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SUMMARY

The T700/CT7 engine is a front drive turboshaft or turboprop engine (Figure 1)
in the 1500-1800 shp (1120 -1340 kW) class as currently configured with high-
power core flows of about 10 Ib/sec (4.5 kg/sec). It employs a straight-through
annular combustion system (Figure 3A) less than 5 in. (12.5 cm) in length
utilizing a machined ring film cooled construction and twelve low-pressure air
blast fuel injectors. Commercial and Naval versions employ two 0.5 Joule
capacitive discharge surface gap igniters.

The combustor employs a primary zone which responds to aromatics fractions
carried in the fuel in terms of smoke and flame radiation. The primary zone was
developed to provide a balanced trade-off between acceptable cold day ignition
and non-visible smoke. In-as-much as smoke requirements are relatively relaxed
for small diameter plumes, the primary zone stoichiometry for this application is
richer than that found in larger engine applications.

T700 DESIGN

INLET PARTICLE
SEPARATOR

CONTROLS & ACCESSORIES
TOP MOUNTED THROUGH-FLOW

ANNULAR
COMBUSTOR

RUGGED
AXI-CENTRIFUGAL
COMPRESSOR

SELF-CONTAINED
LUBE SYSTEM

AIR-COOLED
GAS GENERATOR
TURBINE

UNCOOLED
POWER TURBINE

Figure 1. T700 Engine Cross Section



The three combustor concepts selected in Phase I were built and tested on JP-5 ,
#2 Diesel, and the two NASA ERBS fuels (12.8, and 11.8). They were evaluated
with respect to:

*Smoke
*Metal Temperatures
*Profile and Pattern Factor Effects
*Gaseous Emissions (Carbon Monoxide, Unburned Hydrocarbons, and
Oxides of Nitrogen)

* Complexity and Manufacturability

The DFIC Combustor was selected on the basis of superior test results to
undergo final parametric evaluation including:

*Profile and Pattern factor
*Smoke
*Metal Temperatures
*Gaseous Emissions
*Idle Efficiency
*Overspeed Protection LBO Performance
*Lightoff/LBO Performance

The effort performed in Phase II of this program applies only to a T700/CT7
engine family type combustor functioning in the engine as defined and does not
necessarily apply to other cycles or combustors of differing stoichiometry. The
program was not extended to any of the fuel delivery accessories such as pumps
or control systems, nor was there any investigation of potential systems problems
which might arise as a consequence of abnormal properties such as density which
might affect fuel schedules or aromatics content which might affect fuel system
seals.

INTRODUCTION

Phase II of the Fuel Property Effects - Small Combustors program was carried
out to evaluate the combustor designs recommended in Phase I by means of
testing actual hardware.

The three combustor concepts recommended in Phase I were designed to offset
the effects of low hydrogen, high aromatic fuels. Two effects were identified in
Phase I as being major problems - excessive smoke and excessive metal
temperatures.

Broad Specification Fuels

Table 1 shows the specifications of the three broad-spec fuels evaluated in this
program. Two of the fuels are ERBS blends - ERBS 11.8 and ERBS Jet Fuel
(12.8). ERBS 12.8 represents a likely jet fuel product from a synfuels process



TABLE 1
Broad Spec Fuel Properties

Spool I'ic.-i I ions K H H S 1 2 . K

Composition:

Hydrogen, wl'i, 12.64
Aromntios, vol'i 29.8
S u l f u r , Metvap tnn , wt'(. *0.003, max
Nitrogen, Tota l , wt'(.
Naplhalciic.s. vol'i. * i : i . inin
UyilruuiirUuM ooiiipositiuiinl

iiiidlysis

Vola t i l i ty :

Distillation Temperature, °F
In i t i a l boiling point
10 Percent
50 Percent
90 PCrocnt
Fii i i i l boiling point

Residue, percent
Loss, percent
Flashpoint, °F
Gravity, API (60°F)
Grav i ty , Specific ( G O / G U ° 1 " )

Fluidity:

Freezing point, °F -50
Viscosity, @ -10°F, CS 6.58
Viscosity, @ +80°F, CS *2-3

Combustion:

Lower Heating Vuluc, Btu/ lb 18,160

Thermal Stability:

JFTOT, breakpoint temperature, °F 492
(TDK, 13 max; and p, 25 mm)

•Proposed vnluc , not actually lusted

•• Deviates from oripnal spec

» 2 Diesel

N A S A

13.01

318
3G-I
417
520
598

12C

.S423

394
430
514
604

162

.8514

-5 (Pour Pt.)

18,311

489

E R R S 11.8

11.64
481

22.95%

245
301
421
584
G14

104

•.863 ± .002

-45
14.34**
•2-3

17,870

410 min'
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Figure 2. Fuel Aromatics vs Hydrogen Content

such as shale oil or solvent refined coal. ERBS 11.8 (11.8% hydrogen by
weight) represents a worst case broad spec fuel. Number 2 Diesel was chosen
for the third fuel for several reasons. One is that it represents a very likely
real world substitute for JP5. The other is that it may show up secondary fuel
effects from characteristics other than % hydrogen. These characteristics would
be higher boiling range and lower thermal stability.

The ERBS fuels differ from common JP fuels and JET-A in that they have a very
high aromatic content (up to 48% for ERBS 11.8) and therefore lower hydrogen.
For common refinery-run fuels, hydrogen content correlates directly with %
aromatics as shown in Figure 2. The ERBS fuels also have a higher density and
a lower heating value per pound than JP5 or JET-A as well as a higher volatility
and end point. The low hydrogen/high aromatics are known to produce high
particle content in flames causing additional smoke and radiant luminosity or heat
flux which creates abnormal increases in operating temperature of the combustor
walls.

No. 2 Diesel has a slightly higher hydrogen content than the ERBS Jet Fuel but
is still lower than JP5. Total aromatics are higher than ERBS 11.8, but
naphthalenes are kept very low due to their adverse effect on Cetane Index.
Naphthalenes have proven to have a more dramatic impact on smoke than
monocyclic aromatics. Diesel fuel also has a higher boiling range, lower thermal
stability, and higher viscosity than JP5 or JET-A. These properties may affect
atomization quality and increase the tendency of the fuel to pyrolize before
burning. This will also increase smoke and carbon deposition.

Motivation

The need for this type of program was created from the worldwide energy crisis
that began in the early 1970s. High quality aircraft fuels have been
traditionally derived from petroleum feed stocks. Limited and dwindling



worldwide reserves of crude petroleum have driven prices up and has placed an
upper limit on availability of certain distillates.

A number of approaches are available to relieve the problem in both the short
and long term.

o Conservation - The most immediate solution is to reduce fuel use. In the
short run, fewer domestic flights and flying with higher load factors make
better use of existing aviation fuel supplies. In the long run, introduction of
growth and new engine designs which are more fuel efficient plus introduction
of airframes with lower drag can make potentially vast improvements in both
usage rates and cost per passenger mile.

In parallel, it is possible to automate flight profiles for minimum fuel
consumption through use of microprocessors.

o Broadening of Aircraft Fuel Specifications - This is a way of increasing the
yield of aircraft quality fuel from a given amount of feedstock. A number of
programs have been underway for the last few years to determine the impact
of wider fuel specifications on aircraft engines and their components,
particularly the combustor.

In general, it has been shown that, when using broad specification fuels, a
potential exists for reduced combustor life, narrower starting envelopes,
increases in smoke and gaseous pollutants, poor thermal stability, and a
greater tendency to foul the fuel handling systems.

o Derivation of Nonpetroleum Fuels - Fuel grade hydrocarbons can be derived
from sources such as shale, tar sand, and coal which are available from huge
deposits in North America. As these resources are exploited, broader fuel
specifications may become necessary especially if the fuel is obtained from coal.
The purpose of this program is to evaluate newer combustor designs in small
engines to minimize or eliminate some of the problems of broadened fuel
specification.

COMBUSTOR DESIGN DESCRIPTION

The baseline combustor for this program is the CT7 combustor used in Naval and
commercial applications. A cross section of this combustor is shown in Figure 3A
and a photograph is shown in Figure 3B. The combustor is a full annular
machined ring design with demonstrated low smoke and 5000 life on JP5 or
JET-A. Predicted smoke characteristics of the T700 combustor from Phase I
analysis are shown in Figure 4. Phase I of this program predicted a 0.2:1 life
ratio reduction on ERBS 11.8 and an increase in smoke number from 28 to 50.
The objective of the new combustors is to achieve metal temperatures and smoke
levels of the baseline combustor with JP5 on ERBS 11.8.
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Figure 3A. Baseline T700 Primerless Combustor Cross Section

Figure 3B. Baseline Combustor With Thermocouples Installed
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Figure 4. T700 Engine Smoke Characteristics Predicted In Phase I

The three new concepts evaluated include the following features:

o Advanced fuel injectors
o Advanced liner cooling techniques
o Combustor airflow redistribution
o Variable geometry swirlers
o Staged combustion (sector burning)

The Concept Approach Matrix (Table 2) shows the application of the features to
the three concept combustors. Cross-sectional views and photographs of the
three concepts are shown in Figures 5A&B, 6A&B, 7A&B and 8A&B.

Concept I Reverse Flow Convection Cooled Combustor (RFCC)

The RFCC combustor cross section is shown in Figure 5A. The combustor is
built around a production T700 combustor incorporating sheet metal spinnings to
form the convection flow paths.

The main spinnings which form the inner and outer convection jackets are welded
to the combustor at one end and interlock between two seal strips at the other
end to form a sliding joint, to relieve thermal expansion. The convection
annulus is partitioned into individual convection circuits for each panel by means
of spun sheet metal dams, which are welded to the combustor shell and slide
against the convection jacket.



TABLE 2
New Concept Approach Matrix

New
Concept Figure Description

5A , 5B Lean Dome
sector burning
if proven neces-
sary) and reverse
flow convection
with impingement
stage

6A, 6B Advanced air-
7A , 7B blast fuel injec-

tion combined with
dilution flow/
impingement
cooled shells

8A, 8B Simulated
variable geometry
swirler with
impingement
cooled replace-
able shields

Advanced
Fuel
Injectors

wi th

Advanced
Cooling
Techniques

X

Airflow
Redistri-
bution

X

Variable
Geometry

Staged
Combustion

X
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Figure 5A. Reverse Flow Convection Cooled Combustor Cross Section

Figure 5B. Reverse Flow Convection Cooled Combustor (Thimbles Not Installed)
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Figure 6A. Dilution Flow Impingement Cooled Combustor Cross Section

Figure 6B. Dilution Flow Impingement Cooled Combustor
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Figure 7A. Advanced Airblast and Production Fuel Injector Cross Sections
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Figure 7B. Advanced Airblast Fuel Injectors and Production Fuel Injectors
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Figure 8B. Impingement Cooled Replaceable Shield Combustor
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The attachment of the dams to the combustor shell requires that all except the
first panel cooling holes be radial drilled instead of axial as on the production
combustor.

Thimbles are used to carry dilution air through the convection annulus. The
thimbles are welded to the jacket and extend through the combustor shell. It
was necessary to limit diametral clearance between the dilution holes and thimbles
to .010 because of trimming considerations. This made it necessary to line drill
all dilution holes through the jackets and shell simultaneously. This line drilling
procedure would probably not be considered feasible for production.

The jackets increase the envelope of the combustor. This was not a problem on
the outer shell but it caused inadequate clearance with the inner flow path (fig.
3A). The inner flow path is a removable shroud which locates the combustor
circumferentially. It also acts as a convection accelerator to help cool the inner
shell, and it serves as a heat shield between the sump on the engine and the
inner shell of the combustor.

The placing of the convection sheath around the combustor makes the latter two
functions of the inner shroud redundant. Since only the aft flange of the inner
shroud is needed to locate the combustor, a shortened inner shroud (Figure 9)
was made. The new piece consisted only of the aft flange with sufficient axial
material to ensure structural integrity.

The aero design presents no significant change from the original concept except
for the deletion of the accelerators from the convection path. These were
considered optional in the proposal and deleted as unnecessary.

SHORTENED I N N E R SHROUD PRODUCTION I N N E R SHROUD

Figure 9. Comparison of Shortened Inner Shroud and Standard Inner Shroud
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Thin shell steady state heat transfer analysis was repeated on all three designs
because there were sufficient deviations from the original Phase I designs to
warrant it. Table 3 shows the results of the analysis.

The lean dome was achieved by using high flowing secondary swirlers. This
puts an additional 2% of WA4 into the primary zone for smoke reduction.

This combustor proved to be the most difficult to build and to trim. Tolerance
control on the sheet metal spinnings proved to be a problem, which was
aggravated by the use of air dams and thimbles. The need to line drill the
thimble holes to minimize leakage would not be practical on a production design.

Concept 2 - Dilution Flow Impingement Cooled Combustor (DFIC)

The combustor cross section is shown in Figure 6A and a photograph is shown in
Figure 6B. The combustor is built around a production T700 combustor. The
impingement jackets are sheet metal spinnings. The spinnings are identical to
those on the RFCC combustor except for different hole patterns. Also, there
are no air dams or thimbles. The seal arrangement for the jackets incorporates
the same sliding joint arrangement as the RFCC combustor, permitting thermal
growth between the jacket and combustor shell.

The combustor as originally designed and analyzed treated each panel as a
separate entity and isolated its impingement flow from the adjacent panels. This
meant that the impingement air for a given panel fed only the cooling and
dilution holes for that panel. This resulted in the first panel receiving the least
amount of impingement cooling and the 3rd panel the most. This combustor did

TABLE 3
Predicted Maximum Metal Temperatures - Three Prototype Combustors

ERBS 11.8 vs Baseline Combustor on Jet A

ERBS 11.8 Jet A

RFCC
End of Panel Mid Panel DFIC ICRS Baseline T700

1st outer
1st inner

2nd outer
2nd inner

3rd outer
3rd inner

1335
1319

1400
1344

1109
1086

1300
1232

1250
1250

1056
1089

1291
1257

1275
1237

1137
1075

1631
1550

1580
1560

1575
1410

1482
1452

1447
1447

1457
1457

14



not totally overcome the fuel effects in the Phase I analysis for this reason. In
the final design, there is a common plenum under the impingement jacket. This
permits an equal number of impingement holes for all panels. Some of the first
panel impingement air eventually goes through the shell at the 2nd and 3rd
panels. All panels now have impingement flows per unit area that are uniform
and provide high levels of cooling.

A thin shell steady state heat transfer analysis of the design was repeated, and
shows that the combustor, on ERBS 11.8 will run 200°F cooler than the baseline
combustor on Jet A. Results are tabulated in Table 3. The prediction was
borne out in testing. (See table 6, page 31.)

A cross section of the Advanced Airblast Fuel Injector is shown in Figure 7A
next to a cross section of a production T700 fuel injector. Photographs of the
two designs are shown in Figure 7B.

The injector employs a central air passage to admit an extra 1% of VVA4 into the
primary zone, and swirl slots in the air shroud to maintain spray stability
margins and to improve the spray pattern. Figure 10 shows the advanced
airblast nozzle spray pattern overlaid on the production nozzle spray pattern.

The advanced nozzle produces a hollow spray with wider overall distribution of
the fuel. This compares to a rich core on the production injector. The
improved fuel distribution, combined with additional air are responsible for the
lower smoke emissions with this nozzle.

PATTERNATOR TEST RESULTS

16
VERIFY A REDUCED FUEL
CONCENTRATION AND
WIDER SPRAY ANGLE FOR
THE IMPROVED AIR BLAST
INJECTOR.

O PRODUCTION T700 INJECTOR

O IMPROVED AIR BLAST
INJECTOR

40 +60

ANGLE

Figure 10. Patternator Results of Advanced Airblast Fuel Injector

15



Of the three combustor designs this one represents the least radical change from
the production design. The same spinnings were used as for the RFCC
combustor; and similar problems were experienced with tolerance control and
fitup of the parts. The absence of thimbles and air dams made these problems
far more manageable, however - to the point where this could be a production
feasible design with a few modifications. The lack of thimbles is considered a
major advantage as it eliminates a large number of small machined parts which
could be misassembled.

Concept 3 - Impingement Cooled Replaceable Shield Combustor (ICRS)

A cross section of the ICRS combustor is shown in Figure 8A and a photograph
is shown in Figure 8B. The ICRS combustor is a simplied version of the
"shingled combustor." The principle is to isolate the structure of the combustor
from direct contact with the flame. The combustor is made from a stack of
structural shell rings with interlocking shield rings. The shield rings have no
pressure drop across them and are allowed to float in the shell rings to relieve
thermal stresses. The design permits replacement of the shield rings by
disassembling the shell rings. To facilitate replacement, the rings are held
together with straps and tackwelds rather than 360° welds as originally
proposed. Thimbles are used to carry dilution air across the two rings and into
the main combustor flow path.

The production internal flow path dimensions were not changed on this
combustor. This means that the outside of the combustor exceeds the production
combustor envelope. This required elimination of the inner shroud. The aft
inner ring of the combustor serves the function of the aft flange of the
production inner shroud. As with the other two designs, the double wall of the
combustor makes the aerodynamic and heat shielding functions of the inner
shroud redundant.

The original concept called for dilution flow impingment cooling of the shingles
similar to concept 2. In practice, this proved a difficult concept to implement as
it required a seal at the aft end of the shingles to regulate cooling air flow.
Coming up with a practical design that could meter cooling air accurately and
accommodate thermal growth of the singles proved impossible within the
constraints of the program. The design was changed to just use the normal
cooling airflow for impingement and to use thimbles for the dilution air. A thin
shell steady state heat transfer analysis of the revised design showed that it
would still produce acceptable temperatures. Results are tabulated in Table 3.

The production CT7 dilution trim was maintained on this combustor except that
preferential cooling was not applied to the impingement cooled areas.

The large number of machined components makes this the most expensive of the
three designs to produce; however, since all parts requiring close fitup are
machined, tolerance control is not a problem. Once all of the parts were
machined, this proved the easiest of the three combustors to assemble. The
high cost is offset by the fact that damaged components can be replaced without
replacing the whole combustor. This advantage is, however, mitigated by the
fact that all three concepts are designed for a 5000 hour service life without
repairs.

16



Another advantage of this design, which was not exploited in this program is
that the shingles can be made out of ceramics or turbine bucket alloys as they
are simple shapes and not load carrying members. This combustor would make a
good vehicle for testing such materials in a future program.

COMPONENT TEST RESULTS AND DISCUSSION

Overview and Summary

The three prototype combustors and the baseline were tested in the T700 heavy
duty test vehicle, a cross section of which is shown in Figure 11. Gaseous
emissions were measured using the GEORGE gas analyzer console (Figure 12),
which is set up to measure HC, CO, CO2 and NOjj.

Two systems were used for measurement of smoke. One was the GE smoke cart
(Figure 13) which uses the ARP1179 smoke spot method to measure smoke. The
other method was by means of a weighed particulate sample taken through the
system shown schematically in Figure 14. In the past, the weighed particulatx
technique has been the preferred method for component rig tests as the results
are more consistent and correlate well with engine test data.

The three prototype combustors were tested on the three broad spec fuels. The
baseline combustor was also tested on JP5, in addition to the other three fuels.

12 ENGINE FUEL
INJECTORS

SMOKE AND
EMISSIONS
PROBES

A.

ENGINE COMBUSTOR

ROTATING EXIT
TEMPERATURE
RAKE

Figure 11. T700 Heavy Duty Test Rig
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Figure 12. The "George" Gas Analysis System

Figure 13. General Electric Smoke Cart

18



PROBE

\J
I—1 \
COMBUSTOR
FLOWPATH

* J

c\
HEATEt

.^CABINE

FILTER
HOLDER

•SOLENOID
VALVE

WET TEST
METER

ROTAMETER

FLOW REGULATING
VALVE

EXHAUST

Figure 14. Schematic of Particulate Measurement System

Following the initial screening tests, the relative performance of the three
combustors was evaluated to select the most promising design for final
evaluation. A selection matrix was made (Table 4) and the DFIC combustor was
shown to be the best overall design. This selection was made on the basis of
the following criteria:

o Metal temperature
o Degree of smoke reduction
o Difficulty to manufacture
o Cost to manufacture
o Likelihood of adoption on a production design

The comparison showed the Dilution Flow Impingement Cooled design to be the
most advantageous as it gets the best results in all categories.

This cooling concept is also being used for the LV100 tank engine, a carbon
slurry demonstrator combustor, and is being considered for a low emission CF34
combustor.

Final Parametric Evaluation studied the idle, lean stability, and lightoff
performance, and repeated the smoke measurements. The DFIC combustor was
low on pressure drop in the first phase of the testing (3.2% vs a design 3.85%)
so it was reworked to the design A P for the final parametric phase of the
testing.
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TABLE 4
Relative Evaluations of Three New Concepts

EhBS 11.8 Max. Difficulty Likelihood
Corrected Metal To Cost to of

Combustor Smoke * Temp Manufacture Manufacture Production

Baseline 55 1654 Production _
Design

DFIC* 36 1233 Least Least Most
Difficult Expensive Likely

RFCC 43 1366 Most Median Least
Difficult Likely

1CKS 44 1486 Median Most Median
Expensive

*Design Selected for Further Evaluation

Profile and Pattern Factor

The combustor pattern factor and profile factors are non dimensional methods of
reporting combustor exit temperatures and temperature distribution. The
temperatures at the exit of the combustor are measured with a double-headed
thermocouple rake. Each rake consists of five thermocouples arranged radially
outward from the inner shell to the outer shell of the combustor. The two rakes
are rotated through three hundred and sixty degrees so that both of the two
five-element thermocouple rakes traverse the entire exit plane of the combustor.
The rake is stepped one hundred times during its traverse of the combustor exit
and takes a total of 1000 temperature measurements.

Profile and pattern factor are then computed for each rake as follows:

Profile factor = Tavg (radial)-Tavg
Tavg-T3

Where T avg (radial) is the average temperature read by an individual
thermocouple at one radial immersion.

Tavg is the average combustor exit temperature from all five thermocouples

Pattern factor = Tmax-Tavg
Tavg-T3

Where Tmax is the highest temperature read by any of the five thermocouples.

Changes in profile factor affect high pressure turbine bucket life while pattern
factor influences high pressure nozzle durability.
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All three prototype combustors plus the baseline showed a tendency for pattern
factor to increase as hydrogen content decreased. This is attributed to the
tendency of the fuels to form carbon deposits in the swirl cups and disrupt the
normal spray. Pattern factors changed randomly as fuel air ratio was increased.
No trend in any one direction was observed.

The exception to the trend was the #2 Diesel which gave higher pattern factors
than ERBS 12.8. This is attributed to the higher boiling range and lower
thermal stability of Diesel fuel. No fuel effects on profile factor were noted nor
were they expected. There were no observable fuel/air ratio effects on profile
factor.

Profile and pattern factor effects unique to the individual combustors are
discussed below.

o Baseline - Profile/Pattern factor plots for the three fuels and JP5 are
shown in Figure 15. This combustor basically followed the general
trends mentioned above.
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Figure 15. Profile and Pattern Factor, Baseline Combustor (Max Takeoff)

21



o RFCC - Profile and pattern factor results for the three fuels are plotted in
Figure 16. This combustor had the highest pattern factors of all of the
combustors tested. This is attributed partially to changes in dilution jet
trajectories because of the thimbles, and partially to a high pressure drop
( 5 . 0 % ) . The high pressure drop was caused by a missing row of cooling holes
on the first inner panel. The missing cooling holes caused the profile factor
to shift towards a warmer hub and a cooler tip.

o DFIC - This combustor gave the lowest pattern factors of all of the three
combustors. Results are shown in Figure 17. This combustor showed a
tendency to form unstable hot streaks from ERBS fuels - especially at the
cruise conditions. PTF would intermittently jump to 0.39 and then drop to
0.3. This is attributed to carbon deposits forming in the venturi exits and
then falling off. The combustor was operating at 3.2% £ P at this stage of the
program vs 3.85% design AP. When this was corrected in the latter part of
the test program, the unstable hot streak problem was eliminated.

Profile factor was flatter than baseline and was in fact below the -2 sigma
experience level for a production combustor. This is attributed to reduced
overpenetration of the dilution jets resulting in more air being deposited at the
pitchline.

In addition to being tested with the advanced airblast injectors, the combustor
was also tested with production injectors on Diesel Fuel and gasoline. Figure
ISA shows profile and pattern factor results on the #2 Diesel using standard
and advanced fuel injector. The advanced injectors reduce pitchline profile
factor from .045 to .035. The fuel injector related 12th harmonic is reduced by
.015 and is shifted 15° G cup spacing) as shown in Figure 18B. Pattern
factor increased from .26 to .30 going from the standard to the advanced
nozzles, but this is believed to be from a carbon deposit. On ERBS 12.8 PTF
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was 0.24. The harmonic shift and lower pitchline profile are attributed to the
hollow spray of the advanced airblast injector versus the solid spray on the
production injector (Figure 10). This results in more fuel being deposited at
the outboard immersions and between cups, and less fuel at the pitchline.

After being reworked to design AP for the final parametric tests, profile
factor shifted towards a warmer hub and a cooler tip. Profile and pattern
factor results for ERBS 12.8 before and after the rework are shown in Figure
19.

Post rework profile and pattern factor results for the fuels are plotted in
Figure 20. Pattern factors on #2 Diesel, ERBS 12.8 and ERBS 11.8 were .26,
.22, and .27 respectively. Pattern factor on this combustor showed the least
sensitivity to fuel effects of any of the configurations including baseline. The
high transient pattern factors observed on the previous test of this combustor
were absent. The increased AP apparently reduces carbon formation in the
swirl cups. Post test inspection showed minimal carbon buildup. The advanced
injector provides a means of minimizing the fuel effect on pattern factor.

o ICRS - Profile and Pattern factors were within production experience. This
combustor showed a stronger tendency than the baseline for increased pattern
factor with decreasing hydrogen. Profile and Pattern factors for the three
fuels are plotted in Figure 21.
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Smoke

Smoke was measured using two methods - the ARP 1179 smoke spot method, and
a weighed particulate sample. The comparisons were made using the particulate
based smoke numbers as the ARP1179 data has historically been unreliable for
component rig tests, due to the effects of high pressure causing condensation of
moisture in the sample lines. The ARP 1179 data will be presented as it is still
necessary to use it where particulate data is not available.

Because the combustors all deviated significantly from the design 3.85% A P, a
correction had to be derived to effect a valid comparison of the three designs.
Figure 22 shows the experience band of cumulative GE smoke experience for all
engines correlated to baffle face fuel air ratio. Smoke numbers were corrected
to the nominal 3.85% AP condition by assuming that the smoke vs fuel/air
relationship followed the same slope as the GE experience bands.

Particulate based smoke number vs % hydrogen is plotted in Figure 23. The
corresponding ARP1179 data is shown in Figure 24.

Raw and corrected smoke data are tabulated in Table 5.

Raw smoke numbers are plotted on the GE smoke experience bands in Figure 25.
ERBS 11.8 and 12.8 both follow a slightly shallower slope than the GE experience
bands. ERBS 11.8 also gave a 55 smoke number vs a predicted value of 50.
The consequence of this is that the ERBS fuels require more leaning out of the
dome than was proposed for this program in order to meet the smoke objective.
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TABLE 5
Tabulated Raw Smoke and Baffle Face Fuel Air Ratio Data

Combustor
Test
S12- Fuel A P * PPS

Baffle
Face

W**
Baffle
Face

w f

PPH

F/A Paniculate
Baffle Based Raw
Face Smoke *

Corrected
Smoke 1

Baseline

DFIC

RFCC

ICRS

Modified DFIC

001
001
003
004

005
006
007

008
009
010

Oil
012
013

014
015
016

JP5
#2 Diesel
ERBS 12.8
ERBS 11.8

ERBS 12.8
ERBS11.8
#2 Diesel

#2 Diesel
ERBS 12.8
ERB 11.8

#2 Diesel
ERBS 12.8
ERBS 11.8

ERBS 11.8
ERBS 12.8
#2 Diesel

85
85
85
85

25
25

3.25

5.0
5.0
5.0

35
35
35

3.85
3.85
3.85

877
559
528
455

6.928
6.841
6.829

6.835
890
898

47
529

7.477

651
432

6.868

17.08
17.08
17.08
17.08

16.61
16.61
16.61

21.60
21.60
21.60

17.80
17.80
17.60

18.00
18.00
18.00

1.175
1.291
1.286
1.274

151
136
134

476
488

1.490

331
341

1.331

377
338

1.236

683
751
750
713

678
676
678

681
680
680

751
757
755

764
778
676

.1614

.1615

.1620

.1555

.1635

.1651

.1659

.1280

.1269

.1267

.1567

.1568

.1575

.1540

.1615

.1519

27.5
42.5
46.5
48

47
43.5

47.5
36
33

50
48
49.

47.8
55

27.5
42.5
46.5
55

36.0
27.5

53.2
43.5
42.5

40.5
41.5
44.2

40
47

= 1.26

"Includes 1/2 of first panel dilution flow
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NASA Smoke Results Vs Baffle Face Fuel-Air Ratio

Because of its high pressure drop, the RFCC liner ran with a baffle face fuel
air ratio of .128 vs a design objective of .145. Raw smoke numbers on this
combustor met the objectives on the ERBS fuels but smoke was actually worse
than baseline on #2 Diesel fuel. A baffle face fuel air ratio of around 0.128 is
what is actually required to meet the smoke objective on ERBS 11.8.

The DFIC combustor at 3.2% AP indicated sufficient improvement over the
baseline combustor, when smoke numbers were corrected to 3.85% A P» to meet
the objective on all fuels. The Diesel fuel results were of particular importance
here as Diesel fuel is being seriously considered as an alternate fuel for the
T700. This was the only one of the three liners that indicated any improvement
in smoke for Diesel fuel based on initial screening tests. The two lean dome
concepts, in fact, indicated a deterioration in Diesel fuel smoke performance.

For the final parametric evaluation, the AP for the DFIC combustor was
increased by closing off one row of impingement holes on the inner and outer
shells. When the smoke measurements were repeated, the results were
disappointing. There was no reduction in smoke for the ERBS fuels due to
increasing dome A P. The ERBS data fell in on the smoke vs baffle face fuel
air ratio lines from the other combustora. The Diesel fuel data was lost.
ARP1179 data, however, indicated an improvement from the previous Diesel fuel
test of this combustor from 15.3 to 9. Due to the aforementioned problems with
this method on component rig tests we are reluctant to put a number on the
degree of improvement, but we do feel that there was a real improvement in
smoke for Diesel fuel.
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The smoke data from the three combustors implies the following conclusions:

o There are two different smoke forming mechanisms being observed:

- Droplet burning with smoke being formed by pyrolisis of liquid fuel
droplets and locally rich diffusion buring around the droplet.

- Rich gas phase burning of vaporized fuel

o With Diesel Fuel, the droplet burning mechanism dominates due to its
higher boiling range and lower thermal stability. This is why Diesel
fuel responds more favorably to improved atomization from the advanced
injection than it does to simple leaning out of the dome. The poor
response to the lean dome concept may actually imply a slight
deterioration in atomization from the altered primary/secondary venturi
flow split.

o With ERBS Fuels, the gas phase reactions dominate. This is why the
ERBS fuels respond better to changes in dome stoichiometry than to
improved atomization. All of the dome concepts tested atomize these
fuels to the degree that no further improvement from atomization is
likely. It's possible that optimum atomization on ERBS fuels with the
advanced airblast system was achieved at the 3.2% AP condition and
that at 3.9% /A P the fuel was "overatomized" and burning too close to
the fuel injector tips, with a resultant deterioration in smoke
performance relative to dome stoichiometry.

o The ERBS fuels require more leaning out of the dome than was
originally proposed for this program in order to meet the smoke
objective.

o An "all fuels" combustor, which would operate satisfactorily on ERBS
and Diesel fuels will require a combination of lean dome and advanced
airblast fuel injection.

Metal Temperatures

As expected an increase in metal temperatures was observed with the broad spec
fuels. The highest first panel temperature on the baseline was 1634°F on ERBS
11.8 vs 1380°F on JP5. Although there were no obvious signs of liner distress
after component test, the increase in metal temperature was sufficient to predict
an 0.2:1 reduction in cyclic life.

First panel metal temperatures vs % hydrogen are plotted for all four combustors
in Figure 26. Metal temperatures for all panels are tabulated in Table 6. All of
the combustors ran sufficiently cooler than the baseline combustor to completely
negate the fuel effects; however, the DFIC combustor was the coolest of the
three.
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Figure 26. First Panel Metal Temperature Vs Hydrogen, Four Combustors,
Max Takeoff

TABLE 6
Peak Metal Tempertures, of 4 Combustors, 3 Fuels, All Panels

Point S1200B- Cruise

Reverse Flow Dilution Flow
Baseline

Impingement Cooled
Convection Cooled* Impingement Cooled Replaceable Shin gle

~ " ~ ERBS ERBS
Location

Panel 1 Outer
Panel 1 Inner
Panel 2 Outer
Panel 2 Inner
Panel 3 Outer
Panel 3 Inner

Panel 1 Outer
Panel 1 Inner
Panel 2 Outer
Panel 2 Inner
Panel 3 Outer
Panel 3 Inner

ERBS ERBS ERBS ERBS ERBS ERBS
JP-5 DF-2 12.8 11.8 DF-2 12.8 11.8 DF-2 12.8 11.8 DF-2 12.8 11.8

1360
1395
1355
1206
1196
1151

1378
1368
1353
1300
1199
1145

1304
1381
1374
1268
1237
1177

1410
1451
1538
1298
1334
1208

1207
1569
1216
1268
1133
1224

1195
1455
1198
1190
1109
1243

1280
1625
1396
1409
1205
1380

1186
1205
1070
1173
1026
1146

1262
1336
1057
1164
1031
1113

1228
1267
1341
1234
1146
1139

1273
1411
1347
1185
1337
1117

1309
1230
1366
1254
1379
1130

1441
1356
1502
1412
1457
1174

Point S1300B IRP

1380 1380 1409 1349 1313 1248 1248 1151 1243 1183 1384 1389 1486
1363 1511 1466 1634 1576* 1631* 1621* 1191 1235 1254 1220 1307 1345
1374 1462 1491 1448 1277 1309 1350 1219 1164 1210 1399 1408 1518
1241 1336 1323 1321 1296 1336 1395 1195 1178 1239 1171 1190 1191
1211 1255 1276 1246 1166 1203 1206 1116 1082 1104 1422 1403 1539
1163 1178 1207 1198 1256 1353 1379 1126 1118 1149 1306 1127 1182

•First inner panel temperature is high because of manufacturing error and, therefore, not used
for comparison.
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The first panel of the DFIC Combustor ran 100-150°F cooler on ERBS 11.8 than
the baseline did on JP5. Test results indicate a negative fuel effect; i .e. , the
combustor ran cooler as hydrogen decreased. This is probably not real, but the
consequence of the worst hot streaks not always being near a thermocouple. It
does seem reasonable to say that metal temperatures on this combustor are
insensitive to properties of the fuels selected for this study.

Following rework of this combustor to the design pressur drop, metal
temperature measurements were repeated during final parametric testing,
results tabulated in table 7 show are similar to those obtained during the
screening tests.

The

The RFCC combustor ran 100-150°F cooler on ERBS 11.8 than the baseline did on
JP5. This combustor also proved to be insensitive to the fuel properties.

The ICRS combustor duplicated the baseline combustor JP5 metal temperatures
when running on ERBS 11.8. This combustor thus negates adverse fuel effects
on the basis of metal temperature alone. The shingled design provides a further
life improvement by minimizing thermal stresses.

Gaseous Emissions

As the screening points were all at high power, HC and CO gaseous emissions
were very low. Variations were mostly from combustor to combustor with minimal
fuel effect or fuel/air ratio effect.

o HC emissions were too low to measure;
o CO emissions showed no clear cut fuel or fuel/air effect;
o NO., showed a slight tendency to decrease with increasing fuel/air

ratio.

NOY and CO emission results are shown in Figures 27 and 28. CO emissions from
all <3fthe experimental combustors were higher than for the baseline combustors.
The DFIC and RFCC combustors, which had the lowest metal temperatures had
the highest CO levels. The ICRS combustor, which had somewhat higher metal
temperatures than the DFIC and RFCC combustors, was midway between the
baseline and the DFIC and RFCC combustors. The lowered metal temperatures
may be causing increased wall quenching and thus slightly higher CO levels.

TABLE 7
Peak Metal Temperatures, Modified DFIC Combustor

Location
#2D

Cruise
ERBS 12.8 ERB 11.8 #2D

Max Continuous
ERBS 12.8 ERBS 11.8 #2D

Max Takeoff
ERBS 12.8 ERBS 11.8

Panel 1 Outer 1188 1099 1177

Panel 1 Inner 1252 1175 1226

Panel 2 Outer 1228 1138 1094

Panel 2 Inner 1144 1130 1232

Panel 3 Outer 1132 1069 1044

Panel 3 Inner 1171 1172 1138

1231

1204

1167

1234

1118

1180

1324

1188

1268

1258

1166

1193

1160

1158

1150

1258

1163

1172

1185

1238

1193

1202

1150

1231

1261

1086

1286

1277

1118

1183
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During the final parametric testing phase on the DFIC Combustor, the emission
analyzers suffered numerous problems resulting in the loss of some of the data.
NO., analyzer failed during the second half of the ERBS 11.8 test, so NOy data
for^ialf of the ERBS 11.8 testing and the #2 Diesel testing was lost.

Calibration data for the CO analyzer showed inconsistent response, so this data
is only good for rough estimates of relative CO levels.

Gaseous emissions for the final parametric test phase on the DFIC Combustor are
tabulated in Table 8. High power results were essentially a repeat of the
screening test data. Idle HC and CO data indicates idle efficiencies in excess of
98%, consistent with production T700.

Flame Radiation

Flame radiation results are shown plotted in Figure 29 and tabulated in Table 9.
The results show wide variability between combustors, but the same general
trends relative to % hydrogen and fuel/air ratios.

o Radiation increased with decreasing % hydrogen (Figure 29)

o Radiation decreased with increased fuel/air ratio.

The second result was unexpected, but consistent with all four combustors. The
most plausible explanation is that the radiometer is looking through an
incompletely reacted, inhomogeneous mixture. Radiation is being reduced by
unburned carbon particles and pyrolyzing fuel droplets plus the fact that full
adiabatic flame temperature has not been achieved at this point in the combustor.
This effect would become more severe as fuel/air ratio increased thus causing
lower radiation readings. The fact that we are looking at localized
inhomogenities with a narrow angle radiometer would explain the variability
between combustors and the decreasing radiation readings when wall
temperatures would indicate an increase.

The results would indicate that the radiometer geometry should be altered to
view a zone where the reactions are more completely established. Currently we
are viewing the forward most part of the flame front, which is sensitive to
variations in fuel/air ratio as well as part to part variability. Although the
current radiometer configuration is satisfactory for relative comparisons for fuel
effects, the absolute numbers are not reliable.

Overspeed Protection Condition - LBO Performance

The lean blowout fuel flows for the overspeed protection conditions are shown
plotted vs % hydrogen in Figure 30. The DFIC combustor falls short of the
acceptability limit for T700 combustors on ERBS Fuels but gives acceptable results
on #2 Diesel. This may indicate a slight fuel effect on lean blowout performance.
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TABLE 8
Gaseous Emissions And Idle Efficiency-Dilution Flow Impingement Cooled Combustor

Test

S12014

Fuel

ERBS 12.8

S12015 ERBS 11.8

S12016 *2 Diesel

Point

Cruise

El HC

0

Max Cont. o

Max Takeoff o

Idle 1.464

Cruise

Max Cont. o

Max Takeoff o

Idle NO DATA

Cruise 0

Max Takeoff 0

2.02

El CO

5.96 (est)

El N0>

14.027

12.9

3.92

2.8

8.181 (est) -

CO2*

7.0

3.4

2.5

6.3

6.3

3.2

Idle
Efficiency

99.7

99.6
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Figure 29 Flame Radiation Vs Hydrogen By Weight Percent,
Four Combustors (Takeoff)
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TABLE 9
TABULATED RADIATION DATA

Radiation KBTU

Baseline

DFIC

RFCC

ICRS

istor Test Fuel

ne S12001 JP5
S12002 #2Diesel
S12003 ERBS12.8
S12004 ERBS11.8

S12005 ERBS12.8
S12006 ERBS11.8
S12007 #2Diesel

S12008 #2Diesel
S12009 ERBS12.8
S12010 ERBS11.8

S12011 #2Diesel
S12012 ERBS12.8
S12013 ERBS11.8

140

120

100

£ 80
D.

8
*60
UI=

40

20

n

•

Hr
Cruise

-10%
wf

33

68
74

87
105

41
67

88
95
112

Ok.

Ftz

Max Takeoff
Nominal +10% -10% Nominal +10%

wf

26
64
63
59

84
95
76

43
36
76

76
89
99

^w*

Wf

24.5
50
53
68

68
100

70

43
40
64

80
89
79

wf

42
43
80
84

92
125

68

45
41
67

115
130
138

w f

34

73
90

115
130

84

43
46
54

87
110
115

wf

32

79
127

88
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Figure 30. Lean Blowout Fuel-Air Ratio Vs Hydrogen By Weight Percent
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Lightoff/LBO Performance

Figure 31 shows lightoff fuel flow vs 6 (Longwell parameter). Sea level lightoff
is acceptable for all fuels although lightoff fuel/air ratios on ERBS 11.8 and #2
Diesel were higher than for ERBS 12.8. Altitude lightoff shows a deterioration
from production T700 levels in that 20000 ft altitude lightoff is marginal with
poor propagation between cups vs a reliable lightoff for production T700.

Lightoff data is tabulated in Table 10. ERBS 11.8 altitude lightoff was not
achieved due to power supply problems in the ignition system.

.50 -

.30 -

.20

5 -10

5.05

.02

k 20,000 FT
ALTITUDE
LIGHTOFF

%

JP-5 DATA BAN

DILUTION FLOW IMPINGEMENT COOLED

+ ERBS 12.8

k ERBS 11.8

t DIESEL NO.2

SEA LEVEL
LIGHTOFF

PREPONDERANCE OF DATA

T700 DATA BAND

25 50 100 200 400

LONGWELL STABILITY PARAMETER, (atm.)1'8 °R ft3 sec./lbs

Figure 31. Modified DFIC Combustor, Advanced Airblast Fuel Injectors,
Lightoff Performance
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W3 W4
Fuel I'l'S PPS
Combuslur

TABLE 10
Tabulated Lightoff Data

IN HUA
L/O
PPH

Wf
LBO
PPH

Time
lo

Li^ht
See

f / A I/ A
blillli luci

l.jghtoft

I .HBS 12.8

tKBs 11.8

I2D

E K B S 12.8

ERBS 11.8

EhBS 12.8

ERBS 11.8

»2D

1
ATM1

1.27

1.19

1.11

.56

NO Light

2.79

2.53

2.81

ft 1•" °K rr

. 'J64 5 1 . B - J

.922 50. b

.8b 50.9

.434 24

on EKBS 11.8 Dut

.49b 23

2.16 114

1.96 115

2.18 115

55K 40

55J 50

5JO 44

20.0UO

544 51

533 62

Idle

869 115

870 80

869 110

38 112 .

47 113.

39 119.

Ft Lighloff

45 62 .1

i i > t >\ v HroL)lcnia

65 4 9 . 3

Lighlolf

70 329

76 369

53 332

Ib/sec

Voon,bustor ' -074

1

2

32

.0113

.015

-OH

.033

.035

.0147

.0113

.0140

.01.2

.083

.070

.181

.19:

.0785

.062

.0766

Idle Efficiency

Idle efficiency was greater than 98% for all fuels, which is in the range of
production T700. No fuel effect was noted for idle efficiency.
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OVERALL RESULTS

The two primary objectives of this program were controlling metal temperatures and
smoke with low hydrogen fuels.

All three combustors reduced metal temperatures sufficiently to negate any life
reduction from low hydrogen fuels. The Dilution Flow Impingement Cooling
concept was chosen because it provides the lowest metal temperatures with the
least amount of complication. The shingled combustor concept is still promising
for its ability to use materials such as ceramics for the shingles. The
disassembly feature would make this a good vehicle for evaluating such materials
as a future program.

Smoke reduction fell short of objectives although the 5% A P on the RFCC
combustor enabled us to determine what was necessary to achieve those objectives.
Additional leaning out of the dome is necessary to meet the objective on ERBS
fuels but the advanced airblast injection appears necessary for Diesel fuel. A
combination of high flowing swirlers and advanced airblast injectors appears
necessary for a combustor that will operate satisfactorily on all three fuels. Part
of the additional airflow can be achieved by further modification to the fuel
nozzle.

These designs showed slight deterioration of lightoff and lean blowout
performance margin. Further smoke reductions will aggravate this problem.
Some of GE's large commercial engines use locally rich cups over the igniters to
offset this. This is preferred over sector burning or variable geometry for the
degree of enrichment required.

Based on the results of this program, the following concepts show the most
promise for a combustor that would handle ERBS fuels and #2 Diesel fuel:

o Advanced Airblast fuel injection with a lean dome for smoke control on
ERBS fuels and Diesel fuels.

o Dilution Flow Impingement Cooling the combustor liner to achieve 5000
hour life on all fuels.
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