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FOREWORD

This is a technical summary of the research work conducted during

October 1, 1978 to January 31, 1983 by The University of Alabama in

Huntsville towards the fulfillment of the Contract NAS8-33096 from

George C. Marshall Space Flight Center, Alabama.

The author gratefully i-cknowledges the numerous discussions with

and helrfui comments of Mr. John Gould, Mr. Robert Jones and Mr. Klaus

Jurgensen during this research work.

Dr. Donald Dietmeyer provided the sources of several prcirams that are

now part of the DDL system. Anil Shah, Jim Covington and Chitra Srinivas

developed the majority of the other programs. Caryl Chandler and Jo

Peddycoart provided the staff support. It is a pleasure to acknowledge the

contributions of these individuals.
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ABSTRACT

Digital Systems Design Language has been integrated into the CADAT

system environment of NASA-MSFC. This document summarizes the major

technical aspects of this integration. Automatic hardware synthesis is

now possible starting with a high-level description of the system to be

synthesized. The DDL system provides a high-level design verification

capability, thereby minimizing design changes in the later stages of the

design cycle. An overview of the DDL system covering the translation,

simulation and synthesis capabilities is provided. Two companion docu-

ments (the user's and programmer's manuals) are to be consulted for

detailed discussions.
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1. INTRODUCTION

As the integrated circuit technology advanced to the Very La-ge Scale

Integration (VLSI) era, the complexity of a digital system that can be imple-

mented on a chip has increased tremendously. 	 Structured, top-down design

methodologies [1,2,3] have evolved to "divide and conquer" this complexity.

The design now is , :ually performed by a team of designers . • ather than an

individual designer. Computer Hardware Description Languages (CHDL) [4] are

designed to enhance the efficiency of communication between designers by

enabling a precise yet concise description of the hardware structure and

behavior. In addition to documentation , CHDLs have also been used for

f	

simulation, test-vector generation, design verification and synthesis. We

will describe an automatic hardware synthesis system based on Digital

T	 Systems Design Language (DDL) [5]. The main reason for the development

of the DDL system is to provide a high-level design/description/simulationn/description/simulationY	 P	 9	 9

environment to the traditional logic-net input oriented Computer Aided

Design and Test System	 (CADAT) [6] of NASA-Marshall Space Flight Center.

Traditionally, logic diagrams or equivalent net-lists are used to input

the design details into an automatic design system. This requires that the

designer spend an enormous amount of time in generating the logic diagrams

after the conception of the design. Further, the verification of the design

is deferred to the logic simulation stage, after the logic diagrams are gene-

rated and input into the design system. This An,i	 o,ivirnnment is adequate

for a Small/Medium Scale Inteqrated Circuit (SSI/,SI) design, but in

Very Large Scale Integrated Circuit 	 (VLSI) design, system conu;exities

require that the design be verified as early in the design cycle as possible

to prevent costly changes to the design at the low levels. Further, since a
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proper bread board for a VLSI circuit is the circuit itself [6], a thorough

computer verification of the design at the earliest stage in the design is

mandatory.

The CADAT system is used in the des i gn and fabrication of integrated

ci rcuits for inhouse use at NASA. It is a traditional computer-aided LSI design

system used in the fabrication of PMOS, NMOS, PMOS/NMOS and CMOS circuits

using single or double level interconnect metallization and in either random-

logic (using standard cells) or more structured, standard transistor a.-ray

logic technologies. Figure 1 shows the utility of DDL systen in the CADAT

design environment.

After a survey of the available CHDLs [4], DDL was chosen for the CADAT

system. This :-eport summarizes the major technical aspects of the research

w.;rk conducted under NAS8-33096, since September 1978. Two companion reports

are to be consulted for a detailed treatmert of the DDL system:

DDL System User's Manual, December 1982.

DDL System Programmer's Manual, December 1982.

fhe following components of the DDL System were originally developed at

;-	 the University of Wisconsin and were modified to suit the NASA-MSFC design

I	 environment:

^•	 Translator (DDLTR"q)

Simulator (DDLSIM)

PLA Synthesizer (PLASYN)

C	
Multiple-output Minimization Program (MOMIN)

}

A hardware synthesis algorithm was formulated and the logic minimization

C

routines were interfaced during the contract period. Chapter ? provides an

ovor y li-w of 1 hi- (urrornl. vot , ion of 1 hf- h[fl %y-,U-m. 	 L.halAvr 3 %unmar Izes the

L
I )F I-	 . ,	 I
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hardware synthesis algorithm and provides some implementation details. A 

detailed synthesis example i s shown in Chapter 4. PLA synthesis ;s dis

cussed in Chapter 5. Logic minimization interface is summarized in Chapter 

6. Ch~pter 7 concludesthe report. A complete list of publications under 

this contract i s provided in the Appendix. 
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~ DOL description of the -----......... ~ sys t em be i ng designed . 

TranslatiC'n 

DOL Description ~. £"" \ 
Equations describing 

the system. \ 

~ ____ ~'-------riL-____ LO_9_iC--M_in_im_i_za_t_i_on------~ 

Simulation 

Sys t em Performance 
at Regi ster -Transfer 

1 evel 

Synthesis 

PLA Program 

Standard Cell sand 
their interconnections 

To CADAT 

j 

Figure 1: Uti l ity of DOL system in CADAT environment. 



The DDL software system consists of a translator, a simulator and two

{U	 hardware synthesizers. The translator (DDLTRN) translates the DDL description

into a set of Boolean (BE) and Register Transfer ( r 'E) equations. The

Simulator (DDLSIM) provides a register-transfer level, two-value simula-

tion capability. The synthesizer (DDLSYN) selects a set of standard cells

from a cell library and provides an interconnect list of these cells to

realize the BEs and RTES. The PLA synthesizer (PLASYN) produces a M pro-

gram for the combinational portion of the System. A brief description of

the above components follows:

DDL

DAL was introduced in 1968 by Duley and Dietmeyer [5,7]. It is suitable

for intermediate level of description cf a digital system between the

extremely abstract level and the fabrication level. All structural elements

' J	 are explicitly declared in a DDL description. At the lower level of des-

cription, functional and structural elements correspond directly to the actual

elements of the system. DDL is highly suitable for describing the system

at the gate, register transfe-- and major combinational block level. The

logical statements can be formed using the available primitive operators. The

functional specification of the system consists of these logical statements, in

blocks. The statements describe the state transitions of a finite state

machine controlling the processes of the intended algorithm. The block then

appears as an automaton. Parallel operations are permitted. Synchronous be-

havior is described by either identifying the pulses or by including delay

elements described in	 terms	 of multiples of clock pulses. Asynchronous

behavior is modeled by using	 conditional	 statements.	 Data paths can be

explicitly declarea by using	 terminal	 declarations.

n
:l

J
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Further details on the syntatic features of the language can be found

in [11]. Two new constructs were included in the current implementation of

DDL [11,13] to enable a modular description, simulation and synthesis. The

new constructs are the MODULE and the DEFINE MODULE and are descr 4 hed in the

following paragraphs.

The MODULE declaration is similar to the system declaration or automata

declaration with the exception that all equations implied by the DDL descrip-

tion bounded by the MODULE are translated separately from the rest of the

system. The module declaration also differs from the system and automata

declaration in that the operations are not actually contained in the de-

claration, but are only called by the module declaration. The DEFINE MODULE

(DM) declaration is used to actually contain the DDL operations. To tie the

Input/Output information for the DDL description that will be used in the

simulation and synthesis phases. Details of the_,: C,nguage constructs are

given below:

MODULE CALL

< MO> module name [:BE] [:csop]

[$SYM1=VALUEI,sYM2=VALUE2 ... b]

Cndst,,tement

%Ylii I

,:. ^, - 1	 .121	 1	 11 1 '	 II	 II'11

t.

Ij
r.

D I

1
1
1i

s1 M n	 - is a 
s ^ .. 'n 1 iC pjrdmeter

VALUE	 - is a value to be substituted for symn

endstatement - may be 	 or '<ENDMO >'.

OR1GMAL Mar. iJ
OF POOR QLj 4LI 1Y
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The module name names the block arid assoc iates it witri a block of code

that has been previously aefined. 	 The name may riot be subscripted or

contain parenthetical arguments.	 The BE and clop, if present, will be
J

inserted in the head of the automata and will then serve the same purpose

as in the automata declaration.

	

((	 DEFINE MODULE AND INPUT/OUTIUT

<DM> Module name

<IO> (outputs:	 inputs) <ENDIO>

I

	

I	

DDL statements

	

!	 <ENDDM>

	I	 where the DDL statements may be a set of any allowable DDL declarations
1

with the except i on of another <,DM> declaration. 	 The define modu 1 e

'	 declaration names the nodule and delimits the beginning and end of the

DDL statements that make up a m o dule.	 The define module declaration is

required whether the module will reside in the temporary or p ermanentP	 Y	 P

	(j	 module library.	 One	 10 declaration	 is required for	 each	 module

	

tl	 declaration and it must be the first declaration following the define

	

1 1	 module declaration. 	 The purpose of this 10 declaration is twofold: it

'j makes the designer think about what the input/output interface of the

module should be and gives the translator the capability of creating an

	

f	
i Ivilivirt kit ) ,it', Iar,it ioll in thr 111,011 system at the point of call . 	 (the ELEMENT

declaration in DDL identifies a black box with only Input/Output signals

defined). The inclusion of an element at this point gives the designer the

	

1	
capability of specifying values for the outputs of the blackbox at

l^
simulation time so that it is not necessary to have all components of the

overall system designed at one time. This will allow a top-down approach

to the hardware design process.

ti
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T yre scope of a module is defined in a manner t1iat is consistent with

the remainder of DDL, i.e., any declaration on a system level is

considered global to any module within that declaration. Any declaration

	

1
	 within a module is local to thAt Trodule and may not be referenced by any

declaration outside the module. 	 If a module is contained within another

module, then the higher level module declaration will be considered global to

the lower level module.

ODLTRN

The DDL Translator [7,11] is a six-pass translator that compiles the DDL
	 i

description into a Facility 'able an, a se*_ of r?oolean equations (corresponding

to the cornbin3tion3l logic portion) and a set of Register Transfer equations

(corresponding to the sequential logic portion). A seventh pass was added

[14] to the translator so that the BEs and RTEs could be rearranged to

eliminate duplicate e<pressions and Boolean constants. The current version

of the translator [13] accepts the modular description constructs described

earlier and translates each module independently from the others.

When a module declaration is erico.,ntered by the translator, the

entire m--Mule declaration is -arsed into rarne, BE, csop and symbolic

par,,;;reters.	 Tire name field is then used to access an eternal file twat

ri,rrt.rills	 OIL' I r ft l 	r-rkv	 r,p	 the wk,dole description.	 The

tit • t Mod usiny a define .w.iu1e declaration, then

it will be found in a temporary file that the translator recreates each

	

[J	 time it is executed; hence, the DM declared modules are temporary. 	 If it

is riot found in the define nodule file, then the library file is searched
1

for the description. 	 These descriptions are permanent and available to

0
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the designer each time fie uses 	 the	 translator.	 As .soon as the

d p sc.ription is located, an intermediate file is created and the state of

the translator is saved (nesting level, global IyinboIs, etc.) so that

translation of the module can be done after translation of the present

system is complete.	 The module oescription is now scanned and the 10

declaration located and saved (must be the first declaration). 	 The

description is scanned and substitution is made for the csop and BE in

the automata mead, if the module is an automata.	 The description is now

scanned for any symbolic parameters and the necessary substitutions

made.	 At this point the module description is prepared for translation,

so that translation of the ma in descr ; ption may now resume. 	 This process

is repeated for each module that is encountered during translation. After

translation of the main description is complete, the translation of each

module proceeds in a sequential manner.

DDLSIM

The output of DDLTRN is the system description input to DDLSIM [S]. A

simulation command language enables the designer to input and output various

simulation parameters and control the simulation p rocess. DDLSIM is a

two-value, register transfer level simulator. The command language has the

fo I1owintf c:apabiI itit-,:

1 ,i t , , l,tr.rt itrn ,it new fa, i 1 i t ies (CLOCKS, DELAYS) and TRIGGER signal s

for simulation time.

1 Initialization of the contents of various facilities.

1 Read/Load data

1 Output data

1 Dump memory content

If	 0

r'

f'
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Each MODULE can be completely translated by DDLTRN, thereby obtaining a

single-level description of the system for a single-level simulation. The

designer can choose to retain some modules at the element (black box) level and

expand the others, at the translation phase. A multi-level simulation capability

is thus provided. It is the designer's responsibility to provide the output

information and verify the input information for the modules retained at the

element level, during simulation.

DDLSYN [9,10,12,13]

DDLSYN is a hardware compiler. The BEs and RTES output tv DDLTRN are used

by DDLSYN ro compile a list of standard cells and their interconnections. A

subset of the CADAT standard cell library (Table 1) was used. Twi modes of

synthesis are possible: modular and non-modular. For a non-modular synthesis,

the designer commands DDLTRN to expand each module and generate one set of

BEs and RTES for the complete system. For a modular synthesis, each module

is translated separately into a set of BEs and RTES and synthesized individually

by DDLSYN. The output of DDLSYN consists of:

1 a list of standard cells chosen (Cell Table),

1 an interconnection list, (Net Table),

i cross reference list (Identifier Table).

In addition to these, a module interconnection list will also be produced

by DDLSYN, in the modular synthesis mode.

PLASYN [14]

The PLA Synthesizer uses the output of DDLTRN and produces a PLA program

to implement the combinational logic portion of the system described in DDL.

The RTES and high fan-in gates are left for manual design. The PLA program is

J
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simply a coded representation of the connections on the AND and OR array of

a PLA. The PLA input limit, output limit and product-term limit are the par-

ameters supplied by the designer.

LOGIC MINIMIZATION [15]

The BEs and RTEs produced by DDLTRN are not completely minimized. Al-

though the minimization may not be required during the initial phases of the

design cycle, it might be desirable to apply formal minimization techniques

before the design is finalized. A multiple-output minimizata-.on program (MOMIN)

is included in the DDL system. Due to the memory limitations, the number of

variables (input and output combined) that can be accomodated by MOMIN is16 .

The logic minimization interface partitions the BEs and RTES to obey the above

limit and minimized each partition of equitions. The use of minimization pro-

gram is optional.

Figure 2 shows an overview of the DDL system.

'.l

IJ

I]

I1
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The BEs and RTEs are broken up into components and these are then matched

to a standard cell library to choose a cell or set of cells that will realize

the given function. Table 1 contains a partial list of the standard cells

currently available with the number of devices for each cell and the cell width

(as a measure of the silicon area needed). The last column shows the literals in

each product term (APP; of the function realized by t:i. cells.	 lne

terms containing all ''s (11, 	 11, 1111) and those with one nrodurt

term (l, 2, ?, 4) correspond Lo a single gate realization. 	 S i nce it

is desirable to realize a function by using the largest standa-1 cell

possible, more complex cells are included in the library (2222, 2112,

222, 22, etc).	 Note chat the maximum number of product teons that. (731,

be accommodated in the largest cell is four, so that o function with

more than four product terms is split into several 4-term units.	 An

additional gate must then be used to combine these 4-term units into a

single function.

The synthesis algorithm requires tnat the BEs be in the sum of

products (SOP) form. Hence the BE output from the 001_ translator must

be changed to this form. The RTEs	 are synchesi zed by bre Ski rig

the equations into two Farts; the first corresponding to the condition

part and the second to the transfer part. Each of these is in turn a BE

so that the same synthesis algorithm may be applied to them. The overall

synthesis algorithm is discussed next followed by the combinational logic

synthesis algorithm.

3.1 SYNTHESIS ALGORITHM

The overall synthesis algorithm has the following five steps:

1 )	 Memory references are reduced to memory READ and WRI 	TF_

signals.
12

I L,
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2) RTES are broken into two BEs corresponding to the

condition and transfer portions.

3) Equations with selection and reduction operators ar•a

reduced to SOP form.

4) Exclusive-OR operators, constants and parentheses are

eliminated from the equation.

5) BEs	 in	 SOP	 form are now synthesized using the

combinational logic synthesis algorithm.

The following sections cover tnese steps in greater detail.

3.1.1 Memory

The memory references in DDL are of the form M(MAR) where MAR must

be the same register for all references to the memory M. 	 A memory

reference	 is	 interpreted as a read if it is on the right hand

side of an equation or as a write if it is on the left hard sio'	 Jr

modeling	 the memory for synthesis, it is assumed that the ;ioamory

module has an address decoder, a memory bus as wide as one worn and

read and write input signals.	 It is then only necessary to geiieratp

the correct input signals to synthesize the memory equation.

3.1.2 Selection and Reduction Operators

It is necessary to expand the selection and reduction operators to

thi • ir tr •uv ;DI' fiir •iu hi-fort . t.hoy •ire	 ynlhr .ii^rl.	 lhi • . i'• ,if.(-ompi i-,h(•u by

performing the following steps:

1)	 If a selection operator is present, synthesize it by

complementing the bits of its left operand if a zero appears

in the curresponding position of the right operand.

0Mut1 AL t: .	 ^f
OF POOR QUA.LIV,
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v
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2)	 Place the reduction operator between each bit of the

selected lefL operanu.

Example:

Assume that A is two bits wide for the following equations:

1) B=*/A	 3D2

2) B = */ A	 11	 Expand constant

3) B = */ A(1) A(2)	 Apply step 1

4) B = A(1) * A(2)

3.1.3 Combinational Logic Synthesis Algorithm

The combinational	 logic	 synthesis algorithm consists of	 the

following steps where the number of digits in the

LPP is n and K  is the ith digit of the LPP.

1) Scan the Boolean function to be implemented anc count

the number of literals in each product term to determine the

digits of the LPP.	 If the product term contains more than

two literals (functio n s of the library), it must be red,,ced

to a term with only one literal. 	 This is acr_omplisiied by

using one or more AND gates to realize the term individually.

2) Rearrange the LPP in descending order of its component

I i,l it S.

I 1	 11 1 -, ^r^^at ,). th,1n r Our the LPP : s sp 1 i t i nto ',wo or

more four digit units (the last unit may have les, than four

digits).	 Each of these four digit units is implemented

separately so that the four digit unit may be replaced by a

1 in the original LPP.
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If n is less than or equal to four it is compared to all

the n digit standar", cell LPPs until a standard cell is

founu that has a	 minimum number of mismatches.	 The

mismatches are determined by the following criteria:

a) If the four digit unit is a sum term ( K i m ] for

all i = 1 to n), then the mismatches will be zero and

the unit will be implemented using an OR gate with the

proper number of inputs.

If t ,e four digit unit "s a sum term but	 s

contained within a larger unit that contains at least

one instance of K i =2 then it will have a mismatch of

zero and be implemented as a NOR cell.	 For example,

in the LPP=22221111 the unit 1111 is implemented using

a four i nput NOR gate.

b) If in the four digit unit there is at least one

instance where K i =2, then the mismatches shaI I be

equal to the number of digits numerically less than

its corresponding digit. The best match will then be

found and the four digit unit implemented as this

library cell.

Examples:

Four Digit Unit	 Library Cell	 Misrnatcnes

	

2221	 2222	 1

	

2111	 2211	 1

	

221	 222	 1

	

211	 222	 2

	

21	 22	 1

Ar

u
ii
a
a
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u
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4)	 The final implementation depends on the LPP as well as

the	 library cell	 selected.	 The	 various	 options	 are

explained below and summarized in Table 2.

a) The synthesis for K 1 =1 for all i=1 to n where n

is less than or equal to four is completed in step

three and no further action is required.

b) The outputs from step three for all four digit

units generated for equations in which K i =1 for all

i=1 to n when n is greater than four are combined into

a single output by adding an OR gate.

c) The output of all LPPs in which K i = 2 appears one

or more times must be inverted due to the nature of

the more complex standard cells. This could possibly

not have to be done if a standart . cell was available

that did not have an inverted output was available.

d) When K i =2 for any i wrren n is greater than four

and less than or equal to sixteen then a NAND gate is

used to connect all the individual implementations of

the four digit units.	 In this case, the inverter is

not necessary s i nce the NAND gate is used.

e) When K 1 = 2 for any i wnen n is gre ater than

sixteen tnen an OR gate is used to connect all thy?

individual	 groups	 of	 sixteen	 that	 have	 been

synthesized as in part d.

f) If the LPP i s a prouuct tern (K i is greater than

or equal to :wo for n equal to one) then it is

implemented using one or more AND gates.

WICto ",r. Vk. Eli
OF POOR QUAL17Y
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5;	 Compare any saved input and output identifiers from previous

modules to the identifiers in the present module's identifier

table for a match.	 If a match is toun(j, this will ue th(i ^;Nco11(1

point	 in	 the point	 to point connection and	 tln^	 identiI i e r ;

associated net must be saved.	 A comparison of identifiers it, this

fashion may be made since the translator forces all identifiers to

be unique within a system even though they may be in two seperate

modules.

6)	 Repeat	 steps	 one	 through	 five	 until	 ail	 :rodule;	 ar,^

synthesized and output the results.

The above procedures are implemented in DDLSYN and the resulting

module interconnection list is out put on both a cell level and on

an identifier 1pvpl.

The example below will serve to illustrate the above steps.

Example

Z= A+ B* C+ D* E* F+ G* H* I

Step 1	 1	 2	 3	 3

	

1	 ?	 1	 1	 to 1 by inr.lurliny M30

	

.1 ^I^	 I	 I	 I

V	 .1'.. 'I 2 -- '

This Boolean equatio n can be implemented using one 1860, 
tv,n 1i,30's

and one 1310. The implementatio n is snown in Figure 3.

DDLSY1 q i-tplements the preceding algorithm. The cell table, net

table and identifier table are provided as the output. This information

is complete enough to represent the logic that was implied by the DDL

,irsrriptior i
-^ o



Table 1: CADAT SLandard Cell Library (Partial)

No. of	 ^Ce11 dthwi
Type	 Fu

Devices	
nc:t lun

(mils)

18

LiteLals/Product
Term

input	 NOR	 4	 5.8	 A + B	 1,1

input	 NOR	 6	 7.7	 A + B + C	 1, 1,1

input	 NOR	 8	 9.6	 A + B + C + D 1,1,1,1

input	 NAND	 4	 5.8	 A•B	 2

input	 NAND	 6	 7.7	 A•B•C	 3

input	 NAND	 C	 9.6	 A•B•C•D	 4

Buffer	 Inverter	 2	 3.9	 A	 1

input	 AND	 6	 5.8	 A•B	 2

input	 AND	 8	 7.7	 A•R•C	 3

4	 input	 AND	 10	 9.6	 A•B•C•D	 4

2	 input	 OR	 6	 5.8	 A+ B	 1,1	 j
i

3	 input	 OR	 8	 7.7	 A+ B+ C	 1,1,1 i
4	 input	 OR	 10	 9.6	 I	 A + B + C + D 1,1,1,1

4	 x 2	 input	 AND +	 16	 17.2	 (AB +CD +L•'F +Gli)	 2,2,2,2

4 x NOR I,
3 x 2^ input AND + 	 10	 11.6	 C(AB + DE)*

i
2	 input	 NOR	 i

2 x 2	 input AND +	 12	 13.7	 AB+E+F+CD	 2,1,1,2

4	 input NOR	 j

2	 x 2	 input AND +	 8	 9.6	 (AB + CD)	 I	 2,2	
i

2	 input	 NOR	 1	 i

2 bit carry	 10	 14.9	 (CUE)	 + BE + A*	 —
i

Anticipate	 I

3 x 2	 input AND +	 12	 16.9	 AD + CD + EFI	 2,2,2	 I

3	 in pu t NOR

2	 input	 EXOR	 8	 +	 7.8	 A I B	
I	

1,1

}

Ult,ull^v :- ^•^I

l^ OF POOR Q J^; 
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' Ce11	 Nu.

u
I
11120 2

t 1130 3
(1140 4

1220 2

1230 3
;1240 4

1310

11620 2

J
I	 1

11630 3

11640
U ,1720

rr
1730l^ 11740

i
11800

a ^

r^
U

I1840

1960

1870

1880

1890

!	 ^ 2310

iii	 * Special Functions

a
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LPP configuration Implementation
i

a) K i =1, for all	 i=1	 to n,

n<4.

b) K i =1, for all	 i=1	 to n, I

n>4.

c) Ki.2, for any i n 1 to n,

221	 In_<4. • 2221 
a--><>--22	 i

d) K i =2, for any i=1	 to n,

2222
4<n<16._ 2211

e) K. = 2, for any i=1	 to n, 1
t

n>16.
2222

• 2211	 0^

f) K i >2, for n=1.

Table 2:	 Step 4 Implementations

ORHUNAL ; w 1.
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Figure 3:	 Implementation of Z=A+B*C+D*E*F+G*H*I
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The synthesizer Old 1. was written to	 implement the algorithm

described in the previous section was designed to synthesize only one

group of equations at a time; however, a system design with modules

contains at least two groups of equations and may contain many more.

Synthesis of this type system require; the synthesizer to loop once

for each module and to connect each individual synthesis output

together to form an overall system connection list. 	 The previously

described synthesis program will lend itself fairly well to these

modifications. This section will present an algorithm for connecting

modules along with the implementation details of the algorithm.

3.2.1. Connect-on Algorithrn

Concept-jally the problem of connecting modules can be thought of

as the point to point connection of a wire or of drawing 3 1 ilia from

one point to another on a ci rc uit diagram. However, when the hardware

of the system is represented in a computer memory by an identifier

table, a net table and a cell table and it is undesirable to retain

more than one module's tables In memory at one time. The connection

algorithm is not quite so straightforward. 	 It is 31so desirable when

connecting modules that both a connection list on an identifier level

`r a - iJ -̂	 ^.""IMr

	

;1,`i	 ! Ill,	 illl'lil'htl^lc`l'^.	 ; ` ui	 .11^,^ i'!l`il' .1^^^^j^l`^i l t'1 • $.	 Mi 

accomplish the above objectives is presented here and is represented

diagramatically in Figure 4.

	

1)	 Read the output data files (facility taole, DDL string and DDL

pointer string) from the DDL translator to obtain the complete

description for one module.

,m

l

V
-..rte	 ..
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Figure 4:	 Connection Algorithm
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2)	 Begin	 synthesizing	 the	 DDL	 equations	 in	 a	 normal	 fashion

If an element declaration	 is encountered in the module. save all 	 the

(I declared inputs and outputs so that the connection process can be trig-

gered.

3)	 Continue	 synthesizing	 until	 all	 equations	 have	 been	 processed

ff

for	 this	 module.	 At	 this	 point	 the	 identifier	 table,	 net	 table

^J and	 cell	 table	 are	 complete	 and	 the	 declared	 inputs	 and	 outputs

n

U

are known.

4)	 Look	 up	 each	 input	 and	 output	 identifier	 in	 the	 identifier

table to find	 its	 associated	 net	 and	 save	 a copy	 of	 this	 net.	 At

this	 time	 all	 information	 for	 one	 point	 of	 the	 point	 to	 point

connection has been found.

^a

24



OF POOR QUALITY	 4. A SYNTHESIS EXAMPLE

This chapter illustrates the complete synthesis process using one example

description. Both modular and non-modular modes are illustrated. Typical out-

puts from DDLTRN, DDLSIM, and DDLSYN are shown.

Figure 5(a) shows a description of a serial twos complementer in

DDL. This complementer uses the popular copy/complement algorithm:

1) Starting from the least significant bit, copy the bits as they

are until the first non-zero bit is encountered.

2) After this bit, complement all remaining bits in the word.

The algorithm is implemented using a shift register that is right

circulated while copying or complementing as required.

Four registers are used by the complc;,,enter and are declared in line

two of Figure 7(a).	 R is a six bit register „hose contents are to be

E1^

	
complemented and placed back in R. 	 The three bit register C is used to

count the number of shifts 'i pr essar y (six it this case since R is six

bits wide).	 The register S is a state flip-flop to indicate the copy or

complement state and T is a control flip-flop to indicate the RUN/STOP

state of the comple;iienter.	 Trie clock P is used to synchronize the state

transitions of the complenienter. 	 In lines five through eight, an

operator ADD is declared. 	 This is a three bit adder to increment the

( Wnl ont % of t ho ai t.tuna nt req i tit er by on p .	 I inf s nine through twelve

Je t Ia e ,rn ot,I k ,1 11 t d (04' tIidt has Lwo states:

1) A waiting state I

2) A processing state Sl.

Setting of switch SW is required for the transitions from state I to

state Sl.	 In the state Sl, the register R is circulated right one bit

25
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with the least significant bit copied or complemented, depending on S

being a zero or one. 	 If the register C has reached a value of Live, the

complementing is stopped by setting T to zero and returning to state I.

If C is leas than five, COMP stays in the state Sl and increments C.[1]

Figure 5(b) shows the output equations generated by the translator.

It can be seen from this figure, that even though the input description

has two clearly defined blocks (Operator and Automata declarations) the

output equations show no distinctior between these blocks.

Figure 6 (a) shows the identical complementer but this time, the

automata is contained within a module. 	 Lines one through eight are the

Define Module and Input/Output declarations which actually contain the

prEvioLIsly described automata. 	 The symbolic register REG is declared to

be both input and output while the symbolic switch, SWITCH, is declared

to be only input. In line seventeen the module is referenced by a Module

declaration and the symbolic parameters SWITCH, REG and CON are all

assigned values. The use of symbolic parameters allows the designer the

flexibility of not t.-?ing tied to those variable names that were assigned

in the module, that is, he may assign them any name he chooses by the use

of symbol is parameters.	 Linos eighteen and ninr^tr-en are the Flr,ment

deClaletiun teat t he translator generates fUr the module

	

Figure 5 (:)	 and	 6 (d)	 show the identifier tables, input

1 1%1 	 f.	 1	 I ... I ,	 . 1"	 . I I	 -	 . I ...	 a I. y ,

synthesis of the two previously described systems.	 The input list

shows any identifiers that were not internally generated within the

system or module being synthesized.	 In the first synthesis (Figure

5 ('c) SW, an on/off switch, and P, a clock, must be supplied from an

	external source.	 In the second synthesis (Figure 6(d) the first

I U
iu

.y

is
__ J



ADD(3)	 as	 inputs.	 Looking	 back	 at	 the	 identifier	 tables	 it	 can	 be

seen	 that	 ADD(1),	 ADD(2)	 and	 ADD(3)	 are	 generated	 from	 module	 one

a

'

(DRIV)	 while	 X(1),	 X(2)	 and	 C"1(3)	 are	 generated	 in	 module	 two

(MCMP).	 This	 information	 can be	 used	 to	 generate	 the	 I0	 declaration
0

required	 by	 the	 translator	 if	 the	 inputs	 and	 outputs	 were	 not

immediately obvious to the designer.

The	 identifier	 table	 contains	 all	 identifiers	 that	 were

0
encountered	 in	 the	 synthesis	 and	 serves	 to	 associate	 the	 identifiers

with	 the	 net	 table.	 In	 the	 identifier	 table,	 an entry with	 all	 Xs	 is
Q

an	 internally	 generated	 output	 of	 a	 net.	 All	 other	 entries	 are

0
outputs of the corresponding net.

The	 table	 contains	 the	 connectivity	 information	 on	 a	 cell

U level.	 For	 example,	 net one	 of	 Figure	 . 5	 (c)	 shows	 that	 cell	 1000,

pin	 3	 is	 the	 driver	 (the	 driver	 cell	 is	 always	 the first	 cell	 unless

the	 signal	 is	 generated	 externally)	 and	 drives	 cell	 1001	 pin	 3.

Looking	 in	 the	 cell	 table,	 it can be	 seen that	 cell	 1000	 is a	 1310 and

cell	 1001	 is	 a	 1620.	 From	 Table	 1.	 it	 is	 found	 that	 cell	 1310	 is	 a

buffer	 inverter	 while	 cell	 1520	 is	 a	 two	 input	 AND.	 Proceeding	 in

this manner	 all	 nets	 could	 be	 expanded	 and	 a	 circuit	 diagram	 such	 as

r i yui ^	 ^. ^`u 10	 i*F	 01 11%11,

U These	 four	 tables describe	 all	 necessary	 connection	 information on

a	 cell	 level	 and	 are	 sufficient	 for	 synthesis	 of	 a	 single	 module

system.	 In	 multiple	 module	 systems	 it	 is	 necessary	 to	 add	 two

I additional	 tables:	 the	 identifier	 connection	 list	 and	 the	 cell

n

I
ORKANAL PP IE is
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module requires X(1), X(2) and C"1(3), which is equivalent to X(3), as

its inputs while the second module requires SW, P, ADD(]), ADU(2) and
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connection list.	 The tables showing the connection information for

the two module system of Figure 6 (a)	 is shown in Figure 6 (f):

The first table shows that the identifier X(1) is generated in module

MCMP and is input to the mod,ile DRIV. The second table shows that the

identifier X(1) is generated by cell 2049 pin 4 and drives cells 1000

pin 3 and 1002 pin 2. With this information and the identifier table,

cell table and net table the circuit diagram of Figure g can be

drawn.

To verify the designs of these two complementers, a simulation run

was made with the input commands of Figure 9 .(a). 	 In line one,

flags for DDLSIM are set for decimal data input (4) and binary output

(6). In line two, SW is set to a one to begin the complementation

process. Line three tells the simulator to read a value into R each

time the complementer is in the state T.	 Since two values are

specified (5 & 20), the simulator will perform two loops through the

simulation.	 An output trigger, OUTTR, is declared to be on at the

falling edge of clock P in line four. 	 In line five, the values of

COMP, R, S, C and T are output each time OUTTR is on and that of R

when in state I. The simulation is started in line six.
i

Figure -9 (b)	 shows the simulation output that was produced by

both complementers. Simulation of a system with more than one module

is made by setting flag seventeen of the translator to a one. This

flag tells the translator to expand all modules in-line at the point

of call resulting in identical simulation results if both translations

are valid.	 For this reason only one simulation output is reproduced

here. At time zero, all registers are zeroed and the circuit is in

I^

^I1

LC*__
la	 _— — ------
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state I. On the next leading edge of the clock time advances to one

and the switch is set to a one. At time two, R receives a 5. Twelve

more time slots (6 clock pulses) are required for R to have its twos

complement (time = 14). At time sixteen, the new value for R (20) is

received and its twos complement is ready at time twenty-eight. Since

all inputs are exhausted, the simulator stops at time twenty-nine.

r -
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Figure 5(a) Serial Twos Complementer (Input Description)
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DIGITAL DESIGN LANGUAGE SrnT ►•ESI2FR
DESCRIPTION OF MODULE - 	 DRIV

IDENTIFIFR 108LE

NO. IDENTIFTFP NO. TUFvT)FIFR NC. IOFNTIFIER
1 I( 1) 2 COMP( 1) 3 St( 1)
4 "1( 1) 5 9h( 1) 6 02( 1)
7 T( 1) P. "3i 1) co S( 1)	 i

10 "4( 1) 11 XXXXXXXX( 1) 12 "S( 1)
13 C( ?) 14 Cf 1) 15 C( 0)
16 XXXXXXXX( 1) 17 "6( 1) 18 XXXXXXXX( 1)
19 XXXXXXXX( 1) 20 "7( 1) 21 P( 1)
22 xxxxywx:( 1) 23 08( 1) 24 XXXXXXXX( 1)
2S 09( 1) 26 xxxxxxxx( 1) 27 "10( 1)
2A xXXXXXXY( 1) 29 011( 1) 30 R( 6)	 1

31 "f2( f) 32 xxxxxxxx( 1) 33 XXXXXXXX( 1)
34 C"f( 1) 3S X( 1) 36 C"1( 2)
37 X( 2) 3t C"1( 3) 39 x( 3)	 tt
40 Apo( 1) a1 A0D( 2) 42 AnD( 3)	 I
43 XYXXXYXX( 1) 44 XXXXXXXX( 1) 45 xx)xxxYx( 1)	 1111111

46 R( 1) 47 R( 2) 42 XXXXXXXX( I) 1I
49 xxxxxY)x( 1) So k( 3) 51 XXXXXXXX( 1)	 !^
52 XXXXXXXX( 1) S3 k( 4) 54 xxxxxxxx( 1)	 l
SS XXXXXXXX( 1) 56 p( S) 57 xxxxxxxx( 1)
ES XXXXXXXX( 1) 59 xxxxxxxx( 1) 60 xxxxxxxx( 1)	 1

6i xxxxxxxx( 1)

x
C'

INPUT LIST	 i

	

NET	 IDEKTIFIFF'	 I

	S 	 Sw(	 1)

	

21	 P(	 1)

Figure 5 (c). Synthesis Outputs
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DIGITAL LESIG'u L ANGPAGE SYNTHFSIZER

DESCRIPTION OF NODULF - 	 DRIV

NET TAPLE

NET CELL FIr- CELL PIN CELL PIN C F L L PIK CELL PIN
1 1000 3 1001 3
3 1036 u 1000 2 1002 3

4 1001 4 1011 u 1013 a 1015 4 1029 3
1036 3

5 1001 2
b 1002 4 1003 3 IOU5 3 1007 5 1010 3
7 102P 4 1002 2
8 1003 4 1017 a 1021 5 1036 5 1011; 5

1044 5 10 117 5 1050 5
9 1n35 4 1004 2 1003 2

10 1005 4 1013 2 1017 2 1019 3 1021 3
1038 3 1041 3 101j4 3 1047 3 1050 3

11 1000 3 1005 2
12 1007 6 1015 2
13 1030 u 1009 u 10()7 a 1054 2
1u 1032 4 100P 2 1006 2 1055 2
15 1034 u 1009 2 1007 2 1056 2
16 1006 3 1007 3
17 1010 u 1011 2 1029 1031 3 1033 3

1054 3 1055 3 1056 3
1P 1008 3 1009 3
19 1009 5 1010 2
20 1012 3 1030 2 1032 2 10311 2
21 1011 3 1011 5 1013 3 1013 5 1015 3

1 0 1 5 5 1	 0'.	 '' 3 10 1 7 5
22 1011 6 10! 2
23 1014 3 1035 2
211 1013 r 1014 2
25 101b 3 10?P 2 103b 2
26 1015 6 1016 2
?7 101P 3 1037 2 10410 2 10 143 2 1046 2

1049 2 1053 ?
28 1017 6 101P 2
29 1019 4 1035 3
30 1 053 4 1 02() 2 102 1 2 1 f, 1 G i
31 1022 3 1037 3
32 1020 3 1071 4

33 1021 6 1022 2

34 1023 u
35 1054 4 1025 2 1023 3

36 10211 u 1023 2 1025 3

37 1055 u 1026 2 1C?u 3

Figure 5	 (c).	 (Cont)

.r.
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2 1024	 23b 1056 u 1026 3 1027
40 1025 4 10Tc 2
41 1026 u 1031 2
42 1027 3 1033 2
43 1029 u 1030 3
44 1031 4 1032 3
45 1033 4 1034 3
46 1037 4 1038 2 1038
47 1040 u 1041 2 1041
48 1038 F 103Q 2
49 1039 3 1000 3
50 1043 4 10uu 2 1044
51 10x1 6 1042 2
52 104s 3 1043 3
53 1046 4 1047 2 1047
54 1044 6 1045 2
55 1045 3 1046 3
56 1n49 4 1050 2 1050
57 10 4 7 6 10uP 2
58 1042 3 1044 3
60 1050 b 1052 2
61 1052 3 1053 3

a
u

u

U

u
H

DIGITAL DESIGN LANGUAGE SYNIMFSIZFN
OESCRIPTICN OF W ODLLE -	 ORIV

CELL TABLE

CEL L
NG

1002
1007
101?
1017
1022
1027
1032
1037
1002
1007
105?

CELL STD. CFLL
NO CELL NO

1000 1310 1001
1005 1620 1006
1010 1620 1011
1015 1870 1016
1020 1310 1021
1025 2310 1026
1030 1830 1031
1035 1830 1036
1040 1830 1041
1045 1310 10ub
1050 1870 1051
1055 1620 105b

STD.
CELL
16?0
1310
1670
1310
1870
2310
16?0
1A30
1N70
1A30
1300
1620

STC. CELL
CELL NO
1620 1003
1640 100 P.
1310 1013
1870 101A
1310 1023
1310 1028
1830 1033
1830 103F
1310 1043
1870 1048
1310 1053

STD.
CELL
1F?0
1310
1P70
1310
141 ;0
1230
16?0
1870
1P?0
1310
1230

CELL STD.
NO CELL

1004 1310
1009 1230
1014 1310
1019 1620
1024 1620
102Q 1b20
1034 1830
1039 1310
1044 1270
1049 1834
1054 16?0

Figure 5	 (c).	 (Cont)
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5:	 cl(11:1:1ti)	 ^rrCll)<.t-,	 (C:b)<-%kL(I(I:51

rrLl+(hJr	 (C	 C(t1It	 C  ^) r

j.. C,..(r'1.1r.(r„(])+ICS.' (	 11 i<.f.- >i%.(^...<-rl'^iC?....

<C Li:P>

ll.	 <Lt>^	 .

1::	 <I 1>^ .

l E:,	 <r L >CC

CO:	 <C f Y>

Figure6 (a) Serial Twos Complementer With Modules (Input. Description)
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t:"l (1 cJ=' 11:61+("11c: ^^r

Figure 6(b) Serial Twos Complementer: Module 1 Output Equations

r4	 7-- I rL1F1C^1l^(

i'E5C^-1 FT I f% t,F	 '•LC1.Lf

	

^I

	
:1=Cl^r"Jll)r

n ^= u G , ^` I

rrL =F,, rl l 	 t	 ^ i r.C
►

r. 1 .̂ .r •°3 f	 r#":fir

71	 C<-"r.:.IL.i

t="t*Cr .

Figure 6(c) Serial Twos Complementer: Module 2 Output Equations
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IDENTIFIER TABLE

NO.	 IDENTIFTEk	 K0.
1	 C"1(	 1)	 2

	

x(	 2)	 5

7	 ADD(	 1)	 d

IDENI IF IEF NC'.
X(	 I) 3

C "1(	 3) 6
ADD(	 ?) S

IDENTIFIER
	C"1(	 2)

	

x(	 3)

	

AEI)(	 3)

NPUT LIST

	

UL1	 IDENIIFIFQ

	

?	 x(	 11

	

u	 x(	 ?)

	

5	 C"1(	 3)

NET TAE3LE

NET CELL PIN CELL PIN	 CELL	 PIN	 CELL	 PIN	 CELL	 PIN
1 1400 4
2 1000 3 1002 2
3 1001 u 1000 2	 100?	 3
U 1001 3 1003 2
5 1001 2 1003 3	 1004	 2
7 1002 u

b 1003 u

9 100 14 3

I ^

CELL TAHLE

CELL STD. CELL STD. CELL SID. CFIL STC. CELL STC.
NO CELL NO CELL K 0 CELL Nn CELL NC CELL
1000 1620 1001 16?0 1002 2310 1003 2310 1004 1310

Figure 6	 (d). Module 1 Synthesis Output
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DIGITAL DESIGN LANGUAGE SYNTNESI7Ek
DESCklPTION OF NODULE -	 NCNP

IDENTIFIFk IAHLE

U 

NJ

No IDENTIFIFF NO. IDFNTIFIEk N0 IDENTIFIER
1 I( 1) 2 C O f .' P[ 1) 3 S 1( 1)
4 "1( 1) 5 Sr.( 1) 6 "2( 1)
7 T( 1) P 03( 1) 9 S( 1)

10 "4( 1) 11 XXXYYXYX( 1) 12 "5( 1)
13 C( ?) 14 C( 1) 15 C( 0)
16 XxxXxxxx( 1) 17 "6( 1) 18 xxxxxxxx( 1)
19 XXXXXXXX( 1) ?0 "7( it 21 P( 1)

22 XXXXXXXX( 1) 23 "P( 1) 24 xxxxxxxx( 1)
25 "9( 1) 26 XXXXXXXX( 1) 27 810( 1)
28 XXXXXXXX( 1) 29 "11( 1) 30 R( 6)
31 "12( 1) 32 XYXYXXxx( 1) 33 xXYxXxXx( 1)
34 ADD( 1) 35 xxxxxx)x( 1) 36 ADD( 2)

37 xxxxxxxx( 1) 36 Ar;D( 3) 39 xxxxxxxx( 1)

40 N( 1) 41 k( 2) 42 xxxxxXxX( 1)

43 xxxxxxxx( 1) 44 P,( 3) 45 xxxxxxxx( 1)

46 xxxxxxxx( 1) 47 b) 4E xxxxxxxx( 1)
49 XXXYXXXx( 1) 50 f+( 5) 51 .,Y)Xxxxx( 1)
52 XXXYXXXX( 1) 53 xxxxxxxx( 1) 54 xxxxxxxx( 1)
55 XXXYXXXX( 1) 56 x( 1) 57 x( 2)
58 x( 3)

INPUT	 LIST

NET IDFNTIFIFF
5 S„( 1)

21 Pi 1)
34 ADD( 1)
3h ACED( 2)
38 ADD( 3)

Figure 6 (e). Module 2 Synthesis Output
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Kz

NET TAF.LE

L:

11

1

f^

NET CELL PINS C F L L PIN C F L L PIN CELI PIN CELL PIN

1 2000 3 ?001 3

3 2031 4 2006 2 2002 3
u 2001 4 2011 4 2013 4 2015 u 2023 3

2031 3
5 2001 2
6 2002 4 2003 3 2005 3 2007 5 2010 3

7 2023 4 2002 2
8 2003 4 ?017 4 2021 5 2033 5 2036 5

2039 5 204? 5 2005 5
9 2030 4 2004 i^ 2003 2

10 2005 4 2013 2 2017 2 2015 3 2021 3

2033 3 2 0 36 3 2034 3 204? 3 2045 3

11 2000 3 2005 2
12 2007 6 2015 2
11 2025 4 2009 u 2007 u 2049 2

14 2027 a 2GOA 2 2006 2 2050 2

15 2029 u 2009 2 2007 2 2051 2

16 2006 3 2007 3

17 2010 4 2011 2 ?024 3 202 t+ 3 2028 3

2009 3 ?050 3 2051 3

16 2001 3 ?009 3

19 2009 5 2C. 1 0 2
20 2012 3 ?U?5 2 2627 ? 2024 2

21 2011 3 2011 5 2013 3 P013 5 2015 3

2015 5 2017 3 2017 5

22 ?011 6 2012 2

23 2014 3 2030 2

24 2013 6 2014 2

?5 2016 3 2023 2 2031 ?

26 2015 6 2016 2
27 ?01P 3 2032 2 2035 2 POP, 2 2041 2

200 0 2 20 0 P 2
28 2017 h 2016 2

?Q 2019 4 2030 3

30 204P 4 2020 2 20x1 ? 2015 2

31 2022 3 203? 3

32 2020 3 2021 4

33 2021 b 2022 2

34 2024 2
35 2024 4 2025 3

36 2026 2

37 2026 4 20?7 3

Figure	 6 -(e). (Cont)
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39 2028 4 20?9 3
40 2032 4 ?033 2 ?033	 &
41 2035 4 2036 2 2036	 14
42 2033 6 ?034 2
43 2034 3 2035 3
44 203E 4 2039 2 2039	 4
45 2036 6 ?037 2
46 2037 3 20311 3
47 2041 4 20142 2 2042	 4
48 2039 6 2040 2
49 2040 3 2041 3
50 2044 4 2045 2 2045	 4
51 2042 6 2013 2
52 2043 3 2061 3
54 2045 6 2047 2
55 2047 3 20146 3
56 20&9 14

57 2050 4
58 2051 u

40

38 202b	 2

Of:IGl" iL P:zU'r I
OF POOR QUALITY

U

r^
I

i

Figure 6 (e). (Cont)

DIGITAL DESIGN LANGUAGE SYNTHESIZER
DESCRIPTICN OF MODULE -	 NCr+P

CELL TABLE

CELL STD. CELL
NO CELL NO

2000 1310 2001
2005 1620 2006
2010 1620 2011
2015 1A70 2016
2020 1310 2021
2025 1830 2026
2030 1830 2031
2035 1030 2036
2040 1310 2041
2045 1870 2046
2050 1620 2051

STD.
CELL
1620
1310
1e70
1310
1870
1620
1830
1870
1e30
1300
1620

CELL
NO

2002
2007
2012
2017
2022
2027
2032
2037
2042
2047

STD. CELL
CELL NO
1620 2003
1640 2008
1310 2013
1870 2018
1310 2023
1830 20?6
1830 2033
1310 2038
1870 7063
1310 2018

SIC.
CELL
1620
1310
1E70
1310
1A30
1E?0
1870
1P:0
1310
1830

CELL STD.
Kn CELL

2004 1310
2009 1230
2014 1310
2019 1620
2024 1620
2029 1830
2034 131 C
2039 1870
2046 1830
2049 1620
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DIGITAL DESIGN LANGUAGE SYNTHES17ER
OVERALL CONNECTION INFORPATION

CONNECTION LIST PY	 ICENTIFIFR

IDEN11FIE.R rLTPUT IfJPUT
1 x( 1) MCMP DRIV
2 x( 2) M[ MP DRIV
3 x( 3) MC MP DRIV
4 ACO( 1) DRIV MCMP
5 ADD( 2) DRIV MC MP
6 ADD( 3) DRIV WC PAP

CON N EC71ON LIST	 BY	 CELL

DPIVER DkIVEN	 CELLS
t 1

U 1
CELL
2049

PIN
4

CELL	 PIN
1000	 3

CELL	 PIN	 CELL	 PIK CELL	 PIN
1002	 ?

2 2050 4 1001	 3 1003	 ?
3 2051 4 1001	 2 1003	 3	 1004	 ?
4 1002 4 2024	 2

U(J 5 1003 4 2026	 2
6 100 3 20P14	 2

aFigure 6	 (f). Connection Information for Module 1 and Module 2
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X(1)

X(3)

x(2)
AW(1)

ADO(2)

ADO(3)

Figure 8	 Twos Complementer Circuit Diagram With Modules

Module 1 I
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R(!)

10)
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Figure 8	 Module 2 (Cont)
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DIG17AL DESIGN LANGUAGE 31*ULAICS

1s	 <FL>u,6
--	 2s	 <Ih>S^/1

31	 <FE>1/R/5,70
Ij1	 <TR>DUT1R/TP/

5s	 40U>OUTTR/C0PF,A,3,C,T/,I/F/

6:	 <S1>
r^

_I
Figure 9 (a). Simulation Input Commands

r+
I

OIGIIAL DESIGN LAAGUAGE SIML{LATOF

0
w

TIME P	 R	 S C T	 N

0 0 000000 0 000 0 000000

2 1 000000 0 000 1
u	 1 100010 1 001 1

6	 1 110001 1 010 1
A	 1 011000 1 011 I

10 1	 101100	 1 100 1

12 1	 1 101 10	 1 101 1
14 0	 111011	 1 101 0 111011

16 1	 111011	 0 000 1

I 
20

1	 001010	 0

1	 000101	 0
001
010

1

1

22 1	 100010	 1 011 1

24 l	 110001	 1 100 1_
r̀ l
I,

26 1	 011000	 1 101 1

20 0	 101100	 1 101 0 101100

30 1	 101100	 0 000 1

(t

L^
EKD	 OF FILE	 REACMEC ON 1NPUI
SIMULATION TtPW1NATED AT TIME s	 31

Figure	 9 (b). Simulation Output
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This chapter describes an algorithm and realizing program PLASYN that

show the feasibility of automatically generating PLA realizations of much

of the combinational logic of a system described in DDL. In brief, the

description is translated to a set of Boolean equations and register transfer

statements. Then the equations to be realized with PLAs are determined, and

all other equations and register transfers are published for manual des?gn.

The equation set is partitioned to small subsets of equations that can

each be realized with the PLAs to be used. Finally, a PLA prcyram for each

sub set of equations is reduced and published. PLASYN was developed at the

University of Wisconsin [14] and is now implemented on SEL-32 at NASA-MSFC.

1

,j

5.1 SYSTEM MODEL

Figure 10 shows the digital system model assumed by PLASYN. The PLAs

are considered to provide AND array to OR array locic only. The Signetics

825100/101 16 input variable, 8 output variable and 48 product term devices

are the sort of technology assumed, but PLA parameters are not fixed to these

particular values. The following parameters charecterize the PLAs:

a

A

a - PLA input limit

PLA output limit

v - PLA product term limit

Boolean terms that are naturally realized by high fan-in

IIril.1". ri,i ,y III, rvo I i ied With  VIA-, , but they consume a great number of internal

I r•1'rJ
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AND gates, and hence some terms involving the DDL reduction operator are placed

in a separate category for manual realization. The terminals of Figure 10

are those wires in a system (1) declared to be terminals by the author

of a description,	 (2) essential control signals implied in a description,

(3)	 memory and register output leads and 	 (4) high fan-in gate

leads. All but terminals of (2) are"primary input variables" to PLAs.

Those variables of the equation set that are not terminals under this

definition are "secondary variables." While declared terminals could often

be treated as secondary variables to reduce the number of PLAs needed to

realize a system, no attempt is made to guess which declared terminals are

significant test points and which need not be physically realized.

Finally, the multiplexing of data paths preceding the flip-flops of

registers is not realized with PLAs because we believe designers prefer to

use MSI and LSI devices intended for this purpose or bus techniques.

5.2 TRANSLATION AND SYNTHESIS

PLASYN uses the output from DDLTRN as the input information for synthesis.

The synthesis process is illustrated below with an example systemn.

Figure llorovides the DDL	 description of an 8-bit magnitude multiplier.

The multiplicand resides in-the R register; the multiplier is in the B

register initially. The familiar selective add then shift algorithm is

used with partial products accumulated in the A and B registers. Equations

for COUT and SUM provide a ripple adder for forining partial products.

Equations for CCOUT and CSUM provide the "add 1" logic to form register

: n

i

d•
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Figure 12shows the multiplier after processing by DDLTRN. The first four

equations in Fi g. 12provide the state decoder on automaton register M°Y.

Internally generated variables are identified with names "integer.

Fourteen-appear in Figure 12-Five of these, "5 through "9, provide control

on register transfers. "11 through "14 provide riqht sites of transfers

to single flip-flops. The other internal equations may be thought of as

describing a multiple level hardware control of the example system. Note

that most constants (carries into the adders, clearing registers, state

assignments) have been eliminated inFig. 12 by simplifying equations

	

11	

appropriately. The exclusive-OR of MCOUNT(3) and 1 appears in the CSUM(3)

equation and an exclusive-OR with 0 appears in the SUM(8) equation.

Before partitioning equations to be realized, program PLASYN publishes

the equations and transfers with which it will not be concerned. Figure 131_

reveals that one high fan-in gate will not be realized for the example

system. An AND reduction with fan-in of 3 is involved. It would not be

unreasonable to extend DDLSYN to accept 	 such	 reductions. Two identities

were found in the equation set; clearly they do not require further synthesis.

The example system did not involve a memory; eight register transfers are

listed for synthesis by other means.

Twenty-four equations of Fig.12 remain to be considered. Four of these

equations have dimension greater than 1; the total number of variables of

concern is therefore 38. 	 Internal variables 52 *, ^4, "l, "2, "5-"9 and

"11-"14 appear on the right of published register transfers or as conditions

on those transfers	 Va ► • iahles S1, S3, "3 and "4 do not so appear and need

nut by re.rlize d vxpliritly. 	 They ,ire secondary variahles. Thus only 34

variables must be realized. This set of variables is identified by PLASYN.

L^

I
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DIGITAL DESIGN LANGUAGE SYNTHtSIZER

1

PROGRA MM ING CODE FOR

	

PLA	 2

	

COLU N h	 &AME
........................

1 MPY( 1)
2 MPY( 2)
3 @US( 1)
4 A( e)
5 "10( 1)
t+ H( is
7 START( 1)
!S k( P)
q U O1

10 F( 1)
11 "2( 1)

12 "13( 1)
13 "u( 1)
14 "3( 1)
15 "2( 1)
lb "1( 1)
17 CCUT( A)
18 SUM( A)
19	 "9(	 1)

........................

I.

xlxxxxxxxlx -------1
xxxxxxxxxll -..----1
xxxixxxilxx ----- 11-
XXXOxXxOlxx •-• --- 1-
xxxlxxxooxx ---- --1-
XXXOXXxloxx ------1-
XXAIXXxlxxx - • - •• 1--
0Oxxxxlxxxx ---- 1 ---
lOxxxlxxxxx -.-1 --- -
llxxlxxxxxx --1 .... -
IIXXOxxxxxx -1 ------
IIXIXXXxxxx 1••--• -0
0llxxxxxxxx 1-------

Figure 13: (Cont.)

lw x



PROGNAMNIN 6 CGDE	 FOR

PLA 3

COLU M N NAME

1 k( 7)

2 A( 7)
3 COW 8)
4 "2( 1)
5 CCUT( 1)
6 MLOUNI ( 2)
7 CCOUI( 3)
N MCOUNT( l)
9 Cc0U1 ( 2)

10 MCOUNI( 3)
11 1 01

12 Suv( 7)
13 CCuT( 7)
14 "14l 1)

15 CCVkA ( 2)

16 CSuN( 2)
17 000Ljl ( l )
18 CBUr( 1)
10 C9ur( 3)

_i

ORIGINAL PAGE 18
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59
e.,	 1

DIGITAL DESIGN LANGUAGE SYNTHES12ER

xxxxxxxxx01 -------1
XXXXXXXxx1G -------1
XXXXXXXOIXX - • ----1-
XXXXXXX10xY ---- - . 1-
XxxxxxXilxx ----- i--
X::XxXOlxxxx ---- 1---
xXxxxlOxxxx ---- 1---
XXXXXIIXxxx • - • 1- 0 - 0

xxxilxxxxxx • -1-- ••
-IlIxxxxxxxx 11--• ---

IIXXXXxXxxx -1------
l ^ 1XIxxxxxxxx - 1 --- • --

xllxxxxxxxx -1 ------
100xxxxxxxx 1-------
OlOxxxxxxxx I ---•---

uL^ OO1XXXXXNXX 1--••---

Figure 13:	 (Cont.)
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PLA 4

COLUMN 6ANE

1 k( b)

2 A( h)
3 C0UT( 7)
v ^( 5)

5 ^( 5)
b CLuT ( b )
7 w( 4)

P A( 4)
9 COOT( 5)

Il/ k( 3)
11 A( 3)
12 CCUT 1 )

13 SuN( b)
14 COUT( b)
15 Suw( 5)
lb C011 T( 5)
17 SIJ M ( 4 )
1A U10( 4)

19 SUM( 3)
2u CGU1( 3)

........ ................

ORIOIMAL P ,.Ct il'

OF POOR QUALITY

1
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(Cont.)Figure 13:
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PROGRAMMING CUOF FOR
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xxxxxxxxx111
xxxxxxxxxllx
xxxxxxxxxlxt

xxxxxxxxxxli
xxxxxxxxx001
xxxxx xXXX010

xxxxxxxxx100
xxxxxx111xxx
xxXxXxllxxxx
xxxxxxlxlxxx
xxxxxxxllxxx
xxxxxx001xxx
xxxxxx0loxxx
xxxxxxlooxxx
xxx111xxxxxx
xxxllxxxxxxx
xxxixlxxxxx,.
xxxxiixxxxxx
xxx001xxxxxx
xxx0loxxxxxx
xxx1001xAxxx
111xxxxxxxxx
llxxxxxxxxxx
txlxxxxxxxxx
xttxxxxxxxxx
100xxxxxxxxx
01oxxxxxxxxx
001xxxxxxxxx

t
i
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All right sides of all equations a

This form facilitates back substitution

and find the primary input variables of

infix notation here to find the primary

system

C"r

62

re converted to reverse Polish strings.

to eliminate secondary variables

each terminal variable. We :-se

input variables. For the example

"7 = P*S3 + P*"3 + P* 11 1 + P*S2 + P*114

S3 = MPY1*MPY2

"3 = S4*"10

S4 = MPY1*MPY2

"1 = MPYT*MPY2*START

S2 = MPY1*MPY2

"4 = S4*10

S4 = MPY1*MPY2

	

:.Input set of"7 = {P, MPY 1 , MPY2, 
of
	 START}

Primary input variable sets are formed and stored in DDLSYN using the cube

notation and operators of 15, Chapter 9 and Appendix 9.1]. In essence, a

binary vector is formed for each equation with a position for each possible

	

primary input variable. A 1 is used to indicate 	 membership in the

input set for the equation.

ORjC..1NA ^L PACr M

OF POOR Q'.!.'•^L if t
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5.3 PARTITIONING

Let S be the set of equations E  to be realized.

S = {E 1 ,E 29"' )

The set of primary input variables for equation E  is denoted E'. Similarly

partition block P  CS has input variable set Pi which is the union of all

E  for E i E Pj . We seek the minimum n such that:

n
LJ P. = S

1
i=1

P i n P j = 0 for i ¢ j

IP i lsu	 for lsisn

IP i 1sa	 for 1si 15 n

Where Ix I denote "size of set x". It is alsa necessary to be able to

express the equations of a partition block with no more tha., v product

terms. This condition is ignored in the following partitionin g algorithm

and has not been violated in the example systems synthesized to date.

Partitioning Algorithm:

Step I.	 Initialize i := G end S :_ {E l ,E 2 . ..}

Step 2. Find an equation E j F S for whichlE 3lis maximum.

i := i + 1

P. :_ {E.)

P i := Ej

S := S-Ej

63

63
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Step 3. Seek an equation E k E S with E k C P
i
, and maximum IEkI•

If none exists go to step 5.

Step 4. P i := P i u Ek

Pi := P i a E 

S;= S - Ek

If 
I P i i 

< u go to step 3.

Otherwise, go to step 2.

Step 5. Seek an equation E k E S for whichi pi u El is minimum and less

than or equal to a, and IE k I is maximum.

If an E  exists, go to step 4.

Otherwise, go to step 2.

On the example system and equation set, "7 is selected as the seed equation

of the first partition block since it has the largest input set.

" 7
IE	 I = 5

El l

 7	

I
J	 E	 _ {P, MPY I , MPY 2 , "10, START}

The input set of "6 is a maximum subset of this set. 	 I

" 6
E	 _ {P, MPY I , MPY 2 , START}

Variable "5 has the same input set and hence is picked as the third member

of P I . A summary of the partitioning of the example system is presented 	

I
later.	 1

^I

f,

I	 I

< Ji sue' •L
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This algorithm fails if the input set of an equation has more than a

I members.	 Such an equation cannot be realized with the 2-level	 logic of	 .

r the available PLA.	 While it may be possible to realize it in terms of

secondary variables, a simple algorithm for arriving at more suitable

intermediate variables has been developed, but not programmed and included

in PLASYN.	 While this algorithm is best implemented using the "cube"

operators of[15],	 it is stated here in terms of sets using similar notation

r
to that used to present the partitioning algorithm. 	 This algorithm should

t

be executed while finding the input sets of equations, 	 i.e.	 before partitioning.

j^

u

Input Set Partitioning Algorithm:

If	 (E
i
 I	 > a:

Step 1.	 Express E i	 in sum .-of-products form with a reduced if net minimum

L^
number of product	 7r_terms

L
E 
	 = IT 	 v n 2	 v

CWewill	 treat E 	 as a set with members n 1 ,	 n 2 ,	 ...	 in	 the following

steps.	 The set of primary input variables appearing in n^ 	 is

1 denoted nJ.

C k	 :=	 1

1

i

Step 2.	 If	 JE i 1<_a,	 replace the right side of the original 	 equation E 

with the sum ofroduct terms in set E. and exit. 	 Otherwise	 seekp	 i

k n..E/	 for which	 Id	 is minimum.	 If . -^nd j > A,	 then a	 factoring
I	 i J	 ^	 ,

algorithm such as[15,	 algorithm 11.6] must be used.	 Otherwise9

create an empty set A k .	 (The input set of A k is denoted Ak.)

I

I
LJ

"

ar
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Step 3. A  := A  u n^

Ak := Ak u n^

E	 _ E -n
i	 i	 i

Step 4. Seek a n
i
E E  for which IA'u n j l is minimum and less than or

equal to a.

If n  exists, go to step 3

Otherwise, A  provides a new terminal.

Form and enter into the data base a new variable (deno,dd v  here)

and equation:

v  = a l v a 2 v .. .

where all a i E A 

E i := E i u vk

Go to step 2.

This algorithm is not needed in the example system of this paper,, but was

found to be efficacious in other system

5.4 PLA PROGRAM FORMATION

The technique used in PLASYN to form a program table for each PLA

created by the partitioning algorithm is summarized below:

1.	 An OPT-array is formed for each equation of a partition block using an

extension of the algorithm of[15, Sec. 9.6] to eliminate secondary

variables.

J
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2. As each ON-array is completed, it is merged with previous ON-arrays

to an approximate connection array that provides all of the information

necessary to program a PLA. A product term ap pears once in this

connection array, even if it is a member of several ON-arrays.

3. All logically valid AND-to-OR connections are formed and recorded

in the connection array.

4. Redundant AND-to-OR connections are eliminated in an order that

enhances the removal of all connections to , an AND gate and hence

its elimination. Certainly true AND gate minimization is nob

guaranteed, but compute time and memory requirements are modest.

Figure 13presents the PLASYN results for the first PLA of the example

system. Neither the PLA input or product term limits are approached, but

the PLA is "full" in the sense that all output terminals are utilized.

Table 1 summarizes DDLSYN results for the example system. With'u = 8,

34 equations may not be realized with fewer than 5 PLAs, the number listed

in Table 2,

Table 3 summarizes results for a system of 117 equations. Again using

u = 8, no fewer than 15 PLAs may be used. This minimum number was not

attained by DDLSYN, because of A = 16. PLAs 7 through 10 are input limited:

they bit-slice multiplexers that drive adder-like networks. No partition

of this equation set with fewer than 18 blocks has been found by manual

means with A = 16 and u = 8.

^^ a

E^

J



f PLA

Input Set

Size

Output Set

Size

Product
Te rms

U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

18 15 13 13 12 15 15 15 15 15 16 10 10 ld 12 12 15 8

8 8 8 8 8 5 4 4 4 4 5 8 8 8 8 8 8 3

20 33 18 16 16 11 14 14 14 14 15 19 19 26 28 28 22 8

i I

1

( I 	ORIGINAL PAG'.i F-4
J	 OF POOR QUALITY	 6 a

Table 3. Summary of PLASYN Realization of the Example Multiplier.

PLA	 Input	 Output	 Product Term

Set Size	 Set Size	 Set Siza

1	 5	 8	 9	 I

I:

l

2	 11 8 13

3	 12 8 21

4	 12 8 28

5	 3 2 7

^* I

I,

Table 4. Summary of	 PLASYN Realization for a Larger Digital System.
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The automatic synthesis of much combinational logic of a digital

J	 system described in a register transfer language is feasible and cost

effective. DDL, DDLTRN and PLASYN are not necessarily optimum for practicing

designers, however. DDL does not currently provide a means for the designer

to distinguish terminals that must be realized and those that may be treated

1 ^.
as secondary. DDLTRN has very weak syntax checking at the moment. Improve-

ments to PLASYN are also possible. All reduction-selection terms could be

realized with PLAs. Total removal of constants via equation simplification

has been programmed; only additional memory is required. Factoring register

F	 transfer expressions would reduce the size and hence cost of data path

switches. Then:

Il l I A 4- 11 2 *B + 11 3*D + 11 4*D

would be realized:

II 5 _ 11 3 + 114

"l I A, 11 2*B + 115*c

The elimination of equivalent logic generated from nonidentical Boolean

expressions is possible. Finally, semiconductor manufacturers are now

providing programmable multiplexers, PLAs with registers and a variety of

PLAs with and without registers.	 A synthesizer that recognized such

components could totally automate digital system synthesis.

r. 
J%r	 „_ -	 ,
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6. LOGIC MINIMIZATION

The BEs and RTES generated by DDLIRN are not minimized. Some simpl-

ification is performed during PASS7 by combining identical conditions

on RTES, by gathering identical right hand sides of BEs into a single

occurrence and eliminating constants from the equations under the rules

of Boolean Algebra. PASS7 looks for syntatic equivalence between equ-

ations rather than the functional equivalence. As such, it 3 possible

to have two or more equations of different syntatic structures realizing

the same logic function. Hence, logic minimization is required before

entering the synthesis phase.

DDLSYN synthesizes one equation at a time. Further, it treats

an RTE to be equivalent to 3 BEs to be synthesized.	 (i.e., the con-

dition, the source expression and the destination expression). Hence,

the following discussion on minimization does not distinguish between

BEs and RTES.

A multiple-output minimization program [151 (MOMIN) mi0mizes

the equations generated by DDLTRN. Calling on MOMIN during the design

cycle is an optional feature. Since MOMIN leaves the format of the

IMLTRN nutnut files unchanged, both DDLSYN and PLASYN can utilize the

minimized se: of BEs and RTES for synthesis.

The mP!,iory requirements for the execution of MOMIN grow rapidly

with the growth of the number of variables (input and output) involved

in the set of BEs to be minimized. Hence the number of input variables

i'	
is limited to n and the number of equations in the system is limited

i	 to m. (n + m) is now set at 16.

70

^J
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The logic min i mization interface ensures that the order of each

BE is less than or equal to n and partitions the equations in the DDLTRN

output into	 partitions of m equations or less to satisfy the (n +

m) < .16 constraint. This interface also converts the equations from the

linked list structure of the DDLTRN output into the cubic structure

needed for MOMIN and reconverts them into the linked list format for

DOLSYN processing. Figure 14 shows the logic synthesis model. If a non-

modular synthesis mode is used, figure 14(a) will have just one module.

Each nxm partition is minimized by MOMIN. If enough memory is available,

n and m can be made large enough to include the complete set of equations

in the DDLTRN output in a single partition.

Sections 6.1 and 6.2 provide details of two other algorithms used

in partitioning. Section 6.3 discusses the minimization theory along with

example. The implementation details are giv(- in the Programmer's Manual.

6.1 SPLITTING AN EQUATION WITH LARGE NUMBER OF VARIABLES

To achieve the limit n, a function with a larger number cf variables

could be split into two or more subfunctions and each subfunction isJ minimized individually. These minimized subfunctions can be ORed to

	

1

i

	

	 obtain the orginal function for synthesis. The 6 variable function for

	

1	 "1 from V ure	 can be split into two subfunctions as show below:9	 P	 n

1	 1..

A* ,..P_.
J
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I
FI-Mule 1	 Module 2	 +'

Module i	 7	 Module j

External
Outputs

(a) System

nxm Logic	 I	 I nxm LogicPartition	 Partition

nxm Logic	 11;	 I nxm Logic
Partition	 Partition

(b) Module

OF POOR QUA'-

Figure 14:	 Logic Synthesis hierarchy

/*	 -

Inter
Module
Connections

_')
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"1=P*53 +P*	 3 +p*1
	 +P*52+P *"4

f l :	 4 variables-----I f- f1 . 3 variables

117

The product terms to be included in each subfunction can be picked

scanning the function left to right counting the number of variables, till

the limit isreached. An alaorithm that tends to select as many product

terms of the BE as possible still keeping the number of variables in each

subfunction -within the limit is described below:

Algorithm:	 To partition a BE into subexprPSsions of lesser order.

letn = Limit on the number of variables (i.e. order) in the subexpression.

P i (i = 1 to j) are the product terms of the original BE.

SE k is the K th subexpression.

Vk' is the SPt of variables in SEk.

i'.	 1114 , Set of v,11-i ' lliles	 in Ill .

V i is the set of variables in Pi.

lxl denotes the number of elements in set x.

Step 1:	 If 1;1 < n.	 (no partitioning is needed) stop; else, K = 1, go to

step 2.

Step 2: V k = 0, SE  = 0, If j = 0. stop else go to step 3.

Step 3: Search for a P i H = 1 to j) such that 1V i l is a maximum;

Go to Ste p 4.

0

P

V
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Step 4:	 If 1V k 1+	 1V 1 1 ' n, K - K f 1, go to ,top 2 else (ao to Step 5.

Step 5:	 V k = V kU V i , SE k = SE k U P i , BE	 = BE - P i , j=j-1,

If j=O, Stop ELSE go to Step 6.

Step 6: Compare P i	 (i = 1 to j) with V kto select a P i Such that Vi

has the most matching variables with Vk go to step 4.

This algorithm partitions the BE into k subexpressions each of order

less than or equal to n. Each ^E is minimized individually and combined

to form:

BE =ilyl,kSEi.

The algorithm assumes that each of the product terms in the BE

has less than n literals.

6.2 SUBSTITUTION TO ELIMINATE VARIABLES AND EEs

The var i able names used in the DDL description by the desiqner are

Primary Variables. The BEs corresponding to these variables are to be

realized explic i tl
y
. DDLTRN generates Secondary  Variables. These variables

are identified with "integer in DDLTRN output. Some of these secondary

variables are used either as conditions or on the right hand sides of

RTE%. T he BEs for such secondary variables need also to be realized explic-

itly. Any secondary or a primary variable that is not used as above, can

be expanded in terms of the other primary variables and thus need not be

realized explicitly.	 In figure 12, variables Sl, 53, "3 and "4 do not

appear either as conditions or on the RHS of any RTE. Hence, they can be

replaced by the other variables. For example, "7 can be expanded as

following:

1 [1

iu

74
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This section contains a detailed description of minimization of multiple

output switching functions. 	 Minimization is the process of obtaining that

expression of a switching function which is the cost of contructing the

network specified by the available switching functions.

The switching functions are specified in the form of ON and DC arrays.

Definitions of the terms and operators used in the algorithm are given in

section 6.3.1.	 A brief description of the algorithm is given in Section

l 6.3.2.	 The use of the minimization algorithm is	 illustrated by means of an

example in	 Section 6.3.3.

Details on the programming considerations are found in the programmer's

manual.

6.3.1.	 DEFINITIONS

The terms and operator used in the algorithm are defined in this section.

Examples to illustrate the definition are given.

Switching Functions

A switching	 function of	 n input	 Variables	 x l ,	 x 2 ,	 .........	
x 
	 is	 a

(}

s rule that associates every n	 tuple of these valued variables with a m tuple

U

of similar	 valued output variab:c:;	 z l ,	 z 2 ,	 .....,	 zm -

The tuples are equivalent to the product terms of a boolean equation.

Example	 l:

Consider a switching function F=AB+ABC.	 Here n=3; m= 1.	 The cube re-

f
`^ presentatign of	 F	 is as	 follows:

D11	 111

010

I001	 ;101

000 	 '_ ►̂ A

IL
	 100

1

J
do,, M
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A o-cube is defined as that cube of a switching function whose vertices

are specified by combinations of o's and I's only. If one X is included in the
{

I the combinations then the cube represented is a 1-cube.

The function F in Example 1 has one o-cube (ABC or 101) and one 1-cube

(AB or 11X).

Cover Relation

As already mentioned, X can be either 0 or 1. Cube 11X can represent

either cube 110 or cube 111, i.e., 11X 'cover' 110 and 111. 	 In other words

110 and 111 are 'included in' 11X. The cover relation in represented as
1.

110 C 11X or 111 C 11X.

Prime Implicants

The cubes of a switching function which are not covered by any other

cubes are known as the prime implicants of the function. Example 1 has

two prime implicants 11Y and 101.

Base of a Function

The base of a switching function is that set of cubes of the function

f	 in which all the variables have either a 0 or 1 value and for which the

function has a value 1.

101The base of F (example 1) is
1	 110

111

Extremal	 f
Any prime implicant that is the sole cover of a member of the base of

the function is known as an axtrerial.

The extremals of F (example 1) are AB and ABC i.e., 11X and 101.

Nonredw:ndant Covers

A nonredundant cover of a switching function is a set of prime implicants

in which no member is covered by the logical sum of two or more other members
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	f^	 Less-Than Cubes
t

(	

The prime implicants of a function are determined by comparing each cube of

	

t.	 the set with the remaining cubes and determining if that cube.is covered by

any other cube of the set. The prime implicants which are less desirable

than others in seeking a cover which needs the least number of comparisons,

are called less-than cubes.

Arrays and Array Operators

An array is a set of cubes.

Example 2:

	

L•'	 Consider the switching function of example 1.

The truth table representation of F is as follows:

	

n	 A B C	 F
U

0 0 0	 X
0 0 1	 X
0 1 0	 0
0 1	 1	 0
1 0 0	 0
1	 0	 1	 1
1	 1	 0	 1

	

a	 1	 1	 1	 1

	

D	 Types of Arrays
1-

A switching function is defined by an array called the function array

which is the set of all n cubes.

The set of cubes which cause the switching function to have a value 1

	

l'	 is referred to as the ON-array of the function.

101

	

110	 is the ON-array of F. (example 2)

	

r,	 111

L The set of cubes which make the function equal to 0 is called the

OFF-array.

	

^I	010

	

C

i	 011	 is the OFF-array of F.

	

^	 100

11

— —^^
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The set of cubes for which the function is not defined to be 0 or 1

is called the OC (Don't Care) array.

000

000	
is the DC-array of F.

ABSORB Operator A)

The Unary ABSORB operator deletes from its operand array all cubes that 	 +

are covered by othermembers of that array.

The covering cubes are found using the Co-ordinate covering relationship

given by	 bi	 I

a,C b i 	0 1 X

	0 	 E 0 E
i	 ai	 1	 0	 E	 E

	

X	 1	 0	 E	 1

i

In other words, if a and b are two n-tuples of elements a.
1
, b.

1 
E O 1 1 9 X ,

then	 a C b if (a i C b i ) = E for all n.

a	 b if (a i C b i ) _ ^ for any n.

E indicates that a i is included in b i . i.e., a i = b i or bi=X.

indicates that a i is not included in b i . i.e., a i ¢b i and b i #X.	 9

Example 3:

X
X1X

_	 0X0 

t	 00

Let the function be represented by the cube shown as shown. Let the array	 I

C represent the set of cubes.	 i

	

C = 1 001	 f
1100

1 OXO
X10

	

X11	 i

If C^ is the i th	 cube in array C and C^ is the j th coordinate in the

i th cube then



i
C 1 = 000	 ^H1 'iNP	 /9

PAt.Z tS

C2 = 100	
01 

POUR QUALITY

C 1 = -0-; C 1 = 1; C 1	 C2 =1	 21	 1— 1	 2
C does not cover C

C 1 = 000

C 3 = 0X0
1	 3	 1	 3

C 1 = C l 	C2 — C2 = e

C3 = C3	 C3 covers C 1 and C 1 may be absorbed.

Similarly, C3 does not cover C 2 , C3 covers C4 and C4 may be absorbed.

C6 covers C 5 ; C5 may be absorbed.

The absorbed C = 100
0X0
xlx

A(C) - C

Cube 1 1 nion ( ji )

If A = a l , a 2 , .....	 and B = b l , b 2 ,	 are two arrays of the

same number of variables, the union of these arrays is the ab-or•bed set

A U B.

A U B = A (A U B)	 A (	 a l , a 2	 bl, b2 , ......	 )

If A = J0001 and	 B = 0X0	 then A U B = 000	 OX01

	

Xllf	 X1X	 x11	 Xli^
OX0
xlxj

Cube Intersection ( n ) 

The cube intersection of two n-tuples a 1 and b is defined by the rules.

a n b=	 p (empty) if any a i n b i	 0

C otherwise, where C  = a 
i n bi

and the co-ordinate intersection table

bi

n 0 1 x
¢ 0

a 
	 1	 1	 1

X	 0 1 X

:1	 .^, ow
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000 0X0 = 000

i	 000 100 = X00 =
0X0 X1X = 010

X11	 X1X = X11

The intersection of two arrays A and B is

An B =	 An b1}
	 1
U ^An b21 	....

1
	 The resulting array is to be absorbed using cube union operators.

(	 Let A =	 0001	 and B = 1 0X0
1	 X1X	 l

J

The Common cubes in the two arrays are extracted and tnen absorption and cover

t
relation concepts are applied.

Array A can be expanded as

Array B is expanded as

The common cubes of A and B are

r
C	 000 n 0XC	 =	 000

X1X	 010

0001 =	 000 = 000
X1X	 O1X	 010

11X	 )11
X10	 110
X11	 111	

(repeated cubes
1010	

are removed)
110

011

111

0X0	 =	 000

O10

000
010

Sharp Product (#)

The sharp product of two cubes is defined by the co-ordinate sharp

product table and the following rules:

a # b =	 a if a n b = ^, i.e., a  # b i 	for some; (ds in cover relationship)

if a C b, i.e., a  # b  = e for all i

U (a l , 
a2, .....

, i , ....., an) otherwise where the union is
i

for all: for which a i # b i =	 ai 6	 1}

^r
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U,	 b .
i

a i ff D i 	U	 I	 A

0	 E	 E
a i	 1	 0 L E

X	 1 0 E

If X10 and 000 are two cubes

X10

	

# 000	 X10 # 000 = X10

1 ^ c

- There is nothing in common between X10 and 000.

Similarly,

X10

	

#	 X1X	 X10 # X1X =

CEE

- Cube X1X covers X10.

X1X

	

#	 010	 X1 	 # 010 = { 11X, X11 }

1 El

If A and B are Two arrays. A # B is defined as

A # B ={{... }	 {A # b I }	 # b2 } ... }	 or

A # B = { ' a I #B }L1 { a 2
# B} ... }

The first cube from array B is considered and the sharp product of that cube

with all the cubes of array A is computed. The sharp product of the resultant

array and the next cube of array B is computed. All the cubes of array B are

considered thus, one by one and the final sharp product A # B is computed. The

roles of arrays A and B may be interchanged.

SPLIT Operator (S)

For the use of a split operator a special mask cube is needed. A mask cube

is a special (n + m) tuple which has X's in all positions except one position

in which a 0 or 1 appears.
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A split operator is one which identifies and transfers to another array

all cubes of a given array that are covered by a given mask cube.

If F is a function array and pis a mask cube FS p represents the array of

cubes removed from F under mask P.

	

Let F = 101 01	 and	 u = Xo	 i.e. Only the 4 th position from the left

	

110 10	
handside of the mask cube is 0.111 01

	Then FSp =	 101 01
ill 01

Star Product (*)

A star product of cubes a and b is defined by the rules

	

a * b =	 if a. * b. 	 for more than one n.
C where C 	 =	 a  * b  # 0

X when a  * b  G 0

r,	 and the co-ordinate star product table

u	 b 

a* b	 0 1 X

	

0	 0	 0

a 
	 1	 m	 1	 1

	

X	 0 1 X

If 11X and X01 are two cubes then from the above table

11X
* XOl	 By applying the rules	 11X * X01 = 1X1

1 ^l

Similarly

	

	 X1X
	

X1X * X00 = XXO

* X00

X ^O

Consensus

The consensus of two cubes or implicants is the product term of those

variables which do not have different values in the two cubes. The variables

may not appear in both the cubes.

If ABand 3C are two implicants, it can be seen easily that B has different

values in AB and.BC. If B and B are removed the remaining variables are A and

(I
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C. Then the consensus of AB and BC is AC.	
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Similarly A is said to be the consensus of implicants AB and AB.

6.3.2. MINIMIZATION ALGORITHM

Multiple output switching functions may be treated either as many single-

output functions, or as a single many-input, many-output function. The

second approach is taken on the minimization algorithm as it leads to better

results than the first one.

The minimization algorithm followsthe six steps detailed below:

(1) A function array is formed from the input ON; and DC i array cor-

responding to each output.

(2) An array of prime implicants is formed from the function array.

a. Consensus techniques are used to find the multiple-output prime

after each '1' in the output of each cube of the function array

is replaced with an 'X' ('-' in the example). The output parts

will then

(i) Never orohibit the formation of a * orodu;t.

(ii) Keep account of the output variables to which each input

part of the cube applies, and

(iii) Prevent the loss of mu' iA ple-output prime implicants

through ahsorbinq.

b. The distinction hetween ON i and DC i entries which ,could be lost

due to this transformation is restored later b,i retaining a copy

of oe original 0;1-arrays.

c. The number oftrivial cubes formed is substantial'iy reduced by

removing all the cubes with an all O-output part at each step.

This is done by forming a mask cube with an all 0-output part,

and then removing the unuesirable cubes with the split (S) operator.

fl

L
L^
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(3) A separate array of extremals or essential	 p rime implicants is

formed.	 i

1a. The cube intersection of each of the prime implicants with the ON-

array is determined.

b. If the result A is null 	 (0 )	 then that prime implicant is discarded

because it covers	 no active members of any ONi-array.

c. If the result A is not null	 (#	 m ),	 then the external	 test is

applied to that prime 	 implicant.

d. The sharp product B of the result A with the array of prime im-

plicants except the prime implicant under consideration is determined.

e. If B is not null	 (	 0	 )	 then	 the prime	 implicant is an external

and it is included in the array of extremals.

f. All	 the prime implicants are considered one by one

(4) Non -essential	 prime implicants	 (MOMINS) are picked.

a. Even after the extraction of all	 the extremals,	 if the ON-array

is not empty a complete cover has not yet been found and a less-

than test is performed.

b. The less-than cubes are removed from the array of prime implicants.

c. Another extremal	 test is performed.

d. A branching procedure is resorted to and the prime implicant which

covers the greatest number of elements of the ON-array is picked.

e. The above prime implicant is added to the set of extremals to get

the final	 extremal	 array.

(5) A connection array is formed from the final	 extremal	 array.	 That is,

the 'X" s in the output part of the extremal 	 array are replaced by	 'l "s.

(6) Redundant connections are eliminated from the connection array.

a. One output is	 selected.

b. The cuoe	 with the selected output is extracted by applying the

I L I
v
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L
0101
0111
1000
1001
1010
1011
1101
EOFL EOF
0001
0111
1011

ll' 1111
EOF
EOF

u 0001
0110

r-^ 01 1 1
1000
1001
1010
1011
EOF
EOF

n
L^

Q

a
a

n

'	 -	 --
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split operator with a mask cube having a '1' in that output

column only.

i	

c. Each of the cubes is tested for extremals.

l.-	 d. If the result of the test is not empty then the cube is not

redundant.

1

ORICINAL PAGE 11f
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FUNCTION OUTPUT ARRAY FORMED WITH THE INPUT CUBES.
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^j ARRAYS FORMED I14 THE 	 II4TERMEDIATE STEPS.

F - AWR
1011	 111
1111	 010
10 x o	 101 `kL IVF.57. va
01 1 1	 1 1 1 QV ALI-rf
10ox	 101

M P
OOR

1101	 ion
0110	 001
X100	 000
001x	 000
iixo	 000
0001	 oil
ooxu	 000
0x00	 000

f	 I
0101	 100

l_J

Oh-AkR
01x1	 100
1x01	 1u0
10xx	 loo

'	 I 0001	 010
u x111	 010

1x11	 010
x001	 001
10xx	 001
011x	 001

U F-ARR	 WITHOUT	 ALL OS	 OUTPOT
1011	 111

010
JCI

1111
10x0	 101
0111	 111
100X	 101

1101	 100

0110	 001

0001	 011

L
0101 loo

OF	 F-APR

Il 1011	 ---l^
PI

x001	 00-
01x1	 -00

L`
0111	 ---
1X01	 -00
x111	 0-0

' 10xx	 -0-
0001	 0--
x101	 -00

11 1x11	 0-0
1	 + 01 1 x	 00-
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EXTREMAL
loxx -0-
0001 0--
011x 00•

NON•EXTREMAL
1011 ---
x001 00-
01x1 -00
0111 ---
1x01 -00
x111 0-0
1101 -00
1x11 0-0

LEFT ON
01x1 100
1101 100
x111 010
1x11 010

EXTREMAL
10xx -0-
0001 0--
011x 00-
x101 -00
1x11 0-0

NON-W NE N A L
01x1 -00
0111 -_-
x111 u-0

LEFT ON
0111 100
0111 010

w/T LESS-THAN
01x1 -00
0111 -.-
x111 0.0

ON LEFT
0111 10()
01il 010



it	
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MOMTN PICKED
0111 ---

EwARR
10xx 101
0001 011
011x 001`	
x101 too
1x11 oln
0111 111

ARRAY REPRESENTING THE SET OF MIiJIMIZED CUBES.

E-ARRAY W ROUT W EUUNDANT CONNECTIUNS
X101 100
1x11 010

f 0111 110

011x 001
10xx 101
0001 011

)



OFt1G11%:;_	 ..^4!r ..

OF POOR QUALITY

7. CON&LLSIONS

A high-level synthesis and design verification interface for an automatic

LS1 design system has been described. The output of DDLSYN is compatible with

the CADAT system input. The most si gnificant utility of the DDL system

to CADAT, is that it enables an early verification of the design and automatically

produces the net list. This would save 	 design time and cost.

The modular description simulation and synthesis capabilities

enable a true top down design methodology in the sense that the modules of a

system can be individually designed and verified. The designer thus can

associate the chip floor plan with the modules of the DDL description.

The quality of the synthesis output produced compares with that of the

manual design. Due to the finite state machine model dependency of DDL, some

extra flip-flops are introduced to realize state transitions. Only D-flip flops

are used in the synthesis. The complement output of flip-flops are not

u;.+'ized in the synthesis. Tablc 5 compares tre automatic and manual designs

for several circuits.

The designer can control the logic produced by varying the DDL description

and judicious use of IDENTIFIER and BOOLEAN declarations in the description.

However, DDLSYN tries to minimize the siiicon area required by selecting a

standard cell that realizes the majority of the BE first, followed by the

selection of other standard cells to complete the synthesis. Table 6 shows a

cost comparison of various implementation techniques.

Some sim p le logic simplification is performed by DDLTRN during its last pass.

The multiple-output logic minimization interface provides an additional logic

minimization option.

The PLA synthesis is lirrited to a portion of the combinational logic

of the DDL description.

89
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Table 5: Comoar-;son of Automat i c Desi g n to Manual Design

Circuit Extra Gates Needed For Comments

Automatic Design

A simple sequential 9 2-Input NAND Gates Duplicate subexpressions	 in RTES

circuit were not eliminated, resulting	 in

these extra gates

4 Inverters The available inverted output of
the D-Flip-Flops	 is net used by

DDLSYN.

Serial	 Twos 1	 Inverter and The DDL translator does not

Complementer 1	 3-Input AND recognize and	 eliminate all

duplicate Boolean equations.
The user may force this con-

dition to not occur by the use
of an explicit Boolean declara-

tion.

10	 Inverters Restrictions of available standar d
cells	 (only inverted output was

available so must invert to be

able	 to	 use such cell).

2	 Inverters Inverted output of the D-Flip-

Flops were not used.

Variable Timer 18 2-Input AND The finite state machine model

Circuit 5	 Inverters required by DDL can cause gates
1	 4-Input NCR to be added.
2 2-Input NOR



Table 6: Implementation Cost Comparison
for AB+CD+EF+G

	AB + CD + EF + ^S	 -	 Function to be implemented

2	 2	 2	 1	 -	 Pattern

Implementation Cells Needed No. of Devices Area	 (Mils)

1 2 2	 2 1	 2 2 2 2 1800 16 17.2

1220 4 5.8

*Total Cost 20 23.0

2 C21

22	 22 1870 8 9.6

1870 8 9.6

1220 4 5.8

Total Cost 20 25.0

3 E2 LJ 02 Ul 4 x 1220 16 23.2

1240 8 9.6

24 32.8Total Cost

* Least Cost Implementation
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