
NASA ContractorReport172516

"iICASEREPORT NO. 85-2 , _ASA_C_.-_72S16
19850010318

ICASE
WHERE ARE THE PARALLEL ALGORITHMS?

Robert G. Voigt

[IBnARVOPY

u_Q,_,RESEARCHCENTER
LIBRARY,NASA

Contract Nos. NASI-17070, NASl-17130 HAMPTON°VIRGINIA

January 1985

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton,Virginia23665

WHERE ARE THE PAILAJ_LELALGORITHMS?

Robert G. Volgt

Institute for Computer Applications in Science and Engineering

Abstract

Four paradigms that can be useful in developing parallel algorithms are

discussed. These include computational complexity analysis, changing the

order of computation, asynchronous computation, and divide and conquer. Each

is illustrated with an example from scientific computation, and it is shown

that computational complexity must be used with great care or an inefficient

algorithm may be selected.

Submittedto the 1985NationalComputerConferencefor publicationin the AFIPS NCC Proceedings

Research was supported by the National Aeronautics and Space Administra-
tion under NASA Contract Nos. NASI-17070 and NASI-17130 while the author was

in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

INTRODUCTION

Parallelism has become a major contributor to increased performance in

recent years, and it is now accepted that future supercomputers will involve

many processors working together in parallel on a single problem. This trend

has been brought about by fundamental limits on circuit switching and signal

propagation times that inhibit dramatic increases in unlprocessor speeds; it

has not been fueled by software developments that might exploit parallelism.

In fact, algorithm, programming language, and operating system development lag

the pace of hardware advances. In this brief note we will focus on

parallelism in algorithm development emphasizing floating point intensive

computations that arise in scientific computing.

There have been a number of parallel computers developed in recent years,

but the majority of these have been of SlMD type; that is, a single

instruction is applied simultaneously to a collection of operands. Even

though these machines are architecturally different from vector machines, from

an algorithmic point of view they are quite similar because it is natural to

view an SlMD machine as executing instructions with vectors as operands.

In spite of some earlier interesting research computers at universities,

we are just beginning to see machines of MIMD type where each processor may

execute its own independent instruction stream in an asynchronous fashion.

Unfortunately, few algorithms have been developed to take advantage of this

potentially powerful form of computing. Algorithm development has been

motivated by vector computers, and to a lesser extent by SIMD parallel arrays

because of their widespread availability. 1

We will discuss four techniques that can be used as guidelines in the

development of parallel algorithms. The first of these, computational

complexity, will be treated in the next section where we will show that if it

is not used with great care it can lead to the selection of the wrong

algorithm.

Three paradigms that can be useful in the development of parallel

algorithms include changing the order of computation, computing

asynchronously, and applying the dlvlde-and-conquer concept. These will be

illustrated in successive sections.

COMPUTATIONAL COMPLEXITY

Traditionally, one of the most important tools for evaluating algorithms

has been computational complexity analysis; that is, operation counts. The

fact that the fast Fourier transform of n samples requires 0(nlogn) arithmetic

operations (here and throughout, log denotes log 2) while the straightforward

approach requires 0(n 2) provides a clear choice of algorithms for serial

computers. With the advent of vector computers such as the Cray I and the

Cyber 205 with their pipellned arithmetic units, computational complexity

remained important because every operation costs some unit of time even it is

part of a vector operation. Thus for vectors of length n, an algorithm that

requires logn vector operations will not be faster for sufficiently large n

than an algorithm that requires n scalar operations since nlogn operations

must be performed. This preservation of arithmetic complexity was made

precise by the concept of consistency; 2 an algorithm is said to be consistent

if its arithmetic complexity is the same order of magnitude as that for the

best serial algorithm.

Unfortunately, computational complexity and consistency do not take into

account two important aspects of parallel computation. First, parallel

computers can support extra computation at no extra cost if the computation

can be organized properly. Second, parallel computers are subject to new

overhead costs required, for exampl_, by communication and synchronization

that are not reflected by computational complexity. We will now illustrate the

importance of these concepts by considering algorithms for the solution of the

tridiagonal system of equations Ax = b.

If we consider an LU factorization of the matrix A where L is unit lower

bidiagonal and U is upper bidlagonal, the usual algorithm is inherently

serial. Defining the ith row of these matrices as

(0,...,0,cl,al,bl,0,...,0), (0,...,0,£i,I,0,...,0), and

(0,...,0,ul,bi,0,...,0) respectively, the ith element of the diagonal of U is

given by

ui = ai - ci bi_i/Ui_l; (I)

and £1 = cl/Ui-l" The solution x is obtained by solving Ly = b, followed by

Ux = y, both of which require recursions similar to (I). The computational

complexity of the preferred algorithms is 0(n) for an nxn system.

Unfortunately, since ui depends on ui_ I, expression (i) and the other

recurrences cannot be evaluated directly in parallel, and we are forced to

consider alternatives. The most popular parallel algorithm is known as odd-

even reduction or cyclic reduction.l The idea is to eliminate the odd-

numbered variables in the even-numbered equations by performing elementary row

operations. Thus, if R(21) represents the 2ith row of the trldiagonal matrix,

n-I
the following operations can be performed in parallel for i = I,..., _ ,

4

assuming n is odd:

R(2i) - (c2i/a2i_l) * R(2i-l) - (b2i/a2i+l) * R(2i+l). (2)

After the step indicated by (2) is completed, a reordering again yields a

tridiagonal system that is only half as large. Thus, in the case that n = 2k-

I, the process may be continued for k steps until only one equation remains;

then all of the unknowns are recovered in a back substitution process. It has

been shown 2 that cyclic reduction requires 0(n) operations and is thus

consistent. Because the algorithm is consistent and because expression (2)

may be evaluated using vector operations cyclic reduction has become the

method of choice for vector computers; however, we will see that this may not

be the case for parallel computers.

It has been noted 3 that the elimination step (2) may be applied to every

equation, not just the even ones, resulting in an algorithm known as odd-even

elimination. The equations are reordered, and the elimination step is applied

again. After k steps, for n = 2k-l, a diagonal matrix remains, and the

solution may be obtained in one more step without a back substitution

process. Because the elimination step is applied to every equation for logn

steps, 0(nlogn) arithmetic operations are required. Thus, the algorithm is not

consistent and is not a competitor on serial or vector computers.

The situation is different on parallel computers. It is possible to

organize the computation so that the extra work at each step does not require

extra time; thus both odd-even reduction and odd-even elimination require log

n steps. However, odd-even reduction requires a back substitution phase

involving another log n steps; this phase is not required in odd-even

elimintion. Thus odd-even elimination has been shown to be superior on some

parallel computers. 4'5

Another potential advantage for odd-even elimination is that data

movement potentially required by the back substitution phase is unnecessary.

This can reduce the communication requirements imposed by some parallel

architectures.

Thus, we have seen that good parallel algorithms can be ignored if one

relies solely on computational complexity as a guideline. In particular, we

must look for ways to perform extra computation in parallel if it will result

in a reduction in the number of steps required or in the amount of

communication.

ORDER OF COMP_ATION

The concept of changing the order of computation, or of reordering, may

be viewed as restructuring the computational domain and/or the sequence of

operations in order to increase the percentage of the computation that can be

done in parallel. For example, we will see that in solving partial

differential equations dlscretized over a grid the order in which the nodes of

the grid are numbered may increase or decrease the parallelism of the

algorithm to be used. An analogous example is the reordering of the rows and

columns of a matrix to create independent submatrices that may be processed in

parallel. In fact we have already seen how reordering a matrix can be

beneficial, for the odd-even reduction algorithm depends on reordering the

equations between steps in order to preserve the parallelism.

6

A crucial step in solving a partial differential equation dlscretlzed on

a grid of points representing the domain of interest is selecting the order in

which the points will be processed. For example, if the points in Figure I

are numbered left to right, top to bottom, the resulting linear system will

have no particular structure other than being banded. On serial computers,

finding orderlngs that reduce the bandwidth is important because a smaller

bandwidth means fewer arithmetic operations are required to solve the

system. Other goals such as numbering the points in order to increase the

degree of parallelism may be more important on parallel computers.

0

Figure 1. Domain of Points

An ordering known as substructuring 6 has been used by structural

engineers in order to decouple structures that are connected by relatively few

points. The technique can also be used to introduce parallelism into the

system. Conceptually, the situation is depicted in Figure I, in which the

circle points represent interface nodes between the two regions. The nodes in

the region may be numbered in any appropriate order, but the interface points

are numbered last. This gives rise to a block matrix of the form

I A1 Cl 1

A2 C2

D1 D2 B

where the A matrices represent the two substructures, the B matrix represents

the interface points, and the C and D matrices represent the dependencies

between the interface nodes and the two regions. The A matrices may be

factored in parallel, and then steps of the form B - DIA_Ic i are used
to

eliminate the off-diagonal blocks. Finally, the modified B matrix is factored

and the solution is obtained in a back substitution process. This technique

may be generalized to any number of substructures; the interface nodes must

simply separate the structure. However, as the number of substructures

increases the size and the complexity of the B matrix also increase providing

the algorithm designer with an interesting dilemma. This situation has been

studied using a three-dlmenslonal cube as a model. 7 Formulas were obtained to

help in the selection of the number of substructures so that the work involved

in factoring the modified B matrix will not dominate all other computation.

Although this example involved the direct solution of the linear system,

examples of reordering for parallelism exist for iterative methods also. 1 The

challenge is to find orderlngs that increase the degree of parallelism without

increasing the arithmetic and communication complexity of some other aspect of

the problem.

ASYNCHRONOUSCOMPUTATION

Synchronizationof computers of MIMD type is used primarily in two

situations. In the first, a value such as a sum must be computedfrom values

in some subset of the processorsbefore the computationcan continue. In the

second, synchronizationis used to guaranteea specific order of computation

in order to reproducethe behaviorof a traditionalsequentialalgorithm.

Dependingon the hardwareand softwareof the system,synchronlzatlonmay

be an expensive overhead. For example, several synchronizationtechniques

were studiedon the C.mmp computersystem, and the cost varied by a factor of

15 with some requiringas much as 30 milliseconds.8 Anothermore subtle cost

of synchronization is poor processor utilization. Since typically all

processorswill not reach a synchronizationpoint at the same time, those that

arrive before otherswill be idle until all are ready to proceed.

Thus we would llke to consider algorithms that reduce the frequencyof

synchronization. Fortunately, there are situations in which the

synchronizationrequired by the computation of a value 4ependent on other

values distributed throughout the system, or required to mimic sequential

behavior,may be eliminatedby modifyingthe algorithm. The Jacobl iterative

procedure for approximatingthe solution of a partial differentialequation

discretlzed on a grid requires computing a weighted average of values at

neighboringgrid points in order to update the approximationat a given grid

point. A typicalcalculationis of the form

Up = _ uN

for the north, south, east, and west neighbors of the point P. Clearly, this

algorithm requires synchronization if the u values are being updated by

individual processors in a parallel system. However, the algorithm may be

modified so that (3) is not forced to use values from the kth iterate. This

was the motivation for the pioneering work on chaotic relaxatlon 9 and for

later studles I0. In its simplest form chaotic or asynchronous iteration can

be expressed as

k+l I / k-iN+l k-ls+l k-iE+l k-iw+l)Up = _ _uN + us + uE + uw (4)

where iN, iS, iE, and iW are non-negatlve integers that may vary with k and

P. In words, the algorithm suggested by (4) would have each processor use

whatever values were available to compute the next value of the iterate at a

given point regardless of which iterate those values were from. Obviously

more sophisticated iteratlve schemes may be adapted to this form of

computation.

The properties of asynchronous iteratlve methods are not well

understood. Some theoretical work indicates that the methods will converge

under conditions that guarantee the convergence of the corresponding

sequential method if the values used on the right side of (4) are from new

iterates sufficiently often.9, I0 Unfortunately, as with most iterative

methods, the convergence results are asymptotic and do not provide much

insight on the observed rate of convergence. Some experimental studies on

C.mmp comparing the performance of various asynchronous methods with some

sequential ones indicate that the asynchronous methods perform well; I0

however, the sequential methods chosen were not among the best available.

I0

In addition to performance, two aspects of asynchronous iteratlve methods

that require further study include convergence criteria and debugging

techniques. Traditional convergence criteria require the computation of a

value involving the sum of all solution approximations from the same iterate;

at best this requires periodic synchronization, and at worst it may not be

posslble because different approximations may be on dramatically different

iterates. The difficulty with debugging asynchronous programs is that the

values produced by the program may not be reproducible because the order of

computation may change. This makes isolating errors very difficult.

DIVIDE AND CONQUER

The divide-and-conquer paradigm involves breaking a problem up into

smaller subproblems which may be treated independently. Frequently, the

degree of independence is a measure of the effectiveness of the algorithm, for

it determines the amount and frequency of communication and synchronization.

It is very natural to apply the dlvlde-and-conquer idea to the solution

of differential equations by iteratlve methods. In Figure I the region could

be divided between two processors with the squares in one and triangles in the

other. An algorithm is executed in each processor independently, but

periodically information contained at the interface points indicated by the

circles must be communicated. Depending on the algorithm, synchronization may

be required, but the techniques discussed in the previous section may be used

so that the algorithms in the separate processors use whatever data are

available rather than waiting for synchronization.

II

Clearly this idea may be extended to large two- and three-dimensional

regions. One of the advantages the technique provides is that, in general,

the region may be subdivided to fit the number of processors.

Use of the paradigm also creates opportunities to balance the

communication that is required among the various subpieces of the problem.

For example, if the processor responsible for the square pieces of the region

in Figure i updates values of the solution in a left-to-rlght, top-to-bottom

order, then the values at the circled points will be available at different

times. On some computer systems the communication of these values could be

overlapped with computation. On the other hand, if the order of computation

is top-to-bottom, left-to-rlght, then the values at the circled points will be

available at essentially the same time but not until the end of the

computation. It would be much more difficult to overlap the required

communication on most computer systems.

12

REFERENCES

I. Ortega, J. and R. Volgt. "Solution of Partial Differential Equations on

Vector and Parallel Computers." NASA CR 172500, ICASE Report No. 85-1

2. Lambiotte, J. Jr. and R. Voigt. "The Solution of Trldlagonal Linear

Systems on the CDC STAR-100 Computer." ACM Transactions on Mathematical

Software, 1 (1975), pp. 308-329.

3. Heller, D. "Some Aspects of the Cyllc Reduction Algorithm for Block

Tridlagonal Linear Systems." SlAM Journal on Numerical Analysis, 13

(1976), pp. 484-496.

4. Gannon_ D. and J. Panetta. "Restructuring SIMPLE for the CHiP

Architecture." Parallel Computing, 2 (1985), to appear.

5. Kapur, R. and J. Browne. "Techniques for Solving Block Tridlagonal Linear

Systems on Reconflgurable Array Computers." SlAM Journal on Scientific

and Statistical Computing, 5 (1984), pp. 701-719.

6. Noor, A., H. Kamel, and R. Fulton. "Substructurlng Techniques - Status

and Projections." Computers and Structures, 8 (1978), pp. 621-632.

7. Adams, L. and R. Volgt. "A Methodology for Exploiting Parallelism in the

Finite Element Process." In J. Kowalik (ed.), High Speed Computation.

Berlin: Sprlnger-Verlag, 1984.

13

8. Olelnick, P. and S. Fuller. "The Implementation of a Parallel Algorithm

on C.mmp." Department of Computer Science Report No. CMU-CS-78-125,

Carnegle-Mellon University, 1978.

9. Chazan, D. and W. Miranker. "Chaotic Relaxation." Journal of Linear

Algebra and Its Applications, 2 (1969), pp. 199-222.

I0. Baudet, G. "Asynchronous Iteratlve Methods for Multlprocessors."

Journal of ACM, 25 (1978), pp. 226-244.

1. ReportNo. NASA CR-172516 2. GovernmentAcce_ionNo. 3. Recipient'$CatalogNo.
ICASE Report No. 85-2

4. Title and Subtitle 5. Report Date

WHERE ARE THE PARALLEL ALGORITHMS? January 1985

6. Performing Organization Code

7. Author(s) 8. Performing Organlzation Report No.

Robert G. Volgt 85-2

10. Woqk Unit No.

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering 11. Contract or Grant No.

Mall Stop 132C, NASA Langley Research Center NASI-17070, NASI-17130

Hampton, VA 23665 13. Typeof ReportandPeriodCovered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration 14 SponsoringAgencyCode

Washington, D.C. 20546 505-31-83-01

15. Supplementary Notes

Langley Technical Monitor: J. C. South, Jr.
Final Report

16. Abstract

Four paradigms that can be useful in developing parallel algorithms are
discussed. These include computational complexity analysis, changing the order of

computation, asynchronous computation, and divide and conquer. Each is illustrated

with an example from scientific computation, and it is shown that computational

complexity must be used with great care or an inefficient algorithm may be selected.

i

17. Key Words(Suggested by Author(s)) 18. Distribution Statement

parameter processing, 59 - Mathematics in Computer Science

computational complexity, cyclic 64 - Numerical Analysis

reduction, asynchronous iteration Unclassified - Unlimited

19. SecurityOassif.(ofthisreport) 20. SecurityClassif.(ofthis_ge) 21, No. of Page_ 22, Dice
Unclassified Unclassified 15 A02

For sale by lhe NationalTechnical InformationService,Springfield. Virginia 22161 NASA-Langley,1985

