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Abstract

The fluctuating field of a jet excited by transient mass injection is

simulated numerically. The model is developed by expanding the state vector

as a mean state plus a fluctuating state. Nonlinear terms are not neglected,

and the effect of nonlinearity is studied. A high order numerical method is

used to compute the solution. The results show a significant spectral

broadening in the flow field due to the nonlinearity. In addition, large

scale structures are broken down into smaller scales.
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Introduction

This paper deals with a numerical model to simulate a nonlinear inviscid

acoustic disturbance in an axisymmetric compressible jet. It also extends

previous work on linear acoustic forcing of a jet [I], [2]. Although a true

simulation of jet noise should include viscous and three-dimenslonal effects,

the nonlinear effects that we have computed are qualitatively in agreement

with observations. These effects include a broadening of the spectrum of the

fluctuating field, the breakup of large scale structures and a slowing down of

vortex motion. The results show that these effects can be accounted for by

nonlinear axisymmetric inviscid interactions.

The method is based on a solution of the Euler equations for homentropic

flow in cylindrical coordinates. The jet is excited by transient mass

injection. The equations are formulated and solved in conservation form for

the fluctuating field, even though we have only computed smooth solutions. In

Section 2 we formulate the physical model. In Section 3 we briefly outline

the numerical scheme. An extensive description of this scheme can be found in

[I]. Numerical results are presented in Section 4, and we discuss some

conclusions in Section 5. A preliminary version of these results was

presented at the Eighth International Conference on Numerical Methods in Fluid

Dynamics (Aachen, 1980 [3]).

2. Physical Model

We consider the Euler equations for a homentropic axlsymmetrlc jet in

cylindrical coordinates. The jet is forced by transient, point mass

injection. The source strength is scaled by a parameter € and the state
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vector W = (p,p,u,v) is expanded as a mean state plus a fluctuating state of

order €. Here p is the pressure, p the density and u and v are the

axial and radial velocity components respectively.

The solution is expanded in the form P = P0 + cp, etc. where the mean

state (with subscript "0") is assumed to satisfy the unforced Euler equations.

The variables (p,p,u,v) will represent the fluctuating field in response to

the jet forcing. New variables m = (P0 + _p)u and n = (P0 + _p)v are

introduced for simplicity. With cylindrical spatial coordinates z (axial) and

r (radial), the Euler equations for the fluctuating field become

(PV0+P0v )
Pt + IPU0+P0U)z + (PV0+P0V)r + r - M

+ Im(V0+cV))r + Pz + nU0; _ mV0; gnu _ cMu (I)mt + (m(U0+sU))z r r r

+ In(V0+gV))r + Pr + mU0; _ gn____v= cMvnt + In(U0+_U))z z - nV0;z r '

where the subscript r and z stand for differentiation in these variables.

In the development of system (I) one assumes that the derivatives of the

mean pressure and density in space can be neglected. This is a consequence of

the full Euler equations with a source of mass injection and of the expansion

into mean and fluctuating states. The source is cM (units density/time).

The mean velocities U0 and V0 are taken from measurements of a spreading

jet. The system is solved in a cylindrical rectangle including a semi-

infinite pipe from which the jet exits. The computational domain is

illustrated in Figure I.

The use of the quasi-momentum variables m and n gives a system for

which the fluctuating field can be computed directly rather than as a small
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part of the total field. In addition, the linear limit can be recovered by

simply setting € = 0 in (I). The nonlinear terms are explicitly exhibited.

The fluctuating pressure p is obtained from the density p by the

homentropic relation

= A_Y = P011 + € 0___)Y (2)
P0 '

where y = 1.4 in air.

A fundamental assumption entering into the derivation of (I) is that the

mean state is a solution to the unforced Euler equations. This is not true

for a state determined from experimental measurements. Numerical experiments

have verified, however, that the qualitative features of the fluctuating

solution are insensitive to small changes in the mean state; thus we believe

that the solution to (I) qualitatively represents the fluctuating field in

response to a given source. The use of an experimentally determined meanflow

has the advantage that some phenomena not completely governed by the Invlscid

equations is included in the model.

The source is assumed to be a delta function in space (modelled by a

sharp Gausslan) with a pulse-llke time dependence. The source location, zs,

is on the jet centerllne approximately 1.2 jet diameters downstream of the

nozzle exit. Specifically,

M(t,z,r) = f(t)6(r 2 + (z - Zs)2), (3)

where the function f(t) is

f(t) = e-(at2+bt-2), (4)
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for suitable constants a and b. The use of (4) permits the investigation

of a broad band spectrum.

The fluctuating field described by (I) reduces to the acoustic field for

large distances. The near field and flow field are dominated by instability

waves which are generated because the mean flow is linearly unstable. The

pulse is assumed to dominate the natural sources of jet noise. These natural

sources are both the linear and nonlinear terms in (I). In a real jet these

terms are determined from the turbulent fluctuations whereas in the numerical

model these natural sources are excited by the pulse. The important physical

effect is the generation of packets of instability waves in the flow. Large

scale structures which are related to mean flow instabilities have been

observed experimentally in both forced and unforced jets ([4], [5]). These

structures interact with and modify the resulting acoustic fields. The model

permits this interaction to be studied in both the linear (_ = 0) and

nonlinear (€ _ 0) regimes. Calculations with the linear model and comparison

with experiments are described in [I] and [2].

3. Numerical Model

In this section we discuss the numerical scheme. The discussion will be

brief with the intention of making the paper self-contained. A more complete

discussion can be found in [I].

A numerical simulation of (I), requires the solution to be accurately

computed over large length scales. This necessitates the use of high order

accurate dlscretlzatlons. The system can be written in the form

wt + F + G = H, (5)z r



-5-

where w is the vector (p,m,n) and F, G, and H are the appropriate vector

functions. Equation (5) is split into two one-dlmenslonal operators

corresponding to the z and r directions. Each one-dlmenslonal system is

integrated by using a fourth-order version of the MacCormack scheme [6]

At (_7Fi + _ ) + At_l_n+l = w[ + _-_ 8Fi+ 1 Fi+ 2

(6)

n+l I (w_n+l+ wl + At - 8_i I + ) + AtHI )'wi = _ _ (7_1 - _i-2

together with a symmetric variant interchanging forward and backward

differences (H1 is obtained from some splitting of H). Typical grids

require of the order of 40,000 grid points over distances of the order of 50

jet diameters in all directions. Our experience has been that for problems of

this size, second-order schemes are not sufficient to obtain accurate

solutions using a reasonable amount of computer resources. The explicit

scheme (6) naturally lends itself to vectorlzation and has been implemented on

the CDC Cyber-203 with great efficlencles.

In addition, it is necessary to impose boundary conditions which

accurately simulate outgoing radiation at the far field boundaries. A family

of radiation boundary conditions has been developed which provide increasingly

accurate approximations to outgoing radiation. The leading member of this

family is

+ p C_- L + __ = O, (7)Pt

where c is the ambient sound speed and p_ the ambient density [I]. Here

d2 = r2 + z2 and u is the outgoing radial velocity based on a spherical

coordinate system near the source.
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System (I) includes terms proportional to r-I. This singularity at the

axis is resolved using L'Hospltal's rule and including these terms in the flux

vector G when r = 0. In addition, it is necessary to modify the difference

formula (6) at boundaries. This is accomplished by introducing fictitious

grid points outside of the computational domain and using a thlrd-order

extrapolation of the flux function (F or G). This approach was found to be

the most readily vectorizable. It has been verified that the resulting scheme

is fourth-order accurate.

4. Results

We next describe results illustrating the effect of the nonlinear terms

on the fluctuating field. In Figures 2, 3 and 4 the fluctuating pressure is

shown as a function of axial location z/D (D is the jet diameter) and non-

dimensional time tc /D for three different radial positions and for

= 0.00 and € = 0.05. All figures show an acoustic wave (speed of sound

normalized to unity) in the downstream direction trailed by several much

larger waves. These are instability waves which travel with a speed of

approximately .7Uj where Uj = .66c is the jet exit velocity. A series of

acoustic ripples can also be seen propagating upstream. These are due to

diffraction of the upstream acoustic wave by the nozzle llp.

The figures indicate that the nonlinear terms have little effect on the

primary acoustic pulse and on the acoustic diffraction from the nozzle lip.

The nonlinearity has a pronounced effect on the instability waves. Increasing

the nonlinearity causes these predominantly large scale structures to break up

into smaller scale structures. This can be seen in both the additional

ripples which trail the instability waves and a sharpening of the individual
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pulses indicating an enhanced high frequency content. It is also evident that

for increasing r/D, these smaller scale structures are comparable in amplitude

to the primary instability waves. We observe that the structure of the linear

solution changes gradually as r/D increases, whereas the nonlinear solution

is much more sensitive to the radial position, with the most pronounced

effects on the jet centerllne.

In Figure 5 the fluctuating pressure at a point in the flow is plotted as

a function of tc /D for three different values of E. It is apparent that

the acoustic wave (earliest arrival) is completely unaffected by the

nonlinearity. The later arrival (instability wave) is significantly affected.

For a weak nonlinearity (_ = 0.025) the waveform is not changed but the

large negative peak is sharpened and enhanced at the expense of the other

peaks. For a large nonlinearity (_ = 0.05) there is a pronounced breakdown

of the waveform indicating a generation of smaller scale structures.

In Figure 6, the fluctuating vortlclty is shown for three different

values of € at an early time (te /D = I0). The intense vortices

correspond to the instability waves. Increasing _ causes the vortlcity to

concentrate near the jet centerline. This is consistent with observations in

real jets downstream of the potential core. Increasing the nonlinearity also

tends to reduce the convective speed of the vortices. Thus the trailing

vortices catch up with the leading vortices. In Figure 7 the fluctuating

vortlcity is shown for a later time (tc /D = 30) where there is a residual

shedding of vorticlty from the nozzle lip. A possible pairing of vortices can

be observed. True vortex merging, which has been observed experimentally [7]

depends heavily on viscosity as well as nonlinearity and is not simulated in

this model.
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In Figures 8a-8c the normalized power spectral densities (PSD) for the

fluctuating axial velocity are plotted as a function of Helmholtz number

fD/Uj, where f is the frequency, for _ = 0.0 and _ = 0.05. The figures

are taken at a fixed axial location (z/D = 7.3) and for three different

radial locations. The figures clearly indicate a shift into higher

frequencies and an overall broadening of the spectra. The PSD for the

nonlinear case is highly sensitive to radial position, again indicating a

breakdown of the fluctuating field into smaller scales.

In Figures 9a and 9b the PSD for the fluctuating pressure is shown for

two farfield angles. The data at 8 = 27.8° from the jet axis clearly

exhibits a spectral broadening and thus indicates that nonlinear effects can

be transmitted to the farfleld. In Figure 9b the results are shown at

8 = 90°. There is virtually no effect of the nonlinearity at higher

angles. For the linear case, we have found that the acoustic field resulting

from the large scale structures mostly affects angles around 30° (see [I]) and

we believe that the nonlinear effects in Figure 9a are due to the breakdown of

the large scale structures in the near field.

5. Discussion

The fundamental difference between the nonlinear and linear computations

is the breakdown of the large scale structures into smaller scale structures

in the nonlinear case. This is associated with a transfer of energy into

higher frequencies or equivalently a broadening of the spectral content of the

fluctuating field. It is also illustrated by the increased interaction

between the different vortices. In real jets this is a fundamental step in

the transition to fully-developed turbulence. The results clearly indicate
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that at least the initial stages of this energy cascade into smaller scales

can be simulated just by the nonlinear terms of an axlsymmetrlc and inviscld

calculation.

In previous papers (see [I], [2]) the authors have demonstrated a close

connection between the far field acoustic pressure and near field large scale

structures (instability waves). The present results (in particular, Figure

9a) demonstrate that the far field spectrum can also be sensitive to

nonlinearities which predominate in the near field. These results demonstrate

that far field jet acoustic phenomena are inextricably connected to the fluid

dynamics of the jet. Therefore, in order to analyze and interpret jet

acoustic phenomena it may be necessary to employ the full nonlinear equations

of fluid dynamics.

In [I], [2] the authors demonstrated that a fourth-order accurate scheme

was necessary in order to compute the acoustic far field. This was because

the solution had to be computed over many wavelengths. The computations would

not have been feasible with a second-order scheme. The solution of the

nonlinear equations requires still more resolution because of the generation

of smaller scale fluctuations by the nonlinear terms. The computational

difficulties in this problem are typical of many other problems involving wave

propagation, reflection, and interactions (e.g., elastodynamlcs,

electromagnetism, and general acoustic phenomena). The results indicate that

higher order schemes are essential for the effective computation of a wide

variety of wave phenbmena.
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