pin and clevis am fat|urt.

Din and clevis am fatlm'e.

After cycltml, no pin eblrke4 And

minor hole oloe_ticm. Clovis

am fal Im'e.

Clevis I_olos beartmm fl|lve_.

Clevis am spro44.

$1mci,w_ did not separate. Pin

Imendind and clevts Imle mrimmg
fa$ lure.

llo buslHn4 defoMMtlem after cycling.
Clevis am fa|lvre.

Iio crick growtJh. IIOKI_ fatlvl_ "

bu_ t_ Owlet at 800 K.

Crack betr_iHm teflg holes at 68S I(

o_ burst cyc|e. Bvrst aSS I_.

Crack betueen holes at 453 t durln9

Ist cycle at ten9 lime.

Clevis Fitllwo.

4 Pin Joint

L i.t t L_ ": )'7_.0_" "lB'_m_m'lrl"O'&t_ ")
Ulttmte • 1.4 Limit - _3.000 Ib

S Pin Joint

Limit LOAd • 4C_.O00 lb (_xtmwa FltQhl LeAd)
IM Proof , SIS,000 Ib

Ultimte • 1.40 Limit - 6S3,_0 lb

The first requirement stipulates that the largest flaw which can escape detection wlth specified
NDI will not grow to critical size through 20 uses of the case. One use of the case encompasses all
events associated wlth its use as It proceeds through the fabrication, loading, launch, recovery,
refurbishment and proof test sequence. Compliance to this requirement is demonstrated through the

application of principles of liner fracture mechanics.

The second requirement for the SRM case associated with fracture mechanics/flaw growth principles
requires that the case be proof tested prior to flight to a load level which will screen out (by case
failure} all existing flaws which are critical for flight, or would become critical if the flaw were

allowed to grow {theoretically) through four missions. One mission is defined as one motor operating
(pressure} cycle plus one water impact sequence.

MOVABLE NOZZLE WITH _ OMNIAXIAL VECTOR CAPABILITY

The Solid Rocket Motor nozzle is a convergent-divergent moveable design containing an aft pivot
point flexible bearing as the gtmbal mechanism (Figures 8 and 9). The nozzle is partially submerged

to mlnlmizeerosIve conditions in the aft end of the motor and to flt withln envelope length limita-
tions. The nozzle provides attach points for the thrust vector control (TVC) actuators, an attachment
structure to _te with the motor aft closure, a capability for jettlsonlng a part of the aft exit cone
after burnout to reduce water impact damage to the nozzle flexible bearing.

TVC for the Space'Shuttle SRM is obtained by omnlaxls vectoring of the nozzle. The vector require.
ments of the system, the impact of multiple reuse on the components, and the unique problems

associated wltb a large flexible bearing are discussed. The subscale bearing development program
is also presented.

Requirements

Onntaxtal requirements for the SRM nozzles are shown in Figure 10. The 7.t dig of nozzle vector-
ing required in the vehicle's pitch and yaw axes decreases to S dig in the 4S dig plane between the
pitch and yaw axes. By locating the actuators in this 45 deg plane, they could be designed with a
stroke equivalent to 5 deg, yet, when operated in unison, provide the total 7.1 dig required in the

6_4



: t _-;:,.-_7_

pt_ch and yaw planes. The flexible

bearing which permits the movement

of the nozzle was designed for a

maximum omniaxtal nozzle vectoring

of + 8 deg; thus, allowance of 0,_

deg was incorporated in the design

to allow for geometric mtsal tgnment

and actuator overtravel. Require-

ments for the nozzle bearing are
tabulated on Table V.

The requirement was placed upon

the nozzle flexible bearing elasto_er
that it be reused nine times. The

reuse requirement was a significant
driver tn the design of the nozzle

flexible bearing. Components were

destgned so that they would withstand

the htgh loads encountered at the time of

water impact.

_ Flexible Bearln_ Dest_n

The flexible bearing consists of
alternate lamina of natural rubber elasto-
mer and steel shims between a forward and

aft end rinq (Flqure ll). Ten metal shims

and II layers of elastomer are vulcanized

I,_ W_°"

m.. _,m \\ I \
____ ..m_,,,_._. _ ..... / k_.........
l_J¢O_! mJlll_ lOOl ¢U)lm

FIlUl£ S. IIOIZL£ _ ASS[NIL_

L- _e_s

I
to each other and the end rings. The elas1_r

provides the flexibility that permits the

nozzle to vector. The flexible bearing ae_
is designed to be used 10 times without _ _c_om

replacing the elastomer pads. After each

flight the flexible bearing Is disassembled

from the nozzle and placed In a test

fixture, where extensive tests are conducted

to insure its integrity prior to reuse

in another nozzle, Calculations and
subscale test data show that the

elasl:omer wtll be suitable for a mtnt-

mum of lO uses. Should the testing

between flights indicate that the bear-

ing elas1:omer has been damaged during

a fltght or recovery operation, the

bearing can be disassembled by cutting

it apart and the metal parts can

be refurbished and reused. The parts

can then be cleaned and the bearing

remolded with new elastomer pads.

Experience in the flight program has

shown that bearing reuse is feaslble

and e bearing in STY-7 has been used
three times in static tests as well

as on STS-2 flight.

The flexible bearing is the
largest ever butlt for a flight
program. While the destgn concepts
were state-of-the-art, it was deemed

advisable to conduct a development

program to assure that the bearing could

FIIUII[ l, IilOZZL[ LIII _ ASS_LY

illUIl. NFU[_IOII M_mm

l.t NO CONTROL _lO_llNT

0.40VENTNAVEL

8,0 TOTAL OIIl_lAJllAL NlOUllUlllNT PrrcH

A_m

lr161/l[ I0. SOLID IKI_rT ICl"Oq IV(: IrOUIRNTS
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be reused as required and to obtain performance characteristics
such as torque, various spring constants, and the center of rota-
tion when vectored. The development program consisted of fabrica-
ting three subscale bearings approximately one-quarter size
(Figure 12) and three full size prototype bearings. Two of the
three subscale bearings were, in fact, true geometric subscales
designed by scaling all of the dimensions to approximately one-
quarter the size of the full size bearing. The other subscale
was of the same general size as the first two, but had only two
metal shims and three elastomer pads, whose thicknesses were not
scaled down but were the same as on the full scale bearing. The
true subscale lO-shim bearings were fabricated and tested and
provided data which, when scaled up to full size,lndicated that
the performance of the bearing would be acceptable. The bearings
have also been vectored through duty cycles equlvalent to the
actual flight service (plus acceptance testing) that would be
experienced in 10 flights. These data Indlc_ttedthat the fatigue
characteristics of elastomer are adequate for the 10 uses

T_BLE v

NOZZLE BF.ARING _S]GN RE_JIRE_ENTS

gmntaxtel Vector f,i_wibtltty ±8 _g

ACt4_lt, Or Stall LOad 103,424 lb

PlIM of Actui_r

IOlblbl _ Ibmqui_n_

MeW1 Plrts 20 tins

I_artng Elis_r 10 tlmws

Safety Fitters
PriOr _ After

Structure 1.4 Ulttmmte 1.25 Ulttmt_

konpv'essure Vessel I.I ¥1eld I.I Yield

Pms_ VeSsel 1.2 Yield 1.2 Yielg

required. I

Themajor problemsinthe development of the 'II _

full size flex bearingwerethe complexity of the " _ e_em_-

mold (Figure 13) necessary to fabricate the bear- _._I ___nvt

ing and the requirement to uniformly heat the
rubber to the 300"F temperature without over-
heating the rubber next to the heating elements, j
Several of the early bearings experienced uneven

heating and the subsequent lack of vulcanization • m CO*_NG

between the rubber pads and metal shims. A very
severe test has been developed where the flex s m-,Tw_j

bearing is longitudinally stretched two inches m_mm)
and inspected for unbonds. This test has shown
that while several of the early bearings lacked ,_,owT_,_,,_,,)
areas of vulcanization and had to be disassembled FOMWAMD|NO_IING1J_'
and rebuilt, the more recent bearings have all been swm$ a._

ELAIrI"oiII|R nl

properly vulcanized. A_ iNo m_ _
mmc_m

The two-shim subscale bearing was primarily voT_
designed to provide processing data to confirm
that thick pads of elastomer could be manufactured r];unEIi.rLEXlmL[|EAXlmC_OSSSECTIO_
that would have the desired
fatigue characteristics. Some _o_ _'_E
performance data were also
obtained with this bearing.

As mentioned, three proto-_ _

type fl exible bearings were also
included in the development
program. These bearings were
fabricated and extensively
tested to confirm that perform- _
ance was within specifications J

and that the fatigue life of the
elastomer in the fl exible bearing r_m[ 12.S_SC_[ FLEXIBLEgEARINGDETAILS
environment meets the minimum

lO-use criteria. These three bearings also provided repeatability data and confirmed that the
abbreviated acceptance;tests to be conducted on each bearing prior to use are adequate to insure that
it is suitable for reuse.

C0NCLUS I0NS

There have been four development motor tests and three qualification motor tests in the basic SRM
development program. There have been slx DDT&E (twelve Instrumentea SRM's) flights.

All pressure-time traces for the development, qualification and flight test motors in the DDT&E
program, (less STS-6, data not yet available) when corrected to standard burn rate, pressure and

propellant mean bulk temperature have fallen well within the predictability lim4ts established in the
CEI specification (Figure 14).
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42 motor case component.s used tn statlc f|rlngs durtng the development program have been reused

tn fltght. DDT&E fltght stx had 4 raotor case components reused from DDT&E fltgh*, one.

A nozzle flextble bearfng has been reused three ttmes durtng the DDT&E program. Four nozzle
f]extble beartngs have been reused |n the DDT&E flight program, and one of the nozzle flextble bear-

1rigs tn STS-6 was reused from DDT&E fltght one, It was nearly 5 years old. In a]l cases the

demonstrated _orque has been less than _.he ]tmtts es_ab]tshed tn the CEI specification.
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