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Preface

A mathematical model of the internal combustion engine has been constructed and implemented as

a computer program suitable for use on large digital computer systems. The model strikes a balance

between three competing factors: (1) the desire for physical realism, (2) the extent of experimental

information on the physical processes occurring in the engine, and (3) the capabilities of today's

generation of computers. The result is a flexible and computationally economical model based on a

system of ordinary differential equations for cylinder-averaged properties. The computer program is

capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart

capabilities that permit continuation of a sequence of cycle calculations or the recalculation of earlier

cycles with altered assumptions. It can accommodate a broad spectrum of reactants, permits changes

in physical properties, and offers a wide selection of alternative modeling functions without any

reprogramming. It readily adapts to the amount of information available in a particular case because

the model is actually a hierarchy of five models of differing complexity. The models range from a

simple model requiring only thermodynamic properties to a very complex one demanding full

combustion kinetics, transport properties, and poppet valve flow characteristics. These five models

can be defined precisely only by the governing equations. However, they can still be classified

approximately according to their treatment of several important features of the internal combustion

engine. This classification is shown in the accompanying table, where level 1 represents the simplest

model and level 5 the most complex. The calculations are based on the premise that heat transfer is

expressible in terms of a heat transfer coefficient and that the cylinder average of kinetic plus

potential energies remains constant. Furthermore, during combustion the pressures of the burned

and unburned gases are assumed to be equal and their heat transfer areas are assumed to be

proportional to their respective mass fractions. Although the model cannot resolve spatial gradients,

it does not assume spatial uniformity.
The mathematical model, the numerical techniques, and the associated computer program are all

discussed in the four chapters of this report. Chapter I, "Construction of Mathematical Models of

the Internal Combustion Engine," briefly summarizes the history of experimental and modeling

studies of the internal combustion engine and derives the mathematical model. Chapter II,

"Numerical Integration of Ordinary Differential Equations," analyzes the integration techniques

used to implement the model. Chapter III, "Numerical Details and Definitions of Cycle Performance

Parameters," gives the precise forms of all equations used in the computer program and defines the

calculated parameters that are used as measures of cycle performance. It also defines the fresh charge

to the engine and gives the representation used for the thermodynamic and transport properties.

Chapter IV, "The Organization and Use of Computer Program ZMOTTO," describes program
capabilities and input requirements. It presents the results of six sample calculations and briefly

describes each computer program routine.
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Chapter I

Construction of Mathematical Models

of the Internal Combustion Engine

Frank J. Zeleznik

The four-stroke, spark-ignited, internal combustion engine, familiar to almost everyone as the

powerplant for the ubiquitous automobile, had its genesis in 1876. It sprang into existence from the

work of Nicolaus August Otto, and the history of its birth pangs was recounted by Bryant (ref. 1).

The general principle of operation, often referred to as the Otto cycle, has been the object of

experimental and theoretical study, at ever increasing levels of sophistication, from that time to the
present. The early impetus for the work was the desire to improve engine performance, economy, and

reliability. In more recent years these goals have been supplemented by the palpably perceived need to

control the emission of pollutants. The four-stroke operation of the engine (a cylinder fitted with a

movable piston, separate intake and exhaust systems, and a spark plug for ignition) is simplicity itself

when viewed on a sufficiently coarse scale. A schematic representation of its operation is shown in

figure 1. A mixture of fuel and air is ingested during the intake stroke, compressed by the piston

during the compression stroke, ignited and burned, expanded during the power stroke, and finally

exhausted from the cylinder as burned gases during the exhaust stroke in preparation for a repetition

of the cycle. Yet this basic simplicity conceals a complexity of interacting physical and chemical

processes which has successfully defied complete understanding. The reason for this is easily

comprehended when we look a little more closely:

(1) The system is an open one, operating at relatively high temperatures and pressures, which

retains a memory of the preceding cycle. The memory arises because the cylinder is not completely

evacuated at the end of each cycle and because the end of one cycle provides initial conditions for the

following cycle.
(2) The operation has a repetition rate ranging from about 25 to 250 msec.

(3) Some very complex chemistry (hydrocarbon combustion) is taking place, and the time scale for

some of the chemical reactions is comparable to the cycle repetition rate.

(4) The system has movable boundaries and a complex geometry which seriously complicate the
fluid mechanics and heat transfer.

(5) The engine operation is not strictly repeatable because the engine undergoes apparently

random cycle-to-cycle variations.

The net result of these five factors is a system that exhibits strong temporal and spatial gradients

during a cycle and relatively large fluctuations from one cycle to the next. This situation is inimical to

unsophisticated experimentation and simple computation. It requires the ingenious use of novel

experimental techniques and modern computational stratagems to achieve even a relatively crude

understanding and modeling of this complex system's physical processes.

The extent of our experimentally derived understanding of the physical and chemical processes

taking place in the internal combustion engine can be gleaned from some fairly recent survey papers

(refs. 2 to 5). The intake and exhaust portions of the cycle generate highly turbulent flows within the

cylinder (ref. 5, p. 145) and the ignition-combustion process is influenced by the level of turbulence

(ref. 2, p. 131, and ref. 5, p. 156). Ignition of the combustible mixture produces a propagating flame



(a) Intake stroke, O<O<Tr. -

E

0

(b) Compression stroke,

(c) Power stroke, 2_r<g<_r.

0

(d) Exhaust stroke. _< O< 41r.

Figure 1. - Four-stroke operation of spark-ignited internal combustion

engine.

front, whose shape deviates appreciably from sphericity, and chemical reactions continue after the
passage of the flame front (ref. 2, p. 121, fig. 2). Some attractive color photographs of the flame
front, its propagation, and the postflame reaction zone are presented by Nakanishi et al. (ref. 6).
There is also some evidence for the existence of preflame chemical reactions in the combustible
mixture (ref. 2, p. 123). The chemical reactions in the flame front and the postflame and preflame
chemical reactions are quenched near cool walls and in crevices; the quenching effect extends out
from the surface as much as 0.4 mm (ref. 2, pp. 124 to 126, figs. 8 and 9). Temperature gradients (ref.
2, p. 120) and composition gradients (ref. 4, p. 140, fig. 6) occur throughout the cylinder and not just
near the walls. More than 200 organic compounds (ref. 4, p. 143) have been identified in the exhaust
gases by gas chromatography (ref. 3, p. 163, fig. 9). Finally the nitric oxide concentration in the
exhaust gases seems to depend on its rate of formation as well as its rate of decomposition within the
engine (ref. 2, p. 128).

These experimental conclusions are undoubtedly correct, but in many instances they represent only
qualitative results from poorly controlled experiments. One reason for this situation is the
unfortunate coupling between an inability to achieve cycle-to-cycle repeatability in the operation of
the engine and an inability to measure a single cycle adequately. For example, Starkman et al. (ref. 7)
carried out a sampling study of the burned gases in an engine cylinder by withdrawing a small sample
from many successive cycles. Thus their conclusions represent cycle-averaged results. They observed
(1) that wall quenching affects carbon monoxide, carbon dioxide, and nitric oxide formation as much



as it affects unburned hydrocarbons and (2) that large composition gradients exist within the

cylinder. Similarly, in a spectroscopic investigation of nitric oxide formation, Lavoie et al. (refs. 8

and 9) obtained cycle-averaged results. They sampled only from those cycles whose peak pressures

were within a certain interval (nearly 3 atm, ref. 9) about a preselected pressure. From their results

they concluded that substantial temperature and nitric oxide concentration gradients exist behind the

flame front (ref. 9, p. 107). The existence of gradients and their dependence on engine geometry

make experimental results a function of the measurement locale. Consequently comparisons of

experimental results from various investigators are virtually impossible because of differences in

engine geometry, measurement location, and measurement technique. Even if these three difficulties

were surmounted, comparisons would still be thwarted by cycle-to-cycle variations.

Since steep temporal and spatial gradients are acknowledged conditions in internal combustion
engines, what are the prospects for obtaining quantitative experimental results capable of resolving

these gradients within an engine? The prospects are decidedly dismal. The capability to carry out

spatially resolved measurements is limited by the presence of moving valves and pistons, which

drastically restrict the positioning of probes within an engine. Furthermore the hostile environment

places severe limitations on the types of probes which can be used. For example, hot-wire turbulence

measurements have only been made on motored engines, where combustion is not a factor (ref. 5,

p. 146). Optical diagnostic techniques now in the process of development offer some advantages over

probes, but they too are no panacea (refs. 10 to 14). Under the present circumstances even an

optimist would find it difficult to imagine that spatially and temporally resolved measurements

adequate to unravel the complex of physical and chemical processes taking place in an engine would
become available in the near future.

Serious attempts to construct models of the internal combustion engine began about 1960. It was at
this time that digital computers were becoming increasingly available and more capable. Before that

time calculations were largely done by hand or were done with the assistance of mechanical

calculators. This severely limited the kinds of computations which could be attempted. Since then the

numerical models have increased in number and complexity. A representative sampling of computer-

oriented models of the internal combustion engine is listed in nearly chronological order in table I,

where the models (refs. 15 to 39) are broadly classified by the choice of equations and the treatment

of chemistry, combustion, heat transfer, working fluid induction, working fluid exhaust, and valve

timing. This classification is only suggestive rather than definitive for often there is great variability

in the treatment of a particular aspect among the models. Thus two models might both consider
chemical kinetics--one with a relatively detailed mechanism, the other with a drastically truncated

one--yet both can be thought of as treating the chemistry kinetically. Models with identical

classifications in table I can, and generally will, differ considerably in the treatment of physical and

chemical properties, in the modeling of physical processes, and in the numerical and analytical details

of the calculation. Consequently they will also differ to a greater or lesser degree in the answers they

supply. Because of this fine structure it would be pointless to attempt a more detailed comparison of

these models, but one general observation is in order. Most of these models give short shrift to the

chemical and physical properties of the working fluid. This is unfortunate because then one cannot

be certain how much of a model's deficiency is ascribable to inadequate working fluid properties and

how much must be assigned to the other details of the model.

Structure of a Realistic Model

The numerical realization of a mathematical model for a physical system, in the form of a

computer program, is shaped by a combination of practical and philosophical decisions which
determine its ultimate form. These decisions reflect the modeler's perception of what is necessary,

desirable, and achievable. The choice between ordinary differential equations or partial differential

equations represents such a decision. A computer program for modeling is composed of two essential

but independent parts: (1) the set of equations used to model the physical system and (2) the data base

of physical and chemical properties used in the implementation of those equations. They, in concert

with numerical techniques, determine the results of model calculations. But estimates of physical

properties are obtained, revised, and improved independently of any changes in the model itself.
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Hence a computer program should be so constructed that it is a relatively simple task to incorporate
additional or improved property data as they become available. Ideally the best and most complete
data base should be used in the calculations. This approach permits the modeler to stop worrying
about the effect of unnecessary data assumptions on the calculation and to concentrate on the model

itself. All too often apparently insignificant data changes produce unexpectedly large effects on the
calculated results.

It is axiomatic that the more detailed the model, the more complex the calculation and the more
difficult the specification of that model. Thus, for example, a calculation which ignores heat loss is
simpler and requires less information than one which considers heat transfer, for we must know,
estimate, or assume the heat transfer rates. Increasing the complexity of the model does not

necessarily increase the validity of the results although it certainly has the potential for doing so. The
utility and validity of the results from a model calculation are only as good as the information used to
construct the model and the user's understanding of the inherent limitations, both physical and
numerical, of the model.

A given level of model complexity may sometimes require more information than is available in a
particular situation. Under these circumstances it is an advantage to have simpler models which need
less information to define the calculation. Thus it seems reasonable to construct a hierarchy of
models differing in complexity. A second advantage of such a hierarchy is the possibility of
comparing results among the hierarchy and thus judging the significance of simplifying assumptions.

What are the prospects for a realistic modeling of the internal combustion engine? There is no
absolute answer to this question for it is an ambiguous one. All too often realism, like beauty, is in
the eye of the beholder and mirrors his own interests as much as reality. This is particularly true when
experimental information is incomplete and computational capabilities are inadequate for a complete
solution of the problem, as is the case with the internal combustion engine. My own brand of realism
leads me to conclude that a computer model must be capable of multicycle calculations so that it can
converge to the conditions that exist during the steady state operation of the engine and so that it can
look at cycle-to-cycle variations in the operation of the engine. It must account for heat transfer at
the walls because heat losses represent approximately a third of the energy liberated by combustion.
These losses strongly affect the temperature of the working fluid, which in turn has a strong effect on
the rate processes taking place in the working fluid. It must be capable of representing the valve
timing of the intake and exhaust systems since this influences the amount and composition of both
the working fluid and the exhaust gases. It must permit a fully kinetic treatment of the chemistry
rather than just a truncated reaction mechanism supplemented by steady state assumptions. Steady
state assumptions can only be justified a posteriori, that is, by a comparison with results from a fully
kinetic treatment. These characteristics I believe to be the indispensable components of a realistic
model.

What are the implications of the experimental and computational state of affairs for modeling the
internal combustion engine at this level of realism? There are some who would perhaps argue that the
presence of spatial gradients is prima facie evidence that modeling with a system of partial
differential equations is necessary and anything less is unrealistic. However, this brand of realism
would require the solution of a system of partial differential equations in time and three spatial
coordinates because typical engines lack any spatial symmetry in their configurations. Since
meaningful modeling of the internal combustion engine cannot ignore the chemistry involved, this
portends a very large system of partial differential equations. These must be solved numerically on a
space and time grid which is adequate for resolving the spatial and temporal gradients, and they must
be solved for a number of consecutive cycles. Just as there are yet no adequate experimental data to
validate the results of such a detailed computation, so too there are no adequate data to supply the
necessary initial and boundary values for this computation. These values must then be obtained by
assumption. But, as anyone who has ever solved a differential equation will realize, the character of a
solution can depend on these subsidiary conditions as strongly as on the differential equation. The
assumed conditions thus naturally diminish the reality of the calculated results. Furthermore the full-

blown problem is such an awesome numerical task, incapable of realization with the present
generation of computers and algorithms, that one must also resort to very coarse grids and some
drastic simplifying assumptions for purely numerical and economic reasons. All of these factors

conspire to eliminate partial differential equations as a vehicle for realistic modeling. Exact



calculations of this type are not now feasible nor will they soon be. Consequently the modeling must
be accomplished with a system of ordinary differential equations. The restriction to ordinary

differential equations is not a serious one for, as will be shown, it is possible to derive a system of

ordinary differential equations without invoking an assumption of spatial homogeneity. Thus,

although ordinary differential equations cannot be used to resolve spatial gradients, they are valid in

their presence.

A simple commitment to ordinary differential equations does not by itself resolve all questions

concerning the modeling of internal combustion engines. The meager and problematical

experimental data portend an uncertainty in the selection of a definitive system of differential

equations. The best one can reasonably expect is to construct a parametric system of differential

equations whose solutions cover the gamut of observed behavior. The parameters, one hopes, can

then be determined by a comparison of calculated results with experimental measurements. But there

is a caveat. It is most likely that the solutions will be nonlinearly dependent on the parameters, and so
it would not be surprising if a unique set of parameters could not be obtained even with the

availability of precise and accurate experimental measurements. Nonetheless that is the approach I
shall follow.

This part of the report describes the mathematical and physical aspects of a hierarchy of models

for the internal combustion engine. The discussion includes the derivation of the governing

differential equations, the specification of the forms for the modeling functions which they contain,
and the treatment of the physical and chemical properties used in the solution of the differential

equations. These fundamental features of the model combine to determine its basic validity, and their

comprehension is essential for an understanding of the results obtained from the model. A

description of a preliminary version of the model was given in 1977 (ref. 40).

Mathematical Model

Derivation of General Differential Equations

The internal combustion engine shares with other technologically important physical systems the
characteristics of spatial and temporal gradients and many chemically transforming species. Such

reacting systems occur not only in the internal combustion engine but also in other combustion-based

vehicle powerplants, in reactors for the chemical industry, in industrial furnaces, in stationary

powerplants, and in the context of environmental and atmospheric problems. The analytical solution

of the large system of partial differential equations characterizing such physical systems is

impossible; the numerical solution is impractical. Sheer pragmatism forces us to describe the physical

system by a collection of ordinary differential equations. The systems of ordinary differential

equations fall into one of two categories. One type describes the transient behavior of a non flowing

physical system. The other characterizes the steady state behavior of a flowing system. These

equations are conventionally obtained from the corresponding partial differential equations by

imposing simplifying assumptions and neglecting dissipative and transport phenomena. The
equations for transient behavior result from the assumption of spatial uniformity. The steady state

equations are obtained by assuming that temporal derivatives vanish and that spatial derivatives

vanish in two of three coordinate directions. But clearly the physical systems which one would like to

analyze generally do not satisfy these criteria, and it would be comforting to work with equations

which do not rely on such strong assumptions. I shall derive appropriate systems of equations for

each of the two categories without any assumptions about constitutive relations, dissipation, or

vanishing derivatives, but it will be necessary to reinterpret the dependent variables. This procedure

significantly enlarges the number of physical systems which can be justifiably modeled with ordinary

differential equations. The derivation will not be directed specifically toward the internal combustion

engine but will be done more generally because the resulting equations are equally applicable to other

systems. It is only the choice of modeling functions which makes the equations specific for a
particular physical system.

The derivation will be based on a system of partial differential equations describing the evolution
of the dependent variables. These equations can be written most conveniently in the notation of

general tensor analysis. I shall employ the convention that Latin indices (i, j, k, . . .) will be tensor



indiceswiththe range 1, 2, 3 corresponding to the three-dimensional space of our experience. Greek

indices from the first part of the alphabet (ct,/3, -y.... ) will have the range 1, 2 and will indicate

tensor behavior with respect to transformations of the intrinsic coordinates of some two-dimensional

subspace. Greek indices from the last part of the alphabet will be nontensor indices. When they are

unbarred ()_, #, p.... ), they will be used to enumerate the different chemical species and hence will

have an indefinite range which becomes definite in any given application. When they are barred (h, #,

u-, . . .), they will be used to label surfaces which partition the bounding surface of a volume, and

they will also have an indefinite range which need not coincide with the range of the unbarred indices.
The summation convention on an index repeated as a raised and lowered index will apply to all

indices whether Latin or Greek, tensor or nontensor, unless an explicit statement to the contrary is

made.
The state of a fluid is characterized by two thermodynamic variables, say the mass density m and

the internal energy per unit mass u, and by composition variables per unit mass nx. This assumes that

electromagnetic effects are negligible. The evolution equations for these variables and the kinetic

energy are (ref. 41)

a(mu) 6u
--at + Vk(muvk)= - Vk(qk+_Xd_+rkjXTjvk--m OflOi-vkfk=m-_ (I-l)

am t_m
a-T+ Vk(mvk)=O= _-i +mVkvk (1-2)

O(mnD

Ot
-- + Vk(mnxvk+d _ =Rx (I-3)

a[m(vivi/2 + fl)]
Ot ,] oo+ Vk m +fl vk--Tikv = --7"kjVjvk+m-_- i +Vkfk 0-4)

In these equations vk is the fluid velocity, qk is the heat flux,/2x is the internal energy transported by

diffusion of one mole of species _, d k is the diffusive flux of the species X, rkj is the stress tensor, fl is

the potential energy, fk represents all volumetric forces over and above those produced by the stress

rkj and the potential fl, while R x is the volumetric rate of production of species X. The symbol t is the

time, Vg is the covariant derivative with respect to the coordinates of the three space, and

_/6t = O/Ot + VkVg is variously known as the absolute, substantial, or convective derivative. These

equations are predicated upon writing the evolution equation for the velocity in the form

m _t = Fk = - mgki V i[_+fk + Vfrkj
(i-5)

where gki are the contravariant components of the metric tensor whose covariant components are gij.
We need not be concerned with the forms of the constitutive relations for qk, f_X dk, fl, Eft, and Rx

since they are irrelevant to the present calculation. However, it will be convenient to decompose the

stress tensor into two parts.

rgJ = -pgkj + A_.kj (I-5a)

The first term on the right represents the contribution of pressure p to the stress, while Arkd may be

regarded as the dissipative stresses. Once more, the form of p and ATkj will be of no concern to us.

This decomposition of the stress enables us to obtain an evolution equation for the enthalpy per unit

mass, h = u +p/m, which is sometimes used in place of the internal energy. The equation for h can be

obtained from the equation for u if we can deduce an equation for p/m. This is easily done by

invoking the continuity equation 0-2).



If this result is used, then the equation for h is

a(mh) Off _ vkfk + 6p tSha---i-- + V k(mhvk) = - V k(qg + _Xd_ + ATkyV jVk- m _-[ -_ : m -_ (I-6)

These partial differential equations will be used to determine two sets of ordinary differential
equations governing the behavior of the mean values of properties where the mean values are defined

as averages over a suitable region of space. The generalization of the transient equations will emerge

from a look at the temporal evolution of averages over some volume of the three-dimensional space

which is enclosed by a surface. The generalization of the steady state equations will arise in

connection with the evolution of surface-averaged properties. In both cases it will be necessary to rely

on generalizations of Leibnitz's rule for the differentiation of an integral with variable limits.

Suppose that xk are coordinates covering the space and that _ -- _(x k, t) is a scalar density which is to

be integrated over a volume V enclosed by the surface A (fig. 2). Both the surface and the volume

may be functions of time. Then the generalization of the Leibnitz rule to three dimensions is

d
(I-7)

where dv is the element of volume, da is the element of area, n i is the exterior normal to A(t), and Vi
is the velocity of a point on the surface. Although several physical quantities have been mnemonically

designated by the 22nd letter of the alphabet, no confusion should occur because V and Vi differ by

the absence or presence of an index as do v and vi. Furthermore, for the sake of convenience, let me

introduce the conventional notation v2 = VkVk. Note that the integral on the left side of equation (I-7)

is only a function of t since the coordinate dependence has been integrated out and hence the notation

d/dt is correct. The integral relation (I-7) is the indispensable tool which will be used to derive the

generalized ordinary differential equations for transient behavior. If we set _oequal to 1 in equation
(I-7), then we get as a special case

dV I A(t)Vin id--t = " da (I-8)

The case of surface averages is somewhat more difficult to describe. Basically the system of interest

can be thought of as the contents of a tube generated by the propagation of a surface, bounded by a

closed curve, through space. For example, the propagation of a circle perpendicular to its plane will

generate a cylinder. To describe a more general situation, imagine a one-parameter family of

propagating surfaces, _ = O(x k, t), with each member of the family labeled by the value of 4). Of

vk

nk

Figure2. - Sketchof systemusedinderivationof
transientequations.



course the function _(xk, t) might be independent of t. Suppose that on each surface we inscribe a

closed curve C which bounds an area A (fig. 3). Both the curve and its enclosed area are potentially

functions of t and of the parameter _ labeling the surface. The shape of the tube generated in this way

may be a function of time. Suppose Va and Wa are both two-dimensional vectors in the subspace
defined by the surface _ and represent the rate of change of the closed curve Cwith respect to t and ¢,

respectively. The vector V% for example, can be interpreted as the velocity of a point on the curve.

The Leibnitz rule applied to the integral of so(xk, t) over the surface A in the subspace becomes

0 OCda
0-_ IA(¢,t)_ *= IA(_,t) O-t + IC(ck,t)¢PVcxTIcxdc (1-9)

0
(I-10)

The exterior normal to C on the surface # is _,_, dc is an element of arc along C, and again da is an

element of area. Analogously to the special case of equation (I-7) represented by equation 0-8) we
can obtain special cases of equations 0-9) and (I-10) by choosing ¢ = 1.

0,4__= I I_ dc
Ot c(_,t)

(I-11)

0,4_ = I W%I_ dc
O_ c(o,t) (I-12)

The integral relations (I-9) and (I-10) are the key to the steady state equations.

General transiant equations. -To simplify the derivation of the transient equations, we make the
preliminary observation that equations (I-l) to (I-4) and (I-6) are similar to one another in the sense

that they can all be written in the form of a conservation equation.

O(m_b)
0----7-+ Vk(m_bvk) = S 0-13)

Here _ represents some property per unit mass and S is its volumetric source. Suppose we define a

mass-averaged value of _b for the system of figure 1 by

1 I m_b dv (I-14)( _ ) "_ M v(t)

Figure 3. - Sketch of system used in derivation of steady-
state equations.



where

- _ m dv (1-15)M(t)
d v(t)

Differentiation of equation (I-14) with respect to t and the application of the Leibnitz formula (I-7)

with ¢ = m_b gives

d(J/) _ 1 [( O(m_) dV+ (A(t)mC/Vknkd aJ
dt M tOy(t) ot M

Equation (1-13) can now be used to rewrite the first integral, and the divergence portion of the

resulting volume integral can be converted to a surface integral by Green's theorem.

I Vk(mfvk)dv = _ mfvkn k da
V(t) JA(t)

The result is the expression

- I I 1 dM (j/) (1-16)d(J/) 1 Sdv+ 1 mC/(Vk--vk)nkda M dtdt M V(t) _t A (t)

A special case of this formula can be obtained by setting _bequal to 1 in equations (1-14) and (1-16).

But then from equation (2) it follows that S=0, and from equations (I-14) and (I-15) we find that

(1) = 1. Hence equation (1-16) reduces to

dM (,

- _ m ( Vk - vk) nk da (1-17)
-_ JA(t)

Recall that Vk is the velocity of the surface A (t) and that vk is the fluid velocity. Thus Vk- vk is the

velocity of the surface relative to the fluid. If we define an average density for the volume V by

M Sp _-- _ -'- V- 1 m dv (1-18)v(t)

then by direct differentiation we obtain

ldp_ 1 dM l dV

p dt M dt V dt
(I-19)

Obviously formula (I-16) can be applied to the problem at hand by letting _bsuccessively become u,

h, nx, and O -v2/2 + f_; the corresponding expressions for S are obtained from equations (I-1), (I-6),

(I-3), and (I-4). If all divergence terms in the volume integral of S are converted to surface integrals

by Green's theorem, then we obtain the following formulas:

d(u) 1 IA(t) [mh(Vk_vk )dt - M _pVknk]d a Q 1 dM (u ) (I-20)M M dt

I Q I21 ldMd(h)_ 1 mh(Vk-vk)nkda- + M M dt (h) (I-21)dt M A(t)

10



d(nx)_(Rx/m>+ 1 Idt M A(t)mnx(Vk_vk)nkd a NhM M dtldM (nx> (1-22)

d<O)37 _ _I1 IA(t) mO(V k- re)he da+ + M M (O) (I-23)

where the functions of time Q(t), H(t), N(t), and K(t) are defined by

"Q=Q't'°SA,t, [ 00 ]dt (qk + #_l_n k da- I v(t) A#JV jvi- _ + vk( V _o- fg) dv
(1-24)

dH _ I:l(t) - I apdt v(t) -Oidv (1-25)

dNx.,, - NX(t) - I .... dgxnk da (I-26)
UL ot'lIJ) " "

dK •

= K(t) - J[A(t)[ViArik -- (qk +/2Xdxk)]n k da

C

37
(I-27)

No assumptions have been made to this point and equations 0-20) to (I-23) are exact consequences

of the partial differential equations. It is only at this stage that some assumptions must be made. I

shall assume that there exists a partitioning o f the bounding surface A (t) into surfaces A _ (t) whose
union is A (t) and such that on each of these surfaces

dV_
j Vknk da=O

-_ AT,(t)

dM_
-_ m(Vk--vk)nkda=O

dt JAT,(t )

if and only if jA_(t) p Vkn k da = 0 (I-28)

if and only if Ja_ (t) m_b(Vk- vk) n k da = 0 (1-29)

for _b= u, h, nx, v2/2, and ft. These assumptions are obviously satisfied whenp and _bare constant on

A_,(t). The assumptions 0-28) and 0-29) enable us to define a "volume flux average" of the
pressure by

dV_ = _ pVknk da
P_ -d-i- aA_(t)

(# not summed) (I-30)

where p_, denotes the average of the pressure and a "mass flux average" of the scalar field per unit
mass _bby

dlt4_ =_[ md/( Vg_vk)nldt a
_ T JA_(t)

(# not summed) (I-31)

11



wheret_ denotes the average of the scalar _b. The significance of the functions _ and p_ will be
discussed shortly; however, it should be pointed out that the partitioning of A (t) used in the

definition of _ and that used for p_ need not be the same This was done here only for notationalp
convenience. Combining these defimtions with equations (I-20) to (I-23) gives

d(u) 1 r , dV_ .- dM_ _ ]dt- =._[-P_--di- +tt_---d_ - <u) -Q(t)

d<h) 1

dt M r_ dM_ dM +/_jt(t)-Ij- <h>-dT - Qtt)

dt p V(t) _ LnX;_ -- (nx) --_- -Nx(t)

0-32)

(I-33)

(I-34)

d<O)dt - MI [o r-dM;__ <O) _dM +Q(t) +//'(t)] (1-35)

From the defi_nitions of dV_'/dt and dM_'/dt it is clear that dV/dt=_, dV_/dt and
dM/dt= _, dMt'/dt.

Iz

Inspection of equations (1-32) to (1-35) and (I-19) discloses that they are the ordinary differential

equations we have been seeking. Virtually all the terms on the right side of these equations are at our

disposal for modeling purposes. This certainly applies to the modeling functions Q, H, N, and/_,

whose interpretations are obvious from their definitions (eqs. (I-24) to (1-27)). Thus Q might be

called the net rate of internal energy loss from V(t) since the surface integral represents the rate of

loss of internal energy through the surface A (t) by diffusive processes while the volume integral

represents the rate of gain of internal energy due to dissipative effects. The interpretations of/:/and
_r are obvious. The function/( can be given an interpretation in terms of an energy flux. The vector

qk + #_..__ ujAT-jk is the energy flux due to heat conduction, mass diffusion, and dissipative stresses.

Hence K represents the energy addition to the contents of V by these phenomena. The significance of
the modeling functions dM/dt and dV/dt has already been explained; dM#/dt and dV_/dt have

similar interpretations. The term p- 1V- 11 v Rx dv in equation (1-34) is the rate of production of <nx )
and is a product of the reciprocal density and the volumetric average of the local production rate for

species X. The functions _: and p*- still need comment. The right side of equation (1-31) represents
t, /z

the rate at which the property _b is added to the contents of V by flux through the surface

A_ (t) (compare with eq. (1-17)). Because ff is a property of the fluid and because the fluid properties

will most likely be different on opposite sides of A (t), it is reasonable to allow _ to have a form
dependent on the sign of dM_/dt. Furthermore, since (@) is the average value of _bwithin V(t), it is

also reasonable to assume that _ coincides with (_b) when dM_/dt is negative. Hence we make the
assumption

f (+)(t) dMi'/dt>O
_ = _'_" _ (I-36)

_b_-) ( t) = (4,) dM_/dt <O

12

This specification of the modeling function _b_ is called an assumption, even though if(-+)remains
completely arbitrary, because it represents a definite and conscious choice for _b(--). Furthermore the

choice for if(--) in equation (I-36) is consistent with the case corresponding to _ uniform value of _b

within V(t) .PThe form (1-36) is a reflection of the potential discontinuity of _kacross A (t). Similarly

the function p_ could exhibit a form dependent, in this case, on the sign of dV_/dt, but there is no



compellingreasonfor makinga choice analogous to equation (1-36) since it is not associated with a

mass flux across__the boundary. I only wish to point out that, if p_, is positive, then p_ dV_/dt is
negative for dV_/dt<O, and this produces an increase in (u) as can be seen in equation (I-32).

Consequently -p_ dV_/dt can be thought of as the work done on the contents of V during a
Y,

reduction of volume. Finally, using equation 0-7) we can show that

d , dV_ d dV_
I:I(t) = -_(M(p/m)) -p[, dt - d-t (pV(p/m)) -P_ dt

Because only the weak assumptions (eqs. 0-28) and 0-29)) were used in deriving the ordinary

differential equations (I-32) to (I-35), these equations should be applicable to a wide range of

problems. The assumption 0-36) merely represents a convenient restriction on the allowed choices

for the modeling function _ and may be altered at any time. This choice was made so that the
resulting differential equations could be given conventional physical interpretations. The actual use

of equations (I-32) to (I-35) and (I-19) only requires the assumption that (u), (h), (nx), and (O)

are interrelated by the usual thermodynamic formulas and the specification of the modeling

functions which appear in these equations. All geometric aspects of the problem are now confined to

the modeling functions. These functions must be chosen so as to reflect properly the geometry in

order to carry out a successful modeling calculation.

General steady state equations. - Usually the term "steady state" signifies the absence of temporal

derivatives and implies the presence of spatial derivatives alone. Yet sometimes the ordinary one-

dimensional, steady state equations are written with time as the independent variable. This is
accomplished by a simple change of variable involving a velocity. My objective in this section is to

derive generalizations of the ordinary one-dimensional, steady state differential equations for

flowing systems. Since I shall not assume that temporal derivatives vanish, time will arise as the

independent variable in quite a natural way. Generally, to avoid confusion, one is always careful to

use different symbols for different physical quantities. However, to point up the similarity of the

steady state equations and the transient equations, I shall violate that convention. In this section

some of the symbols used in the preceding section will be applied to different, but similar, quantities.

This should cause no confusion since the two sections are independent. Suppose _bis as defined in the

previous section, but suppose that (_b) and M, given in equations 0-14) and 0-15), are redefined

here as surface averages (fig. 3) rather than as volume averages.

1 IA (4_,t)m_b(¢/)--- _ da

M(dp, t) -_ m da
d A(4a, t)

(I-37)

Note that both (_b) and M are now functions of _ as well as t, and consequently their derivatives are

partial derivatives. It follows from equations (I-37) and the Leibnitz relations (I-9) and (I-10) that

O(ff)- 1 [I a(m_b)da+I mC/Vc_c_dc]_(_)lO__M_ Mat M A (4_,t) Ot C(4a,t) M at
(I-38)

ath M JC(¢,t) M a--_- (I-39)

since 0 (m_b)/&h is zero because m and _ have no explicit _ dependence. If the conservation equation

(I-13) is used in equation 0-38), then we find

L,o.,,t s 3 I M`-O(_b ) _ 1 V k(m_bvk) ]da+ c(O,t)m_bVan_ dc - (1-40)
at M at

13



Just as _b= 1, S=O produced equation (I-17) as a special case of equation (I-16), this choice in

equations (I-39) and (I-40) gives

OM
- jc(c,t)m W"71c_dc

aM dc- JA-- IC(4_,t) mVuTla ((a,t) Vk(mvk) da

(I-41)

Replacement of the partial derivatives 0-38) and 0-39) by ordinary derivatives is possible only

when one of the derivatives, say 0(_b)/&k, vanishes or when q_and t can be regarded as dependent.

Hence suppose

(o(x_t) =4_=O(t) (I-42)

and dO/dt-4. Then

d _ 0 +'_ _ (I-43)
dt Ot 0¢

and if ¢#0, we also have

d 1 d 0 1 0
+ - -- (1-44)

dO fb dt Orb d# at

Since _ is a function of t alone, we can use equations 0-39) to 0-41) to write dM/dt and d(_b)/dt in
the form

dM- I m(V_+*W_)_l, dc- j Vk(mvk) da 0-45)
dt c(¢,t) A (¢,t)

dt -M A(¢,t) [S- Vk(m_bvk)]da+ _Jc(¢,t)

We now make an assumption analogous to equation (I-29).

(I-46)

+ J(A(O,t)Vk(mVk) da= a(C(.,t) m( V(x+¢WCOThx dc=O (I-47)dt

if and only if

c(¢,t)m_b ( V(x+ dpWCQ_lc_dc=O

Then by analogy with equation (1-31) we now define _ by

0-48)

The substitution of equation (1-48) into equation (1-46) and the recognition that ff is a function of t

alone gives

14



d(_) I
(I-49)

Now we need only make some special choices for _b to obtain the desired equations. However,

before doing that let us try to find a replacement function for M which can be given a simpler

physical interpretation. An average density on the surface A can be defined as

M 'S- - m da (I-50)
P A A(_,t) A(cb, t)

Now suppose we write ok for the mass flux through the surface A.

- _ .mvkng da (1-51)
JA(_,t)

If we write w -- vkng for the normal component of the velocity, then w is a permissible choice for _b
and hence

1 _ mvkn k da (I-52)
(w>= M OA(¢_,O

The combination of the last three equations shows

pA (w) = ok (I-53)

and by differentiation

I dp IdA I d(w) I dok

p dt+ - ok dt (1-54)

Equations (I-53) and (I-54) are the conventional forms of mass conservation used in one-

dimensional,steadystateflow problems. Furthermore sinceok =M(w), itisclearthatMcan always

be replacedby the physicallymore significantmass flux.To determine the differentialequation for

(w), we need the evolutionequation for w. This iseasilyobtained from the evolutionequation (I-5)

for the velocityvk and the continuityequation 0-2).

O(mw_____) (1-55)
Ot + Vk(mWvk) =nkFk+mvk_nkSt

Finally we are in a position to obtain the steady state equations with relatively little additional

effort. All that is required is to set _bequal to u, h, nx, O, and w and to use equations (I-l), (I-6),

(I-3), (I-4), and 0-55) to determine the corresponding source term S.

1 dM (1-56)pd(U)dt =-O-(t) +o(fi-(U)) M----dt

d(h) 1 dM (1-57)
P _ =-(_(t)+I;t(t)+p(h-(h>)M dt

d(n x) 1 I 1 dMP---_ -A(_b,t) A(_,t)Rx da-IQx(t) +p(nx-(nX)) M dt
(I-58)

15



l dM
P---_d(O)= Q(t) +/('(t)+p(O- (0)) M dt 0-59)

• , d(w) 1 dM (I-60)
p(w)--d-i-- +15(t) =p(w)(fv- (w)) M dt

The functions Q(t), H(t), N(t), K(t), and P(t) are defined by

dQ = (2(t) 1 . off- [ArkjVjvk--m_- i --fk)-- Vk[qkWfx_lk+mvk(h--a)]ldadt A ('_,t) SA(_,t) wok( VlaO

(I--61)

dH-I:l(t)= 1 I Iap a)])da-- O-i + XTk[mVk( fi--dt AUb, t) AUI,,t)
(I-62)

dN x _Nx(t ) _- 1 I Vk[d_+mok(nx--nD]da
dt A(_,t) A(_,t)

(I-63)

dK
=K(t) - 1 I Vk[qk+_k+mvk(h--a+e--o)d_ A(_,t) A(_,t)

(1-64)

dP=ls(t ) - (w) I (,_Fk+mvg_-_--Vk[mvk(w--fv)]]da
dt AUb, t) A(,I,,t)(

(I-65)

In the steady state equations, as in the transient equations, all geometric considerations are

concealed in the modeling functions. The definitions of these functions (eqs. (1-45) and (1-61) to

(1-65) can be rewritten somewhat by separating out the contribution of fluxes through the tube
surface. If the intrinsic coordinates of the subspace containing A (_,t) are y_ and the coordinates of

the three space are xg, then the subspace can be characterized by functions xk =xg (y_). The covariant

components of the metric tensor b_ of the subspace are expressed in terms of the covariant

components of the metric tensor ggj

\ Oy./ gkj

If ba_ are the contravariant components of the subspace metric, then we can define

B_-b_V(OxJ/Oy_)gjk and write B_=-axg/Oy _. These two quantities satisfy Bk_B_=6_, where 6_ is a
Kronecker delta, and they can be used to define the projection operator _ for the subspace by

_ k
P_j=B_B_. Now for any vector, say gk, it can be shown that

\Oya , _ /

where gV=B7g' and [1_) are the Christoffel symbols of the second kind for the three space. From this
it follows that we can write

Vigi = Vaga + ( Vigi-- XT_gc_) = Vaga + ( _-- Vjgi-- gi - p

16



If we now apply Green's theorem in the subspace, then

1 f 1 [A($,t) A($,t)vigi da=A(fP, t) C(O,t) JC($,t)

A(_,t)

This formula can now be applied to all divergence terms in the definitions 0-45) and (I-61) to 0-65)

to separate the fluxes through the tube surfaces from the other contributions. While this rewriting is

not significant for the further developments in this report, it should facilitate the writing of suitable

functions to model the quantities defined in equations 0-45) and (I-61) to (I-65). In this same vein,

as I have previously indicated, it might be desirable to replace M by the more meaningful 9_. In

particular, it is the combination M-1 dM/dt which appears in equations 0-56) to 0-60). An

expression for this factor can readily be obtained by differentiating _=M(w) and eliminating
d(w>/dt between this equation and (I-60).

1 dM (w_)(ld_J]_ t _ )M dt - w dt +P-(-_ -2

This may be used in equations 0-56) to (I-60), and it eliminates the need to specify dM/dt. When this

substitution is made into equation (I-60), we find

p(W)----_+P(t) =p(w)2 - --w 91_,dt+_

It is apparent that a considerable simplification in this differential equation is achieved if the right

side vanishes for then it reduces to the usual form of the one-dimensional "momentum" equation.
Since on physical grounds p<w>2 is positive, we see that

d(w)
p(w>_ +/_(t) =0

if and only if fv = (w > or

1 dg_ P
-- _+--=0

dt p(w)2

Similarly the addition of equation 0-57) to equation 0-59) gives a differential equation from which
we easily deduce the analog of energy conservation in flow systems.

d[<h)+ (0)] =#(t)

l dM
pg(t) =-I:I(t) +/{(t) +p[(h-+(_) - ((h)+ <0>)] Mdt

(I-66)

where (h>+ <O> =constant if and only if _(t) =0.

Unlike the usual steady state equations, the equations of this section involve two scalar velocities,

namely, the normal component vknk= w and vkvk= v2. Since w2 is not necessarily equal to v2, there is

no reason to expect that (v2) will equal (w)2 or to insist that _ equal _v2. Indeed, the subtraction of
equation 0-60) from equation 0-59) gives

17



p d x A r 1 1 dM cl(fl)
2-_( (v2)-(w)2I=JS+_+I_+Pt6-(O)-(w)(fv-<w))J f/I -_ P dt

I ; I=tJ-FQ-I-/_+p v2-w2 (v2)-(w)2 -t- [<w)_ _]2 q-_-<n) M dt
2 2

Thus from this differential equation follows the theorem that (v2) = (W)2 if and only if (v 2) equals

(w)2 for some t and

l l dM d(f_)P+Q+/_+ 2 [(_- _'2) + ((w) - fi') 2 + 2(f_- (fl)) dt P---d-i -=0

This represents a constraint on the modeling functions which one may or may not wish to impose, but
it certainly can be satisfied in many ways. Obviously it could be written in terms of 9_ - l di_/dt by

substituting for M- l dM/dt. The imposition of the conditions

(nx))#
do,_ =0, P= <p), fv= <w), 2Vx=

(_x-
dt (w)2

15 d([2) (/_- (h))/6
/5+Q+K+ 21[_- fv2+2(_- (f_))] _ --,o _ =0, P+ Q=/:/+ (w)2

on the general steady state equations of this section, together with the assumption that p, (u), (h),

(p), and (nx) are interrelated by the usual thermodynamic formulas and that A-1 _ARX da is

modeled by the usual rate expressions, produces the conventional steady state equations. These are

• , d<w) d__.p____:,=0
d____=0, oA(w)=_h'_, p_w)_+ dtdt

S (W)2d(nx) =A-I Rx da, (h)+
dt A 2

-- = constant

The function e(t) defined in equation 0-66) usually will be nonzero, and a simple quadrature of

the differential equation in (I-66) establishes that

(h)2+ (O)2-((h)l + (O)l)=Ae=e(t 2) -e(tD= stt2 d(t) dt

But if F-= <v2)/( w )2, then this equation can be reexpressed as

r2((w)2) 2 - rl(<w)O 2= 2[Ae- [(h )2 + (fl)2 - (<h)1 + (fl)l)ll

If this equation is supplemented by an equation for the increment in O_

P2A2(w)2-PlAl(W)l = AO_----_2-- OTL1
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thenthispair of equations can be solved simultaneously for (W)2, in terms of I'], F2, Ae, and AO_L.
This can then be used to calculate _2 and from it 9_ 1.

2 )l 2 2 -10_l=k_ 1 A_]'_"t"PlA 1 f (P2_. 2_2 _2r2-1 (1 rlP_uZl2 _LXPIA1,/ L _}

X (Ae-(h>2- (fl>2+ (h)l + (fl)l)

(+ \r202A21 I 2 2 (I-67)F2p l_l I

If AgE equals 0, Ae equals 0, and (h) 2 - (h) 1 is replaced by its approximation for an isentropic

process in an ideal gas, then this equation reduces to the steady state flow equation, which is used as
the basis for flowmetering. A generalization with the same basic form, valid even if Ae ;_ 0 and the

flow is nonisentropic, can be obtained from equation 0-67) with A9_=0 and no other

approximations. Suppose we consider a thermodynamic process characterized by the curve

p = kp_ (I-68)

where k and x are constants. For such a curve it is true that

x;elx( r _ l )- lplp_ l [1- ( P2 _ (x- l)/x]

_Aq=_(q2_ql)_S_, 2 p_l dp= \Pl/ (I-69)

Lplp_l ln(p_) r=l

If the constant x is taken to be the isentropic exponent 3,-(0 In p/O In P)s for an ideal gas, then the

curve is an isentrope and for such a case Aq= (h)2- (h)l" Using only the form of Aq given in

equation (I-69) together with equation 0-68) and the assumption A9_ = 0, we can write _ff'L1 exactly in
the form

p,A2i,_(p2_(pl)l/_, 2Plpl - 'K(K- l)- 1[tT- (p2/pl)('_- ''/'_] 1 ./2
...... r;el

\-_1/ -_2 k(pl/P2)2/._ (rlA22/i,2A21)(p2pl/./plpl/92
0_1 = (I-70)

plA2F_ _ _ P2 L(p,/p2)2/_- (r,A2/r2A'--'_)(p2p]"---/_/p_l/_)2 K= 1

where o is defined as

f l 4- (Ae+ <_)1 - (_)2 + (h)l - (h)2+Aq) (x- 1)

rplp _- 1 x ;e 1
o= (I-71)

(Ae+ (fl)l - (fl)2 + (h)l - (h)2 + Aq)

PlP_ 1 x = 1

Even though the equations of this section have been called the steady state equations, they are not
restricted to steady state phenomena. Steady state phenomena are characterized by the vanishing of

all temporal derivatives, and that assumption has certainly not been made. Both the function t_(xk, t)

and the function • (t) may depend explicitly on time. Suppose that the function _ (xk, t) is chosen to

be a solution of the equation
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+Akv =O
Ot

where Ak is some velocity. If A k= vk, then the surfaces of constant _ propagate with the flow, and

hence the fluid particles on a given surface always remain on the same surface although the surface

itself propagates and deforms as a result of the flow. To use the velocity vk in such a manner implies

that the flow field has already been determined or else prescribed.

Should it be desirable to employ a distance as the independent variable rather than time, then this

can readily be done. Suppose we define a distance variable r by

tr=ro+ (w) dt'
to

where ro and to are constants. Then d/dt= (dr/dt) d/dr= (w) d/dr and hence

d 1 d

dr (w) dt

If we were also to make the choice _(t) = (w), then (b(t) equals r+_(t o) -r o, and hence from

equation (I-42) we obtain _ = r + • (t o) - ro and thus

d d

d_ - dr

Any other velocity which depends on t alone could be used similarly to introduce a distance variable.
Conclusions. - Let us recapitulate the results of the preceding two sections. Under relatively weak

assumptions I have derived ordinary differential equations which can be used in the modeling of

reacting fluid systems. One system of equations (eqs. (I-19) and (I-32) to (I-35)) corresponds to a

generalization of the usual transient equations for spatially homogeneous systems, while the other

system of equations (eqs. 0-54) and (I-56) to 0-60)) is a generalization of the usual steady state, one-
dimensional flow equations. These equations were obtained without the assumption of any kind of

spatial uniformity, without the requirement that temporal derivatives vanish, and without neglecting

dissipative and transport effects. The derivation did use the partial differential equations governing

the evolution of fluid systems, but no assumptions were made about the form of the constitutive

relations. In both cases the boundaries of the physical system may be movable and permeable to heat

and mass. There is a significant corollary to the two systems of equations and the fact that chemical

kinetics experiments are usually analyzed for rate constants by ordinary differential equations. In the

transient case the modeling function for the species production rate represents the volumetric average

of the local production rate, while in the steady state case it is the surface average. These two averages

cannot be expected to coincide with each other or with the local production rate except when we have
uniform conditions within the volume or on the surface. Since experimental systems used to measure

rate constants may exhibit compositional nonuniformities, the two types of experiments can be

expected to give different rate constants. Finally, let me point out that in the application of the

differential equations to physical problems it may be desirable to use various combinations of the two

systems of equations.
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Specialization of Differential Equations for the Internal Combustion Engine

The Otto cycle can be decomposed into two distinctly different phases of operation: the

combustion phase, characterized by the presence of a propagating flame front, and the
noncombustion phase, identified by the absence of a flame front. The combustion phase begins with

the ignition of the combustible working fluid by the spark plug and terminates when the flame has

completely engulfed the combustible working fluid. Of course, the completion of the combustion
phase does not signal an end to chemical reaction for this continues during the following



noncombustionphase. Flow in the intake or exhaust systems can alter the amount of working fluid
during either phase of the cycle.

A set of equations for each phase can be written from the equations just derived; however, it will

be convenient to alter some of the notation used there. Only tensors of rank zero, namely scalars, will

be encountered from now on. Thus Latin indices will no longer be tensor indices but may be used for

any other labeling purpose. Angular brackets, (>, which were used to distinguish between a local

property and its average over a region of space are no longer necessary; henceforth we shall always be

dealing with average properties and consequently the use of angular brackets will be discontinued. It

will also be convenient to assign a new meaning to the labels (±) which appeared in equation (I-36).

From now on the label ( + ) will refer to the intake system while ( - ) will designate the exhaust system

and this notation will be used in place of the barred Greek indices. At the piston face the barred

Greek index will be suppressed entirely. Finally, the volume average of the volumetric species
production rate will be simply written as Rx. The customary choice for the independent variable is the

crankangle, 0=0(t), where 0=0 corresponds to minimum cylinder volume, top dead center. The

crankangle is then incremented by 47r radians per cycle although its value is commonly given modulo

4r. The transformation from time to crankangle introduces the angular frequency o: = dO/dt into the

equations. These notational alterations, when applied to the transient equations (1-19) and (I-32) to

(I-35), yield the differential equations for the noncombustion phase.

dlnp_dlnM din V
dO dO dO

du _ _ ! [_p, dV - dM( + _(_) dM(-)-_ =M -_ + h(+) a_ ) + dO udO

dnx-RX+M-lIfi(x+)dl_+)+n(x-)dl_-)dOpo: nx dMdo _x] (I-72)

dM dM( + ) dM(- ) dM( + ) dM(- )
dO - dO + dO " dO -_/(+)' dO - M(- )

The first four of these equations correspond to (1-19), (1-32), (1-34) and (1-35). Built into these

equations is the assumption that mass can enter or leave the cylinder only through the intake and

exhaust systems; blow-by of gases past the piston is neglected. Also I have assumed that the cylinder
volume is altered only by piston motion, that is, dlA+)/dO = 0 and dlA-)/dO = 0. These equations

(1-72) are supplemented by the assumption that u, p, and n x are related to all other thermodynamic
quantities by the usual thermodynamic expressions. This enables us to obtain differential equations

for the other thermodynamic quantities from those for u, p, and nx. For example, we know that

u = u( T,p, nx) and we obtain, by differentiation, a relationship among derivatives.

du Ou dT cgu dp Ou dnx

dO - OT dO + a--p _ + Onx dO (I-73)

This immediately becomes an equation for T if duldO, dpldO, and dnxldO are eliminated with
equation (I-72) and the resulting equation could be used in place of the equation for u.

The equations become considerably more complex for the combustion phase and so too does their

description. During combustion the working fluid is assumed to be partitioned into burned and

unburned gases by a flame zone whose material and energy content may be neglected. The sole

function of the flame zone is to establish the partition and initiate chemical reactions in the working

fluid as it passes through the flame zone. The burned working fluid is labeled with a 1 and the

21



unburned with a 2. The intake and exhaust system continue to be designated by ( + ) and ( - ) and the

flame zone region with b.

d In Ol _ d In M 1 d In V 1
dO dO dO

dUl -M_ -1 -p_ + + l- U 1
dO --_ 111 -_ dO dO dO

,_dM 1 (_1 I(1]dOldo=M_ I [ 01 d-O _-ul _ + dO -_--_ + --,_ + --,_

dM 1 dM(1 +) dM_l-)+dM_ b, dM(l+)__l+) dM(l-)_)_l -)
dO - dO I- dO dO " dO dO

d In 02 _ d In M2 d In V2
dO dO do

(I-74)

dU2_M21[ ,dV2--(+) dM(2 +) -.(-) dm(2 -) dM(b) riM2 Q..2]dO I-P2 d--O + ]'12 _ + 112 -_ + h(2b) dO u2 dO

dO Lv2 d-O dO T--02--_ - + -- + --_

dMg"do- do + ,T" do" do do

dM[ b) - dM(2b)=l_lb>_O
dO dO
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The first four and the eighth through eleventh members of equation 0-74) were obtained by the
application of equations (I-19), (I-32), (I-34), and 0-35) to the burned and unburned parts of the

working fluid. I neglected piston blowby and, by again assuming that intake and exhaust valves do

not alter volumes, I set dV] +)/dO=O=dI_-)/do and dl/2 +)/do=O=dI_-)/do. The last member of

equation 0-74) imposes the conditions that burned gas is created only at the expense of unburned gas

and that the burning rate is never negative. Just as for the noncombustion phase, I assumed that all

thermodynamic properties for the burned and unburned working fluids are completely characterized
by ul, Pl, r/_1) and u 2, P2, n_2), respectively. Naturally the average values of the corresponding

variables for the total working fluid are related to those of the burned and unburned gases in a simple

way



Mu=MlU 1+ M2I/2, Mnx = M1 n(l) + M2nl 2)

(I-75)
M

p=---_, M=MI+M 2, V=VI+V 2

The duration of the combustion phase is determined by specifying the values of M1/M at the start of
combustion, 0 = O0, and at its conclusion, 0 = 0'. I shall assume that the initiation of the combustion

by a spark produces an initial value of M1/M= 10-4 and that the combustion phase is terminated at

a crankangle such that M1/M would equal 0.9999 if dM/dO were zero during combustion.

Hierarchy of Models

General model. - Equations 0-72) to (I-74) become useful tools for predicting the behavior of the

internal combustion engine only after the functions on the right sides of equations (1-72) and (1-74)

are specified completely. These modeling functions offer us an opportunity to mold these general

equations into a descriptive tool for the internal combustion engine with some appropriate specific

choices. Those choices are dictated by our experimental and intuitive knowledge about the behavior

of real engines. Unfortunately our knowledge of the physical processes taking place in the internal

combustion engine is so meager, as I already pointed out in the Introduction, that it is impossible to

make definitive choices for the modeling functions. The best one can hope for is the selection of

functions, with adjustable parameters, which are capable of accommodating a broad spectrum of

behavior. One hopes this broad spectrum will contain the actual behavior as a special case. In this

event the parameters contained in the modeling functions could perhaps be determined by a

comparison of model calculations with experimental data. However, since the differential equations

are nonlinear, it would not be surprising if the parameter set obtained in this manner were not

unique.

My choices for the modeling functions will be described in several stages. In this section I shall

present those choices which are applicable to the most complex and sophisticated model in the

hierarchy of models. Subsequent sections will be devoted to progressively greater specializations of

the general model which will yield less detailed, and hence somewhat less realistic, descriptions of the

operation of an internal combustion engine. An obvious advantage of a simpler model is that it

requires less information to characterize it completely than is necessary for a more detailed model.

This permits calculations even in those situations where our knowledge is inadequate to characterize a

more sophisticated model.

General assumptions: For the noncombustion phase I have elected to write

P*=P, Q.=hA(T-Tw), A/-X=0, /_=-Q+ [ aM -(+)dM (+) _0(_)riM(-) ]
¢o lO -dff - 0 -_ dO j (1-76)

with similar forms for the combustion phase.

P_=Pl, Ol =hlAI(T1- Tw), P0(2)=0,

[dM, 0(-' ,<+'=0/_1 =- 01 +w 01-_--0{+) d0 1 dO J'

P_=P2, Q2=h2A2(T2 - Tw), /(/(2)=0=R (2)

(1-77)

/_2=- (_2 + w [O2-_0 2 - 0(2+ ) dM_+)d0 0(-) dM(2-)]2 _-_

A 1 A 2 A
_2 ±)=0, PI=P2, MI -M2-M
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Thecontentofequations(1-76)and(I-77)isreadilyverbalized.The"volumefluxaverage"of the
pressureis assumedto beindependentof thesignof theappropriatevolumerateof changeandis
madeequaltothethermodynamicpressure.Theheatflux istakentobeexpressibleastheproductof
a heattransfercoefficient,anarea,andthetemperaturedifferencebetweentheworkingfluidand
someeffectivewalltemperature.Thediffusivefluxesof massareassumedto beunimportantin the
determinationof composition,andno reactionstakeplacein theunburnedgas.Theinletsystem
alwaysremainsclosedduringthe combustionphase,andif the exhaustsystemis openduring
combustion,flowonlyaffectstheburnedgas.Hence,3_/_±)=0and_ +)=0alwayshold.Finallythe
choicesfor/(',/_1,and/_2implythatO,Ol, and02areconstant,andthustheirevolutionequations
can be removedfrom furtherconsideration.For the combustionphasetheseconditionsare
supplementedbytherequirementthatthepressuresof theburnedandunburnedgasesalwaysremain
equalandbytheassumptionthattheareasA 1 and A2 are equal to a mass fraction weighting of the

total area. The latter reflects my belief that the flame propagation is geometrically so complex that

one can never adequately and unambiguously evaluate the wall areas in contact with the burned and

unburned gases. All that one can reasonably expect to know is the total surface area of the cylinder in

contact with the working fluid.

The pressure constraint, written as the next to last member of equation (I-77), and the volume
constraint, which is the last member of equation (I-75), can be viewed as integrals of the system of

equations defining the combustion phase of the cycle. They can be used to define the evolution of the
burned and unburned volumes. The pressure can be regarded as a function of internal energy,

density, and composition, that is, p =p (u, o, nx). Consequently, by differentiation of the pressure

constraint, we obtain a relationship among the derivatives of the internal energy, density, and

composition of the burned and unburned gases. Instead of working with the constraint Pl =P2, it is

more convenient to deal with its logically equivalent form In Pl = In P2.

0 In Pl dUl 0 In Pl d In 01 O In Pl dn (1) _ 0 In P2 du2 0 In P2 d In P2 0 In P2 dn(2)

Ou 1 dO + O In ol dO + O_nx dO Ou2 dO + O In P2 dO + O_nx dO

If the derivatives of u 1, u 2, O1, and 02 with respect to 0 are eliminated with the differential equations

(I-74), then we obtain a relatively simple relation connecting dVl/dO and dVE/dO.

-(Plo{-lalnpl t'Olnpl)dlnVl ( poulO In Ol dO + 20__ 101n0u2P2 + 81np2'_dlnV2oIn 02,] dO

=MElOlnp2[(h(2+)-u2))fl(2+)+(h_-)-u2))fI(2-)-(ht2b)-u2)!f'lb-_]au2

- Mi- 1 0 In Pl[OUl ( h[ +) - Ul)3;/(l+) + ( h_-)-Ul)_l-)+(h_b)--Ul))f4O-(21]--_

O In P2 drt(_2) t9 In Pi dn(_l) + (9 In P2 d In M 2 O In Pl d In M 1+ -- - - - (I-78)
On_2) dO On(xl) dO O In 02 dO O In 01 dO

This equation simplifies considerably under two circumstances. The first arises if the composition of

the gas is fixed, as would occur for the unburned gas. The second arises when the gas composition is

in chemical equilibrium, as might happen for the burned gas. In both of these situations the pressure

could be regarded as a function of internal energy and density alone. As a result the terms on the right
side of the equation involving composition derivatives would be set to zero. Furthermore on the left

side the combination of pressure derivatives is related to the isentropic exponent 3' when the system is
adiabatic.
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(Olnp__alnp ( Ou ) Olnp7--\Olnpjs Ou _ s + Olnp

But if we invoke the first law of thermodynamics

T ds=du+p d(1/o) = du-pp- 1 d In o (I-79)

for an isentropic process, it follows that

Ou

and we immediately have the desired result

lOlnp Olnp
_/=pp- __ + --

Ou 0 In p
(I-80)

I must mention that although the isentropic exponent is equal to the ratio of constant-pressure and

constant-volume heat capacities for the fixed-composition case, this is not true when the composition

is in chemical equilibrium. In practice, it is usually more convenient to treat the pressure as an explicit

function of temperature rather than of internal energy. Since Cv=Ou/OT, it is obvious that

0 lnp/Ou= (Tcv) -1 0 lnp/O In T. Hence

1Olnp Olnp t Olnp Olnp (I-81)

and if the nonreacting gas obeys an ideal equation of state, this combination reduces to the heat

capacity ratio.

Equation (I-78) is one relation connecting dVl/dO and dV2/dO. A second equation is obtained by

differentiation of the last member of equation 0-75).

(--_) dlnV1-----dff--+ (--_) dlnVzd0 _ dlnVdo (1-82)

The volume fractions are easily related to the masses and densities.

F-VI_V2 1 + VII,] = l+M---_2

V 2 V 1 ( M2Pl _-l(M2Pl-V =1- -v = I+M102] \MlP2]

(I-83)

The pair of equations 0-78) and 0-82), supplemented by (I-80) or (I-81) where appropriate and

0-83), can be solved for d In Vl/dO and d In V2/dO.

Volume and area: The differential equations for the combustion and noncombustion phases will be

solved for a prescribed variation of volume and surface area with crankangle. The form of this

variation is easily obtained from the geometrical relationship depicted in figure 4 for the

displacement of the piston x(0) and can be expressed in terms of engine parameters ! and r0.

x(O) =l+ro-(i cos _+ro cos 0) (I-84)
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I /

Figure4. - Pistondisplacementgeometryfor crank-sliderformula.

Geometrically it is clear that I sin _o=r0 sin 0 and hence COS2_O = 1-sin2¢= 1--(/'0//)2 sin20.

Consequently

2x(0)
L

-1 -cos 0+e-l[l -(1 -_2 sin20)l/2] (I-85)

where e = L/2l. Equation 0-85) is the usual crank-slider formula, and from this follows an equation
for the volume.

v(o) = v(o)+ -T- _ --

This formula for the volume is conveniently expressed in terms of the compression ratio

r= V(a-) / V(0)= 1 + IrB2L/4V(O).

V(O) = V(O) [ l +(r-l) [l-c°s O+(l-_/1-_2 sin202 )/_]1 (I-86)

Similarly the area dependence on crankangle can be expressed in terms of the compression ratio and

engine parameters.

26

A (0) =A (0) + T -- (I-87)

But if we use

(a-B2L) (____) 4[ V(a-) - V(0)] 4(r- I)V(0)1¢BL = -- = B B

then

+2(r- I)V(0) [1 -cos 0+(1 -x/1 -e2 sin20 )/el
A (0) =A (0) B (I-88)

The minimum volume V(0), the minimum area A(0), the compression ratio r, the bore B, and the

stroke L are engine parameters which must be specified to define the calculation.

Mass burning formulas: My choice for the mass burning rate function M O is based on my analysis

(ref. 42) of a burning model first proposed by Blizard and Keck (ref. 43). It is essentially a relaxation

approach to burning, as can be easily seen from the governing differential equation.



dMb
¢or _ + Mo=M f (I-89)

If ignition begins at a crankangle 00 and the flame completely engulfs the working fluid over the

crankangle interval [00, 0j], then the general solution to this first-order equation can easily be written

down for a prescribed function Mr(O), the mass enveloped by the flame.

(1-90)

The function F(O) is defined by a quadrature

F(O)=exp(100o dO'_wr/
(I-91)

and P_(0) is its derivative with respect to 0.

The choice of Mfis not wholly arbitrary because on physical grounds Mfmust be a nondecreasing

function of 0, that is,/_/f>_0. But the nondecreasing nature of Mf is adequate to establish that the
resulting M b is also nondecreasing as required in equation 0-74). It is easily seen from the differential

equation (I-89) that for _0r-- 0 we have M b = Mf and hence 3)/b _ 0 if and only if 3;/f_> 0. When _or > 0,

the differential equation (I-89) shows that M b >_0 if and only if M b-Mf<_O, and an integration by

parts in equation 0-90) establishes an expression for Mb-M f.

[Mb(O) -Mf(O)]F(O) =Mb(Oo)-Mf(O0)- IO0odO'F(O')29If(O')

But F(0) >0 for all 0>_00 and thus _/f>_0 and Mb(Oo) -Mf(O o) <_0 imply Mb(O) -Mf(O) <_0 for all 0,
which establishes A)/b >__0.

Two broad classes of functions will be considered for the function Mr. The first class, referred to as

Fourier burning functions, are of the form

( Mb(Oo)+[M(Oo)-Mb(O0) ] _ an cos nrz O0<_O<_Of

n=O

Mr= , (I-92)

M(O0) Of <0

where z = (0 - Oo)/(Of - 0o). The name simply refers to the fact that this is nothing more than a Fourier

cosine expansion of Mf, which in practice will be truncated to a finite number of terms. The
expansion coefficients an are restricted by the conditions that Mf (0o) =Mo(Oo) and Mf (Of) =M(00).
These lead to the requirements

oo

]_ an=O
n=O

Y] an(- 1)n = 1
n=O

and can be expressed as separate conditions on the even and odd coefficients.
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oo
_._ a2n = 1/2

n=O

_a a2n+l=-l/2
n=O

(I-93)

The condition __/f_> 0 places another constraint on the expansion coefficients.

_ na n sin nrz-<O (I-94)
n=l

This can be translated into conditions on the expansion coefficients for the special case where an = 0
for n >4. Then it can be written as

a 1 sin 7rz+2a 2 sin 27rz+3a3 sin 37rz= (sin rZ) Ial +4a 2 cos 7rz+3a313 -4(1 -cos2 7rZ)] l --<0

by using trigonometric identities for the sine of twice and three times the angle rz. Since 0_z_ 1,

sin rz is always positive and vanishes only at the ends of the interval. Consequently we are left with
the condition

al - 3a3 + 4a2 cos 7rz + 12a3 COS27rz < 0 0-95)

Examination of the behavior of this quadratic function of cos 7rz over the interval - 1 _<cos rz_< 1

leads to conditions on a 1, a2, and a3 for various conditions.

-1/8_<a3_<1/16+ min [a2,-a21/2

If a3=0, then la21_< -al/4= 1/8

If a2< -6la31 and a3 ;_0, then a I + 9a3-4a2_<0

If a2 > 6 la31 and a3 ;_ 0, then al + 9a3 + 4a2 _<0 (I-96)

If -61a3 [_<a2_<6[a3 ] and a3 >0, then maxla I + 9a 3 -4a2, al + 9a3 + 4a2 / _0

If - 6 ]a31-<a2 _<6 [a3land a3< O, then al - 3a3 - (a2)2/3a3 _<0
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Substituting the expression (I-92) for Mf into the general solution (I-90) and assuming 00r to be

independent of 0 give a simple expression for M b and its derivative M b.



Mb=

oo

Mb(Oo)+[M(Oo)-Mb(Oo)] c°sn"z+ sin n z-e-" ix]

1 + (Xn)2 J

Mb(Oj)+ [MtOo)-M (OI]]{1 -e-tO-Oz)/ r] Oz<O

ao<_O<_Oy

Mb _

[ - Xn sin nrz + ( Xn ) 2 cos mrz + e- rz/X ]<,.
wr n=0 1 +(hn) 2

[M(00)-Mb(0/)] Os<O
607"

(I-97)

Oo<_O<_Of

The parameter X is defined by h = r_or/(Of-O0). When oor= 0, we have Mb=M f and consequently

i oo

it=

0

na n sin nrz 00<_0<_0 f

Of<O

wr = 0 (I-98)

The special choice a0 = 1/2, al = - 1/2, and an = 0 for n = 2, 3 .... gives the cosine burning function

used by Blumberg and Kummer (ref. 23) for the case wr=0. The addition of just one other

parameter, a2 or a3, enhances the flexibility of Mf considerably. From equations (1-93) and (1-96) we

have that for a3 =0, la2[ <1/8, while for a2=0 we find that -1/8-<a3-1/16. The behavior of Mf

for the two extremes of parameter values as well as for the Blumberg-Kummer Mfare shown in figure

5. Increasing a2 tends to displace Mf to higher values of 0, while decreasing a3 tends to rotate Mf

nonuniformly in a clockwise direction about its midpoint. The value of Mf at the midpoint of the z
interval is determined by a0 - a2 in the four-parameter version of Mf.

The second class of functions used for My is a two-parameter family with the structure

" Mb(O0)+ [M(Oo)-Mb(Oo)][1 +e-°_+(Z_-1- 1)] O0<O<Of
Mf = (I-99)

_. M(O0) Of<O

with the two parameters c_ and/3 presumed to be independent of O. If a and B are constrained to
satisfy the condition

or/7= (Of-O°) >0 (I-lO0)
6O7"

then it can be verified that

f M b (0o) + [M(0o) - M s (0o) ] [1 - e- c_ze] 00 _<0 _<Of
Mb= (I-101)

Mb ( Of) + [M(O0)-Mb(Of)][1 -e -(°-°A/'°r} Of< O
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and Mf as given in equation (I-99) satisfy the differential equation (I-89). The expression for M b in

the interval 0o<_0<_0 f coincides with the burning function introduced by Wiebe (ref. 44) and used

recently by Tabacyznski and Klomp (ref. 45). The derivative of equation (I-101) has a very simple

form.

I [M(Oo)-Mo(Oo)] z__le-_Z_ Oo<_O<_Of

COT

w (I-102)

J_/a= [M(O°)-Ma(O/)] e-(°-°I)/_°_ Of<O
COT

The product a/3 is positive as indicated by equation (I-100). But to assure that M b takes an

appropriate value at z = 0, it is necessary to require that/3 be positive, and consequently, o_ also must

be positive.

The function 0-99) contains a degenerate case, in the sense of violating equation (I-100),

corresponding to c_= 0. In particular if 13= 2 and t_ = 0, we obtain the linear burning expression
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Mb ( O0)+ [M(00) - Mb ( Oo)]Z Oo<-0<-o:

M(Oo) Of< 0

This gives an extremely simple expression for M b and A_//,

M_

Mb(O:) + [M(Oo)-Mb(O:) ](1 -e-t°-°:)/_9

[M(Oo)-Mb(O0)] [1 _ e- ,o-oo)/_r]x o=

Oo_-O__Of

Of<O

Oo<--o<_o:

Of<o

(I-103)

(t-lo4)

Heat transfer coefficients: At the present time there is considerable uncertainty about an

appropriate expression for the heat transfer coefficient in an internal combustion engine. This

situation arose from two principal factors. The first was, and is, the relative paucity of good,

published, experimental data on the heat loss from an engine. The second was the inability to carry

out sufficiently detailed model cycle calculations to permit a comparison of experiment and

calculation with a view toward extraction of heat transfer parameters from the comparison. This has

not deterred people from proposing many different expressions for the heat transfer coefficient.

Annand (ref. 46) reviewed eight such formulas proposed before 1963, found all of them wanting, and

suggested his own version. Subsequently Woschni (ref. 47) gave still another formula. Of all of the
suggested formulas the one propounded by Eichelberg (ref. 48) is probably the most widely used.

I have chosen to calculate the heat transfer coefficient from a formula that is sufficiently general to

encompass a number of the suggested forms.

-h=Cl + C2 ( + ) (Pr)a(Re)b + c3 _ + c4vl/3(p T) l/2 (t-lO5)

The Prandtl number is defined in terms of the constant-pressure specific heat, viscosity, and thermal

conductivity by the formula

Pr = _ (1-106)
k

and the Reynolds number is defined as

Re- Dvp

The velocity v is obtained from the expression

(I-107)
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b2°_ dMb (1-108)
O=blVm+ (1-bl)op+ 7VI(0) dO

where D is a length usually set to the bore B, bl is a dimensionless parameter, and b2 is a parameter

with the dimension of length. When b2=0 and bl=l, the velocity is the mean piston speed

vm=Lco/rr, while for b2=0=bl it is the piston speed whose value can be calculated from the

derivative of equation (1-85) with respect to time.

71"

Up= _V m sin 0[1 +e(1--e2 sin20) -1/2 cos 0]l (I-109)

The last term in equation (1-108) attempts to account for augmentation of heat transfer by

combustion. Such an effect was suggested by Woschni, who used the pressure difference between the
fired and motored engine to characterize the phenomenon. This approach is computationally and

philosophically unsatisfactory for its implementation requires a knowledge of the motored behavior

and implies that the fired engine must somehow base its response on its motored behavior rather than

on its current condition. The choices c2 = c3 = c4 =0 made in equation (1-105) give a constant heat
transfer coefficient, while the choices Cl = c2 = c3 = 0 give the Eichelberg form for the heat transfer

coefficient. The Annand heat transfer coefficient corresponds to Cl =c4=a=0 with V=Vm and

D = B. The well-known Dittus-Boelter correlation for heat transfer accompanying turbulent flow in a
pipe is obtained for Cl = c3 = c4 = 0. Karim and Watson's (ref. 49) expression for h corresponds to

Cl = c3 = c4 = a = 0 with D equal to the piston-to-head distance and v = vp.
Intake and exhaust flow: The equations for M(4.) are based on the form suggested by equations

(I-70) and (I-71). Suppose that the subscript 1 refers to "upstream" conditions and 2 refers to

"downstream" conditions in the sense that P2-<Pl. Then for "I1 # 1

( - b{ - -- j
IM(4")I=

{. (p,/p2)2/_,-b{4.} j

p2/Pl > (p2/Pl)c

(I-llO)

(/92//91)--<{p2/Pl)c

where

e{ 4")(q/1 -- 1)
a(4-)= 1 +

71PlP/- 1

while for "YI= 1

[

where

p2/Pl > (p2/Pl)c

p2/Pl <-- (p2/Pl)c

(I-111)

(I-112)

e{ +)
o( 4-) = --I

PlPl-
(I-113)
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The direction of flow is always from the higher to the lower pressure, with )1)/(+) chosen as positive

when the flow is into the cylinder. As a result we can express the mass flow rates for the intake and
exhaust systems as

3;/( + ) = 1/I//(+ ) [sgn(Pm -p)

Me- ) = I_r_- ) ]sgn(Pe-p)

(I-114)

where Pm is the inlet manifold pressure, Pe the exhaust system pressure, and p the pressure in the

cylinder. The critical pressure ratio (PE/Pl)c is the value of the pressure ratio for which 1._/( +)1 attains
its maximum value. Its value can be calculated as the solution of

P2) (3`1 q" 1)/3'12°(±)-(71+1)(P2_ (Vl-1)/3`i+b(±)(71-1) Pl =0
\Pl / c c

1 _2o(+)_bt±)(P2')2+ (P2)£-_1/c 2In Pll c=0
3_1=I

3'1#1

0-115)

where equation (I-115) is obtained by setting to zero the derivative of ]/1)/(+)] with respect to p2/Pl
and canceling all nonzero factors in the expression for the derivative. The values of A (±) with

dimensions of length squared, e(±) with dimensions of energy per unit mass, and b (+), which is

dimensionless, may be explicit or implicit functions of crankangle but not of pressure ratio. Since

]3)/( *)] > 0, then A (±) >_0 and, because 13)/(*)[ must be real, o_±) and b (+) must be such that the

argument of the square root in equations (I-110) and (I-112) is nonnegative. The equations for

]M C±)[ reduce to the conventionally used equations when e(+) = 0 = b (±) and A t+) equals an area
multiplied by a discharge coefficient.

Just as there is an uncertainty about a suitable expression for the heat transfer coefficient, so too

there is an uncertainty about the correct forms for the functions A (+), e (+), and b (±). Clearly these

quantities must reflect the geometrical and fluid mechanical realities of the poppet valves used in
internal combustion engines. The experimental studies by Woods and Khan (ref. 50} and Woods (ref.

51) on single and twin poppet valves, respectively, at least point to tentative choices for A (*), e (+),

and b (+). They investigated both normal and reverse flows through poppet valves as a function of

valve lift, pressure ratio across the valve, and wall proximity. The experimental results were expressed

as a dimensionless, effective, cross-sectional area for flow Aef f. Their definition of Aef f can be
expressed relatively simply in terms of A (*), _(±) and b (+) by using equation (I-110).

Aeff--- pl[_.(d( ±)2)/4 ] lPl- l')'l(T1 - 1)- 1 1 -- \Pl/ J

--F A(±) ]I[ P2 3`1/(3`1-1)-1L _r(d(±)2)14J a(+)- (_l) ]

"] ,
The geometrical situation, illustrated in figure 6, is governed by such factors as valve lift, valve seat

angle, valve diameter, valve thickness, and a variable which we do not consider explicity, wall
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J d(±)

Figure6. - Poppetvalvegeometry.

proximity. The actual cross-sectional flow area is calculable from these and, relative to the minimum
cross-sectional area of the valve 7r(d ( 4-))2/4, is given by 4(l ( +)/d (_-)) cos/3 (±) to first order in

! ( +)/d (±). Actually since the flow area can be viewed as the surface of the frustum of a right cone,

the exact expression is given by

4A (_-) !(±) /3(4_)[1flow =4 -- cos + ¢x(±)(/( ±)/d(±))]
lrd( ±)2 d(±)

where

(I-116a)

34

or(±)_ 2 cos2/3 (±) 1
+ _ sin 2/3(±)

tan/3(±)
(I-116b)

Strictly speaking, the expression for A (±) is valid only so long as/(±)cos2/3 (±) <t (±) Suppose that
flow -- "

the fluid mechanical behavior can be characterized by a Reynolds number Re (±). It is convenient to

base the Reynolds number on the valve lift, a mass flux calculated from [._/(±) [, and the actual cross-

sectional area. This leads to the Reynolds number

Re(±)_ l(±)lM(±)l _ [1 + oe(__)(/(±)/d(±))] _ 1
nA (±) lrd ( ±)_1cos/3(±)
'l flow

(I-116c)

which is dependent on valve lift. The first factor corresponds exactly to the form of the Reynolds

number used by Whitehouse et al. (ref. 15). The value of Re (±) can be expected to be about 106 or less

under typical conditions. The experimental results were shown as a parametric family of curves of

A;ff versus l ( ±)/d (±) with pl/P2 as the labeling parameter. But for a fixed geometrical situation,
134_±) I increases monotonically with pl/P2 and consequently so too does Re (_'). Under these
circumstances pl/P2 can be replaced by Re (±) as a parameter without altering the nature of the

curves for Aef f. With this understanding we can interpret the experimental results for Aef f. For small
l ( ±)/d (±) (<0.1), all curves coalesce to a single linear curve with a slope of 2.6. This value is very

close to 4 cos/3(±)=2.8 for /3(_-)=7r/4, which corresponds to the valve seat angle used in the

experiments. In fact, less than a 4* increase in/3(±) is all that is necessary to get full agreement with

2.6. This suggests that for small / ( ±)/d (±) the area A (±) is in fact the actual flow area. For larger

values of i ( ±)/d (±) the experimental A'ef f falls below the extrapolation of the initial slope and
becomes dependent on the Reynolds number with Aeffincreasing with Re (±) for a fixed i ( ±)/d (±).



The general appearance of Aef f seems to be that of a function quadratic in 1( +)ld (*) with a
maximum somewhere near the maximum value of 1( *)/d (±). If all of the dependence on valve lift is
ascribed to A (+), then e (*) and b (±) will depend only on Re (_-). In light of these observations I shall

write expressions for A (*), e (±), and b (*) which seem adequate for the representation of the
experimental observations.

A(*) _ 4A(±)(flow 1 1(_)_ [AI±'+A_±)(Re(±)×IO-6)A_±) ]
_r (d ( ±))2/4 r(d ( ±))2 21_±) ]

Ple(_ ±) - [_+) + E(E±)(Re( ±)× 10-6) _:)] (Re( ±)x 10-6) E(4_:) (I-117a)

b (±)-b(±)+b(*)(Re(±) lO_6)b_ :_)-- 1 2 " X

In evaluating of the right side of equation (I-117a) the assumption is made that A_±)=0 implies
A(2±)=0, that E(.±)=0 implies E_±)=0, and that b(-±)=0 im,qies b(±)-0 I
parameters l(o±), _1_ ±), " 3 _" 2 _ . assume that theE_ ±), and b_ *) can depend only on the sign of M(*), that is, they are

constants whose values depend solely on the direction of flow. Furthermore, since it is physically

necessary that P2/Pl = 1 implies h/(±) = 0, the constants E_ ±) must be chosen so that e (±) = 0 when
Re ( ±)=0. The factor 10-6 is included with Re (±) for scaling purposes. The valve lift 1 (±) is an
explicit function of crankangle taken as

1(±)

d_ =P(±)(x(±))

¢-

10

_, rnXn,
n=l

P(x) =

x<±):

10

rn = 0 (polynomial form)
n=l

( _ -1)X(1 -X) exp \ n = l rnxn
(exponential form)

(I-117b)

where the rn are constants which must be determined by fitting experimental data.

The capability of the functions (I-117) to generate an Aef f function similar to what is obtained
from experimental measurements is shown in figure 7. The curves were calculated for air at an

upstream pressure of 1 atmosphere and a temperature of 298.15 K. The viscosity was approximated

as 1.7 x 10-4 poise and the first order approximation to the flow area was used (ct(±) = 0).

While equations (I-110) to (1-117) do completely define h/(±) during a cycle, they do not

completely determine M ( + ) and M ( - ), which still contain arbitrary constants of integration. The

definition is completed by specifying a value for each function at some point in the cycle. Suppose

0o(±) and 0c(±) are the crankangle values for valve openings and closings, respectively. It is convenient

to complete the definition of M (-) by choosing M (-)(0(o-) ) = 0 for this makes M (-) continuous

over the cycle except at the point 0(o-), where it experiences a discontinuous change from a negative
value to zero. For the intake system it is convenient to position the discontinuity in M ( + ) at the point

where it achieves its maximum value. This will occur at or slightly before 0(+). Such a choice assures
us that M ( + ) _<0 prior to intake valve opening and virtually guarantees that M ( + ) will change sign

only once during a cycle for reasonable choices of 0(o+) and 0(+). This difference in location of the
discontinuities reflects the differing roles of the intake and exhaust systems. A sketch of 3;/(±) and

M (±) is given in figure 8. As defined here, both M ( + ) and M ( - ) are nonpositive at the start of a

cycle (0 = 47rn, n = 0, 1, 2 .... ).
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To complete the characterization of the flow, it is still necessary to specify how the state of the

fluid changes as it flows from the upstream side to the downstream side. I shall assume that the

composition is unchanged as the gas flows through the intake or exhaust system; however, the

thermodynamic variables will be permitted to change in one of two possible modes. The two

processes are, in a sense, representative of the extremes of all flow processes. The first possibility is

that the flow is isentropic. From the first law of thermodynamics (eq. (I-79)) it follows that for such a

process the change in internal energy is

p2u 2 - u 1 = - p d(1/p)
pl

and corresponds to a maximum consumption of internal energy during the flow because the pressure

opposing the flow is always the local gas pressure. For the second possibility we assume that a smaller

amount of internal energy is expended during the flow, an amount equal to that calculated when p in

the integrand is replaced by the constant downstream pressure P2, which is always less than or equal

to the local pressure. That is, the second type of flow is characterized by the condition

.2 - .1= oF')

which can be written in an equivalent form.

h2=hl + P2-Pl
Pl
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The thermodynamic changes associated with the two types of flows can be summarized by relating

the lower pressure (downstream) state to the higher pressure (upstream) state.

Initial state

nx(1), s], Pl, hl

Final state

nx(2) =nx(1), P2, s2=s1 (isentropic process)

nx(2) = nx(1), .02, h2 = hi + (P2 -Pl)/Pl (minimum u change process)

(I-118)

Now that M (±), 3;/(±), and the change of state accompanying flow have been defined, it will be

convenient to define for later use a function of crankangle which serves as a measure of some average

property for material which has emanated from the cylinder to that point in the cycle. We shall

separately need such averages for the exhaust system and the intake system. Since some of the

material leaving at one point in the cycle may return at a subsequent point, we need an average which

is representative of the net efflux through the intake or exhaust system. Suppose Uis a characteristic

function defined as

U(x) = _ 1 x<O

L 0 x_O

0-119)
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and ¢, = ¢_(0) represents some property per unit mass associated with the effluent stream, such as
enthalpy or moles of species. Furthermore define the nodes of 3;/(+) as those points for which

3;/(±) = 0 and for which the value of M (±) changes sign as the point is crossed. Label the nodes

sequentially by 0_ +), k= 1, 2 ..... such that 0t ±) coincides with a discontinuity in M C±). Then the

average _(0)(±) is defined sequentially as the crankangle increases beyond 0 t±).

_(0)(±) =

0 at discontinuities in M (±)

0
,_ _(0')M(±)(0')U[M(±)(0')] ao'

i0]+ ,2, aO'
Ok

k= 1, 3, 5 ....

(1-120)

A couple of observations about this function should be made. First, _(±) is reset to zero at all

discontinuities in M (+). Second, the value of 2 (±) remains constant over those crankangle regions

where MI±)_>0 because the integrands vanish there. This definition defines _(±) from one

discontinuity of M t ±) to the next. The value _(-)(0(c-) ) represents the mass-averaged value of
contained in the exhaust. A sketch of _(±) is shown as a part of figure 8. Naturally if _b were a

nonnegative property, then _(±) would also be nonnegative.

Mixing of flow streams: During a cycle calculation it is sometimes necessary to mix two or more
streams externally to the cylinder. Examples of the formation of such mixtures are the mixing of the

reactants, typically hydrocarbon fuels and air, at their ambient conditions, and the mixing of these

reactants with recirculated exhaust gases to form the fresh charge for the cylinder. Even the

formation of the composite exhaust gas, which represents the average of the exhaust gas over a cycle,

can be regarded as such a mixing process. In all such cases we need to know the state of the mixture

for subsequent use in calculations or as a measure of the operation of the engine. I shall assume the

mixing process to be a constant-pressure process unaccompanied by chemical reaction. If the streams
to be mixed are initially at different pressures, then they can be separately brought to the mixing

pressure by one of the two thermodynamic processes shown schematically as equation (I-118). The

state of the mixture is defined by the mixing pressure, the mass-averaged enthalpy at the mixing

pressure, and the mass-averaged composition of the streams being mixed.

The two mixtures most pertinent to cycle calculations are those representing the composite exhaust

gas, at exhaust conditions, issuing from the cylinder through the exhaust valve and the fresh charge,

at manifold conditions, entering the cylinder through the intake valve. The state of the composite

exhaust gas, corresponding to an average over the cycle, is designated by the values of p e, h (e), and

nO,e) , where the composition and enthalpy values are the values of _(-)(0(c -)) for _kequal to n× and
the downstream enthalpy, respectively, for flow through the exhaust valve. The n(xe) and h(e) are

calculated at 0(c- ), the earliest point in the cycle when these numbers are available. The upstream state

of the fresh charge to the cylinder is defined by the values ofPm, h (°), and n(x°). The composition and

enthalpy values are affected not only by the reactant properties at the manifold conditions, but also
by the cycle-averaged exhaust gas properties at the manifold conditions if there is any exhaust gas

recirculation. Thus n(x°) and h(0) cannot be calculated until the exhaust valve closes. Since at this

crankangle the intake valve may already be open (because of valve overlap) the properties of the fresh

charge are not recalculated until the intake valve closes at 0(c+).
Flow stream properties: The foregoing discussions of flow and mixing permit a straightforward

and relatively simple definition of the flow-related functions _(x±),/_(±), n(_ , -), and/_t -), which still
remain undefined in equations (1-72) and (I-74). As a general guide to their prescription I shall

assume that any material that flows out through the intake system must completely return to the

cylinder before fresh charge is permitted to flow into the system. Similarly, in any given cycle, if a
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flowreversaloccursin theexhaust,thenthematerialwhichleft thecylinderduringthecurrentcycle
willbereturnedto thecylinder.If allof theexhaustfromthecurrentcyclehasbeenreturnedandthe
flow is still reversed,thenthecompositeexhaustfrom thepreviouscyclewill beused.Forthe
composition-relatedfunctionswehave

_+) =
f nx ._I(+) <0

n_,+) h_/(+) >0, M(+) <0

n_0) .h_/(+) >0, M(+) _>0

f nx .Mr(-) <0

n_ -) A'/(-)>0, M(-) <0

n(he) ._/( - ) >0, M ( - ) _0

(1-121)

,_,' M(-) <o
n_ -) h_/(-) >0, M(-) <0

n(xe) h_/( - ) >0, M ( - ) _0

which are consistent with the description just given. These functions are piecewise constant except

when Jf/(_) < 0, when they are clearly functions of crankangle. The enthalpy-related functions are

similar, but for M(±) > 0 we must take into account that the state changes during flow. Thus we write

/_(+) =

f h .,_/(+) <0
('h(+))' 2¢/(+) >0, M(+) <0

(h(o))' f/(+) >0, M (+) _0

/_(-) =

f h 2¢/(-) <0

('_(-))' M(-)>O, M(-)<O

(h(e))' 2_/(-) >0,/(-) _>0

(I-122)

f hl

t71-)= ('i(-))'

(h(_))'

M(-)<O

M(-)>O,M(-)<O

M(-)>O,M(-)_O

where 'h(a:) represents the average of the downstream enthalpy during efflux, and the notation ( )'

refers to the downstream value during influx.
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Ignition and flame front behavior: There are still two related items which need discussion before
we have a completely defined model for the internal combustion engine. One is the flame ignition

process and the effect of flame passage on the burned gas; the other is the definition of the functions

which multiply 3_/b on the right side of equations in (I-74). Since I have already said that the

combustion phase of the cycle begins with 0.01 mass percent of the unburned gas converted to burned

gas, it must be the ignition process which is responsible for this conversion. It generates initial values

for the combustion phase of the cycle. The ignition process is defined to be the conversion of 0.01

mass percent of unburned gas to the thermodynamic equilibrium state corresponding to the pressure

and enthalpy of the unburned gas at the point of ignition. During the combustion phase the passage

of the flame front through the unburned gas will be assumed to produce one of two possible effects.

First, it may convert the freshly engulfed mass into the thermodynamic equilibrium state

corresponding to the pressure and enthalpy of the unburned gas at that point and then mix it with the

burned gas. This may be viewed as a variant of the global combustion model which has become

popular in the treatment of combustion problems for which detailed reaction mechanisms and rates
are unknown. In this case the rate is determined by A_/b, and the reaction products are specified by the

equilibrium condition. When detailed reaction mechanism and rates are known for the reactants, one
can dispense with the equilibrium condition. In this situation the passage of the flame front merely

serves to incorporate some of the unburned gas with the burned gas, where its subsequent reaction is

governed by chemical kinetics. The functions/_t b),/_2 (b), nk l'b), and n(x2,b) are chosen to be consistent
with this discussion

(global combustion mechanism)

(detailed combustion mechanism)

0-123)

4o

In equations (I-123) n(xeq) is the equilibrium composition of the flame zone calculated for the
conditions existing in the unburned gas at the moment it is engulfed by the flame front. The choice

for n(x2,b), in conjunction with earlier choices made for some of the other modeling functions, reduces

the equation for nk2) to dn(x2)/dO = O.
First specialization -simplified intake and exhaust. -The first specialization of the general model

is largely a simplification of the treatment of flows through the intake and exhaust systems. This is

augmented with the requirement that all chemical reactions cease in the burned gas at 0= 3_r (of
course, modulo 4r). Chemical reactions do not recommence until the inception of combustion on the

following cycle. If the combustion phase extends to 0 = 37r, then at that point all reaction ceases and

the burned and unburned gases are mixed at constant pressure and enthalpy.

Flows in the intake system are permitted only in the crankangle interval 0-<0-<7r, while exhaust

flows are confined to the interval 37r_<0_<47r; there is no valve overlap. The flows also take place

without a pressure drop across the valves. The exhaust valve opens at 0(-)= 37r (modulo 47r) and

closes at 0(-) = 47r (modulo 4r). Ifp(37r) _Po then there is an instantaneous change of state by one of

the thermodynamic processes (I-118) to convert the pressure to Pe. Ifp(37r)>Pe, then the pressure is

reduced to Pe and this is accompanied by a sudden reduction in mass (blowdown). Ifp(37r) <Pe, then

the pressure is increased to Pe and this is accompanied by a sudden addition of composite exhaust gas

from the previous cycle. When p(37r) has been adjusted so that p(31r)=pe, any additional flow

through the exhaust system is determined by the condition p =Pe. Any reverse flow, if it occurs at all,
will alter only the mass of the working fluid but not its temperature or composition. The intake valve

opens no sooner then 0(+)=0 (modulo 47r). If p(O)<Pm , then the valve opens at 0(o+)=0 and the
pressure is instantaneously adjusted to Pro, by one of the processes (I-118), and accompanied by the

addition of fresh charge (supercharging). If p(0)>-Pm, then intake valve opening is delayed to the

crankangle for which p(O(o+)) =Pro. Additional flow is such as to maintain p =Pro. The intake valve

closes at 0(c+ ) = 7r(modulo 47r). This prescription entirely avoids reverse flows in the intake system.



Theseassumptionsproducea considerablesimplificationin equations(1-72) for the
noncombustionphaseof thecycle•Theformoftheequationschangeswithcrankangleinterval.The
firstmemberof equation(1-72)appliesto allcrankangleintervals,andit issupplementedbythe
followingequations:

0__0___0 (+) and r =O(c+)_O_<Oo:

du _ p_ d ln V MQ____c° dnx dMd--O= o dO - , _ =0,-d-- 6-=0

(+) <0 <0(c +)- 7r"
0 -- -- "

dh_ MQ_oa+[h(O)_h]dlnM dnx=[n(xO)_nx]dlnM dP=odO dO ' dO dO ' dO

O* _<0 _<0(o-)= 3_': (1-124)

du _ p d ln V (2 dnx _ Rx dM
dO p dO Moo' dO po_' -_-=0

37r = 0(o-)_<0_<0(-) = 41r

apah_ (2 anx=o, =0
dO Moo'dO -_

There is also a simplification in the equations for the combustion phase (eqs. (I-74)).

00_<0<0":

d In Pl _ d In M 1 d In V 1 dUl _ _ Pl d In V 1 (21 + (h 2- Ul ) d In M1
dO dO dO ' dO Pl dO Ml¢O dO

dn(xl)-R(xl)+[n(l'b)-n(1)qdlnMltxXJ dlnp2_dlnM2 dln V 2 (I-125)
dO P lo_ dO ' dO dO dO

du2 _ P2 d In V 2 (22 , d In M 2 dn(x2) = 0
dO P2 dO M2_0 + (h2 -/12) _0 , dO

While fresh charge is being admitted to the cylinder, 0(o+)_< 0_ 0(c+), the function n(x0) is constant

and both the composition and pressure equations can be integrated immediately. Only one equation,

for the enthalpy, requires numerical integration. The integral of the composition equations has a

simple form.

ha(O) : [nX (0 (+ ') + Emn(x0)]
1 +Em

Em(O ) _ [i(O)-i(O(+))]

M(O (+))

(I-126)
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A similarsituationexistsduringexhaust,0(-)<0<0(-) where again only the enthalpy equation
0 -- -- C '

must be solved numerically. During the exhaust portion of the cycle it is convenient to work directly

with the enthalpy equation. However, during the charging process it is more convenient to integrate
an equation for the density. The correct evolution equation for the density is easily obtained from

thermodynamic considerations. Thermodynamically we may write

h=h(T, p, n_)

p =p( T, p, n9

0-127)

and by differentiation, using the differential equations for the interval 0(o+)_<0_<0(c+), we obtain a
pair of equations for d In T/dO and d In M/dO.

dlnT ( ah )-1 I ah]dlnM Q ( ah _-Id_O- + O_ h-h( O)+(n(x O)-nx)_ dO - Mo_ Oln T]

falnp +(.(xO)_nx)Olnp]dlnM Olnpdln VOlnp d ln T+ Lo n-po j dO -0 In T dO 0 In p dO

Solving for d In M/dO gives

dlnM

dO
0 lnp

Olnp

O ln p d ln V O ln p (2
+

0 In p dO 0 In T M_o(Oh/O In 7)

__+(n(O)_nx)Olnp Olnp( Oh )-1[ Oh]0n x 0 In T 0_ h - h(0) + (n(x0) - nx)

If we substitute this into the first member of equations (I-72), we obtain an equation for the density.

( fO,n,(O,)-'dlnp_ Olnp Q + LOIn T0 In T M_o(Oh/O In T)

x[h-h(°)+(n(x°)-nx) _hnx] -(n(xO)-nx)alnp'_dln-'O--_-nxj dO V) /

-,[ o ]1f Olnp Olnp Olnp (O_hn T) h_h(O,+(n(xO,_nx)__x

Both the differential equation for mass and the differential equation for density can be simplified if

one realizes that h is homogeneous of degree one in nx for then n x Oh/Onx=h.
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Olnpdln V+ alnp
01no dO 01n TMw(Oh/aln T)dln M

dO - (0_o+) _0 _0V))

O.n.+O.n. 0....O.nO.n. ( 0,.)-1r..<o.Lo,.-'4
(I-128a)

d In V

Oln rM_ocpT (Oln r o_ [ x _ (n(x°)-nx) dO
dlnp

dO

Olnp+(n(x°)-nx)alnPaln# Onx aalnP(lnT o_ah )-,rn<O)L x _ah _h(0)]

O_o+)_ o___o_+)

The density equation becomes the replacement equation for the enthalpy evolution equation for
0(o+)_< 0 _<0(c+). The corresponding equations for the interval 0 (-) < 0 < 0 (-) can be obtained from

O -- -- ¢

equation (I-128a) by letting n(_°) = nx and h(°) = h, but, of the two, only the expression for d In M/do
will be used there.

The numerator in the expression for d In M/dO in equation (I-128a) could, in rare circumstances,
be negative for intake flows near 0 = a-, and this is inconsistent with the assumption of no reverse

flows in the intake system. The inconsistency can be removed when Q_<0 by setting d In M/dO= O.
This, in effect, redefines the heat loss as

(_ O lnpdln Vi(Olnp)
Mo_cpT- a ln p dO ] \ 0_) <_0 (I-128b)

if T< T w. Such a procedure is not possible when T> T w since this implies that Q>0.

Second specialization-equilibrium chemistry.-The second specialization superimposes on the

equations of the preceding section a simplification of the treatment of the chemistry. In the first level

of specialization, chemical kinetics was applied to the burned gases in the combustion and

postcombustion portions of the cycle (00_0_<0(o-) ). At this level we now replace chemical kinetics

with equilibrium chemistry by disregarding the differential equations for the composition variables.

During combustion (00_<0_<0") they are replaced by the assumption that the burned gas is in

chemical equilibrium. In the postcombustion portion of the cycle (0" <0 _<0(o-)), all chemical species
in the burned gas are assumed to be in chemical equilibrium except for the oxide of nitrogen (NO),
which is assumed to be nonreacting.

Third specialization -instantaneous combustion and no heat transfer. - At this, the lowest level of

modeling, the combustion interval is shrunk to zero, and the combustion process is modeled as the

instantaneous conversion of the unburned gas to burned gas at the moment of ignition. The

composition of the burned gas is that corresponding to the thermodynamic equilibrium state at fixed

volume and internal energy. Throughout the cycle no heat is transferred to or from the working fluid.

These assumptions effect a drastic simplification in those equations in (1-124) which still govern the

model cycle. It is no longer necessary to solve systems of differential equations numerically, for all of

them can now be integrated analytically and the cycle calculation is reduced to solving ordinary
systems of equations.
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Duringtheintakeportionof thecycle(0(0+)_<0<0tc +) = _r), the sole remaining equation is the one
for the enthalpy. But in the absence of heat transfer it takes the form

dh _ [h(O)_ hi d In M
dO dO

whose integration gives a result identical in structure to equation (I-126).

h (0) = h(O_+)) +Emh(°) (I-129)
I+E_

During the exhaust portion of the cycle (3r = 0(o-)___0_<0(-) = 4r) the enthalpy remains constant.
Consequently the state of the working fluid is constant during the exhaust. The only differential

equation which remains to be considered is for the internal energy which occurs in three segments of
the cycle. But under the assumed conditions we have

du p din V _ p din ,o
dO- p dO p dO
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and comparing it to the first law of thermodynamics (eq. (1-79)) we see that this implies ds/dO = O.

Thus the crankangle intervals 0_<0_<0(0 +), _r=0tc+)__.0-<00 and 0"-<0_<0(0-)=3_r are
thermodynamically isentropic processes with fixed composition except at the point of combustion.

The only portion of the cycle still undefined is the treatment of the potential discontinuities at

0(0+)=0 (if p(O)<pm ) and 0(0-)=37r (if p(37r)#pe ). The definition is completed by requiring the

working fluid to undergo one of the changes of state given in equation (I-118).

The net result of all of the simplifications is that this model of the internal combustion engine

becomes a completely thermodynamic one. No vestiges of the rate processes remain in the calculation

of this, the most highly idealized model. Its evaluation does not require the numerical integration of
even a single differential equation.

Physical Properties

The governing equations and the physical properties used in the solution of those equations

represent two independent components of every model of a physical system. The results of the

computation are influenced as much by one as by the other. It makes little sense to construct an

elaborate model and then to compromise the results obtained from the model with grossly inadequate

physical properties. Naturally there will be occasions when only poor estimates of physical properties

are available. Under such circumstances one is forced to use the poor data. But when better data are

easily obtained from the literature, it seems to me that it is a false economy to ignore it and then pay
the price of an uncertainty in results.

There are three categories of physical property data which are needed in the model of the internal

combustion engine. They are the thermodynamic, the chemical kinetic, and the transport properties.

Each will be discussed separately.

Thermodynamic properties. - In the internal combustion engine under typical operating

conditions one can expect to encounter temperatures that range from near room temperature to

almost 3000 K. Similarly pressures could vary from subatmospheric to, perhaps, something of the
order of 15 atmospheres. Experience has shown that over this range of conditions the actual

thermodynamic properties of a gaseous mixture will differ inconsequentially from properties based
on the independent species approximation. This approximation calculates mixture properties as a

superposition of pure-species properties, which themselves may vary with temperature but not with

pressure and composition. The Gibbs free energy per unit mass g has a very simple appearance



\_n,/j
(I-130)

where summations have been written explicitly. The temperature-dependent function */_x(T) is the

1-atmosphere approximation to the pure-species chemical potential. Expressions for the enthalpy and

the entropy are obtained from the Gibbs free energy by differentiation

_.O(g/T)_ T2 nXO(*_--_/TT)h - - it - _ - */-/Xn x (1-131)

Og [ O*_x ln(Pnx_] [ ln(Pnx ]

where the summation convention has been reintroduced in the last expression for the enthalpy. The

equation of state also follows by differentiation of the Gibbs free energy

p-l=Og- (RT_nx) (I-132)

ap p

which is obviously the ideal-gas equation of state. The internal energy takes on a simple form which is

obtained from the expression for h and the equation of state.

u = h - P- =*UXnx
p

*UX( T) ,=*HX( T) -RT

(I-133)

The partial molar properties are also quite simple.

#X- Og =,#X+RTln(Pnx), I-IX- OhOn-- x \ En, =
V

OS ,SX_RTln(Pn___hx )
Sh =--O-n)_= \ _n u /

P

V,A_ O(ao-1) _RT UX=, O__u_u=,UX(T )
Onx p Onx

(1-134)

There are some additional derivatives which are needed. For example, with equation (I-128) we need

O lnp') (Olnp_
O-_p / T,nx =1= k, c9In T,] p,nx

(Olnp_ = (Enr)-IOnx ] r.p _-

0-135)
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whichareobtainedbydirectdifferentiationof theequationof state(1-132).Theevaluationof the
thermodynamicderivativeswhichappearin equation (I-78) is a bit more complex for it requires not

only the differentiation of the equation of state but also an application of the chain rule for
differentiation.

0 lnp'_ =(Olnp_ (0 In T')
OU J p, nx _, O In T/p,n× Ou ./p, nx

"_ = {Olnp'_ {OlnT'_{ O ln p { O ln p'_ +
\Olnp]u,n× \Olno]r, nx \OlnT]o, nx\Olnp]u,n_

0 lnp)(0 lnp'_ (OlnT){Olnp'_On>, ..,,= o_1 o,,,_\ _ )' .,o+ \ One,/ r.,,

The pressure derivatives which appear in these formulas can be taken from equations (I-135), while

(0 In T/Ou)p, nx = [T(0u/0T)o, nx_ -21 can be calculated by direct differentiation of the expression for
u (eq. (I-133)). The two remaining temperature derivatives must still be put into a form that is
suitable for direct evaluation. The temperature derivative with respect to density may be expressed as

O In T_ = _ (Ou/O In P)T,n_0 In P .] u.nx (OU/O In T)p.nx

But from equation (1-133) it follows that the density derivative of the internal energy vanishes, and so

( (0u)a In T'_ =0= _ T,n×0 In p ] u.nx

follows immediately. Similarly

0 ln____T') = _ (Ou/Onx)r.o
Onx /u.o (Ou/O In T)nx,p

and the two derivatives on the right side can be evaluated by differentiation of the expression for the

internal energy (eq. (I-133)). The final results are

O lnp)r o, ux]-i (Olnp) =1o. .,.,= .,.,

0 lnp -1 -1-_x ) u,o = (_nr) -*UX[nr O*Ur ]OIn TJ

-I _ -1 "U xlolnp\l }
= (_,°.)-'"['_.'c']-'- (_,",) - , o, ,,.,,

(I-136)
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and are to be used in equation 0-78). There are some additional thermodynamic derivatives which

will be used during cycle calculations. These fall into two categories: conventional partial derivatives

and partial derivatives when the composition is in chemical equilibrium. The first category is quite

simple.



_ p, nx X (OT/Oh)p, nx _ T,nx -_X p,T (I-137a)

aln T J ,,nx \ a-_P / T,nx = \ O-_p,] T,n_ \aln T ] p, nx 1, \-_nx / T,p n

The second category of derivatives contains contributions from reactions and so is more complex.

/'a In p_ (a In r_nr'_
(_T)p =cp' \OlnpJT=l- t O-lnp IT

(alnp'_ _ [1 (aln_rn'_
]

(o'tlnp'_ [P-IpTcp +_alnp_ ll[" (alnp_ _(Olno'  I\a Inp/r tainrl.J
(I-137b)

Olnp 1 /alnl°_l IIp-lpTcp(alnp'_ Olnp'_21Ou ),= -P- Pt _)p/ \_--i-n-P,]T-- ( O ln T,]p j

(aln T_ aln io\ /'aln #_ I-[< ),-= _)p+ \ a--i-n-pJ (alnp
\aln Tip]

(a In T'_ -1 r/ [P alnp (alnp 21,]p_-(Tcv) =P-lpTcp( O0-T_)lap Tcp -IpTcp (O-]-_p) T-- \O In T] pJ

The numerical intricacies of thermodynamic calculations at this level of approximation are well
understood and have been reviewed by Zeleznik and Gordon (ref. 52). Furthermore a much tested

and broadly disseminated third-generation computer program, written by Gordon and McBride (ref.

53), is available for performing the thermodynamic calculations, and there exists a large compendium
of data (ref. 54) which can be used with it. All thermodynamic calculations for the model of the

internal combustion engine will be based on this computer program.

Chemical kinetic properties. - Chemical kinetics makes its contribution to modeling by providing
expressions for the net volumetric species production rates R h and by supplying experimental

estimates of the values for parameters in these expressions. All chemical changes are ascribed to

elementary, or simple, reactions which combine to generate an overall mechanism for the change.

The rates of these elementary processes are assumed to be proportional to the volumetric

concentration of each reactant raised to some power and are dependent on temperature. A copious

literature exists on the rates of elementary reactions, including some extensive compilations and
critical evaluations (refs. 55 and 56).

Each elementary reaction, called a forward reaction, in a reaction mechanism is presumed to be
accompanied by another reaction, called the backward or reverse reaction, which is its exact inverse.

Generally, but not universally, the ratio of the forward reaction rate constant to the backward

reaction rate constant is assumed to be equal to the equilibrium constant for the related

"thermodynamic reaction." Some elementary reactions involve species which participate in the

reaction but which are not chemically affected themselves. Such inert species are sometimes spoken
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of as "third bodies" and such reactions are known as "third-body reactions." The inert species in

third-body reactions can be any species present in the reacting mixture.

I now seek to generate a concise expression for R h from a postulated reaction mechanism. To this

end let me assume that each forward-backward pair of elementary reactions in a mechanism is

labeled by a pair of indices, one Latin and one Greek. The Latin index, say j, will have the range

j= 1, 2 ..... N R and labels the distinct elementary reaction pairs. Two elementary reaction pairs
which differ only in the choice of third body will not be considered to be distinguishable, and soj will

label only one representative of given type of a third-body elementary reaction pair. The Greek index,

from the last part of the alphabet, will be used to distinguish among the various third-body reactions

of a given type by labeling them with the particular third body. Thus the Greek index will have a
range determined by the type of reaction. The range will always be 1, 2 ..... Nj, where Nj = 1 if the

jth distinct reaction pair is not a third-body reaction and Nj=N, where N equals the number of

reacting species, for reactions which are of third-body type. This should cause no confusion for the

Nj will appear explicitly in all formulas and any summation over the Greek index will in fact always
correspond to the usual one, namely, over all species. This notational convention permits me to write

the complete reaction mechanism quite concisely.

SX vXj o

kf(jo) j = 1, 2 ..... N R

...._2" @o
R b (Jo) o = 1, 2 ..... Nj

(1-138)

Here Sx are symbols for the chemical species, VXjo and v_j o are the stoichiometric coefficients, and

kf(jo) and k b (.1"o)are the forward and backward reaction rate constants. Consistent with my labeling
of reaction pairs is the assumption that the stoichiometric coefficients have the form

(1-139)

and that the forward and backward rate constants satisfy the constraint

 :0o)=_,,j=k b (jo)

(I-140)

The right side of equation (1-140) should be recognized as the so-called equilibrium constant, based
on volumetric concentration units, associated with the reaction pair (I-138), which is being regarded

as a "thermodynamic reaction." The forward rate constant will be assumed to have the form

(I-141)

where m_ is called the third-body efficiency and could, in principle, be a function of temperature. In
practice, experimental data are usually only adequate to treat third-body efficiencies as temperature

independent. The volumetric production rate R x for the mechanism (I-138) is the expression

NR

RX-
j=l

" <.s.o-.,,ol[,,:uo)nEl r -J
O=

(I-142)
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which can be simplified considerably. Clearly because of the structure of the stoichiometric

coefficients (eq. (I-139)), we can write

H (;nT) _j°= (;n_)_"'Jl-I (;n0 _j
T T

and because of the structure of the forward rates (eq. 0-141)) we can write

J
o=1

and these results can be used to simplify R x.

j=l r

An expression for Kj is easily obtained from the thermodynamic condition for equilibrium,

(I-143)

combined with the expression for the chemical potential (I-134) and the equation of state (I-132).
The result

Kj( T) = (RT) × exp RT (I-144)

is clearly a function of temperature alone. The temperature dependence of ks(J) is assumed to be of
the form

ks(j) = AjTnJ exp[ - Ej/ R T] (I-145)

where Aj is known as the preexponential factor and Ej is called the activation energy. Equations
(I-143) to 0-145) define the volumetric production rate when coupled with the assumption that the
third-body efficiencies are constants.

It will be necessary to have available the derivatives of R x with respect to temperature and

composition. Since all of the temperature dependence of R x resides in Kj and ks(J), if third-body
efficiencies are assumed to be temperature independent, we must calculate their derivatives. Using

the thermodynamic relation O(g/T)/O In T= -h/T, we can easily show that

331nlnI_T = (P;i-RTUrJ) */-/r - _ O'_j-eXj) (I-146)

while the temperature derivative of kf(j) only requires direct differentiation.

3 In kf(j) =nj+ Ej
0In T RT (1-147)

The temperature derivative of R x can now be written in terms of the derivatives of Kj and kf(j).
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oORXlnT- j_=INR(v_j_pxy)kf(j) (pmyno)@,Ni[ 0 (PnO_u-K7 lIIr (PnO";2] alno Inkd(j)T

+
,; a ln K;

(#")_j--' Iskj)kf(J)" (pm;no)tSN'NjKjl H (Pnr) J O In T
j=l r

The derivatives with respect to composition can be calculated by using the results

0 In (om_no)'SN'Nj

Onh m?,o

(I-148)

(1-149)

Onx 0 (pnrYu =
f l,xjn_lII(onO _'s nx_O

T

1-I (Onr)"U nx=0 and _xj= 1
r;_h

0 nx=0 and uxy>l

(I-150)

for the derivatives of composition terms appearing in R x.

aRh_ NR (i,_d_l, Xj)kf(j,(pradnr)_N, NJ[l_Ir(Pnr),d_Kf-lH(Pnr)%j } O ln(praf #nr)SN'N'
Ono j_= l r Ono

+ j=_ 1 (')V'--uxJ)kf(J)(omrjnr)_N'N' (Onr)'rj-KJ-I _0 (Onr),rd'.
(I-151)

The similarity in structure between R x and its derivatives means that the derivatives can be calculated

with only a small expenditure of effort over what is required to calculate Rx.

Transport properties.-The transport properties which are significant to the modeling of the

internal combustion engine are the thermal conductivity k and the shear viscosity r/of the working
fluid. The viscosity is required for the calculation of Reynolds numbers, while the viscosity and the

thermal conductivity are used to calculate the Prandtl number which appears in the expression for the

heat transfer coefficient. Since the working fluid will usually be a complex mixture of many species, it

is the mixture transport properties we want. Experimental data are, however, pretty much confined

to pure species and binary mixtures. The resolution to the quandary lies in the use of mixture

formulas which have been devised to express mixture transport properties in terms of the pure species

properties r/x and k x.
I have chosen to use the mixture formula proposed by Wilke (refs. 57 and 58) for the viscosity.

T
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Thisviscosityformulaisnormallywrittenintermsof molefractions,butbecauseit ishomogeneous
of degreezeroin thecompositionvariables,it canjustaswellbewrittenin termsof then o as was

done here. The functions _xr, containing pure-species viscosities r/x and molecular weights _x, are

not symmetric in the indices and reduce to unity for k = r.
For the thermal conductivity I have elected to use a formula which is essentially that proposed by

Lindsay and Bromley (ref. 59) and which has a structure quite similar to the viscosity formula. It can
be written as

11  3/4/_X,=_ 1+ _ k_XX ) _1
+

--_/ - 1 (1 -I- -._) 1 1/212 (1

(1-153)

-1

where kx is the pure-species thermal conductivity. The function _xr equals unity for k = r. The Cx and

Cxr are known as Sutherland's constants, where Cxr is generally taken as proportional to the

geometric mean of Cx and C7. Lindsay and Bromley suggest taking the proportionality constant as

unity except where one of the pair of species is highly polar, for which they suggest the use of 0.733.

Because k is relatively insensitive to choices of Cx, I have chosen to use unity for all pairs of species.

The value of Cx was approximated as 1 ½ times the normal boiling point by Lindsay and Bromley. It

is, in fact, exactly defined by Sutherland's approximate formula for the temperature dependence of

the pure-species viscosity (ref. 60)

rlx =bxTl/Z(l + _-_ ) -1

which is generally valid only for a very limited temperature interval when its two parameters are
evaluated by fitting experimental data. But for the small range over which it is valid it implies that

Cx [_ dln _x] -1 (1-154)1+ 7 = din T

and I shall use this as the defining equation for Cx to be used with the thermal conductivity formula.

The calculation of Cx by equation (1-154) makes it a temperature-dependent function rather than a

constant and of course so too is CXr.

CXz = ( CxCT)I/2 (1-155)
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Appendix - Symbols

A

Aj
A (+)

A (+)
flow

An(')

A/F

a

an

B

b

bb b2

b_o
b(_)

b (+)

C

Cx
*CX

Cn

cp
Cv

dM_/dt

d V_/dt

d(_)

da

dc

dv

Ec

Ej
Em

E (±)

e(+)

e"

Fk
fk
g

gkj

*H_

h

hf

surface area

preexponential factor for forward rate constant, eq. (I-145)

poppet valve flow function, eq. (I-I 17a)

cross-sectional flow area, eq. (I-116a)

n= 1, 2, 3 poppet valve flow parameters, eq. (I-117a)

air to fuel weight (or mass) ratio

heat transfer coefficient parameter, eq. 0-105)

n = 1, 2 ..... l0 parameters for Fourier burning law, eq. (I-92)

cylinder bore

heat transfer coefficient parameter, eq. 0-105)

parameters, eq. 0-108)

metric tensor for a two-dimensional subspace

poppet valve flow function, eq. (I-117a)

n = 1, 2, 3 poppet valve flow parameters, eq. (I-117a)

closed curve on a surface

Sutherland's constant, calculated by eq. 0-154)

constant-volume heat capacity per mole of pure species )_

n = 1, 2, 3, 4 heat transfer coefficient parameters, eq. 0-105)

specific heat at constant pressure

specific heat at constant volume

eq. 0-29)

eq. 0-28)

minimum valve diameter for poppet valve

molar diffusive flux vector for species )_

differential element of surface

differential element of arc along curve C

differential element of volume

mass fraction of recirculated exhaust gas in fresh charge

activation energy for forward rate constant, eq. (I-145)

mass of fresh charge divided by mass of residual exhaust gas, eq. 0-126)

n = 1, 2, 3, 4 poppet valve flow parameters, eq. (I-117a)

poppet valve flow function, eq. (I-117a)

eq. (I-66)

total volumetric force vector, eq. (I-5)

volumetric force vector, eq. 0-5)

Gibbs free energy per unit mass, eq. (I-130)

metric tensor of three-dimensional space

eq. 0-25) or eq. (I-62)

partial molar enthalpy, eq. (I-134)

enthalpy per mole of pure species

enthalpy per unit mass, eq. (I- 131)

flame zone enthalpy

heat transfer coefficient, eq. 0-105)

functions defined by eq. (I-122)
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i¢

k

kx

kb (jo)
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nk
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z)

;,i+)

n(xl,b)

n(x2, b)

n?
P
Pr

P

Pe

PF

pf
Pm

function defined by eq. (I-122)

function defined by eq. (I-123)

function defined by eq. (I-123)

eqs. (I-27) or (I-64) and 0-76) or 0-77)

equilibrium constant, eqs. (I-140) and 0-144)

thermal conductivity of a mixture, eq. (I-153)

thermal conductivity of pure species _,

backward rate constant, eqs. 0-138) and (I-140)

forward rate constant, eqs. 0-138) and 0-141)

forward rate constant, eq. 0-145)

piston stroke

connecting rod length

valve lift

poppet valve flow parameter, eq. (I-117a)

mass contained in volume V, eq. 0-15), or as defined by eq. (I-37)

burned mass during combustion

unburned mass during combustion

burned mass function, eqs. (I-97), (I-101), and 0-104)

enflamed mass function, eqs. (I-92), 0-99), and (I-103)

f A;/(+) dO + c(±), where c(±) are integration constants

mass burning rate function, eqs. (I-97), (I-102), and (I-104)

mass flow functions, eqs. (I-110)to (I-114)

mass flux through surface A

mass density

third-body efficiency of species a, eq. 0-141)

total number of species in a mixture

reaction parameter, equals N for third-body reactions and 1 for non-third-body

reactions, eqs. (I-138) and 0-139)

number of distinct elementary reaction pairs, eq. (I-138)

eqs. 0-26) or (I-63) and (I-76) or 0-77)

parameter for forward rate constant, eq. (I-145), or exterior normal vector to a closed
surface

moles of species h per unit mass

moles of species h per unit mass of burned gas

moles of species _ per unit mass of unburned gas

functions defined by eq. (I-121)

function defined by eq. (I-121)

function defined by eq. (I-123)

function defined by eq. (I-123)

moles of species _, per unit mass for flame zone

eq. (I-65)

Prandtl number, eq. 0-106)

pressure

exhaust pressure

fuel pressure

flame zone pressure

manifold pressure
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p*__

qk
R

RX
Re

Re(+)

r

ro

rn(±)

S

Sx

*SX

s

T

r/
Tw
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t (+)

UX

*Ca,
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V

VI

V2
Vi

V_

VX

u

Um

vp
vk

W'_

w

x

xk

g

Ol

el(_ )

f3

(3(+)

critical pressure ratio for poppet valve flow, eq. 0-115)

eq. (I-76)

eq. (I-77)

volume flux average of pressure over a surface, eq. (I-30)

eqs. 0-24) or 0-61) and (I-76) or (I-77)

heat flux vector, eq. 0-1)

universal gas constant

volumetric production rate for species X, eqs. 0-3) and (I-143)

Reynolds number for cylinder contents, eq. (I-107)

Reynolds number for flow through poppet valves, eq. (I-116)

compression ratio

cranking radius, L/2, eq. 0-84)

poppet valve flow parameters, eq. (I-117b)

volumetric production rate for _b, eq. 0-13)

symbol for chemical species X, eq. (I-138), or partial molar entropy, eq. (I-134)

entropy per mole of pure species X

entropy per unit mass, eq. 0-131)

absolute temperature

flame zone temperature

effective wall temperature

time

poppet valve thickness

partial molar internal energy, eq. (I-134)

internal energy per mole of pure species X

internal energy per unit mass

volume

volume occupied by burned mass during combustion

volume occupied by unburned mass during combustion

velocity vector characterizing displacement of a surface, eq. (1-8)

two-space velocity vector characterizing displacement of a curve on a surface,

eq. (I-11)

partial molar volume

velocity for use in calculation of heat transfer coefficient, eq. (1-108)

mean piston speed, Lco/_r

piston speed, eq. (1-109)

fluid velocity vector

two-space vector characterizing displacement of a curve on a surface, eq. (I-12)

molecular weight of species X

fluid velocity normal to a surface, vini

piston displacement, eq. (I-84)

coordinates for three space, k = 1, 2, 3

coordinates of a two-dimensional subspace

(0 - 00)/(0 f - 00)
parameter in Wiebe burning function, eqs. 0-99) and (I-lO1)

parameter in expression for valve flow area, eq. (I-116)

parameter in Wiebe burning function, eqs. 0-99) and (I-lOl)

valve seat angles for poppet valves
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Vk

aij

a/at

e

_x

0

0

Oo

o/
O*

0(o+ )

O(c ±)

X

_X

;x
*#X

P

o

o(±)

r

rkj

Arkj

fl

<v2>/<w> 2

isentropic exponent, (0 In p/O In O)s

covariant derivative

Kronecker delta

convective differentiation operator, O/Ot + vkV k
L/21

shear viscosity of a mixture, eq. (I-152)

exterior normal to a closed curve on a surface

shear viscosity of pure species

v2/2 +

crankangle

crankangle at start of combustion phase

crankangle when all mass is enflamed

crankangle at end of combustion phase

crankangle for intake or exhaust valve opening

crankangle for intake or exhaust valve closing

7ro_r/ (O:- Oo)
chemical potential of species k

internal energy transported by diffusion of one mole of species X, eq. (I-l)

chemical potential of pure species _ at 1 atmosphere

stoichiometric coefficients for non-third-body reactions, eq. 0-139)

stoichiometric coefficients for reactions, eq. 0-138)

mean mass density, eq. (I-18) or 0-50)

eq. 0-71)

poppet valve flow function, eqs. (I-111) and (I-113)

relaxation parameter for burning

stress tensor

dissipative stress tensor

eq. 0-42)

scalar field per unit volume

one-parameter family of propagating surfaces

scalar field per unit mass

eq. (I-48)

mass flux average of k over a surface, eqs. (I-31) and 0-36)

eq. (I- 120)

scalar force potential, eq. (I-5)

angular velocity

Subscripts and superscripts:

b

e

eq

+

0

1

2

flame zone burned-gas properties

exhaust properties

equilibrium properties

intake system

exhaust system

fresh charge properties

burned gas, or upstream

unburned gas, or downstream
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Chapter II

Numerical Integration of Ordinary
Differential Equations

Frank J. Zeleznik

The differential equations of Chapter I must be integrated if the hierarchy of models described

there is to be utilitarian and not just a theoretical construct. Since analytical integration is out of the

question, the integration must be accomplished numerically, and this then raises the problem of

selecting a suitable integration scheme. Numerical integration of a system of ordinary differential
equations is a numerical process for generating approximations to the true solution, at a number of

discrete points, by replacing the system of differential equations with a system of ordinary equations.

The numerical process not only generates approximations to the solution, but also produces estimates
of some of its derivatives. A good numerical integration scheme must have two characteristics. First,

it must be capable of producing an adequate approximation to the true solution. Second, it must

generate the solution economically. The question of economy is a matter of concern when the system

of equations is large. It is especially significant when some of the equations arise from chemical
kinetic considerations. Differential equations associated with chemical kinetics sometimes exhibit a

property called stiffness, which can reveal itself in the behavior of an integration algorithm. It takes

excessively small steps, out of proportion to the rate of change of the dependent variables. Both of

these considerations, accuracy and economy, apply to the systems of equations of Chapter I.

A broad spectrum of numerical integration algorithms for first order differential equations has
been published in the literature. A significant fraction of these are methods which are classified as

linear, multistep methods (ref. 1). A second category of methods is related to the Nordsieck method

for integrating a system of first order differential equations, which first appeared in a 1962 paper by
Nordsieck (ref. 2). The Nordsieck method of integrating a system of first order, ordinary, differential

equations is a one-step, implicit method and its derivation was based on the use of a truncated Taylor
series. Nordsieck pointed out (ref. 2, pp. 23 and 31) that his method can be thought of as a

reformulation of Adams' linear, multistep method. Indeed, Gear (refs. 3 and 4) subsequently showed

that there is a connection between the Nordsieck form of integration and the predictor-corrector

process applied to first derivative, implicit, linear, multistep methods. In addition, Gear was able to

extend Nordsieck's method to higher order differential equations (ref. 3). The extension of

Nordsieck's method to higher order differential equations was also accomplished with somewhat

different results by LaBudde (ref. 5). Gear (refs. 6 and 7) capitalized on a connection between the

predictor-corrector multistep methods and the Nordsieck method to devise an integration scheme for
systems of first order, stiff, differential equations. He incorporated both Nordsieck's reformulation

of Adams' method and the Nordsieck-like version of his own stiff-equations method into a computer
program (refs. 8 and 9) for first order differential equations which embodied automatic control of

step size and integration order. An extensively modified and improved version of the Gear program

has been developed by Hindmarsh (refs. 10 and 11). Commenting on Gear's stiff-equations method,

Hull et al. find (ref. 12, p. 616) "it to be very efficient"; Gelinas states (ref. 13, p. 223) that it "fulfills

the claims made of it"; while Enright writes (ref. 14, p. 322) that it "has become the most widely used
method for stiff equations."
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Becauseof theapparentsuccessof theNordsieck-likeversionof Gear'sstiff-equationsmethodit
seemstobe a logical starting point for the development of a suitable integration method for modeling

the internal combustion engine. Numerical integration, like any other numerical calculation, is a

blend of computational theory and computational art, with the art dependent to some degree on the

theoretical understanding. As I have already mentioned, Gear developed his stiff-equations method

through the theory of first derivative, linear, multistep methods. Yet, in application, the method is a

one-step method with no vestiges of the linear, multistep methods. Hence it is desirable to establish
the theory without recourse to linear, multistep methods, and that is precisely what I shall do. I shall
obtain both Nordsieck's reformulation of Adams' method and the Nordsieck-like version of Gear's

method for stiff equations as special cases of a new general class of integration formulas. These

methods apply directly to first and higher order equations, which need not even be in normal form.

6O

Some Exact Relations

Before defining and examining some of the properties of a general class of Nordsieck-like

integration schemes, I wish to introduce some notation and to examine some exact relationships

among derivatives which will motivate the definition of an extension of the Nordsieck method. I will

be dealing with vector-valued functions defined on an interval of the reals, and in all cases the

functions will be presumed to be n-dimensional vectors over the complex field. Suppose that y (x) is

such a function which possesses q derivatives and that h ;_ 0 is real and represents the integration step

size. If the conjugate transpose is denoted by an asterisk, then we can define an n (q + 1)-dimensional

vector r/by

- [ h°y(O)'(x) hy(1)*(x) hqY(q)'(x) ] (II-1)_*(x, h, q) [ O! ' 1! ..... q!

where y(k)(x) is the k th derivative of y(x). This vector characterizes the Nordsieck integration

method, and the (m + 1)(q+ l)n-dimensional vector

_*(x, h, q, m)=[_*(x, h, q),o*(x-h, h, q) ..... _*(x-mh, h, q)J (II-2)

characterizes all of the possible qth derivative, linear, multistep methods of m >0 steps. Of course,

the dimensions of the vectors rl(x, h, ql) and _'(x, h, q2, m) will be equal if and only if

ql + 1 = (m + 1)(q2 + 1), and obviously if ql = q2 = q and rn = 0, then _'(x, h, q, 0) = r/(x, h, q).
I shall now establish some exact relationships between the vectors rl and _'. Suppose that g (x) is a

vector-valued function on an interval of the reals and possesses q derivatives. Then if l is an integer

and both x and x+lh are in the domain of g, we can define a remainder vector

r(l, q, x, h, g) -g(x+lh)-
q lnh n

_ g(n)(x) (II-3)
n=0

The remainder vector r clearly depends on l, q, x, h, and g, as the notation indicates. Ifg possesses a
(q + 1)th derivative, then r can be identified with (h) q + lg(q + 1)(0/( q + 1)!, where _ is some point in

the open interval (x, x+lh). In this case equation (II-3) becomes just the Taylor formula with the
Lagrangian form of the remainder. Let us apply equation (II-3) to the vectors hSytS)(x)/s! for s = 0,

1..... q. This immediately yields

hs q in-shn

-j! y(s, (x+lh) = n_=s (n)_ y(n)(x) +rs
s = O, 1 ..... q (1I-4)

where (n) =n!/s!(n-s)! is the binomial coefficient and rs=rs(l, q, x) -rll, q, x, h, h_y_S)(x)/s!]
is the remainder associated with hSy(S)(x)/s! when the expansion is terminated with the qth derivative

ofy. Ify(x) is a polynomial of degree no greater than q, then rs is zero for all s; for other functions it



will generallybenonzero•Wenowdefineanuppertriangular(q+ 1)×(q+1)matrixP(l;q) by

P(0;q) = lq+ 1, where lq+ 1 is the (q + 1) × (q+ 1) identity matrix, and by

lJ,

P_j(kq) =

for i_<j

for j < i

i, j=O, 1, 2 ..... q; l#0 (11-5)

and an n (q + 1) x n (q + 1) matrix A (/;q) as the direct product of P(l;q) and the n x n identity matrix

l n .

7Poo(#q)ln Pol(#q)ln • . . Poq(#q)l,"

Plo(l;q)ln Pll(#q)ln • . . Plq(I;q)l n

A (I;q) -P(l;q) @ln=

PqO(l;q)ln Pql(#q)ln • • • Pqq(#q) ln

Finally, if we define an n (q + D-dimensional vector of remainders o as

[. • . ]a* (l, q, x) = ro(l, q, x), r 1 (1, q, x) ..... rq(l, q, x) (1I-7)

then equation (II-4) translates into an exact expression for the propagation of the vector 7/from x to
x+lh.

_l(x+lh, h, q)=A(l;q)_l(x, h, q)+a(l, q, x) (II-8)

This formula can now be used to write an exact expression for the propagation of _"from x to x+ lh.
If we write

r*(/, q, x, m) =[a*(/, q, x), o*(l, q, x-h) ..... a*(l, q, x-mh)] (11-9)

then from equations (II-2) and (II-8) we have

_(x+lh, h, q, m) =(_(/, q, m)_(x, h, q, m) +-r(l, q, x, m) (II-10)

where the (m + 1)(q + 1)n × (m + 1)(q + 1)n matrix (_ (/, q, m) is just the direct sum of m + 1 copies of

A(#q).

(_(1, q, m)=lm+l@A(#q) (II-11)

The formula (II-4) also enables us to relate _'(x, h, q2, m) and r/(x, h, ql). To express this concisely,

we must make some additional definitions. Thus for qz<_ql we shall define a (q2+ 1)x(ql+ 1)

• , °

• • •

• • °

Poql (/,'ql)

Plql(#ql)

Pqzq: (/,'q 1)

(II-12)

submatrix Q(l) of P(l;q) as

"POO (/;ql) Pol (/,'ql)

PlO (/,'ql) Pli (/;ql)

lPq20(#ql) Pq21 (l;ql)

Q(I) =--
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andthe(m+ l)(q2+ 1)×(ql+1)matrixQ as

Q* - [Q*(0), Q*(- 1)..... Q*(- m)] (II-13)

Simiarly we define an n (m + 1)(q2 + 1)-dimensional vector p.

o*(q2, x)----[a*(0, q2, x),a*(-1, q2, x) ..... a*(-m, q2, x)] (II-14)

This notation permits us to write

_(x, h, q2, m)= ( QQ ln)TI (x, h, ql) + P(q2, x) (II-15)

Essentially equations (II-8), (II-10), and (II-15) are nothing more than the reexpression of the simple

identity given as equation (11-4) and contain no new information. These three relations can still be

further rewritten. Suppose v is an arbitrary vector which satisfies the condition v*o _0 and whose

dimension is dim v. Then we can define an n (q + 1) × dim v matrix R and an (m + 1)(q + 1)n × dim o
matrix T as

O'U*

R---
O*O

7"O*
T=_--

u*u

(II-16)

and then Rv=o, To=r, and equations (1I-8) and (II-10) become

_l(x + lh, h, q) =A (l,'q)_(x, h, q)+Rv

_(x +lh, h, q, m)=(_(l, q, m)_(x, h, q, m)+To

(II-17)

The second member of equation (II- 17) will be the basis for a generalization of the Nordsieck method

to be developed in the following section, and of course it reduces to the first member of equation

(II-17) for m=0.

One more identity involving _"and '7, which complements the second member of equation (I1-17),

can be written. Let Jm + ] be the (m + 1) × (m + 1) matrix with zeroes everywhere except ones above the

main diagonal, that is,

Jm+l =

0 1 0 ... 0 0

0 0 1 ... 0 0

0 0 0 ... 0 0

• ° •

0 0 0 ... 0 1

0 0 0 ... 0 0

(ii-18)

Thus (Jm+ l) rn+l =0 and Jm+l is nilpotent of degree m + 1. Then we can write the identity

_(x+h, h, q, m)= [Jm+l®lo(q+ l)]_'(x, h, q, m)+[rl'(x+h, h, q),O ..... 0]* (11-19)

where the right side is a decomposition of the left side into orthogonal vectors which lie in different

subspaces. The first n(q+ i) components of the first vector on the right side are zero, while the
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remaining components of the second vector are zero. This identity will enable us to give a concise

expression for the conventional, linear, multistep methods so that these can then be contrasted with

the general class of methods to be defined later.

The general class of integration methods will be designed to solve an initial-value problem

associated with a pth order (p > 0) system of ordinary differential equations. Neither the initial values

nor the form of the differential equations will be pertinent to most of the discussion of these

integration methods. For this reason the allowed form of the differential equations is kept as broad

as possible.

Definition 1.1 Let fly (i)(x), x] be a vector-valued function. Then fly (i)(x), x] = 0 is said to be a pth

order differential equation for y(x) if and only if Of/Oy (p) _0 and Of/Oy (k) = 0 for all k>p. If f= 0

is a pth order differential equation and f=y(P) -_o(y (°), y(1) ..... y(p-O, x), then the differential

equation is said to be in normal form.

Observe that in Definition I. 1 there is no requirement that f= 0 be explicitly solvable for y(P); that is,

it need not be possible to actually write the differential equation in normal form.

Linear, Multistep Methods

I shall write the form of the most general q-derivative, linear, m-step method so that the form of

these methods can later be compared with the general Nordsieck-like methods. The linear, multistep
methods are based on the identity (11-19) and can only be used on first order equations in normal

form. They are all of the form

Bz(x +h) =a(Y m+ l. q+ + S [y* (x+h), he* (x+h),
h2_(1)* (x+h)

! , . . ._

hq¢(q-1)*(x+h) ] *ql ,0 ..... 0 =0 (I1-20)

where z(x) is an approximation to _(x, h, q, m), B is an n×n(m+ 1)(q+ 1) matrix which has the
form

B= (BI, B 2..... B(m+ 1)(q+ 1)) (II-21)

where B i are n × n matrices, and the differential equation is y(l)= _p(y, x). Equation (11-20) is viewed

as an equation for a hopefully unique y(x+h) and the matrices B i are constrained by the
requirement that equation (II-20) be exact for all polynomials of degree less than some given degree.

Most often the multistep methods are first derivative methods (q= 1) although second derivative

methods (q=2) are known and these are discussed by Enright (ref. 14). Almost universally the

matrices B i are chosen to be constant scalar matrices. That is, B is written as

B= (t_0, /30, 3'0 ..... Otl, _1, 3'1 ..... °tin, _m, ")'m .... )_)ln

where the o_i, /3i, 3'i .... are constants. The class of methods for which all ai, "Yi.... are zero except

et0= 1 and _1 = - 1 are known as Adams' methods. The simplest of these, 130= 1/2, 131= - 1/2, and

3i=0 for i> 1, is also known as the Euler method. Lambert and Sigurdsson (ref. 15) look at first

derivative methods with variable, nonscalar matrices. Some of the matrices B i will be zero in a

particular linear, multistep method, and hence the corresponding part of the vector z is annihilated
by B. Suppose we define a characteristic function 0 (i) by
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O(i) = (1 Bi=O

Bi_O

(II-22)

and an [ (m + 1)(q + 1) - _ 0 (k) ] × (m + 1)(q + 1) matrix _' by the prescription

i=j- k_=l 8(k) and Bj#O

'Olij=

otherwise

(II-23)

(m+ l)(q+ 1)

whereihastherangel<_i<_(m+l)(q+l)- _ O(k) and j has the range l_<j_<
k=l

(m + 1)(q + 1). Then any particular linear, multistep method is characterized not by _"but actually by

(xI'®ln)s _ because _/'®1 n annihilates noncontributing components. When equation (I1-15) is

multiplied by the matrix xI,® In, we obtain

(_®ln)_'(X, h, q2, m)=[(_lQ)®ln]_l(x, h, ql)+(_®ln)p(q2, x) (II-24)

If ffQ is nonsingular, then this equation can be solved for r/and the Nordsieck method, characterized

by 7/(x, h, q0, can be thought of as being equivalent, in some sense, to the linear, multistep method

characterized by (xI'®ln)_'(x, h, q2, m). Obviously they cannot be thought of as numerically

equivalent since the relationship (I1-24) in no way takes into account either the effect of the nonzero

B i or the details of the Nordsieck method. Certainly a necessary condition for xI,Q to be nonsingular

is that it be a square matrix. That is, it is necessary that

ql + 1 =(m + l)(q2 + 1)-
(m+ 1)(q2+ 1)

O(tc)
k=l

Gear (refs. 6 and 7) used equation (II-24) with special cases of xI,Q to convert the predictor-corrector

versions of his stiffly stable, linear, multistep methods into a Nordsieck form.

A concise derivation of Gear's connection (refs. 3 and 4) between predictor-corrector, first

derivative, linear, multistep methods and the Nordsieck form is easily given with the more general

framework established by equation (II-20). The linear, multistep method, equation (II-20), with

q = 1, takes the form

w---BlY(X + h ) + B2h_o[y(x + h ), x + h] + W (x) =0

(II-25)

w(x) =a(J m+ l® 12.)z (x)

for a first order differential equation in normal form. The equation w = 0 is to be regarded as an

equation for y(x+ h). Its iterative solution by the Newton method takes the form

w (i) + j(i) Ay (i) = 0 (II-26)

where

060

J-_ _ =BI+hB2 K
oy
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K- 0__¢
ay

Ay(i) =y(i+ l)_y(i)

and where both B I and B 2 are presumed to be independent of x and y. These equations immediately

imply

_ (j(i)Ay(i) _j(i- DAy(i-1)) = oo(i) _ofli- 1)= BI Ay(i- l)+hB2(_(i) _¢(i- 1))

where now _o(i) is the ith estimate of ¢, not its ith derivative, and thus

_ s(i)Ay(/)= __ (s(i-1)_ 01)Ay(i-1) + hB2(_o(i)___p(i-1))

= B2(h_o(i) __hK(i- 1)Ay(i- 1)_ h_p(i- 1))

If we define, for i>0, a vector d (i) by

d(i) =h¢(i- 1) + hK(i- OAy(i- 1) (II-27)

then the equation for Ay (i) becomes

j( i) Ay (i) = _ B2 ( h_o (i) _ d ( i) ) (I1-28)

From equations (II-27) and (II-28) it follows that

d(i + 1)= h_p(i) + hK(i) Ay(i)

= h¢ (i) + hK(i) (j(i)) - 1j(i)Ay (i)

=

= -[ln-B; 'BI(J - IB:]

and this provides a simple equation for the change of the vector d during iteration.

Ad(i) _d(i+ 1)_ d(i) =B_ 1Bl(J(i) ) - IBE(h_p(i) -d (i))

Since J-i=(ln+B_lBEhK)-lB11 it follows that J-IB2=(In+hB_IB2K)-I(B_IB1) -1 and

B_ 1B1J-1B2= (B_- 1B1) (1 n + hB{-IB2K ) - I(B_" 1B1)- 1. From these expressions it is easily shown

that B21B1J-IB2=(ln+hBllB2K) -l and J-1B2=BllB2(ln+hBllB2K) -1 if and only if

(B_IB1)K=K (B21B1). Hence when this commutation condition on the matrices holds, the

equations for Ay (i) and Ad (i) are very similar.

Ay(i) = - (B 1-1B2) (ln + hB 1 IB2K(i) ) -1 (h,p (i)-d(i))

Ad (i) = (1 n) (ln + hBF IB2K(i) ) - 1(hqO(i) _ d(i))

(II-29)
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Fromtheseequationsfor Ay (i) and Ad (i) it follows that Ay (i) =0 if and only if h_ (i) -d (i) =0 if

and only if Ad (t3 =0. This leads to the interpretation of d (i) as the ith estimate for hy(l)(x+h) with

convergence of d (i) to h_,[y(x+h), x+h]. The initial estimate, d (°), is still undefined since the

definition of d (i) given in equation (I1-27) is meaningless for i=0. But obviously d (°) should be so

chosen that the i= 0 versions of equations (11-26) and (11-28) agree if the iteration is to converge to a

solution of equation (11-25).

_ co(o)= j(o) Ay(0) = _ B2(h_o(o) _ d(O))

This then gives a value for the initial estimate d (°).

d(O) = h¢,(o) _ B2 lco(0)

= hso (°) - B_ 1(Bly(O) + B2hso(o) + W(x))

= - B2- (Bly(°)+ w(:))

= - B2 -1 [BIY (0) + B(Jm +1 @ ln(q + l))Z (x) ] (II-30)

Suppose we define

(zti))* = [yti)', dti)', y, ix), h_o° ix) ..... y*[x- (m - 1)h], hso*[x- (m - 1)h]}"

then Z (i) will converge to z(x+h) when d (°) is chosen as in equation (II-30) and, using equation

(II-29), the iteration can be written as

__ _ _- , • ,.-,1,_(i)--Z (i+1) _(i) [-(B 1 B2) , In, 0,

Since z(x+h) is regarded as an approximation for _(x+h, h, q2 = 1, m), it follows from equation

(II-24) that

[(_/Q)-l @ ln]z_. (i)= [(_O)-l@ in ]

× [-(B1 1B2),* in, 0 ..... O]*(ln+hBllB2K(i')(h¢(i)-d (i,) (II-32)

can be regarded as the Nordsieck form of the same iterative calculation. Equation (II-32) is the

generalization of Gear's results, which were obtained by him for the special case where the matrices

B i are scalar matrices. The commutation condition clearly holds for scalar matrices.
Several observations should be made about the results given as equations (II-3 l) and (II-32). First,

the iteration (II-31) directly involves only the matrices B 1 and B2; the remaining submatrices of B
appear only in the definition of d (°). Second, the iterations for y and d are not independent because

d (°) is defined in terms y(0) in equation (II-30) and this establishes an interaction. If the iteration

(II-31) converges, it will converge to a solution of equation (II-25) if and only if d (°) is chosen as in

equation (II-30). Any other choice, say d(0), is equivalent to replacing W(x) in the first member of

equation (II-25) with

_'(x) = W(x) + B2(d (0) - 5 (0)) = - BIY (0) - B2 d(0)

and this effectively redefines the linear, multistep method. Finally the derivation of equation (II-32)

is valid only for first order equations in normal form. A similar derivation is not possible for higher

order differential equations.



Theimplementationof linear, multistep integration methods for first order equations in the

Nordsieck form (eq. (II-32)) with B i as scalar matrices, both by Gear (refs. 8 and 9) and by

Hindmarsh (refs. 10 and 11) differs significantly from the conditions necessary for its derivation.
First, (h_o (n) -d in)) was reinterpreted as the differential equation multiplied by h, h (¢-dy/dx),

evaluated with the n th estimates for y and dy/dx. Second, the initial estimates for y and dy/dx did not

satisfy the constraint (II-30) necessary for the derivation. Consequently the implemented algorithm is

not the algorithm which was theoretically analyzed. The difference between the implemented

algorithm and the analyzed algorithm is further increased because the transformation (II-24) from
linear, multistep form to Nordsieck form is only exact when the contribution from remainders o is

known. The remainders are never known in practice. The method was extended to higher order

differential equations (ref. 3) by the ad hoc procedure of assuming that the first order equation can

be replaced by a pth order differential equation multiplied by hP/p!.

The lacuna between theory and practice suggests that a broader look at the Nordsieck-like

integration method is in order. One of the goals of such an investigation should be the construction

of a large class of integration formulas which contain, as special cases, both Nordsieck's
reformulation of Adams' method and the Nordsieck-like version of Gear's method for stiff

equations. Another goal should be an examination of the stability characteristics of this class of

integration formulas. A third goal should be the establishment of the degree of freedom that is

available in the choice of the parameters which characterize a particular method of the general class.

The analysis to achieve these goals is described in the following sections.

General Class of Nordsieck-Like Methods

Before defining a generalization of the Nordsieck integration method I must first introduce some

notation. If we define the nonsingular matrix

H-diag 0!'1! ..... @In

then we can write _ =H_, where

(11-33)

+, m [y(O)*, y(1)', .... y(q)']

Hence any function fly (i), x] can also be regarded as a function of 7/and so, with traditional abuse of

notation, I shall sometimes use fO/, x) instead off(y (i), x) =f(_, x). Keeping this in mind, we can

now write a generalization of Nordsieck's method. The generalization is based on the form of the

second member of equation (II-17).

Definition 1.2 Let f=0 be a pth order differential equation, where 0<p_<q and where p and q are

integers. Furthermore, let M=M(x, h, q, m) and N=N(x, h, q, m) be (m + 1)(q + l)n × (m + 1 )n

matrices and F(_,x) be the (m+l)n-dimensional vector defined as F*(_', x)=

if* [7/(x), x], f* [_ (x- h), x- h] ..... f* [_l (x- mh), x- mh]l. The general (M, N)-Nordsieck

integration method of polynomial degree q and m + 1 steps associated with f(7, x) = 0 is defined by

z(x+h) = 6t(q, m)z(x) +Nzq+ 1, where (_(q, m) --- 6t(1, q, m), and Zq+l is a vector of dimension

(m+ l)n and is defined to be a solution ofF(w, x+h) =0 where w=-_(q, m)z(x) +Mzq+l.

Some observations can be made immediately about the general integration method of Definition

1.2. It, like all numerical integration schemes, replaces the integration process by the process of

solving a system of equations. Generally speaking, the equations to be solved are nonlinear and the

method is viable only so long as F= 0 possesses a solution, hopefully unique, for Zq + 1. A comparison

of Definition 1.2 with equation (II-17) discloses that Nzq+ 1 can be thought of as a direct measure of
the truncation error. The vector z(x) represents the method's approximation to _'(x), and this

suggests that z (x) be _oartitioned in a manner identical to the partitioning of ,_'_,+,"_ in equation (11-2).
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Z" (x) = [a* (x), a" (x-h) ..... a* (x-mh ) ] (II-34)

The vector a(x) serves as the approximation to _ (x), and this in turn suggests that it be partitioned

in a manner analogous to the partitioning of _/(x) in equation (II-1).

(II=35)

Hence i!h -iai(x) plays the role of an approximation to the ith derivative of a solution off= 0 at the

point x. The method does not require z(x) to satisfy the differential equations f--0 at the m+ 1

points x, x- h ..... x- mh in the sense that it does not require F[z (x), x] = 0. However, w certainly

does satisfy the differential equations at the m+l points x+h, x, .... x-(m-l)h. Since

z(x+h)-w= (N-M)zq+I, we know that if (N-M)Zq+l=O, then z(x+h) =w and F[z(x+h),
x+h]=0, and thus z(x+h) satisfies the differential equations. This condition can always be

satisfied, at least by the choice M=N, and so, in principle, it is always possible to generate a vector z
which satisfies f= 0 at m + 1 points in one step of the calculation. This is important because numerical

calculations are never exact and, as a result, we cannot expect F[z(x), x] to be exactly zero for any x.

The requirement that F[z (x + h), x + h] = 0 can be viewed as a mechanism not only for obtaining an

approximation to _/(x+h), but also for refining the approximations to _/at previous points. The
methods of Definition 1.2 offer a number of features that are unavailable in the usual linear,

multistep methods:

(1) They are directly applicable to pth order differential equations of arbitrary form.

(2) They allow improvements to previous estimates of _ (x).

(3) They supply a direct measure of the truncation error.

The implementation of any integration method must deal with two questions: one concerning the

method of solving the associated system of equations, and the other concerning the stability of the

integration method. The former, on the one hand, is only peripherally related to the integration

method in the sense that any method which provides a solution can be used to implement the

integration scheme and the results, at least in principle, are independent of the solution technique.

The solution method is patently a factor in practice, of course. Stability, on the other hand, is a
characteristic of the method, and the calculated results might be strongly dependent on the stability

properties. For these reasons a study of the stability of the methods of Definition 1.2 will be given in
the next section, while the solution of the equations will be given only a cursory look in the remainder

of this section. A large class of iterative solution methods can be written in the form

Z(qk++l 1) _.,(k) + A.,(k)--'q + 1 "U"q + 1

z (k+ 1)(x+h) =z (k) (x+h) +N AZ(qk)+1

(II-36)

where Z(qk)+lis the k th approximation to Zq+l and AZ(qk+) ] is the solution of

J(k) Az(qk)+l = _ h (k) F(k) (II-37)

In this equation j(k) is some nonsingular n(m + 1)x n (m + 1) matrix, _,(k) is an iteration step-size

controlling parameter, and F (k) =F[w (k), x+h], where w (k) is the k th approximation to w; that is

w (k) = t2(q, m)z(x) +Mz(qk)+ 1.The choices j(k) = lncm + 1), xtk) = 1 give the successive substitutions
iteration which is so often used to solve the nonlinear equations associated with the linear, multistep

methods. In that application it produces the conventional predictor-corrector schemes. The choices
jtk) =/3(k)M, x(g) = 1 give Newton's iteration if the n(m + 1) x (m + 1)(q+ l)n matrix/3 Cg) is

13(k)_ cgF(_,x+h) [ OF(w (k),x+h)- 0_" _-=w(k)= Ow (k)
(II-38)
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If j(k) is initially calculated as for Newton's method but not altered for subsequent iterations, then

we have the modified Newton method. Suppose that w is partitioned in the manner of z (eq. (34)).

( * , Wm)W*= Wo, Wl, . .., (II-39)

and we define an n xn(q+ I) matrix for each a as

13_k) = Of(_, x+h-cxh) I o_<w_,, x+h-uh)
07 _= w(k ) = Ow(_k) oe= O, 1, 2 ..... m (11-40)

Then 13(k) can be regarded as the direct sum of the m + 1 matrices 13a(k).

m

13(k) = 0 _ 13(k) (II-41)
t_=O

There are, of course, other possible choices for j(k). For any choice, it is necessary to solve equation

(II-37) for 2_Z(qk+)1. In practice this is achieved most economically by a direct solution (ref. 16)

although there may exist special situations where one might wish to solve for z_Z(qk+)1 by inverting
j(k).

Regardless of which iterative method is used to solve for Zq + 1 one must be careful not to ascribe
deficiencies of the solution technique to the integration method. To point up this fact, and to

illustrate the integration method, let us look at the most general system of linear equations since the
calculations can be carried out analytically for this case. Thus we take

q

f= _ Di(x)y (i) +g(x) (11-42)
i=0

where the n x n matrices D i and the n-dimensional vector g are functions of x alone. We can define

matrices/3 and 13c_analogously to the definitions of 13(k) and 13(k).

OF(w, x+h)
13-- (11-43)

Ow

13o= Of(w,_, x+h-o_h) c_=0, 1, 2 ..... m (I1-44)
Ow a

and then

m

13= Q _ 13o_ (II-45)
t_=0

For the linear function (II-42) we find

F(_, x+h)=13_'+G (II-46)

F(w, x+h) =13w+ G=13_z(x) +13MZq+l+ G (II-47)

where

G" = [g'(x+h), g*(x) ..... g*(x+h-mh)] (11-48)

and
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_c,=/3(uk)=[h-°O!Do(x+h-oLh), h-ll!D1(x+h-ah) ..... h-qq!Dq(x+h-o_h)] (I1-49)

From equation (I1-47) it is obvious that a unique solution exists for Zq+l if and only if 13M is

nonsingular and then

Zq+ 1 = - (/3M) - l[136_z(x) + G] (ii-50)

z(x+h) = [l(m+ l)(q+l)n-N(/3M) -I/3](_z(x) -N(/3M) -IG (II-51)

F[z(x + h ), x + h] = 13z(x+ h) + G= [I(m + I)n-/3N([3M) - I][/36tz(x)+ G] (II-52)

The vector/30_z(x) + G cannot generally be expected to equal tile zero vector and hence, at least for

linear problems, we find F[z(x+h), x+h] =0 for all linear problems if and only if 13(M-N) =0.

This is less restrictive than the condition M=N.

The question now is what would an iterative solution produce as the answer to the same problem.

To permit an exact calculation, let us suppose that k (k) and j(k) in equation (II-37) are independent

of the iteration number k, and hence we write using equation (11-47)

_,(qk2 1 : - X J-IF(k)= -- _KJ-1 [/3(_z (x) +/3MZ(qk) 1+ G]

and so

z(k++l 1) =z(k) 1+Az(k+)I = [l(m+l)n-_kJ-ll_m]z(k)l-_kJ-l[/3(_Z(x ) +G l

Since for the problem under consideration the matrix multiplying ZCqk+) I is independent of k, we find

k-I

z(:'+,: (1,..+ ,- E
1=0

If C is any square matrix, then

[1 (m+ l)n -X J- I/3M] I X J-l[/30_z (x) +G] (II-53)

lim C k = 0

k-_

(l-C) -1= _ C I
I=0

if and only if the spectral radius of C is less than 1 (ref. 17). From this it follows that

k-I

C l= (1 -C)-I(1-C k)
I=O

Thus if the spectral radius of 1 (m+ 1)n -h J- I_ M is less than 1, we find

Z(qk), -- [I ,m+ l)n-- }kg-l_m]kz(qO)+l-(_kJ-1/_m)- 1

X [1 ,m+l)n--(1 ,m+l)n-)_J-1/3M)k]_kJ - I[/30_Z(X) -I-G] (II-54)

and in the limit k-oo

Z(q_) 1 : -- (X J-II3M) -l_kJ-l[_aZ (X) --I-G]



Newton's iteration gives the exact answer to a linear problem in one step. Thus the choice X= 1,

J=/3M in equation (II-54) gives z(l)+ 1 - _"(_) For the successive-substitutions iteration h = 1,--" q+ 1 =Zq+ 1"

J= 1 (m + 1)n and we find that

k c0) (1 +C]z(qk)+l=[l(m+l)n-/3g] - (m+1)n

but g(qk+)1 _Z(+) 1 = Zq+l and all of this is predicated on 1 (m+ 1)n-/3M having a spectral radius less
than 1. This is equivalent to requiring/3M to have a spectral radius in the open interval (0,2), which

might or might not be satisfied in any given problem. Here we have an example of an iterative

method which could diverge or produce a poor approximation for Zq + 1, and hence also for z (x + h),
even though a unique solution exists. It is imperative that one obtain the correct solution, or at least

an adequate approximation to the solution, of the nonlinear equations when it exists. Failing this

risks imputing inadequacies of the solution technique to the integration method. Certainly the
efficacy of a particular algorithm is a combination of the two factors.

Stability

The stability of an integration method generally refers to its behavior when applied to a particular

class of linear differential equations and not to the intuitive notion of how errors propagate during

the numerical solution_of the differential equations in general. Thus Lambert and Sigurdsson (ref.

15, p. 721) introduce A stability for the special case of equation (11-42) corresponding to the choice

D Oequal to a constant matrix, - D 1= 1n, Di > 2= 0, and g (x) = 0. If D O is chosen as a constant scalar

matrix, then A stability reduces to Dahlquist's A stability (ref. 18, p. 29). Prothero and Robinson

(ref. 19, p. 147) introduce S stability for the special case where D O is equal to a constant matrix,
-DI = 1n, Di___2=0, and g(x) = - (Dou+du/dx), where u is a known function and n = 1. Because

of the relative simplicity of the methods of Definition 1.2, it will be unnecessary to use any of these
arbitrary definitions of stability. Instead we can analyze the situation more generally without

recourse to special differential equations. From Definition 1.2 it follows that the variation 6z (x+ h)

in z(x+h) can be expressed in terms of the variations 6z(x), 6Zq+ 1 in z(x) and Zq+ 1. The same
holds true for the variation _F(w, x+h) of F(w, x+h).

tSz(x + h ) = OgtSz(x) + NtSZq+ 1

5F( w, x + h ) =/35w=/3[(_6Z(X) + MSZq+ 1]

(11-55)

If/3M is nonsingular, then the second of these can be used to eliminate _Zq+l from the first
equation to give

6z(x + h ) =S6z(x) + N (/3M) - lq3F (11-56)

where

S-- [1 (m+ 1)(q+ 1)n--N(/3M) -113] a (II-57)

Thus the stability matrix S controls the propagation of errors in the initial values z(x), while the
matrix N(/3M) -1 controls the propagation of errors due to poor solutions of F(w, x+h) =0. In

principle, it is possible to achieve 6F= 0, but in practice this will seldom be true. Hence the error at

x + h will contain contributions from both terms. However, let us suppose that cSF= 0 and that S is
independent of x. Then 6z (x + kh) = Sk6z (x) and thus, if 6z (x) is regarded as arbitrary, we conclude

that 6z (x+ kh) = 0 if and only if S k= O. Obviously errors in z (x) will propagate for a finite number

of steps, less than or equal to k. If S is not nilpotent of degree k, then there still exists the possibility
that Sk-O as k-o% which is true if the spectral radius of S is less than 1 (ref. 17). As a minimum then,
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S should have its eigenvalues within the unit circle. The only freedom available for adjusting the

eigenvalues of S is furnished by the matrices M and N, and so we shall begin an examination of the
relationship of S to these matrices.

There are two ways in which we might proceed. We could, in effect, choose M and N and then ask

what are the eigenvalues of S. This will not be considered in this report. Alternatively we might
choose S and ask for the matrices Mand Nwhich produced it. This question will be examined for the

balance of this section, and in the course of the discussion we will make use of the properties of the
generalized (Moore-Penrose) inverse M _ of a matrix M. The definition and the necessary properties

of generalized inverses are summarized in the appendix to this chapter. The subscript on the identity

matrix will be suppressed on the following pages; that is, the n × n identity matrix 1n will simply be
written as 1, as will every other identity matrix.

Theorem II.1 The equation S= [1 -X3](i possesses a solution for X if and only if S is of the form

S=(1 - Y13_3)(i. The solution is X= (1 -S(i-l)3t+ II2(1 -33 t) = YI3Y+ Y2(1 -33t), where Y1

and Y2 are arbitrary matrices such that Y1 is (m+l)(q+l)n×(m+l)(q+l)n and Y2 is

(m + 1)(q + 1)n × (m + 1)n.

Proof: Clearly from the properties of the generalized inverse, )(3 = [Yl3Y+ Y2(I- 33t)]3 = Yl3t3,

and therefore [1 -X3](i = (1 - Y13t3)_2 = S. Conversely by (A5), 1)(3 = 1 -SO_- 1possesses a solution

if and only if (1 - S(i- 1)(1 - 3"t3) = 0, and then the solution is X= (1 - S6t - 1)3' + Y2(1 - 33t). But the

condition for the existence of a solution can be viewed as an equation for 1 - S(i- l, and because it is

homogeneous it always satisfies the condition for the existence of a solution. The solution is

1-S6t-l=Yll3t3, where I used the fact the 1-3_3 is a hermitian idempotent and thus

(1 -3t3) t= (1 -3"t3) by (A2.3). Using this result in the expression for X completes the proof.

Corollary 11.2 Let Mbe a matrix such that 3Mis nonsingular. Then S = [1 -N(3M) - 13](2 possesses a

solution for Nif and only if S is of the form S= (1 - Y13t3)_2. The solution is N= Y13t3M, where YI

is an arbitrary (m + 1)(q + 1)n × (m + 1)(q + 1)n matrix.

Proof: In Theorem II.1 let X=N(3M)-I

+ I"2(1 -[33t)]3M= YI3t3M.

Then N=[N(3M) - l]3M=[Y13 t

This corollary enables us to construct an integration method with stability characteristics
corresponding to any member of the collection of all matrices of the form (1 - Yl3t3)t_. This can be

done for any M and any system of differential equations but becomes a useful device only if the

collection contains a member with desirable stability properties.

What about the possibility of determining not only Nbut also M from S? If this is to be done, then

the equation for S, equation (II-57), must be augmented by another equation involving M and N.

The two equations would then have to be solved simultaneously. The conclusion that F[z(x+h),

x+h] =0 for an arbitrary linear problem if and only if 3(M-N) =0 strongly suggests that we take

3(M-N) = 0 as the second equation. We shall need some preliminary results.

Theorem II.3 Let S=[1-N(3M)-1/3](i. Then 3S=0 if and only if 3(M-N) =0 if and only if
3N(3M) - 1= 1.

Proof: Since 13M is nonsingular, we have immediately that 3(M-N)=0 if and only if
3N(3M) -l= 1. Since (_ is nonsingular, it is true that 3S=0 if and only if 3N(3M)-13=3. From

(A6) it follows that there always exists a solution of this equation for 3N(3M) - 1 and it is given by
3N(3M)-1=33_+ Y(1-33?). Multiplying this result by /3M on the right and using the property

(AI.I) lead to 3N=3M and hence 3(M-N)=0.

Theorem 11.4 Let S be chosen as in Theorem 11.1, that is, S= (1 - Yl3t3)O_. Then 3S = 0 if and only if
Yl=BtB+Y3-BtBY33t3, where Y3 is an arbitrary (m+l)(q+l)n×(m+l)(q+l)n matrix. This

72



choicefor YI gives S-- (1 - Bt_)(l - Ya/3t/3)tL Furthermore 13N(/3M) - l = 1 if and only if/3/3t = 1 if

and only if/3_/3_ = 1 for a = 0, 1..... m.

Proof: Since BS = (/3-/3 Yl/3t/3)(_ and (_ is nonsingular, we see that/3S = 0 if and only if/3 Y1/3t/3 =/3.

But from (A6) we find that the condition for a solution is identically satisfied and that the solution

for Y1 is given by Yl=/3t_+ Y3-/3t/3Y3_t/3. From this it follows by direct computation that

S= (1- Y1/3t/3)t_= (1-/3t/3)(1- Y3/3t/3)6t. If we use the same form for Y1 in the expression for

N(_M)-I=x given in Theorem II.1, then directly 13N(_M)-l=/3/3t+/3Y2(1-/3/3 t) and hence

/3N(/3M) - 1= 1 if and only if/3 Y2(I - _t) = (1 -/3/3t). Applying (A6) to this we see that a solution for

Y2 exists if and only if /3_t=l. But using equation (11-37) and property (A4.1) gives
m

/3J3t = 0) E /3a/3_ and therefore _t = 1 if and only if/3_/3t = 1.
t_=0

Corollary 11.5 The pair of equations [1 -N(/3M) -1/3](_:S and �3(M-N) =0 can be solved for N

and M if and only if /3_t=I and S=A_, where A=(l-/3t/3)(1-Y3/3t/3). The solution is

N= (1 - AtA) Y4 and M=N+ (1 -/3t/3) YO. The (m + 1)(q + 1)n × (m + l)n matrices YO and Y4 and

the (m + l)(q + 1)n × (m + 1)(q + l)n matrix Y3 are arbitrary except that Y3 and Y4 must be such that
_(1 - At/x) Y4 is nonsingular.

Proof: Applying (A6) to/3 (M-N) = 0 shows that M=N+ (1 -/3t/3) Y0. The equation/3 (M-N) = 0

also gives S=[I-N(t3N)-lj3]_. From Theorem II.1, with X=N(/3N) -1, we conclude that

N(_N) -1= ylt3t + Y2(1 _ 13/3t) and S = (1 - Y1Btt3)(L By Theorem I1.3 we also have that 13S= 0 and

t3N(/3M) - 1= 1. These facts in turn imply, by Theorem I1.4, that S=(1 -/3t/3)(1 - Y3_t/3)6t,/3/3t = 1,

and N({3N) - 1= [1 +(1 -/3t/3) Y3]/3 t. If the last expression for N(/3N) -1 is multiplied by/3N from

the right, then it leads to AN=0, which can always be solved for N by (A6), and the solution is

N=(1--AtA)y 4. But the requirement that j3N be nonsingular imposes the condition that

/3(1 -At/x) Y4 be nonsingular. To verify that N, as given, satisfies the equation for S, we use the
identity N=(I-/x)N and from this it follows that N(3N)-I=(1-/x)[N(/3N)-1] =

/[1 + (1 -/3t/3)Y3]/3t/3/N(/3N)-1= [1 + (1 _/3t_) y3]/3t, and this then leads to the required form for S.

This corollary, like Corollary 11.2, permits us to construct an integration method with stability

characteristics corresponding to any member of the collection of all matrices with the form

(1 -/3t/3)(1 - Y3/3t_)t_ when the differential equations satisfy the condition /3/3t = 1. This condition

will be satisfied whenever/3_ is of full-row rank as would always be the case for differential equations
* " m

in normal form. If /3a is of full-row rank, then /3_ is of full-column rank and, by (3),
j3_ =/3_(/3a/3_) - I, from which it follows that _3d3_ = (/3_B_)(/3_) - 1= 1. However, it is important to
note that if we are given the form of N supplied by Corollary II.5, then it can be used in an

integration method whether or not t3_/3_ = 1. This realization when combined with Corollaries 11.2

and 11.5 produces the following theorem:

Theorem 11.6 Let S be the stability matrix for the general (M,N)-Nordsieck integration method. The

choice N= YII3t/3M implies that S=(1 - Yl_t/3)6_, where Y1 is an arbitrary (m + 1)(q+ 1)n × (m + 1)

(q + l)n matrix and M is arbitrary except that _M must be nonsingular. Let/x = (1 -/3t/3)(1 - Y3_3t/3),

where Y3 is an (m+l)(q+l)n×(m+l)(q+l)n matrix. The choices N=(1-/xtA)Y4 and

M=N+(1 -_3t_) Yo imply S=/x6t, where Yo and Y4 are (m + 1)(q+ 1)n × (m + 1)n matrices. The

matrices Yo, Y3, and Y4 are arbitrary except that Y3 and Y4 are constrained by the condition that
/3(1 -At/X) Y4 be nonsingular.

Proof: Simply calculate [1-N(/3M)-lI3]O_ for the first case. For the second case observe that

/3M=/3N and N=(I -/X)N= [1 +(1 - _t/3) Y3]I3t/3N, which implies N(/3N) -_= [1 +(1 -/3t/3) Y3]/3 t.

Because of this theorem we can obtain, at will, any member of a subset of the collection of all

stability matrices simply by choosing either
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N= Ylt3t_M = (1 - Sa- 1)M

or

N=(1 - AtA) Y4 = [1 - (S(2- l)t (S(_ -1)] Y4

The choice of S is restricted to the forms given in Theorem II.6. It is interesting to ask, Does this

restricted collection of stability matrices contain the most stable case corresponding to S = 0? That is,

can S = 0 be solved for either Yl or Y3? The application of (A5) to the appropriate form of S in the
equation S = 0 shows that a solution for Yl or Y3 exists if and only if/3t_ = 1, and hence S = 0 will

generally not be a member because it can easily be shown that _ti3 ;_ 1 for q > 0. Since _3= G _/3_,

it follows from (A4) that 13tt3=l if and only if /3_/3_=ln(q+l) for all _, and l_ence

rank 03_/3_)=n(q+ 1). But from (A5) we see that rank (_i3_)=rank (B_)_<n. Consequently the

condition 13ti3 = 1 can be satisfied only for q = 0, if then.

The stability matrix contains contributions from each of the m + 1 points that are involved in the

integration. The contribution of each point can be made independent of the other points by suitably

restricting the choices for the matrices M and N. This then permits one to obtain results analogous to
Theorem 11.6 at each of the m + 1 points.

Theorem 11.7 Let S be the stability matrix for the general (M,N)-Nordsieck integration method and
m m

suppose (1) that M= (_ _ M_andN=@ _ N_,whereM_andN_aren(q+l)×nmatrices
_=0 o_=0

m

or(2) thatN=O _ N_andM=N+(1-13t3)Yo, where Y0 is an arbitrary (m+l)(q+l)nx
o_=0

H1

(m+l)nmatrix. ThenS=@ _ S_,where S(_isan n(q+l)xn(q+l)matrix. If condition(l)
c_=O

holds, then Sa: [1-N_(/3_4,)-lt3c_]A (1;q). Furthermore the choice N,: Y]_,tt3_4_ implies that

S_=(I- Yl_y_)A(1;q) where Y1 is an arbitrary n(q+ l)xn(q+ 1) matrix and M, is arbitrary

except that/3aM _ must be nonsingular. If condition (2) holds, then S,_ = [1 - Nc_(13_flV_)- ]i3cjA(l;q).

Let Au=(l-/3t_13_)(l-Y313,_/3u), where Y3 is an n(q+l)xn(q+l) matrix. The choice

N_=(I -A_A_)Y4, where Y4 is an n(q+ 1)xn matrix, implies S,=(1 -/3_13_) (1 - Y3_)A(I;q).
The matrices Y3 and Y4 are arbitrary except that _u(l -A_Au) Y4 must be nonsingular.

Proof: Observe that, if condition (1) holds, then

,=[t®z,o) l®zM,)]'=[® '=®z '

Then using this we find that

c_=O _=0 7=0 5=0 X=O

:/

/

/

Itl

[In(q+ 1)-N,(_(_M,)- l_,_lA(l ;q)
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If condition (2) holds, then /3M=/3N, and proceeding as above establishes the result that
m

S= @ _ S_.The balance of the theorem follows by direct computation of S_ as done in Theorem
or=0

II.6 for S itself.

If M is chosen as in Theorem 11.7(1), then the m + 1 points are decoupled with respect to the

determination of Zq + I. However, choosing M as in Theorem I1.7(2) does not necessarily lead to such
a decoupling because of the arbitrariness of YO.

Some Special Cases

I shall confine my attention to the forms of N and M of Theorem 11.7(1), which lead to a

decoupling of points and reduce the problem to the case m = 0 (one-step method) for which/3 =/30.
Obviously one could look at special cases by considering particular differential equations and

tailoring the methods for these equations. But one can also look at special cases by examining the

behavior of the method in the limits of small and large step size. Intuitively one expects to find results

of broader applicability by looking at the limiting behavior as h-0 and h-oo. In particular, I shall

examine the limiting stability behavior and obtain results which are exact in the limit.

Suppose we define _a as

_ _ Of(f, x+h-ah) I (II-58)0f _= n- 1w_ =/3J-/

and assume that the limits

lim _. =/_c_(O) = [_Qo(O) ..... _o_q(O)] (II-59)
h-O

lim _ =_(oo) = [_c_0(oo) ..... _aq(OO)]

h-oo

(II-60)

exist. Then, since _= _H-1, for a pth order differential equation (p___q) we have

as h-co

as h-O

(II-61)

as the limiting behavior. The vector e k, k=0, 1..... q, is a (q+ 1)-dimensional vector whose kth

component is unity and all other components are zero. Note that in equation (II-61) the order of the

differential equation is immaterial in the limit h-oo. The limiting behavior in equation (II-61)

suggests that we explore the m = 0 case for stability associated with the form

j3 =/3 o= b* ®Z (II-62)

where b is a (q+ l)-dimensional vector and Z is an n × n nonsingular matrix. By (A4.2), (A2.2),

(A2.1), and (A3) it follows that

/3f = (b'b) - lb(_Z- 1 (II-63)

and from this we obtain
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13tt3= (b'b) -lbb* ® 1n (II-64)

Suppose we also restrict Y1 of Theorem 11.7 to the form

YI = - e L @ 1n (11-65)

where c is a complex number and L is a (q + 1)× (q + 1) matrix. Then this leads to

S= (1- Ylt3+13)A(1;q)= I[lq+ l+e (b'b)-ILbb*]P(1;q) 1 ® 1n (II-66)

It is known that the Pascal matrix P(I, q) has the Jordan canonical form lq+ 1+Jq+ 1. That is, there
exists a nonsingular matrix T such that

T- 1p(1;q)T= lq+ 1+Jq+ 1 (II-67)

and hence

S' m (T-IQ ln)Sc_ (T® In) = (Jq +1 -t- lq +1 + ,Ut*) ® I n = UQ I n (II-68)

where

u - (b'b) - IT- lLb

t* =-b*PT

(II-69)

(11-70)

The eigenvalues of S are the eigenvalues of S', and these can be altered only by making changes in the

vector u and the number e because the vector t is presumed known. If X is an eigenvalue of S and

= X- 1, then the characteristic equation for S' is

IS'-X11 [U- _,lq+ 1 1 -#lq+l-- I"--IJq++,.: I"--0 (11-71)

which determines the values i_i, i=0, 1 ..... q for a given u. Conversely it should be possible to

prescribe the q+ 1 eigenvalues #i and use these to determine the q+ 1 components of u. But if we

know u, then the defining equation for u, equation (II-69), can be solved for L by using (A6) and

(A3) to get

L = Tub* + Y' [lq + 1- (b'b)- lbb*] (II-72)

where Y' is an arbitrary (q + 1) × (q + 1) matrix. The combination of Theorem 11.7 (1) for m = 0 and
equations (II-64), (II-65), and (II-72) shows that

N= -e[(Tub*)®ln]M

13N=-e(bb_L,_)_M=-e(b*Tu)I3M

The second member of equation (II-73) leads to the conclusion that

/3(N-M) =0 ifandonlyif e=-(bb**_bLb)=-(b*Tu)-I

(II-73)

(II-74)



Wemustnowtry to find a computationallyconvenientconnectionbetweenthevectoru and

eigenvalues #i. If adj (A) is the adjugate matrix (sometimes called the adjoint matrix) of any matrix
A, then it can be shown that

[Z + ut* [= IA I+ t*[adj (Z ) ]u (II-75)

The elements of adj(A) are the cofactors of the elements of A. Furthermore it can be shown that

adj(Jq+ 1 -- _klq+ t) =

q+l q

E (-x)q+l-l(-Jq+l)l-l= E (--_)q-k(--Jq+l)k
l=1 k=0

(II-76)

[Jq+ 1 -_klq+ll= (-_k) q+l (I1-77)

An expression for the determinant in equation (II-71) can be obtained by combining equations
(II-75) to (II-77).

q

(-1)q+llJq+'-_lq+'+Eut'l=_q+'-_ E _q-k(t*Jk+lU)
k=0

(I1-78)

If P.i, i= 0, 1 ..... q, are the roots of this polynomial, then the elementary symmetric functions of
these roots are defined by

St(tzi) = _._ IZil I_i2 • • • #i t 1= 1, 2 ..... q+ 1 (11-79)
0-<i I <i2 <...<il<_ q

But the polynomial (11-78) can also be written in terms of its roots.

q q

H (P'-/-ti) "=/"tq+l - E I'tq-k(-- l)kSk+l (11-80)

i=0 k=0

A comparison of equations (11-78) and (II-80) shows that

et*jkq+lU=(-1)lcSk+l(#i) k=0, 1..... q (II-81)

and this system of equations can be viewed as a set of linear equations for u, giving u as a function of

c, t, and the roots/_i. This system of equations can be written more compactly as

eFu = c (I1-82)

where c is the vector

0 * 1 • * ] * *C*----" (--1) 81' (--1) _2 ..... (--l)qSq+l =(CO' ¢_ ..... ¢q) (11-83)

and the matrix F is

r*= (3'0, _,1..... yq) (II-84)

The vectors Yk can be conveniently expressed by using the representation

q-k

jk+ 1 = E eieT+k
i=0
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to obtain the result

q-k

•_...k = F,(,_k =_ Jq+ 1
i=0

Thus F has the upper triangular form

r

"t*eo t'el t'e2 . . . t*eq

0 t*eo t'el • • . t*eqT1
!

0 0 t*e 0 . . . t*eq_ 2

• • •

0 0 0 . . . t*e 0

q

=
k=0

(11-85)
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We shall now examine the solutions of equation (II-82) for the vector u(e). Clearly the

determinant of the matrix P is IF I= (t*eo) q + 1, and so r is singular if and only if the zero component

of t vanishes. But then equation (II-82) and the form of r imply that the zero component of u is

arbitrary and also that Sq + l = 0. The latter then in turn implies that/_q = 0, and hence Xq = 1. More
gener_/lly, it follows from the structure of F that rank r=q+l-j if and only if for some

j, O<__j<q+ 1, t*ej_O and t*ek=0 for all k such that O<_k<j if and only if

where 0 is a zero matrix and FI2 is the upper triangular, nonsingular (q + 1 -j) × (q 4- 1 -j) submatrix
of F for j<q+ I. Ifj=q+ 1, then r is the zero matrix. Using the form of r and F t, it follows that

rr* = lq+ 1 -j (_ Oj

r*r=oj ® lq+ 1 _j

1 q + 1 - rtr = lj (_ Oq + l -j

Utilizing this information, together with (A6), we conclude that when rank F = q + 1 -j then equation
(II-82) has the solution

u (0 = e - lrtc + (lj (_ Oq + 1 -j)Y (11-86)

if and only if (lq+l_ j (_ Oj)c=c, where y is an arbitrary vector. If we evaluate u(e) at eo and
eliminate Ftc between the two equations, we find

U (e) = e - leou (cO) + (1 -- e - leo)(1 j @ Oq+ 1 -j)Y (II-87)

The form of the solution given in equation (11-86) shows that c can only affect the last (q + 1 -j)

components of u(e) and that the arbitrary y can only affect the first j components of u(e). The



conditionfor theexistenceof thesolution(11-86)canbesatisfiedif andonlyif thelastj components
of c vanish; that is, if and only if 8q+2-k = 0, if and only if #q+ 1 -g = 0, if and only if),q+ 1 -k = 1 for
all k such that 1 <k<j.

Suppose u is as given in equation (II-86). Then

eb* Tu = b* TPtc + eb* T(lj @ Oq + 1 -j)Y

If b*TFtc= -1, then b*Tu=-e -1 if and only if b*T(lj Q Oq+l_j)y=O , which can always be
satisfied by y = 0. If b* Tl'tc # - 1 and b* T(Ij @ Oq + 1-j)Y _ O, then b* Tu = - _ - 1 if and only if

- (1 + b* TI'tc)

b* T(Ij @ Oq+ 1 -j)Y (I1-88)

Hence, using equation (II-74), it follows that the arbitrariness of y permits us to achieve

_(N-M)=0 in these two situations. The condition b*T(lj @ Oq+l_j)y#O implies that j>0. If
j = 0, then F i = F - 1 and then b* Tu = - e - l if and only if b* TF - lc = - 1. From the foregoing we see

that satisfying the condition b* Tu = - e- 1 presents no difficulty except perhaps when F is of rank

q+l. In this situation b*T(lj@Oq+l_j)y-O because j=0, and so the vectors b and c are

constrained by b* TF - 1c = - I because pt = I'- 1. Now we might fortuitously select a pair of vectors b

and c which do satisfy b*TF-lc= -1. But, more generally, we must expect that independently

selected vectors b and c will not satisfy the constraint. If we choose to prescribe the stability
characteristics, as determined by the vector c, then we must be content to achieve this stability for a

limited class of differential equations characterized by 13as given in equation (II-62). Conversely, if
we wish to allow complete freedom in b, then this restricts the kind of stability that can be obtained.

The constraint b* TF - lc = - 1 is linear in c and nonlinear in b because F itself is dependent on b. The

linearity in c permits us to solve the constraint for c in terms of b. The use of (A6) and (A3) shows
that b*TF- lc= - 1 can always be solved for c and that the solution is

c(y) = -- (X'X) -IX+ [lq+ 1 -- (X'X)-lxx*]y

where y is an arbitrary (q + 1)-dimensional vector and x* = b* TF- 1. By comparing equations (II-80)
and (II-83) we see that the stability characteristics are governed by the roots of

q

p q+l E Ck(Y)I zq-k=O
k=0

and so, if we usey as a set of (q+ 1) parameters, then we can find the optimally stable method for a

given vector b. The results of this section are summarized by the next theorem.

Theorem III.1 Suppose that Theorem II.7(1) holds and that m = 0. Furthermore let

(1) N= YlI3_I3M

(2) Y1 = -eL@l n
(3) 3=b*QZ

where e is a complex number, L is a (q+l)×(q+l) matrix, b is a (q+l)-
dimensional vector, and Z is an n × n nonsingular matrix. Then

(4) 13(N-M) =0 if and only if e = -(b*b/b*Lb) = -(b*Tu)- 1

(5) The stability matrix S is given by S=[T(Jq+l+lq+l+eUt*)T-l]Qln, where T is a
nonsingular (q + 1) × (q + 1) matrix which reduces the Pascal matrix P(1 ;q) to Jordan canonical form,
T-1p(I;q) T= lq+l + Jq+ 1, and where u= (b'b) - IT- ILb, t* =b*PT.

(6) N=-e[(Tub*)@ln]M.
q

(7) Every eigenvalue X of Sis a root ofthe polynomial #q+ '-e _ _q-k(t*J_+ ,u)
k=0

of degree q + 1, where # = X- 1. If X is one of the roots of this polynomial with multiplicity m, then
is an eigenvalue of S with multiplicity rim.
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(8) The vector u can be regarded as a solution of the system of linear equations eFu = c, where F is

the (q+ 1)× (q+ 1) matrix F* =(3'0, 71 ..... 7q). The (q+ 1)-dimensional vectors 7k are given by

q-k

•_., ,k E (, ei)e,+kYk--t %+i =
i=0

k=0, 1.... , q

0 * l * *

and the vector c is given by c* = [(- 1) $1' (-- 1) $2 ..... (-- 1)qSq+ 1]' where St are the elementary
symmetric functions and are defined by

Sl(#i) ---- E _ill'ti2 • • • #il

0-<il <i2'.. <il<-q

1=1, 2 ..... q+l

(9) The matrix I' is upper triangular and is of rank q+ 1-j if and only if for some integer

j, O<_j<_q+ 1, t*ej_O and t*ek=0 for all k such that O<_k<j.
(10) If F is of rank q + 1 -j, then the eigenvalues Xk of S are arbitrary for 0 _<k _<q-j and equal to

unity for all k such that q+l-j<_k<_q. A solution of eFu=c for u exists if and only if

(lq+l_ j @ Oj)c=c, and the most general solution is u =e-tFtc+ (lj @ Oq+l_j)y, where y is an
arbitrary (q+l)-dimensional vector. The solution can also be written in the form

U (e) = e - le0u (e0) + (I -- e - le0)(1 j (_) 0q+ 1 -j)Y"

(11) There exists an e such that b*Tu=-e -1 if and only if either b*TP?c=-I and

b*T(lj (_) Oq+ l_j)y=O or b*TF?c7 _ - 1 and b*T(lj (_) Oq+ l_j)y:O.
(12) Suppose F is of rank q+l. Then b*TI'?c=b*TF-lc=-I if and only if

c(y)=-(x*x)-lx+[lq+l-(X*x)-lxx*]y, where x*=b*TF -1 and y is an arbitrary
(q + D-dimensional vector. For this choice of the vector c the eigenvalues _k(Y) of S are the roots of

the polynomial

q

p q+l E ck(Y)Izq-k

k=O

where I*= },- 1.

The foregoing theorem deals exclusively with properties associated with special cases of the general

integration methods of Definition 1.2. I wish to specialize these results even more by making a

commitment to a form for M in Theorem III.l(6). Suppose we try M=f®V, where / is a

(q + 1)-dimensional vector and V is an n x n matrix. Then this implies that N= -eb*e( Tu® V). Can

we now find an e and an esuch that N= v(g® V) = vM for some complex number u? This will be true if

and only if d=-eb*eTu. If this equation is multiplied by b*, we find that this requires

v= -e(b*Tu), and with this choice for v we see that l must be a solution of the homogeneous

equations

lq+l_ Tub*_b,Tu ] g=O
(II-89)

Nontrivial solutions for e will exist if and only if the determinant Ilq + 1 -- (b* T/g) - 1Tubl vanishes. But
from equation (II-75)

[lq+ ,-(b*Tu)-ITub * ]= Ilq+, l-(b*Tu)-Ib*[adj(lq+ l)]Tu

= 1 -(b*Tu)- lb*Tu

-0

Hence we are guaranteed that nontrivial solutions will always exist for equation (II-89), and one can
easily verify that, for any complex number c_, e= aTu is a solution. The requirement that (_3M)-t

exist leads to the condition that V be nonsingular.
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Theorem 111.2 In Theorem III. 1(6) choose M= e® V, where eis a (q + 1)-dimensional vector and Vis

an n × n nonsingular matrix. If v is a complex number such that v= -E (b*Tu), then any e which

satisfies the homogeneous equations [lq+ 1 - (b*Tu)-lTub*]e= 0 will yield N= vM for arbitrary V.
In particular, the vector e= otTu is such a solution for an arbitrary complex number a.

We shall soon see that the integration methods of Theorem Ill.2 contain the Gear and Nordsieck

methods of integration as special cases.

The limiting forms of B_ given in equation (II-61) suggest that we calculate the vectors t, u, and

- Tu of Theorem III.1 for b=ek, O<_k<_q, because for these limiting cases the three vectors are

independent of the form of the differential equations and in the limit h- oo they are also independent

of their order. The results of the calculation for k=0, 1..... 8 and q=k, k+ 1..... 8 subject to
the condition that q > 0 are shown in table I. An examination of this table discloses that in all cases

-b*Tu=l. Hence, the choice E=I satisfies Theorem III.1(4), and thus v=l and N=M from

Theorem 111.2. The coefficients for Gear's method (ref. 7) and those for Nordsieck's method (refs. 2,

3, and 5) are shown in table II. A detailed comparison of the two tables shows that the Gear

coefficients given in table II(a), for any given value of q, are scalar multiples of the vector ( - Tu) of

table I for k = 0 and the same value of q. It should now be clear that Gear's integration method (ref.

9) can be regarded as a special case of the more general integration methods of Theorem I11.2 and

obtained from them by (1) choosing a one-step method (m = 0), (2) applying it to a first order system

of equations in normal form, (3) selecting V= 1n and o_- 1= e_Tu, and (4) solving the equations by a

modified Newton iteration with no step-size control during the iteration. Note, however, that my

derivation of this result shows that Gear's method is applicable to higher order differential equations

as well as first order equations. This is because the h-_ limit is independent of order as is shown in
equation (II-61).

Similarly, for a pth order system of differential equations (p_> 1), the Nordsieck coefficients given

in table II(b) for a method of polynomial degree q are related to the vector (- Tu) of table I for the

same value of q and k =p. The last q + 1 -p Nordsieck coefficients of table II(b) agree with the last

q + 1 -p components of ( -p - 1Tu). But since the first p components of Tu are arbitrary by Theorem

III.l (10), insofar as stability is concerned, the agreement could be made complete. We thus see that

the Nordsieck method is also a special case of the methods of Theorem III.2 for it is (1) a one-step
method (m =0), (2) applied to a pth order system of differential equations in normal form, and

(3) obtained by choosing V= 1n and either a= 1 (for Gear's extension, ref. 3) or a=p-l (for

LaBudde's extension, ref. 5). Gear's implementation of the Nordsieck method (ref. 9) for p = 1 solves

the equations by the successive-substitutions iteration with no step-size control during the iteration. It

is apparent that the Gear and Nordsieck methods are two aspects of the same more general method.

The former represents maximum stability in the limit h-_; the latter represents maximum stability in
the limit h-0.

I still wish to consider the specialization of the parameter a and those components of e not

determined by stability considerations in the h-0 limit. My analysis will lead to vectors ewhich differ

from those of Nordsieck, Gear, and LaBudde. Consider a polynomial of degree R

R

n_=Ognxn (II-90)y(x) = = nY

where the vectors gn are independent of x, and a pth-order differential equation of the type (II-42)

Dpy (p) +g(x) = 0 (II-91)

where Dp is nonsingular and also independent of x. Then since

R-p

y(P)(x) = ]_ _'
i=0

the differential equation will have the polynomial y(x) as a solution if and only if
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g(x) : 13 % p gi+I_i
--up i_=O i!

If we use the binomial theorem and interchange the orders of summation, we have

(I1-92)

R gn(x+h)n
y(x+h)= ]_ n!

n=O
. f:- E gn hkxn-k__ -n=0 k=0

R hk _a gnxn-k
_ (n-k)!

k=O n=k

= F.,i_=oTi.,- _.,k=O k=O

which is an exact result. Since y(S)(x) is also a polynomial, we can replace y by y(S) above to obtain

Y(s)(x+h)= _R hky(k+s)(x)k! -- _Shky(kk -_s)(X)- -- _ h(i-s)y(i)(x)(_-s)
k=O k=O i=s

where I used y(k)(x) =0 for k>R. From this it follows immediately that

st i! (!I-93)
i=s

Consequently it follows that in this case (II-8) becomes

_l(x+h, h, q) =A(1;q)_(x, h, q) +a(l, q, x) (II-94)

where the components of o are the remainders

rs(l, q, x)= _ i! (II-95)
i=q+l

and where q<R. But we can also calculate z(x+h) from equation (II-51) for m=0 and

N=M=f®V and the differential equation defined by equations (ll-91) and (II-92) with

z(x) =r/(x, h, g). The result is

z(x + h ) =A(1;q)_l (x, h, q)+fpl(fep@V)o (II-96)

where I used

hPDp lg(x + h ) = -hPY(P)(x + h )

P! p!

which is a consequence of equation (II-91) and

hPyP(x) .
=(ep@ln)_?(x+h, h, q)

p!

in which _(x+h, h, q) was eliminated with equation (11-94).

From equation (II-96) we see that for this special case of a pth order differential equation it is the

vector !weighted by its pth component tepwhich characterizes the integration, and this in turn suggests
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thatebechosensothatgp= 1 for simplicity. From the form of e given in Theorem III.2 we find that

lp =ept= 1 if and only if a- 1= epTu (II-97)

which corresponds to the weighting used by Nordsieck and Gear. A comparison of z (x+ h) with

equation (II-94) suggests that those components of e which do not affect stability be chosen so as to

improve the agreement between z (x + h) and _ (x + h, h, q). Since (eep ® V)o = g® (Vrp), we want to
look at a-t®(Vrp), which, for the ith remainder, takes the form

R

ri-ep-lfiVrp m _ In- fp-lei j! i=0, I,2..... q
j=q+l

where I used equation (II-95) to eliminate the remainders. Thus if we make the choice

p,e,,
i! (q-p + 2)(q -p + 3)...(q + 1 - l)

i=0, 1 ..... p- 1

(II-98)

V= 1n

for the methods of theorem III.2 in the h-0 limit, then z(x+h) and O(x+h, h, q) will agree to

order q+ 1 for the subvectors i=0, 1 ..... p and to order q for the subvectors i=p+ 1..... q.
Can a method of the type considered in theorem III.2 be constructed for intermediate values of h

but which has the appropriate limiting behavior? The answer is yes for we can easily construct the

vector e(h)=f(0)exp(-Ih/hoD+l(oo)[1-exp(-[h/ho])], where h0 is a real number which can be
regarded as a parameter of the integration method. If e(oo) and t(0) are the vectors for the h-oo and

h-0 limits, then M=N=e(h)®l n would produce such a method. Alternatively we can try to

construct a vector b with the limiting behavior lim b =e0 and lira b=ep. Of course, such a vector
h .oo h -0

could be formed in a number of ways; for example, b = ep exp( - Ih/ho l) + e0[ 1 - exp( - [h/ho I)] is one
such vector. An alternative choice might be some vector which incorporated properties of the

solution y(x). Let G(k) be hermitian, nonnegative, semi-definite matrices for k=0, 1 ..... q
independent of h and satisfying the conditions that y(k)*G(k)y(k) is not zero for k=ql, q2 and is

zero for k<ql and k>q2, where 0_ql <_q2<_q. Then we can define real numbers 0k by

hk) y(k)*G(k)y(k)Ok- k.t q

( hi/ i!) 2y(i)* G ( i) y (i)
i=0

k=0, 1, 2 ..... q

Since Ok can be written as

y(k)*G(k)y(k)

q ,

i=_o(hi-qlql!/i!)2y(i) G(i)y (i)

we see that

y(k)G(k)y(k)

q ,

i_=o(hi-q2q2!/i!)2y(i) G(i)y (i)
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t"

lim _k = _ 1 k=ql

h-O (. 0 k _ql

¢.

lim 0k = _ 1 k = q2

h_oo _ 0 k;_q2

If we choose

q2 - ql

b= _._ Ok+qleq2_k
k=O

then b-eq2 as h-0 and b-eq_ as h-oo. Naturally if this choice were made for b, then in the actual
calculation of 0k the quantity hky(kl/k! would be replaced by ak (x--_h). Whether this choice, or

any other choice, for b leads to an improved integration method can only be decided on the basis of

numerical computations. This aspect of the problem will not be considered here.
The choice of a vector b might lead to a violation of the condition b*Tu= -_-1 of Theorems

III. 1(4) and III.2. This can only occur if F is of rank q + 1 since by Theorem III. l (11) the condition

can always be satisfied if F is singular. It can easily be shown that t*e o = b ° Teo, and since Tis upper

triangular, b*Teo = Toob*eo. Hence t*eo_O if and only if b*eo_O, and so by Theorem III.l(9) F is
nonsingular or of rank q+ 1 if and only if b*eo_O. Thus the unpleasantness associated with the

computations of Theorem III.l(12) can always be avoided when

q2 -- ql

b= k____OOk+qleqE_k

merely by assuring that ql >0.

Step-Size and Order Changes

The discussions on the previous pages were confined to methods with a fixed integration step size h

and a fixed order q. In practice, however, we might wish to alter both the order and the step size

during the integration in a manner designed to give optimal results. To make these choices in a

rational way, we must be able to estimate the effect of such changes on the integration error in

z (x+ h) or, more simply, the integration error in its first n components, y (x 4-h ). If one can estimate

the integration errors for methods of order q- 1, q, and q + 1 and also estimate their dependence on
step size, then for the next step one can choose the order and step size so as to maintain the error at a

given level. Let the n-dimensional vector Iq (x + h, h) be the contribution to the integration error in y
at x+ h from a step of size h with an integration method of order q. Instead of monitoring the vector

Iq one could introduce a suitable norm and monitor the length of Iq, IlIqll. Clearly this is not as
stringent as monitoring Iq itself, but it will generally be computationally simpler. Such a procedure
was used both by Gear (ref. 8) and Hindmarsh (ref. 10), who used the truncation error as an estimate
for the integration error. Unfortunately one has no way of knowing the integration error. The best

one can do is to assume that it is proportional to the truncation error, designated as Tq(x+h, h),

which can be estimated with the first n components of Nzq + 1. Suppose the step from x to x + h is by a
method of order q and the step from x-h to x is by a method of order q. Then I choose to write

the integration error at x + h for a method of order q and step size h' as

Iq(x+h, h')=-),-(q+l)IlYq(x+h, h)[I Yq(x+h, h')q
IITq'(x,h)ll

(II-99)
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where _ takes the values q- 1, q, and q+ 1. The factor ]lTq(x+h, h)IVIIT_x, h')II reflects the
reasonable assumption that, if the truncation error in successive steps is increasing, then the

integration error will be larger than if the truncation error were decreasing. The constants 7_ are to be

chosen empirically. Since only Tq is available at x+h, Tq+l and Tq_ 1 must be estimated from it.
Comparing methods of order q-1, q, and q+ 1 gives a relationship among the three truncation

errors.

Tq_l(X+h, h)=Tq(x+h, h) +

Tq+l(x+h, h)=Tq(x+h, h)-

hqy(q)(x)

q!

hq+ ly(q+ I)(X)

(q+ 1)!

(I1-100)

The same relationships can also be obtained from equation (II-4) using s=0 and identifying

r0(1, q, x) with Tq. The truncation error for any q can also be expressed by means of the Lagrangian
form of the remainder in the Taylor formula

hq+ ly(q+ 1)(_)

Tq(x+h, h)= (q+ 1)! x<_<x+h (II-101)

which implies that Tq(x+h, h')=(h'/h)q+lTq(x+h, h) for any q. This then leads to a simple step-

size dependence for lq when combined with (11-99).

Iq(x+h, h')= Iq(x+h, h) (II-102)

If the integration error, in the sense of the norm, is to be e 2, then we can define a step size hq, for a
method of order _, by the equation

Illq(x+h, hq)llE=e 2 (II-103)

which can be readily solved for hq.

= q2(q+l) IlTq(x+h, h)l] 2
[IZq-'(x, h")II2 IlTq(x+h" h)/ell2

=p- 2(q + l) (11-104)
q

The order of the method on the following integration step can be chosen as the one which permits the

largest step size when calculated by equation (II-104), and the step size can be adjusted to the
calculated value for that order.

The values of Tq_ 1 and Tq+ 1 required by equation (I1-104) can be estimated in two ways. One is
based on equation (II-100), while the other is based on equation (II-101). To apply equation

(II-100), it is only necessary to express the derivatives appearing in it in terms of quantities calculable

from the integration method. Thus we might write the identity

hqy(q)(x) hqyq(x+h) hqD,(q)(x+h) -y(q)(x)]

q! q! q!

and the approximation
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hq + ly(q+ 1)(x ) _ hq + l[y(q)(x + h ) - y(q)(x) ]

(q+ 1)! -- h(q+ 1)!

= hq[y(q)(x+h) -y(q)(x)]
q!(q+ 1)

in place of the derivatives in equation (II-100).

Tq_l(X +h, h) = Tq(x+h, h) +
hqyq(x+h) hq[y(q)(x+h) -y(q)(x)]

q! q/

Tq+ l(x+h, h)= Tq(X +h, h)-
hq[y (q)( x + h ) -y (q)( x) ]

q!(q+ 1)

(II-105)

The quantities appearing on the right side of these two expressions are all available at the conclusion

of an integration step. Alternatively, to implement equation (II-101) in the calculation of Tq_ l and

Tq + 1, it is possible to use the approximations

[y(q)(x + h ) + y(q)(x) ]
Y(q) ( _) -_ 2

[y(q+ l)(_)_y(q+ l)(__h)]
y(q+2)(_)_ h

in the expressions for the truncation error. Then from equation (II-101)

Tq_ I (x+h, h) -

Tq+l(X+h, h)=

hqy(q)(x+h) hq[y(q)(x+h) -y(q)(x)]

q/ (q!)2

hq+lLv(q+l)(_ ) -y(q+l)(_-h)] = Tq(x+h, h)-Tq(x, h)]

(q+ 1)!(q+ 2) (q+2)

(II-106)

and again all terms are available at the conclusion of a step. For the integration methods of Theorem

II1.2, with, = 1, we can write

Tq(x+h, h)=eOZq+l(X+h)

(II-107a)

hq[y (q)(x -1-h ) - y(q)(x) ]/q? = eqZq + 1 (X + h )

where e0 and _'qare the first and last components of the vector e. There is a simple relationship between

to and t_. Since e= o_Tu, it can be seen from table I that tq/e k = k!/q! and, since, for the h - _ limit we

are interested in k =0, we have Iq/eO= 1/q. t For the h-0 limit we are interested in k=p>__ 1 and so we
have, using equation (I1-98),

_'q_ t'q 9 _ q+l (II-107b)
lb t_ fo (q+l-p)?

where p is the order of the differential equation being integrated. The right side of equation (lI-107b)
is thus also valid in the limit h-oo ifp is set to zero. The expressions in equation (I1-107) can be used

in either equation (11-105) or (II-106) to estimate the truncation error and hence the integration error

through equation 01-99).
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Therearemanynormswhichcouldbeusedfor calculatingthelengthof the n-dimensional
truncation vector, but any suitable norm should have two desirable features. First, it should reflect

the relative importance of the various components of the solution vector y, and second, it should

reflect the history of y and the changes occurring in y as integration proceeds. The second feature

implies that the norm must evolve as integration proceeds. Suppose that on the k th step of the
integration we write

]lTqll2=-TqC(k)Tq k=0, 1, 2 .... (II-108)

where C (k) is a positive definite matrix. Then the simplest possibility is to assume that C (k) is a

diagonal matrix written as a product of two other diagonal matrices. If the trace of a matrix A is
written as Tr(A), then

c(k)_ u(k)E (k)
Tr( U (k) )

u(k)=diag(U_ k), U(2k) ..... U(nk)) 01-109)

E(k)=diag(E_ t), E(2k) ..... E (k))

where the first factor characterizes the relative importance of the components of y and the second

factor characterizes the history ofy to that point. For the balance of this section y(k) will denote the

value of the solution vector at the k th step rather than its k th derivative. One possibility for U(X) is

simply the unit matrix. Ify i represents the ith component ofy and kl, k2 are two fixed integers such
that k 1 _<k 2 and 1 <_kl,k2<_n , then another possibility for U (k) is

f (k2-k + 1)ly_k) I

i.,,+,,+,i++,=
1

k! <i<k 2

otherwise

(III-110)

For both choices one can easily calculate the trace of U (k).

Tr(U (k)) =n

To specify E (x), first define

E_k) =_ 1

and then consider some possibilities for y_k).

and hence of E_ k), is

(II-111)

(II-112)

An immediate possibility for the evolution of y_k),

Y]k + l)=maxIY} +), lY]k+')ll (II-113)

which means y(k) is nondecreasing and essentially is the maximum absolute value attained by the ith

component ofy. If one wished to permit y_k) to decrease as well as increase, then one could consider
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_k)y_k)>Oand 10-5< [y[ e + 1)[<_ y_k)
-- 2

otherwise

as one possibility. There are also two obvious choices for the initial values of y_X).

[rain(l,Yminl

yl °) _ 0

yl °) = 0

(II-114)

(II-115)

(II-116)

Ymin: min[lyJ0)l>0, J= 1, 2..... n/

All of the possibilities cited here lead to a positive definite matrix for C (k) . The Hindmarsh program

(ref. 11) uses the unit matrix for U (k) with equations (II-113) and (II-115) for the matrix E (k).

Conclusions

A broad class of multistep numerical integration schemes to solve the initial value problem

associated with a system of ordinary differential equations has been proposed and studied in this

chapter. These methods are not restricted to a system in normal form, nor do they require that the

system be first order or even that each component of the solution satisfy the same order differential

equation. They are applicable when the solution is a vector-valued function whose domain is the reals

and whose range is a vector space over the real or complex field. The general class of methods
includes a subclass which contains both Gear's method for first order systems of stiff equations and

Nordsieck's method for pth order systems of equations. The analysis has shown that the Gear method

for stiff equations is not restricted to first order differential equations but is directly applicable to

higher order equations. It has also been demonstrated that both the Gear and Nordsieck methods are

independent of the linear, multistep methods.
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Appendix - Generalized Inverse

The generalized (Moore-Penrose) inverse of a matrix, introduced by Penrose (ref. 20) and others,

represents a generalization of the inverse of a nonsingular matrix. A substantial effort has been

expended on the study of its properties and methods for its computation. For convenience this

appendix lists those properties of the generalized inverse which are needed in this analysis of

numerical integration methods.

A.1 The generalized inverse of matrix A is the matrix A t, which is the unique solution (ref. 20,

Theorem l) of

AAtA =A (A1.1)

AtAAt=At (A1.2)

(AA t) *=AA t (A1.3)

(AtA) * =AtA (hl.4)

A2.1 (A*)t= (At) * (ref. 20, Lemma 1.2)

A2.2 If A is nonsingular, then At=A- 1 (ref. 20, Lemma 1.3).

A2.3 IfA =A* and AA =A, then At=A (ref. 20, Lemma 2.2).

A.3 IfA is of full-column rank, then At- - (A'A) -lA* (ref. 21, Lemma 1.e).

i) = t tA.4 @_A t @_A_and (AI®A2)t=AI®A2 , are easily verified.

A.5 Rank (A)=Rank (At)=Rank (AtA) (ref. 20, Lemma 1.9).

A.6 Let A, B, and C be matrices. The equation AXB=C will have a solution if and only if
AAtCBtB= C and the general solution is X=AtCB t + Y-ACA YBB t, where Yis an arbitrary matrix

(ref. 20, Theorem 2).
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TABLE I. - THE VECTORS t, u, AND Tu OF THEOREM III.l AND THEOREM III.2 WHERE t* = e_PT, T-IpT = lq+ l + Oq+1, u(E) q ¢-Irtc, and c = 1

[For each value of k the eigenvalues of the stability matrix were chosen as Xj = 0 (O<__j<_q - k), Xj = I (q + l - k<_j<__q).]

q Vector [ k = 0 q Vector k = 3

I t* I 1,1) 3 t* ;(0.0,0, I/6)

u* ,;1 l) ,* (o.o.o.-61-(Tu)*I -._ -(Tu)*(0,0,0,I)

2 t* (1,3/2,1/2) 4 t* I(0 0,0,1/6,1/6)

u* (-I/4.-3/2.-1) u* (0_0,0,-6.-6)

-(Tu)* (1,3/2,1/21 -(Tu)* ,(I/4,1,3/2,1.1/41
I

t* I(o 0 0,I/6.1/4,1/12)
3 t* (1,2,716,1/6) 5 u* _0_0:0.-312,-9,-6)u* (I/6 -5/6 -2,-I)

-(Tu)* (I,I_/6,I_I/6) -(Tu)* (9/20,5/4,3/2,1.3/8.1/201

6 t* (0,0,0,I/6,1/3,7/36.1/36)4 t* (I,I/4,25/12,5/8.1/24)
u* (55/720.0,-5/3,-5/2,-I) u* (0,0,0,1,-5,-12,-6)

-(Tu)* (1.50/24,35/24,10/24.1/24) -(Tu)* (-I09/360,I,23/24.1,11/24,1/I0,I/120)

5 t* (1.3,13/4.3/2,31/120, I/120) 7 t* (0,0,0,I/6.5/12,25/72.5/48,111441
u* (-13/240,47/240,-I/2.-11/4,-3,-I) u* (0,0,0,11/24,0,-10,-15,-B)

-(Tu)* (1,274/120,225/120,85/120,15/120,I/1201 -(Tu)* (-515/I008,-1/9,41/48,1,25/48.7/48.1/48,I/840)

6 t* (1,7/2,14/3,35/12,301/360,7/80,1/720) 8 t* (0,0,0,I/6,1/2,13/24,1/4,31/720,I/720)

u* (-247/8640,7/480 49/240,-70/48,-490/120,-7/2,-11 u* (0.0,0,-13/40,47/40,-3,-33/2.-18j-61 17 480 1 280 1"6720"
-(Tu)* (I.1764/720,1624_720,735/720,175/720.21/720.I/720) -(Tu)* (1214g/33600,69/I12,157/160,I,137/240,3/16, / , / , I J

7 t* (1,4,19/3,5.81/40,23/60.127/5040 1/5040) k = 4

u* (311/15120,-991/15120,29/180,-31_360,-3,-17/3,-4,-1)
-(Tu)* (1,13068/5040,13132/5040,6769/S040,1960/5040,322/5040,28/5040, 4 t* (0,0,0,0,1/241

1/50401 u* (0,0,0,0,-24)
-(Tu)* (O,O.O,O,l)

8 t* (1,9/2,33/4,B3/8,331/800,37/32,605/4032.51/8064.1/40320)

u* (4657/40320,-39/5040,-59/1260,5/16,-37/40,-21/4,-15/2,-9/2,-I) S t* (0,0,0,0.1/24.1/24)

-(Tu)* (I.I09584/40320 I18124/40320t67284/40320.22449/40320.4536/40320, u* (0 0 0,0,-24 -24)
546/40320,36/_0320, I/40320) -(Tu)* (I_5_1,2,2.1_I/51

i

k = 1 6 t* (0,0,0,0,1/24,5/80,1/481

u* (0,0,0,0,-6,-36,-24)

l t* i(O,l) -(Tu)* (17/30,9/5,5/2,2,1,3/I0,I/30)

u* i(O -1)
-(Tu)* (Oil) 7 t* (0,0,0,0,I/24oi/12,7/144 1/1441

u* {0,0,0,0,4.-20, -48,-24) '

-(Tu)* (-97/I05,-I09/90,I/5,23/18,1,II/30,I/15,1/210)2 t* ;(o,I,I)
u* I(0 -I -I)
-(Tu)* (I_2, f,I/21 e t* (0,0,0,0,1/24,5/48,25/288,5/192,1/5761

u* [0,0.0,0,II/6,0,-40,-60,-24}

3 t* (0, I,3/2,1/2) -(Tu)* (-577/360,-515/252,-2/9,41/36,I,5/12,7/72,1/84,1/16801

u* (0.-I/4,-3/2.11
-(Tu)* (1/2,1,3/4,1/61 k = 5

4 t* (0,1,2,7/6,1/61 5 I t* '(0,0,0,0,0,I/120)

u* (0 I/6 -5/6 -2 -l) u* (0,0,0,0.0 -1201
-(Tu)* (23/72:1,11112:1/3.1/241 -(Tu)* ](0.0,0.0,0_I)

S t* (0,I,5/2.25/12,5/8,1/24) 6 1 t* (0,0,0,0,0,1/120. I/1201

u* (0.55/720,0,-5/3,-5/2,-I) u* {0,0,0,0,0,-120,-120)

-(Tu)* (41/144,1,25/24,35/72,5/48,1/120) -(Tu)*I(I/6,1,5/2,10/3,5/2,1,I/6)

6 t* (0,1,3,13/4,3/2,31/120,1/120) 7 I t* (0,0,0,0,0,1/120.1/80,1/240)

u* (0,-131240,471240,-112,-1114,-3,-1) u* (0,0,0,0,0,-30,-180,-120)
-(Tu)* (1571480,1,1371120,518,17196,1140,117201 -(Tu)* I(33142,1716,912,2516,512.1,I14,1142)

7 t* (0.I,7/2.14/3,70/24,301/360,7/B0,1/7201 8 1 t* (0,0,0,0.0,I/120,I/60,7/720.I/720)

u* (0,-1729/60480,7/480,49/240,-70/48.-49/12.-7/2,-I) , u* I{0,0,0,0,0,20,-I00,-240,-120)
-(Tu)* (29/90,I,4g/40,203/270,49/192,7/144,7/1440,I/5040) I -(Tu)*, (-2257/I008,-97/21,-I09/36,1/3,115/72,1,II/36,1/21,I/336)

8 t* 0,1,4,19/3,5,81/40.23/60,127/5040.1/5040)

u* 0.311/15120,-ggl/15120.2g/180_-31/36,-3,-17/3,-4,-l) k = 6
-(Tu)* 175451/604300,1,363/280,46g/540,967/2BBO,7/90,23/2160,1/1260,

1/40320) 6 It* (0,0,0,0,0,0,1/720)

.... (0,0,0,0,0,0,-720)
k - 2 I -(Tu)* (0,0,0,0.0,0, I)

2 t* (0,0,1/21 7 _ "* (0.0.0,0.0,0.I/720,1/720)

-(Tu)* (0,0,I) ,,,- (0,0,0,0,0,0,-720.-720)
u* l(0,0,-21 I o(Tu)* (1/7,1,3,5,5,3,1,1/7)

3 t* I(0.0.I/2.I/21 8 '_* (0.0,0,0,0,0,1/720.11480,1/14401

u* (0,0,-2,-2) ,.,- (0,0.0,0,0,0,-180,-I080,-720)

-(Tu)* (I/3.1,I,I/3) J -(Tu)* (65/$6,33/7,17/2,9,25/4,3,1.3/14,1/56)

4 u.t* I(0.0,1/2,3/4,1/4) : J k. 7

(s/12.i.i:i/2.i/121 J_: (o.o.o.o.o.o.o.I/_4o)-(Tu)* (0,0,-I/2 -3,-2) (oo o,oo o,o,-so4o)
5 t* (0,0.I12,I,7/12,1/121 I -(Tu)* (0_0_0,0:0_0,0, I)

_('Tu)*j(0.0.I/3-I0/6.-4.-21(I/30,23_36,1,11/18,1/6,1/B01 ,,- (O,O,O,O,O,O,O,I/SO40,I/S040)
U=

6 t* (0.0. I/2,5/4,25/24,5/16,I148) [ -(Tu)* (I_8_1,7_2,7,3514,7,712,I,1181C°0 0.0 0,0,0,-5040,-5040)

u* (0,0,11/72,0,-10/3,-5,-21
-(Tu) _ (-I/27,41/72,1,25/36,35/144,1/24,1/360) k . B

u* (0:0.-13_120,47/120,-1,-II/2:-6,-2) u* (0,0.0.0.0.0,0,0.-40320)

-(Tu)* (207/I008,157/240,I,137/180,5/16,17/240,I/120,I/2520) -(Tu)* (0,0,0,0,0.0,0.0,I)

8 t* (0.0,1/2,7/4,7/3,35/24.301/720.7/160_1/14401 I

' u* (0 0.-247/4320.7/240,49/120 -35/12 -49/6 -7.-2) , J
-(Tu)* (I0277143200.29145,I,49/60,203/540_49/480.7/432,1/720, I/201601
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TABLE II. - COEFFICIENTS FOR GEAR AND NORDSIECK INTEGRATION METHODS

(a) Gear method of polynomial degree q for a system of first order ordinary differential equationsa

(1,1)(2/3,1,I/3)
3 (6/ll,l,6/ll,I/ll)
4 (24/50,I,35/50,I0/50,I/50)

(120/274,1.2251274,85/274,151274.1/274)(720/1764,1,1624/1764,735/1764,175/1764,21/1764,1/1764)

(b) Nordsie_k method of polynomial degree q for a system of pth order ordinary differential
equationsu

p = 1

1 (I12,1)

(5/12.1.112)(3/8,1,3/4,1/6)

(251/720.I.I1112.113,1124)(95/288,1,25/24,35/72,5/48,1/120)

(19087160480. I,1371120,5/8,17196,1/140,I/720)
(5257/17280,I,49/40,203/270,49/192,7/144,7/1440,I/5040)

p=2

§ (I/2)(I/3,l,l)
(I/2)(I/4,5/6,1,I/3) .

4 (I/2)(19/90,3/4,1,I/2,1/12)

i (I/2)(3116.251/360.1.11118,1/6.1/60){I/2){863/5040,95/144,1,25136,35/144,1/24,1/360)
7 (I/2)(275/1728,19087/30240,I,137/180,5/16,17/240, I/120,I/2520)

p=3

3 (I13)(I14,1,312,1)
4 ii13)(7140,314,514,1.I14)
5 _I/3)(17/120,19/30,9/8,1,3/8,1/20)
6 ii/3)(41/336,9/16.251/240,I.11/24.1/I0,I/120)

,I/3)(73116720,86311680,95/96,1,25148,7148,1148,11840)
ii/3)(8563/86400,275/576,19087/20160,I,137/240,3/16,17/480,I/280,I/6720)

p=4

4 (114)(1/5,1.2,2,1)
5 (1/4)(2115.7/10,3/2.5/3.1.1/5)

(114){111105,17130,19115,312,1,3110,1130)
(I/4)(89/I008,41/84,9/8,251/180, I,11/30,I/15.1/210)

8 (I/4)(5849/75600,731/1680,863/840,95/72,1,5/12,7/72,1/84,1/1680)
9 (l/4)(l5_l/2l6__,8563/2l6__,275/288,l9_87/l5l2_,l,l37/3__,_/8,l7/84_,l/56_,l/_5l2_)

p=5

II15)(I16'I'5112'I0/3'5/2'I)I/5)13128,2/3,7/24,5/2,25/12,1,I/6)
7 qi/5)(83/I008,11/21,17/72,19/9,15/8,1,I/4,1/42)
8 I/5)159/864,445/I008,205/I008,15/8,251/144,1,II/36,1/21,I/336)
9 ,I/5)(397/6720,5849/15120,731/4032,863/504,475/288,1,25/72,5/72,5/672,1/3024)
lO _l/5)(2993_/57_24_'l5_1/432_,8563/5184_,l375/864__9_87/_2_96,l,_37/36_,5/56,l7/l334,l/l__8,l/756___)

aThese numbers were taken from Gear's paper (ref. 7).

bThe coefficients for (p = l, 2< q< 6) were taken from Nordsieck (ref. 2), and those for (p = l,

q = 7) from Gear (ref. 3). The remaining coefficients were calculated from the formula

_k = (P " l)_(k - p + l)_Ck.p+i/k! for O< k< q and by using the definition k! = I/(-k)! for

k < O. The numbers ci were tabulated by LaBudde (ref. 5), and his indices M and s are related
to p and q by the formulas s = p - l, M = q - p + I. Apart from the factor p-l, these agree

exactly with those given by Gear (ref. 3) for (p = 2, 4< q< 7) (p = 3, 4 q 7) and (p = 4,

5<_q<.7) with the single exception of the third component for p = 4 and q = 7, where Gear gives

191/180 = 251/180 - I/3 in place of 251/180.
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Chapter III

Numerical Details and Definitions of

Cycle Performance Parameters

Frank J. Zeleznik

In the first two chapters of this report I have discussed the theoretical aspects associated with the

contruction of a mathematical model of the internal combustion engine. These included the

governing differential equation, the modeling functions, and numerical integration schemes. It is true

that these are the major structural underpinnings of a model, but a wide chasm separates them from a
complete and usable model. This chasm must be bridged by the numerical details, which flesh out the

model and translate it into a numerically functioning reality. I cannot possibly list the myriad
minutiae which went into the implementation of the theoretical structure. Instead I shall concentrate

on the pivotal features of the successful conversion of theory into numerics. This will include a listing
of (1) the specific forms of the differential equations used in calculations, (2) the chosen integration

methods, and (3) miscellaneous numerical techniques. I shall separately discuss the general model

and each of its three specializations. The equations for these models were derived in Chapter I, but
they will not be used directly in the derived form.

Equations for General Model

Differential Equations and Jacobians

The noncombustion phase of the cycle is described by equations for temperature, composition,

and mass. These are obtainable from the equations given in Chapter I (eqs. (I-72), (I-73), (I-75), and
(I-76)) and the thermodynamic relations (I-130) to (I-137).

dT_ T_(.C_nx)-I (_ p dln VpdO *UXR_' +M-1I[ft(+)-*U_'n(+)]dM(+)pw dO

+ [/_(-)- *UXn(-)] dM(-)dO _1)

dnx=nx_RX+M-1 r-(+) 2d M(+) dM (-)]
d--0- p_ Lnx-n_'J_ +[n_-)-nx] dO )

dM =M_ dM(+)+ daM-)
dO dO dO

(lII-1)

The combustion phase of the cycle is described by equations for the temperature, composition, and

mass of both the burned gas and the unburned gas. These equations are also obtainable from the

equations given in Chapter I (eqs. (I-73), (I-74), (I-75), (I-77), (I-82), (I-83), and (I-123)) and the
thermodynamic relations (I- 130) to (I-137).
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dT 1 - l ( -pl d ln V 1

dO = 21 : [*Cl_n(kl)] _ _1 dO
• Q, )

Pl w M,w

+ irish)_,UXzfi[l,o)]L

aM, - *t, +
dO

dT2 (p2dlnp2 (_2)do - 2)]-' dO

(III-2)

There are, of course, also equations for the composition of the unburned gas, dn_2)/dO = 0, and its

mass, dM2/dO=-]fib, which are trivially integrable. Thus the unburned-gas composition is

constant, and its mass is given simply by M2(0)=M(00)-Mb(0). The differential equations (III-2)

are supplemented with the pair of simultaneous linear equations 0-78) and (I-82), which determine

d In V,/dO and d In V2/dO. Because equation (I-82) is trivial, it will not be repeated. The other

member of the pair, equation (I-78), can be cast into a relatively simple form.

01npl +pl Olnpl) dln V1 (Olnp2 p2Olnp2_ dln V20 In Ol Pl 03//1 dO + \ 0 l-n -_2 + 02 OU 2 } dO

={01nP2+P2 OlnP2'_dlnM 2 (22 01np2
\ 0 In 02 02 OU 2 / dO M2o_ Ou 2

(OlnpI+Pl Olnpl)dlnMl [ QI lnMl]031nPlIn p, O1 Ou, dO + _ -(h2-ho d dO Ou l

a In Pl dn(x l) 03In Pl (/_-)-h2) h_l-)
On_l) dO OU 1 M l

(III-3a)

The partial derivatives in this equation are to be interpreted as

Olnpl+PlOlnpl(031nPl) + pl (0 lnpl'_O In p-----_ Pl aul 03In Pl ul,nk 1) -_1 au, /pl,n(x l)

alnP2+P2alnP2=(031np2) +P2fOInP2"_ =( 031np2'_ =3_ (III-3b)03 In p---'---2,02 au2 a In ,02 u2,n(x2) _22 \ Ou2 ,]02,n(_ ) 0 ln-_2 )s2,n(x 2)- 2

O In Pl _/' 03 In/71 '_ 03In P2 _ (' a In P2 "_ O In p, _ { ___ Pl
_u i k. Ou , .]p , ,n tx')' _ 2 \ _2 ,]p z,n (_, ' -On(xl---5 \OlnOn(x l) / UI,Pl

where the derivatives on the right are evaluated by using equations (I-136) and (I-137).

To integrate the differential equations (III-1) and (III-2) numerically, it is necessary to know their

Jacobian matrices, the derivatives of the right side with respect to the dependent variables. To

calculate the Jacobian of equation (Ill-l), I shall usep/p =RTY].nx (eq. (I-132)), and o =M/V

(eq. (I-75)), whose derivatives are quite simple, x
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O(p/p) -R_.,nx, O(p/p)
aT x On.

- RT, _t/'P-O-----_'a=o
aM

OlnP=O, OlnP_o, Olnp
0 T On. OM

=M-1

(III-4)

I shall also use

&V/(-'-) O.,_K-'-) &QK-,-)
-- -=0, -- -=0,

On. aT aM

OQ oQ ---hA, OQ
a,,/ ---0' O-_ _-_ = 0

--=0

(III-5)

with the first two of each triplet in this equation being approximations to the exact derivatives. The

derivatives in equations (III-4) and (III-5) lead to the following Jacobian matrix for system (III-1):

Onx_ 1 OR x fO[n(x_)-nx] dM (+)
On. pw On. + M- 1 (. -O-n; dO

Onx_ 1 OR x Onx_-nx

OT pw OT' OM M

+ On. dO )

0/' _(,CCnr)-i (_,C.i__RT din V *U x OR xOne, dO pw On.

(. On. dO + On. dO J}

- ( _x dlnV 1 (.CXRx+.UXOo_) hAoTOT (.CrnO-I -*C'XnxT-R nx dO pw M_

ot _ -' (M-' *uxR OM pw

+ [1_(-)_ • UXr_k-)] d)kg-)
dO

oX4 oX4 aM
On. = O, aT - O, O--M= 0

M- 2 [[/_( + )_, UXn_+, )] dM(_ + )

(*CXnx)-l( p dln V)dO

(III-6)

The derivatives of R x which appear in these expressions are given by equations (I-148) and (I-151).
The remaining derivatives have simple forms.
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,0×= d2*Ux _ d'C'
dT 2 dT

I R _ n x dM(" )

o[17( ) ] : x T< o
aT

c ×-'_-nk) aM(_)

dM(+ )

dO

On#

-- '<0

--->0

(1ii-7)

f dM(±)

o d---T- < o

antz

dM(±)> 0
-_, T -

To calculate the Jacobian matrix for the equations of the combustion phase, it is necessary to know

some derivatives in addition to those used to calculate the Jacobian for the noncombustion phase.

From the first member of equation (I-83), the equation of state (eq. (I-132)), and the equality of

pressure (second last member of eq. (I-77)) one can obtain an expression for Pl.

MI_,..z-l[ (M 2T2_n(2)/M1Tl_rn(l))]pl = ---_-1--ZVil v 1+
(II1-8)

From this expression it is easy to calculate the derivatives of Pl.

a In T 1

O In Pl oqIn Pl

O In T 2 0 In T1

O ln pl, aln #, (_n(xl)) -,

(gin#,- [l+(M2T2 n_2)/M nO))]

-1

-1

(III-9)
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It will also be convenient to rewrite a term that appears as part of the differential equation for T 1 in

equation (III-2) to facilitate the calculation of its derivatives.

pl

The term [r_(_'-)- n(_)], which appears on the right and also in the composition equations in the set

of differential equation (III-2), is identically zero when/_/(1-)< 0. Thus quantities involving it can

contribute to the Jacobian only for/_1- ) > 0; but if this occurs, _/(1-) will generally be relatively small
and the contributions to the Jacobian will probably be negligible. The Jacobian matrix for the system

(III-2) will be calculated on the basis of the assumption that a number of terms have zero derivatives.

0 [n(l,_)_n.(l)] 03 _- 0On--_ I. x a j= b-Tll [nCx"-)-n(xl)] = [n(xl'-)-n(_)] = _2 [n(_'-)-n(xl)] =0

a (dlnVl)d_O =_lla ( dlnVl)dO =O--_l\O [dlnV1)-dO =_22a ( dlnV1)-dO =0

O (dlno2'_ O (dlnp2) O (dlnp2'_ O (_02)On-_u dO ,]=_11 dO = -_1 \ '-d-O-,] = b-_2 =0

(III-lO)

O' (xl'b)--O'TX 'b)--O';kl'Z')-- 0
On-_I3- 3T 1 OMI OT2

The differentiation of equation (III-2), combined with equation (III-10), produces the expressions

used to evaluate the elements of the Jacobian matrix for the combustion phase of the cycle.
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- -_1 + 1 8_1_ 1 Pl_l, -_2 - plO:Tl Oln T 2

On--_ = - [* ClXn(xl)] I*C_I +RTI dlnT + -VlPl°_'UxlOR(xI) _R(xI)_ RTII_I-)MI

aft1 _

aT1-- _ -[*ClXn(xl)]-11"CXln(xl)TI+R_n(x l)dln VI hlAld-O- + MI----_

•._m *

plO: aT 1 T l O In T 1

+

OT1 TI [*C_Htl)]-I [*O_Rtl) ( __ lnPlOM1 M1 + M1 pl w \ 0 In M l 1) Pip1dlndoV11

aT1 -I ('U_R(x I) O In Pl

0T2 -[*C_n_l)] _ -01-_2 0 In T2 (ahz'_[dlnMl)_1-) ] }+ \-_22,,I dO M 1 J

aM1 aM1 a)t'Ii Oml 07"2 a772 OT2

- -_1 --ff_l - -_2 -0, _- aT 1 - aM 1
-0

-' +

Extrapolation and Quadrature

During the integration of the differential equations over any portion of a cycle with intake or

exhaust valve open, it is desirable to anticipate the crankangle location of those points where the mass
flow rate reverses direction. These points correspond to zero mass flow rate through the intake or

exhaust system D_/(±)=0] and have a bearing on the functions defined in equations (I-121) and

(I-122). They occur when the cylinder pressure equals the manifold or exhaust pressure. One also

needs to know where M ( ±)=0. The estimated location of such points is calculable only by an

extrapolation from previously calculated points. We have chosen to extrapolate with a cubic

polynomial in both cases. Suppose we wish to approximate a function f(0) in the vicinity of the point

0=01 with a cubic polynomial in A0=0--01 (fig. 1).

f(0) = a + b A0 + c (A0) 2 + d (A0) 3 (I I I- 12)

Furthermore suppose we know both the value off and its slope f'= df/dO at 01 and 0 2 = 01 --h.

f(Ol) =fl, f(01) =f], f(02) =f2, f'(02) =f2 (III-13)

Then the coefficients a, b, c, and d can be determined so that the polynomial agrees with these values.
Some simple algebra gives expressions for these coefficients in terms of the values at 01 and 02.
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Figure1. - Polynomialapproximationasafunction ofcrankangle.

[30r2 -f])lh +f2 + 2fi] [20r2 -fl) Ih +f2 +fl]a=fl, b=fi, c= d=
h ' h2 (III-14)

During a cycle calculation it is also necessary to carry out quadratures on various functions of 0.

For example, the calculation of work is one such quadrature, and the evaluation of the function _(+)
(eq. (I-120)) is another. A cubic polynomial similar to equation (III-12) can be the basis for a

quadrature formula, and it is convenient to center the polynomial on the point 02 rather than 0 I. Let
A0 = 0 -- 02 and

f(O)=a+b AO+c(AO)2 +_I(--_) 3 (III-15)

The values off and its slope at 01 and 02 determine the coefficients of the polynomial.

a=f2, b=f2, c= [3(fl-f2)/h-(2f2+fl)] d= [20c2-fl)/h +f2+fl]
h ' h2 (III-16)

If we define the integral off(0) from 0=02 to 0 as

0P

_ur-
02f(z) dz (III-17)

then from equation (III-15) we obtain the quadrature formula

,_r =a+ b_+ c (_)2+ _ (_)3 (III-18)

m

and for A0 = h this reduces to a very simple result.

za tfl +f2) h_-A)
h - 2 + 12 (III-19)
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Suppose that

dp (III-20)
f = P -_ " J= P -d_ + -_ -_

then both f and f'are readily evaluated and A/is the work done by the working fluid over the

crankangle interval A0, while ZM/A0 represents the average rate of work over the same interval. In

this case it is possible to calculate f and fexactly because dV/dO and d2V/dO 2 can be calculated by

differentiation of equation (I-86) and dp/dO is obtained by a differentiation of the equation of state

(eq. 1-132)).

dV V(O)(r- 1)sin 0

dO 2
[l+(l_e2 sin20)-1/2 c cos 0]

d2V V(0)(r- 1) [ (1 - e2 sin20)- 3/2 e3 sin220 ]dO2 - 2 cos 0+(1 -E 2 sin20) -1/2 e cos 20+ 2 (III-21)

d ln p _ d In o
dO dO d ln T (_)-l_dnx+ ----d--_- + n_. x dO

In other cases it is not always possible to calculate f'exactly. For example, associated with equation

0-120) we have integrands for which

f= g)_/(±)

f= +

where g is some function of 0. In this case fcannot be calculated exactly since/Qt ±) cannot be

calculated exactly. To approximate/0/(*), we shall use

_i±) =/_2_) = (_l ±) - )_2±)) (III-22)
h

where the subscripts on/_ ±) and/_+) designate the two values of 0 used in the evaluation. When

g = 1, A/represents the increment in M (±), AM(±), and equation (III-19) gives a very simple value

for the increment in one integration step.

AM(±) - (_1±) + )V/(2±)) (III-23)
h 2

There are situations where even g must be approximated. This is the case where g is the downstream

enthalpy for flow out of the cylinder. Under these circumstances we approximate g similarly to the

approximation for )Q(±)

gl =g2 = (gl-g2) (III-24)
h

To evaluate the heat transfer during the cycle, we must integrate QAo. Since (_ is not easily

obtained, we could calculate the quadrature of Q/o_ in a manner identical to that used for/_/(±),

which resulted in the approximation (III-23). I have chosen to proceed in a somewhat different

manner. Suppose that the integrand f is again represented by a cubic polynomial centered on 0 I.

f(O)=a+b A0+ C(A0)2 +d(A0) 3 (III-25)
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wherethecoefficientsareto bedeterminedbythevaluesof fat four points as shown in figure 1.
Then the cofficients can be obtained recursively.

\h+h' +h" h+h' --_ \h-_-_ h

1 (f3-fl f2-fl) _/_+h__h2_= (f2-fl)C-(2h+h')d= h-7 \fi__7 h ' h ' a=fl (III-26)

The substitution of equation (III-25) into equation (III-17) with 0 = 01 gives

mslI-- - - f(O)dO=a-/_h ch 2 tth 3 (III-27)
h h -2-- + 3 4

This result could also have been used to calculate M (±), but we have found equation (III-23) to be

adequate. When only two values of fare available, a and care set to zero; if three values are known,

only tt is set to zero.

The polynomials for extrapolation and quadrature, as well as any other polynomials used in

calculations, are evaluated by nesting terms. For example, a cubic becomes

a0+ alx + a2x2 + a3x3 = [(a3x + a2)x + al]x + ao

and the form on the right tends to minimize numerical inaccuracy and computation time.

Chemistry Considerations

Both the combustion and noncombustion phases of the cycle are governed by equations which

contain terms coming from the rate expressions of chemical kinetics. However, as a practical matter,

chemical kinetics begins to play a substantial role in the cycle only with the onset of combustion at

0 = 00. As the cycle progresses through the power stroke, the temperature and pressure eventually

decline to a level where reaction rates again become inconsequential. The actual point in the cycle

where reaction rates cease to be important will vary from problem to problem. It does seem

reasonable to expect that reaction rates will be insignificant by the time the intake valve opens to

admit fresh charge to the cylinder, at 0 = 0(+), since this generally occurs quite late in the cycle. Thus

the assumption will be made that the volumetric production rates R_, are identically zero from the
time the intake valve opens until the start of combustion.

(+)< <R_,=0 0o _0_00 (III-28)

If the flame zone is considered to be the equilibrium state generated from the unburned gas at its

pressure and enthalpy, then the equilibrium state will change as the state of the unburned gas

changes. This implies that the equilibrium state must be recalculated as combustion proceeds. The

effect of a change in enthalpy and pressure on the flame zone temperature can be estimated to first

order quite easily. If Tf is the flame zone temperature, then the change in Tf, ATf, produced by a
change Ah2 in the unburned-gas enthalpy and a change Ap2 in its pressure is, to first order,

\ Ohf]pf \ Opf]hfAp2 (III-29)

where the derivatives are calculated for the flame zone. The equilibrium state is recalculated

whenever ATf>_20 K. For hTf<20 K the flame zone temperature is estimated by equation (III-29)
and its composition nxC/) is estimated from a similar first order approximation.
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ro_!n_,,m] AlnTf+[alnnx O0 ] Alnp i
AlnnxtD= [_ 0In rf pf O ln pf Tj

(III-30)

The termination of the combustion phase 0* is determined as the solution of

Mb(O*)/M(Oo)=0.9999 with Mb(Oo)/M(O0)=O.O001. For r=0, M b equals Mfand it is possible to
solve for 0* in closed form for the linear burning function (eq. (I-103)) and the cosine burning

function, which is special case of Fourier burning (eq. (I-92)).

t 0.9998

00+ (0.9_)(Of--O0)

0" =

[, 00+_cos_l (0.9997)0.9999/

linear

cosine

r=0 (III-31)

The general Fourier burning case is solved for 0* iteratively in terms of the variable

z = 7r(o - Oo)1(oi- Oo).

z(n+I)=z (n) +Az(n)

A z =

f

2Ag

g + N/(g)2 +2g'Ag
(g) 2 + 2g" Ag >-0

Ag

g

g(z) = _ a m cos mTrz, Ag-
m = 0 0.9999

(g) 2 + 2g" Ag<0

0.9998
g(z)

Fourier, r = 0 (III-32)

The initial estimate for 0* is 0o + 0.9(0f- 0o), with convergence to a hundredth of a degree. When r _ 0

the assumption is made that 0* >_Of for the linear and Fourier burning. If 0* >_Of, then

 1''041 <0o, M° (0_) ___0.9999 r_0 (111-33)
M ( Oo)

which applies to linear, cosine, and Fourier burning. It also is valid for Wiebe burning (eq. (I-101))

when M b (Of)/M ( 00) _<0.9999. When 0.9999 < M b (Of)/M(00), then

O* =Oo+(Of-Oo)[o_ -l 1n(9999)] l/t_ 0.9999< _ Wiebe, r_0 (III-34)
M ( Oo)

is the appropriate solution for the combustion end point.

Intake and Exhaust Flows

The treatment of intake and exhaust flows within the framework of a cycle simulation is a major

complication in the construction of a numerical model. Not only must one contend with points of

flow reversals [M C±)=0], but also one must locate the points where M (±) changes sign. Both kinds

of points are a part of the definition of the flow-related functions (I-121) and (I-122). In the general

case the points M(+)=0 and M(±)=0 can occur in any sequence, and about all one can say in

advance with any certainty is that, when the valves close, M (+) will be positive and M t-) will be

negative since there is a net mass flow through the engine. To treat the problem with complete

generality would require one to estimate, at each step of the calculation, the next occurrence of an



.,f/(±) = 0 point and M ( ±_ = 0 point and to proceed on the basis of which occurs first. This becomes

particularly vexing during that portion of the cycle where there is valve overlap. To mitigate these

difficulties somewhat, it is necessary to limit the generality of M (_-) by imposing some restrictions.

The assumption will be made that, if M (+) changes sign, it will do so only once and that will occur

shortly after the valve opens. After this sign change in M (±) only flow reversals may occur. Of course

these restrictions are not enforced at the defined discontinuity in M (+) located at the point where

M (+) attains its maximum value M(m+a)x. The allowed behavior of M (±) is sketched in figure 2 and

seems to be adequate for the range of behavior normally encountered.

Associated with the calculation of intake and exhaust flows is the task of determining the critical

pressure ratio, that is, solving equation (I-115).

I 0"( ±)-- (_l "_ 1)(pro _ ('/1 - 1)/'Yl\Pl/c

/[(P2/Pl)c] = "<[1 - 2o ( ±'- b ( ±' (P2 _2+2\Pll )'c In

+b(±)(_ 1 1) (P2 _(')'1 + l)/'Yl- =0 l
\Pl /c "Yl T_

(P_212) C=0 "Yl=l

(III-35)

M(-)

M(-)

%_0 I M(+) IM(+ ,_
I l max" u
I 1
I II
I I

1

I

°°_+_ °_........._ j _-_

M(+) ,2'

M(-)

M(-)

I
I
I
I
I
I

I

,gl 02'

Exhaust

M(+)

e_*) e_÷)

Intake

Figure 2. - Permissible intake and exhaust flow behavior.
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This can be solved by a Newton-Raphson iteration.

x(n+ l)=x(n) + ,X,'c(n), A.r= f(x)
f{x)

(III-36)

Convergence is achieved when IAxi ___10- 5. When the contribution tof from the term involving b t _)

can be regarded as small, which will generally be true, it is possible to obtain an excellent initial
approximation. This can be done by solving the equation with b C±) = 0 and then using this solution to

approximate the contribution from the b (±) term.

0(+) + ('YI - l)b( ±)[ 20( +)/('Yl + 1)1 ()'l + l)/('/I - 1) l,y,/t,y _ 1)_.1+ 1 _l_l

exp l [2a( ±'- l] + b( +)e(2°( ±)- I) I2 "Yz=l

(III-37)

The equations for the absolute value of the mass flow rate, (I-110) and (I-112), are nonlinear in
A/t ±) because the parameters A (+), at ±), and b t ±) (eq. (I-117a)) are functions of the Reynolds

number (eq. (l-116)), which is itself a function of IM t +)[. Hence the calculation of IM t ±)1, which is

equivalent to solving

plA(±) ,,_/2PlP_ I_/l('_l -- 1)[0"( ±)- (p2/Pl) (3', - I)/'YI l
4") I

w _[ (pl/P2)2/qq_b(+) =0 "yi ;_ 1

/

IA;/(±)I plAt +)'_ 2PlPLl-la(±) + ln---_l--/P2)] =0 ",/1= l
w (pl/P2)2_b (+)

(111-38)

for [M ( +)l, must be accomplished with some iterative process. The nonnegativity of [Mr +)l suggests
that In _M(+) I is an appropriate iteration variable in a Newton-Raphson iteration because.this

automatically incorporates the nonnegativity constraint on the iteration.
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ln_¢(+)fn+l)=lnV(4(.,_)l(n)+Aln_t(._)l(n), A ln_;/(+)l= _ F
dF/d In _/_/( ±)1

dF 1 I[(pl'_2/')'l ]-1 db(±)d ln_/(±)l- _/(±)1÷ _ [_Ai/(±)I-FI b (±)\P2/ - d In _r( ±)[

din A(±) 7_f/C 2 [_f/(±)l-F]-11 [plAC ±)] 2--2(_ l_,--_] j -- 2plP1-1 do(±)(pl/P2)2/'h - b (±) d In _f/( ±)1

(111-39)
f-

10-6)E 4±)]"2 k_3 ""'4 ] ")/1
[L, 1 L'4 " (Re ×

do(±)

d In _;/(±) I

E(±)'z'(±)±'_(±)f'_'(±) +E(4±) ) (Rex E(+)1 L'4 Yl"-'2 \'-'3 10 - 6) 4 = 1

dlnA (±) _A(2±)A_±)(Re×IO-6)A_ ±), db (±) =b(2±)b_±)(Re×lO-6)bl ±)

dln_¢±)l AI+A2(RexIO-6)A_ ±_ ' dln_(±)l

The change in _f/(±)[ per iteration step is limited to about a factor of 10, and the iteration is

terminated when IF[_ 10-4.

Integration Methods

The integration methods chosen to solve the systems of first order differential equations (III-1)

and (11I-2) are those of Theorem 111.2 of Chapter II. The vector eis chosen in one of two ways. For

those portions of the cycle where Rx=0 (eq. (111-28)) the vector is determined by using, from

Chapter II, the vectors Tu of table I for k = 1, weighted as in equation (11-97) to give el = 1, and 4) and

V chosen as in equation (11-98). For the other portions of the cycle the vector eis determined by using
the vector Tu of table I for k = 0, also of Chapter II weighted as in equation (II-97) to give el = 1. The

integration error at each step of the integration is calculated from equations (II-99), (II-106), and

(11-107). The norm (eq. 11-108)) is obtained by using equation (11-109) with U (k) as the identity
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matrix, and E (k) is chosen as in equations (II-112), (II-113), and (II-115). The integration equations

are solved by a modified Newton-Raphson iteration with no control on the size of the correction. The

iteration is deemed to have converged to an adequate solution of the integration equations when any

one of three criteria is satisfied. The first of the three tests places a condition on how well the

differential equation must be satisfied in the sense of the norm. The iteration is attempting to

generate a solution of first order differential equations y-_ (y,x) = 0 by determining a vector Zq+l
whose definition is given in Definition 1.2 of Chapter II. Thus

I]._- _(y,x)II <ez = lO-2 (III-40)

is required to hold. The second criterion is based on the size of the correction A,(n), relative to the
"_" q + l

current estimate of Zq+ j, again taken in the sense of the norm.

(II1-41)

The last cmterion is based on how rapidly the iteration is improving the solution to the differential

equation. This criterion is effective only after two iterations.

[I[I._- _11<n>_ I1.___11<n-1>11_ 10- 311.__ _11In-1) (III-42)

The order of the integration method and the step size are based on equation (II-104), for which the

parameters are

= 10-4, "Yq 1 = 1, 'yq = 1.4, _q+ I = 1 (III-43)

and reflect a 40 percent bias against changing order because _q is 40 percent larger than either "yq_ 1or

"_q+ 1.

Equations for First Specialization of Model

Differential Equations and Additional Derivatives

The assumptions associated with the first specialization of the general model effect a considerable
simplification in the calculations. These simplifications are of two basic types: those associated with a

reduction in numerical details and bookkeeping tasks, and those associated with a simplification of

the differential equations. The first type occurs because, effectively, flow reversals have been

proscribed, valve overlap has been eliminated, and intake and exhaust flows are confined to smaller

crankangle intervals. Flow reversals, if they occur at all, can occur only at the instant of valve

opening and serve only to equalize the pressure of the working fluid and the manifold or exhaust

pressure. The second type of simplification comes about because of a basic reduction in the

complexity of the governing differential equations (I-124), (I-125), and (I-128). Thus, for example,

while the equations of the general model still apply from the initiation of combustion to the opening

of the exhaust valve, their forms were considerably simplified because in this crankangle interval
/_/(±) = 0 and a number of terms in these equations disappeared. Also the differential equation for

mass need not be integrated numerically since in the postcombustion part of the cycle the mass in the

cylinder remains constant and during combustion the mass of the burned gas is given by M1 = Mb.
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Finally when the intake or exhaust valve is opened, only a single differential equation requires
numerical integration.

Crankangle interval 0 <_0 <_0(o+) and 7r= 0_+) _<0 _<00. - Only one differential equation requires
numerical integration for this range of crankangles.

du p d In V Q

dO - p dO Mw (III-44a)

The second derivative of u can be approximated as

d2u _ p ( d2V d ln p dV_ hA Td ln T Q d ln A
dO2 M \-_ + dO -_ ] - _ dO Mo_ dO (I11-44b)

by assuming dh/dO = 0. The pressure and temperature derivatives can be expressed exactly, as can the

derivative of the area. The rate of change of the heat transfer area with crankangle is obtained by

differentiating equation (I-88) and has a form similar to the expression for dV/dO (eq. (III-21)).

dA = 4B- 1dV
dO dO

dlnp_(Olnp) du (Olnp_ dlnVdO -O-ff-Jp,nx _ \ O_p ,lu,n× dO (III-45)

dlnT_(OlnT_ du (OlnT_ dlnV
dO \ _ ,l o,nx _ \ O ln p ,l u,nx dO

The pressure and temperature derivative expressions come about by using dnx/dO=O and
d In p/dO = - d In V/dO.

(+) <0 <0(+)= 7r.- This crankangle interval corresponds to that part of theCrankangle interval 0o _

cycle where fresh charge is inducted into the cylinder. Here too only one differential equation

requires numerical integration, and that equation is chosen as the density equation (I-128).

dlnp

dO

(alnp) .__Q(alnT) [(aln,) (alnT)[n(O)(ah" _ h(o)i_(n(xO)_nx)(alnpT.p]dln ValnTJo,,xM, o', ah Jp,%+ alnT/o,%', Oh - J dO

(01np) +(ntxo)_nx)(_nxP)To_(Olnp) (OlnT_ In(0)( Oh_ h(O)]O In o/Tn x, , 01n r/p.nx\_h,lp.nx[ x \_nxJp.T-

(III-46)

The second derivative of the density can be approximated by differentiating the first derivative

(III-46) and in the differentiation process neglecting the 0 dependence of all terms except M and
d In V/dO.
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r=,:,,,,,de'>=PL-j_- + \ de

d21n p

-xaTTl_..xx-_ l.,.xs_ <#8 I(01np) (0In T) Oh) h<O4 nx)(_)T, pl V_- #_nT .,nx\_lp..xrn(xO)(L \_nxl,, ,- .] _(n(xO)_ 01np dZlnd0E

din M

. .,o _,/1(O,n.) (o,..) (a,..) (___ "."_L__a"_I"," J".Oinplr.x +(n_x°i-"x)\ 0nx Ir, p-\_l,,, x

(1II-47)

dO

d 2 In V _ V- l d2 V
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The third member of this set of equations is just the first member of equation (I-128a). To carry out
the integration of equation (III-46), it is also necessary to know the first and second derivatives of the

enthalpy because the thermodynamic state in this crankangle interval will be specified by enthalpy

and pressure.

dh_ (2 +(h(O)_h)dlnM
dO Mw dO

d2h MQw ( d _ M d l___ffoA) hA _d ln T d21nM dh d ln M_-_ - - _ T --_ + (h (0) - h) dO 2 dO dO

dl_oT_(OlnT_ dhOh }p dO

(II1-48)

d2 In M
(0lnp) d21nV_(Olnp)(01nT)

O_pnp r,, x dO2 \01nT ,,,x\ Oh p..xLM_\ dO dO -M-_ -d-O-J

d_
(#lnp) +(n(xO)_nx)Olnp (Olnp) 0,nT) rn<o)0h

The calculation of d2h/dO 2 assumes dh/dO = 0. The expression for d 2 In M/dO 2 is obtained by

differentiating the third member of equation (III-47) neglecting all 0 dependence except in d In V/dO

and Q/Mto.

Crankangle interval 0* _ 0 _<0(o-) = 37r. -The differential equations and their Jacobian are exactly

the same as the ones for the noncombustion phase of the general model, equations 0II-1) and
(III-6), with M (±) = 0 and the equation for mass deleted.

Crankangle interval 37r= 0 (-) "_0 <0(c-)= 4_r.- The enthalpy differential equation is the only one
which requires numerical integration.



dh 0
- (111-49)

dO Moa

The second derivative of the enthalpy is easily calculated when dh/dO = O.

d2h _ Q. ( d ln M dlnA) _A Td ln TdO2 Moa dO dO - _ dO

dO _ T, na dO

{Olnp'_ (0In T'_ O ][{01np+ (III-50)

din T

dO _ (0 In T'_ dhoh

Crankangle interval 0o <_0 <_0".- The differential equations and their Jacobian are precisely the

ones for the combustion phase of the general model (eqs. (III-2) and (III-11)) with _1-3= 0 and the

equation for burned mass M 1 deleted.

Calculations at Pressure Discontinuities

In this model of the internal combustion engine a pressure discontinuity will occur at 0-- 0 if and

only ifp(O)<pm, and one will occur at 0=37r if and only ifp(37r)_p e. Ifp(37r)>p e, then a simple

expansion to Pe by one of the processes (I-118) will determine the density and hence the mass which

must be removed from the cylinder so that the pressure will equal Pe. If p(0)<Pm or p(37r)<Pe, then

the pressures are equalized (to Pra or Re) in two separate stages. First, the cylinder contents are

compressed (to Pm or Pe) by one of the two processes (I- 118), and this is followed by mass addition at
constant pressure. At 0--0 the added mass is fresh charge, while at 0 = 37r it is the composite exhaust

gas from the preceding cycle. The amount of mass to be added must be calculated iteratively, and

since the composition, enthalpy, and mass are given in terms of E m by equations 0-126) and (I-129),

this implies the iterative calculation of E m.

Consider first the situation at 0 = 0(o+) = 0. Since the mass addition takes place at constant pressure,
it follows from the pair of functions 0-127) that to first order

(O In p'_ ,5 {Olnp'_ _xp0_O/T In p+ k,O In T/t, ,5 In T+ Anx=0

Oh ,5 In T+ _ An x = `shO-T_T p

(III-51)

must be satisfied during mass addition. Suppose A In P, Ah and Anx are interpreted as the difference

between the values calculated from equations (I-126) and (I-129) and estimates for p, h, and nx.

Alnp-
,50 _ 0[0(+)]( 1 +Em)-P

/9 p

,sh = h[O(°+)] + Emh(O)
1 +E m 1 +E m

- h = h [0(o+ )] - h (0) + (1 + Em)[h (0) - hi

,sn>, = nX (0(°+ )) -- r/_O)+ (1 + Em) [rl{_O)- nh]
1 +Em

(III-52)

The values at 0(o+) in these equations are the values after compression to Pm. If A In T is eliminated
between the two members of equation (III-51), followed by substitution from equation (III-52), then
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theresultingequationcanbewrittenasaquadraticin (1+Era)whosesolutionwillyieldanimproved
estimateforE m. When the values of (O In p/O In T)p, (O In p/O In p) T, 0 In p/Onx, and Oh/Onx are
substituted into the quadratic, we find

t_(1 + Em) 2 +/_(1 + Era) + c= 0

a=l

0In T 0 _ _
(Ill-53)

f

- p _( 0In T_

c= _ ( \ _ ]p,n x

and then

1 + E m = -/_(1 + 41 - 4c//_ 2) (III-54)
2

is the appropriate root. The initial estimate for E m is obtained by assuming that the cylinder volume

available because of compression to Pm is filled with fresh charge. If 'p(0(o +)) is the density prior to
compression then

'p[¢o+)]
(III-55)

provides a good estimate. It is assumed that the calculation has converged when

ETA+ ')-E(_)[E(mn_'5 <0.5 X 10- 4
(1II-56)

The corresponding calculation for the exhaust, while still an iterative calculation of the relative

mass charge, is carried out somewhat differently. Here the calculation focuses on _o, the ratio of the

density calculated from the equation of state (I-132) to that calculated from the mass and volume.

Equations analogous to (I-126) and 0-129) apply here except that 0(o+) is replaced by 0(o-), h (°)

becomes h re), and n_0) becomes nixe).

Pe

RT ]_ rt h {(l +Em)' P[O(°-)]]-l' h= h[O(-)] +Emh(e)]+Em

h

nx=
nx[O(-)]+Emn(xe) M-'M[O(o -)]

1 +E m ' Era=

(III-57)
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In these equations '010(O-)] and 'M[O (-)] are values prior to compression to Pe. The unprimed

quantities at 0(o-) are the values following compression to Pe. When the calculation converges, _ will

have the value unity and a Newton-Raphson iteration for In Era takes the form

din so
In ¢ + -- A In E m = 0 (111-58)

d In E m

where d In _o/d In Era must still be calculated.

dln¢ dln T (_r T) -1 dnx Emd In E m d-in-E-- m - n _h d l-nEm 1 +E m
(III-59)

The contribution of the composition derivative is easily evaluated by a differentiation of the

composition equation in (III-57).

(_nz)-ldl2h (l_rlX[O(°-']l-l--[_rl(he)]-l)Em/(l+Em)2
X d In E m - (111-60)

([_te,]-1+ Em[_f..}(rlh[O(o_,] ] -1)/(1 -hEra,

The temperature derivative must be evaluated by a differentiation of the enthalpy equation in

(III-57). Because the enthalpy is linear in composition (eq. (I-131)), the enthalpy may be written as

h = *HX( T)nx= *Hx(T)nx[0(°-)] +Em*HX(T)n(xe) (III-61)
1 +Em

by a substitution of the composition equation from (111-57). and this may be regarded as a function

of T and Era. If the expression (Ili-61) is used on the left side of the enthalpy equation (111-57) and

the resulting equation is differentiated with respect to In E m, then this produces an expression for

d In T/d In E m.

Oh din T [ [h(e)-*Hx(T)rl_e)]- [h(O(o-))-*HX(T)l'lx(O(o-))]] Em

3 In T d In Era (1 +Era) 2
(II1-62)

The iteration on Era is continued until the condition

1_- 11< 10-4 (111-63)

is satisfied. An initial estimate for E m is obtained by setting _ to unity and assuming that *H x is linear

in temperature. The linearity of *H x implies that

*HX(T)n(_e)=h(e)+(T-Te)[*CX(Te,n(_e)+R_n(he) ]
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This assumption converts the enthalpy expression (II1-61) into an expression linear in temperature

and, when used on the left side of the enthalpy equation in (III-57), produces an equation linear in T

whose solution for T can be substituted into _o= 1 to produce a quadratic equation for E (°).

1/2

<e o- l/2/_= ] £n_-_
K._ r r

{.- +
Tecp(Te)

I ]pe
2C= - 'P(O(°-))RT(e(°-))_ nh(O(o_) ) -1 Tecp(Te)_ -(e)rtr

(III-64)

cp( T e) - *Ca( Te) n(xe) + REn(x e)
X

Except for 'p[0(o-) ] all values at 0(o-)in these equations are those after compression to Pe; 'P[0(o-)] is

the density before compression. The initial estimate E(m0)is the root

E(°) = N/_ + 2c -b (III-65)
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Quadrature

Just as for the general model, it is necessary to evaluate the mass content of the cylinder, the work,
and the heat transfer for the first specialization of the general model. The calculations are somewhat

simpler here because the model itself is a little bit simpler. For example, the mass in the cylinder can

be calculated without a quadrature formula. In this model the mass changes only in the intervals

0 ( + ) < 0 < 0( + ) and 0 (-) < 0 < 0 ( - ) In the first of these intervals the density is evaluated by integrationO -- -- C O -- -- C "

of equation (III-46), and consequently the mass can be calculated directly as a product of the density

and the cylinder volume. During the second of these intervals it is the enthalpy which is calculated.

But since the pressure is constant in this interval, the enthalpy and the pressure define the

thermodynamic state completely and thus enable the direct calculation of the density. Thus here too

the mass can be calculated as a product of the density and volume.

On the other hand, cycle work must still be evaluated by a quadrature over most of the cycle. Over

the intervals 0(o+)_<0 < 0{c+)and 0(o-)<0 _<0(c-), where the mass is changing, the pressure is constant.
Consequently the work increment can be calculated as the product of the pressure and a volume

increment, and no quadrature formula is needed. Over the other portions of the cycle the work

increment is evaluated with the quadrature formula (III-19) in conjunction with equation (III-20).

Over the combustion and postcombustion intervals, 00<0<_0* and 0"<0<0(o-), where chemical
kinetics plays a role, the terms in equation (III-20) are calculated as given in equation (III-21). Over

the balance of the cycle, 0 _<0 _<0(o+ ) and 0(c+) _<0 _<00, the last member of equation (III-21) is replaced

by the second member of equation (III-45) in calculating the rate of change of pressure with
crankangle.

The quadrature for heat transfer is carried out in one of two ways. For the constant-pressure

portions of the cycle, 0(o+) _<0 _<0(c+) and 0(-) < 0 -<0(-), the heat transfer increment is calculated with
adequate accuracy by equation (III-19) with f= Q/w, and this is supplemented with the assumption

fl =f2. For the balance of the cycle the heat transfer increment is calculated from an exact formula

which can be derived easily from equations (I-124) and (I-125) in conjunction with the first member

of equation (I-75).



I Q do= f dV dM- p-_ dO- I d(Mu) if _ =0 (III-66)

The first integral on the right is of course the work integral; the second integral is the change in
internal energy for the contents of the cylinder.

Estimation of 0(o+) When Pm <Pe

If p(0) =Pe >Pm, then the intake valve opening is delayed until the pressure has been reduced to Pm
by piston motion. The determination of the crankangle where this will occur necessitates an

extrapolation of the pressure. The extrapolation formula will be based on equations (III-12) and

(III-13) with f= In p. We have found that quadratic extrapolation is adequate, and the parameter d

in equation (III-12) is set to zero. In the notation of equations (III-12) and (III-13) and figure 1 the
remaining parameters are

a =fl = In Pl, b =fl, c - f_ -f_ d = 0 (III-67)
2h '

and should the point 0 2 be unavailable, as would be the case at 0 = 0, c is also set to zero. To estimate

(+) it is only necessary to set p =Prn in the extrapolation formula and to determine the correct rootO '

of the quadratic.

2 ln(Pm/Pl )
0(o+) - Ol --" (111-68)

b - _/b 2 + 4c ln(Pm/Pl )

The calculation off= d In p/dO is carried out with the second member of equation (II1-45).

Integration Methods

The integration methods are of two types. Where chemical kinetics is a factor, that is, from the

initiation of combustion and through the postcombustion phase up to exhaust valve opening, the

integration methods are precisely those described for the comparable crankangle interval of the

general model. For other portions of the cycle, where only the differential equation requires

numerical integration, the method is the Euler method. This method, as pointed out in Chapter II, is
the simplest linear, multistep method of Adams' type and is a one-step method. If the differential
equation is

dy
dO - _ (y,O) (III-69)

then, in the notation of figure 1, the Euler method is

h[¢ (yl,01) + _0(Y2,02)]
Yl =Y2 + 2 (III-70)

which is to be solved for Yl. The initial estimate y_O) of Yl is calculated from a Taylor expansion
truncated after the second derivative.

y_0)=y2 + h)_2 + h2_'2
2 (III-71)

Subsequent estimates are calculated iteratively.

h[_o[Y_n),Ol] + _o (Y2,02) 1

y_n + 1) =Y2 + 2 (III-72)
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Experience has shown that y]l) represents an adequate estimate for Yl under these circumstances.

The solution of the Euler integration equation (III-70) involves the purely thermodynamic

calculation of the state of the working fluid. For crankangle intervals 0(o+)___0_<0(c+)=Tr and

3a-= 0(-) ___0_<0(c- ) = 47r, where the pressure remains constant, the thermodynamic state is specified
by the enthalpy and the pressure. Elsewhere it is defined by the internal energy and the specific

volume o-1 Thus, even though only one equation is being integrated, the calculation requires the
estimation of two variables. For the interval 0 (-)< 0 < 0 (-) this is no problem because the pressure is

O -- -- C

known to be Pe and the enthalpy can be calculated from the differential equation being integrated.

During the interval 0(+) _<0 _<0(c+) the pressure is now Pm but the differential equation determines the
evolution of the density and not the enthalpy. But from the density one knows the mass and, through

the last member of equation 0-126), the value of Em. But this estimate of E m then produces an

estimate of the enthalpy by means of equation 0-129). In the remaining intervals the differential

equation determines the internal energy. The specification of the state is completed simply by

calculating the specific volume from the known, and constant, mass and the known volume available

to the working fluid.
The only matter still requiring consideration is the selection of a step size. The Euler method is a

one-step method, and the step size is permitted to change at each step. For those portions of the cycle
where the thermodynamic state is defined by the internal energy and specific volume, the step size is

defined by specifying a maximum change in internal energy during the step. The step is constrained to

produce no more than a 1 percent change in internal energy and is further restricted by the condition

_r/90 -<h -< 7r/18. In the notation of figure 1, using h as the estimated step size and h as the actual step

size, we have

]Ul-U2]=O'Ollu2]" Ul-UE-h(l+hu2)u2 _2 ' h=maxl n_,minl _r/lh,]-_ (III-73)

as the equations determining the step size. A careful examination of the quadratic for h, given as the

second member of equation (III-73), discloses that the solution for h has one of two forms depending
on conditions.

h_

¢" 0"02lu2J_'_2l U2 ___0or (u2 d0

1 +_/1 +O.021u2/u2[u'2/u 2 u2
and

U2/U2

-(l+X/1-O.O2[u2/{_2]ii2/u2) u2 <0 and - u2 <0.01 [u2[

• li2 2t_2 [[U2

(III-74)

For those portions of the cycle where the thermodynamic state is defined by the enthalpy and the

pressure, the step size is determined in exactly the same way except that the internal energy is replaced

by the enthalpy.
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Equations for Second Specialization of Model

Differential Equations

This cycle calculation is identical to the first specialization in all respects except for the combustion

and postcombustion phases of the cycle. Here chemical equilibrium replaces the chemical kinetics of

the first specialization and produces a dramatic reduction in the number of differential equations to

be integrated.

Crankangle interval O* <_0 <_0(o-)= 37r.- In this interval the sole surviving equation from (I-124) is
the one for the internal energy and the applicable equations are exactly the same as those given in



difference is that now the composition is assumed to be in chemical equilibrium. Consequently the
last two members of equation (III-45) must be reinterpreted.

dlnp_(Olnp) du_(Olnp) dln VdO _ p-d-O \Olnp u dO

dlnT_(OlnT_ du {OlnT_ din V
dO \ _,1o-_ - \ O ln p ]u -dO

(1II-75)

Crankangle interval 0o <_0 <_0". - Here the surviving equations from (I-125) are the two differential

equations for the internal energies of the burned and unburned gases. Taking account of the fact that

the unburned-gas composition is unchanging while the burned-gas composition is in chemical

equilibrium permits the conversion of the internal energy equations into equations for the

temperatures.

dTl_ I(Oul) ]-l[P_ll(Oln°l/OlnTl)p_dlnpl (_1 lnM1]dO _ o_ (8 In o118 In Pl)T l dO + _ - (h2 - hI) d-----dO_

dO - _ p2,n[2) _2 (0 In p2/O In P2)T2,n_2) dO +

(III-76)

The equation corresponding to equation (III-3a) in the pair of equations used to evaluate

d In Vl/dO and d In V2/dO (eqs. (I-78), 0-82)) also simplifies considerably because _l-)=0 and
because of equilibrium chemistry.

d In V 1 d In V 2 d In M 2 02 (O lnp2 ) d In M 1
3'1 dO + ")/2 dO - 3/2 dO _-2_0 \ OU 2 02,n_2) TI dO

+ [M_-(h2-hl)dld_41] (Olnpl\O-u1 )Ol
(III-77)

Extrapolation

To carry through the combustion calculations, it is necessary to be able to extrapolate a number of

properties. These extrapolations will always be calculated with the polynomial (III-12), whose

coefficients are given by equation (I-14). The only differences are in how the polynomial is used and
in the actual evaluation of the coefficients.

,, O: l,

dh 3 = 2 If2 -fl + (f_ +f2)h2 , ch2 =f2 -fl +fib + dh 3

bh =flh

(III-78)

The notation in equation (III-78) is that shown in figure 1. This form of the extrapolating polynomial

facilitates setting d to zero when desired and avoids divisions by h during coefficient evaluation.

Integration Methods

Where this model of the internal combustion engine cycle coincides with the first specialization of

the general model, the integration techniques are those used with that model. So it is only necessary
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to describe the methods used for the combustion and the postcombustion portions of the cycle. The

differential equations for these parts of the cycle are also integrated by Euler's method (eq. (III-70)).

Of course the y and _ in equation (III-70) are both to be interpreted as two component vectors during
combustion because a pair of differential equations is being integrated. During the postcombustion

part of the cycle (0"<_0_37r) it is the internal energy which is being integrated, and the

thermodynamic state of the working fluid is defined by the internal energy and the specific volume. It
differs from the other portions of the cycle, where the state is given in terms of these variables only

because the chemistry here corresponds to thermodynamic equilibrium. As a result the integration

techniques for this portion of the cycle are identical to the methods used for 0_<0-<0(o +) and

7r=0(c+)_<0_00, except that the last two members of equation (III-45) are replaced by equation

(III-75) in the calculation of the pressure and temperature derivatives.
During combustion the state of the working fluid is presumed to be specified by temperature and

specific volume, that is, by TI,O _ 1and T2,O _ 1. The extrapolation of these variables to obtain initial
estimates for the solution by Euler's method is accomplished with the polynomial (III-78). Clearly

since the temperatures satisfy the equations of Euler's integration method, the cubic coefficient d for

temperature must be set to zero. The iterative solution of equation (III-70) is obtained by the

iteration process

1',°)]
(III-79)

X(n) = 3(n + 1) 2
1 + 3(n+ 1)2

where x(n) is an empirical parameter used to control the iteration step size. The vector y in equation

(III-79), as mentioned before, stands for the burned- and unburned-gas temperatures TI and T2.

Each iteration for the temperatures contains within it a subiteration on the specific volumes. Thus for

a given estimate of the temperatures there is an iteration on the specific volumes based on the pair of

equations 0-83). This pair of equations can be written in the form

ofl-Ml+M201/02, 0£_=0i -1 _

and when the density ratio is replaced by its equivalent, using me equation of state with Pl =P2, it

leads to

(0(_1)(m+1) = V
I

i ,7

(.c1)<re>r2.t
 1(7.t,>),->

as the iteration for specific volume.

iteration. The convergence criteria are

(III-80)

A maximum of six iterations is permitted for each type of
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<':+"- <":>

(III=81)

(n)_i"'-p_ 1_o.°o5

and if these are not satisfied within the allowed number of iterations, the integration step size is
halved and the calculation is then repeated.

Several factors go into the determination of the integration step size during combustion. For the
initial step it is arbitrarily set to

hinitia 1 = _ (III-82)500

and thereafter it is calculated, on the basis of the progress of combustion, taking into account the

rates of change of pressure and burned-gas internal energy. To formulate an expression for the

computation of step size, consider a function f(O) with a Taylor expansion in the vicinity of 01 for
which f(1)(O1) =ft 1)_ O.

n =0 n!

The contribution of higher derivatives to the function f, relative to the first derivative contribution,

may be expressed as the expansion

F_O,+_,__SIO,+_l-6°>-7,if'> _ T,"F.

F.- St"+') it ')*o
(n + l)f_ 1)

(III-83)

A value of h associated with the function f, hf, can be defined by assigning a value, R f, to _F[ and

truncating its expansion with the second order term. This yields a quadratic equation for hf.

F(li) =hF 1+ hZF2
2

(III-84)

_F@)I=Rf
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The form of the solution to this quadratic equation for hf depends on the relationship of F 1and F2.

- _22 + [(FI/F2)2+ 2Rf/_F2[]1/2 sgn(Fl) = - sgn(F2) and 2Rf [F2[ >F 2

otherwise

(Ili-85)

Should the first derivative vanish, one could perform the same kind of analysis but now looking at

the contributions of higher derivatives relative to the second derivative. This produces a quadratic

equation with a form identical to equation (III-84) but with slightly altered definitions of Fn.

F.= 2S_"+_) S_)--o,sl2)#O
2 -(2)(n+ 1)(n+ )Jl

(III-86)

With f chosen as the pressure during combustion

L (III-87)

where, in the calculation of F1, the second derivative of the pressure has been approximated as a
difference of first derivatives divided by the step size and the first derivative has been replaced by the

mean of two first derivatives. For fchosen as the internal energy of the burned gas the calculation of

F 1 and F 2 is based on the extrapolation formula (III-78) applied to Ul. The coefficients of this
extrapolation formula are used as estimates of the derivatives. The F1 and F2 are calcu!ated either as

in equation (III-83) or as in equation (III-86) depending on the size of ul relative to ul.

Rul = 1/2

c 2d
FI= _,F2= _ -

I//11
It_ll>-l/2 or lull>-

(III-88)

FI = d,
c F2=0 otherwise

The step size is then chosen by the prescription

[;6'0h=max , min '[Ul]
(III-89)

although if MI(O + h)/ml(O)>_3, the step size is halved before use.

Equations for Third Specialization of Model

There are no differential equations which require numerical integration in this thermodynamic

model, and all computations can be performed directly without iteration except for the determination
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of the amount of fresh charge added during the cycle. This iterative calculation differs insignificantly

from the calculation of the pressure discontinuity at 0(o+)=0, which was described for the first

specialization of the general model and detailed in equations (III-51) to (II1-56). The fundamental

cause of the difference is that the mass addition here is accompanied by a volume change, in contrast

to the former situation where the volume was fixed. The volume change is expressible in terms of the

compression ratio r and modifies only the expression for A In p in equation (III-52).

A In p- P(O(+))(1 +Em)/r-P (III-90)
P

This change in A In p produces changes in the definitions of/) and cgiven in equation (111-53) by
adding the compression ratio as a factor.

, I1- ]-

c-O[O(o+)]I( OlnT'_ (h[O(o+)]-h (0) *H x_ I. iO,o+)jo o)l) (III-91)

-4-

No numerical quadrature need be carried out at this level of modeling, not even for work. Since the

heat transfer is zero, equation (III-66) can be used to calculate the work from the changes in internal
energy

f dVp -_ dO= - f d(Mu) = -A(Mu) (III-92)

for those portions of the cycle where there is no mass addition. This formula gives

f 3rr d VP dO dO: -M(Tr)[u(3_r)-u(Tr)]= -/(37r)[[/tl(37r)-ttl(Oo) ] + [.2(00)--.2(71-)] / (III-93)

as a special case by using u(37r)= ul(3_r), u(Tr)= u2(Tr), and ul(Oo)= u2(00). For those portions of the

cycle where mass addition occurs, the pressure is constant and again numerical quadrature is
unnecessary.

dV
f p dO dO=p AV p=0 (III-94)

Performance Parameters

During a cycle calculation a number of functions are calculated which serve as indicators of cycle
behavior. Foremost among these are the cycle work and heat transfer functions. The indicated work

W I, the pump work Wp, and the heat loss Q are cycle functions defined by integrals over the cycle
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WI( O) = o dV
p -_ dO

_. w_(3_)

0_0_

_r_<O_37r

37r _0 <__47r

f

o dV

oP -_o dO

wp(o) = wp(Tr)

eo dV

wp(.) + _3,f -N dO

(4) o

0 _<0 _<_- (III-95)

x-<0<3a-

37r __0_<4_"

As defined here the functions Wz(O) and Wp(O) represent work done by the working fluid when they
are positive and work done on the working fluid when they are negative. For a typical cycle

Wl(37r)>0 and Wp(4r)<0. The function Q(O) is the heat loss, and consequently Q(47r)>0 for a
typical cycle. The average derivatives of these functions, over an interval A0, are calculable by
difference.

AWt = [Wl(O+ao)- w,,(o)]
A0 A0

[Wp(O+AO)- Wp(0)l
A0 = A0 (III-96)

AQ _ [Q(O+ao)- Q(o)l
A0 A0

During the combustion phase of the cycle the indicated work can be separated into contributions

from the burned and unburned gases.

_o dV 1

Wl(0) = JOf _ dO, w2(o)=Iiopqf-_dO

w_(o)+ w2(o)=w,( o)- w_(oo), AWl + AW2 _ AWl

AO AO AO

00_0_<0. (III-97)

In addition to the cycle functions just defined, one would like to have some measure of overall
cycle behavior. One class of such indicators could be the increase in mass AM ( + ) and species moles

_n_ +) brought about by the flow of fresh charge through the intake system because they represent the

input per cycle to the engine.
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AM(+ ) -- M_.+ ) n (0) (Ili-98)"_ -- max X

M(m+_) - max [0, M( + )(0)1

The expressions for AM (+) and An(X+) take into account the definition of 34(+)(0). That definition
(see the discussion following equation (I-117b)) introduced a discontinuity into M (+) at its maximum

value as shown in the sketches for figure 2, which illustrate the range of intake and exhaust flow

behavior which can be accommodated. The formulas also presuppose that M (+) changes from

negative to positive values only once. The product of An(X+) with the molecular weight of species _,

"_7x, gives the mass input Am(x+) of this species. Summation of this over a subset of species gives the
mass addition ascribable to those species. Mean mass flow rates of fresh charge and species to the

cylinder can be calculated from mass increments simply by dividing them by the time for one cycle
47rA0.

<3)/(+)> -

< 3;/(h+) > _----

oj _v/t+)

47r

4-/1"
(;_ not summed)

(III-99)

The exhausted mass and the moles of each species exhausted for each cycle are calculated similarly.

AM(-)= M(m-a ) - M (-)[0 (-)]

(III-lO0)

An(x- ) = AM( - )n (Te )

M(m-a) - max[O, M (-)(O)l

The mean mass flow rates of exhaust and species from the cylinder can be calculated analogously to

equation (III-99).

<__)> _ o, aM_-)
47r

47r
(X not summed)

(III-lO1)

Finally, the mean net mass flow rates for the intake and exhaust systems are defined as

-0 (±) .

<_±)>net---- 0 _))1)/(±) (0) d 0
(III-102)

An important measure of the mechanical efficiency of an internal combustion engine is the

efficiency with which it converts chemical energy to useful mechanical energy. But to calculate such
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an efficiency, one must have some measure of the energy content of the working fluid. A reasonable

choice for this value is the enthalpy difference between the enthalpy of the working fluid for the

composition at intake valve closing 0(c+) and the enthalpy of the same working fluid but for an
equilibrium composition. Both enthalpies are calculated for the same temperature and pressure. If

the temperature and pressure are chosen as the nominally ambient values of T= 298.15 K and p =Pe,
then the chemical energy per unit mass may be defined as

AhcE-h(T,p, nx)-h(eq)(T,p) T=298.15K, p=pe, nx=nx(O(c +)) (III-103)

where the last term is the enthalpy at equilibrium conditions. The chemical energy is a measure of the

available energy per unit mass of working fluid and can be used in the definition of three parameters

to characterize the distribution of available energy among useful mechanical work, heat loss to the

coolant, and energy content of the exhaust gas. These three parameters will be termed efficiencies.

The net work efficiency r/net is the ratio of the net work to the available energy. The heat loss

efficiency r/Q describes the capability of the coolant to extract energy from the working fluid. It is the
ratio of the cycle heat loss to the available energy.

[Wl(4r) + Wp(47r)], Q(47r) (I11-104)
r/net = M[O( + )]AhcE r/Q- M[O(+ )]AhcE

The ability of the working fluid to retain its energy content will be described by the exhaust efficiency

r/exh- It will be defined as the ratio of the energy content of the composite exhaust gas to the available

energy.

r/exh -- (III-105)
g[O(c+ ] hcE

The quantity Ahex h is the difference between the enthalpy of the composite exhaust gas and its

enthalpy at equilibrium for T= 298.15 K and p =Pe. The heat loss and exhaust efficiencies represent

energy losses, and hence inefficiencies, from the point of view of the engine. Obviously the three

efficiencies defined here need not total unity, but often their sum is quite close to that value.

The indicated work, pump work, heat loss, and exhaust energy can also be expressed as average

power over a cycle. If P1, lap, PQ, and Pexh are the indicated power, the pump power, the heat loss
power, and the exhaust power, then

pi E w Wl(47r) wWp(4_r)
4r ' PP=- 47r

coQ (47r) - wM ( - )[0(c- )]Ahex h
PQ- 47r ' Pexh -- 4_-

(III-106)

are their defining equations. Oftentimes the indicated work and pump work are given in units of

pressure and called mean effective pressures. These are obtained by dividing the work by the

displacement volume V d, which is defined as

Vd---- V( Tr)- V(0) (III-107)

and hence
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IMEP = W(47r) PMEP-= W_(4_) (III-108)
Vd ' Vd

where IMEP is the indicated mean effective pressure and PMEP is the pump mean effective pressure.

Finally the net work for the cycle may be expressed as a mean torque 3. It is calculated as the net
work for the cycle divided by the radians per cycle.

3- Wl(4a')+ Wp(4a')
4rr (III-109)

Fresh Charge Specification

The flesh charge fed to the cylinder is formed from three streams: air, fuel, and recirculated

exhaust gas. The recirculated exhaust gas which is used in a given cycle is assumed to be the

composite exhaust gas from the preceding cycle. Its contribution to the flesh charge, expressed as a

mass fraction of the flesh charge, is designated by E G. Its state, prior to its incorporation in the flesh

charge, is defined by the exhaust pressure Pe and a temperature which might be the mean exhaust
temperature but could also be some other arbitrarily assigned temperature. The initial state of the air

and fuel is defined by a fuel pressure pf, the air temperature, and the (partial molar) enthalpies of the
fuel constituents. The fuel constituents are not restricted to chemical species which have traditionally

been regarded as fuels, namely, hydrocarbons. The label "fuel" is only used to distinguish reactants

from the principal oxidizer, which is assumed to be air. The relative proportion of air to fuel is given
by the air-fuel mass ratio A/F. The air itself is a mixture of "dry" air with an empirical formula

N 1.5616800.41959Ar0.009365C0.000319

and water vapor. The empirical formula for dry air corresponds to the mole fractions 0.78084,

0.209476, 0.009365, and 0.000319 for N 2, 02, Ar, and CO 2, respectively. The water content is

specified by the relative humidity, the ratio of the humidity to the humidity at saturation. The

humidity is the mass of water vapor per mass of dry air.

The fresh charge is formed from the fuel, air, and exhaust gas in two stages. In the first stage the

fuel is mixed with the air at a fixed enthalpy and pressure with the assumption that all liquid fuels

vaporize in the mixing process. The pressure of the air-fuel mixture is then changed from PF to the

manifold pressure Pm by one of the two processes (I-118). In the second stage the pressure of the

composite exhaust gas is changed from Pe to Pm by one of the two processes (I- 118), and the resulting

gas is mixed with the fuel-air mixture at fixed enthalpy and manifold pressure to produce the fresh
charge mixture to be used in the cycle calculations.

For those cycle calculations which correspond to the three specializations of the general model, it is

possible to characterize the makeup of the working fluid by giving the mass fractions contributed by

fuel XF, air XA, recirculated exhaust gas XE, and residual exhaust gas x n. These mass fractions are
expressible in terms of A/F, EG, and Em(rC).

x F =
(1 - EG)Em( _r)

(1 +A/F)[1 +Em (a-)] ' Xa =(A/F)XF

EGE m (7r)

XE = 1 + E m (Tr)' XR -

1

1 +Em(Tr )

(III- 110)
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Forthesesamecyclesit isalsopossibleto calculatetwosimplemeasuresof efficiencyof thecylinder
chargingprocess.Oneof theseis thevolumetricefficiency)Tv,whichis thefractionof thetotal
volumeavailabletothefreshcharge.Theotheristhemassefficiencyr/M,whichisthefractionof the
totalworkingfluidmasscontributedbythefleshcharge.

V(vr)-I_0(+)] 1 V[0 (+)] V(0)=1 p(0)= r-1
r/v- v(o) o[0(o+)]

M(Tr)-M[O(+_ _ Em(Ir)

r/M= M(r) 1 +Em(Tr )

(III-lll)

Properties Representations

The temperature dependence of the thermodynamic and transport properties must be known to

carry out cycle calculations. The temperature dependence is assumed to be expressible as a poly-

nomial in the temperature or its reciprocal and, for some properties, an additional logarithmic term.
The thermodynamic properties for each species take the form

d(*H/R)
dT -al+a2T+a3T2+a4T3+asT4

*H a2T g3__ a73 as_ a 6RT=al + ---2- + +--+ + T (III-112)

•sR =al In T+a2T+ a 2 a 4_ __ + + -- +a 7

where the species label has been suppressed. The viscosity of each species takes the form

a_ a3
In )1= a 1 In T+ --_ + __ + a4

1 T"
(III-113)

where again the species label has been suppressed. The expression for the thermal conductivity is

identical in form to that for the viscosity.
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Chapter IV

Organization and Use of Computer Program ZMOTTO

Bonnie McBride and Frank J. Zeleznik

The analysis of Chapters I to III has been translated into a large, complex, general-purpose

Fortran IV computer program called ZMOTTO. This chapter gives a general description of the

program capabilities, a detailed description of the input, several examples, and a brief description of
each subroutine.

The program contains not only the general model but also the three specializations of that model.

The computer program has been written to permit multicycle calculations at five levels of complexity

ranging from a purely thermodynamic model to a very general model which can cope with valve

timing and combustion kinetics. While the program uses thermodynamic, transport, and chemical

kinetic properties, it has been constructed to make data corrections, additions, and deletions simple
and convenient.

Because of the very many options available, a user is faced with an almost bewildering array of

choices. To assist the user, we shall present several examples of calculations designed to illustrate

input data structure, computational capabilities, and computational times. Because it is virtually

impossible to demonstrate all of the many options, we have selected examples which show the effects

of either important phenomena or simplifying assumptions. We will also provide brief descriptions

of the various routines, their functions, and their interrelationships.

Because of the mammoth size of the computer program (approximately 10 000 card images) we

have found it impractical to describe much of its fine structure. In many cases it is this fine structure

which permits the calculations to be performed reliably, accurately, expeditiously, and economically.

We seriously caution everyone to avoid even apparently trivial program changes. Many of the

numerical procedures have been developed to deal safely with even the most difficult problems. A

change which might appear to have been safely and correctly made for a particular problem could
surface at a later time and easily cause serious errors in some seemingly unrelated calculation. We

ourselves approach program changes with some trepidation because of the highly coupled and

"multiple use" nature of many of the routines. We cannot promise that the program is totally free

from error or that it can successfully solve all possible problems that it might be asked to do. We

have, however, tested it successfully on many kinds of extremely difficult problems. But our personal

experience has shown that even after many years of extensive use a complex program may contain

undiscovered errors or may encounter unanticipated situations with which it cannot cope. We have

tried to keep such problems to a minimum by always erring on the side of safety and accuracy rather

than computational speed. Even so the computer program is capable of performing calculations with

surprising speed.

When it becomes necessary to refer to particular program variables in the discussion to follow, this

will be done with the symbols used in the computer program rather than the mathematical symbols of

Chapters I to III. A translation between mathematical symbols and computer symbols is supplied as

part of tables IV to VI for the input variables. Some other computer variables will be identified in the
discussions of the various routines.
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Program Capabilities

The ZMOTTO program calculates Otto cycle performance parameters as well as working fluid

compositions and properties throughout the cycle for a number of consecutive cycles and for a

variety of input parameters. This section gives an overview of the program capabilities; details are

given in subsequent sections. The calculations take place at five levels of sophistication. The higher

the level, the more complex the model, the more input required, and the more computer time used. A

calculation cycle is defined to be an interval of 720 crankangle degrees beginning at top dead center

(TDC). Program execution produces results for a sequence of calculation cycles, hereinafter referred
to as a case.

The first few cycles calculated in a particular case are always the third specialization of the general

model. They are the lowest level of sophistication and will be referred to as level 1 cycles. These cycles

will sometimes also be called ideal cycles. All higher level cycles must be preceded by the ideal cycles,

which can be thought of as providing initial estimates of residual exhaust gas properties. All higher

levels of sophistication include heat transfer and will be termed nonideal cycles.

A case may contain several levels, but the levels of complexity cannot decrease with cycle number.

Fuel and engine characteristics remain constant for a given case, but many parameters are allowed to

vary from cycle to cycle for nonideal cycles. A typical case will always include a number of ideal

cycles and may also contain nonideal cycles. The number of ideal cycles varies depending on how

long it takes for the exhaust temperature and composition to reach a steady state. The nonideal cycles
following these ideal cycles are counted separately. The first nonideal cycle is called cycle 1. The

number of nonideal cycles is variable and is specified in the input data.

Data are dumped at the end of each nonideal cycle and may later be used for restarting the case or

for plotting many of the output variables throughout each cycle. The ZMOTTO program is capable

of restarting a case, but a separate program is required for plotting. Users must supply their own

plotting routines because graphics capabilities vary considerably from installation to installation.

A particular sequence of cycles (case) is shown schematically in figure 1. A brief description of the

modeling levels is given in the following paragraphs and is summarized in figure 2. A more detailed

description is available in Chapters I and III.
The input information required by the program is determined by the modeling level and is of two

types. The first type is the physical properties data for the working fluid. It includes thermodynamic,

_ Ideal --_ Nonideal -1

Modelinglevel: _--i ] ;: I 21 31 51

Cyclenumber: 1 2 3... 1 2 3 4 5 6 7 8 9 10 11 12
f f f

input: KINET• 4 IFLOW• 7 KFLAME- 10 NCYCLE- 12

Figure1. - Cyclenumberingexample.
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transport, and chemical kinetic properties for the constituents of the working fluid. The second type

is all other input data necessary to define a given case and will be referred to as case input data. Case

input data will define the geometric and operating characteristics of the engine as well as the
modeling levels for a case.

Level 1, Third Specialization Model (Ideal Cycle)

Level 1 cycles are not optional and are computed at the beginning of each case. They have
equilibrium chemistry, constant volume combustion, and no heat transfer. Calculations do allow for

residual gas effects, exhaust gas recirculation (EGR), spark advance, supercharging, and throttling.
Operating conditions are not permitted to change during these cycles.

For a case without supercharging it is assumed that the intake valve opens at the point where the

pressure equals the manifold pressure PMFOLD. When PMFOLD >PEXH (exhaust pressure), a

supercharging case, the intake valve opens at 0 °. The intake valve always closes at 180 °. The exhaust
valve opens at 540 ° and closes at 720 °. A steady state is assumed to have been reached when the

exhaust gas temperature agrees with the previous cycle value within 1 degree Kelvin. Also the exhaust

compositions expressed in mole fractions must agree within 0.01 percent on successive ideal cycles.

This model requires only thermodynamic data in addition to the case input data. A typical

calculation time on the IBM 370/3033 is 1/4 second or less per cycle. It takes anywhere from 3 to 12
cycles to reach a steady state.

Level 2, Second Specialization Model (Equilibrium Chemistry and Heat Transfer)

Level 2 cycles have heat transfer, finite-rate burning, and equilibrium chemistry in addition to the

capabilities of the level 1 cycles. This level is optional, but if used, it would be the first nonideal cycle
starting with residual gas from the ideal cycles.

The only physical properties data needed in addition to the thermodynamic data required for

level 1 are transport properties data for some of the non-Eichelberg heat transfer coefficient options.
For these options the HC2 constant is not equal to zero in equation (I-105).

A calculation time on the IBM 370/3033 is typically 2 to 4 seconds per cycle for the level 2 model.

Level 3, First Specialization Model (Chemical Kinetics and Heat Transfer)

Level 3 cycles have all of the capabilities of level 2 except that chemical kinetics replaces
equilibrium chemistry in the burned gas during burning and expansion. The chemical kinetic data are

an additional input requirement.

A typical calculation time on the IBM 370/3033 might be 5 to 7 seconds per cycle for a moderately
complex burned-gas reaction mechanism such as given in the examples in the appendixes.

Level 4, General Model with Equilibrium Flame

Level 4 cycles have valve timing, with flow through the valves calculated by using the poppet valve

equations (I-110) and (I-117). Chemical kinetics in the burned gas is assumed to govern the chemistry

from the start of combustion until the intake valve opens. The properties of the flame front are
assumed to be equilibrium properties.

The poppet valve flow equations require shear viscosity data for calculating the Reynolds number

(eq. (I-116)). Thus for levels 4 and 5 the viscosity data must be included even for the Eichelberg heat

transfer coefficient, which does not use transport properties data. Also for these models many more

case input data are required for the poppet valve flow parameters in equations (I-110) and (I-117).

A typical calculation time on the IBM 370/3033 is of the order of 10 to 15 seconds per cycle.

Level 5, General Model with Kinetic Flame

Level 5 cycles have only one additional complication from level 4: a kinetic flame is assumed

during combustion. That is, unburned gas is injected directly into the burned gas during combustion

without first attaining a chemical equilibrium state. Additional chemical kinetic data are required for
the breakdown of the fuels.

A typical calculation time is about 1 minute for a level 5 cycle on the IBM 370/3033.
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Input and Output Data Files

Input and output data files and logical input/output units are listed in table I. Generally in a

particular computer run, only input data required for the modeling level need to be included. The
thermodynamic properties file (unit 4) is always required input. The transport properties (unit 8) and

chemical kinetic data (unit 9) files will sometimes be required. The case input data (unit 5) are the

data that vary from case to case. The case output data file (unit 6) is the main printed output for all

cases. The file on unit 7 is a dump of the common variables for restart or plotting.

The input and output data files will be discussed in the following sections. Sample input and output

are given with the examples as discussed in the section Typical Examples of Problems. Although the

input files may be either card decks, tape files, disk files, or some combination, a data file record will
often be referred to as a card.
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Thermodynamic data.-Thermodynamic data are required for all modeling levels. The pure
species properties have the same empirical form as the properties used with the Gordon-McBride

CEC program (ref. 1), see equation (III-112). The mixture properties are described by equations

(I-130) to (1-137). The format and a sample set of data including references are given in appendix A

to this chapter. The CEC program only requires data for the reaction products, but ZMOTTO also

requires data for the fuels. The card format for ZMOTTO is identical to that used with CEC with one
exception. An optional word was added to the first card of a species set in columns 17 and 18. This

word may be used to distinguish among species with the same empirical formula such as the isomeric

species normal butane and isobutane.

The program expects to read the data from logical unit 4. Only data for the chemical system related

to the case are stored, even though logical unit 4 may contain other data. Although program

dimensions allow for 80 species, some storage is preempted for air and other special mixtures. Also

the dimensions for the numerical integration routines allow for 75 differential equations with 72

available for species. As a result no more than 76 species should be included in calculations for levels

1 and 2 and 72 species for levels 3 to 5 including fuels. Different phases of the same species are

counted separately. The order of the data is

(1) A card giving the temperature intervals

(2) Data for all species which are products of reaction
(3) A card with END in columns 1 to 3

(4) Data for the fuels

(5) A card with END2 in columns 1 to 4

The data must include the following species:

(1) Thermodynamic data for the constituents of air, namely N 2, 02, At, and CO2, must be

included among the reaction product species. The air composition is given in the section Fresh

Charge Specification of Chapter III.

(2) If relative humidity is given in the input, data for liquid and gaseous water should be included

with the products.

(3) If some products are also fuels, the thermodynamic data for these species must be included
with both the products and the fuels.

(4) For levels 3 to 5, data for all of the species in the chemical reaction mechanism must be

included in the thermodynamic data for the reaction products and with the same name.

(5) If there are multiple condensed phases of a product species, they must appear consecutively in

either ascending or descending order according to temperature.

(6) If there are liquid fuels in the case input, it is not necessary to have thermodynamic data for the

liquids if (partial molar) enthalpies are included with the case input. However, gaseous data must
always be available. If there are data for the liquid fuels, then the gaseous data for a particular

species must immediately follow the liquid data for the species in the fuel group. A discussion of
enthalpy and enthalpy base is given in reference 1.

Transport properties.-Transport data are only required for certain options in the case input.

Shear viscosities and thermal conductivities of gaseous species, reaction products and fuels, are used



forsomeofthenon-Eichelbergheattransfercoefficientoptionsavailableforlevels2to 5(eq.(I-105)
withHC2notequalto zero).Shearviscositiesarealsousedforlevels4and5incalculatingReynolds
number(eq.(I-116))for poppetvalveflows.

The pure-species gaseous properties are in the empirical form given in equation (III-113). The

format, data references, and listing of some data are given in appendix B to this chapter. Mixture

properties are calculated by equations (I-152) to (1-155).

The program expects the data to be on logical unit 8. When the appropriate options appear in the

case input, it will read and store any data with a name matching a name in the thermodynamic data.

Program dimensions allow for as many as 30 species. If thermal conductivities or viscosities data are

missing for a species, the program uses zero for the property. If data for more than 30 species are
available, only data for the first 30 species in the system will be used.

Chemical kinetic data. -Chemical kinetic data for gaseous species are required for levels 3 to 5.

Equations for reactions, stoichiometric coefficients, third-body efficiencies, and rate constants are

given in equations (I-138) to (I-145). The card format for the data is similar to that used with the

kinetics program GCKP of Bittker and Scullin (ref. 2), but there are some differences. The format,

order, data references, and sample data listings are given in appendix C to this chapter.

The program expects the data to be available on logical unit 9 for the level 3, 4, and 5 calculations.

Program dimensions allow for 200 reactions in the mechanism and up to 72 species. Exceeding these

values causes termination of the calculation. Species names must match names in the thermodynamic
data.

All species appearing in the thermodynamic data but not in the chemical kinetic reaction mech-

anism are assumed to be nonreacting. At levels 3 and 4 the reaction mechanism need only involve the

burned-gas species. At level 5 the mechanism must involve all species, including the reactants. No

provision has been made for the occurrence of condensed species, such as graphite, during chemical

kinetic calculations. Their appearance will lead to a termination of the computations.

Case input.- Case input data are used to specify working fluid composition, engine geometry,

operating characteristics, intake and exhaust characteristics, and modeling level. The case input

including data order is summarized in table II. The data file, which is read from logical unit 5, may
contain data for any number of case input sets. Program variables are initialized between cases.

Reactant cards: These cards follow a card with REAC in columns 1 to 4 at the beginning of the

data file. The format of the cards is given in table III. It is similar to the one used in the CEC program
(ref. 1). However, a new variable was added to columns 79 and 80 to distinguish among species with

the same empirical formula. This two-letter word must match columns 17 and 18 on the first card of

the thermodynamic data for the fuel. All reactants which are read in will be treated as fuels with

respect to the fuel-air mixtures specified in the AFINP namelist even though some reactants might be

oxidizers. Air is automatically added to the reactants by the program.

OMIT cards: OMIT cards are the cards with OMIT in columns 1 to 4. They are optional and

provide a means for eliminating species from consideration as reaction products without physically

altering the thermodynamic data file. The portion of the name in columns 17 and 18 of the first

thermodynamic data card for each species is not included with the names on these cards. Thus one
name on an OMIT card will omit all species whose names differ only by the contents of columns 17
and 18.

OTTINP namelist: OTTINP is the first namelist read. It follows a card with NAME in columns 1

to 4. The variables and definitions are listed in table IV. Parameters which are set in the OTTINP

namelist remain unchanged throughout the calculations for a case. Thus this namelist appears only
once in the initial data file.

AFINP namelist: This namelist contains the variables which are allowed to change between

nonideal cycles. There may be several AFINP namelists for a particular case. They are read between

the cycles and generally change the calculations for the next cycle. The variables are listed and

defined in table V. One logical variable VARAF indicates whether another namelist should be read

before calculating the next cycle. If VARAF is false, no more AFINP namelists are read and the

parameters remain unchanged. Then if NCYCLE is greater than the current nonideal cycle number,

calculations will continue until the cycle number NCYCLE. If VARAF is true, then another AFINP
namelist will be read on the next cycle. Levels 3, 4, and 5 are indicated by setting certain case input

variables to the cycle where the level is to begin. The variables KINET, IFLOW, and KFLAME are

starting cycle numbers for levels 3, 4, and 5, respectively (table V). If none of these variables are set
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or if they are set to cycle numbers greater than 1, then level 2 is assumed if NCYCLE is greater than

or equal to 1. Figure 1 illustrates a case calling for three cycles at each nonideal level. Complications
can arise in the transition from level 2 or 3 to level 4 or 5 when the air-fuel ratio is changing as

indicated in the next paragraph.

FLOWIN namelist: This namelist contains parameters which are used for levels 4 and 5 only. It
must follow the first AFINP namelist which contains a value for IFLOW or KFLAME. The

FLOWIN namelist contains crankangles giving the valve timing and variables in the poppet valve

equations (I-110) to (I-117). The variables are listed and defined in table VI. For levels 4 and 5 the

crankangles at which the intake and exhaust valves open and close are given in the FLOWIN namelist

as IVOPEN, IVSHUT, EVOPEN, and EVSHUT. The valve timing will usually be different from

that prescribed for the lower levels of sophistication. This can lead to a transition problem between

the lower levels and the higher levels. The problem occurs when the intake valve opens before the end

of the calculation cycle (before 720 °) because the air-fuel mixture is being changed with AFINP
namelist at 0 °.

To solve this problem, for the first level 4 (or 5) cycle, we let the intake valve open at 0 ° since the

calculation is already beyond the requested valve opening location. We also reopen the valve, as

requested, near the end of this cycle. The same air-fuel mixture will be used throughout the
calculation cycle, even after the intake valve opens near the end, since a new one cannot be read until

the calculation again reaches 0 °. If a new mixture is then read from an AFINP namelist, at the
beginning of the second level 4 (or 5) cycle, it will be ignored until the intake valve opens near the end

of this second cycle. Then the second mixture value will be used in making up the incoming charge for

the remainder of the second cycle and as long as the intake valve remains open at the beginning of the

third cycle. Figure 3 illustrates a sample case where the intake valve opening 0(o+) occurs before 720°.

Restart input: Data from I/O units 5 and 7 (table I) are used as input for a restart run. Unit 5

contains case input, and unit 7 contains data dumped at the end of each nonideal cycle in one or more

previous runs.

The case input for restart is abbreviated as indicated in table If. The first card contains RESTART
in columns 1 to 7 and will be referred to as a RESTART card. The RESTART card may contain an

integer indicating the cycle number where the calculations are to be restarted. This may be a cycle
which was calculated in the previous run. If no integer is given, calculations will continue from the

last cycle completed. The RESTART card is followed by at least one AFINP namelist. To restart the

calculations, the first namelist must include VARAF--T or NCYCLE set to some number greater

than or equal to the restarting cycle. A FLOWIN namelist will be required to follow any AFINP

namelist for which IFLOW;_0 and for which all previous cycles were at leveJs less than 4.
The data on I/O unit 7 are data from labeled COMMON which were dumped one nonideal cycle at

a time in the previous run or runs. These data are read in, one cycle at a time, until the point is
reached where the calculations are to resume. Calculations simply continue from that point. The

dumps on unit 7 continue at the end of each newly calculated cycle, possibly overwriting previous
data.

0(+)-0

Using A/F • 15

- Cycle 3,
level 3

I I
- Cycle 4, =_l= Cycle 5, _: Cycle 6, --

level 4 I level 4 [ level 4I I I I I
go(+)K 4"n" -cQ(+)>_" _oA(+)< 4_T 0_+)>m"O_+) = n 47T" 0o(+)=0 O_+)=g

\ /

AIF - 16

t t t
AF = 16, IFLOW " 4 AF - 11Reading AF. 15

Figure 3. - Cycle-to-cycle variation in air-fuel ratio.

A/F - 17

130



The sequence of cycles shown in figure 1 could have been run in two or more passes. For example,
to split it into two passes of six nonideal cycles each, the initial run would have NCYCLE = 6 and the

restart run would have NCYCLE = 12. Since poppet-valve flow starts after the restart for this case,

IFLOW and KFLAME could be set in either pass or in both passes. If it is then desired to redo cycles

11 and 12 with different burning intervals, one would set restart at 11 and reset THBURN (the
burning interval) in the AFINP namelist. Cycles 11 and 12 would be recalculated. The data dumped

on unit 7 would contain labeled common data from the previously calculated first l0 cycles followed
by data for the newly calculated cycles 11 and 12.

Output

Output data files are indicated in table I. Output to be printed is written on logical unit 6. Unit 7

contains unformatted information for input and output. ZMOTTO writes information on unit 7

which may be read later by ZMOTTO to restart the program. This data file on unit 7 may also be

used for plotting, see the section Plot and restart dump.

Most of the output is self-explanatory and will not be discussed in any great detail. See the section

Examples of Typical Problems for illustrations of the output.

Case output. -The case output on logical unit 6 includes the following items:

(1) All input data are printed except the thermodynamic data. For the thermodynamic data only

the species names along with a reference code and date are printed.

(2) Some intermediate data printed by the equilibrium routines are the same as the output for the
CEC program (ref. 1).

(3) The output for level 1 cycles is given at special points in the ideal cycle identified as stations and

labeled with station numbers. The station numbers are defined in an ideal indicator diagram shown in
figure 4. Normally only the results for the last level 1 cycle are printed. Results for the other level 1

cycles can be requested with either the DEBUG or IPRINT variables in the AFINP namelist. Column

one of the output gives the properties of the fresh charge at manifold conditions. For the last level 1

cycle, column 8 gives the equilibrium properties of the working fluid at station 4 but evaluated at

the exhaust pressure and 298.15 K. These properties are used for calculating the chemical energy.

(4) For intermediate output on nonideal cycles, many variables at many crankangles throughout

the cycle are printed. As with the level 1 cycles, special points throughout the cycles are called stations

Combustion

4

Exhaust_
1

Station Crankangle
1 0

it 0(0+) (intakevalveopens,PP• PMFOLD)

3 O(c+) =180o (intakevalvecloses)
5

_ ! 80 (startcOmbustiOn)

6" (endcombustion)

0(0-) =540o (exhaustvalveopens)

B_")" 540o (PP"PEXH)

8(c-)"7200(exhaustvalvecloses)

I _ ExpansiOn

_SSlln

2 Intake

Cylindervolume

Figure4. - Stationsfor modelinglevel1.
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and numbered. These stations for the various modeling levels are defined and marked on typical

indicator diagrams in figures 5 and 6.

(5) A summary sheet of information at the end of each nonideal cycle includes some input

information, performance parameters (as defined in the section Performance Parameters of Chapter

III), and compositions of both the composite exhaust gas and the fresh charge.

(6) Error messages are largely self-explanatory and include the name of the program subroutine

where they are printed. After some errors, calculations are discontinued, program flow returns to the

main program, and the COMMON variable NPROC is 1 rather than -1 as it is for a normal

completion. This information might be useful for printing a message at a computer terminal.

=_

tt_ Station Crankangle

_5 1 0

\ 2 e(o+) (intake valve opens. PP =PMFOLD)

3 8(+) - 180o (intake valve closes)

4 e0 (start combustion)

5 8" (end combustion)
6 e(o-) =5400(exhaust valve opens)

8 _ _7
1 _2 13

Cylinder volume

Figure 5. - Stations for modeling levels 2 and 3.

Station Crankangle

1 0

2 8_-) (exhaust valve closes)3 8_+) (intake valve closes)

4 e0 Iburning begins)

5 e''_ (burning ends)6 e_-) (exhaust valve opens)

i \ 7 e_+) (intake valve opens

2

Cylinder volume

Figure 6. - Stations for modeling levels 4 and 5.
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Plot and restart dump. - The contents of most of the labeled COMMON are dumped on logical

unit 7 at the end of each nonideal cycle. These data may be used for restarting a problem or for

plotting. Each record contains all the COMMON data at 720 crankangle degrees. Cycle numbers
coincide with the record numbers.

All variables in COMMON PLTS which can be used for plotting purposes are listed and defined in

table VII. The few variables which appear in this COMMON and not in table VII are used for other

purposes. The program subroutine DUMPCM should be used as a model for reading the COMMON

data from logical unit 7. Also subroutine PLT should be used to get the order and dimensions of the
variables in COMMON PLTS.

Examples of Typical Problems

We are now ready to discuss the results of some sample calculations carried out with the computer

program ZMOTTO on an IBM 370/3033 computer. We cannot possibly explore and demonstrate all

facets of the computer program. However, in showing and discussing some selected examples we

have multifold purposes: (1) to display typical program input and output, (2) to illustrate some of the

program capabilities and options, (3) to point out the effect of simplifying assumptions, and (4) to

indicate the relative costs of various levels of modeling. It is not our intention, in these examples, to

deal with any particular engine or mode of operation. We shall choose input parameters solely on the

basis that they are loosely representative of the potential range of values one might encounter in

typical problems. Our choice of parameters will sometimes produce highly aberrant cycle behavior.

We shall limit ourselves to six examples, each of which will differ in some measure from the others.

The input data for these _ amples are of two types. In the first category are the thermodynamic,

transport, and chemical kinetic properties of the constituents of the working fluid. These were

described in previous sections and are illustrated in appendixes A to C. The second category of input

information is used to specify working fluid composition, engine geometry, operating characteristics,

intake and exhaust characteristics, and modeling level. These data were discussed under case input.

The case input for the six cases we will use as sample problems is shown in appendixes D to I, together
with some results of the calculations.

The results for the six sample problems will be illustrated by presenting selected segments of

computer printout and computer-generated plots. These plots are drawn by connecting plotting

points with straight line segments. The straight line segments are apparent on a few of the plots.

These do not reflect the smoothness of the calculation but rather reflect both the number of points

saved for plotting and the scale of the plots.

Example I (Cases 512 and 513; Levels 1, 2, and 3)

This example is a typical multicycle computation, at three modeling levels (KINET=4,

NCYCLE=8), for the combustion of a lean mixture of fuel (PHI--0.725) and humid air

(RHUMID = 55). The fuel itself is a mixture of three liquid hydrocarbons: n-octane (C8H18), toluene

(C7H8), and benzene (C6H6) at 0.984 atmosphere (PFUEL = PEXH --0.984) and 298.15 K. The heat
transfer coefficient is of the Eichelberg form (eq. 0-105)), with velocity (eq. (I-108)) chosen as the

mean piston speed (HC1 = HC2 = HC3 = HC4 = 0.) The mass burning function was taken to be the
simple cosine burning function (CSBURN = T). It is the special case of the Fourier burning function

(eqs. 0-92) to 0-97)) obtained with a zero relaxation parameter and only the first two Fourier

coefficients nonzero. Any discontinuous changes of pressure during intake or exhaust are assumed to

take place isentropically (eq. 0-118)) for case 512 (SP--T) and by a minimum internal energy

expenditure for case 513 (HP--T).

Case input, excerpts from the printed output, and some plotted output are given in appendix D.

This example does not require transport data because the Eichelberg heat transfer coefficient is being

used and because the modeling levels are less than 4. The thermodynamic data are listed in appendix

A and the chemical kinetic data in appendix C.
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Appendix D contains case input and examples of some printed output for cases 512 (KASE = 512)

and 513 (KASE=513). For case 512 this output includes input information and excerpts of
intermediate output (DEBUG = T) for ideal cycle 1 (level 1), nonideal cycle 1 (level 2), and nonideal

cycle 4 (level 3). Also shown are cycle summary sheets for the converged ideal cycle (cycle 4, level 1)

and several nonideal cycles (cycles 1 to 3, level 2; and cycle 8, level 3). The appendix also gives

computer-drawn plots of a number of calculated quantities for nonideal cycles 3 and 8.

These results demonstrate the obvious fact that heat transfer will generally have a substantial effect

on the calculated quantities (compare level 1, cycle 4, with level 2, cycle 3). Equally clear is the fact
that, for this example, burned-gas kinetics (level 3) causes relatively small changes in temperatures

and pressures but significantly affects nitric oxide (NO) concentrations (compare nonideal cycles 3

and 8).

Appendix D also displays cycle summary sheets (level 1, cycle 4; level 2, cycle 3; and level 3, cycle 8)

and four plots for case 513. A comparison of cases 512 and 513 shows that the differences between

the two are not major and are perhaps most easily discernible in the temperature and NO
concentrations.

The calculation times for a cycle are shown at the bottom of the cycle summary sheets. For cases
512 and 513 these times are less than or equal to 1/4 second for level 1, 3 ¼ seconds for level 2, and 7

seconds for level 3. These values will change somewhat as problem conditions are altered, as will be

seen in some of the other examples, but they may be regarded as reasonably typical times. On an IBM
360/67 the times would be about 14 times longer, but on a CRAY IS they are shorter by a factor of 5.

Example II (Cases 1359 and 13591; Levels 1, 2, and 4)

Case 1359 is another example of the lean combustion of a hydrocarbon mixture (EQRAT =0.9)

with a fuel mixture of n-octane (C8H18), toluene (C7H8) , benzene (C6H6) , and 1-octene (CsH 16). The

oxidizer is now dry air (RHUMID = 0), the fuel is fully vaporized, and the fresh charge to the engine
contains I0 percent recirculated exhaust gas (EGR =0.1). Although the heat transfer coefficient is

again of Eichelberg form and the mass burning function is the same as in example I, the burning

interval (THBURN) is now considerably shorter. The two significant new features of the problem, in

addition to exhaust gas recirculation, are supercharging (manifold pressure exceeds exhaust pressure,

PMFOLD = 2 and PEXH = 1) and valve timing. The exponential form of the expression for I ( + )/d

(eq. (I-117b)) is used to calculate valve lift (FLOWlN namelist).

Appendix E gives the case input for this example along with some printed and plotted output.

Level 4 calculations require shear viscosity data for pure gaseous species (appendix B) and gas-phase

chemical kinetic data (appendix C) for the burned gas. The printed output includes cycle summary
sheets for all three modeling levels (level 1, cycle 5; level 2, cycle 4; and level 4, cycle 6). Appendix E

also shows plots of the indicator diagram, the temperature, and the CO and NO concentration and

mass for cycles 4 and 6. The inclusion of valve timing has a substantial effect on all quantities except
CO concentration.

The calculations for case 1359 were repeated with all input unchanged except for the program

variables ALFAIN and ALFAEX, in namelist FLOWlN, which were set to their default values. The

resulting calculations were designated as case 13591. Appendix E contains a cycle summary sheet and

plots of the indicator diagram and mass for cycle 6. A comparison with the corresponding cycle of

case 1359 shows a considerable diminution of the pumping loop.

Calculation times for levels 1 and 2 are comparable to those for example I. Level 4 calculation
times are less than 15 seconds per cycle.
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Example III (Case 99; Levels 1, 2, and 4)

Here we have an illustration of calculations for a motored engine (THBURN = 0), that is, one in

which no chemical reactions take place because of the absence of a spark. The fresh charge to the

engine is a mixture of gaseous propane and humid air (RHUMID = 75). The formula for the heat

transfer coefficient (eq. (1-105)) is now chosen as the Dittus-Boelter form (HC2 = 0.3872, HA = 0.4,

and HB=0.8), and valve lift is calculated with the polynomial form for l_-'-_/d (eq.

(I-117b))(POLY=T). In appendix F we give cycle summaries for ideal cycle 11 and two nonideal



cycles(level2, cycle4; andlevel4, cycle8).Forthesenonidealcycleswealsoshowplotsof the
indicator diagram, heat loss, and mass.

There are several features of the results which should be pointed out. For example, this is the first

instance of a problem where a substantial quantity of mass is added to the working fluid by reverse

flow through the exhaust system. This happens for all three modeling levels. Also this is the first time

that the intake flow equations of the first specialization model break down as discussed in Chapter I

at the end of the section First Specialization - Simplified Intake and Exhaust. This can be observed

by the behavior of the heat loss rate at 0-- 180 ° for cycle 4. Finally there is a substantial difference in

the behavior of the pumping loops on the indicator diagrams for cycles 4 and 8. It should also be

observed that the pressure during the power stroke is lower than that on the compression stroke for
both indicator diagrams. This is caused by heat losses.

Example IV (Case 111; Levels 1, 2, and 5)

This example is a rich combustion (EQRAT = 1.25) of gaseous propane by humid air accompanied

by exhaust gas recirculation. The mass burning function is of the Wiebe type, eqs. (1-99) to

(I-102)(BETA = 3.2, TAU = 8.93E-05). In addition to the choice of burning function this problem
offers the first appearance of level 5 modeling (KFLAME = 3). That is, a full kinetic treatment of the

combustion of propane which uses a mechanism with 121 reactions (appendix C).

The calculations show some rather bizarre behavior as is evident from the information in appen-

dix G. There we have assembled the cycle summary sheets for ideal cycle 6 (level 1); level 2, cycle 2;
and level 5, cycles 11 to 15, as well as plots of the indicator diagram, the temperature, the CO

concentration, and the mass for cycles 11 to 15. We have also included a plot of the Wiebe function

for level 2, cycle 2. It corresponds to the curve for the burned mass fraction shown in the first plot for

Case 111. Perhaps the most amazing feature is the fire-misfire behavior shown by cycles 11 to 15. It

shows a periodic behavior with a period of four cycles, as can be seen by comparing cycle 11 with

cycle 15, and manifests itself as early as cycle 4. It is caused by the too rapid injection of unburned
gas into the burned gas. Since the initial pyrolysis reaction of hydrocarbons is endothermic, this

serves to quench the reaction before it reaches the exothermic stage. This quenching effect plus the
subsequent exothermic reaction is clearly demonstrated in the temperatures for cycles 11, 14, and 15.

Obviously chemical kinetics sets an upper limit to the mass burning rate because this kind of behavior

is never observed with equilibrium flames. Equilibrium flames release much of the energy

instantaneously. This quenching phenomenon, perhaps occasioned by charge distribution

nonuniformities, might be responsible for some of the cycle-to-cycle variation observed in real engine
data.

Within each four-cycle period there is a great difference in behavior from cycle to cycle. It is
particularly interesting that the indicator diagram does not close on cycles 12 to 14 and is indicative of

nonsteady behavior within the period although the behavior may be considered to be steady from
period to period.

As can be seen from cycle summary sheets, the computation times at level 5 are of the order of I
minute or less.

Example V (Case 10; Levels 1 and 2)

For better than 99.9 percent of all problems, air will be the oxidizer of choice. The computer

program reflects this bias toward air by building it into the program as a standard oxidizer so that

only fuels need be specified. Yet occasionally one might want to use some other oxidizer. The

primary purpose of this example is to illustrate how that can be accomplished. A secondary purpose

is to show an alternative output format for compositions, which is advantageous when one is

interested in the concentrations of trace species in the working fluid. Case input and a part of the
output are given in appendix H.

The "fuel" in this example is a mixture of gases (NH3, N2, 02, Ar, and CO2) containing the

oxidizer 0 2. The "built in" oxidizer, air, is effectively suppressed by setting A/F= 1 × 10 -5

(AF = 0.00001). It could equally well have been accomplished by assigning the percentage of fuel by

weight (FPCT) to be nearly 100 percent. The air cannot be totally suppressed by using A/F = 0 (or
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100percentfuel)becausethiscreatesinternalprogramdifficulties.ThegasesN2, 02, Ar, and CO 2 in

the "fuel" are in the same proportions as in ordinary air. The relative amounts of NH 3 and 02 are in

stoichiometric proportions. Appendix H gives cycle summary sheets for ideal cycle 5 (level I) and for

cycle 5 (level 2).
With levels 1 and 2 and the Eichelberg heat transfer coefficients, no transport or chemical kinetics

data need be included in the input.

Example VI (Case 222; Levels 1, 2, and 5)

Example VI differs from example IV in only a few particulars. The recirculated exhaust gas has

been reduced from l0 percent to 5 percent; the humid air has been changed to dry air. Finally the

form of the mass burning function is now the Fourier burning function with coefficients chosen to

retard the initial burning rate to avoid quenching the reaction (AN = 0.375, -0.5, and 0.125). The

burning function is, in fact, one of those illustrated in figure 5 of Chapter I. The purpose of this

example is to illustrate the program's restart capabilities and its ability to accommodate cycle-to-cycle

variation in some of the parameters of the problem. We shall confine our parameter variation to the

air-fuel weight ratio to demonstrate the rather significant effect that air-fuel variations can have on

cycle-averaged exhaust gas compositions. Case input and a part of the output are given in appendix I.
Our plan is to run an adequate number of level 5 cycles at a stoichiometric air-fuel ratio to reach

steady state conditions. At that point we will begin to vary the air-fuel ratio by random picks from a

suitable distribution function, with stoichiometric mean, and continue the cycle calculations until we

have calculated 25 exhaust gas compositions which are affected by the air-fuel ratio variation. At that

point a comparison of the steady state composition with the average of the 25 variable cycles will
show the effect of the random variations.

For our distribution function we have chosen a Pearson type III distribution (ref. 3), which is

nothing more than a transformed X 2 distribution. It is a three-parameter distribution function with

parameters 7, p/a, and p+ 1. The (cumulative) distribution function F(x; 7, p/a, p+l), the

frequency function f(x; 7, p/a, p + 1), and the moment-generating function M(O; 7, p/a, p + 1) are

given by

1 _(x-2/)p/a
F(x; 7, p/a, p + 1) - 1_ (p + 1) Jo dy yPeY

f(x;y,p/a,p+ l) -OF- (_p/_yPeY [OX _ y= (x-7)p/a

SM(O;%p/a,p+l)- e°Xf dx=e°_'(1-Oa/p)-(P +l)
3'

-y __.X_< oo

where F (p + 1) is the usual gamma function. The parameters are not completely arbitrary and must

satisfy "y real and finite, p+ 1 ;_ -k, where k=0, 1, 2 ..... and p/a>O. The cumulants Ki of the

distribution are expressible in terms of the parameters of the distribution.

,q=v+(p+l) a
P

Ki= (i- 1)'(P+ 1) (;) /
i=2,3 ....
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The first cumulant is the population mean, and the second and third cumulants are identical to the
second and third moments about the mean.



Thek statistics are sample estimates of the cumulants and are expressible in terms of the sample
mean ml and moments about the mean mk, where k=2, 3 .... For a sample of size N

l N

rrtl=_- _ Xi
i=l

1 N

mk= _- ___ (xi--ml) k k=2, 3 ....
i=1

and these are used together with the relations

Nm 2 N2m3

kl=ml' k2=_-] ' k3= (N-1)(N-2)' k4=

N2[ (N+ 1)m 4 - 3(N- 1)m_]

(N- 1)(N- 2)(N- 3)

to give the first four k statistics. We selected "y= 10.6787, p/a= 1.2, and p+ 1 =6 as our parameter

values. We chose two random samples from the distribution function with these parameters: one of

size N= 5000, and the other of size N=25. The larger sample was used to test the correctness of our

method of picking a sample and the smaller sample was used in the cycle calculations. Table VIII

shows the results. The first cumulant r i is the stoichiometric air-fuel ratio for the combustion of

propane by dry air. The second cumulant implies a spread about the mean of about two units. This

corresponds to an equivalence ratio varying from about 0.8 to 1.25. From the table it is clear that k

statistics for N--5000 are an excellent approximation to the population cumulants. The N=25

sample is slightly to the rich side of the stoichiometric air-fuel ratio with a somewhat smaller spread
about its mean.

The results of the calculation for case 222 are summarized in appendix I, where we present cycle
summary sheets for ideal cycle 5 (level 1), nonideal cycle 3 (level 2), and nonideal cycles 4 to 37, which

are level 5 calculations. The air-fuel ratio remains stoichiometric through nonideal cycle 11 and
begins its random variation on cycle 12 (actually at the end of cycle 11, where the intake valve opens).

The resultant variation in composite exhaust gas properties is first detected on cycle 13 although the

composite exhaust gas properties have been slightly affected during valve overlap early in cycle 12.

The cycle summary sheets show that the operation is effectively at steady state between nonideal

cycles 7 to 11 except for minor cycle-to-cycle variations.

Appendix I shows plots of the indicator diagram, the temperature, CO and NO concentrations, the

mass burning function, and the cycle mass for cycle 11 as indicative of steady state, stoichiometric

operation. The significant effect of variations of the air-fuel ratio on cycle operations can be seen by

comparing CO and NO concentrations for cycle 11 with those shown in similar plots for nonideal

cycles 12, 17, 22, 27, and 32. Tables IX and X compare cycle-averaged, composite exhaust gas

properties for the six steady state nonideal (stoichiometric) cycles 7 to 12 and the 25 nonideal cycles
13 to 37 with varying air-fuel ratio. It is obvious that moderate cycle-to-cycle variations in air-fuel

ratio can have a dramatic effect on cycle-averaged exhaust gas compositions. Observe that carbon

monoxide concentrations are increased by a factor of almost 15 and hydrocarbons, absent for the

constant, stoichiometric air-fuel ratio results, are present at a concentration in excess of 300 ppm by

mass when the air-fuel ratio varies about the stoichiometric value. The effect on other quantities,

while important, is considerably smaller.

This example was run with three restarts as shown in the input in appendix I. The initial run had 10

nonideal cycles. The first three were level 2, and the remaining seven were level 5 (KFLAME = 4).

Level 5 calculations require both transport data and a chemical kinetic mechanism for the fuels and

the products (appendix C). Also required is a FLOWIN namelist which follows the AFINP namelist

with KFLAME = 4 in the case input. The first l0 air-fuel mixtures are stoichiometric (EQRAT = 1).
For the restarts the mixtures are the result of random picks from the Pearson type III distribution

mentioned previously. The k statistics for the random sample are those given in the column labeled
N--25 in table VIII.
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Description of Computer Program

General Comments

The computer program ZMOTTO is very complex, containing over 70 routines. It is written in
standard Fortran IV and was tested on the IBM 370/3033, the IBM 360/67, and the CRAY 1S

computers. In developing ZMOTTO we have always placed the emphasis on safety and accuracy

rather than on mere computational speed. To construct ZMOTTO we have used, and considerably

revised, portions of two existing computer programs. The first is Gordon and McBride's computer

program CEC (ref. 1) for thermodynamic computations, and the second is Hindmarsh's program
GEAR (ref. 4) for numerical integration of ordinary differential equations. The extent of our

revisions is spelled out in the description of the various subroutines.
Because of the number and complexity of the individual subroutines it is virtually impossible to

discuss them in any detail. In our verbal discussion of the routines we have attempted to refer to the

appropriate equations of Chapters I to III in order to help the interested reader in deciphering the

contents of a particular routine. Also we shall give three flow charts to convey the overall

organization of ZMOTTO.

Some of the program subroutines have multiple entry points. Most of these entry points are

actually independent routines, with no shared programming, that have been collected in a subroutine

only to share many sets of labeled COMMON. There are only five entry points (CHARGE, CB2,
CB3, CONTNU, and VONLY), which break into routines to share portions of the programming.

Subroutines and subroutine entries are listed in table XI, which organizes them by modeling level.

Routines which appear in the first column are used for levels 1 to 5. Those in the second column

contribute to levels 2 to 5, and so on. Subroutine entries are identified by listing the subroutine name

in parentheses following the entry name. In each column the routines have been loosely organized

into several categories according to their purpose. Routines under the executive category play a major

role in the flow of the program. Some routines are listed in more than one category.
The main executive routines are the main program and a large subroutine GENEX. The main

program directs the flow according to whether a computer run is an initial run or a restart run.
GENEX directs the cycle-to-cycle program flow for all levels. Flow charts for these two routines and

a diagram showing the general flow among the principal routines involved with burning for the

nonideal cycles are given in appendix J.
Brief descriptions of each routine and BLOCK DATA are given in the following paragraphs,

where they appear in alphabetical order except for the main program, which is given first. A brief

diagram is given at the end of each description. In the diagram any routines calling the routine being

described are shown to its left, and any routines called by the routine appear on its right.
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Synopses of Individual Routines

Main program. - The main program reads some of the case input and directs program flow

according to the codes REAC, OMIT, NAME, and RESTART on the input cards (table II). A flow

chart of this routine is given in appendix J.

ADDAIR

CONTNU

GENEX

[Main program] REACT

RSTART

SEAR

• TIM



ADDAIR (add air).-ADDAIR is an entry in subroutine AJCOEF. It adds air to the list of

reactants by setting variables for the oxidant air that are similar to variables which have been set by
subroutine REACT for the fuels.

Main program--_.-[ ADDAIR I

AIRSET (air set). - AIRSET is an entry in subroutine AJCOEF. It combines the coefficients for

the thermodynamic data of N 2, 02, Ar, CO2, and H20 (if RHUMID _ 0), by averaging over the air

composition, into a set of coefficients for air. These coefficients are stored in the COEF array after
the coefficients for the fuels. Air data are indexed as JAIR. The coefficients are also stored in the

COEF set indexed as NS1 =JAIR+ 1. The NS1 coefficients are adjusted later in AJCOEF to
represent the unburned working fluid as required.

GENEX _t AIRSET [

AJCOEF (adjust coefficients).- The program subroutine AJCOEF contains many entries. All

entries are discussed separately. The value of EM (i.e., ratio of mass of charge to mass of residual

exhaust gas) is calculated according to equations (III-51) to (III-56), (III-90), and (Ill-91) for levels

1 to 3. By using EM, a set of thermodynamic coefficients COEF are calculated to represent the

properties of the unreacted working fluid. For the ideal cycle, EM is used to obtain station 3
properties (column 3 in the output). EM is obtained iteratively with a maximum of 10 iterations.

Station 2 properties for supercharge cases (i.e., PMFOLD > PEXH) for levels 1 to 3 are obtained in a

similar way. For level 3 calculations, EM is used to obtain properties of the cylinder contents at
points intermediate to stations 2 and 3.

GENEX

HTRAN2

AJCOEF [

FROZEN

CHARGE

SAVE

BRNEX (burning executive). - BRNEX is an executive routine for finite-rate burning which takes
place between stations 4 and 5 for levels greater than 1. A sketch of the program flow for finite-rate

burning is given in appendix J. For cycles without chemical kinetics (level 2), BRNEX calls CB 1 at the

start of burning, and control is returned to BRNEX at the completion of burning. For levels greater

than 2, CB1 is called once for initial calculations. Flow then goes to entry CB2, where estimates for

intermediate output points for printing and plotting are calculated along with other calculations.
Thereafter DIFEQ calls CB2, and BRNEX calls KSTEP for chemical kinetic calculations between the

output points. Except for special points the actual output points are usually beyond the calculated

output points. To avoid changing integration step sizes, the actual output point is the end of an

integration step immediately following a calculated output point. CB3 completes the calculation of
the properties for the actual output point.

GENEX IBRNEXl

_CB1

CB3

KSTEP

CB1 (combustion D.-Subroutine CB1 and its two entries CB2 and CB3 comprise most of the

finite-rate burning calculations which start at station 4 and end at station 5 for levels greater than 1.

The flow of the program is indicated in appendix J. Subroutine CB1 includes initialization,
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calculation of station 4 properties, and calculation of the burning endpoint, station 5, as given by

equations (III-31) to (III-34).

------- CB2

BRNEX

--------FROZEN

SAVE

-------FRBURN

CB2 (combustion 2). -CB2 is an entry in the program subroutine CBI. It contains a major part of

the finite-rate burning calculations. See appendix J for the program flow to and from CB2. For

intermediate output and plotting, properties are calculated for both burned and unburned mixtures.

For printed output, even-numbered columns 2 to 12 (indexed NPT1) are burned-gas properties. Odd-

numbered columns 3 to 13 (indexed NPT) are unburned-gas properties.

For level 2 cycles, CB2 sets the step size and output points (eqs. (III-82) to (III-89)). It integrates
equation (III-76) for the burned- and unburned-gas temperatures by using equations (III-78) to

(III-80). See equation (III-81) for convergence criteria. For each temperature iteration (indexed

ITU_<7) there is an iteration to convergence on specific volume VLM (ITV _<7).

For levels greater than 2, the level 2 step-size calculations are used to estimate output points (see

BRNEX). Some other calculations are used in the numerical integration, but no iterations occur in

CB2 for these higher levels. After the first point, CB2 is called from DIFEQ.

EQLBRM

FRBURN

FROZEN

HTCS

MOVE

PRINT

SAVE

VAD

CB3 (combustion 3).- CB3 is an entry in subroutine CB1. It completes the calculations at the

intermediate output points during burning. See the writeup for CB2 and appendix J. At the end of
combustion, what is left of the unburned gas is combined with the burned gas to form a single set of

properties and composition for station 5.

CB2

BRNEX

CB2

i COMBIN

, FROZEN

MOVE

PRINT
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CHARGE (charge composition and properties). - CHARGE is an entry in AJCOEF. It calculates

the composition and properties of the fresh charge to the cylinder including EGR and residual

exhaust gas. Values are stored in arrays with index NPT = 1 (column 1 of the intermediate output).

FLEX

GENEX

•-._---! CHARGE I._ FROZEN

CLRY (clear Y). - CLRY is a short routine used to set the derivatives of some dependent variables

to zero during numerical integration calculations for chemical kinetics and poppet valve flow (levels 4

and 5). It sets to zero the derivatives (1) for compositions after the intake valve closes (station 3) and
(2) for mass after burning (station 5) if the exhaust valve has not opened.

INTEX

COMBIN (combine air and fuel with products). - COMBIN is an entry in AJCOEF. It combines
the moles of air with the individual burned-gas constituent species. This is done at the end of

combustion (called by CB3) for levels 2 to 4. For level 5, COMBIN also combines the moles of the

individual fuels with the corresponding product species. This is done at the beginning of combustion

(called by IDIF) and, when the exhaust valve closes (called by FLEX), for the composite exhaust gas.

CB3

FLEX

IDIF

I cOMBIN I

CONTNU (continue). - CONTNU is an entry in GENEX. It is called from RSTART to continue

cycle calculations either after some point given in the restart input or after the last cycle dumped
during a previous computer run. Restarting can only take place at the beginning of a computational

cycle for calculation levels greater than 1. See the flow chart of GENEX in appendix J for the
program flow following entry CONTNU.

RSTART I CONTNU I

uAJCOEF

mBRNEX

uCHARGE

_CPHS

DHHSET

DUMPCM

--EGRH

EQLBRM

FLEX

FROZEN

m H EAD

HTRANS

_ D HTRAN2

m KDATA

MOVE

m NEWOF

NOXFRZ

PLOT1

B SAVE

BSETEXH

_TIM

_TIM1

_VAD

_VALINT

VlSCON
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COSET (set coefficients). - This routine sets the coefficients used in the integration. It differs from
Hindmarsh's routine COSET (ref. 4) only in the choice of some of the coefficients and the

requirement that the maximum integration order be 8 or less. The integration coefficients are those
discussed in Chapter II. See equations III-40 to III-43 of Chapter III and for additional details see

Chapter II.

,NSTEP ICOSETI

CPHS (calculate Cp, 14, and S for species).- CPHS calculates thermodynamic properties for
individual species at temperature TT by using the coefficients COEF. The empirical equations are

given by equation (III-112) (where Cp is dH/dT in eq. (III-112)). Appendix A lists the coefficients
used with the sample problems. The properties are calculated for all species with index between JS 1
and NS.

For the COEF (i,j,k) array, i labels the seven coefficients, j labels the species, and k = 1 or 2 is for

the temperature intervals. The value k = 1 is for the higher interval and k = 2, for the lower interval

(1000 to 5000 K and 300 to 1000 K, respectively, in appendix A).

DIFEQ

EQLBRM

FROZEN

GENEX

HCALC

KSTEP

CPUTIM (central processing unit time).- CPUTIM is a user-supplied routine for the program
ZMOTTO. At the NASA Lewis Research Center it gives the computer time in milliseconds. It is used

to calculate (1) total program time, (2) cycle times, and (3) times between stations for levels greater
than 1. If a CPUTIM routine is not provided, all times will be set to zero.

CTIM

TIM

TIM1

CPUTIM I

CTIM (cycle time). - CTIM is an entry in TIM. If a CPUTIM routine is provided, CTIM calculates

cycle times to be printed at the end of each Otto cycle. If CPUTIM is not provided, all times will be
set to zero.

OOUT [_E]

DEC (decomposition).- This routine is identical to Hindmarsh's routine DEC (ref. 4), which in

turn is a slightly modified version of Moler's routine DECOMP (ref. 5). It is a matrix triangular-

ization routine using Gaussian elimination with partial pivoting. The back solution is performed by
subroutine SOL.

PSET

142



DELTH (delta theta). - DELTH is an entry in VAD. It is only used for levels 2 and 3. It is called

from HTRANS and HTRAN2 for all parts of the cycle with two exceptions: it is never called during
combustion (IPT = 5), and it is not called during postcombustion (IPT = 6) for level 3. It calculates

step sizes DTH according to equations (III-73) and (III-74) and sets the next crankangle for

intermediate output. It also calculates some other variables, including the derivatives given by

equations (III-44), (III-47), and (III-48).

HTRANS

I DELTH I

HTRAN2_

DHHSET (delta Hset). - DHHSET, an entry in AJCOEF, calculates the enthalpy difference used

in calculating the chemical energy (eq. (III-102)) required for several output parameters in OOUT.

FLEX

GENEX

DHHSET

EQLBRM

FROZEN

_MOVE

_SAVE

DIFEQ (differential equations). - DIFEQ is one of the routines required for finite rate chemistry.
It calculates the vector y=f(y, t) in the form required by the numerical integration package. The

program vector is YDOT. The equations for YDOT are given by (I-143) to (I-145), (III-1), and

(III-2).

The first components of YDOT are for the species in the kinetic order (indexed l to LS). The
kinetic order is the order of species as they are first encountered in the reaction mechanism. This

order is set in subroutine KDATA and printed out before cycle calculations begin. These YDOT's are

followed by the nonreacting species (indexed LS + 1 to NQS), temperature (indexed NQT), mass if

level 4 or 5 (indexed NQM), and unburned-gas temperature during combustion (indexed LSP2).

During combustion (INT--2) the index NQT is used for the burned-gas temperature.

For equilibrium flames (ICYCLE < KFLAME, levels 3 and 4) and during combustion for level 2,

the equilibrium temperature and composition are sometimes estimated by subroutine SAVE rather

than calculated by subroutine EQLBRM and its associated routines. Estimates are determined in

subroutine SAVE by using equations (III-29) and (III-30).

CB2

INSTEP I DIFEQI

_CPHS

DMDTH

EQLBRM

FRBURN

FROZEN

HTCS

SAVE

. VAD
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DMDTH (derivative of mass with respect to theta). - DMDTH calculates MDOT, the derivatives

of mass with respect to crankangle for flow problems, levels 4 and 5. MDOT is indexed 1 for the

intake valve and 2 for the exhaust valve. It is calculated by using equations (I-110) to (I-117) and

(III-35) to (III-39). For flow into the cylinder MDOT is greater than zero. For flow out of the

cylinder MDOT is less than zero. The properties and composition of incoming and outgoing gases are

stored according to the index IG. IG = 1 for the fresh charge, IG = 14 for gas which previously left the

cylinder through the intake valve, and IG = 15 for composite exhaust gas.

FLOW

DIFEQ DMDTH

V O N LY

DUMPCM (dump COMMON).- At the end of each nonideal cycle (levels greater than 1) the

contents of most of the labeled COMMON are copied by DUMPCM onto I/O unit 7 for restarting

and plotting.

GENEX _t DUMPCM I

EFMT (E format). - EFMT is used to print numbers in a compact exponential form similar to the
Fortran E format. It is used for mole fractions with the TRACE option and density. It is used for

level 1 calculations and intermediate output for the higher levels.

OUT2

PRINT.

EGRH (enthalpy of recirculated exhaust).- EGRH is an entry in AJCOEF. It calculates the

enthalpy of the recirculated exhaust gas, HEGR, to be used in calculating the properties of the charge

in the CHARGE routine, which is also an entry in AJCOEF. See Chapter III, the section Fresh

Charge Specification for a further discussion of the exhaust gas properties.

FLEX

GENEX

EQLBRM (equilibrium).-EQLBRM is the core routine for the equilibrium calculations. It

calculates compositions and thermodynamic properties indexed NPT. The routine is similar to the

subroutine of the same name in the Gordon-McBride CEC program (ref. 1) but has two major

changes. First, the components are updated at every point to be the most abundant set of species

describing the chemical systems. This is checked near convergence or sooner if a singularity occurs.
For the latter case the number of components may be reduced in order to obtain an independent set
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of equations. Generally this change will result in more accuracy and solve more problems. The old

EQLBRM used the atomic elements as components. Second, instead of using initial estimates to be

the values from a previous calculation directly, the values are corrected by using the thermodynamic

derivatives given by equations (III-29) and (III-30). These estimates are calculated in subroutine
SAVE.

The control factor AMBDA for the corrections during the iteration procedure in EQLBRM is now

calculated in a separate routine LAMBDA since it is also used by the SAVE routine. The IONS

option has been removed for this program. See table XII for the assigned state variables required for

each call to EQLBRM.

CB2

DHHSET

DIFEQ

GENEX

HTRANS

SETEXH

3PHS

3AUSS

LAMBDA

_MATRIX

EXMIX (exhaust mixture). - EXMIX is used for levels 4 and 5 to calculate the mass, enthalpy, and

composition of gas mixtures which have left the cylinder through the intake and exhaust valves. The

routine is called at the end of each numerical integration step. If there is outflow (i.e, if the current

pressure is greater than the manifold pressure for the intake valve or greater than the exhaust pressure

for the exhaust valve), quadrature formulas are used to integrate values of mass, composition, and

enthalpy of the exhaust mixture. The formulas are given by equations 0-121), (I-122), (III-15) to
(III-19), (III-22), and (III-23). For inflow, integration continues for mass alone until all the mass

which has escaped has been returned to the cylinder. This mass, TMASS, is a negative value until the
point where it has all returned; then TMASS =0.

Extrapolation formulas ((III-12) to (III-14)) are used to predict the points where the pressure is

expected to equal the manifold or exhaust pressure and where TMASS = 0. At the appropriate points

these predictions are used to temporarily adjust the numerical integration step to hit these points
exactly.

KWORK

FDTH (flow delta theta).-FDTH is used with levels 4 and 5 to set approximate points for

intermediate output and plotting for all parts of the cycle except combustion. Except for station
points and some other selected points the interval is set to 5 crankangle degrees in FDTH. However,

the actual point will normally be beyond the 5 ° step so that the output point is actually the end of an

integration step. This avoids both changing integration step sizes and interpolation.
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FLEX [-_-- MOVE

FLEX (flow executive). - Subroutines FLEX and GENEX are the executive routines required for

cycles with poppet valve flow, levels 4 and 5. GENEX calls FLEX to do various portions of these

higher level cycles except for combustion, which is directed by BRNEX. The flow chart for

subroutine GENEX in appendix J shows the program flow among these three routines. FLEX calls

KSTEP for numerical integration between output points.

CHARGE

GENEX

COMBIN

DHHSET

EGRH

FDTH

KSTEP

MOVE

N EWO F

PRINT

SETEXH

TIM

FLOW Oelowfunctions).- Subroutine FLOW evaluates the poppet valve flow functions given in

equations (I-117a) and (I-117b).

DMDTH

FRBURN (fraction burned). -Subroutine FRBURN calculates the mass fraction of burned gas

according to the burning function indicated in the input and by using equations (I-92) to (I-104).

CB1

CB2

DIFEQ

HTRANS

[FRBURN]

FROZEN (frozen compositions). - Subroutine FROZEN calculates thermodynamic properties for

assigned thermodynamic states and the nonreacting compositions stored in EN(i, NFZ), where i is a

species index. The assigned state variables are similar to the assignments required by the EQLBRM

subroutine. They are summarized in table XI1. The resulting properties are stored in arrays indexed
NPT. NFZ may be equal to NPT. The routine is similar to the routine of the same name in the

Gordon-McBride CEC program (ref. 1).

For assigned temperature problems no iteration is required. Otherwise there is an iteration on

temperature until the desired assigned value of either enthalpy, internal energy, or entropy is
obtained for a particular pressure or specific volume.
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AJCOEF

CB1

CB2

CB3

CONTNU

DHHSET

DIFEQ

EXMIX

GENEX

HTRAN2

HTRANS

N EWO F

IFROZEN_-_---CPHS

GA USS (Gaussian elimination).-GAUSS is used to solve the set of simultaneous linear iteration

equations constructed by subroutine MATRIX. The solution is effected by performing a Gauss
reduction with a modified pivot technique. The routine is very similar to the routine of the same

name in reference 1. The solution vector is stored in X(k).

EQLBRM-----_ GAUSS I

GENEX (general executive). - Subroutine GENEX is the main executive routine for the program.
An abbreviated flow chart for the routine is shown in appendix J. Generally it

(1) Initializes most of the variables

(2) Performs many of the initial calculations or calls routines that do

(3) Reads in the thermodynamic data for the fuels

(4) Reads and processes variables in OTTINP and AFINP namelists

(5) Controls miscellaneous calculations between successive cycles for all levels

-- AIRSET

-- AJCOEF

-- BRNEX

-- CHARGE

CPHS

-- DHHSET

-- DUMPCM

-- EGRH

EQLBRM

--FLEX

--FROZEN

--HEAD

--HTRANS

- --HTRAN2 -

--KDATA

--MOVE

--NEWOF

--NOXFRZ

--PLOTI

--PLT

--SAVE

--SETEXH

--TIM

--TIM1

--VAD

--VAUNT

--VISCON

Main program _ GENEX I
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HCALC (H calculations). - HCALC calculates enthalpies (H values) of the individual fuels, the

total fuel, and air for the temperatures on the input cards. The routine is similar to the routine of the

same name in reference 1. The routine is called once preceding the first ideal cycle.

NEWOF_ HCALC _--- CPHS

HEAD (headings).-HEAD is an entry to a routine in OOUT which prints headings and

performance parameters for the summary sheets for all levels.

HTCS (heat transfer coefficients). - HTCS calculates the heat transfer coefficient HBAR by using

equation (I-105).

If the Eichelberg form of the heat transfer coefficient is used (i.e., HC2--HC3 = 0), HBAR is

calculated as a function of temperature TK and pressure PK. However, if HC2 is not zero, transport

properties of the individual species (eq. (III-113)) and the mixture (eqs. (I-152) and 0-153)) are
calculated. The compositions are stored in EN (i, IK) for nonkinetic calculations and in Y0(j) for

kinetic calculations, where i and j index the species.

If j is the species index for transport properties (maximum 30), some arrays are defined as follows:

VTC (i, j, 1)

VTC (i, j, 2)

VCSP (j, 1)

VCSP (j, 2)

ICV (j)

KCV (j,I)

KCV (j,2)

empirical coefficients (indexed i) for viscosity

empirical coefficients (indexed i) for thermal conductivity

viscosity of the individual species

thermal conductivity of the individual species

index of the corresponding species in the thermodynamic data order

index of the corresponding species in the thermodynamic data order excluding

condensed species
index of the corresponding species in the chemical kinetic data order

CB2

DELTH

DIFEQ

HTRANS (heat transfer). -HTRANS directs level 2 and 3 calculations between stations 1 and 2
(IPT = 2), 3 and 4 (IPT = 4), and 5 and 6 (IPT = 6). Generally many intermediate points are calculated

for intermediate output and plotting.

The integration methods are detailed in equations (III-69) to (III-72). Internal energy U(i) and

volume VLM(i) are assigned to each point i for level 2 cycles (HP and VOL are true). For IPT = 2 or 4

the composition is frozen, and FROZEN is called to calculate the properties. For IPT = 6 and level 2

cycles, EQLBRM is called to calculate the properties.

For level 3 cycles (IPT = 6 only), KSTEP is called for integration calculations between print points.

When station 6 has been reached and there still remains some unburned gas, FRBURN is called to
obtain the mass fraction of the burned gas RBG.
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GENEX IHTRANSI_-------

--DELTH

--EQLBRM

--FRBURN

--FROZEN

KSTEP

--MOVE

--PRINT

--SAVE

--VAD

HTRAN2 (heat transfer 2). - HTRAN2 is an entry in subroutine HTRANS. It directs calculations
for levels 2 and 3 between stations 2 and 3 (IPT = 3) and 7 and 8 (IPT = 8). Output points are
determined by the DELTH routine for intermediate output and plotting. The integration methods are
detailed in equations (III-69) to (III-72).

For calculations between stations 2 and 3 addition of the charge is required. These adjustments are
done in subroutine AJCOEF. FROZEN is called in AJCOEF for assigned temperature and pressure
(TP). Pressure is the manifold pressure (PP=PMFOLD). Temperature comes from density
(RTH = I/VLM (NPT)) and the ideal-gas equation of state. There is an iteration on density in
HTRAN2. For calculations between stations 7 and 8 the composition is frozen. FROZEN is called
with an assigned enthalpy (HSUB0) and pressure (PP = PEXH). There is an iteration on HSUB0.

-- AJCOEF

DELTH

FROZEN

GENEX i HTRAN2 1 PRINTt

SAVE

VAD

IDIF (initialize DIFEQ).- IDIF is an entry in DIFEQ which initializes the variables in DIFEQ.

KSTEP

-- COMBIN

-- VAD
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INSTEP (integration step).-The routine INSTEP carries out one integration step, estimates

truncation and integration errors, and selects step size and integration order. It is a drastic revision of
Hindmarsh's routine STIFF (ref. 4). The theory of the method is described in Chapter II, in

particular, the sections Some Special Cases and Step Size and Order Changes. Additional
information is given in Chapter III in the discussion of integration methods for the general model.

While the details of the computations performed in INSTEP differ radically from those of STIFF, its

organization remains similar.

INTEX INSTEP I

COSET

DIFEQ

PSET

SOL

YCHG

INTEX (integration executive).-This is an executive routine for the numerical integration

package in ZMOTTO. The integration techniques are based on the analysis of Chapter II. INTEX
differs from Hindmarsh's routine DRIVE (ref. 4) chiefly in three respects. Interpolation to desired

output points has been eliminated, the capability of increasing the number of differential equations
has been added, and some cycle-relevant calculations have been incorporated.

CLRY

KSTEP IINTEx I KWORK

-- INSTEP

JACOB (Jacobian).-Subroutine JACOB calculates the Jacobian matrix for the numerical

integration (see eqs. (II-37) to (II-41) and the associated discussion for some details). It is used

during combustion and postcombustion for level 3 and throughout the cycle for levels 4 and 5. The

elements are calculated by using equations (I-146) to (I-151) and (III-4) to (IlI-11).

PSET |JACOBI

KDA TA (kinetic data). -Subroutine KDATA reads the chemical kinetic data from I/O unit 9 as

detailed in appendix C. Data are stored in arrays for use with numerical integration routines DIFEQ

and JACOB.

GENEX IKOATAI

KSTEP (kinetic step). - Subroutine KSTEP is the interface between the numerical integration

routines and the remainder of the program. It is called at intermediate output points. For level 3

calculations, KSTEP is called from BRNEX during burning (IPT = 5) and from HTRANS during

postcombustion (IPT = 6). For levels 4 and 5, KSTEP is called from BRNEX during burning and
from FLEX for all other parts of the cycle. KSTEP calls INTEX for integration. After returning

from 1NTEX, data are placed in arrays indexed by NPT for printing and plotting.
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BRNEX

HTRANS

FLEX

KSTEP I

CPHS

IDIF

INTEX

, YEN

KWORK (kinetic work). - KWORK is an entry in DIFEQ. It is called from INTEX at the end of

each numerical integration step. It calculates heat loss and work and keeps a running total of these

values for intermediate output points. For levels 4 and 5 it calls EXMIX to keep track of mixtures

which have exited through the valves.

,N-rEx IKWORKI EXM,X

LAMBDA (lambda). - Subroutine LAMBDA calculates a control factor AMBDA which limits the

size of corrections during the process of obtaining equilibrium compositions and temperatures. It

limits the corrections calculated during the Newton-Raphson iterations in EQLBRM and also the

estimated corrections calculated in SAVE by using equations (III-29) and (111-30). LAMBDA also

applies the corrections. These calculations were part of the EQLBRM routine in the CEC program
(ref. 1).

 OLBRMm] ILAMBOAI
SAVE

MATRIX (matrix). - Subroutine MATRIX sets up the matrices to solve for chemical equilibrium

compositions and thermodynamic derivatives. The routine is essentially the same as the routine of the
same name in reference 1.

EQLBRM I MATRIXI

MOVE (move data). - MOVE is an entry in VAD which simply copies properties and compositions

from arrays indexed ISV to arrays indexed NPT.

CB2

CB3

CONTNU_

FDTH

FLEX

GENEX

HTRANS -_
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NEWOF (new air-fuel ratio). - Subroutine NEWOF is called for each fuel-air mixture read from

an AFINP namelist. Calculations are done if this is the beginning of a case or if air-fuel ratio AF is

different from the value used in the previous cycle.
Some of the calculations are the same as those done in a routine by the same name in the CEC

program (ref. 1). These combine the fuel and air into a set of properties for the total reactant. Some

data are printed out.
NEWOF also calculates the properties and composition of the initial charge. Initial estimates for

the level 1 combustion calculations are also set.

CONTNU _ _ FROZEN

-_._._NEWOFI_-.-

GENEX _ HCALC

NOXFRZ (NOxfreeze). - NOXFRZ is an entry in AJCOEF which is used to freeze and unfreeze

the species NO. Nitric oxide is frozen after combustion for level 1 and 2 cycles. No NO freezing is
done for levels 3 to 5.

Freezing is accomplished by treating NO as a component. The current number of components

NLM is adjusted. When NO is frozen, NLM = LI; otherwise, NLM = L1 - 1.

CONTNU

NOXFRZ I

GENEX

OOUT (Otto output). -Subroutine OOUT has two entries, HEAD and PRINT. OOUT has no
executable statements apart from those associated with its entries.

OUT! (output D.-OUT1 writes information for the fuels and air in a format similar to the
reactant cards in the input. It also prints the fuel-air mixtures. This information appears on the

summary sheets for all levels.

HEAD

OUT2 (output 2).-OUT2 is an entry to a routine in OUT1 which prints many of the mixture

properties appearing in the columns printed on the level 1 summary sheets and the intermediate

output for the higher levels. The routine is similar to the routine of the same name in reference 1.

_EFMT

PRINT

_VARFMT
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PLOT! (plotting D. -PLOT1 is an entry to a routine in PLT which is called at the beginning of

each nonideal cycle to initialize some indices for use with PLOT2, which sets variables for plotting.

CONTNU

GENEX



PLOT2 (plotting 2).- PLOT2 is an entry to a routine in PLT. It sets the variables saved for

plotting at the intermediate output points during the nonideal cycles. These variables are tabulated
and defined in table VII and stored in the COMMON labeled PLTS.

PRINT 1PLOT2 l

PLT (plotting).- PLT initializes some plotting variables at the beginning of an initial run.

GENEX

PRINT (printing). - PRINT is an entry to a routine in OOUT. For nonideal cycles it calls PLOT2

for storing some mixture properties and compositions at intermediate output points. These data are

printed for all levels when the intermediate output option is being used. Data are always printed for
the converged ideal cycle.

CB2

CB3

FLEX

HTRANS

HTRAN2

EFMT

OUT2

PLOT2

VARFMT

PSET.- Routine PSET evaluates the matrix used in the solution of the integration equations.

Apart from a couple of minor name changes this routine is identical to Hindmarsh's PSET (ref. 4).

INSTEP

DEC

JACOB

REACT (reactants). - REACT reads and processes the data on the reactant cards in the case input.
The routine is similar to the routine of the same name in reference 1.

Main program [ REACT J

RSTART (restart). - RSTART reads the labeled COMMON data from I/O unit 7 one cycle at a
time until the point is reached where the calculations are to continue.

Main program [ RSTART I TIM1

SA VE (save data). - Part of subroutine SAVE is similar to the routine of the same name in the

Gordon-McBride program CEC (ref. 1). This is the part that saves compositions or uses composi-

tions from a previous point for initial estimates for the current point NPT. It has been modified to

use thermodynamic derivatives to correct the compositions from the previous point for current
conditions. These corrections are given by equations (1II-29) and (Ill-30).
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AJCOEF

CB1

CB2

DHHSET

DIFEQ

GENEX

HTRANS

HTRAN2

SETEXH

LAM BDA

SEAR (search).- Subroutine SEAR is very similar to subroutine SEARCH in reference 1. It

searches the thermodynamic data on I/O unit 4 for appropriate product species for the current

chemical system and stores the data in common. The data are described in appendix A.

Main program

SETEXH (set exhaust). - SETEXH is an entry in subroutine AJCOEF. The routine saves exhaust

gas compositions and several exhaust gas properties for output and later use. By using the mole
fractions the thermodynamic coefficients of the individual species are combined into a single set to

represent the composite exhaust gas.

An equilibrium calculation is done by using an assigned temperature of 298.15 K and an assigned

pressure equal to the exhaust pressure PEXH. The resulting enthalpy HEQL is used in calculating

exhaust power, equation (III-106), and exhaust efficiency, equation (III-105), which appear on the

summary sheets in the output.

FLEX _ EQLBRM

SETEXH

GENEX _SAVE

SOL (solve).- This routine is identical to Hindmarsh's routine SOL (ref. 4), which, in turn, is

virtually identical to Moler's routine SOLVE (ref. 5). It backsolves a system of linear equations
which have been reduced to upper triangular form by DEC.

INSTEP
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routine. It requires a user-supplied routine CPUTIM. See the writeup for CPUTIM.



Main program

CONTNU

FLEX

GENEX

[_._ CPUTIM

TIM1 (time D. - TIM 1 is called once prior to calculations for levels greater than 1. It sets an initial

value in calculating cycle times. It requires a user-supplied routine CPUTIM. See the writeup for
CPUTIM.

GENEX _-]

RSTART _CPUTIM

VAD (volume, area, and derivatives).- VAD calculates cylinder area and volume and their

derivatives with respect to crankangle by using equations (I-86), (I-88), and (III-21).

CONTNU '

CB2

DIFEQ

GENEX

HTRANS

HTRAN2

IDIF

VALINT (valve initialization). - VALINT is an entry in subroutine FLOW. The routine initializes
poppet valve flow parameters and reads the FLOWIN namelist in the case input.

CONTNU

--"----_ VALINT ]

GENEX

VARFMT (variable format). -VARFMT is the same as the subroutine by the same name in the
Gordon-McBride program CEC (ref. 1). It adjusts the number of decimal places in the format
according to the size of the number for many of the tabulated output numbers.

----_VARFMTI

OUT2

PRINT
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VISCON (viscosity and conductivity).- VISCON is an entry in subroutine HTCS. It reads the
transport data coefficients as detailed in appendix B from I/O unit 8 and stores the appropriate data

for up to 30 species. The data are also added to the case output on unit 6. The KCV array is used to

index the species in the kinetic data order of species, and the ICV array is used for the
thermodynamic order. See HTCS for additional information. The transport properties coefficients

are set to zero for species without any transport data. Molecular weights are also calculated for

species with nonzero transport properties.

CONTNU

VISCON I

GENEX.

VONL Y (viscosity only).- VONLY is an entry in HTCS to share that part of HTCS which

calculates shear viscosities only. See HTCS writeup for a more complete description.

DMDTH IVONLYI

YCHG (Y change). - YCHG is an entry in subroutine CLRY. For levels 4 and 5 it is called at the

end of combustion to remove the differential equation for the unburned-gas temperature and to add

equations for the number of moles of fuel and air. Subroutine KSTEP sets INDEX equal to - 2 and

calls INTEX, where JSTART is set to -2. JSTART = -2 then triggers INSTEP to call YCHG.

INSTEP

YEN (move compositions from Y array to EN array). - Subroutine YEN copies the integration

results into storages used by the rest of the program.

EXMIX

KSTEP_

BLOCKDATA. -BLOCK DATA is very similar to the one used in the Gordon-McBride program

CEC (ref. 1). The universal gas constant (ref. 31) was updated and moved to BLOCK DATA. Also

the atomic weights (ref. 32) were updated.
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Logical

unit

TABLE I.- INPUT/OUTPUT DATA FILES

Data file Input/ Modeling Detailed description

output levels

Thermodynamic properties Input 1-5 Appendix A

Case input Input 1-5 Section "Case input"

and tables II to VI

Case output Output 1-5 Section "Case output"

Plot and restart (a) 2-5 Section "Plot and

restart dump"

Transport properties Input b4-5 Appendix B

Chemical kinetics Input 3-5 Appendix C

aThis data file is output for an initial run, input and output for a restart run, and input for a plotting

program.

bModeling levels 2 and 3 with a non-Eichelberg heat transfer coefficient (c2_0 in eq. (I-105)) also require this

file.

Cards in order ] Format

REAC code

Reactant(s)

Blank card

OMIT card(s)

NAME code

OTTINP namelist

AFINP namelist

AFINP or FLOWIN

namelists

A4

See table III

A4,1 lX,4(3A4,3X)

A4

TABLE II.- SUMMARY OF CASE INPUT

Optional ] Comments

Initial run

No

I No

i No

I Yes

i No

I No

[ No
I Yes

I REAC in card columns 1 to 4. Indicates reactants to follow.

All reactants excluding air as described in table III.

Indicates end of reactants.

OMIT in card columns 1 to 4 and species names starting in columns 16, 31, 46,

and 61 indicate that species in the thermodynamic data with these names will

then be excluded from the calculations.

NAME in card columns 1 to 4. Indicates namelists to follow.

See table IV for list and description of variables.

See table V for list and description of variables.

See note below for cases requiring this additional input and table VI for variables

in FLOWlN namelist.

Restart run

RESTART i A4,A3,8AI

AFINP namelist

AFINP or FLOWIN

namelists

No RESTART in columns 1 to 7. The integer i within the next eight columns indi-

cates the cycle from which to restart calculations. If the integer field is blank,

calculations continue from the last cycle calculated.

No See table V for list and description of variables.

Yes (a)

aThe following cases require additional namelists as indicated:

(I) Cycle-to-cycle variations in AFINP variables--An AFINP namelist will be read at the beginning of each nonideal cycle until VARAF = FALSE in AFINP.

(2) Cases using poppet valve flow equations (levels 4 and 5)--one of the variables IFLOW or KFLAME in the AFINP namelist is set to the first cycle where flow equations are

to be used. FLOWIN must immediately follow the first AFINP, where IFLOW or KFLAME is set. See table VI for a description of the FLOWIN varaibles. Poppet flow

cannot be turned off except by restart at some previous nonflow cycle.
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TABLE III.- REACTANT CARDS

Contents (one card for each reactant Format

fuel, maximum 14)

Atomic symbols and formula numbers

(maximum, five sets)

Relative weight of fuel in total fuels

or number of moles

Blank if previous item is relative weight

or M if previous item is number of

moles

aEnthalpy, cal/mol (required for non-

gaseous species)

State: S, L, or G for solid, liquid, or

gas, respectively

Temperature, K

Code to distinguish among species with

the same formula, matches columns 17

and 18 on first thermodynamic data

card for the species

5(A2,F7.5)

F7.5

AI

F9.5

AI

F7.0

A2

asee ref. 1 for a discussion of enthalpy base.

Card

columns

1-45

46-52

53

54-62

63

64-70

79-80
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TABLEIV.-INPUTVARIABLESINOTTINPNAMELIST

Program Dimension Type Default Optional Mathematical

variable ? symbol

AN 8 R 0. Yes an, n = 1,8

B 1 1 R 1. Yes bl

B2 1 R 0. Yes b2

BETA 1 R 0. Yes /3

BORE

CA

CR

CSBURN

FREQ

HA

HB

HCI

HC2

HC3

HC4

HLEN

HP

KASE

PEXH

PFUEL

PMFOLD

RHUMID

ROD

SP

1 R 1.

1 R 0.

1 R 0.

1 L .FALSE.

1 R 0.

1 R 0.

1 R 0.

1 R 0.

1 R 0.

1 R 0.

1 R 0.

No B

(a) A(0)

No r

Yes .....

No .....

Yes a

Yes b

Yes Cl

Yes c2

Yes cj

Yes c4

1 R BORE Yes

value

1 L .FALSE. Yes

1 I 0

1 R 0.

1 R PEXH

1 R 0.

1 R 0.

1 R 0.

1 L .TRUE.

STROKE

TAIR

TRACE

TW

D

Yes .....

No Pe

Yes PF

No Pm

Yes .....

No 1

Yes .....

1 R 0. No L

1 R 298.15 Yes .....

1 R 0. Yes .....

1 R 0. Yes a Tw

aRequired for heat transfer calculations.

blf variable is set to true.

Definition and comment

Coefficients for Fourier burning law, eq. (1-92)

Parameter used in calculation of velocity for Re, eq. (1-108)

Parameter used in calculation of velocity for Re, eq. (I-108)

Parameter required for Wiebe burning function, eqs. (1-99) to

(I-101). Nonzero value triggers use of the Wiebe function.

Parameter a is calculated from eq. (I-100).

Cylinder bore, cm

Combustion chamber surface area, cm 2, eq. (I-88)

Compression ratio

Cosine burn model b. Equivalent to AN(I)=0.5 and AN(2)= -0.5

Engine speed in revolutions per minute

Heat transfer coefficient parameter, eq. (I-105)

Heat transfer coefficient parameter, eq. (I-105)

Heat transfer coefficient parameter, eq. 0-105)

Heat transfer coefficient parameter, eq. (I-105)

Heat transfer coefficient parameter, eq. (I-105)

If HCI =HC2=HC3 =HC4=0, then HC4 is set to 1.250427 x 10 -5

for Eichelberg heat transfer coefficient

Length parameter in Re, eq. (I-107)

Pressure discontinuities calculated as a minimum internal energy

change. See eq. (I-118) b

Ai'bitrary case identification number

Exhaust pressure, atm

Fuel pressure, atm

Manifold pressure, atm

Relative humidity. Values _ 1 assumed to be fractions, values > 1

assumed to be percentages of saturation humidity

Connecting rod length, cm

Pressure discontinuities calculated as an isentropic change,

eq. (I-118) b

Piston stroke, cm

Air temperature, K

Option to print mole fractions _ TRACE in special E-format

Effective wall temperature, K
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ProgramDimension
variable

AF 1

DEBUG 1

EGR 1

EQRAT 1

FA 1

FPCT 1

IFLOW 1

IPRINT 12

KFLAME 1

KINET 1

NCYCLE 1

NEWAVG 1

PHI 1

SPARK 1

TAU 1

TEGR 1

THBURN 1

VARAF 1

TABLE V.- INPUT VARIABLES IN AFINP NAMELIST

Type Default Optional Mathematical

? symbol

R - 1. Yes a A/F

L .FALSE. Yes .....

R 0. Yes Ec

R - I. Yes a .....

R - 1. Yes a F/A

R - 1. Yes a .....

I 0 Yes .....

I 0 Yes .....

I 9999 Yes .....

I 0 Yes .....

I 0 Yes .....

L .FALSE. Yes .....

R - 1. Yes a .....

R 0. Yes 00

R 0. Yes r

R bo. Yes .....

R 20. Yes c 0f--0 0

L .FALSE. No .....

Definition and comment

Air-fuel weight ratio

If variable is set to TRUE, print properties and compositions for

(1) All ideal cycles

(2) Crankangles throughout nonideal cycles

Mass fraction of fresh charge from exhaust gas recirculation.

Numbers > 1 are divided by 100

Equivalence ratio based on oxidation states (eq. (204) in

ref. 1)

Fuel-air weight ratio

Percentage of fuel by weight

First cycle for which poppet valve flow calculations begin

(levels 4 and 5)

List of cycle numbers for intermediate output (same as

DEBUG = .TRUE. for those cycles)

First cycle for which a kinetic flame is used during com-

bustion (level 5)

First cycle with chemical kinetics during combustion and

expansion (level 3)

Total number of nonideal cycles

If variable is set to TRUE, cycle-averaged exhaust gas properties

are reinitialized.

Equivalence ratio _: (F/A ) / (F/A )stoichiometric

Ignition point in degrees before TDC

Relaxation time, sec, used with finite-burning-rate models,

eq. (I-89). TAU >0 is required for Wiebe burning model,

eqs. (I-99) to (I-101)

Temperature, K, of exhaust gas for EGR

See symbol list, Chapter I

Read another AFINP namelist before executing the next cycle if

variable is set to TRUE

aAt least one value of AF, EQRAT, FA, FPCT, or PHI must be given at the beginning of the problem. Value will remain constant unless changed in succeeding AFINP namelists.

bTEGR is initialized to zero but will be set to exhaust temperature of the previous cycle if no value is given and EGR _0.

cat least one value of TFIBURN must be given for the first nonideal cycle. The value may be zero for motoring or changed with succeeding AFINP namelists.
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TABLE VI.- INPUT VARIABLES IN FLOWIN NAMELIST

Program Type Default Optional Mathematical

variable a symbol

AIN(n), n = 1,3 R 1 .,0,0 Yes i Atn+ ), n = 1,3

AINR(n), n = 1,3 R 1.,0,0 Yes Atn+), n = 1,3

AEX(n), n = 1,3 R 1.,0,0 Yes Atn-), n = 1,3

AEXR(n), n = 1,3 R 1.,0,0 Yes Atn -), n = 1,3

BIN(n), n = 1,3 R 0,0,0 Yes bin+), n = 1,3

BINR(n), n = 1,3 R 0,0,0 Yes bin+), n = 1,3

BEX(n), n = 1,3 R 0,0,0 Yes b_ -), n = 1,3

BEXR(n), n = 1,3 R 0,0,0 Yes btn-), n = 1,3

ALFAIN R Calculated Yes u t+)

ALFAEX R Calculated Yes ] a(-)

BETAIN R 45. No _(+)

BETAEX R 45. No /3(-)

DIN R 0. No i d (+)

DEX R 0. No d ( - )

EIN(n), n = 1,4 R 0,0,0,0 Yes E(n+), n = 1,4

EINR(n), n = 1,4 R 0,0,0,0 Yes E (+), n = 1,4

EEX(n), n = 1,4 R 0,0,0,0 Yes E(n-), n = 1,4

EEXR(n), n = 1,4 R 0,0,0,0 Yes !E (-), n = 1,4

I VOPEN R 0. No 0(o+ )

IVSHUT R 180. No 0(c+)

EVOPEN R 540. No 0(o- )

EVSHUT R 720. No 0{c-)

LIN R 1. × 1035 Yes l(0+)

LINR R I. x 1035 Yes l(o+)

LEX R 1. x 10 35 Yes I(o-)

LEXR R 1. x 103 5 Yes I[ -)

RIN(n), n = 1,10 R 0. No r_+), n = 1,10

REX(n), n= 1,10 R 0. No r (-), n = 1,I0

aAll variables are poppet valve flow parameters, eqs. (1-110) to (I-117).

Definition a and comment

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

for normal intake flow

for reverse intake flow

for normal exhaust flow

for reverse exhaust flow

for normal intake flow

for reverse intake flow

Parameters for normal exhaust flow

Parameters for reverse exhaust flow

Parameter in Reynolds number

Parameter in Reynolds number

Intake valve seat angle, deg

Exhaust valve seat angle, deg

Minimum intake valve diameter, cm

Minimum exhaust valve diameter, cm

Parameters for normal intake flow

Parameters for reverse intake flow

Parameters for normal exhaust flow

Parameters for reverse exhaust flow

Crankangle intake valve opens

Crankangle intake valve shuts

Crankangle exhaust valve opens

Crankangle exhaust valve shuts

Parameter for normal intake flow

Parameter for reverse intake flow

Parameter for normal exhaust flow

Parameter for reverse exhaust flow

Parameter for intake flow

Parameter for exhaust flow
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TABLEVII.-VARIABLES STORED IN COMMON PLTS FOR PLOTTING

Program Dimension Definition

symbol

PRESS

VOLUME

CRANK

TEMPB

TEMPUB

CCO

CNO

QLM

DQDTH

WORKI

DWIDTH

WORKP

DWPDTH

MBURN

VBURN

MASS

XM3PI

INDI

IND3

IND4

IND7

ICYCNO

BURN

KASENO

4OO

4OO

4OO

4OO

4OO

4OO

4OO

4OO

4OO

4OO

400

4OO

4OO

4OO

4OO

40O

1

1

Pressure, atm

Volume, cm 3

Crankangle, deg

Burned-gas temperature, K

Unburned-gas temperature, K

CO concentration, mole percent (burned gas during combustion)

NO concentration, ppm by mole (burned gas during combustion)

Heat loss, J

Rate of heat loss, (J/K) x 100

Indicated work, J

Rate of indicated work, (J/K)x 100

Pump work, J

Rate of pump work, (J/K) x 100

Mass fraction of burned gas

Volume fraction of burned gas

Cylinder mass, g

Maximum mass during cycle, g

Number of values stored for each of the variables dimensioned

(400 except TEMPB, TEMPUB, MBURN, and VBURN)

Number of TEMPB values. First TEMPB value is for angle

CRANK (IND1 - IND3 + 1)

Number of TEMPUB values

Number of MBURN and VBURN values

Cycle number

Logical variable which is only false for motoring cycle

(i.e., THBURN =0)

Same as KASE in OTTINP namelist

TABLE VIII.- COMPARISON OF

FIRST FOUR CUMULANTS AND

k-STATISTICS FROM A PEARSON

TYPE IlI DISTRIBUTION FOR

SAMPLE SIZES

N = 5000 AND N = 25

i Ki

1 15.6787

2 4.1667

3 6.9445

4 17.3611

ki(N = 5000) ks(N= 25)

15.6771 15.1074

4.2067 2.9929

7.2907 2.9432

17.7222 -.3190
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TABLE IX.- STEADY STATE

RESULTS FROM CASE 222

AT A STOICHIOMETRIC

AIR-FUEL RATIO

[Cycle-averaged properties for the six

stoichiometric cycles 7 to 12 of case

222; net exhaust flow rate, I 1.9576

g/sec; molecular weight, 28.4043;

enthalpy, -1787.35 J/g.]

Constituent

Ar

CO

CO2

H

H2

H20

NO

N2

OH

02

Mass-averaged composition,

mole fraction

0.008633

.001291

.114872

.000013

.000483

.153976

.000034

.719796

.000052

.000848

TABLE X. -NONSTEADY RESULTS

FROM CASE 222 FOR CYCLE-TO-

CYCLE VARIATION IN

AIR-FUEL RATIO

[Cycle-averaged properties for the 25

cycles 13 to 37 of case 222; net

exhaust flow rate, 12.0165 g/sec;

molecular weight, 28.0453; enthalpy,

- 1741.27 J/g.]

Constituent Mass-averaged composition,

mole fraction

Ar

CO

CO2

H

H2

H20

NO

N2

OH

02

CH4

C2H2

C2H4

0.008499

.017712

.101544

0

.007361

.151719

.000022

.708618

.000021

.004115

.000059

.000314

.000009
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TABLEXI.- PROGRAM ROUTINES

Levels > 2 Levels _ 3 Levels _> 4

(heat transfer and burning) (chemical kinetics) (poppet-valve flow)

Levels _> 1

(ideal and general)

Executive

Main program

GENEX

CONTNU (GENEX)

Input and initialization

ADDAIR (AJCOEF)

AIRSET (AJCOEF)

GENEX

REACT

SEAR

TIMI (TIM)

Equilibrium and frozen

CPHS

EQLBRM

FROZEN

GAUSS

HCALC

LAMBDA

MATRIX

SAVE

Output

EFMT

HEAD (OOUT)

OUTI

OUT2 (OUTI)

VARFMT

Miscellaneous

AJCOEF

CHARGE (AJCOEF) i

DHHSET (AJCOEF)

EGRH (AJCOEF)

MOVE (VAD)

NOXFRZ (AJCOEF)

SETEXH (AJCOEF)

TIM

CTIM (TIM)

Executive

BRNEX

HTRANS a

HTRAN2 (HTRANS) a

Input and initialization

Executive

INTEX

KSTEP

Input and initialization

IDIF (DIFEQ)
RSTART

VISCON

Burning

BRNEX

CB1

CB2 (ca1)

CB3 (CB1)

KDATA

Integration

COSET

DEC

DIFEQ

INSTEP

INTEX

COMBIN(AJCOEF)

FRBURN

Transport properties and

heat transfer coefficient

HTCS

VISCON (HTCS)

Output
DUMPCM

PLOTI (PLT)

PLOT2 (PLT)

PLT

PRINT (OOUT)

Miscellaneous

DELTH (VAD) a

VAD

JACOB

PSET

SOL

Miscellaneous

KWORK (DIFEQ)

YCHG (CLRY)

YEN

Executive

FLEX

Input and initialization

VALINT (FLOW)

Flow

DMDTH

EXMIX

FLOW

VONLY (HTCS)

Miscellaneous

CLRY

FDTH

aRoutine used for levels 2 and 3 only.
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TABLE XII. -ASSIGNED STATES FOR SUBROUTINES EQLBRM AND FROZEN

Assigned states Program variables Definitions

Temperature and

pressure

Temperature and

volume

Enthalpy and

pressure

Internal energy
and volume

Entropy and

pressure

Entropy and

volume

TT, PP, TP= .TRUE., VOL= .FALSE.,

HP = .FALSE., SP = .FALSE.

TT, VLM (NPT), TP= .TRUE., VOL= .TRUE.,

HP = .FALSE., SP = .FALSE.

HSUB0, PP, HP = .TRUE., VOL = .FALSE.,

TP -- .FALSE., SP = .FALSE.

HSUB0, VLM (NPT), HP = .TRUE., VOL= .TRUE.,

TP = .FALSE., SP = .FALSE.

SO for EQLBRM or SSUM (NPT) for FROZEN,

PP, SP = .TRUE., VOL= .FALSE., TP= .FALSE.,

HP = .FALSE.

SO for EQLBRM or SSUM (NPT) for FROZEN,

VLM (NPT), SP = .TRUE., VOL= .TRUE.,

TP= .FALSE., HP= .FALSE.

TT mtemperature, K;

PP mpressure, atm

VLM (NPT) _specific volume,

cm3/g mixture, for printed

column NPT

HSUB0 reassigned enthalpy/R,

g-mole K/g mixture

HSUB0 reassigned internal

energy/R, g-mole K/g mixture

SO or SSUM (NPT)_assigned

entropy/R, g-mole/g mixture,

for column NPT

Same as above
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Appendix A

Thermodynamic Data

The thermodynamic data are given in the empirical form of equation (III-111). The data were

obtained via the PAC2 computer program (ref. 6). The format and order of the data are given in

table XIII. Sample sets used with the examples in appendixes D to I are given in tables XIV and XV.

TABLE XIII.- FORMAT FOR THERMODYNAMIC DATA

ON LOGICAL UNIT 4

Card order

First card

Set of four cards

for each

product a

Contents

Temperature ranges for two sets of

coefficients: lowest T, common T,

and highest T

Species name

Name code h (distinguishes among

species with same name)

Date b

Atomic symbols and numbers

Phase of species (S, L, or G

for solid, liquid or gas, respectively)

Temperature range

The integer I b

Coefficients a i (i= 1 to 5)

for upper temperature interval

The integer 2 b

Coefficients a6 and a 7 for upper

temperature interval and a_, a 2, and

a3 for lower temperature interval

The integer 3 b

Coefficients a4, as, a6, and a7 for

lower temperature interval

The integer 4 b

Format Card

columns

3A4 1-6

3F10.3 1-30

3A4 1-12

A2 17-18

2A3 19-24

4(A2,F3.0) 25-44
AI 45

2F10.3 46-65

I15 80

5(E15.8) 1-75

I5 80

5(E15.8) 1-75

15

4(E15.8)

120

Follows products END A3

Set for four Same format as products

cards for each

fuel c

Last card END2 A4

80

1-60

80

1-3

1-4

aGaseous species and condensed species with only one condensed phase can be in any order. However, the
sets for two or more condensed phases of the same species must be adjacent. If there are more than two
condensed phases of a species, their sets must be either in increasing or decreasing order according to
their temperature intervals.

bOptional.

CData for gaseous fuel must follow data for any liquid phase.
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TABLE XIV, - THERMODYNAMIC DATA USED WITH EXAMPLES III, IV, AND VI

Date file Reference

300.000 I000.000 5000.000

AR L 5/66AR 1.00 0.00 0.00 O.G 300.000 5000 000
0.25000000E O] 0.00000000 0.00000000 0.00000000 0.00000000

-0.7q537502E 03 0.43660006E Ol 0.25000000E 01 0.00000000 0.00000000
0.00000000 0.00000000 -0.7q537498E 03 0.43660006E Ol

C(S) d 3/78C 1 0 0 OS 300.000 5000 000
.14324054+01 .17555871-02 -.71889423-06 .14015109-09 -.10069094-13

-.68q98756+03 -.83936690+01 -.399q2085+00 .50285536-02 .33566391-06
-.47166280-08 .23510115-11 -.99185350+02 .14885486+01

C J 3/61C I00 000 000 OG 300.000 5000 000
0.25810663E 01-0.]4696202E-03 O.7438808_E-O7-O.79481079E-11 0.58900977E-16
0.8521629qE 05 0.43128879E Ol 0.25328705E 01-0.15887641E-03 0.30682082E-06

-0.26770064E-09 0._7488827E-13 O.852qO422E 05 0.46062374E 01
CH J12/67C IH 10 O0 OG 300.000 5000 000

0.22673116E 01 0.22043000E-O2-O.62250191E-06 O.69689940E-10-O.21274952E-I_
0.70838037E 05 0.87889352E Ol 0.35632752E OI-O.20031372E-O3-O.4012981_E-06
O.18226922E-O8-O.86768311E-12 0.70405506E 05 0.17628023E 01

CH2 J12/72C IH 2 0 OG 300.000 5000 000
0.27525479E÷01 O.39782047E-O2-O.14921731E-05 O.25956899E-O�-O.17110673E-13
O.455G7759E+05 0.6653_799E+01 0.35883347E+010.2172_I37E-O2-O.13323408E-05
O.19469_45E-O_-O.89431394E-12 0.45315188E+05 0.22627869E+01

CH20 J 3/61C IH 20 I0 OG 300.000 5000 000
0.2836_247E Ol O.68605298E-O2-O.26882647E-05 O.47971258E-O�-O.32118406E-13

-0.15236031E 05 0.78531169E Ol 0.37963783E 01-0.25701785E-02 O.18548815E-Oq
-0.17869177E-0 _ O.5550qq51E-11-O.15088947E 05 O.q7548163E 01
CH20H L 7/80C IH 30 I OG
0.46113930E 01 0.63004829E-O2-O.20052776E-05

-0.38903362E 04 0.53708118E O0 0.32669954E 01

-0.48157q96E-08 O.17366325E-II-O.33094617E O_
CH3 J 6/69C IH 30 O0 OG
0.28400327E Ol 0.60869086E-O2-O.21740338E-05
0.]64_9813E 05 0.55056751E 01 0.34666350E 01

-0.18859236E-08 0.66803182E-12 0.16313104E 05

CH30 L 6/80C 1H 30 1 OG
0.37590771E 01 O.78945048E-O2-O.26710486E-05
0.13208081E 03 0.29936295E 01 0.21097078E 01

-0.74311082E-08 0.20939578E-11 0.97822803E 03
CH30H l 4/80C IH qO I OG

0.4033q730E 01 O.93680508E-O2-O.30449373E-O5
-0.26159859E 05 0.23539820E 01 0.26587849E 01
-0.87661114E-08 O.23805116E-I1-O.2535368qE 05
CH4 J 3/61C IH 400 000 OG

300.000 5000.000
0.27953462E-O9-O.13790255E-13
O.70455037E-02 0.19389763E-05

0.83675241E 01
300.000 5000.000

O.360q2576E-O9-O.22725300E-13

O.383018q5E-02 0.I0116802E-05
O.2q172192E 01

300.000 5000.000
0.39814507E-O9-O.21447125E-13
0.71927756E-02 0.53939157E-05

0.13137219E 02
300.000 5000.000

0.4345699_E-O9-O.22136329E-I3
0.73515214E-02 0.714_3337E-05
0.I1238121E 02

300.000 5000.000
0.15027072E 01 0.10416798E-OI-O.39181522E-05 0.67777899E-O9-O.44283706E-13

-0.99787078E 04 0.10707143E 02 0.38261932E Ol-0.3979q581E-02 0.24558340E-04
-0.22732926E-07 0.69626957E-II-O.IOIq_g50E 05 0.86690073E O0
C_ J 6/67C IN 10 O0 OG 300.000 5000.000

0.36036285E 01 0.3364q390E-03 O.IO028933E-O6-O.16318166E-IO-O.36286722E-15
0.51159833E 05 0.35q54505E Ol 0.37386307E 01-0.19239224E-02 0.47035189E-05

-0.3iI13000E-08 0.61675318E-12 0.51270927E 05 0.3qq90218E Ol
CO J 9/65C 10 100 000 OG 300.000 5000.000
0.29840696E Ol O.14891390E-O2-0.57899684E-06 O.I0364577E-O9-O.69353550E-14

-0.14245228E 05 O.63q79156E 01 0.37100928E 01-0.16190964E-02 0.3692359qE-05
-0.20319674E-08 0.23953344E-12-O.14356310E 05 0.29555351E 01
C02 J 9/65C 10 200 000 OG

0.44608041E 01 0.30981719E-O2-O.12392571E-05
-0.48961442E 05-0.98635982E O0 0.24007797E 01

0.20021851E-08 0.6327_039E-IS-O.48377527E 05
C2H J 3/67C 2H I00 000 OG

0.44207650E O! O.22119303E-O2-O.S9294945E-06
0.55835444E 05-0.I1588093E Ol 0.26499400E Ol
0.65373629E-OS-O.17356273E-II 0.56275751E 05

C2H2 J 3/61C 2H 200 000 OG
0.45751083E 01 O.51238358E-O2-O.17452354E-05
0.25607428E 05-0.35737940E 01 O.lqlO2768E 01

O.16390872E-O7-O.613_5447E-11 0.26188208E 05
C2H3 CR2178C 2H 30 O0 OG
x Q1q_RT_+nn 7 I0447061E-O3-1.g8355545E-06
3.22388006E+04 3._3714667E+00 3.65517039E+00
1.03811014E-OS-4.82336893E-12 3.22190821E÷04

C2H4 L 4/80C 2H 4 0 OG
O.q3843679E Ol O.96509494E-O2-O.318_5530E-05
0.41205039E 04-0.23853559E Ol 0.11654673E 8!

-0.I0187399E-07 O.q3603341E-11 0.53428867E 04
C2H5 l 8/78C 2H 5 o OG

.66807245+00 .18731209-01 -.79184728-05

.12119230+05 .210q0679+02 .66807245+00

.15267665-08 -.I0733175-12 .12119230+05
C2H6 l 2/80C 2H 6" 0 OG

0.47258701E Ol 0.14017530E-OI-O.q6358909E-05
-0.12780930E 05-0._6865377E Ol 0.14893150E 01
-0.13133693E-07 O.q7989243E-II-O.I1342Q69E 05
C3H7 CR2178C 3H 70 O0 OG

2.63075_53E+00 2.42979573E-O2-9.62786424E-06
9.17147226E+03 1.08721288E+01 3.43473677E+00

-9.3G59IOq4E-09 3.55787331E-12 9.0879634_E+03

300.000 5000.000
0.22741325E-O9-O.15525954E-13
0.87350957E-O2-O.66070878E-05
0.95951457E O1

300.000 5000.000
0.94195775E-IO-O.68527594E-Iq

0.84919515E-O2-O.98165375E-05
0.76898609E Ol

300.000 5000.000
0.28673065E-O9-O.17951426E-I3
O.19057275E-OI-O.24501390E-04

0.I1393827E 02
300.000 50000.000

2.02007740E-IO-3.95303041E-15
V.50926265E-O3-9.48_90849E-06
4.01239803E+00

300.000 5000.000
0.46213655E-Og-O.24069342E-13
O.1337q992E-Ol 0.25754771E-05
0.15699718E 02

300.000 5000.000
.15267665-08 -.i0733175-12
.18731209-01 -.79184728-05
.21040679+02
300.000 5000.000

0.67257888E-O9-O.34934695E-13
0.15296880E-01 0.62937688E-05
0.14320247E 02

300.000 5000.000
1.71216523E-O9-1.12767794E-13

1.89905564E-02 2.26298908E-06
7.48875556E+O00.

Z 7
2
3
4

Z 7
2
3
4

Z 7
2
3
4
Z 7
2
3
4
Z 7
2
3
4

I 8,9
2
3

4

Z 7
2

3
4

I 8
2
3

1 I0
2
3
4

Z 7
2

3
(,

2
3
4
Z 7
2
3

Z 7
2
3

Z 7
2
3
4
Z 7
2
3

_ 11
2
3

Z 12
2
3
4

1 13
2
3
4

z 14,9
2
3
4

11
2
3
4
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TABLE XIV. - Concluded.

Date file

C3H8 L 4/BOC _H 8 0 OG 300.000 5000.000
0.75252171E Ol O.188903qOE'OI-O.62839264E-05 0.91793728E-Og-0.48124099E-13

-O.16q64547E 05-0.17843903E 02 0.89692080E O0 0.26689861E-01 0.54314251E-05
-0.21260007E-07 O.92433301E-iI-O.13954918E 05 0.19355331£ 02
H J 3/77H I 0 0 OG 300.000 5000.000

.25000000+01 .00000000 .00000000 .00000000 .00000000

.254743g0+05 -.45989841+00 .25000000+01 .00000000 .00000000

.00000000 .00000000 .25474390+05 -.45989841+00
HCN L12/69H IC IN I0 OG 300.000 5000.000

0.37068121E 01 0.33382803E-O2-O.11913320E-05 O.19992917E-Og-O.12826452E-13

0.14962636E C5 0.20794906E 01 0.24513556E 01 O.87208371E-O2-O.10094205E-04

O.67255698E-OS-O.17626959E-11 0.15213002E 05 0.80830085E 01

JI2/70H !C 10 10 OG 300.000 5000.000

0.34370227E-O2-O.13632664E-05 0.24928645E-Og-O.17044331E-13

0.60453340E+01 O.38840192E+O1-O.82974468E-03 0.77900809E-05

0.19971730E-11 0.40563860E+04 0.48354133E+01

HCO
0.34738368E+01
0.39594005E+04

-0.70616962E-0_

H02
.60173060+01

-.I1612445+04
-.95674952-08

H2

.30558123+01
-.86168476+03

.74997496-08

H20(L)

.00000000

.00000000

-.13653020-05

H20

.26340656401

-.29876258405

-.48670871-08

H202
N._O67904E Ol

J 9/78H i0 2 0 OG 300.000 5000.000
.22175883-02 .57710171-06 .71372882-10 .36458571-14
.37846051+01 .35966102+01 .52500748-03 .75118344-05

.36597628-11 -.89333502+03 .66372671+01

J 3/77H 2 0 0 OG 300.000 5000.000

.59740_00-03 .16747471-08 -.21247544-i0 .25195487-14
-,17207073401 .29432327+01 .34815509-02 -.77713819-05
-.25203379-11 .9?695413+03 -.18186137+01

J 3/79H 20 I 0 OL 273.150 500,000
.00000000 .00000000 .00000000 .00000000

.00000000 .28630800+02 -.20260986+00 .78529479-03

.91326966-09 .38579539+05 -.I1895046+03
J 3/79H 20 i 0 OG 300.000 5000.000
.31121899-02 .90278449-06 .12673054-09 -.69164732-14
.70823873401 .41675564+01 -.18106868-02 .59450878-05

.15286144-11 -.30289546+05 -.73087997+00
L 6/80H 20 2 0 OG 300.000 5000.000

O.36028353E-O2-O.IO963122E-05 O.14431741E-O9-O.65176204E-14
-0.18137465E 05-0.58927882E O0 0.34637089E Ol 0.54991394E-02 0.I0543617E-05

-0.47568385E-08 O.ZI907606E-II-O.17673590E 05 0.68011646E 01
N J 3/77N 1 0 0 OG 300.000 5000.000

.24370811401 .13233886-03 -.90907754-07 .22866054-i0 -.13762291-16

.56128585+05 .45211111+01 .25000004+01 .31078154-08 .83216097-ii

-.96278278-14 .38108039-17 ,56106975405 .41806631+01
NCO JI2/70N lC 10 10 OG 300.000 5000.000

0.49964357E+01 O.26250880E-O2-O.10928387E-05 0.20309111E-Og-O.13915195E-13
O.17379356E+OS-O.17325320E+01

-u.L_o_J_uE-_8 0.10922032E- 11
0.31092021E+01 0.66201022E-O2-O.26070086E-05

0.17977514E+05 0.83561534E+01

Nit J 6/77N 1H i 0 OG 300.000 5000.000

.27414945+01 .14032028-02 -.46001046-06 .80217694-10 -.52770870-14

.46499551+05 .59638059+01 .34520634+01 .54983583-03 -.20358506-05

.30336916-08 -.12401129-iI .44249545+05 .20208741+01
Nli2 J 6/77N iH 2 0 OG 300.000 5000.000

.27554321+01 .32905847-02 -.11160410-05 .20903758-09 -.15676329-13

.22001133+05 .69276497+01 .61262894+01 -.16485841-02 .56461668-05

.60505222-08 .10699871-11 .21697548405 .16960494+00
NH3 J 6/77N IH 3 0 OG 300.000 5000.000

,23168577401 .62841660-02 -.21251163-05 .34018690-09 -.21470026-13
-.64265487+04 .82987657+01 .37729747+01 -.82975716-03 .I1801882-04
- I?IPA_74-O/ .41763790-ii -.66908514+04 .14968947+01

NO J 6/63N i0 I00 000 OO 300.000 5000.000
0.31890000E Ol 0.13382281E-O2-O,52899318E-06 O.95919332E-IO-O.64847932E-14
0.98283290E 04 0.67458126E Ol 0,40459521E 01-0.34181783E-02 0.79819190E-05

-0.61139316E-08 0.159!9076E-II 0.97453934E 04 0.29974988E 01
H02 J 9/66N i0 200 000 OG 300.000 5000.000

O.q6240771E Ol O.25260332E-O2-O.IO609498E-05 O.19879239E-O9-O.15799384E-13

0.22899900E 04
-0 . 95556725E-08
H2

,28532899+01
-.89008093+03

-.12028885-08

13

.253"_ Z 961"_ 01.

.29231108+05
-. 3260t_921-08

OH

.2889/816+01

3_$5706240,%

52133639-09

O2
36122139401

11978151+04
98189101-(]8

EHD

C3H8

0.13324138E Ol 0.54589236E Ol
0.36195881E-II 0.28152265E 04

J 3/77N 2 0 0 OG

.16022128-02 -.62936893-06

.63964897+01 .37044177+01
-.13954677-13 -.10640795+04

J 3/770 I 0 0 OG
-.I_4/81/U-04 .12562724-07
.49628591+01 .30309q01+01

,10152035-11 .29136526+05
J 6/770 IH 1 0 OG
.10005879-02 -.22068807-06
.55566427+01 .38737300+01
.61826974-13 .35802368+04

J 3/770 2 0 0 OG
.76853166-03 -.19820647-06

.36703307+01 .37837135401

.33031825-11 -.i0638107404

L 4/80C 3H 8 0 OG

0.20647064E-02 0.66866067E-05

0.83116983E 01
300.000 5000.000
.11441022-09 -.78057465-14

-.14218753-02 .28670392-05

.22336285+01

300.000 5000.000
.69029862-11 -.63797095-15

-.22525853-02 .39824540-05
.26099342+01
300.000 5000.000

.20191288-10 -.39409831-15
-.13393772-02 .16348351-05

.34202406+00
300.000 5000.000

.33749008-10 -.23907374-14

-.30233634-02 .99492751-05

.36416545+01

300.000 5000.000
0.75252171E (]I O.18890340E-OI-O.62839244E-05 O.91793728E-Og-O.48124099E-13

-O.16q66567E (]5-0.17843903E 02 0.89692080E O0 0.26689861E-01 0.54314251E-05
-0.21260007E-07 0.92433301E-II-O.139549ISE 05 0.19355331E 02

END2

Reference

14,9

7

15

7

7

7

7

7

16,9

7

3

4

1 7
2

3
4

z 7
2

3

q

1 7
2

3

4

i 7

2

3

4

1 7
2

3

4

I 7
2

3

4

1 7
2

3

4

1 7
2

3

4

1 7
2

3

4

1 7
2

3

4

1 14,9
2

3

4
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\
TABLE XV. - THERMODYNAMIC DATA USED WITH EXAMPLES I, II, AND V

Date file Reference

300.000 10_0.000 5000.000
AR t 5/66AR I.OO 0.00 0.00 O.G 300.000 5000.000
0.25000000E Ol 0.00000000 0.00000000 0.00000000 0.00000000

-0.74537502E 03 0.63660006E 01 0.25000000E Ol 0.00000000 0.00000000
0.00000000 0.00000000 -0.74537498E 03 0.43660006E Ol

C(S) J 3/7gC i o o 05 300.000 5000.000
.Iq324056+0! .17555871-02 -.71889423-06 .Iq015109-09 -.I0069094-13

-.68499756+03 -.83936690÷01 -.39942085+00 .50285536-02 .3S566391-06
-.47166280-03 .23510115-ii -.99185350+02 .14885486+01

CHq J 3/61C ).H 4.00 0.00 O.G 300.000 5000.000
0.15027072E 01 O.I0416798E-O1-O.39181522E-05 O.67777899E-Og-O.4_283706E-13

-0.9978707_E 04 0.107071q3E 02 0.38261932E 01-0.39794581E-02 0.24558340E-04
-0.22732926E-07 O.69626957E-I1-O.101q4950E 05 0.86690073E 00

CO J 9/65C 1.0 1.00 0.00 O.O 300.000 5000.000
O.298qOGg6E 01 O.16891390E-O2-O.57899684E-06 O.I0364577E-Og-O.69353550E-14

-O.1q245228E 05 O.63q79156E 01 0.37100928E 01-0.16190964E-02 0.3692359qE-05
-0.2031967qE-08 0.2395334qE-12-O.14356310E 05 0.29555351E Ol
CO:' J 9/65C 1.0 2.00 0.00 O.G 300.000 5000.000
O.q4608041E Ol 0.30981719E-O2-O.12392571E-05 0.22741325E-Og-O.1552595_E-13

-O.48961q42E 05-0.98635982E 00 0.2qOO7797E Ol 0.87350957E-O2-O.66070878E-05
O.20021_61E-Og 0.6327qO39E-15-O.48377527E 05 0.96951457E Ol

It J 3/77H I 0 0 OO 300.000 5000.000

.25000000+0i .00000000 .00000000 .00000000 .00000000

.25q7_390+05 -.459898q1+00 .25000000+01 .00000000 .00000000

.oooooooo .00ooooo0 .25q74390+05 -.45989841+00
tl92 J 9/78H lO 2 0 OG 300.000 5000.000

.q0173060+01 .22175853-02 -.57710171-06 .71372882-10 -.36458591-14
-.I14124q5+0_ ,378_6051+01 .35964102+01 .525007q8-03 .7511834q-05
-.9567595_-0_ .36597628-Ii -._9333502&03 .66372671&01

H2 J 3/77H 2 0 0 OO 300.000 5000.000

.30558123+01 .59740400-03 -.16747471-08 -.212q7544-i0 .25195487-14
-.86168476_03 -.17207073+01 .29432327+01 .34815509-02 -.77713819-05
.74997496-08 -.25203379-11 -.97695413+03 -.18186137+01

H20(L) J 3/79H 20 I 0 OL 273.150 500.000
.00000000 .00000000 .00000000 .00000000 .00000000
.00000000 .00000000 .28630800+02 -.20260986+00 .78529479-03

-.13653020-05 .91326766-09 -.38579539+05 -.iI$950q6+03
H20 J 3/79H 20 I 0 OO 300.000 5000.000

.26340654+01 .31121899-02 -.?0278449-06 .12673054-09 -.69164732-1_
-.29876258405 .70823873+01 ,_1675566+01 -.18106868-02 .59_50878-05
-.48670871-08 .1528_1q4-11 -.30289546+05 -.73087997+00

NH3 J 6/77N IH 3 0 OG 300.000 5000.000
.23168577+01 .62841_60-02 -.21251163-05 .34018690-09 -.21470026-13

-.64265487+04 .82987657_01 .37729747+01 -.82975716-03 .I1801882-04
-.12126874-07 .41763790-11 -.66908514+04 .14968947+01

N J 3/77N I 0 0 OG 300.000 5000.000
.24370811+01 .13233886-03 -.90907754-07 .22864054-10 -.13762291-14

.56128585+05 .45211111+01 .25000004+01 -.31078154-08 .83216097-II
-.gq278278-14 .38108039-17 .56106975+05 .41806_31+01

t;O J 6/63N 1.0 1.00 0.00 O.G 300.000 5000.000
0.31890000E Ol O.!3382281E-O2-O.52899318E-06 0.95919332E-10-O.648q7932E-l_
0.98283290E 04 0.67458126E 01 0.40459521E 01-O.3q181783E-02 0.79819190E-05

-0.61139316E-08 0.!5919076E-II 0.97453934E 04 0.29974988E Ol
NO2 J 9/64N 1.0 2.00 0.00 O.G

0.66240771E Ol 0.25260332E-OZ-O.IO609498E-05
0.22899900E 04 0.13324138E Ol 0.34589236E Ol

-0.95556725E-08 0.36195881E-11 0.28152265E 04
N2 J 3/77N 2 0 0 OG

.28532899+01 .16022128-02 -.62936893-06
-.89008093+03 .6396q897+01 .37044177+01
-.12028885-08 -.13954677-13 -.10640795+04

0 J 3/770 i 0 0 OG
.?_3_2_SI+01 -.12478!70-04 -.12562724-07
.29231108+05 .49628591+01 .30309401+01

-.32606921-08 .10152035-11 .29136526+05
OH J 6/770 IH i 0 OG

.28897814+01 .i0005879-02 -.22048807-06

.3_857042+06 .55566427+01 .38737300+01
-,5_133639-0_ .41826974-13 .35802348+0_

02 J 3/770 2 0 0 OG
.36122139+01 .7q853166-03 -.19820647-06

-.I1978151+0_ .36703307+01 .37837135+01
-.981_9101-03 .33031825-ii -.I0638107+04

END O. O. O. O.
CII30H L 4/80C IH 40 i OG
- _-_x_n,nc n_ n qxARn_o_F-O2-0.30649373E-05

-0.26159859E 05 0.23539820E Ol 0.26587849E Ol
-O.B7661114E-08 O.23805116E-I1-O.25353684E 05
C2HSOH L12/73C 211 60 i OG
O. 0. O.
O. 0. 0.20_53260E+01

-0.25318665£-07 0.10843493E-lO-O.29665177E+05

300.000 5000.000
O.19879239E-O9-O.1379938qE-13
0.20647064E-02 0.66866067E-05
0.83116983E 01

300.000 5000.000
.11_41022-09 -.78057465-14

-.14218753-02 .28670392-05

.22336285+01
300.000 5000.000
.69029862-11 -.63797095-15

-.22525853-02 .39824540-05

.26099342+01
300.000 5000.000
.20191288-I0 -.39409831-15

-.13393772-02 .16348351-05
.34202406+00
300.000 5000.000
.33749008-10 -.23907374-14

-.30233634-02 .99492751-05
.36416345+01

0.000 0.000

300.000 5000.000
0.43456994E-Og-O.22136329E-13
0.73515214E-02 0.71443337E-05
0.11238121E 02

300.000 1000.000

O. O.
0.18097289E-01 0.11356807E-04
0.16637635E+02

I 7
2
3
4

7

7

7

1 7
2
3
4
1 7
2
3
4
I 7
2
3
4

1 7
2
3
4

1 7
2
3
4

1 7
2
3
4
1 7
2
3
4

7

7

1 7
2
3
4
1 7
2
3
4
1 7
2
3
4

1 7
2
3
4

1 10
2
3
4
1 17
2
3
4
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TABLE XV. - Concluded.

Date file Reference

C311_ L 4/80C 3H 8 0 OG
0.7525?171E Ol O.18890340E-'OI-O.62839244E-05

-0.16464547E 05-0.17843903E 02 0.89692030E O0
-0.21250007F-07 O.92433301E-II-O.13954918E 05
C3H70H L12/73C 3H 80 i OG
O. O. O.

O. O. 0.28935102E+01

-O.35qgO505E-07 O.14751q17E-10-O.32800045E+05
C6116(L) AIOISOC 6H 6 0 OL

.00000000 .00000000 .00000000

.00000000 .00000000 .59257575+01

.23024018-06 .00000000 .22923560+04

C6H6 A10/80C 6H 6 0 OG
-.33339763+07 .17191041400 -.18189276-03
.17191013+05 .21160786_03 -.46950488+01

-.17341596-09 .50520230-Ii .90663077+04

C7H_(L) AIO/80C 7H 8 0 OL

,00000000 ,00000000 .00000000

,00000000 .00000000 .21823676+02

-,30544066-06 .00000000 -.37821298+04

C7H_ AI0/80C 7H 8 0 OG

-.70146091+02 .28641896+00 -.31440621-03

.20503824+05 .37449350+03 -.34057115+01

-.163_1350-07 .i0929382-i0 .45485187+04

C8HI6 L 9174C 8H 16 0 OG

300,000 5000.000

0.91793728E-Og-O.48124099E-13

0.26689861E-01 0.54314251E-05

0.19355331E 02

300.000 1000.000

O. O.
0.22546234E-01 0.18912667E-04
0.15191566E+02

280.000 360,000
.00000000 .00000000

.64273539-01 -.1668304B-03

-.26683081+02
500.000 1500.000
.91061601-07 -.17497493-10
.585018g0-01 -.33443458-04

.43156568+02

250.000 380.000

.00000000 .00000000

-.80604340-01 .32872833-03

-.85638471+02

300.000 1500.000
.16070293-06 -.31273750-10
.60445642-01 -.20292121-04
.40860881+02
300.000 1500.000

-0.19137314E 02 0.69371462E-01 0.67576038E-O4-O.IOII5679E-06 0.31757513E-I0

-0.29994805E 04 0.15213559E 03 0.27015257E 01 0.63744605E-01 0.10288634E-04

-0.51_51664E-07 O.23527721E-IO-O.13609438E 05 0.21171082E 02
C_HlS(L) AI0/80C 8H

.00000000 .00000000

.00000000 .00000000

-.20450165-05 .00000000
C81118 AIO/SOC 8H

.00000000 .00000000

.00000000 ,00000000

-._3254430-07 .35431926-10
If2 J 3/61H 20

0,31001901E 01 0.51119464E-03
-0.87733042E 03-0.!9629421E Ol

18 0 OL 220.000 300.000
.00000000 .00000000 .00000000
.71413393+02 -.50207950+00 .18341990-02

-.41243725+05 -.27722240+03
18 0 OG 300 000 1000.000

.00000000 .00000000 .00000000

.28209642+01 .62381281-01 .34503217-04

-.28886853+05 .20621261+02
O0 O0 OG 300 000 5000.000

0,52644210E-O7-O.34909973E-10 0.36945345E-14

0.30574451E 01 O.26765200E-O2-O.58099162E-05
0.55210391E-O_-O.18122739E-II-O.98890474E

AR L 5/66AR 1.00 0.00 0.00 O.G

O.P5OOOOOOE 01 0.00000000 0.00000000

-0 7_537502E 03 0.43660006E Ol 0.25000000E Ol
0.00000000 n. O0000000 -0.74537498E 03

C[17 J 9/65C 1.0 2.00 0.00 0.G
n &4Gn_OqlE Ol 0.30981719E-O2-O.12392571E-05

-0.4_961442E 05-0.95635982£ 00 0.24007797E Ol

0.20021861E-00 0.63274039£-15-0.48377527£ 05
t_2

.28532899÷01

-.89003093+03

1202E3Zb-OE

(]2

36122139+01

i1978151+04

HH3

2316_577+01

6_265487+04

12126874-07

END?

J 3/77N 2 0 0 00
.16022128-02 -.62936893-06

.63964897+01 .37044177+01
-,13954677-13 -.10640795+04

J 3/770 2 0 0 OG
.70853166-03 -.19820647-06

.36703307+01 .37837135+01
,33031_Z5-11 -.10638107+04
J 6177ti ii4 3 0 OG
.62841460-02 -.21251163-05
,82987657+01 .37729747+01

,41763790-11 -.66908514+04

03-0.22997056E 01
300 000 5000.000

0.00000000 0.00000000
0.00000000 0.00000000

0.43660006E 01

300 000 5000.000

0.22741325E-Og-O.15525954E-13
0.87350957E-O2-O.66070878E-05

0.96951457E Ol

300 000 5000.000

,i1441022-09 -.78057465-14

-.14218753-02 .28670392-05

.22336285+01
300 000 5000.000
.33749008-10 -.23907374-14

-.30233634-02 .99492751-05
.36416345+01
300 000 5000.000

.34018690-09 -.21470026-13

-.82975716-03 .11801882-04

.14968947+01

I 14,9
2
3
4

i 17
2
3
4

1 18
2
3

4
1 18
2
3
4

I 18
2
3
4

1 18
2
3
4

I 19
2

3
4

i 18
2
3
4

I 18
2
3
4

I 7
2

3
4

7

7

l 7
2
3
4

t 7
2

3
4

1 7
2

3
4
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Appendix B

Transport Data

Shear viscosities and thermal conductivities for some of the pure species which appear in the six

sample calculations were obtained from a number of sources. The compilation of Svehla (ref. 20) was

used for the species CH4, C2H2, C2H4, C3H8, and C6H 6. The computer program TRAN76 by Svehla

and McBride (ref. 21) was the source of the transport properties for NO, O, H, NO2, OH, and CO.

The values for N 2 and 0 2 were taken from Hanley and Ely (ref. 22). The values for H20 and NH 3
were taken from Sanford Gordon (ref. 33). Shear viscosities for H 2, Ar, and CO2 were obtained from

a paper by Maitland and Smith (ref. 23). Conductivities for H 2 were obtained from the computer

program TRAN76; for Ar we selected the values of Svehla (ref. 20) and for CO 2 we faired a curve

through experimental data assembled by Svehla from more than 20 papers. These data were fit by

least squares to an equation of the form (III-113). The equations for N2, 02, CO2, and Ar were used

to calculate transport properties for air (Chapter III, in the section Fresh Charge Specification) by the

mixing rules 0-152) to 0-155). The results of this calculation were also represented in a least squares
sense. The data representations for the complete set of species and air are shown in table XVI.

The format for the data is given in table XVII. The cards may be in any order, with the last card
having LAST in card columns 1 to 4.

TABLE XVI. - TRANSPORTDATA FOR GASEOUSSPECIES USED WITH THE EXAMPLES

AIR
AIR
H2
H2
CH30H
CH30H
CH4
CH4
C2H2
C2H2
C2H4
C2H4
C3H8
C3H8
C6H6
C6H6
NO
NO
N2
N2
AR
AR
0
0
H
H
H20
H20
NFI3
NH3
NO2
NO2
OH

OH
CO
CO
C02
C02

02
02

IAST

0.632169E
0.642016E

0.687200E
0.I16129E
O 641455E
0 793792E
0 600440E

0 853201E
0 579032E
0 666734E
0 578808E
0 674458E

0 578645E
0 638223E
0 611472E
0 549565[
0 646504E
0 614175E
0 653953E
0 686593E
0 590770E
0 6qlllSE

0 763927E
0 776744E
0.860209E
0.869708E
0 756380E
0 123241E
0 596434E
0 774738E
0 605384E
0 504502E
0 597497
0.812287E
0.779825E
0.800546E
0.440370E
0.603518E
0.659260E
0.478050E

O0 -0.218525E
O0 -0.222573E
O0 -0.617520E
01 0.469043E

O0 -0.211775E
O0 -0.687550E
O0 -0.817476E
O0 -0.288951E
00 -0.152664E
O0 -0.350498E
00 -0.148526E
00 -0.506382E
O0 -0.156458E
O0 -0.615207E
00 -0.214866E
00 -0.765765E
O0 0.388567E
00 -0.260319E
O0 -0.I19153E
O0 -0.161885E

O0 -0.925770E
O0 -0.670285E
oo 0.569723E
O0 0.805466E
O0 0.498177E
O0 0.670316E
O0 -0.301892E
01 -0.163667E
O0 -0.314839E

O0 -0.627003E
O0 -0.988315E
O0 -0.475725E
O0 -0.365001E

O0 -0 264930E
O0 0 193974E
O0 -0 237400E
O0 -0 288400E
O0 -0 458485E
O0 0 941422E
O0 -0 452958E

02 -0.524679E
05 0.307023E
O0 -0.111490E
03 -0.551496E
03 0.125265E
03 0.322097E
02 0.165196E

03 0.193692E
03 0.628889E
03 0.165066E
03 0.598107E
03 0.309615E
05 0.658750E
03 0.349529E
03 0.120814E
03 0.457054E
O1 -0.858757E
05 0.360173E
02 -0.471490E
03 0.236277E
02 0.299040E
01 -0.750294E
02 -0.345462E

02 -0.549619E
02 -0.542523E
02 -0.828927E
03 0.187539E
03 O.1415qlE
03 0.271390E
03 0.664059E
02 -0.g69625E
03 0.415525E
03 0.351559E
05 0.343595E
05 -0.517845E
02 0.804541E
03 0.193120E

03 0.322949E
O0 -0.711780E
03 0.579015E

04 0 172670E Ol
05 0 861183E O0
05 0 577240E OO
05 -0 149041E Ol
05 0 150985E Ol
05 0 646522E O0
04 0 154710E Ol
05 0 3553491 O0
04 O 177748E Ol

05 0 118596E 01
04 0 175623E 01
05 0 150224E 01
04 0 156557E Ol
05 0 183162E Ol
05 0 14q145E Ol
05 0 222155E Ol

04 0 165204E Ol
05 0 110633E 01
04 0 166605E 01
05 0 482688E O0
04 0 233077E 01

04 0.207105E O0
04 0.822320E O0
04 -0.481407E-01

04 -0.I02874E 01
04 0.891354E O0
05 0.987951E O0
05 -0.291285E 01
05 0.197019E Ol

05 0.974813E 00
05 0.20046qE Ol
05 0.201241E 01
05 0.217217E Ol

05 0.I05187E O0
05 0.436575E O0
04 -0.468414E O0
05 0.524659E Ol
05 0.134023E Ol

04 0.164432E 01
05 0.228192E Ol

vIsc
COND
VISC

C0ND
VISC
COND
VISC
COND

VISC
COND
VISC
COND
VISC

COND
VISC
COND
VISC
COND

VISC
COND
VISC
COND
VISC

COND
VISC
C0ND
VISC

COND
VISC
COND
VISC

COND
VISC
COHD
VISC
C0ND

VISC
COND
VISC
COND
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TABLEXVII.-FORMATFORTRANSPORTDATA
OFGASEOUSSPECIESONLOGICALUNIT8

Card Format Contents

columns

l 1X Not used

2 to 13 3A4 Name used with thermodynamic data

14 to 28 E15.4 al in eq. (III-113)

29 to 43 E15.4 a2 in eq. (III-113)

44 to 58 E15.4 a 3 in eq. (III-113)

59 to 73 E15.4 a4 in eq. (III-ll3)

74 to 76 3X Not used

77 to 80 A4 VISC for shear viscosity or COND

for thermal conductivity
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Appendix C

Chemical Kinetic Data

We have assembled two reaction mechanisms with the sole intention of using them to illustrate

modeling at levels 3 to 5. These mechanisms have simply been culled from the literature, and we make

no claim to critical evaluation. The first mechanism is a short, 19-reaction mechanism for burned-gas
chemistry for use at levels 3 and 4 of examples I and II. It is shown as table XVIII in this appendix.

Reactions (1) and (3) to (9) are from the critically evaluated compilations of Baulch et al. (refs. 24 and

25). Reactions (10) to (14) are taken from the critically evaluated compilation of Hampson and

Garvin (ref. 26). The remaining reactions come from a mechanism used by Bittker and Wolfbrandt
(ref. 27).

The second mechanism is a longer, 121-reaction mechanism for the combustion of propane and is
used for level 5 of examples IV and VI. It is shown as table XIX of this appendix. The first 84

reactions form the methanol oxidation mechanism of Westbrook and Dryer (ref. 28), which includes

their methane and ethane mechanisms. Reactions (85) to (88) and (90) to (105) were chosen from a

propane mechanism given by Wakelyn, Jachimowski, and Wilson (ref. 29), reactions (106) to (110)

come from Hampson and Garvin (ref. 26), reactions (113) to (121) are from a mechanism used by
Duxbury and Pratt (ref. 30), and the remaining reactions were taken from Bittker and Wolfbrandt
(ref. 27).

The input consists of two types of cards: reactions and third-body efficiencies. All reactions with

the format given in table XX must precede the third-body efficiencies. A blank card signals the end of
the reaction set. The format for the third-body efficiencies is given in table XXI and a blank card also
signals the end of this set.

TABLE XVIII. - GAS PHASE CHEMICAL KINETICS MECHANISM USED WITH EXAMPLES I AND II

REACTION

I) I o

2) 10
3) i 0
4) i 0
5) i 0
6) 10

7) 10
8) 0 0
9) 10

I0) 1 0
11) 1 0
12) 1 0

15) 1.0
14) 1.0
15) 1.0
16) 1.0

17) l.O
18) 1.0
19) 1.0

MECHANISM AND RATES (MOLES/CM_w5 -SEC)
K = A_T_*N _EXP(-E/RT)

CO
co
H
0
H2
0

H
M
H
H02
0

NO
NO2
0
H
H

OH
0
H

+ I 0
+ 1 0
+ 1 0

+ I 0
+ 1 0
+ 1 0

+ 1 0
+ 1 0

+ 1 0
+ 1 0
+ I 0
+ 1 0
+ 1 0

+ 1 0
+10
+10
+ i 0
+ 1 0

+10

OH
02

02
H2
OH
H20

02
02
OH
NO
NO2
0

H
N2
02
OH

.HO2
H02
H02

= i
= I
= i
= i
= I

= 2 0
= I 0
= 2 0
= 1 0
= i 0

= i 0
= 1.0
= 1.0
= 1.0
: 1.0

: 1.0
= 1.0
= 1.0
= 2.0

0 C02 + I
0 C02 + I
0 OH + i
0 OH + I

0 H20 + i
OH + 0
H02 + 0
0 +0
H20 + 0

NO2 + 1
NO + i
H02 + 0
HO + I

HO + I
NO + I
NO + i
H20 + I
OH + i
OH + 0

A

.0 H 0.6310E 08
.0 0 O.1200E 12
.0 0 0.2200E 15
.0 H 0.1800E 11
.0 H 0.2200E 14

0 0.6800E 14
0 M O.1500E 16
0 O.1800E 19
0 M 0.SqOOE 22
0 OH 0.1200E 14

0 02 O.IO00E 14
0 M 0.5620E 16
0 OH 0.2900E 15
0 N 0.7800E 14
0 0 0.6400E 10

0 H 0.4000E 14
0 02 O.5000E 14
0 02 0.5000E 14
0 0.2500E 15

N

1.3
0.0

0.0
1.0
0.0
0.0
0 0

-I 0
-2 0
0 0
0 0
0 0

0 0
0 0
i 0
0 0
0 0

0 0
0 0

E(CAL/MOLE)

-765.0
35000.0
16790.0
8900.0
5150.0

18360.0

-1000.0
118000.0

0.0
2380.0
596.0

-1160.0
795.0

75500.0

6250.0
0.0

1000.0
i000.0
1890.0

THIRD BODY EFFICIENCIES

1.0 H + 1.0 02 = 1.0 H02 +

1.0 H + 1.0 02 : 1.0 H02 +
1.0 H + 1.0 02 = 1.0 H02 +
1.0 H + 1.0 OH = 1.0 H20 +
1.0 H + 1.0 OH = 1.0 H20 +

1.0 H + 1.0 OH = 1.0 H20 +

0 0 M
0 0 M
0 0 M

0 0 M
0 0 M
0 0 M

02 2.000 N2 2
H20 32.500 C02 7
CO 2.000 0

02 1.600 H20 20
CO 1.600 C02 7
H2 1.600 0

ooo
500
0oo
000
500
000
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TABLE XIX. - GAS-PHASE CHEMICAL KINETICS MECHANISM USED WITH EXAMPLES IV AND VI

REACTIOH MECHAHISM AND RATES (MOLES/CM_3 -SEC)
K = AwT_WH wEXP(-E/RT)

i) I 0
2) 1 0
3) I 0
4) 10
5) 10
6) 10

7) 1.0
8) 1.0
9) 1.0

i0) 1.0
11) 1.0
12) 1.0
13) 1.0
lq) 1.0
15) 1.0
16) 1.0
17) 1.0
18) 1.0
19) 1.0
20) 1.0
21) i 0
22) I 0
23) I 0
24) I 0

25) i o
26) 1 0
27) I 0
28) I 0
29) i 0
30) 1 0
31) I 0
32) I 0
33) 1 0
54) i o
55) I 0
36) I 0
37) I 0
38) 1.0
39) 1.0
40) 1.0
ql) 1.0
42) 1.0
43) 1.0
44) 1.0
45) 1.0
46) 1.0
47) I 0
48) i o
49) I 0
50) 1 0
51) i 0
52) I o
53) I 0
54) i 0

55) 1 0
56) i 0
57) 1 0
53) i 0
59) 1.0
60) 1.0
61) 1.0
62) 1.0
63) 1.0
64) 1.0

65) 1.0

CHSOH
CH30H
CH30H
CH30H
CHSOH
CHSOH
CHSOH
CHSOH
CH20H
CH20H
CH4
CH4
CH4
CH4
CH4
CH5
CH5
CH3
CH5
CH20
CH3
CH5
CHSO
CH30
CH20
CH20

CH20
CH20
CH20
HCD

HCO
HCO
HCO
HCO
HCO

CO
CO
CO
C02
H
H2
H20

H20
H202
H20
H
H02
H02
H02
H02
H202
H202
H202
0
02
H2
C2H6
C2H6
C2H6
C2H6
C2H6
C2H5
C2H5
C2H5
C2H4

+ 0.0
+ 1.0
+1.0
+ 1.0
+ 1.0
+1.0
+1 0
+1 0
+ 0 0
+ 1 0
+ 0 0
+ 1 0
+10
+ 1 0
+10
+ 1.0
+ 1.0
+ 1.0
+1.0
+I.0
+1.0
+i.0
+ 0.0
+ 1.0
+0.0
+i.0
+i.0
+ 1.0
+ 1.0
+i.0
+ 0.0
+I.0
+1.0
+1.0
+ 1.0
+ 1.0
+l 0
+i 0
+l 0
+ 1 0
+i 0
+ 1 0
+l 0
+l 0
+0 0

+l 0
+ 1.0
+I.0
+ 1.0

+ 1.0
+1.0
+ 0.0
+i.0
+I.0
+ 0.0
+ 0.0
+ 0.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 0.0
+1.0
+ 1.0
+ 1.0

M
O2
OH
0
H
H
CH3
H02
M
O2
M
H
OH
0
H02
H02
OH
0
02
CH3
HCO
H02
M
02
M
OH
H
0
H02
OH
M
H
0
H02
O2
OH
H02
0
0
O2
0
0
H
OH
M
02
0
H
H
OH
02
M
H
H
M
M

CH3
H
OH
0

O2
C2H3
0

= 1.0
= 1.0
: 1.0
: 1.0
= 1.0
: 1.O
: 1.0
= 1.0
: 1.0
= 1.0
= 1 0
= 1 0
= 1 0
: 1 0
= 1 0
= 1 0
= 1 0
= 1 0
= 1 0
= 1 0
= 1 0
= 1 0
= 1 0
= 1 0
= 1.0
: 1.0
: 1.0
= 1.O
: 1.0
= 1.0
= 1.0
: 1.0
= 1.0
: 1.0
: 1.0
= 1.0
: 1.0
: 1.0
= 1.0
= 1.0
= 1 0
= I 0
= I 0

= 1 0
= I 0
= 1 0
= I 0
: 2.0
= 1.0
= 1.0
= 2.0
= 1.0
= 1.0
: 1.0
= 2.0
: 2.0
= 2.0
: 1.0
: 1.0
: 1.0
= 1.0
: 1.0
= 1.0
: 1.0
= 1.0

CH3
CH20H
CH20H
CH20H
CH20H
CH3
CH20H
CH20H
CH20
CH20
CH3
CH3
CH3
CH3
CH3
CHSO
CH20
CH20
CHSO
CH4
CH4
CH4
CH20
CH20
HCO
HCO
HCO
HCO
HCO
CO
H
CO
CO
CH20
CO
C02
C02
C02
CO
0
H
OH
H2
H20
H
H02
OH
OH
H2
H20
H02
OH
H02
OH
0
H
CH3
C2H5
C2H5
C2H5
C2H5
C2H4
C2H4
C2H4
CH3

+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.o
+1.o
+10
+10
+ 1 o
+10
+1o
+1o
+10
+1o
+ 1 o
+1o
+10
+10
+1.0
+ 1.o
+ 1.o
+ 1.0
+1.0
+ 1.0
+1.0
+ 1.0
+ 1.0
+ 1.O
+ 1.0
+ 1.0
+ 0.0
+1.0
+1.0
+ 1.0
+ 1.0
+10
+10
+10
+ 0 0
+10
+ 0 0
+10
+10
+ 0 0
+10
+10
+ 0.0
+ 0.0
+ 0.0
+ 0.0
+ 1.o
+1.0
+ 1.0
+ 1.0
+ 1.o
+ 1.0
+1.0
+1.0

OH
H02
H20
OH
H2
H20
CH4
H202
H
H02
H
H2
H20
OH
H202
OH
H2
H
0
HCO
CO
02
H
H02
H
H20
H2
OH
H202
H20
CO
H2
OH
02
H02
H
OH
M
O2
OH
OH
OH
OH
H02
OH
M
O2

02
02

OH
H2
M

CHq
H2
H20
OH
H
H02
C2H4
HCO

A

0.3162E 19
0.3981E 14
0.3981E 13
0.1585E 13
0.3162E 14
0.5012E 13
0 1995E 12
0 6309E 13
0 2512E 14
0 lO00E 13
0 1259E 18
0 1259E 15
0 3162E 04
0 1585E 14
0 1995E 14
0.1585E 14
0.3981E 13
0.1259E 15
0.2512E 14
O.lO00E 11
0.3162E 12
O.lO00E 13
0.5012E 14
0.1000E 13
0.5012E 17
0.5012E 15
0.3981E 13
0.5012E 14
O.lO00E 13
O.IO00E 15
0.1585E 15
0.1995E 15
0.1000E 15
0.1000E 15
0.3162E 13
0.1259E 08
O.IO00E 15
0.6309E 16
0.2512E 13
0.1995E 15
0.1995E 11
0.3162E 14
0.1000E 15
O.IO00E 14
0.1995E 17
0.1585E 16
0.5012E 14
0.2512E 15
0.2512E 14
0.5012E 14
0.3981E 14
0.1259E 18
0.1585E 13
O.lO00E 17
0.5012E 16
0.1995E 15
0.2512E 20
0 5012E O0
0 5012E 03
0 6310E 14
0 2512E 14
0 5981E lq
0 IO00E 13
0 3162E 18
0 IO00E 14

H E(CAL/MOLE)

0.0 80000.0
0.0 50900.0
o.o 2000.0
0.0 2300.0
0.0 7000.0
0.0 5300.0
0.0 9800.0
0.0 19460.0
0.0 29000 0
0.0 6000 0
0.0 88400 0
0.0 11900 0
3.i 2000 0
0.0 9200 0
0.0 18000 0
0.0 0 0
0.0 0 0
0.0 2000.0
0.0 29000.0
0.5 6000.0
0.5 0.0
0 0 400.0
0 0 21000.0
0 0 6000.0
0 0 72000.0
0 0 6300.0
0 0 3800.0
0 0 4600.0
0 0 8000.0
0 0 0.0
0 0 19000.0
0 0 0.0
0 0 0.0
0.0 3000.0
0.0 7000 0
1.5 -800 0
0.0 25000 0
0.0 4100 0
0.o 45800 o
0.0 16800 0
1.0 8900 0
0.0 18400 0
0.0 20300 0
0.0 1800.0
0 0 105100.0
0 0 -1000.0
0 0 1000.0
0 0 1900.0
0 0 700.0
0 0 1000.0
0 0 42600.0
0 0 45500.0
0 0 3800.0
0.0 0 0
0.0 115000 0
0.0 96000 0

-I.0 88300 0
4.0 8300 0
3.5 5200 0
o.0 2400 0
0.0 6400 0
0.0 38000 0

0.0 5000 0
0.0 35600 0
0.0 ii00.0
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TABLE XIX. - Concluded.

66)
67)
68)
69)
70)
71)
72)
73)
74)
75)
76)
77)
78)
79)
80)
81)
82)
83)

85)
86)
87)
88)
89)
90)
91)
92)
93)
94)
95)
96)
97)
98)
99)

I00)
101)
102)
103)
104)
105)
106)
107)
108)
109)
110)
111)

112)
113)
114)
115)
116)
117)
118)
119)
120)
121)

i 0
I 0
I 0

i 0
I 0
I 0
I 0
1 0
i 0

1 0
i 0
1 0
i 0
I 0
I 0
1 0
I 0
I 0
i 0
0 0
1 0
1.0
1.0
1.O
1.0
0.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

C2H4 + 0
C2H4 + 1
C2H4 + 1
C2H4 + 1
C2113 + 0
C2H2 + 0
C2H2 + 1
C2H2 + 1
C2H2 + i
C2H2 + 1
C2H2 + 1
C2H + I
C2H + 1
CH2 + 1
CH2 + 1
CH2 + 1
CH2 + 1
CH + 1
CH + 1
M + 1
OH + 1
H + 1
0 + 1
CH2 + 1

CH3 + 1
+ 1

0 +
H +
OH +

CH +
CN +
0 +
OH +
CH +
CH +

H +
NH +
0 +
H +

CH +
H02 +
0 +
NO +
NO2 +
0 +
N +
N +
NH5 +
HH3 +
NH3 +
NH2 +
NH2 +
HH2 +
NH2 +
NH2 +
HH +

0 M
0 H
0 OH
0 0
0 M
0 M
0 02
0 H
0 OH
0 0
0 0
0 02
0 0
0 02
0 0
0 H
0 OH

0 02
0 02
0 C3H8
0 C3H8
0 C3H8
0 C3H8
0 D2
0 C3H8
0 C3H7

i 0 CH3
I 0 CH3
I 0 CH3
i 0 N2
1 0 H2
1.0 HCN
1.0 HCH
1.0 02
1.0 CD2
1.0 NCO
1.0 OH
1.0 HCO
1.0 NCO
1.0 C02
1.0 NO
1.0 NO2
1.0 0
1.0 H
1.0 N2
1.0 02
1.0 OH
1.o OH
1.0 H
1.0 0
1.0 NO
1.0 OH
1.0 H

1.0 0
1.0 HH2
1.0 02

0 C2H3
0 C2H3
0 C2H3
0 CH20
0 C2H2
0 C2H
0 HCO
0 C2H
0 C2H
0 C2H
0 CH2
0 HCO

..0 CO

..0 HCO

..0 CH

.0 CH

..0 CH

..0 CO
•. 0 HCO
i. 0 C2H5
1.0 H20
1.0 H2
1.0 OH
1.0 CH20
I. 0 CH4
I. 0 C2H4
1.0 OH
1.0 H2
I. 0 H20
I. 0 HCN
I. 0 HCN
1.0 OH
1.0 CN
1.0 HCO
1.0 HCO
1.0 NH
1.0 N
1.0 NO
1.0 N2
1.0 HCO
I. 0 NO2
1.0 NO
1.0 NO2
1.0 NO

1.0 NO
1.0 NO
1.0 NO
1.0 HH2
1.0 NH2
1.0 NH2
1.0 N2
1.0 NH
1.0 NH
1.0 NH
i. 0 NH3
1.0 NO

+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 0.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1.0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+10
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0

+ 1 0
+ 1 0
+ 1 0
+ 1 0

+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+ 1 0
+10
+ 1 0
+ 1 0
+ 0 0
+10
+ 1 0
+10
+10
+ 1 0
+ 1 0
+ 1 0
+10
+ 1 0
+ 1 0
+ 1 0
+10
+ 1 0

H
H2
H20
CH2
H
H

H2
H20
OH
CO
CO
CH
OH
OH
H2
H20
OH
0
CH3
C3H7
C3H7
C3H7
0
C3H7
CH3
CH2
CH2
CH2
N
H
CN
H20
0
CO
CO
H20
CO
CO
CO
OH
02
M
OH
N
0
H
H20
H2
OH
H20
H20
H2
OH
NH
OH

0.3981E 18
0.6310E 14
O.IO00E 15
0.2512E 14
0.3162E 17
O.IO00E 15
0.3981E 13
0.1995E 15
0.6309£ 13
0.3162E 16
0.6310E 14
O.IO00E 14
0.5012E 14

O.IO00E 15
0.1995E 12
0.2512E 12
0.2512E 12
0.1259E 12
O.IO00E 14
0.5000E 16
0.1600E 15
0.6300E 14
0.5000E 14
0.1000E 15
0.2000E 14
0.4000E 14
O.1900E 12
0.2700E 12
0.2700E 12
0.1500E 12
0.6000E 14
0.1400E 12
0.2000E 12
0.3200E 14
0.3700E 13
0.2000E 14
0.5000E 12
0.2000E 14
O.IO00E 14
0.3700E 13
O.1200E 14
O.IO00E 14
0.5620E 16
0.2900E 15
0.7800E 14
0.6400E lO
o.4oooE 14
O.4000E 11
0.5000E 12
O.1500E 13
O.IO00E 14
O.3000E 11
O.IO00E 12
0.9200E 12
O.2000E 12
O.lO00E 11

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 0

-0 6
0 0
0 0
0 0
0 0
0 7
0 7
0 7
0 7
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 7
0,7
0.7
0.0
0.0
0.7
0.6
0.0
0.0
0.0
0.5
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 7
0 5
0 0
0 0
0 7
0.7
0.5
0.6
0.0

98200.0
6000.0
3500.0
5000.0

40500.0
114000.0

28000.0
19000.0

7000.0
17000.0

4000.0
7000.0

0.0
3700.0

25000.0
25700.0
25700.0
25700.0

0.0
65010.0

3140.0
8000.0

10000.0
3700.0

10300.0
33100.0
25700.0
25700.0
25700.0
19000.0

5300.0
16900.0

5000.0
1004.0

0.0
0.0

1999.0
0.0
0.0
0.0

2380.0
596.0

-1160.0
795.0

75500.0
6250.0

0.0
1100.0
1990.0
6000.0

0.0
1300.0
4290.0

0.0
3590.0

0.0

THIRD BODY EFFICIENCIES

1.0 H + 1.0
1.0 H + 1.0
1.0 H + 1.0

1.0 H20 + 0.0
1.0 H20 + 0.0
1.0 H20 + 0.0

02
02
02
M
M
M

= 1.0
= 1.0
= 1.0
: 1.0
= 1.0
: 1.0

H02
H02
H02
H
H
H

+ 0 o
+ o o
+ 0 0
+ 1 o
+ 1 o
+ 1 0

M
M
M
OH
OH
OH

02
H20
CO
O2
CO
N2

2.000
32.500
2.000
1.600
1.600
1.600

N2
C02

H20
C02

2.000
7.500
0.000

20.000
7.500
0.000
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TABLE XX.- FORMAT FOR REACTION CARDS IN

CHEMICAL KINETIC DATA

Card Format Contents

columns

1-3 F3.1

4-11 2A4

12 IX

13-15 F3.1

16-23 2A4

24 IX

25 A1

26-28 F3.1

29-36 2A4

37 IX

38-40 F3. l

41-48 2A4

49 IX

50-60 El1.4

61-70 FI0.4

71-80 FI0.4

Stoichiometric coefficient of reactant I a

Name of reactant 1 or letter M for

third-body decomposition reaction b

Not read, but the symbol "+" may be

used

Stoichiometric coefficient of reactant 2a

Name of reactant 2 or letter M for

third-body decomposition reaction b

Not used

Equal sign for reversible reaction or

letter R for irreversible reaction

Stoichiometric coefficient of product 1a

Name of product 1 or letter M for

third-body recombination reaction b

Not read, but symbol "+" may be used

Stoichiometric coefficient of product 2 a

Name of product 2 or letter M for

third-body recombination reaction b

Not used

Factor A in rate equation

k=A7 w exp(-E/RT)

N in above rate equation

Activation energy E in above rate equa-

tion, cal/mole

aMay be left blank (1) if stoichiometric coefficient is 1 or (2) if M is used in
name position that follows.

bNames or letter M must be left adjusted. Names must match those used in
the thermodynamic data. The letter M may be in either reactant or product

name position.
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TABLE XXI.- FORMAT FOR THIRD-BODY

EFFICIENCY CARDS

Card

columns

Format

1-48 (a)

49-56 2A4

57 1X

58-63 F6.3

64-65 2X

66-73 2A4

74 IX

75-80 F6.3

Contents

Same as on corresponding reaction card

Name of third-body species

Not read

Efficiency value

Not read

Name of third-body species

Not read

Efficiency value

aSee Table XX.



Appendix D

Example I (Cases 512 and 513)

Input, Case 512

REAC
C 8. H IS. ._2 L298.15 F
C 7. H 8. .38 L298.15 F
C 6. H 6. .18 L298.15 F

HAME
&OTTINP FREQ=21_O,BORE=lO.16,STROKE=8.839,ROD=I6.478,CA=80.,
TN=360.,CR= 8.5,CSBURH=T,KASE=512,
PEXH=.98_O,PMFOLD=.5264,

HC3=O.,HA=.O,HB=.O,HC2=.0000,
BP=T,RHUMID=55.,TAIR=298.15&END

&AFINP PHI=.725,BPARK=2&.O,EGR=O.,THBURH=88.8,
NCYCLE=&,KIHET=_,TAU=O.0OE-OO,DEBUG=T,VARAF=F&EHD

Calculation Parameters

REAC

C 8.0000 H 18.0000 0.0000 0.0000
C 7.0000 H 8.0000 0.0000 0.0000
C 6.0000 H 6.0000 0.0000 0.0000
HAllE

SPECIES BEING CONSIDERED (THERMODYNAMIC ORDER)

L 5/66 AR J 3/78 C(5)
J 5/77 H J 9/78 HD2
J 6/77 HH3 J 3/77 H

J 3/77 0 J 6/77 OH
XOTTIHP

CR: 8.50
FREQ: 2160,0
CA: 80.0
_ORE: 10.160
STROKE: 8.8390
ROD: I_.6780
TL,J: 3_0.0

H_': F
5P: T
TRhCE: 0.0

TAIR: 298.i_99
CSBURH: T
HCI: 0.0

11C2:0 . 0
HC3:0.0
FIC4= 0.0

HA= 0.0
H_: 0.0
FFUEL: 0.0

Pt'IFOLD: 0.526_0
PEXII: o.gs_o
KASE: 512

AN: 0.50, -0.50, 6wO.O
_ETA: 0.0
IOUNIT: 5
HLEN: 0,0

BI: 1.0
82: 0.0
RHU_ID: 55.0
&Et_D

&hFINP
VARAF: F
AF: -I.0

EQRAT: -1.0
PHI: 0.7250

FPCT: -1.0
FA: -1.0

THBURN: 88.79999
EGR- 0.0

SPARK: 28.0
TEGR: 0.0
TAU: 0.0

DEBUG: T
KINET:
IOUNIT: 5
HCYCLE = 8
IPRINT= 12wO

HODN: 0

KFLAflE= 99999
]FLOH: 0

EHD

Output, Case 512

0.0000 0.420000
0.0000 0.380000
0.0000 0.180000

J 5/61 CH4
J 5/77 H2
J 6/63 NO
J 3/77 02

0.00
0.00
0.00

J 9/65
J 3/79
J 9/64

CO

H20(L)
NO2

298.150

298.150
298.150

J 9/65
J 3/79
J 5/77

C02
H20
N2
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FUELS

C6tt6 (L) AIO/80
C6H6 AI0/80
C7HS(L) A10/80
C7118 A]0/80
C8tl ] 8 ( L ) AI 0/80
C81118 A10/80

REACTION MECHANISM AND RATES (MOLES/CMWW3 -SEC)
K = AWTWMH wEXP(-E/RT)

A

I) 1.0 CO + 1.0 OH : 1.0 C02 + 1.0 H 0.6310E 08

2) 1.0 CO + 1.0 02 : 1.0 C02 + 1.0 0 0.1200E 12
3) 1.0 H + 1.0 02 : 1.0 OH + 1.0 0 0.2200E 15
4) 1.0 0 + 1.0 H2 = 1.0 OH + 1.0 H 0.1800E 11

S) 1.0 H2 + 1.0 OH : 1.0 H20 + 1.0 H 0.2200E 14
6) 1.0 0 ÷ 1.0 H20 = 2.0 OH + 0.0 0.6800E 14
7) 1.0 H + 1.0 02 : 1.0 H02 + 0.0 M O.1500E 16
8) 0.0 M + 1.0 02 = 2.0 0 + 0.0 0.1800E 19

9) 1.0 It + 1.0 OH : 1.0 H20 + 0.0 M 0.8400E 22
10) 1.0 H02 + 1.0 NO : 1.0 NO2 + 1,0 OH 0.1200E 14
11) 1.0 0 + 1.0 NO2 : 1.0 NO + 1.0 02 O.I000E 14

12) 1.0 NO + 1.0 0 : 1.0 NO2 + 0.0 M 0.5620E 16
I3) 1.0 N02 + 1.0 H = 1.0 NO + 1.0 OH 0.2900E 15
14) 1.0 0 + 1.0 N2 : 1.0 NO + 1.0 N 0.7800E 14
15) l.O N * 1.0 02 : 1.0 NC + 1.0 0 0.6400E I0
]6) 1.0 H + 1.0 OH : 1.0 NO + 1.0 H 0.4000E 14
17) 1.0 OH + 1.0 H02 = 1.0 H20 ÷ 1,0 02 0.5000E 14
18) 1.0 0 + 1.0 H02 = 1.0 OH + 1.0 02 O.S000E 14

19) 1.0 H + 1.0 H02 = 2.0 OH + 0.0 0.2500E 15

N

1.3

0 0
0 0
1 0
0 0

0 0
0 0

-i.0
-2.0

0.0
0.0
0.0

0.0
0.0

1.0
0.0
0.0
0.0

0.0

E(CAL/MOLE)

-765 0
35000 0
16790 0

8900 0
5190 0

18360 0

-1000 0
118000 0

0 0
2380 0

596 0
-I160.0

795.0
75500.0

6250.0
0.0

1000.0
I000.0
1890.0

THIRD BODY EFFICIENCIES

1.0 H + I 0
1.0 H + I 0

1.0 H + I 0
l.O H + I 0
1.0 H + i 0

1.0 H + i 0

KINETIC ORDER OF SPECIES
AR CH4

NH3 N
C6tt6 C7H8

KINETIC ORDER OF SPECIES DURING COMBUSTION AND EXPANSION WITHOUT FLOW
CO OH C02 H 02
H02 NO NO2 H2 N

02 : 1.0 H02 + 0.0 M 02 2.000
02 : 1.0 H02 ÷ 0.0 M H20 32.500
02 : 1.0 H02 + 0.0 M CO 2.000

OH : 1.0 H20 + 0,0 M 02 1.600
OH : 1.0 H20 + 0.0 M CO 1,600
OH : 1.0 H20 + 0.0 M N2 1.600

FOR FLOW CALCULATIONS EXCEPT DURING COMBUSTION
CO C02 H H02 H2
NO NO2 N2 0 OH

CBHI8 AIR

N2
C02

H20
C02

2.000
7.500
0.000

20.000
7.500
0.000

H20
02

0 H2 H20
AR CH4 NH3

AF : 19.749344
EFFECTIVE FUEL EFFECTIVE OXIDANT MIXTURE

ENTHALPY HPP(2) HPP(1) HSUBO

(KG-MOL)(DEG K)/KG -0.93004913E 02 -0.18318466E 02 -0.21917908E 02

K_-ATOMS/KG BOP(I,2) BOP(I,I) BO(1)

C 0.73581021E-01 0.10891777E-04 0.35565523E-02
H 0.11530757E O0 0.12245029E-02 0.67226559E-02
N 0.00000000 0.53321257E-01 0.50751477E-01
0 0.00000000 0.14938533E-01 0.14218581E-01
AR 0.00000000 0.31975401E-03 0.30434369E-03

TOTAL COMPUTER TIME: 0.183 SEC DELTA TIME : 0.183 SEC
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Excerpts of Intermediate Output

INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 1 LEVEL 1 CASE NO. 512

REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 8.5 RPM = 2140.0 EGR = 0.000 T(EOR) = 298.1 K SPARK ADVANCE : 28.00 DEG
FUEL PRESSURE = 0.98400 ATM MANIFOLD PRESSURE = 0.52640 ATM EXHAUST PRESSURE = 0.98400 AIM
PRESSURE DISCONTINUITIES ARE ISENTROPIC

CHEMICAL FORMULA _T FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

FUEL C 8.00000 H 18.00000 0.428571 -59820.961 L 298.15
FUEL C 7.00000 H B.OOOO0 0.387755 2867.033 L 298.15
FUEL C 6.00000 H 6.00000 0.183673 11718.145 l 298.15

AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 wl,O00000 -I047.375 G 298.15
AIR INCLUDES 0.01762 MOLE FRACTIOH _ATER RELATIVE HUMIDITY= 0.5500

PERCENT FUEL = q.8194 EQUIVALENCE RATIO: 0.7367 PHI: 0.7250
INDICATED MEAN EFFECTIVE PRESSURE (AIM) : 6.1680

PUMP MEAN EFFECTIVE PRESSURE (ATM) = -0.6434
CHEMICAL ENERGY (JOULES/G) =1781.648
MASS EFFICIENCY = 0.829395
VOLUME EFFICIENCY = 0.815995

A/F: 19.7493

FUEL MASS FRACTION = 0.039972
AIR MASS FRACTION = 0.789423
RESIDUAL PIASS FRACTION = 0.170605

RECIRCULATED MASS FRACTION = 0.000000
MASS FRACTIDH EXHAUST RETAINED = 0.048599

TIIERMODYHAMIC PROPERTIES

STATION 2 3 6 3 6 7
P, ATM 0.5264 0.5264 0.5266 5.3622 26.577 3.0919 0.9840
T, DEG K 235.6 249.5 238.0 6_6.6 2166.7 1367.9 1053.8
RHO, G/CC 8.1081-4 7.3990-4 7.9801-4 4.3322-3 4.3322-3 7.9801-4 3.2965-4
H, CAL/G -54.286 -48.201 -53.2_6 -1.6839 117.11 -140.02 -234.67
U, CAL/G -70.006 -65.430 -69.221 -31.459 -31.459 -233.85 -306.96
S, CAL/(G)(K) 1.5676 1.6119 1.5756 1.5756 2.0005 2.0005 2.0005
CP, CAL/(G)(K) 0.2429 0.2426 0.2629 0.2568 0.356q 0.3080 0.2943
G_r'IMA (S) 1.3787 1.3985 1.3818 1.3578 1.2437 1.2866 1.3040

M, MOL WT 29.782 28.772 29.604 29.604 28.954 28.970 28.970

NOTES OH MOLE FRACTIONS:

A) STATION 2 RESIDUAL GAS FROM PREVIOUS CYCLE; B) MOLES NO FROZEN AFTER COMBUSTION(STATION 5)

MOLE FRACTIONS

AR 0
CO 0

C02 0
H 0
HO2 0
H2 0

H20 0
NO 0
NO2 0
N2 0
0 0
OH 0
02 0
C6H6 0
C7H_ 0

CBHI8 0
AIR 0

00000 O.OOO00 O.O0000
00000 O.O000O 0.00000
00000 O.O0000 0.00000
00000 O.O000O 0.00000

00000 0.00000 0.00000
00000 0,00000 0.00000
00000 0.00000 O.O00OO

00000 0.00000 0.00000
00000 O.O0000 O.O000O
00000 0.00000 0.00000

00000 0.00000 O.O0000
00000 0.00000 0.00000
00000 0.00000 O.O0000
00337 0,00000 0.00278

00604 0.00000 0.00498
00539 0.00000 0.00444
98520 1.00000 0.98780

O.OOO00
O.OOO00
O.OOO00
O.OOO00
O.OOO00
0 00000
0 00000
000000
0 O00OO
0 00000
000000
O 00000
0 O000O
0 00278
0.00498
0.00446

0.98780

0.00889 0.00889 0.00889
0.00028 0.00000 0.00000
0.08518 0.08551 0.08551
O.O0001 O.O0000 0.00000
O.O000I 0.00000 0.00000

0.00005 0.00000 0.00000
0.08300 0.08378 0.08378
0.00718 0.00718 0.00718

0.00003 O.O00OO 0.00000
0.73747 0.73789 0.73789
0.00011 0.00000 0.00000
0.00137 0.00001 0.00001
0.07643 0.07673 0.07673
0.00000 0.00000 0.00000
0.00000 O.OOOOO 0.00000

0.00000 O.O000O O.O0000
O.OOO00 0.00000 0.00000
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STATIONS I - 2 CYCLE 1
EICHELBERG HEAT TRANSFER COEFICIENT

CRANKANGLE 0.0000 0.0000 3.6653 6.368_ 8.6687 10.7_5 12.745 14.7_5 16.7_5 18.745 20.7_5 22.745
MASS,G 0.0000 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274
VOLUME,CC 0.0000 95.547 96.50_ 98.431 100.88 103.73 107.04 110.90 115.29 120.21 125.66 131.62
q, CAL 0.0000 0.0000 0.0711 0.1220 0.1639 0.2007 0.2349 0.2679 0.2996 0.3302 0.3595 0.3875
W, CAL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PUHP W, CAL 0.0000 0.0000 0.0225 0.0667 0.1210 0.1817 0.2492 0.32_2 0._05_ 0.4912 0.5807 0.6725
DELTA Q/DEL TH 0.0000 0.0198 0.019_ 0.0188 0.0182 0.0177 0.0171 0.0165 0.0159 0.0153 0.0146 0.0140
DELTA W/DEL TH 0.0000 0,0000 0.0061 0.0164 0.0236 0.0292 0.0338 0.0375 0.0406 0.0429 0.0447 0,0459

P, ATM 0.5264 0.9840 0.9626 0.9322 0.8981 0.8621 0.8239 0.7835 0.7417 0.6995 0.6575 0.6166
T, DEG K 235.6 1215.1 1200.6 1185.9 1170.9 1155.8 1139.9 1122.9 1105.1 1086.7 1067.9 1048.8
RHO, G/CC 8.1081-4 2.8630-4 2.8346-4 2.7791-_ 2.7115-4 2.6370-4 2.5556-4 2._667-4 2.3727-4 2.2755-4 2.1769-4 2.0784-4
H, CAL/G -54.28_ -266.54 -270.96 -275._4 -279.99 -284.59 -289.40 -294.50 -299.85 -305.37 -311.00 -316.69
U, CAL/G -70.006 -349.78 -353.20 -356.68 -360.20 -363.76 -367.48 -371.42 -375.55 -379.81 -384.15 -388.53
So CAL/(G)(K) 1.5676 2.0448 2.0427 2.0411 2.0398 2.0387 2.0376 2.0365 2.0355 2.0345 2.0335 2.0325
CP, CAL/(G)(K) 0.2429 0.305_ 0.30_7 0.3041 0.3034 0.3027 0.3019 0.3011 0.3002 0.2993 0.2983 0.297_
GAMMA (S] 1.3787 1.2892 1.2900 1.2908 1.2917 1.2925 1.2935 1.2945 1.2956 1.2968 1.2980 1.2993
H, MOL WT 29.782 29.010 29.010 29.010 29.010 29.010 29.010 29.010 29.010 29.010 29.010 29.010

MOLE FRACTIONS

AR 0.00000 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883
C02 0.00000 0.10317 0.10317 0.10317 0.10317 0.10517 0.10317 0.10517 0.10317 0.10317 0.10317 0.10317
t420 0.00000 0.09748 0.09748 0.09748 0.09748 0.09748 0.097;8 0.09748 0.09748 0.097_8 0.09748 0.09748
NO 0.00000 0.00919 0.00919 0.00919 0.00919 0.00919 0.00919 0.00919 0.00919 0.00919 0.00919 0.00919
1(2 0.00000 0.73156 0.73156 0.73156 0.73156 0.73156 0.73156 0.73156 0.73156 0.73156 0.73156 0.73156
OH 0.00000 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006
02 0.00000 0.04970 0.04970 0.04970 0.0_970 0.04970 0.04970 0.04970 0.04970 0.04970 0.04970 0.04970
C6H6 0.00337 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C7H8 0.00604 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C8t118 0.00539 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
AIR 0.98520 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

STATIONS 1 - 2 CYCLE I

EICHELBERG HEAT TRANSFER COEFICIENT

CRANKANGLE 0.0000 24.745 26.745 27._40
MASS,G 0.0000 0.0274 0.0274 0.0274
VOtUME,CC 0.0000 138.07 145.01 1_7.53
Q, CAL 0.0000 0.41_4 0.4_01 O._B8
W, CAL 0.0000 0.0000 0.0000 0.0000
PUMP W, CAL 0.0000 0.7657 0.8594 0.8919
DELTA Q/DEL TH 0.0000 0.013_ 0.0129 0.0125
UtL_A W/UEL TH 0.0000 0.0_66 0,0469 0.0_68

P, ATM 0.5264 0.5770 0.5391 0.5264
T, DEG K 235.6 1029.6 1010,4 1003.7
RHO, G/CC 8.1081-_ 1.9812-4 1.886_-4 1.8542-4
H, CAL/G -5_.28_ -322.39 -328.08 -330.04
U, CAL/G -70.006 -392.92 -397.28 -398.79
S, CAL/(G)(K) 1.5676 2.0315 2.0306 2.0303
CP, CAL/(G)(K) 0.2429 0.2963 0.2953 0.2950

GAMMA (S) 1.3787 1.3006 1.3020 1.3025
H, MOL WT 29.782 29.010 29.010 29.010

HOLE FRACTIONS

AR 0.00000 0.00883 0.00883 0.00883
C02 0.00000 0.10317 0.10317 0.10317
H2O 0.00000 0.097_8 0.09748 0.09748
NO 0.00000 0.00919 0.00919 0.00919
N2 0.00000 0.73156 0.73156 0.73156
OH 0,00000 0.00006 0.00006 0.00006
02 0.00000 0.0_970 0.04970 0.04970
C6H6 0.00337 0.00000 0.00000 0.00000
C7tl8 0.0060_ 0.00000 0.00000 0.00000
C8H18 0.00539 0.00000 0.00000 0.00000
AIR 0.98520 0.00000 0.00000 0.00000

TOTAL COMPUTER TIME = 0.806 SEC DELTA TIME = 0.083 SEC
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STATIONS 2 - 3 CYCLE I
EICHELBERG HEAT TRANSFER COEFICIENT

CRAHKAtiGLE 0.0000 27.440 29.460 31.440 33.640 35.640 37.660 39.660 41.460 43.460 45.460 47.460
MASS,G 0.0000 0.0276 0.0329 0.0388 0.0452 0.0520 0.0591 0.0666 0.0745 0.0827 0.0912 0.1000
VOLUME,CC 0.0000 147.53 155.10 163.13 171.59 180.47 189.75 199.62 209.65 219.86 230.55 261.56
q, CAL 0.0000 0.6488 0.4709 0.4883 0.5023 0.5137 0.5232 0.5310 0.5376 0.5631 0.5677 O.S51S
W, CAL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PUMP W, CAL 0.0000 0.8919 0.9885 1.0907 1.1986 1.3118 1.6301 1.5536 1.6813 1.8137 1.9502 2.0907
DELTA q/DEL TH 0.0000 0.0125 0.0110 0.0087 0.0070 0.0057 0.0067 0.0039 0.0033 0.0028 0.0023 0.0019
DELTA W/DEL TH 0.0000 0.0468 0.0483 0.0511 0.0539 0.0566 0.0592 0.0616 0.0640 0.0662 0.0683 0.0702

P, AIM 0.5264 0.5266 0.5266 0.5266 0.5264 0.5266 0.5266 0.5266 0.5264 0.5264 0.5266 0.5266
T, DEG K 235.6 1003.7 881.7 788.0 714.0 656.6 605.7 565.5 531.8 503.3 479.1 458.3
RHO, G/CC 8.1081-6 1.8542-6 2.1200-6 2.3800-4 2.6335-4 2.8792-4 3.1157-6 3.3422-6 3.5579-4 3-7625-6 3.9560-4 4.1385-4
H, CAL/G -54.286 -330.06 -284.36 -269.58 -222.37 -200.68 -183.10 -168.66 -156.66 -146.59 -138.06 -130.73
U, CAL/G -70.006 -398,80 -344.69 -303.14 -270.78 -246.96 -224.02 -206.8_ -192.69 -180.67 -170.26 -161.53
S. CAL/(G](K) 1.5676 2.0303 2.0095 1.9775 1.9462 1.9173 1.8911 1.8675 1.8464 1.8275 1.8105 1.7953
CP, CAL/(G)(K) 0.2429 0.2950 0.2883 0.2823 0.2772 0.2728 0.2692 0.2660 0.2634 0.2612 0.2593 0.2577
GAMMA (S) 1.3787 1.3025 1.3099 1.3172 1.3238 1.3298 1.3350 1.3397 1.3437 1.3471 1.3502 1.3528
M, MOL NT

MOLE FRACTIONS

AR

C02
H20
flO

H2
OH
02

C6H6
C7H8
C8H18
AIR

29.782 29.010 29.137 29.234 29.310 29.370 29.620 29.660 29.694 29.522 29.546 29.567

0.00000 0.00883 0.00738 0.00627 0.00540 0 00671 0.00616 0.00368 0.00329 0.00297 0.00270 0.00266
0.00000 0.10317 0.08621 0.0732S 0.06310 0 05699 0.04841 0.04300 0.03850 0.03472 0.03152 0.02877
0.00000 0.09748 0.08165 0.06921 0.05962 0 05196 0.06576 0.06063 0.03638 0.03281 0.02978 0.02718
0.00000 0.00919 0.00768 0.00652 0.00562 0 00690 0.00631 0.00383 0.00343 0.00309 0.00281 0.00256
0.00000 0.73156 0.61126 0.51942 0.64743 0 38992 0.36327 0.30491 0.27302 0.26621 0.22347 0.20401
0.00000 0.00006 0.00005 0.0000S 0.00004 0 00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002
0.00000 0.04970 0.04153 0.03529 0.03040 0 02649 0.02332 0.02072 0.01855 0.01673 0.01518 0.01386
0.00337 0.00000 0.00055 0;00098 0.00131 0 00158 0.00179 0.00197 0.00212 0.00224 0.00236 0.00263
0.00604 0.00000 0.00099 0.00175 0.00235 0 00282 0.00321 0.00352 0.00379 0.00401 0.00620 0.00436
0.00539 0.00000 0.00089 0.00156 0.00209 0 00251 0.00286 0.00316 0.00338 0.00357 0.00374 0.00388
0.98520 0.00000 0.16201 0.28570 0.38264 0.66009 0.52292 0.57657 0.61753 0.65363 0.68625 0.71045

STATIONS 2 - 3 CYCLE I
EICHELBERG HEAT TRANSFER COEFICIEHT

CRANKANGLE 0.0000 133.08 162.51 152.51 162.51 172.51 174.51 176.51 178.51 180.00
HASS,G 0.0000 0.6911 0.5153 0.5350 0.5684 0.5556 0.5563 0.5567 0.5569 0.5569
VOLUME,CC 0.0000 728.13 758.59 783.61 800.54 810.03 811.01 811.69 812.07 812.15
Q, CAL 0.0000 0.6570 0.6319 0.4038 0.3748 0.3651 0.3391 0.3331 0.3271 0.3249
W, CAL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PUMP N, CAL 0.0000 8.2936 8.6817 8.9981 9.2165 9.3374 9.3699 9.3586 9.3634 9.3645
DELTA Q/DEL TH 0.0000 -0.0025 -0.0027 -0.0028 -0.0029 -0.0030 -0.0030 -0.0030 -0.0030 -0.0015
DELTA W/DEL TH 0.0000 0.0490 0.0412 0.0316 0.0218 0.0121 0.0063 0.0043 0.0024 0.0007
P, AIM 0.5266 0.5264 0.5266 0.5264 0.5264 0.526_ 0.5264 0.5266 0.5264 0.5264
T, DEG K 235.6 282.9 280.8 279.4 278.5 278.2 278.2 278.2 278.2 278.2
RHO, G/CC 8.1081-4 6.7462-6 6.7933-4 6.8289-4 6.8501-4 6.8585-4 6.8588-4 6.8585-6 6.8578-4 6.8575-4
H, CAL/G -54.284 -69.656 -68.087 -68.301 -67.907 -67.679 -67.651 -67.630 -67.614 -67.612
U, CAL/G -70.006 -88.558 -87.652 -86.968 -86.517 -86.266 -86.238 -86.217 -86.203 -86.202
5, CAL/(G)(K) 1.5676 1.6313 1.6288 1.6270 1.6259 1.6256 1.6256 1.6254 1.6254 1.6254
CP, CAL/(G)(K) 0.2429 0.2454 0.2453 0.2452 0.2452 0.2652 0.2452 0.2452 0.2452 0.2452
G A,"IHA (S)
H, MOL NT

HOLE FRACTIONS

AR

C02
H20

NO
H2
02

C6H6
C7H8
C8H18

AIR

1.3787 1.3741 1.3743 1.3765 1.3766 1.3746 1.3766 1.3766 1.3746 1.3746
29.782 29.738 29.760 29.741 29.742 29.743 29.743 29.743 29.763 29.763

0.00000 0.00050 0.00068 0.00066 0.00045 0.00065 0.00045 0 00066 0.00044 0.00066
0.00000 0.00589 0.00561 0.00541 0.00528 0.00521 0.00520 0 00520 0.00520 0.00520
0.00000 0.00557 0.00530 0.00511 0.00499 0.00492 0.00491 0 00491 0.00491 0.00491

0 00000 0.00052 0.00050 0.00048 0.00047 0.00046 0.00046 0 00046 0.00066 0.00066
0 00000 0.04177 0.03981 0.03835 0.03741 0.03693 0.03688 0 03685 0.03684 0.03684
0 00000 0.00286 0.00270 0.00261 0.0025_ 0.00251 0.00251 0 00250 0.00250 0.00250
0 00337 0.00318 0.00319 0.00320 0.00320 0.00320 0.00320 0 00320 0.00320 0.00320
0 00606 0.00570 0.00571 0.00572 0.00573 0.00574 0.00574 0 00576 0.00574 0.00574
0 00539 0.00508 0.00509 0.00510 0.00511 0.00511 0.00511 0 00511 0.00511 0.00511
0 98520 0.92894 0.93159 0.93356 0.93481 0.93547 0.93553 0 93557 0.93559 0.93558

TOTAL COMPUTER TIME= 1.179 SEC DELTA TIME = 0.373 SEC
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THE TEMPERATURE-- 0.2981E 03 IS OUT OF RANGE FOR POINT 3

STATIONS 3 - 4 CYCLE I
EICHELBERG HEAT TRANSFER COEFICIENT

CRANKANGLE 0. 0000

HASS,G 0.0000
VOLUM£,CC 0. 0000

" "',L_', EAL 000000.0000
PLIMP I_, CAL 0.0000

DELTA Q/DEL TH 0.0000
DELTA N/DEL TH 0.0000

P, ATM 0. 5264

T, DEG K 235.6
Ri10, G/CC 8.1081-4

H, CAL/G -54.284
U, CAL/G -70.006
q, CAL/(G)(K) I .5676
,:P, CAL/(G)(K) 0.2(*29
.......... i 77o-i

H, r10L WT 29.782

Hn,LE FRACTIONS

AR 0.00000
C02 0. 00000

H20 O. 00000
N'] 0.00000
H2 0.00000
132 0.00000

C6H6 0.00337
C7H8 0.00604
CSIII,_ 0.00539

AIR 0.98520

180.00

0.5569
812.15
0 32(*9

0 0000
9 36(*5

-0 0015

0 0000

0 5264

278.2
6.8575-4
-67 .612

-86.202
I . 6254
0.2(*52
I 3_(.6
29.743

0.00044
0.00520
0 00491

0 00046
0 03684
0 00250

0 00320
0 00574
0 00511
0 93558

190.00 200.00 210.00 220.00 228.22 235.15 241.14 246.39 251.07 255.28
0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569

808.36 796.96 777.90 751.14 723.40 696.00 669.52 644.18 620.08 597.22
0.2951 0.2656 0.2368 0.2091 0.1876 0.1705 0.1568 0.1456 0.1364 0.1288

-0.0488 -0.1973 -0.4526 -0.8262 -1.2331 -1.6563 -2.0878 -2.5233 -2.9599 -3.3961
9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.36(*5 9.3645 9.3645

-0.0030 -0.0029 -0.0029 -0.0028 -0.0026 -0.0025 -0.0023 -0.0021 -0.0020 -0.0018
-0.00(*9 -0.0149 -0.0255 -0.0374 -0.0495 -0.0610 -0.0721 -0.0829 -0.0934 -0.1037

0.5304 0.5414 0.5603 0.5885 0.6202 0.6544 0.6905 0.7283 0.7676 0.8084
279.0 280.8 283.7 287.7 292.0 296.4 300.9 305.3 309.8 314.2

6.8897-4 6.9882-4 7.1594-4 7.4145-4 7.6989-4 8.0019-4 8.3184-4 8.6456-4 8.9816-4 9.325(*-4
-67.(*18 -66.978 -66.278 -65.288 -64.231 -63.146 -62.048 -60.948 -59.850 -58.758
-86.061 -85.741 -85.231 -84.510 -83.741 -82.950 -82.151 -81.349 -80.5(*8 -79.751

1.6256 1.6258 1.6260 1.6262 1.6263 1.6264 1.6265 1.6266 1.6267 1.6267
0.2(*52 0.2453 0.2455 0.2457 0.2459 0.2462 0.2464 0.2467 0.2(*69 0.2472
1.3745 1.3743 1.3740 1.3735 1.3730 1.3725 1.3720 1.3715 1.3709 1.3704
29.743 29.743 29.743 29.743 29.743 29.743 29.743 29.743 29.743 29.743

0.00044
0.00520
0.00491

0.00046
0.0368(*
0.00250

0.00320
0.00574
0.00511
0.93558

0.00044 0.00044 0.00044 0.00044 0.00044 0.00044 0.00044

0.00520 0.00520 0.00520 0.00520 0.00520 0.00520 0.00520
0.00491 0.00491 0.00491 0.00491 0.00491 0.00491 0.00491
0.00046 0.000(*6 0.00046 0.00046 0.00046 0.00046 0.00046

0.03684 0.03684 0.03684 0.03684 0.03684 0,03684 0.0368(*
0.00250 0.00250 0.00250 0.00250 0.00250 0.00250 0.00250
0.00320 0.00320 0.00320 0.00320 0.00320 0.00320 0.00320
0.00574 0.00574 0.00574 0.00574 0.00574 0.00574 0.00574
0.00511 0.00511 0.00511 0.00511 0.00511 0.00511 0.00511
0.93558 0.93558 0.93558 0.93558 0.93558 0.93558 0.93558

0 00044
0 00520
0 00491
0 000(*6
0 03684
0 00250
0 00320
0 0057(*
0 00511
0 93558

0.00044
0.00520
0.00491
0.00046
0.0368(*
0.00250
0.00320
0.00574
0.00511
0.93558

5TATIOH5 3 - q
EICI4ELBERG HEAT

CYCLE 1
TRANSFER COEFICIENT

CRANKANGLE 0.0000

MASS,G 0.0000
VOLUME,CC 0.0000
Q, CAL 0.0000
W, CAL 0.0000

PUMP W, CAL 0.0000
DELTA Q/DEL TH 0.0000
DELTA W/DEL TH 0.0000

P, ATM 0.5264
T, DEG K 235.6

RHO, G/CC 8.1081-4
H. CAL!G -54.284
U, CAL/G -70.006
S, CAL/(G)(K) 1.5676
CP, CAL/(G)(K) 0.2(*29
GAMMA (5) 1.3787
M, MOt WT 29.782

HOLE FRACTIONS

AR 0.00000
C02 0.00000
il20 0.00000
NO 0.00000

N2 0.00000
02 0.00000
C6H6 0.00337

C7H8 0.00604
C8H18 0.00539
AIR 0.98520

331.08
0.5569

153.10
0.2277

-23.966
9.3645

0.0066
-0.q743

5.1229
510.5

3.6376-3

-8.8856
-42.991

1.6264
0.2618
1.3(.27
29.743

332.00
0.5569
149.60

0.2339
-24.406
9.3645

0.0068
-0.4773

5.2837
51(*.5

3.7226-3

-7.8382
-42.211
1.6263

0.2621
1.3422
29.743

0 00044
0 00520
0 00(.91

0 000(.6
0 0368(*
0 00250

0 00320
0 00574
0 00511
0 93558

0.00044
0.00520
0.00(.91
0.00046
0.03684
0.00250
0.00320
0.00574
0.00511

0.93558

....... E. TIME: I.(.54 5EC_TA,. _n_nlt7 R DELTA TIME = 0.275 SEC
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STATIONS 4 - 5 CYCLE I

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEG

BURNED - UNBURNED ALTERNATELY

EICIIELBERG HEAT TRANSFER COEFICIENT

COSINE COMBUSTION TAU = O.O00B SEC BETA = 0.000

CRANKANGLE 0.0000 332.00 332.00 332.18 332.18 332.62 332.62 333.24 333.24 334.00 334.00 334.94 334.94
MASS,G 0.0000 0.0001 0.5568 0.0001 0,5568 0.0001 0.5568 0.0003 0.5566 0.0007 0.5561 0,0016 0.5553

VOLUME,CC 0.0000 0.0605 149.54 0.0662 148.88 0.1312 147.17 0.3394 144,71 0.7635 141.62 1.5349 137.61
Q, CAL 0.0000 0.2339 0.2339 0.2352 0.2352 0.2382 0.2382 0.2427 0.2427 0.2482 0.2482 0.2557 0.2557
W, CAL 0.0000 -24.406 -24.406 -24.491 -24.491 -24.704 -24.704 -25.001 -25.001 -25.363 -25.363 -25.817 -25.817
PUMP W, CAL 0.0000 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645
DELTA Q/DEL TH 0.0000 0.0000 0.0068 0.0000 0.0069 0.0000 0.0069 0.0001 0.0071 0.0002 0.0073 0.0004 0.0076
9C_TA I.Iin¢l TN o.nflnfl -0.0002 -0.4778 0.0041 -0.4822 0,0190 -0.4976 0.0444 -0.5237 0.0765 -0.5569 0.1150 -0.5970

,MB/M, MU/M 0.0000 0.0001 0.9999 0.0001 0.9999 0.0002 0.9998 0.0005 0.9994 0.0013 0.9987 0.0028 0.997,
VB/V, VU/V 0.0000 0.0004 0.9996 0.0004 0.9996 0.0009 0.9991 0.0023 0.9977 0.0054 0.9946 0.0110 0.9890

P, ATM 0.5264 5.2837 5.2837 5.3165 5.3165 5.3982 5.3982 5.5185 5.5185 5.6744 5.6744 5.8852 5.8852
T, DEG K 235.6 2029.2 514.5 2031.3 515.2 2035.0 517.2 2038.6 520,1 2043.5 523.8 2050.2 528.6
RHO, G/CC 8.1081-4 9.2009-4 3.7226-3 9.2486-4 3.7401-3 9.3732-4 3.7830-3 9.5652-4 3.8459-3 9.8121-4 3.9269-3 1.0143-3 4,0356-3
H, CAL/G -54.284 -7.8386 -7.8383 -7.1086 -7.6353 -5.8037 -7.1153 -4.5431 -6.3590 -2.8614 -5.3970 -0.4952 -4.1274
U, CAL/G -70.006 -146.91 -42.211 -146.32 -42.060 -145.27 -41.672 -144.26 -41.109 -142.91 -40,391 -141,01 -39.444
S, CAL/(G)(K) 1.5676 2.0926 1.6263 2,0925 1.6263 2.0921 1.6263 2.0912 1.6263 2.0901 1.6263 2.0888 1.6263
CP, CAL/(G)(K) 0.2429 0.3535 0.2621 0.3537 0.2621 0.3540 0.2623 0.3543 0.2626 0.3547 0.2629 0.3553 0.2633
GAMMA (S) 1.3787 1.2441 1.3422 1.2440 1.3420 1,2438 1.3418 1.2436 1.3413 1.2433 1.3408 1.2429 1.3401
M, MOL WT

MOLE FRACTIONS

AR
CO
C02
N
H2
H20
NO
NO2
N2
0
OH
02
CBH6
C7HB
CBH18
AIR

29.782 28.996 29.743 28.996 29.745 28.995 29.743 28.995 29.743 28.995 29.743 28.994 29.743

O.OOO00 0.00882 0.00044 0.00882 0.00044 0.00882 0.00044 0.00882 0.00044 0.00882 0.00044 0.00882 0.00044
0.00000 0.00033 O.O000O 0.00033 0.00000 0.00034 0.00000 0.00034 0.00000 0.00035 0.00000 0.00037 0.00000
0.00000 0.10280 0.00520 0.10279 0.00520 0.10279 0.00520 0.10278 0.00520 0.10277 0.00520 0.10275 0.00520
0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0,00001 0.00000 0.00001 0,00000 0.00001 0.00000
0.00000 0.00007 0.00000 0.00007 O.O0000 0.00007 0.00000 0.00007 0.00000 0.00007 0.00000 0.00007 0.00000
0.00000 0.09684 0.00491 0.09684 0.00491 0,09683 0.00491 0.09682 0.00491 0.09681 0.00491 0.09679 0.00491
0.00000 0.00422 0.00046 0.00424 0.00046 0.00429 0.00046 0,00433 0.00046 0.00438 0.00046 0.00446 0,00046
0.00000 0.00001 0.00000 0.00001 0,00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000
0.00000 0.73368 0.03684 0.73366 0.03684 0.73363 0.03684 0.73361 0.03684 0.73357 0.03684 0.73352 0.03684
0.00000 0.00008 0.00000 0.00008 0.00000 0.00009 0,00000 0,00009 0.00000 0.00009 0.00000 0.00009 0,00000
0.00000 0.00110 0,00000 0,00111 0.00000 0.00112 0.00000 0.00114 0.00000 0,00116 0.00000 0.00118 0.00000
0.00000 0.05204 0.00250 0.05203 0.00250 0.05201 0,00250 0.05199 0.00250 0.05196 0.00250 0.05192 0.00250
0,00337 0,00000 0.00320 0.00000 0.00320 0.00000 0.00320 0,00000 0,00320 0.00000 0.00320 0.00000 0.00320
0.00604 0.00000 0,00574 0.00000 0.00574 0.00000 0.00574 0.00000 0.00574 0.00000 0,00574 0.00000 0.00574

0.00539 0.00000 0.00511 0.00000 0.00511 0.00000 0.00511 0.00000 0.p0511 0.00000 0.00511 0,00000 0.00511
0.98520 0.00000 0,93558 0.00000 0.93558 0.00000 0.93558 0.00000 0.93558 0.00000 0.93558 0.00000 0.93558
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STATIONS 4 - 5 CYCLE 1

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEG

BURNED - UNBURNED ALTERNATELY

EICHELBERG HEAT TRANSFER COEFICIENT

COSINE COMBUSTION TAU = 0.0000 SEC BETA = 0.000

CRANKANGLE
MASS,G
VOLUME,CC

Q, CAL
_J, CAL
PUMP W, CAL
DELTA Q/DEL TH

DELTA M/DEL TH
MB/M, MU/M
VB/V, VU/V

P, ATM
T, DEG K
RHO, G/CC
H, CALIG
U, CALIG

S, CAL/(G)(K)
CP, CAL/(G)(K)
GAMMA (S)

M, MOL i,,JT

MOLE FRACTIONS

AR
CO
C02
H2
H20
NO
t,_02
N2
O
OH
02
C6H6
C71t8
C8H18
AIR

0.0000 405.68 ¢05.68 409.63 409.63 413.44 413.44 417.11 617.11 420.23 420.23
0.0000 0.5180 0.0389 0.5354 0.0215 0.5475 0.0094 0.5545 0.0024 0.5568 0,0001
0.0000 226.66 5.2299 250.88 3.0785 274.84 1.4353 298.12 0.3867 317.92 0.0097
0.0000 9.7400 9.7400 10.864 10.864 11.966 11.966 13.023 13.023 13.909 13.909
0.0000 21.035 21.035 27.725 27.725 33.923 33.923 39.576 39.576 46.119 46.119
0.0000 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3665
0.0000 0.2801 0.0020 0.2860 0.0010 0.2876 0.0004 0.2851 0.0001 0.2797 O.O000
0.0000 1.9520 -0.2053 1.8586 -0.1630 1.7431 -0.1181 1.6131 -0.0718 1.4830 -0.0279
0.0000 0.9302 0.0698 0.9615 0.0385 0.9832 0.0168 0.9958 0.0042 0.9999 0.0001
0.0000 0.9774 0.0226 0.9879 0.0121 0.9948 0.0052 0.9987 0.0013 1.0000 0.0000

0.5264 13.064 13.064 11.976 11.976 10.968 10.968 10.042 10.042 9.2890 9.2890
235.6 2020.0 637.2 1983.3 622.9 1946.1 608.7 1908.5 594.8 1874.8 582.9

8.1081-4 2.2856-3 7.4309-3 2.1342-3 6.9690-3 1.9921-3 6.5312-3 1.8600-3 6.1194-3 1.7515-3 5.7764-3
-54.284 -11.724 24.966 -24.417 21.068 -37.172 17.232 -49.986 13.497 -61.410 10.287
-70.006 -150.14 -17.608 -160.31 -20.548 -170.51 -25.437 -180.74 -26.246 -189.85 -28.656

1.5676 2.0286 1.6230 2.0282 1.6226 2.0277 1.6223 2.0271 1.6220 2.0266 1.6217
0.2429 0.3481 0.2724 0.3454 0.2712 0.3427 0.2700 0.3402 0.2688 0.3381 0.2678
1.3787 1.2475 1.3249 1.2496 1.3269 1.2516 1.3288 1.2535 1.3307 1.2553 1.332_
29.782 29.001 29.7_3 29.002 29.743 29.004 29.743 29.005 29.743 29.006 29.743

0.00000 0.00885 0.00044 0.00885 0.0004_ 0.00883 0.00044 0.00885 0.00044 0.00883 0.00044
0.00000 0.00019 0.00000 0.00015 0.00000 0.00011 0.00000 0.00008 0.00000 0.00006 0.00000
0.00000 0.10295 0.00520 0.10300 0.00520 0.10304 0.00520 0.10308 0.00520 0.10310 0.00520
0.00000 0.00004 0.00000 0.00003 0.00000 0.00002 0.00000 0.00002 0.00000 0.00001 0.00000
0.00000 0.09702 0.00491 0.09709 0.00491 0.09716 0.00691 0.09722 0.00491 0.09727 0.00491
0.00000 0.00412 0.00046 0.0037_ 0.00046 0.00337 0.00066 0.00503 0.00065 3.00274 0.00046
0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 _.00000 0.00001 0.00000
0.00000 0.73385 0.03684 0.73408 0.0368_ 0.73431 0.03684 0.73_ 0.03684 0.73_68 0.03684
0.00000 0.00005 O.O0000 0.0000_ 0.00000 0.00003 0.00000 0.00002 0.00000 0.00002 0.00000
0.00000 0.00084 0.00000 0.00072 0.00000 0.00061 0.00000 0.00051 0.00000 0.00043 0.00000
0.00000 0.05210 0.00250 0.05230 0.00250 0.05250 0.00250 0.05269 0.00250 0.05286 0.00250
0.00337 0.00000 0.00320 0.00000 0.00320 0.00000 0.00320 0.00000 0.00320 0.00000 0.00320
0.00604 0.00000 0.0057_ 0.00000 0.00574 0.00000 0.00574 0.00000 0.00574 0.00000 0.00574
0.00539 0.00000 0.00511 0.00000 0.00511 0.00000 0.00511 0.00000 0.00511 0.00000 0.00511
0.98520 0.00000 0.95558 0.00000 0.93558 0.00000 0.93558 0.00000 0.93558 0.00000 0.93558

TOTAL COMPUTER TIME: 2.734 SEC DELTA TIME : 1.280 SEC
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STATIONS 5 - 6 CYCLE 1
EICHELBERG HEAT TRANSFER COEFICIENT

CRANKANGLE 0 0000 420.23 422.23 424.23 426.23 428.23 430.23 432.2.. 434.23 436.23 438.23 440.23
MASS,G 0 0000 0.5568 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569
VOLUME,CC 0 0000 317.92 330.56 343.32 356.19 369.14 382.15 395.21 408.29 421.37 434.42 447.45
Q, CAL 0 0000 13.909 14.464 15.009 15.545 16.072 16.592 17.103 17.606 18.103 18.592 19.075
W, CAL 0 0000 44.119 46.889 49.550 52.]03 54.553 56.903 59.157 61.317 63.387 65.371 67.271
_UMP W, CAL 0 0000 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645 9.3645
DELTA Q/DEL TH 0 0000 0.2797 0.2774 0.2726 0.2681 0.2637 0.2596 0.2556 0.2518 0.2481 0.2447 0.2413
DELTA W/DEL TH 0 0000 1.4131 1.3851 1.3301 1.2768 1.2251 1.1751 1.1267 1.0801 1.0351 0.9917 0.9499

P, ATM 0.5264 9.2890 8.8253 8.3960 7.9983 7.6296 7.2876 6.9700 6.6750 6.4006 6.1452 5.9073
T, DEG K 235.6 1874,8 1852.0 1829.9 1808.6 1788.0 1768.1 1748.8 1730.2 1712.3 1694.9 1678.1
RHO, G/CC 8.1081-4 1.7515-3 1.6845-3 1.6219-3 1.5633-3 1.5085-3 1.4571-3 1.4090-3 1.3638-3 1.3215-3 1.2818-3 1.2445-3
H, CAL/G -54.284 -61.410 -68.944 -76.212 -83.222 -89.983 -96.501 -102.79 -108.84 -114.69 -120.32 -125.74
U, CAL/G -70.006 -189.85 -195.82 -201.57 -207.12 -212.47 -217.62 -222.59 -227.37 -231.98 -236.42 -240.70
_. C_L,'CG}_K) 1.5676 2.0264 2.0259 2.0254 2.0248 2.0243 2.0238 2.0233 2.0228 2.0222 2.0217 2.0212
CP, CAL/(G)(K) 0.2429 0.3381 0.3308 0.3298 0.3288 0.3279 0.3271 0.3263 0.3255 0.3248 0.3242 0.3235
GAMMA (S)
M, MOL WT

MOLE FRACTIONS

AR
CO
C02
H2
H20
NO
NO2
N2
0
OH
02
C6H6
C7H8
C8H18
AIR

1.3787 1.2553 1.2622 1.2631 1.2640 1.2648 1.2656 1.2663 1.2670 1.2677 1.2683 1.2690
29.782 29.006 29.007 29.007 29.008 29.008 29.008 29.009 29.009 29.009 29.009 29.010

0.00000 0.00883 0.00883 0.00885 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883
0.00000 0.00006 0.00005 0.00004 0.00004 0.00003 0.00002 0.00002 0.00002 0.00001 O.O000l 0.00001
0.00000 0.10310 0.10311 0.10312 0.10313 0.10314 0.10315 0.10315 0.10516 0.10316 0.10316 0.10316
0.00000 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.0_000 0.00000 0.00000
0.00000 0.09727 0.09729 0.09732 0.09734 0.09756 0.09738 0.09739 0.09740 0.09742 0.09743 0.09744
0.00000 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274
0.00000 0.00001 0,00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
0.00000 0.73468 0.73470 0.73471 0.73472 0.73473 0.73474 0.73475 0.73475 0.73476 0.73476 0.73477
0.00000 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0 00001 0.00001 0.00000 0.00000 0.00000
0.00000 0.00043 0.00039 0.00035 0.00031 0.00028 0.00025 0 00022 0.00020 0.00018 0.00016 0.00014
0.00000 0.05284 0.05285 0.05286 0.05287 0.05287 0.05288 0 05289 0.05289 0.05289 0.05290 0.05290
0.00337 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000 0.00000 0.00000
0.00604 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000 0.00000 0.00000
0.00539 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000 0.00000 0.00000
0.98520 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000 0.00000 0.00000
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STATIONS 5 - 6 CYCLE 1

EICHELOERG HEAT TRANSFER COEFICIENT

CRANKANGLE 0.0000 496.44 500.93 505.94 511.62
MASS,G 0.0000 0.5569 0,5569 0.5569 0.5569
VOLUME,CC 0.0000 739.76 753.95 767.96 781.51
Q, _AL _._G_ 3C.679 31.490 32.379 33.372
W, CAL 0.0000 96.692 97.691 98.648 99.549
PUHP W, CAL 0.0000 9.3645 9.3645 9.3645 9.3645
DELTA O/DEL TH 0.0006 0.1833 0.1806 0.1777 0.1747
DELTA N/DEL TH 0.0000 0.2526 0.2224 0.1912 0.1586

P, ATM 0.5264 2.9440 2.8607 2.7806 2.7041
T, DEG K 235.6 1382.8 1369.4 1355.8 1341.8
RIIO, G/CC 8.1081-4 7.5272-4 7.3854-4 7.2507-4 7.1250-4
H, CAL/G -54.284 -219.65 -223.81 -228.07 -232.43

U, CAL/G -70.006 -314.37 -317.62 -320.94 -324.34
S, CAL/(G)(K) 1.5676 2.0074 2.0063 2.0052 2.0038
CP, CAL/(G)(K) 0.2429 0.3124 0.3119 0.3113 0.3108
GAMMA (S) 1.3787 1.2809 1.2815 1.2821 1.2827
_, HOE WT 29,782 29.011 29.011 29.011 29.011

HOLE FRACTIONS

AR 0.00000 0,00883 0.00883 0.00883 0.00883
C02 0.00000 0.10318 0.10318 0.10318 0.10318
1120 0.00000 0.09751 0.09751 0.09751 0.09751
NO 0.00000 0.00274 0.00274 0.00274 0.00274
N2 0.00000 0.73480 0.73480 0.73480 0.73480
OH 0.00000 0.00001 0.00001 0.00001 0.00001
02 0.00000 0.05294 0.05294 0.05294 0.05294
C6H6 0.00337 0.00000 0.00000 0.00000 0.00000
C?1{8 0.00604 0.00000 0.00000 0.00000 0.00000
C8H18 0.00539 0.00000 0.00000 0.00000 0.00000
AIR 0.98520 0.00000 0.00000 0.00000 0.00000

518.27 526.48 536.48 540.00
0.5569 0.5569 0.5569 0.5569
794.21 805.21 811.68 812.15

34.512 35.892 37.535 38.103
100.37 101.07 101.47 101.49
9.3645 9.3645 9.3645 9.3645
0.1715 0.1681 0.1643 0.1613
0.1236 0.0846 0.0400 0.0081

2.6320 2.5658 2.5158 2.5057
1327.2 1311.8 1296.5 1292.1

7.0111-4 6.9152-_ 6.8601-4 6.8562-4
-236.95 -241.73 -246.44 -247.82
-327.86 -331.59 -335.25 -336.32
2.0023 2.0004 1.9982 1.9974
0.3102 0.3096 0.3089 0.3087

1.2834 1.2842 1.2849 1.2851
29.011 29.011 29.011 29.011

0.00883 0.00883 0.00883 0.00885
0.10318 0.10318 0.10318 0.10318
0.09751 0.09751 0.09751 0.09751
0.00274 0.00274 0.00274 0.00274
0.73480 0.73480 0.73480 0.73480
0.00001 0.00001 0.00001 0.00001
0.05294 0.05294 0.05294 0.05294
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

TOTAL COMPUTER TIME: 3.561 8EC DELTA TIME = 0.827 $EC

THE TEHPERATURE: 0.2981E 03 IS OUT OF RANGE FOR POINT 15

STATIONS 7 - 8 CYCLE i
EICIIELBERG HEAT TRANSFER COEFICIENT

CRANKANGLE 0.0000 540.00 550.00 560.00
M,_SS.G 0.0000 0.2702 0.2710 0.2693
VOLUME,CC 0.0000 812.15 808.36 796.96
Q, CAt 0.0000 38.103 38.762 39.405
W, CAL 0.0000 101.49 101.49 101.49
PUMP W, CAL 0.0000 9.3645 9.2741 9.0024
DELTA Q/DEL TH 0.0000 0.0665 0.0659 0.0643
DELTA W/DEL TH 0,0000 0.0000 -0.0090 -0.0272

P, AIM 0.5264 0.9840 0.9840 0.9840
T, _SC _ 235.6 1045,9 1037.7 1029.7
RHO, O/CC 8.1081-4 3.3261-4 3.3524-4 3.3785-4
II, CAL/G -54.284 -322.44 -324.87 -327.25
U, CAL/G -70.006 -394.08 -395.96 -397.79
S, CAL/(G)(K) 1.5676 1.9974 1.9950 1.9927
CP, CAL/(G)(K) 0.2429 0.2972 0.2968 0.2963
GAMMA (S) 1.3787 1.2995 1.3001 1.3006
M, MOL NT 29.782 29.011 29.011 29.011

MOLE FRACTIONS

AR 0.00000 0.00883 0.00883 0.00883
C02 0.00000 0.10318 0.10318 0.10318
tl_O 0.00000 0.09751 0.09751 0.09751
HO 0.00000 0.00274 0.00274 0.00274
N2 0.00000 0.73480 0.73480 0.73480
Oil 0.00000 0.00001 0.00001 0.00001
02 0.00000 0.05294 0.05294 0.05294
C61t6 0.00337 0.00000 0.00000 0.00000
C7118 0.00604 0.00000 0.00000 0.00000
C8H18 0.00539 0.00000 0.00000 0.00000
AIR 0.98520 0.00000 0.00000 0.00000

570.00
0.2648
777.90
40.028
101.49
8.5483
0.0623

-0.0454

0.9840
1021.8

3.4045-4
-329.59

-399.58
1.9905
0.2959

1.3012
29.011

0.00883
0.10318
0.09751
0,00274
0.73480
0 00001
0 05294
0 00000
0 00000
0 00000
0 00000

580.00 590.00 600.00 610.00 620.00 630.00 640.00
0.2577 0.2477 0.2350 0.2195 0.2016 0.1816 0.1600
751.14 716.71 674.76 625.72 570.36 509.87 445.93
40.625 41.192 41.726 42.221 42.676 43.086 43.452
101.49 101.49 101.49 101.49 101.49 101.49 101.49
7.9106 7.0900 6.0904 4.9219 3.6027 2.1613 0.6374
0.0597 0.0567 0.0533 0.0496 0.0454 0.0411 0.0366

-0.0638 -0.0821 -0.1000 -0.1169 -0.1319 -0.1441 -0.1524

0.9840 0.9840 0.9840 0.9840 0.9840 0.9840 0.9840

lOlq.1 1006.5 999.0 991.6 984.3 977.0 969.7
3.4305-4 3.4564-4 3.4823-4 5.5083-4 3.5345-4 3.5609-4 3.5877-4

-331.87 -334.12 -336.33 -338.51 -340.66 -342.81 -344.95
-401.34 -403.06 -404.76 -406.43 -408.09 -409.73 -411.37

1.9882 1.9860 1.9838 1.9816 1.9794 1.9772 1.9750
0.2955 0.2951 0.2947 0.2943 0.2938 0.2934 0.2930
1.3017 1.3023 1.3028 1.3034 1.3040 1.3045 1.3051
29.011 29.011 29.011 29.011 29.011 29.011 29.011

0.00883 0.00883 0.00883 0.00883
0.10318 0.10318 0.10318 0.10318
0.09751 0.09751 0.09751 0.09751
0.00274 0.00274 0.00274 0.00274
0.73480 0.73480 0.73480 0.73480
0.00001 0.00001 0.00001 0.00001
0.05294 0.05294 0.05294 0.05294
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

0.00883
0.10318
0.09751
0.00274
0.73480
0 00001
0 05294
0 00000
0 00000
0 00000
0 00000

0.00883 0.00883
0.10318 0.10318
0.09751 0.09751
0.00274 0.00274
0.73480 0.73480
0.00001 0.00001
0.05294 0.05294
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
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STATIONS 7 - 8 CYCLE I

EICHELBERG HEAT TRANSFER COEFICIENT

CRANKAHGLE 0.0000 650.00 660.00 670.00 680.00 690.00 700.00 710.00 720.00 0.0000
MASS,G 0.0000 0.1376 0.1153 0.0941 0.0749 0.0588 0.0467 0.0392 0.0369 -0.5200
VOLUME,CC 0.0000 380.63 316.46 256.08 202.19 157.30 123.57 102.64 95.547 0.0000
Q, CAL 0.0000 43.772 44.048 44.282 44.479 44.644 44.783 44.905 45.016 42.676

W, CAt 0.0000 101.49 101.49 101.49 101.49 101.49 101.49 101.49 101.49 101.49
PUMP W, CAL 0.0000 -0,9186 -2.4478 -3.8866 -5.1707 -6.2404 -7.0443 -7.5430 -7.7120 3.6027
DELTA Q/DEL TH 0.0000 0.0320 0.0276 0.0234 0.0197 0.0165 0.0139 0.0121 0.0111 0.0000
DELTA W/DEL TH 0.0000 -0.1556 -0.1529 -0.1439 -0.1284 -0.1070 -0.0804 -0.0499 -0.0169 0.0000

P, ATM 0.5264 0.9840 0.9840 0.9840 0.9840 0.9840 0.9840 0.9840 0.9840 0.9840
T, DEG K 235.6 962.3 954.8 947.2 939.1 930.6 921.5 911.7 901.6 1009.5
RHO, G/CC 8.1081-4 3.6151-4 3,6434-4 3.6729-4 3.7043-4 3.7382-4 3.7753-4 3.8158-4 3.8585-4 3.4463-4
H, CAL/G -54.284 -347.10 -349.28 -351.53 -353.86 -356.34 -359.00 -361.83 -364.75 -333.25
U, CAL/G -70.006 -413.02 -414.69 -416.41 -418.19 -420.09 -422.12 -424.28 -426.51 -402.39

5, CAL/(G)(K) 1.5676 1.9728 1.9705 1.9682 1.9657 1.9630 1.9602 1.9571 1.9539 1.9869
CP, CAL/(G)(K) 0.2429 0.2926 0.2921 0.2917 0.29i2 0.2906 0.2901 0.2895 0.2888 0.2953
GAMMA (S)
M, MOL NT

MOLE FRACTIONS

AR

C02
H20
NO

H2
OH
O2

C6H6
C7ll8
C8H18
AIR

1.3787 1.3057 1.3065 1.3070 1.3076 1.3084 1.5091 1.3100 1.3109 1.3021
29.782 29.011 29.011 29.011 29.011 29.011 29.011 29.011 29.011 29.011

0 00000 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883
0 00000 0.10318 0.10318 0.10318 0.10318 0.10318 0.10318 0.10318 0.10318 0.10318
0 00000 0.09751 0.09751 0.09751 0.09751 0.09751 0.09751 0.09751 0.09751 0.09751
0 00000 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274 0.00274
0 00000 0.73480 0.73480 0.73480 0.73480 0.73480 0.73480 0.73480 0.73480 0.73480
0 00000 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0 00001 0.00001 0.00001
0 00000 0.05294 0.05294 0.05294 0.05294 0.05294 0.05294 0 05294 0.05294 _.05294
0 00337 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000
0 00604 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0000_ 0.00000 0.00000
0.00539 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000
0.98520 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000

TOTAL COMPUTER TIME= 3.683 SEC DELTA TIME = 0.122 5EC

STATIONS 3 - 4 CYCLE 4
EICIIELBERG HEAT TRANSFER COEFICIENT

CRANKAHGLE 0.0000 313.23 315.23 317.23 319.23 321.23 323.23 325.23 327.23 329.23 331.23 332.00
HASS,G 0.0000 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673
VOLUME,CC 0.0000 237.84 226.92 216.32 206.05 196.14 186.60 177.45 168.71 160.39 152.52 149.60
Q, CAL 0.0000 -0.1765 -0.1704 -0.1637 -0.1562 -0.1480 -0.1391 -0.1293 -0.1186 -0.1070 -0.0945 -0.0895
L4, CAL 0.0000 -16.219 -16.994 -17.797 -18.626 -19.481 -20.361 -21.264 -22.187 -23.126 -24.078 -24.447
PUMP W, CAt 0.0000 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.5761 9.3761 9.3761 9.3761
DELTA Q/DEL TH 0.0000 0.0027 0.0030 0.0034 0.0037 0.0041 0.0045 0.0049 0.0053 0.0058 0.0063 0.0064
DELTA W/DEL TH 0.0000 -0.3736 -0.3874 -0.4012 -0.4146 -0.4277 -0.4400 -0.4514 -0.4614 -0.4698 -0.4759 -0.4788

P, ATM 0.5264 2.8395 3.0257 3.2275 3.4463 3.6831 3.9388 4.2143 4.5102 4.8266 5.1635 5.2985
T, DEG K 235.6 431.3 438.5 445.9 453.5 461.3 469.4 477.6 485.9 494.4 502.9 506.2
RtlO, G/CC 8.10_1-4 2.3854-3 2.5001-3 2.6227-3 2.7534-3 2.8925-3 3.0405-3 3.1972-3 3.3629-3 3.5373-3 3.7199-3 3.7923-3
H, CAL/G - -54.284 -37.688 -35.853 -33.956 -31.997 -29.980 -27.908 -25.786 -23.620 -21.418 -19.191 -18.329
U, CAL/G -70.006 -66.516 -65.160 -63.758 -62.309 -60.816 -59.281 -57.707 -56.099 -54.463 -52.807 -52.166
S, CAL/(G)(K) 1.5676 1.6265 1.6265 1.6265 1.6265 1.6264 1.6264 1.6264 1.6263 1.6263 1.6262 1.6262

CP, CAL/(G)(K) 0.2429 0.2554 0.2560 0.2565 0.2571 0.2578 0.2584 0.2591 0.2597 0.2604 0.2611 0.2614
GAHMA (S) 1.3787 1.3545 1.3534 1.3524 1.3513 1.3501 1.3489 1.3477 1.3465 1.3453 1.3440 1.3436
M, MOL WT

MOLE FRACTIONS

AR

C02
ll20
NO
H2
82
C6146
C7H8

C8H18
AIR

29.782 29.730 29.730 29.730 29.730 29.730 29.730 29.730 29.730 29.730 29.730 29.730

0.00000 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059
0.00000 0.00695 0.00695 0.00695 0.00695 0.00695 0.00695 0.00695 0.00695 0 00695 0.00695 0.00695
0.00000 0.00657 0.00657 0.00657 0.00657 0.00657 0.00657 0.00657 0.00657 0 00657 0.00657 0.00657
0.00000 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0 00017 0.00017 0.00017
0.00000 0.04948 0.04948 0.04948 0.04948 0.04948 0.04948 0.04948 0.04948 0 04948 0.04948 0.04948
0.00000 0.00357 0.00357 0.00357 0.00357 0.00357 0.00357 0.00357 0.00357 0 00357 0.00357 0.00357
0.00337 0.00315 0.00315 0.00315 0.00315 0.00315 0.00315 0.00315 0.00315 0 00315 0.00315 0.00315
0.00604 0.00563 0.00563 0.00565 0.00563 0.00563 0.00563 0.00563 0.00563 0 00563 0.00563 0.00563
0.00539 0.00502 0.00502 0.00502 0.00502 0.00502 0.00502 0.00502 0.00502 0 00502 0.00502 0.00502
0.98520 0.91887 0.91887 0.91887 0.91887 0.91887 0.91887 0.91887 0.91887 0 91887 0.91887 0.91887

TOTAL COMPUTER TIME= 10.671 SEC DELTA TIME = 0.2_2 SEC
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STATIONS 4 - 5 CYCLE 4

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEG

BURNED - UNBURNED ALTERNATELY

EICHELBERG HEAT TRANSFER COEFICIENT

COSINE COMBUSTION TAU = 0.0000 5EC BETA = 0.000

CRANKANGLE 0.0000 332.00 332.00 332.19 332.19 332.76 332.76 333.63 333.63 336.40 336.40 341.13 341.13
;;;,_3,3 0.0000 0,0001 0.5672 0.0001 0.5672 0.0002 0.5671 0.0005 0.5668 0.0035 0.5638 0.0147 0.5526
VOLUHE,CC 0.0000 0.0606 149.$4 0.0668 148.84 0.1656 146.64 0.5369 143.13 3.2059 131.09 11,142 109.41
Q, CAL 0.0000 -0.0895 -0.0895 -0.0883 -0.0883 -0.0846 -0.0846 -0,0787 -0.0787 -0.0574 -0.0574 -0.0060 -0.0060
_, CAL 0.0000 -24.447 -24.447 -24.536 -24.536 -24.811 -24.811 -25.231 -25.231 -26.574 -26.574 -28.889 -28.889
PUHP W, CAL 0.0000 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761
DELTA Q/DEL TH 0.0000 0.0000 0.0064 0.0000 0.0064 0.0000 0.0065 0.0001 0.0067 0.0005 0.0072 0.0024 0.0085
DELTA N/DEL TH 0.0000 -0.0002 -0.4791 0.0043 -0.4838 0.0226 -0.5026 0.0569 -0.5380 0.1392 -0.6237 0.2860 -0.7763
tlB/H, HU/M 0.0900 0.0001 0.9999 0.0001 0.9999 0.0003 0.9997 0.0009 0.9991 0.0062 0.9938 0.0259 0,9741
VB/V, VU/V 0.0000 0.0004 0.9996 0.0004 0.9996 0.0011 0.9989 0.0037 0.9963 0.0239 0.9761 0.0924 0.9076

P, ATM 0.5264 5.2985 5.2985 5.3329 5.3329 5.4393 5.4393 5.6139 5.6139 6.2692 6.2692 7.7689 7.7689
T, DEG K 235.6 1999.4 506.2 2001.7 507.0 2006.3 509.6 2012,0 513.6 2033.9 528.1 2078.8 557.3
RIIO, G/CC 8.1081-4 9.3652-4 3.7923-3 9.4149-4 3.8109-3 9.5807-4 3.8675-3 9.8603-4 3.9599-3 1.0892-3 4.3007-3 1.3205-3 5.0507-3
::. C'.L.'_ -=_ _" -!8._30 -18.329 -17.560 -18.120 -16.021 -17.455 -14.098 -16.385 -6.6461 -12.577 8.8239 -4.868A
U, CAL/G -70.006 -155.34 -52.166 -154.73 -52.009 -153.51 -51.515 -151.98 -50.718 -146.03 -47.879 -133.66 -42.11,
S, CAL/(G)(K) 1.5676 2.0872 1.6262 2.0871 1.6262 2.0865 1.6262 2.0853 1.6262 2.0814 1.6261 2.0743 1.6260
CP, CAL/(G)(K) 0.2429 0.3501 0.2614 0.3293 0.2615 0,3294 0.2617 0.3295 0.2620 0.3299 0.2632 0.3307 0.2657
GA'II'IA (S )
tl, rIDL WT

TIIILE FRACTIONS

AR
CO
C02
H
H2
H20
HO
H3;'
H2
0
OH
O2
C6tt6
C7H8
C8H18
AIR

1.3787 1.2464 1.3436 1.2628 1.3434 1.2627 1.3431 1.2626 1.3425 1.2622 1.3404 1.2614 1.3362
29.782 28.998 29.730 28.998 29.730 28.998 29.730 28.998 29.730 28.997 29.730 28.994 29.730

0.00000 0.00883 0.00059 0.00883 0.00059 0,00883 0.00059 0.00883 0.00059 0.00883 0.00059 0.00882 0.00059
0.00000 0.00025 0.00000 0.00025 0.00000 0.00026 0.00000 0.00026 0.00000 0.00029 0.00000 0.00037 0.00000
0.00000 0.10288 0.00695 0.10288 0.00695 0.10288 0.00695 0.10287 0.00695 0.10284 0.00695 0.10275 0.00695
0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0,00000 0.00001 0,00000
0.00000 0.00005 0.00000 0.00005 0.00000 0.00005 0.00000 O.O000S 0.00000 0.00006 0.00000 0.00007 0.00000
0.00000 0.09694 0.00657 0.09694 0.00657 0.09693 0.00657 0.09692 0.00657 0.09688 0.00657 0.09677 0.00657
0.00000 0.00390 0.00017 0.00391 0.00017 0.00392 0.00017 0.00394 0.00017 0.00402 0,00017 0,00417 0.00017
0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000
0.00000 0.73390 0.04948 0.73390 0.04948 0.73389 0.04948 0.73387 0.04948 0.73381 0.04948 0.73366 0.04948
0.00000 0.00007 0.00000 0.00007 0.00000 0.00007 0.00000 0.00007 0.00000 0.00007 0.00000 0.00009 0.00000
0.00000 0.00095 0.00000 0.00096 0.00000 0.00097 0.00000 0.00098 0.00000 0.00105 0.00000 0.00123 0.00000
0.00000 0.05221 0.00357 0.05221 0.00357 0.05220 0.00357 0.05219 0.00357 0.05214 0.00357 0.05206 0.00357
0.00337 0.00000 0.00315 0.00000 0.00315 O.0000q 0.00315 0.00000 0.00315 0.00000 0.00315 0.00000 0.00315
0.00604 0.00000 0,00563 0.00000 0.00563 0.00000 0.00563 0.00000 0.00563 0.00000 0.00563 0.00000 0.00563
0.00539 0.00000 0.00502 0.00000 0.00502 0.00000 0.00502 0.00000 0.00502 0.00000 0.00502 0.00000 0.00502
0.98520 0.00000 0.91887 0.00000 0.91887 0.00000 0.91887 0.00000 0.91887 0.00000 0.91887 0.00000 0.91887
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STATIONS 4 - 5 CYCLE 4

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEG

BURNED - UNBURNED ALTERNATELY

EICHELBERG HEAT TRANSFER COEFICIENT

COSINE COMBUSTION TAU = O.O00O SEC BETA = O.OOO

CRANKANGLE
MASS,G
VOLUME,CC
0, CAL
_, CAL
PUMP W, CAL
DELTA Q/DEL TH
DELTA W/DEL TN
HB/M, MU/M
VB/V, VU/V

P, ATM
T, DEG K
RtlO, G/CC
II, CAL/G
U, CAL/G
S, CAL/(G)(K)
CP, CAL/(G)(K)
GAt_MA (S)
M, MOL WT

HOLE FRACTIONS

AR
CO
C02
ll2
H20
NO
rio2
t_2
0
OH
O2
C6H6
C71t8
CBHI8
AI_

0 0000
0 0000
0 0000
0 0000
0 0000
0 0000
0 0000
0 0000
0 0000
0.0000

0.5264
235.6

8.1001-4
-54.284
-70.006

1.5676
0.2429
1.3787
29.782

0 O000O
0 OOOO0
000000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0.00000
0.000o0
0.00337
0.00604
0.00539
0.98520

398.19 398.19 402.66 402.66 q06.96 406.96 411.96 411.96 416.49 416.49 420.23 420.23
0._813 0.0860 0.5108 0.056_ 0.5340 0.0333 0.5535 0.0137 0.5640 0.0033 0.5672 0.0001
183.25 10.096 208.65 7.0831 234.42 4.4759 265.50 2.0075 294.17 0.5205 317.92 0.0096
7.2030 7.2030 8.3756 8.3756 9.5493 9.5493 10.943 10.943 12.206 12.206 13.233 13.233
7.9898 7.9898 15.905 15.905 23.386 23.386 31.727 31.727 38.821 38.821 44.300 4_.300
9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761
0.2429 0.0053 0.2592 0.0035 0.2706 0.0021 0.2775 0.0010 0.2786 0.0003 0.2743 O.O001
2.0471 -0.2777 2.0107 -0.2373 1.9338 -0.1956 1.8110 -0.1440 1.6532 -0.0859 1.4960 -0.0323
0.8484 0.1516 0.9005 0.0995 0.9413 0.0587 0.9758 0.0242 0.9942 0.0058 0.9999 0.0001
0.9478 0.0522 0.9672 0.0328 0.9813 0.0187 0.9925 0.0075 0.9982 0.0018 1.0000 O.OOOO

15.270 15.270 13.959 13.959 12.731 12.731 11.367 11.367 10.202 10.202 9.2895 9.2895
2054.6 649.7 2015.0 634.6 1975.4 619.6 1927.2 601.5 1881.0 584.8 1840.5 570.7

2.6265-3 8.5157-3 2.4484-3 7.9691-3 2.2778-3 7.4445-3 2.0849-3 6.8465-3 1.9172-3 6.3206-3 1.7842-3 5.8977-3
0.9203 20.033 -12.518 15.931 -25.882 11.842 -42.036 6.9692 -57.397 2.4735 -70.801 -1.3055

-139.87 -23.392 -150.59 -26.489 -161.23 -29.572 -174.07 -33.239 -186.27 -36.616 -196.89 -39.450
2.0241 1.6221 2.0237 1.6217 2.0233 1.6214 2.0228 1.6210 2.0221 1.6206 2.0213 1.6203
0,3303 0.2734 0.3296 0.2722 0.3288 0.2709 0.3278 0.2694 0.3268 0.2680 0.3259 0.2668
1.2618 1.3235 1.2625 1.3255 1.2633 1.3275 1.2642 1.3300 1.2652 1.3323 1.2662 1.3343
28.999 29.730 29.001 29.730 29.003 29.730 29.005 29.730 29.006 29.730 29.007 29.730

0.00883 0.00059 0.00883 0.00059 0.00883 0.00059 0.00883 0.00059 0.00883 0.00059 0.00883 0.00059
0.00024 O.OOO00 0.00018 O.O00OO 0.00014 0.00000 0.00010 0.00000 0.00007 0.00000 0.00005 0.00000
0.10290 0.00695 0.10296 0.00695 0.10301 0.00695 0.10306 0.00695 0.10309 0.00695 0.10312 0.00695
0.00005 O.OOOO0 O.O000_ O.O00OO 0.00003 0.00000 0.00002 0.00000 0.00002 O.O0000 0.00001 0.00000
0.09695 0.00657 0.09704 0.00657 0.09711 0.00657 0.09719 0.00657 0.09726 0.00657 0.09731 0.00657
0.00539 0.00017 0.00537 0.00017 0.00535 0.00017 0.00533 0.00017 0.00532 0.00017 0.00531 0.00017
0.00002 0.00000 0.00002 O.O00OO 0.00002 0.00000 0.00002 0.00000 0.00002 0.00000 0.00002 O.O0000
0.73317 0.04948 0.73323 0.04948 0.73329 0.04948 0.73334 0.04948 0.73339 0.04948 0.73341 0.04948
0.00006 0.00000 0.00005 0.00000 0.00004 0.00000 0.00003 0.00000 0.00002 0.00000 0.00001 0.00000
0.00095 0.00000 0.00081 0.00000 0.00069 0.00000 0.00055 0.00000 0.00045 0.00000 0.00037 0.00000
0.05145 0.00357 0.05147 0.00357 0.05150 0.00357 0.05152 0.00357 0.05155 0.00357 0.05156 0.00357
0.00000 0.00315 0.00000 0.00315 0.00000 0.00315 0.00000 0.00315 0.00000 0.00315 0.00000 0.00315
0.00000 0.00563 0.00000 0.00563 0.00000 0.00563 0.00000 0.00563 0.00000 0.00563 0.00000 0.00563
0.00000 0.00502 0.00000 0.00502 0.00000 0.00502 0.00000" O.OOSO? 9.00000 0.00502 0.00000 0.00502
0.00000 0.91887 0.00000 0.91887 0.00000 0.91887 0.00000 0.91887 0.00000 0.91887 0.00000 0.91887

TOTAL COMPUTER TIME = 14.713 SEC DELTA TIME = 4.042 SEC

189



STATIONS 5 - 6 CYCLE 4
EICIIELBERG HEAT TRANSFER COEFICIENT

CRAHKANGLE 0 0000 420.23 423.23 426.23 429.22 433.72 436.71 439.71 442.71 445.70 448.70 453.83
rlASS,G 0 0000 0.5672 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673 0.5673
VOLUME,CC 0 0000 317.92 336.90 356.14 375.57 404.90 424.50 444.03 463.45 482.69 501.70 533.56
Q, CAL 0 0000 13.233 14.034 14.815 15.576 16.686 17.406 18.110 18.800 19.477 20.142 21.252
W. CAL 0 0000 44.300 48.410 52.276 55.910 60.952 64.055 66.966 69.694 72.251 74.644 78.395
PUMP W, CAL 0 0000 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761 9.3761
DELTA Q/DEE TH 0 0000 0.2708 0.2673 0.2606 0.2542 0.2469 0.2401 0.2351 0.23fl_ 0.2259 0.2217 0.2164
DELTA W/DEL TH 0 0000 1.4132 1.3716 1.2904 1.2130 1.1217 1.0359 0.9715 0.9106 0.8531 0.7989 0.7306

P, ATM 0.5264 9.2895 8.6092 8.0013 7.4589 6.7508 6.3393 5.969? 5.6371 5.3373 5.0666 4.6613
T. DEG K 235.6 1840.5 1807.4 1775.8 1745.7 1703.4 1677.0 1651.9 1628.1 1605.6 1584.1 1550.0
Rtt0, G/CC 8.1081-4 1.7842-3 1.6838-3 1.5929-3 1.5105-3 1.4010-3 1.3364-3 1.2776-3 1.2240-3 1.1753-3 1.1307-3 1.0632-3
H, CAL/G -54.284 -70.801 -81.680 -92.062 -101.87 -115.62 -124.17 -132.27 -139.93 -147.1& -154.04 -164.95
U, C_L,'G -70.006 -196.89 -205.50 -213.71 -221.46 -232.30 -239.05 -245.43 -251.46 -257.16 -262.56 -27].13
S, CAL/(G)(K) 1.5676 2.0213 2.0206 2.0198 2.0190 2.0179 2.0171 2.0164 2.0156 2.0149 2.0142 2.0129
CP, CAL/(G)(K) 0.2429 0.3259 0.3251 0.3243 0.3236 0.3225 0.3217 0.3210 0.3203 0.3197 0.3190 0.3180
GAMMA (S)
M, HOE NT

MOLE FRACTIONS

AR

CO
C02
112

H20
NO
H02
N2
0
011
02
C6H6
C7118
C81t18

1.3787 1.2662 1.2670 1.2678 1.2686 1.2697 1.2705 1.2713 1.2720 1.2727 1.2734 1.2746
29.782 29.007 29.008 29.008 29.009 29.009 29.010 29.010 29.010 29.010 29.010 29.010

0.00000 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00883 0.00803
0.00000 0.00005 0.00004 0.00003 0.00002 0.00002 0.00001 0.00001 O.O000Z 0.00001 0.00000 0.00000
0.00000 0.1U312 0.10313 0.10314 0.10315 0.10316 0.10316 0.10317 0.10317 0.10317 0.10317 0.10317
0.00000 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.09731 0.09734 0,09737 0.09739 0.09742 0.09743 0.09745 0.09746 0.09746 0.09747 0.09748
0.00000 0.00531 0.00531 0.00531 0.00531 0.00531 0.00531 0.00531 0.00531 0.00531 0.00531 0.00531
0.00000 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00003
0.00000 0.73341 0.73343 0.73344 0.73346 0.73347 0.73348 0.73348 0.73349 0.73349 0.73349 0.73350
0.00000 0.00001 0.00001 0.00001 0.00001 0 00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00037 0.00031 0.00026 0.00022 0 00017 0.00015 0.00013 0.00011 0.00009 0.00008 0.00007
0.00000 0.05156 0.05157 0.05158 0.05159 0 05160 0.05160 0.05160 0.05161 0.05161 0.05161 0.05162
0.00337 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000 0.00000 0.00000 0,00000 0.00000
0.00604 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00539 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.98520 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Sample Summary Sheets

INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 4 LEVEL 1 CASE NO. 512
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 8.5 RPM = 2140.0 EGR : 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 28.00 DEG
FUEL PRESSURE : 0.98400 ATM MANIFOLD PRESSURE : 0.52640 AIM
PRESSURE DISCONTINUITIES ARE ISENTROPIC

EXHAUST PRESSURE = 0.98400 ATM

CHEMICAL FORMULA
FUEL C 8.00000 H 18.00000
FUEL C 7.00000 H 8.00000

FUEL C 6.00000 H 6.00000
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032

AIR INCLUDES 0.01762 MOLE FRACTION WATER

A/F: i9.7493 PERCENT FUEL =
FUEL MASS FRACTION : 0.045805
AIR MASS FRACTION = 0.904610

RESIDUAL MASS FRACTION = 0.049585
RECIRCULATED MASS FRACTION : 0.000000

MASS FRACTION E×HAUST RETAINED = 0.049557
NET WORK EFFICIENCY = 0.343192

THERMODYNAMIC PROPERTIES

STATION 2 3 4 5 6 7

CRANKANGLE 0.0000 29.376 180.00 332.00 332.00 540.00 540.00 0.0000
P, ATM 0.5264 0.5264 0.5264 5.2554 24.950 2.9799 0.9840 0.9840

T, DEG K 235.6 1053.5 280.7 516.3 2386.0 1550.0 1215.1 298.1
_HO, G/CC 8.1081-4 1.7665-4 6.7966-4 3.6897-3 3.6897-3 6.7966-4 2.8630-4 1.2521-3
H, CAL/G -54.284 -315.07 -67.215 -7.5770 121.69 -162.04 -266.54 -553.43

U, CAL/G -70.006 -387.23 -85.971 -42.071 -42.071 -268.21 -349.78 -572.46
S, CAL/(G)(K) 1.5676 2.0447 1.6278 1.6278 2.0448 2.0448 2.0448 1.5799
CP, CAL/(G)(K) 0.2429 0.2976 0.2453 0.2622 0.3933 0.3188 0.3054 0.9295

G_MMA (S) 1.3787 1.2990 1.3743 1.3419 1.2222 1.2738 1.2892 1.1609
M, MOL WI 29.782 29.010 29.742 29.742 28.953 29.010 29.010 31.130

WT FRACTION ENERGY STATE
CAL/MOL

0.428571 -59820.961 L

0.3B7755 2867.033 L
0.183673 11718.145 L

_i.000000 -I047.375 G

RELATIVE HUMIDITY = 0.5500

4.8194 EQUIVALENCE RATIO= 0.7367 PHI: 0.7250

INDICATED MEAN EFFECTIVE PRESSURE (ATM) = 5.7966
PUMP MEAN EFFECTIVE PRESSURE (ATM) = -0.4421
CHEMICAL ENERGY (JOULES/G) =2052.251

MASS EFFICIENCY = 0.950415
VOLUME EFFICIENCY = 0.809222
FRACTIONAL MASS CHANGE 6 - 7 =-0.578769

NOTES ON MOLE FRACTIONS:

A) STATION 2 RESIDUAL GAS FROM PREVIOUS CYCLE; B) MOLES NO FROZEN AFTER COMBUSTION(STATION 5)

MOLE FRACTIONS

AR 0.00000
CO 0.00000
C02 0.00000
H 0.00000
H02 0.00000
H2 0.00000
H20(L) 0.00000

1420 0.00000
HO 0.00000

_02 0.00000
N2 0.00000
0 0.00000

OH 0.00000
02 0.00000
C5116 0.00337
C7H8 0.00604

CBHI8 0.00539
A_R 0.98520

TOTAL COMPUTER TIME=

0 00883
0 00000
0 10312

0 00000
0 00000
0 00000

0 00000
0 09744

0 00918
0 00000
0.73158

0.00000
0.00006
0.04977
0.00000

0.00000
0.00000
0.00000

0.723 SEC

0.00045 0.00045 0.00881
0.00000 0.00000 0.00176
0.00524 0,00524 0.10121
0.00000 0.00000 0.00005
0.00000 0.00000 0.00001
0.00000 0.00000 0.00029

0.00000 0.00000 0.00000
0.00495 0.00495 0.09546
0.00047 0.00047 0.00917
0.00000 0.00000 0.00002
0.03719 0.03719 0.73011

0.00000 0.00000 0.00036
0.00000 0.00000 0.00309
0.00253 0.00253 0.04967
0.00320 0.00320 0.00000

0.00573 0.00573 0.00000
0.00511 0.00511 0.00000
0.93512 0.93512 0.00000

DELTA TIME = 0.123

0.00883
0.00000

0.10317
0.00000
0.00000

0.00000
0.00000
0.09748

O.00919
0 00000
0 73156

0 00000
0 00006
0 04970
0 00000

0 00000
0 00000
0 00000

SEC

0.00883 0.00883
0.00000 0.00000

0.10317 0.10318
0.00000 0.00000
0.00000 0.00000

0.00000 0.00000
0.00000 0.06809
0.09748 0.02942

0.00919 0.00000
0.00000 0.00000
0.73156 0.73617

0.00000 0.00000
0.00006 0.0000;
0.04970 0.05431
0.00000 0.00000

0.00000 0.00000
0.00000 0.00000
0.00000 0.00000

TEMP
DEC K
298.15

298.15
293.15

298.15
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 1 LEVEL 2 CASE NO. 512
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-lO94, 1982.

COMPRESSION RATIO = 8.5 RPM = 2140.0 EGR = O.OOO T(EGR) = 298.1 K SPARK ADVANCE = 28.00 DEC
FUEL PRESSURE = 0.98400 ATM MANIFOLD PRESSURE = 0.52640 ATM EXHAUST PRESSURE = 0.98400 ATM

..................... _R[ _SENTROPIC

BORE = 10.160 CM STROKE = 8.839 CH ROD = 14.478 CM CHAMBER AREA = 80.000 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 812.15 CC DISPLACEMENT VOLUME = 716.61 CC

IVOPEN = 27.44 DEC IVSHUT = 180.00 DEC EVOPEN = 540.00 DEC EVSHUT = 720.00 DEC

EICHELBERG HEAT TRANSFER COEFICIENT

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEC COSINE COMBUSTION TAU = 0.0000 SEC BETA = O.O00
AN = 0.500000 -0.500000

CHEMICAL FORMULA
FUEL C 8.00000 H 18.00000

FUEL C 7.00000 H 8.00000
FUEL C 6.00000 H 6.00000
AIR N 1.56168 O 0.41959

w AIR INCLUDES

A/F= 19.7493

MASS PER CYCLE (G)

TOTAL 0.55688
FUEL 0.02552
AIR 0.50400

EHEROY PER CYCLE (JOULES)

IHDICATED WORK 424.650
INDICATED PUtlP WORK -52.267
HEAT LOSS 188.346

CIIEM. ENERGY 1143.372

NT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

0.428571 -59820.961 L 298.15
0.387755 2867.033 L 298.15
0.183673 11718.145 L 298.15

AR 0.00936 C 0.00032 Wl. O00000 -1047.375 G 298.15
0.01762 MOLE FRACTION WATER RELATIVE HUMIDITY= 0.5500

PERCENT FUEL = 4.8194 EQUIVALENCE RATIO= 0,7367 PHI = 0.7250

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC)

CHARGE 9.4431
FUEL 0.4551
AIR 8.9880

AVERAGE ENERGY RATE - POWER (KW)

INDICATED POWER 7.573
INDICATED PUMP POWER -0.575
HEAT LOSS RATE 3.359

EXHAUST PO_ER 8.963

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)

MEAN TORQUE (NENTON-METERS)

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1009.46 K AND 0.9840 ATM
AR 0.008829 C02 0.103178 H20 0.097511
011 N.O00005 02 0.052959

FRESH CttARGE HOLE FRACTIONS AT 235.63 K AND 0.5264 ATM MOLECULAR WEIGHT =
C6H6 0.003375 C7H8 0.006040 C8H18 0.005385 AIR

NOTE: INLET AHD EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

5.8484
-0.4444
31.2248

MOLECULAR WEIGHT =
NO 0.002737

MEAN EXHAUST MASS FLOW RATE (G/SEC)

29.782
0.985199

EXHAUST 9.2735
CO 0.00000
NOX 0.02628

CYCLE EFFICIENCIES

NET WORK 0.343181
HEAT LOSS 0.164728
EXHAUST 0.439578

29.011
N2 0.734798

COMPUTER CYCLE TIME = 2.978 5EC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 2 LEVEL 2 CASE NO. 512
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1982.

COHPRE5SION RATIO = 8.5 RPM = 2160.0 EGR = 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 28.00 DEC
FUEL PRESSURE : 0.98400 ATM MANIFOLD PRESSURE = 0.52640 ATM EXHAUST PRESSURE = 0.98400 ATM
PRESSURE DISCONTINUITIES ARE ISENTROPIC
DORE : 10.160 CM STROKE = 8.839 CM ROD = 14.478 CM CHAMBER AREA = 80.000 5Q CM WALL TEMP = 360.0 K
TOTAL VOLUME _ 812.15 CC DISPLACEMENT VOLUME = 716.61CC

IVOPEN = 27.94 DEC IVSHUT = 180.00 DEC EVOPEN = 540.00 DEC EVSHUT = 720.00 DEC

EICHELBERG NEAT TRANSFER COEFICIEHT

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEC COSINE COMBUSTION TAU = 0.0000 SEC BETA : 0.000

AN = 0.500000 -0.500000

NT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEC K

FUEL C 8.00000 H 18.00000 0.428571 -59820.961 l 298.15
FUEL C 7.00000 H 8.00000 0.387755 2867.053 l 298.15
FUEL C 6.00000 H 6.00000 0.183675 11718.145 L 298.L5
AIR N 1._6168 0 0.41959 AR 0.00956 C 0.00032 _1.000000 -1047.375 G 298.15

w AIR INCLUDES 0.01762 MOLE FRACTION WATER RELATIVE HUMIDITY= 0.5500

A/F = 19.7493 PERCENT FUEL= 4.8194 EQUIVALENCE RATIO = 0.7567 PHI: 0.7250

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC)

CHARGE 9.4516 EXHAUST 9,4446
FUEL 0.6555 CO 0.00000
AIR 8.9960 NOX 0.02471

AVERAGE ENERGY RATE - POWER (KW)

INDICATED POWER 7.610
INDICATED PUMP POWER -0.575

HEAT LOSS RATE 3.261
EXHAUST POWER 8.954

MASS PER CYCLE (G) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.56686
FUEL 0.02554
AIR 0.50445

ENERGY PER CYCLE (JOULES) CYCLE EFFICIENCIES

INDICATED WORK 426.735 NET WORK 0.344586

INDICATED PUMP WORK -32.220 HEAT LOSS 0.159707
HEAT LOSS 182.848 EXHAUST 0.438529
J;iE!i. _HERGY 1144.896

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

COMPOSITE EXHAUST GAS HOLE FRACTIONS AT 996.56 K AND 0.9840 ATM

AR 0.008829 C02 0.105178 H2O 0.097512
02 0.053044

FRESH CHARGE HOLE FRACTIONS AT 255.65 K AND 0.5264 ATM MOLECULAR WEIGHT =
C_:;C 3.0_7_ C7H8 0.006040 C8HI8 0.005585 AIR

HOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 3.088 SEC

5.8771
-0.4437
31.3945

MOLECULAR WEIGHT =
NO 0.002527

29.782
0.985199

29.011
N2 0.734903
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 3 LEVEL 2 CASE NO. 512
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1982.

COMPRESSION RATIO = 8.5 RPM = 2140.0 EGR = 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 28.00 DEG
FUEL PRESSURE = 0.98400 ATM MANIFOLD PRESSURE = 0.52640 ATM EXHAUST PRESSURE = 0.98400 ATM

PRESSURE DISCONTINUITIES ARE ISENTROPIC
BORE = I0.160 CM STROKE = 8.839 CM ROD = 14.478 CM CHAMBER AREA = 80.000 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 812.15 CC DISPLACEMENT VOLUME = 716.61 CC

IVOPEN = 27.95 DEG IVSHUT = 180.00 DEG

EICflELBERG HEAT TRANSFER COEFICIENT

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEG COSINE
AN = 0.500000 -0.500000

CHEMICAL FORMULA
FUEL C 8.00000 H 18.00000

FUEL C 7.00000 H 8,00000
FUEL C 6.00000 H 6.00000
AIR N 1.56168 0 0.41959

AIR INCLUDES

A/F: 19.7493

MASS PER CYCLE (G)

TOTAL 0.56727
FUEL 0.02554
AIR 0.504_7

ENERGY PER CYCLE (JOULES)

INDICATED HORK 426.823

INDICATED PUMP WORK -32.219
HEAT LOSS 182.638
CHEM. ENERGY 1144.967

EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

COMBUSTION TAU = 0.0000 SEC BETA : 0.000

ENERGY STATE TEMP
DEG K

L 298.15
L 298.15
L 298.15

G 298.15

WT FRACTION
CAL/MOL

0.428571 -59820.961
0.387755 2867.033
0.183673 11718.145

AR 0.00936 C 0.00032 Wl.O00000 -1047.375
0.01762 HOLE FRACTION WATER RELATIVE HUMIDITY = 0.5500

PERCENT FUEL = 4.8194 EQUIVALENCE RATIO: 0.7367 PHI = 0.7250

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC)

CHARGE 9.4520
FUEL 0.4555
AIR 8,9965

AVERAGE ENERGY RATE - POWER (KW)

INDICATED POWER 7.612

INDICATED PUMP POWER -0.575
HEAT LOSS RATE 3.257
EXHAUST POWER 8.953

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATH)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (MENTOR-METERS)

AND 0.9840 ATM
H20 0.097512

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 996.04 K
AR 0.008829 C02 0.103178
02 0.053048

5.8783
-0.4437
31.4016

MOLECULAR WEIGHT :
NO 0.002519

FRESH CHARGE MOLE FRACTIONS AT 235.63 K AND 0.5264 ATM MOLECULAR WEIGHT : 29.782
C6H6 0.003375 C7HB 0.006040 CBH18 0.005385 AIR 0.985199

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 9.4517
CO 0.00000
NOX 0.02465

CYCLE EFFICIENCIES

NET WORK 0.344643

HEAT LOSS 0.159514
EXHAUST 0.438485

29.011
N2 0.734908

COMPUTER CYCLE TIME= 3.062 SEC
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TNTFRNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 8 LEVEL 3 CASE NO. 512
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1982.

COMPRESSION RATIO = 8.5 RPM = 2140.0 EGR = O.O00 T(EGR) = 298.1 K SPARK ADVANCE = 28.00 DEG
FUEL PRESSURE = 0.98400 ATM MANIFOLD PRESSURE = 0.526q0 ATM EXHAUST PRESSURE = 0.98400 ATM
PRESSURE DISCOtITINUITIES ARE ISENTROPIC

BORE = 10.160 CM STROKE = 8.839 CM ROD = 14._78 CM CHAMBER AREA = 80.000 SQ CM WALL TEMP = 360.0 K
TOTAt VOLUME = 812.15 CC DISPLACEMENT VOLUME = 716.61CC

IVOPEN = 27.95 DEG IVSHUT = 180.00 DEG

EICHELBERG HEAT TRANSFER COEFICIENT

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEG COSINE
AN = 0.509000 -0.500000

CHEMICAL FORMULA
FUEL C 8.00000 H 18,00000
FUEL C 7.00000 H 8.00000
FUEL C 6.00000 H 6.00000
AIR N 1.56168 O 0.41959

W AIR INCLUDES

A/F= 19.7493

MASS PER CYCLE (G)

TOTAL 0.56738
FUEL 0.02554
AIR 0.50q48

ENERGY PER CYCLE (JOULES)

INDICATED WORK 42b.749
IHDICATED PUMP WORK -32.218

HEAT LOSS 181.391
CtlEM. ENERGY 1145.319

EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

COMBUSTION TAU = O.O00O SEC BETA = O.O00

ENERGY STATE TEMP
DEG K

L 298,15
L 298.15
L 298,15
G 298.15

WT FRACTION
CAL/MOL

0.428571 -59820.961
0.387755 2867.033
0.183673 11718.145

AR 0.00936 C 0.00032 wl. O00000 -1047.375
0.01762 MOLE FRACTION WATER RELATIVE HUMIDITY= 0.5500

PERCENT FUEL = 4.8194 EQUIVALENCE RATIO= 0.7367 PHI= 0.7250

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC)

CHARGE 9.4521
FUEL 0.4555
AIR 8.9966

AVERAGE ENERGY RATE - POWER (KW)

INDICATED POWER 7.593
INDICATED PUMP POWER -0.575
HEAT LOSS RATE 3.235

EXHAUST POWER 9.003

MISCELLANEOUS

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 9.q522
CO 0.00000
NOX 0.05233

CYCLE EFFICIENCIES

NET WORK 0.3_3599
HEAT LOSS 0.158376
EXHAUST 0.440792

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 5.8635
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.4437
MEAN TORQUE (NEWTON-METERS) 31.3162

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 993.39 K AND 0.9840 ATM MOLECULAR WEIGHT =
AR 0.008829 CO2 0.103179 H20 0.097513 NO 0.005298
N2 0.733512 OH 0.000006 02 0.051626

FRESH CHARGE MOLE FRACTIONS AT 235.63 K AND 0.5264 ATM MOLECULAR WEIGHT = 29.782
C61t6 0.003375 C7H8 0.0060_0 C8H18 0.005385 AIR 0.985199

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME= 5.661 SEC

29.011
NO2 0.000035
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Input, Case 513

REAC

C 8. H 18. .42 L298.15
C 7. H 8. .38 L29B.15
C 6. H 6. .18 L298.15

NAME

&OTTINP FREq=2140,BORE=lO.16,STROKE=8.839,ROD=14.478,CA=80.,
TN:360.,CR= 8.5,CSBURN=T,KASE=513,
PEXH=.9840,PMFOLD=.5264,

HC3=O.,HA=.O,HB=.O,HC2=.O000,
HP=T,RHUMID=S5.,TAIR=298.15&END

&AFINP PHI=.725,SPARK=28.0,EGR=O.,THBURN=88.8,
NCYCLE=8,KINET=4,TAU=O.OOE-OO,DEBUG=T,VARAF=F&END

Output, Case 513

Cycle Summary Sheets

INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 4 LEVEL 1 CASE NO. 513
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 8.5 RPM = 2140.0 EGR = 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 28.00 DEG
FUEL PRESSURE = 0.98400 ATM MANIFOLD PRESSURE = 0.52640 ATM EXHAUST PRESSURE = 0.98400 ATM
PRESSURE DISCONTINUITIES MINIMIZE INTERNAL ENERGY CHANGES

CHEMICAL FORMULA
FUEL C 8.06000 H 18.00000
FUEL C 7.00000 H 8.00000
FUEL C 6.00000 H 6.00000
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032

w AIR INCLUDES 0.01762 MOLE FRACTION WATER

A/F= 19.7493 PERCENT FUEL =
FUEL MASS FRACTION = 0.045934
AIR MASS FRACTION = 0.907173
RESIDUAL MASS FRACTION = 0.046893
kECIRCULATED MASS FRACTIDN = 0.000000

MASS FRACTION EXHAUST RETAINED = 0.046873
NET WORK EFFICIENCY = 0.341046

THERMODYNAMIC PROPERTIES

STATION 2 3 4 5 6 7
CRANKANGLE 0.0000 29.480 180.00 332.00 332.00 540.00 540.00 0.0000
P, ATM 0.5264 0.5264 0.5264 5.2360 24.102 2.8833 0.9840 0.9840
T. _E_ v 244.1 1163.8 292.6 536.1 2401.6 1563.0 1338.9 298.1
RHO, G/CC 7.8277-4 1.5991-4 6.5217-4 3.5404-3 3.5404-3 6.5217-4 2.5983-4 1.2521-3
H, CAL/G -52.231 -281.74 -62.994 -1.0580 127.99 -157.69 -228.22 -553.43
U, CAL/G -68.517 -361.46 -82.541 -36.873 -36.873 -264.76 -319.93 -572.47
S, CAL/(G)(K) 1.5762 2.0747 1.6372 1.6372 2.0498 2.0498 2.0748 1.5799
CP, CAL/(G)(K) 0.2433 0.3030 0.2459 0.2639 0.3974 0.3193 0.3105 0.9295
GAMMA (S) 1.3779 1.2921 1.3730 1.3390 1.2205 1.2733 1.2830 1.1609
M, MOL WT 29.782 29.010 29.745 29.745 28.947 29.010 29.010 31.130

MT FRACTION ENERGY STATE
CAL/MOL

0.428571 -59820.961 L
0.387755 2867.633 L
0.183673 11718.145 L

Wl.O00000 -10_7._75 G
RELATIVE HUMIDITY= 0.5500

4.8194 EQUIVALENCE RATIO = 0.7367 PHI = 0.7250
IHDICATED MEAH EFFECTIVE PRESSURE (ATM) = 5.5614
PUMP MEAN EFFECTIVE PRESSURE (ATM) = -0.4420
CHEMICAL ENERGY (JOULES/G) :2057.733
MASS EFFICIENCY = 0.953107
VOLUME EFFICIENCY = 0.808752
FRACTIONAL MASS CHANGE 6 - 7 =-0.601583

NOTES ON MOLE FRACTIONS:
A) STATION 2 RESIDUAL GAS FROM PREVIOUS CYCLE; B) MOLES NO FROZEN AFTER COMBUSTION(STATION 5)

MOLE FRACTIONS

AR 0.00000 0.00883 0.00042 0.00042 0.00881 0.00883 0.00883
CQ 0.00000 0.00000 0.00000 0.00000 0.00195 0.00000 0.00000
C02 0.00000 0.10313 0.00496 0.00496 0.10100 0.10317 0.10317
H 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000 0.00000
H02 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000
H2 0.00000 O.O000O 0.00000 0.00000 0.00031 0.00000 0.00000
H20(L) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
H20 0.00000 0.09744 0.00468 0.00468 0.09531 0.09747 0.09747
NO 0.00000 0.00945 0.00045 0.00045 0.00943 0.00945 0.00945
NO2 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000
N2 0.00000 0.73144 0.03517 0.03517 0.72984 0.73143 0.73143
0 0.00000 0.00000 0.00000 0.00000 0.00039 0.00000 0.00000
un ;.C_:;; 0.00007 0.00000 0.00000 0.00328 0.00007 0.00007
02 0.00000 0.04963 0.00239 0.00239 0.04958 0.04957 0.04957
C6H6 0.00337 0.00000 0.00321 0.00321 0.00000 0.00000 0.00000
C7H8 0.00604 0.00000 0.00575 0.00575 0.00000 0.00000 0.00000
CBHI8 0.00539 0.00000 0.00513 0.00513 0.00000 0.00000 0.00000
AIR 0.98520 0.00000 0.93783 0.93783 0.00000 0.00000 0.00000

TOTAL COMPUTER TIME= 0.723 SEC DELTA TIME = 0.127 SEC

0 00883
0 00000

0 10318
0 00000
0 00000
0 00000

0 06809
0 02942
0 00000

0.00000
0.73617
0.00000
0.00000
0.05431
0.00000
0.00000
0.00000
0.00000

TEMP
DEG K
298.15
298.15
298.15
298.15

203



INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE S LEVEL 2 CASE NO. 513
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BOHHIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1982.

COMPRESSION RATIO = 8.5 RPM = 2140.0 EGR = 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 28.00 DEG
FUEL PRESSURE = 0.98400 ATM MANIFOLD PRESSURE = 0.52640 ATM EXHAUST PRESSURE = 0.98400 ATM
PRESSURE DISCONTINUITIES MINIMIZE INTERNAL EHERGY CHANGES
BORE = 10.160 CM STROKE = 8.839 CM ROD = 14.47& CM CHAMBER AREA = 80.000 SQ CM WALL TEMP = 560.0 K
TOTAL VOLUME = 812.15 CC DISPLACEMENT VOLUME = 716.61 CC

xvnPFN = 27.89 DEG IVSHUT = 180.00 DEG

EICHELBERG HEAT TRA½SFER COEFICIEHT

EQUILIBRIUM FLAME FINITE BURNIHG INTERVAL = 8B.2 DEG COSINE
AN = 0.500000 -0.500000

CHEMICAL FORMULA
FUEL C 8.00000 H 18.00000
FUEL C 7.00000 H 8.00000
FUEL C 6.00000 H 6.00000
AIR H 1.56168 0 0.41959

w AIR INCLUDES

A/F= 19.7493

MASS PER CYCLE (G)

TOTAL 0.54762
FUEL 0.02469
AIR 0.48761

ENERGY PER CYCLE (JOULES)

INDICATED WORK 410.812
INDICATED PUMP WORK -32.225
HEAT LOSS 186.315
CHEM. EHERGY 1106.624

EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

COMBUSTION TAU = 0.0000 SEC BETA = 0.000

ENERGY STATE TEMP
DEG K

L 298.15
L 298.15
L 298.15
G 298.15

WT FRACTION
CAL/MOL

0.428571 -59820.961
0.387755 2867.033
0.183673 11718.145

AR 0.00936 C 0.00032 wl.O00000 -1047.375
0.01762 MOLE FRACTION WATER RELATIVE HUMIDITY = 0.5500

PERCENT FUEL= 4.8194 EQUIVALENCE RATIO= 0.7367 PHI= 0.7250

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAH INLET MASS FLOW RATE (G/SEC)

CHARGE 9.1560
FUEL 0.4403
AIR 8.6957

AVERAGE ENERGY RATE - POWER (KM)

INDICATED POWER 7.326
IHDICATED PUMP POWER -0.575
HEAT LOSS RATE 3.323
EXHAUST POWER 9.528

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 5.6578
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.4438
MEAN TORQUE (NEWTON-METERS) 30.1270

COMPUSITE EXHAUST GAS MOLE FRACTIONS AT 1066.72 K AND 0.9840 ATM
AR 0.008829 CO2 0.103178 H20 0.097512
02 0.053013

FRESH CHARGE HOLE FRACTIONS AT 244.07 K AND 0.5264 ATM MOLECULAR WEIGHT =
C6H6 0.003375 C7H8 0.006040 C8HI& 0.005385 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 9.1358
CO 0.00000
NOX 0.02449

CYCLE EFFICIENCIES

NET WORK 0.342110
HEAT LOSS 0.168364
EXHAUST 0.482787

MOLECULAR WEIGHT =
NO 0.002589

29.782
0.985199

29.011
N2 0.734872

COMPUTER CYCLE TIME= 3.101 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 8 LEVEL 3 CASE NO. 513
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1096, 1982.

COMPRESSION RATIO : 8.5 RPM = 21q0.0 EGR : 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 28.00 DEG
FUEL PRESSURE = 0.98_00 ATM MANIFOLD PRESSURE = 0.526_0 ATM EXHAUST PRESSURE = 0.98600 ATM
PRESSURE DISCONTIHUITIES MINIMIZE INTERNAL ENERGY CHAHGES

BORE = 10.160 CM STROKE = 8.839 CM ROD = 14.678 CM CHAMBER AREA = 80.000 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 812.15 CC DZSPLACEMEHT VOLUME = 716.61CC

IVOPEN : 27.89 DEG IVSHUT = 180.00 DEG

EICHELBERG HEAT TRANSFER COEFICIENT

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.2 DEG
AN = 0,500000 -0.500000

EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

CHEMICAL FORMULA
FUEL C 8.00000 H 18.00000
FUEL C 7.00000 H 8.00000
FUEL C 6.00000 H 6.00000
AIR N 1.56168 0 0.41959

AIR INCLUDES

A/F: 19.7493

COSINE COMBUSTION TAU = 0.0000 SEC BETA = 0.000

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

0.428571 -59820.961 L 298.15
0.387755 2867.033 L 298.15
0.183673 11718.145 L 298.25

AR 0.00936 C 0.00032 _1.000000 -1047.375 G 298.15
0.01762 MOLE FRACTION WATER RELATIVE HUMIDITY: 0.5500

PERCENT FUEL: 4.8194 EQUIVALENCE RATIO = 0.7367 PHI = 0.7250

MASS PER CYCLE (G)

TOTAL 0.54772
FUEL 0.02_69
AIR 0._8761

ENERGY PER CYCLE (JOULES)

INDICATED WORK 409.712
INDICATED PUMP WORK -32.225
HEAT LOSS 184.924
CHEM. ENERGY 1106.960

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC)

CHARGE 9.1361
FUEL 0._403
AIR 8.6958

AVERAGE ENERGY RATE - POWER (KW)

INDICATED POWER 7.307
INDICATED PUMP POWER -0.575
HEAT LOSS RATE 3.298
EXHAUST POWER 9.567

MISCELLANEOUS

IHDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTOH-METERS)

CG;;FGSETE EXHAUST GAS MOLE FRACTIOHS AT 1063.19 K AND 0.9840 ATM
AR 0.003829 C02 0.103179 H20 0.097512
N2 0.733_25 OH 0.000007 02 0.051538

FRESH CHARGE HOLE FRACTIONS AT 244.07 K AND 0.5266 ATM MOLECULAR WEIGHT =
C6H6 0.003575 C7H8 0.006040 CBH18 0.005385 AIR

NOTE: INLET AHD EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 9.1360
CO 0.00000
NOX 0.05223

CYCLE EFFICIENCIES

NET WORK 0.361013
HEAT LOSS 0.167056
EXHAUST 0.484651

5.6426
-0.4438
30.0395

MOLECULAR WEIGHT =
NO 0.005473

COMPUTER CYCLE TIME= 6.302 SEC

29.782
0.985199

29.011
NO2 0.000036
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Appendix E

Example II (Case 1359)

Input, Case 1359

REAC

C 8. H 18. .42 G298.15 F
C 7. H 8. .38 G298.15 F

C 6. H 6. .18 G298.15 F
C 8. H 16. .02 G298.15 F

NAME

&DTTINP FREQ:3SOO,BORE:IO.922,STROKE:IO.312,ROD:17.1#S,TW=360.,
CA:129.DS,CR:lO.5,CSBURN=T,KASE=I359, PEXH:I.,PMFOLD=2.,

HCS:O,HA:O,HB=O,HC2=O,
&END

&_FIHP EQRAT:.9,SPARK:IO.oEGR=.I,T'HBURN=50.,VARAF:F,IPRINT=6,
IFLO_:S,NCYCLE:6&END

&FLONIK DIN:4.78155,DEX=3.6S125,BETAIN=45,BETAEX=45,LIN:2.Z,LINR:2.2,
LEX:I.8,LEXR=I.8,AIH(1)=.gS,AINR(1)=I.,AEXR(1)=.9S,ALFAIN=O,ALFAEX:O,
EIN(2)=-ZO,EINR(2):-20,EEXR(2)=-I5,E_X(2)=-IS,EIH(3):2,EINR(3)=2,

EEXR(3):2,EEX(3)=Z,BIN(1)=.OS,BINR(I_-.OS,AEX(1)=I.,

R_N_-_2848969_79444_-_87_46_746_4_96_82837_756_-8957_653343_2_39_94887_083_
-100238.56274839, 156517.07679742,-145707.72737296,74242.533537645,-15911.602212327,

REX: -1.7570429627131, -29.707017135839, 740.07743731757, -5709.7197760822, 22840.404174765
-55412.129620218, 75446.092521560, -63124.3199E4495, 28632.585430403, -5383.9560171224,
IVOPEN=699,IVSHUT=Z65,EVOPEN=46S,EVSHUT=45&END

Output, Case 1359

INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 5 LEVEL I CASE NO. 1359
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE g.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COHPRESSION RATIO = 10.5 RPM = 5500.0 EGR : 0.100 T(EGR) = 1112.0 K SPARK ADVANCE = 10.00 DEG
FUEL PRESSURE : 1.00000 ATM MANIFOLD PRESSURE : 2.00000 ATM
PRESSURE DISCONTINUITIES ARE ISENTROPIC

EXHAUST PRESSURE = 1.00000 ATM

CHEMICAL FORMULA

FUEL C 8.00000 H 18.00000
FUEL C 7.00000 H 8.00000
FUEL C 6.00000 H 6.00000

FUEL C 8.00000 H 16.00000
AIR N 1.56168 0 0.41959 AR 0.00936. C

A/F= 15.7503 PERCENT FUEL:
FUEL MASS FRACTION = 0.052653
AIR MASS FRACTION = 0.829307
RESIDUAL MASS FRACTION = 0.020045
RECLRCULATED MASS FRACTION = 0.097995
MASS FRACTION EXHAUST RETAINED = 0.020033
NET WORK EFFICIENCY = 0.460386

THERMODYNAMIC PROPERTIES

STATION 2 3 4 S 6 7
CRANKANGLE 0.0000 0.0000 180.00 350.00 350.00 540.00 540.00 0.0000
P, ATM 2.0000 2.0000 2,0000 38.734 118.27 7.3110 1.0000 1.0000
T. DEG K 463.4 759.4 482.0 972.3 2854.3 1711.0 1112.6 298.1
RHO, G/CC 1.5847-3 9.5739-4 1.5228-3 1.4620-2 1.4620-2 1.5228-3 3.2033-4 1.2886-3
H, CAL/G -24.660 -124.44 -50.634 107.16 238.92 -190.83 -579.27 -639.72
U, CAL/G -55.224 -175.03 -62.459 45.001 43.001 -307.09 -454.87 -658.51
S, CAL/(b)(K) ¢.bblg 1.8418 1.6752 1.6752 2.0028 2.0028 2.0028 1.5588
CP, CAL/(G)(K) 0.2584 0.2851 0.2600 0.2999 0.5076 0.3271 0.3025 0.911S
GAMMA (S) 1.5427 1.3077 1.3401 1.2822 1.1878 1.2627 1.2897 1.1604
M, MOL NT 30.131 29.828 30.112 30.112 28.951 29.245 29.245 31.526

NT FRACTION
CAL/MOL

0.420000 -49910.473
0.380000 11949.438
0.180000 19818.801
0.020000 -19814.664

0.00052 1.000000 -29.792

5.9700 EQUIVALENCE RATIO= 0.9000 PHI: 0.8998
INDICATED MEAN EFFECTIVE PRESSURE (ATM) = 17.0038

PUMP MEAN EFFECTIVE PRESSURE (ATM) = 1.0000
CHEMICAL ENERGY (JOULES/G) =2354.265
MASS EFFICIENCY = 0.979955
VOLUME EFFICIENCY = 0.944477
FRACTIONAL MASS CHANGE 6 - 7 =-0.789651

ENERGY STATE TEMP
DEG K

G 298.15

G 298.15
G 298.15
G 298.15
G 298.15

NOTES ON HOLE FRACTIONS:
A) STATION 2 RESIDUAL GAS FROM PREVIOUS CYCLE; B) MOLES NO FROZEN AFTER COMBUSTION(STATION S)

MOLE FRACTIONS

AR 0.00092
CO 0.00000
C02 0.01325
H 0.00000
H02 0.00000
tl2 0.00000
H20(L) 0.00000
H20 0.01041
NO 0.00126
NO2 0.00000
N2 0.07575
0 0.00000
OH 0.00001
02 0.00143
C6H6 0.00373
C7H8 0.00668
C8tt16 0.00029
C8H18 0.00595

0 00364
0 00001
0 05265
0 00000
0 00000
0 00000
0 00000
0 04136
0 00501
0 00000
0 30092
0 00000
0 00005
0 00566
0 00246
0 00440
0 00019
0 00592

0.00108 0.00108 0.00880
0.00000 0.00000 0.01397
0.01563 0.01563 0.11342
0.00000 0.00000 0.00037
0.00000 0.00000 0.00003
0.00000 0.00000 0.00168
0.00000 0.00000 0.00000
0.01228 0.01228 0.09508
0.00149 0.00149 0.01211
0.00000 0.00000 0.00002
0.08936 0.08936 0.72781
0.00000 0.00000 0.00086
0.00002 0.00002 0.00632
0.00168 0.00168 0.01954
0,00365 0.00365 0.00000
0.00654 0.00654 0.00000
0.00028 0.00028 0.00000
0.00583 0.00583 0.00000

0 00889
0 00005
0 12866
0 00000
0 00000
0 00001
0 00000
0 10106
0 01223
0 00000
0.73520
0 00000
0 00012
0 01379
0 00000
0 00000
0 00000
0 00000

0.00889 0.00889
0.00003 0.00000
0.12866 0.12869
0.00000 0.00000
0.00000 0.00000
0.00001 0.00000

0.00000 0.07232
0.10106 0.02882
0.01223 0.00000
0.00000 0.00000
0.73520 0.74135
0.00000 0.00000
0.00012 0.00000
0.01379 0.01992
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 4 LEVEL 2 CASE NO. 1359
REF: ZELEZNIK. FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSIOH RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 965.8 K SPARK ADVANCE = 10.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 2.00000 ATM EXHAUST PRESSURE = 1.00000 ATM
PRESSURE OISCOHTINUITIES ARE ISEHTROPIC
BORE : 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 0.00 DEG IVSHUT = 180.00 DEG EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

EICHELBERG HEAT TRANSFER COEFICIENT

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 29.8 DEG COSINE COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN : 0.500000 -0.500000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 8.00000 H 18.00000 0.420000 -49910.473 G 298.15
FUEL C 7.00000 H 8.00000 0.380000 11949.438 G 298.15
FUEL C 6.00000 H 6.00000 0.180000 19818.801 G 298.15
FUEL C 8.00000 H 16.00000 0.020000 -19814.664 G 298.15
A_R N 1.56168 0 0.q1959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F= 15.7503 PERCENT FUEL = 5.9700 EQUIVALENCE RATIO= 0.9000 PHI= 0.8998

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUBT MASS FLOW RATE (G/SEC)

TOTAL 1.72282 CHARGE 49.0332 EXHAUST 49.0329
FUel 0.09033 FUEL 2.6346 CO 0.00008
AIR 1.42270 AIR 41.4953 NOX 0.45810

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 1698.844 INDICATED POWER 49.550 NET WORK 0.444992
INDICATED PUMP WORK 97.891 INDICATED PUMP POWER 2.855 HEAT LOSS 0.114674
HEAT LOSS 463.015 HEAT LOSS RATE 13.505 EXHAUST 0.378515
Ct4EM. ENERGY 4037.678 EXHAUST POWER 4_.576

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 17.3540
PUMP MEAH EFFECTIVE PRESSURE (ATM) Z.O000
MEAN TORQUE (NEWTON-METERS) 142.9796

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 965.61 K AND 1.0000 ATM MOLECULAR WEIGHT =
AR 0.008891 C02 0.128694 H20 0.101127 NO 0.009104
0tt 0.000024 02 0.015360

FRESH CHARGE MOLE FRACTIONS AT 443.64 K AND 2.0000 ATM MOLECULAR WEIGHT = 30.131
AR 0.000916 CO2 0.013259 H20 0.010419 NO 0.000938
02 0.001582 CGH6 0.003731 C7H8 0.006677 C8H16 0.000289
AIR 0.880326

HDTE: INLET AHD EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

29.246
N2 0.736795

H2 0.075908
C8H18 0.005952

COMPUTER CYCLE TIME: 2.207 5EC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 6 LEVEL _ CASE NO, ]359

REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 966.4 K SPARK ADVANCE = 10.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 2.00000 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

Pfl_E = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 sq CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.15 CC

IVOPEN = 699.00 BEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

EICHELBERG HEAT TRANSFER COEFICIENT

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 29.8 BEG COSINE COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.500000 -0.500000

CHEMICAL FORMULA WT FRACTION ENERGY STATE TEMP
CAL/HOL BEG K

FUEL C 8.00000 H 18.00000 0.420000 -GgglO.G73 G 298.15

FUEL C l.O0000 H 8,00000 0.380000 I1949.G38 G 298.15
FUEL C 6.00000 H 6.00000 0.180000 19818,801 G 298.15
FUEL C 8.00000 H 16.00000 0.020000 -19814.664 G 298.15

AIR N 1.56168 0 0.41959 AR 0,00936 C 0.00052 1.000000 -29.792 G 298,15

A/F= 15.7503 PERCENT FUEL= 5.9700 EQUIVALENCE RATIO= 0.9000 PHI = 0.8998

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 1.55318 CHARGE 43.243_ EXHAUST 44.7788
FUEL 0.07951 FUEL 2.3235 CO 0.00009
AIR 1.25224 AIR 36.5956 NOX 0.39406

NET 43.2316 NET 44.7782

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 1490.519 INDICATED POWER 43.473 NET WORK 0.390356

INDICATED PUMP WORK -101.246 INDICATED PUMP POWER -2.953 HEAT LOSS 0.132943
HEAT LOSS 473.144 HEAT LOSS RATE 13.800 EXHAUST 0.385880
CHEM. ENERGY 3558.992 EXHAUST POWER _0.056

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

COMPOSITE EXHAUST GAS HOLE FRACTIONS AT 966.38 K AND 1.0000 ATM
AR 0.008887 C02 0.128633 H2O 0.101086 NO
N2 0.736712 OH 0.000010 02 0.015610 AIR

FRESH CHARGE HOLE FRACTIONS AT _43.72 K AND 2.0000 ATM MOLECULAR WEIGHT =
AR 0.000916 C02 0.013252 H20 0.010414 NO
02 0.001608 C6H6 0.003731 C7N8 0,006677 C8H16
AIR 0.880378

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME: 11.554 SEC

15.2260
-1.0342

110.5548

MOLECULAR WEIGHT =
0.008518
0.000492

30.131
0.000878
0.000289

29.246
NO2 0.000038

N2 0.075899
CBHI8 0.005955
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Output, Case 13591

INTERHAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 6 LEVEL _ CASE NO, 15591
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-109_, 19&5.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 675.0 K SPARK ADVANCE = 10.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 2.00000 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOHS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.1_5 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEH = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = _65.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 CS = 0.000000 A = O.qO00 B = O.BO00

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 29.8 DEG COSINE COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.500000 -0.500000

CHEMICAL FORMULA WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

FUEL C 8.00000 H 18.00000 0._20000 -49910.473 G 298.15
FUEL C 7.00000 H 8.00000 0.380000 11949.438 G 298.15
FUEL C 6.00000 H 6.00000 0.180000 19818.801 G 298.15
FUEL C 8.00000 H 16.00000 0.020000 -1981_.664 G 298.15
AIR N 1.56168 0 0._1959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F= 15.7503 PERCENT FUEL= 5.9700 EQUIVALENCE RATIO = 0.9000 PHI = 0.8998

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/5EC)

TOTAL 1.81510 CHARGE 50.4332 EXHAUST 50.7798
FUEL 0.09272 FUEL 2.7098 CO 0.00003
AIR 1._6035 AIR 42.6801 HOX 0.30952

NET 50._162 HET 50.7790

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 1282.396 INDICATED POWER 37.403 NET WORK 0.302981
INDICATED PUrlP WORK -25.875 INDICATED PUMP POWER -0.755 HEAT LOSS 0.429799
HEAT LOSS 1782._59 HEAT LOSS RATE 51.988 EXHAUST 0.226245
CHEM. ENERGY _147.188 EXHAUST POHER 27.366

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 13.0999
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.26_3
MEAN TORQUE (NEWTON-METERS) 99.9906

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 67_.98 K AND 1.0000 ATM MOLECULAR WEIGHT =
AR 0.008881 C02 0.128579 H20 0.101028 NO 0.005870
N2 0.737498 02 0.016897 C6H6 0.000005 C7H8 0.000010
AIR 0.001176

FRESH CHARGE MOLE FRACTIONS AT 405._3 K AND 2.0000 ATM MOLECULAR WEIGHT = 30.131
AR 0.000915 C02 0.0132_0 H20 0.010408 HO 0.000605
02 0.0017_1 C6H6 0.003731 C7H8 0.006678 C8H16 0.000289
AIR 0.880_50

NOTE: INLET AHD EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

29.2q7
NO2 O.O000q6
CBH18 0.000009

N2 0.075978
C8H18 0.005955

217



9S

90 --

S5

8O

?S --

_0

65

&O

s"

55
<C

L_ 6O

_D _'5

_o
o.

35

3o

2s

2o

15

LO

5

o

OTTO CYCLE INDICATOR OIAORAM

05/L3/b3

CASE 13591

CYCLE 8

I" I I I I I [ r I l I

1O0 200 300 'I'00 500 600 700 800 900 1000 I1O0

VOLUME, CC

0.9

0.0

O.;r

0.6

X

0.5v

0,4

0,3

0.2

0.1

0.0

/

OTTO CYCLE MASS

CC_SCELE 135,1
6

M (MAX) 1.039 G

I I I I I I I I I I I I
60 120 180 2q'O 300 360 'F20 _'flO S'FO 600 660 720

CRANKANGLE, DEG

218



Appendix F

Example III (Case 99)

Input, Case 99

REAC

C 3. H 8. 1. G298.15 F

NAME

_OTTINP FREQ=3500,BORE=lO.g22,STROKE=lO.312,ROD=17.145,CA=129.03,
TW=360.,CR=IO.5,KASE=99,
PEXH:l.,PMFOLD=.4276,

HC3:O.,HAz.4,HB:.8,HC2:.3872,
SP:T,RHUMID:75.,TAIR:298.15&END

&AFINP DEBUG=T,EQRAT=I.,THBURH:O.,
KINET=3,NCYCLE=8,1FLON:5,VARAF=F&END

&FLOWIN DIN:4.78155,DEX:3.65125,BETAIN=45,BETAEX=45,LIN=2.2,LINR=2.2,
LEX=1.B,LEXR:1.8,AIN(1)=.g5,AINR(1)=1.,AEXR(11=.95,

EIN(2)=-20,EIHR(2):-20,EEXR(2)=-15,EEX(2):-15,EIN(3)=2,EIHR(3)=2,
EEXR(3)=2,EEX(3)=2,BIN(1):.O5,BINR(1)=.OS,AEX(1)=I.,

RI_6553_7536916_-_23_226637252_3_2769_59_5521_-32_46664_3586_67_599577_6191_
-1606.5917666613,1531.2782499752,-777.72614964883,162.74377189163,
REX=.OI5239819814648,1.2692256549564,24.316014460188,-83.715719936202,
-146.81709604486,1257.7199438064,-2839.5867388125,3151.0342473402,
-1758.248769365,394.01465307699,POLY=T
IVOPEN:699,IVSHUT=265,EVOPEN=465,EVSHUT=45&END

Output, Case 99

INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 11 LEVEL 1 CASE NO. 99

REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 0.00 DEG
FUEL PRESSURE : 1.00000 ATM MANIFOLD PRESSURE = 0._2760 ATM EXHAUST PRESSURE = 1.00000 ATM
PRESSURE DISCONTINUITIES ARE ISENTROPIC

NT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 _l.O00000 -1386.340 G 298.15

w AIR INCLUDES 0.02348 MOLE FRACTION WATER RELATIVE HUMIDITY= 0.7500

A/F= 15.9132 PERCENT FUEL =
FUEL MASS FRACTION = 0.048666
Az_ ;iA55 FKACfION = 0.774425

RESIDUAL MASS FRACTION = 0.176910
RECIRCULATEO MASS FRACTION = 0.000000

MASS FRACTION EXHAUST RETAINED = 0.176914
NET WORK EFFICIENCY =-0.026474

THERMODYNAMIC PROPERTIES

STATION 2 3 _ 5 6 7
CRANKANGLE 0.0000 30.787 180.00 360.0U 360.00 540.00 540.00 0.0000
P, AIM 0.4276 0.4276 0.4276 10.345 10.343 0.4276 1.0000 1.0000
T, DEG K 236.8 236.8 236.8 545.6 5_5.6 236.8 298.1 298.1

RHO, G/CC 6.4497-4 6.4496-4 6.4497-4 6.7722-3 6.7722-3 6.4497-4 1.1981-3 1.3505-3
n, C_Ltu -_.061 "9_.976 -94.046 -13.561 -13.561 -94.046 -78.670 -787.98
U, CAL/G -110.12 -110.03 -110.10 -50.549 -50.549 -110.10 -98.883 -805.91
S, CAL/(G)(K) 1.6165 1.6165 1.6165 1.6165 1.6165 1.6165 1.6165 1.5251
CP, CAL/(G)(K) 0.2482 0.2482 0.2482 0.2752 0.2752 0.2482 0.2524 0.9203
GAMMA (S) 1.3757 1.3758 1.3758 1.3268 1.3268 1.3758 1.5673 1.1480
M, MOL NT 29.313 29.311 29.312 29.312 29.312 29.312 29.312 33.041

5.9125 EQUIVALENCE RATIO = 1.0000 PHI = 1.0000
INDICATED MEAN EFFECTIVE PRESSURE (ATM) = O.OOO0
PUMP MEAN EFFECTIVE PRESSURE (ATM) = -0.5527
CHEMICAL ENERGY (JOULES/G) =2967.627
MASS EFFICIENCY = 0.823090
VOLUME EFFICIENCY = 0.823087
FRACTIONAL MASS CHANGE 6 - 7 = 0.857599

NOTES ON MOLE FRACTIONS:
A) STATION 2 RESIDUAL GAS

MOLE FRACTIONS

AR 0.00000 0.00000 0.00000 0.00000
C02 0.00000 0.00000 0.00000 0.00000
H20(L) 0.00000 0,00000 0.00000 0.00000
H20 0.00000 0.00000 0.00000 0.00000
N2 0.00000 0.00000 0.00000 0.00000
02 0.00000 0.00000 0.00000 0.00000
C3H8 0.03930 0.03919 0.03928 0.03928
AIR 0.96070 0.96081 0.96072 0.96072

FROM PREVIOUS CYCLE; B) MOLES NO FROZEN AFTER COMBUSTION(STATION 5)

0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
0.03928 0.03928
0.96072 0.96072

0 00000
0 00000

0 00000
0 00000
0 00000
0 00000

0 0392_
0.96076

0.00845
0.11368

0.14638
0.02652
0.70486
0.00010
0.00000
0.00000

TOTAL COMPUTER TIME: 1.149 SEC DELTA TIME = 0.074 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 4 LEVEL 2 CASE NO. 99
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE N%SA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.000 T(EGR) = 298.1 K "PINK ADVANCE = 0.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
PRESSURE DISCONTINUITIES ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC

IVOPEN = 31.45 DEG IVSHUT = 180.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000

HO FLAME FINITE BURNIHG INTERVAL =

CHEMICAL FORMULA

FIIFI C 3.00000 H 8.00000
AIR N 1.56168 0 0.41959

AIR INCLUDES

A/F = 15.9132

DISPLACEMENT VOLUME = 966.13 CC

C2 = 0.387200E O0

0.0 DEG LINEAR

MASS PER CYCLE (G)

TOTAL 0.63050

FUEL 0.03066
AIR 0.49115

ENERGY PER CYCLE (JOULES)

INDICATED WORK -Ii.8q2

INDICATED PUMP WORK -5q,036
HEAT LOSS -6.892
CHEM. EHERGY 1871.925

EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

C3 = 0.000000 A = 0.4000 B = 0.8000

COMBUSTION TAU = 0.0000 SEC BETA = 0.000

NT FRACTION ENERGY STATE TEMP
CAL/HOL DEG K

1.000000 -24821.770 G 298.15
AR 0.00936 C 0.00032 Wl. O00000 -1386.340 G 298.15
0.02348 MOLE FRACTION WATER RELATIVE HUMIDITY= 0.7500

PERCENT FUEL = 5.9125 EQUIVALENCE RATIO= 1.0000 PHI = 1.0000

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC)

CHARGE 15.2254 EXHAUST 30.8093
FUEL 0.9002 CO 0.00000
AIR 14.3252 NOX 0.00000

AVERAGE ENERGY RATE - POWER (KW)

INDICATED POWER -0.345
INDICATED PUMP POWER -1.576

HEAT LOSS RATE -0.201
EXHAUST POWER 92.434

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) -0.1210
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.5520
MEAN TORQUE (NEWTON-METERS) -5.2424

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 336.10 K AND 1.0000 ATM

C3H8 0.039297 AIR 0.960702

MEAN EXHAUST MASS FLOW RATE (G/SEC)

FRESH CHARGE MOLE FRACTIOHS AT 236.83 K AND 0.4276 ATM

C3H8 0.039303 AIR 0.960696

CYCLE EFFICIERCIES

NET WORK -0.055193
HEAT LOSS -0.005682
EXHAUST 1.693001

MOLECULAR WEIGHT = 29.313

MOLECULAR WEIGHT = 29,313

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 1.145 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 8 LEVEL 4 CASE NO. 99
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 0.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = I.O0000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 5Q CM NALL TEMP = 36r.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000

NO FLAME FINITE BURNING INTERVAL =

EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

O.O DEG LINEAR COMBUSTION TAU = 0.0000 SEC BETA = 0.000

NT FRACTION ENERGY STATE TEMP

CAL/MOL DEG K
1.000000 -24821.770 G 298.15

AR 0.00936 C 0.00032 _1.000000 -1386.340 G 298.15
0.02348 MOLE FRACTION MATER RELATIVE HUMIDITY= 0.7500

PERCENT FUEL= 5.9125 EQUIVALENCE RATIO= 1.0000 PHI = 1.0000

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLON RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR N 1.56168 O 0.41959

w AIR INCLUDES

A/F= 15.9132

MASS PER CYCLE (G)

TOTAL 0.56826
FUEL 0.03360
AIR 0.53466

ENERGY PER CYCLE (JOULES)

INDICATED NORK -10.672
INDICATED PUMP WORK -113.758

HEAT LOSS 4.100
CHEM. ENERGY 1687.191

CHARGE 8.2279
FUEL 0.4865
AIR 7.7414
NET 8.2308

AVERAGE ENERGY RATE - PONER (KW)

INDICATED PONER -0.311
INDICATED PUMP PONER -3.318
HEAT LOSS RATE 0.120
EXHAUST PONER 55.990

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

EXHAUST 18.5673
CO 0.00000
NOX 0.00000
NET 8.2614

CYCLE EFFICIENCIES

NET WORK -0.073750
HEAT LOSS 0.002430
EXHAUST 1.137793

-0.1090
-1.1621
-9.9018

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 341.91 K AND 1.0000 ATM MOLECULAR NEIGHT =
C3HB 0.039302 AIR 0.960698

FRESH CttARGE MOLE FRACTIONS AT 236.83 K AND 0.4276 ATM MOLECULAR NEIGHT = 29.313
C3H8 0.039303 AIR 0.960696

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 14.918 SEC

29.313
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Appendix G

Example IV (Case 111)

Input, Case lU

REAC
C 3. H 8. 1. G298.15 F

NAME
&OTTINP FREQ=3500,BORE=lO.922,STROKE=I0.312,ROD=17.145,CA=129.03,
TN=360.,CR=10.5,BETA=3.2,KASE=111,
PEXH:L.,PMFOLD:._276,
HC3:O.,HA=.4,HB=.8,HC2=.3872,

SP=T,RHUMID=75.,TAIR=298.15&END

&AFIHP DEBUG=T,EQRAT=1.25,SPARK=20.,EGR=.I,THBURN=110.,
NCYCLE=15,TAU=8.93E-O5,IFLOW=3,VARAF=F,KFLAME=3&END
&FLOWIN DIN=4.7815S,DEX=3.6S12S,BETAIN=45,SETAEX=45,LIN=2.2,LIHR=2.2,
LEX=1.8,LEXR=l.8,AIN(1)=.95,AINR(1)=l.,AEXR(1)=.95,
EIN(Z)=-20,EIHR(2)=-20,EEXR(2)=-15,EEX(2)=-15,EIN(3)=2,EINR(3)=2,
EEXR(3)=2,EEX(3)=2,BIH(1)=.O5,BINR(1)=.OS,AEX(1)=I.,

R_=_6_539_536_6_-_23_522_72_2_3_2769259_2_-_29_46664_35_6_967_99_7726191_
-1606.5917666613,1531.2782499752,-777.72614964883,162.74377189163,
REX=.015239819814648,1.2692256549564,24.316014460188,-83.715719936202,
-146.81709604486,1257.7189438064,-2839.5867388125,3151.03_2473402,
-1758.248769365,394.01465307699,POLY=T,
IVOPEN=699,IVSHUT=265,EVOPEN=465,EVSHUT=4S&END

Output, Case 111

INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 6 LEVEL 1 CASE NO. 111
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 1348.1 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
PRESSURE DI5CONTINUXTIES ARE ISENTROPIC

NT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3._0000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 O 0.41959 AR 0.00936 C 0.00032 w1.000000 -1386,340 G 298.15

w AIR INCLUDES 0.02348 MOLE FRACTIOH WATER RELATIVE HUMIDITY= 0.7500

A/F= 12.5823 PERCENT FUEL = 7.3625 EQUIVALENCE RATIO: 1.2500 PHI = 1.2647
FUEL MASS FRACTION = 0.062311 INDICATED MEAN EFFECTIVE PRESSURE (ATM) = 4.0260
AIR MASS FRACTION = 0.784012 PUMP MEAN EFFECTIVE PRESSURE (ATM) = -0.5512
RESIDUAL MASS FRACTION = 0.059641 CHEMICAL ENERGY (JOULES/G) =2631.753
RECIRCULATED MASS FRACTION = 0.094036 MASS EFFICIENCY = 0°940359
MASS FRACTION EXHAUST RETAINED = 0.0596_5 VOLUME EFFICIENCY = 0.815920
NET NORK EFFICIENCY = 0.315333 FRACTIONAL MASS CHANGE 6 - 7 =-0.373728

THERMODYNAMIC PROPERTIES

STATION 2 3 4 S 6 7

CRANKANGLE 0.0000 32.169 180.00 340.00 340.00 540.00 540.00 0.0000
P, ATM 0.4276 0.4276 0.4276 6.2892 23.412 1.8190 1.0000 1.0000
T, DEG K 338.9 1114.2 391.4 751.2 2575.2 1535.6 1348.0 298.1
RHO, G/CC 4.4854-4 1.2516-4 3.8631-4 2.9603-3 2.9603-3 3.8631-4 2.4194-4 1.4056-3
H, CAL/G -134.85 -435.35 -152.78 -50.425 89.648 -293.90 -357.88 -806.15
U, CAL/G -157.94 -518.08 -179.58 -101.88 -101.88 -407.93 -457.98 -823.38
S, CAL/(G)(K) 1.7473 2.2299 1.8020 1.8020 2.2299 2.2299 2.2299 1.4880
CP, CAL/(G)(K) 0.2600 0.3250 0.2657 0.3031 0.4223 0.3515 0.3370 0.9216
GAMMA (S) 1.3551 1.2961 1.3472 1.2919 1.2263 1.2679 1.2826 1.1406
M, MOL NT 29.170 26.763 29.015 29.015 26.719 26.762 26.762 34.389

NOTES ON MOLE FRACTIOHS:

A) STATION 2 RESIDUAL GAS FROM PREVIOUS CYCLE; B) MOLES NO FROZEN AFTER COMBUSTION(STATION 5)

MOLE FRACTIONS

AR 0.00086
C(S) 0.00000
CH_ 0.00000
CO 0.00592
C02 0.00872
H 0.00000
H2 0.00433
H20(L) 0.00000
H20 0.01736
NO 0.00007
N2 0.07174
0 0.00000
OH 0.00000
02 0.00000
C3H8 0.04383
AIR 0.84717

0.00790
0.00000
O.O000O
0.05434
0 07996
0 00000
0 03972
0 00000
0 15927
0 00060
0 65821

0 00000
0:00000
0.00000
0.00000
0.00000

0.00132 0.00132 0.00780
0.00000 0.00000 0.00000
O.O00OO 0.00000 0.00000
0.00905 0.00905 0.06736
0.01332 0.01332 0.0667_
0.00000 0.00000 0.00117
0.00662 0.00662 0.02715
0.00000 0.00000 0.00000
0.02654 0.02654 0.17010
0.00010 0.00010 0.00060
0.10966 0.10966 0.65713
0.00000 0.00000 0.00005
0.00000 0.00000 0,00169
0.00000 0.00000 0.00012
0.04100 0.04100 0.00000
0.79239 0.79239 0.00000

0.00790
0.00000
0.00000
0.05437
0 07995
0 00000
0 03975
0 00000
0 15925
0 00060
0.65818
0.00000
0.00000
0.00000
0.00000
0.00000

0.00790 0.00790
O.O000O 0.04667
0.00000 0.00005
0.05437 0.00000
0.07995 0.08764
0.00000 0.00000
0.03975 0.00000
0.00000 0.17480
0.15925 0.02419
0.00060 0.00000
0.65818 0.65875
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000
O.OOOO0 0.00000
0.00000 0.00000

TOTAL COMPUTER TIME= 2.164 SEC DELTA TIME = 0.27_ SEC
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INTERNAL COMBUSTION EHGINE MODEL ZMOTTO CYCLE 2 LEVEL 2 CASE NO. IIi

REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 909.4 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
PRESSURE DISCONTINUITIES ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 29.21 DEG IVSHUT = 180.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.7 DEG WIEBE

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032

w AIR INCLUDES 0.02348 MOLE FRACTION WATER

A/F = 12.5823 PERCENT FU6L = 7.3625 EQUIVALENCE RATIO = 1.2500 PHI= 1.2647

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.49708 CHARGE 13.2343
FUEL 0.03007 FUEL 0.8769
AIR 0.37831 AIR 11.0339

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (gW)

INDICATED WORK 390.663 INDICATED POWER 11.394
INDICATED PUMP WORK -54.354 INDICATED PUMP POWER -1.585
HEAT LOSS 360.072 HEAT LOSS RATE 10.502
CHEM. ENERGY 1274.674 EXHAUST POWER 17.316

MISCELLANEOUS

EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

C3 = 0.000000 A = 0.4000 B_= O.BO00

COMBUSTION TAU =0.8930E-04 SEC BETA = 3.200

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.77_ G 298.15
Wl. O00000 -1386.340 G 298.15

RELATIVE HUMIDITY= 0.7500

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 13.1828
CO 0.48846
NOX 0.00000

CYCLE EFFICIENCIES

NET WORK 0.263839
HEAT LOSS 0.282482
EXHAUST 0.465758

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 3.9907

PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.5552
MEAN TORQUE (NEWTON-METERS) 26.7626

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 875.35 K AND 1.0000 ATM MOLECULAR WEIGHT =
AR 0.007900 CO 0.035412 C02 0.098946 H2 0.058132
NH3 0.000007 N2 0.658674

FRESH CHARGE MOLE FRACTIONS AT 293.79 K AND 0.4276 ATM MOLECULAR WEIGHT = 29.171
AR 0.000861 CO 0.004038 C02 0.010603 H2 0.006156
N2 0.071776 C3HB 0.043835 AIR 0.847194

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

26.770
H20 0.140928

H20 0.015536

COMPUTER CYCLE TIME = 7.411 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE lI LEVEL 5 CASE NO. 111
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, L985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = O.lO0 T(EGR) = 900.6 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = i. O0000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM HALL TEMP = 560.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMEHT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG

HEAT TRANSFER PARAMETERS Cl = 0.000000 C2 = 0.387200E O0

KINETIC FLAME FINITE BURNING INTERVAL = 88.7 DEG WIEBE

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR N 1.56168 0 0.41959

w AIR INCLUDES

A/F= 12.5823

MASS PER CYCLE (G)

EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

CS = 0.000000 A = 0.4000 B = 0.8000

COMBUSTION TAU =O.B930E-04 SEC BETA = 3.200

MT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.770 G 298.15
AR 0.00936 C 0.00032 Wl. O00000 -1386.340 G 298.15
0.02348 MOLE FRACTION WATER RELATIVE HUMIDITY= 0.7500

PERCENT FUEL = 7.3625 EQUIVALENCE RATIO = 1.2500 PHI= 1.2647

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.49685 CHARGE 12.6027
FUEL 0.02860 FUEL 0.8351
AIR 0.55987 AIR 10.5075

NET 12.6376

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 404.672 INDICATED POWER 11.803
INDICATED PUMP WORK -86.886 INDICATED PUMP POWER -2.534
HEAT LOSS 352.020 HEAT LOSS RATE 10.267
CHEM. ENERGY 1305.823 EXHAUST POWER 16.593

EXHAUST 13.2527
CO 0.71753
NOX 0.00013
NET 13.2526

CYCLE EFFICIENCIES

NET WORK 0.243361
HEAT LOSS 0.269577
EXHAUST 0.435675

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 900.63 K AND l. O000 ATM
AR 0.007952 CH4 0.000914 CO 0.052088 C02
C2H4 0.000131 H2 0.026569 H20 0.169476 NO
02 0.000070

FRESH CHARGE MOLE FRACTIONS AT 292.50 K AND 0._276 ATM MOLECULAR WEIGHT =
AR 0.000861 CH_ 0.000099 CO 0.005643 C02
C2H4 0.000014 H2 0.002878 H20 0.018359 N2
C3H8 0.043867 AIR 0.847803

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME= 48.858 SEC

4.1338
-0.8876
25.2886

MOLECULAR WEIGHT =
0.077497
0.000009

29.192
0.008395
0.071827

26.947
C2H2 0.002239
N2 0.663041

C2H2 0.000243
02 0.000008
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 12 LEVEL 5 CASE NO. lll
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 901.9 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = I0.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 sq CM WALL TEMP = 360.0 K

TOTAL VOLUME = 1067.85 CC DIBPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0

KINETIC FLAME FINITE BURNING INTERVAL = 88.7 DEG NIEBE

EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

C3 = 0.000000 A = 0.4000 B = 0.8000

COMBUSTION TAU =0.8930E-04 SIC BETA = 3.200

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 wl. O00000 -1386.340 G 298.15

AIR INCLUDES 0.02348 MOLE FRACTION WATER RELATIVE HUMIDITY = 0.7500

A/F = 12,5823 PERCENT FUEL = 7.3625 EQUIVALENCE RATIO = 1.2500 PHI = 1.2647

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SIC)

TOTAL 0.44855 CHARGE 11,2684 EXHAUST 12.6838
FUEL 0.02555 FUEL 0.7467 CO 0.68590
AIR 0.32149 AIR 9.3949 NOX 0.00012

NET 11.2425 NET 12.6837

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIE5

INDICATED WORK -14.459 INDICATED POWER -0,422 NET WORK -0.107273
INDICATED PUMP WORK -103.441 INDICATED PUMP POWER -3.017 HEAT LOSS 0.054072

HEAT LOSS 59.428 HEAT LOSS RATE 1.733 EXHAUST 0.496113
CHEM. ENERGY 1099.070 EXHAUST POWER 15.903

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) -0.1477

PUMP MEAN EFFECTIVE PRESSURE (ATM) -1.0567
MEAN TORQUE (NEWTON-METERS) -9.3822

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 901.89 K AND I.O000 ATM MOLECULAR WEIGHT =
AR 0.007953 CH4 0.000914 CO 0.052029 C02 0.077486
C2H4 0.000147 H2 0.026451 H20 0.169553 NO 0.000008
02 0.000087

FRESH CHARGE MOLE FRACTIONS AT 292.63 K AND 0.4276 ATM MOLECULAR WEIGHT = 29.192
AR 0.000861 CH4 0.000099 CO 0.005636 C02 0.008393

C2H4 0.000016 H2 0.002865 H20 0.018366 N2 0.071828
C3H8 0.043867 AIR 0.847810

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

26.950
C2H2 0.002263
N2 0.663094

C2H2 0.000245
02 0.000009

COMPUTER CYCLE TIME: 66.090 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 13 LEVEL 5 CASE NO. 111

REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 511.9 K SPARK ADVANCE = 20.00 DEC
FUEL PRESSURE : 1.00000 ATM MANIFOLD PRESSURE : 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 5q CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEC IVSHUT = 265.00 DEC

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0

KINETIC FLAME FINITE BURNING INTERVAL = 88.7 DEC WIEBE

CHEMICAL FORMULA

_IIFL C 3.00000 H 8.00000
AIR N 1.56168 0 0.41959

w AIR INCLUDES

A/F= 12.5825

MASS PER CYCLE (G)

EVOPEH = 465,00 DEC EVSHUT = 48.00 DEC

C_ = 0.000000 A = 0.4000 B = 0.8000

COMBUSTION TAU =0.8930E-04 SEC BETA = 3.200

NT FRACTION ENERGY STATE TEMP
CAL/MOL DEGK

1.000000 -24821.770 G 298.15
AR 0.00936 C 0.00032 wl. O00000 -1386.340 G 298,15
0.02548 MOLE FRACTION HATER RELATIVE HUMIDITY= 0.7500

PERCENT FUEL= 7.3625 EQUIVALENCE RATIO = 1.2500 PHI = 1.2647

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.46733 CHARGE 9.4892
FUEL 0.02150 FUEL 0.6288
AIR 0.27046 AIR 7.9115

NET 9.4717

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK -13.881 INDICATED POWER -0.405
INDICATED PUMP WORK -107.919 INDICATED PUMP POWER -3.148
HEAT LOSS 39.918 HEAT LOSS RATE 1.164

CHEM. ENERGY 1168.676 EXHAUST POWER 30.189

EXHAUST 14.0309
CO 0.33613
NOX 0.00006
NET 8.9404

CYCLE EFFICIEHCIES

NET WORK -0.104220
HEAT LOSS 0.034157

EXHAUST 0.885673

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) -0.1418
PUMP MEAN EFFECTIVE PRESSURE (ATM) -1.1024
MEAN TORQUE (NEWTON-METERS) -9.6925

COMPOSITE EXHAUST GAB MOLE FRACTIONS AT 511.85 K AND 1.0000 ATM MOLECULAR NEIGHT=
AR 0.008350 CH4 0.000426 CO 0.024200 C02 0.056184
C2H4 0.000069 CSH8 0.026319 H2 0.012306 H20 0.090780
02 0,104098

FRESH CHARGE MOLE FRACTIONB AT 255.81 K AND 0.4276 ATM MOLECULAR NEIGHT= 29.344
AR 0.000866 CH4 0.000044 CO 0.002510 C02 0.003752
C2Hq 0.000007 C3H8 0.002729 H2 0.001276 H20 0.009414
02 0.010796 C3H8 0.044094 AIR 0.852200

NOTE: INLET AND EXHAUST VALUES CALCULATED NHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 60.194 SEC

28.295
C2H2 0.001051
N2 0.696205

C2H2 0.000109
N2 0.072200
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 14 LEVEL 5 CASE NO. ill
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 418.8 K SPARK ADVANCE = 20.00 DEC
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISEHTROPIC

BORE : 10.922 CM STROKE = 10.312 CM ROD : 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEH = 699.00 DEC IVSHUT = 265.00 DEC

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0

KINETIC FLAME FINITE BURNING INTERVAL = 88.7 DEC WIEBE

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000

AIR N 1.56168 0 0.41959
AIR INCLUDES

A/F= 12.5823

MASS PER CYCLE (G)

EVOPEN = 465.00 DEC EVSHUT : 45.00 DEC

C3 = 0.000000 A = 0.4000 B = 0.8000

COMBUSTION TAU =0.8930E-04 5EC BETA : 3.200

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEC K

1.000000 -24821.770 G 298.15
AR 0.00936 C 0.00032 Wl.000000 -1386.340 G 298.15
0.02348 MOLE FRACTION WATER RELATIVE HUMIDITY= 0.7500

PERCENT FUEL= 7.3625 EQUIVALENCE RATIO: 1.2500 PHI = 1.2647

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.51834 CHARGE 9.3578
FUEL 0.02116 FUEL 0.6201
AIR 0.26621 AIR 7.8020

HET 9.3652

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 430.817 INDICATED POWER 12.565
INDICATED PUMP WORK -80.372 INDICATED PUMP POWER -2.344
HEAT LOSS 361.657 HEAT LOSS RATE 10.548

CHEM. ENERGY 1379,461 EXHAUST POWER 38.449

EXHAUST 15.9305
CO 0.25560
NOX 0.00005
NET 7.8639

CYCLE EFFICIENCIES

NET WORK 0.254045

HEAT LOSS 0.262173
EXHAUST 0.955630

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 4.4009
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8210

MEAN TORQUE (NEWTON-METERS) 27.8875

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 418.78 K AND 1.0000 ATM MOLECULAR WEIGHT =
AR 0.008463 CH4 0.000288 CO 0.016298 C02 0.02445S
C2H4 0.000047 C3H8 0.033790 H2 0.008285 H20 0.068419
02 0.133630

FRESH CHARGE MOLE FRACTIOHS AT 247.61 K AND 0.4276 ATM MOLECULAR WEIGHT = 29.384
AR 0.000867 CH4 0.000029 CO 0.001670 C02 0.002506
C3H8 0.003462 H2 0.000849 H20 0.007011 N2 0.072300
C3H8 0.044155 AIR 0.853379

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

28.677
C2H2 0.000708
H2 0.705606

C2H2 0.000073
02 0.013692

COMPUTER CYCLE TIME = 47.411 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 15 LEVEL 5 CASE NO. lI1
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 19&5.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.100 T(EGR) = 904.2 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10,922 CM STROKE = 10.312 CM ROD = 17.145 CN CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.15 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0

KINETIC FLAME FINITE BURNING INTERVAL = 88.7 DEG WIEBE

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR H 1.56168 0 0,41959

w AIR INCLUDES

A/F= 12.5823

MASS PER CYCLE (G)

EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

C3 = 0.000000 A = 0.4000 B = 0.8000

COMBUSTION TAU =0.8930E-04 SEC BETA = 3.200

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.O00000 -24821.770 G 298.15
AR 0.00956 C 0.00032 wI.O00000 -1386.340 G 298.15
0.02348 MOLE FRACTION WATER RELATIVE HUMIDITY= 0.7500

PERCENT FUEL= 7.3625 EQUIVALENCE RATIO= 1.2500 PHI = 1.2647

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.49664 CHARGE 12.6031
FUEL 0.02862 FUEL 0.8351
AIR 0.36009 AIR 10.5077

NET 12.6390

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KN)

INDICATED WORK 404.608 INDICATED POWER 11.801
INDICATED PUMP WORK -86.883 INDICATED PUMP POWER -2.534
HEAT LOSS 352.076 HEAT LOSS RATE 10.269
CHEM. ENERGY 1306.290 EXHAUST POWER 16.734

EXHAUST 13.3150
CO 0.72181
NOX 0.00013
NET 13.3149

CYCLE EFFICIENCIES

NET WORK 0.243227
HEAT LOSS 0.269524
EXHAUST 0.439217

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 4.1332
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8875
MEAN TORQUE (NEWTON-METERS) 25.2837

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 904.20 K AND 1.0000 ATM MOLECULAR WEIGHT = 26.946
AR 0.007952 CH4 0.000905 CO 0,052151 C02 0.077467 C2H2
C2H4 0,000138 N2 0.026606 H20 0.169458 NO 0.000009 N2
02 0.000070

FRESH CHARGE MOLE FRACTIONS AT 292.86 K AND 0.4276 ATM MOLECULAR WEIGHT = 29.192
AR 0.000861 CH4 0.000098 CO 0.005650 CO2 0.008392 C2H2
C2H4 O.OOOO15 H2 0.002882 H20 0.018358 N2 0.071827 02
C3H8 0.043867 AIR 0.847799

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 56.502 SEC

0.002217
0.663013

0.000240
0.000008
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Appendix H

Example V (Case lO)

Input, Case 10

REAC

N I. H 3. 2. M G 298.15
N 2. 5.59138M G 298.15
0 2. 1.5 M G 298.15
AR1. .067060M G 298.15
C 1. 0 2. .002284M G 298.15

NAME

gOTTINP FREQ=3500,BORE=lO.922,STROKE=lO.312,ROD:17.145,CA=129.03,
TW=360.,CR=lO.S,BETA=3.2,KASE=lO,TRACE=1.E-20,
PEXH=l.,FMFOLD:.4276,
&END

&AFINP DEBUG=T,AF=.DOOOI,SPARK=ZO.,THBURN=IIO.,
NCYCLE=5,TAU=8.93E-OS,VARAF=F&END

Output, Case 10

INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 5 LEVEL I CASE NO. I0
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.000 T(EGR) = 298.1K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
PRESSURE DISCONTINUITIES ARE ISENTROPIC

CHEMICAL FORMULA
FUEL N 1.00000 H 3.00000
FUEL N 2.00000
FUEL 0 2.00000

FUEL AR 1.00000
FUEL C 1.00000 0 2.00000
AIR N 1.56168 0 0.41959

A/F= 0.0000
FUEL MASS FRACTION = 0.953854
AIR MASS FRACTION = 0.000010
RESIDUAL MASS FRACTION = 0.046137
RECIRCULATED MASS FRACTION = 0.000000
MASS FRACTION EXHAUST RETAINED = 0.046137
NET WORK EFFICIENCY = 0.339326

THERMODYNAMIC PROPERTIES

AR 0.00936 C 0.00032

PERCENT FUEL = 99.9990

MOLES
CAL/MOL

2.000000 -10970.801
5.591379 0.000
1.500000 0.000
0.067060 0.000
0.002284 -94049.563
1.000000 -29.792

EQUIVALENCE RATIO = 1.0000 PHI= 0.0000
INDICATED MEAN EFFECTIVE PRESSURE (ATM) = 6.0311
PUMP MEAN EFFECTIVE PRESSURE (ATM) = -0.5513
CHEMICAL ENERGY (JOULES/G) =3012.758
MASS EFFICIENCY = 0.953863
VOLUME EFFICIENCY = 0.816515
FRACTIONAL MASS CHANGE 6 - 7 =-0.515558

STATION 2 3 6 5 6 7
CRANKAHGLE O.OOO0 32.054 180.00 360.00 340.00 540.00 540.00 0.0000
P, ATH 0.4276 0.4276 0.4276 6.7911 31.888 2.5283 1.0000 1.0000
T, DEG K 236.2 1052.8 278.8 577.9 2564.0 1565.2 1277.9 298.1
RHO, G/CC 5.8157-4 1.2356-4 4.9140-4 3.7655-3 3.7655-3 4.9140-4 2.3805-4 1.4359-3
H, CAL/G -108.79 -474.35 -125.66 -39.418 121.99 -291.05 -395.73 -840.37
U, CAL/G -126.60 -558.16 -146.73 -83.093 -83.094 -415,65 -497.46 -857.23
S, CAL/(G)(K) 1.8293 2.3331 1.8919 1.8919 2.3331 2.3331 2.3331 1.5039
CP, CAL/(G)(K) 0.2737 0.3415 0.2764 0.3030 0.5129 0.3719 0.3564 0.9767
GAMMA (S) 1.3802 1.3040 1.3764 1.3323 1.2058 1.2724 1.2876 1.1241
M, MOL NT 26.359 24.963 26.292 26.292 24.844 24.963 24.963 35.130

ENERGY STATE TEMP
DEC K

G 298.10
G 298.15
G 298.15
G 298.15
G 298.15
G 298.15

NOTES ON MOLE FRACTIONS:
A) STATION 2 RESIDUAL GAS FROM PREVIOUS CYCLE; B) MOLES NO FROZEN AFTER COMBUSTION(STATION 5)

MOLE FRACTIONS

AR 0.0000 0 6.9326-3 3.3687-4 3.3687-4 6.8996-3 6.9326-3 6.9326-3 6.9415-3
CH4 0.000 0 3.898-18 1.894-19 1.894-19 2.202-16 3.940-18 3.940-18 0.000 0
CO 0.0000 0 5.4763-6 2.6611-7 2.6611-7 3.7489-5 5.4903-6 5.4903-6 0.0000 0
C02 0.0000 0 2.3064-4 1.1208-5 1.1208-5 1.9751-4 2.3063-4 2.3063-4 2.3642-4
H 0.0000 0 1.1817-6 5.7420-8 5.7420-8 5.5143-4 1.1831-6 1.1831-6 0.0000 0
1t02 0.000 0 2.884-11 1.402-12 1.402-12 3.769 -6 2.872-11 2.872-11 0.000 0
il2 0.0000 0 2.5648-3 1.2463-4 1.2463-4 8.9652-3 2.5716-3 2.5716-3 0.0000 0
H20(L) 0.0000 0 0.0000 0 0,0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 2.8850-1
H20 0.0000 0 3.0756-1 1.4945-2 1.4945-2 2.9733-1 3.0756-1 3.0756-1 2.2037-2
NH3 0.000 0 1.426 -8 6.927-10 6.927-10 2.274 -7 1.431 -8 1.431 -8 0.000 0
N 0.000 0 1.547-13 7.515-15 7.515-15 7.527 -8 1.546-13 1.546-13 0.000 0
NO 0.0000 0 2.5796-3 1.2535-4 1,2535-4 2.5666-3 2.5789-3 2.5789-3 0.0000 0
N92 0.000 0 5.678-12 2.759-13 2.759-13 1.129 -6 5.646-12 5.646-12 0.000 0
N2 0.0000 0 6.8012-1 3.3049-2 3.3049-2 6.7688-1 6.8012-1 6.8012-1 6.8229-1
0 0.000 0 1.936 -9 9.408-11 9.408-11 1.639 -4 1.931 -9 1.931 -9 0.000 0
OH 0.0000 0 5.1323-6 2.4939-7 2.4939-7 4.1640-3 5.1247-6 5.1247-6 0.0000 0
02 0.0000 0 1.0672-7 5.1860-9 5.1860-9 2.2311-3 1.0613-7 1.0613-7 0.0000 0
AR 7.3203-3 0.0000 0 6.9646-3 6.9646-3 0.0000 0 0.0000 0 0.0000 0 0.0000 0
C02 2.4932-4 0.0000 0 2.3721-4 2.3721-4 0.0000 0 0.0000 0 0.0000 0 0.0000 0
N2 6.1036-i 0.0000 0 5.8070-1 5.8070-1 0.0000 0 0.0000 0 0.0000 0 0.0000 0
02 1.6374-1 0.0000 0 1.5578-1 1.5578-1 0.0000 0 0.0000 0 0.0000 0 0.0000 0
Nit3 2.1832-1 0.0000 0 2.0771-1 2.0771-1 0.0000 0 0.0000 0 0.0000 0 0.0000 0
AIR 9.1003-6 0.0000 0 8.6581-6 8.6581-6 0.0000 0 0.0000 0 0.0000 0 0.0000 0

TOTAL COMPUTER TIME= 0.945 SEC DELTA TIME = 0.151 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 5 LEVEL 2 CASE NO. 10
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.000 T(EGR) = 298.1 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
PRESSURE DISCONTINUITIES ARE ISENTROPIC
RNRE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.050 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 30.29 DEG IVSHUT = 180.00 DEG

EICHELBERG HEAT TRANSFER COEFICIENT

EQUILIBRIUM FLAME FINITE BURNING INTERVAL = 88.7 DEG WIEBE

CHEMICAL FORMULA
FUEL N 1.00000 H 3.00000
FUEL N 2.00000
FUEL 0 2.00000
FUEL AR 1.00000
FUEL C 1.00000 0 2.00000
AIR N 1.56168 O 0.41959

A/F = 0.0000

MASS PER CYCLE (G)

TOTAL 0.53867
FUEL 0.50681
AIR 0.00001

ENERGY PER CYCLE (JOULES)

INDICATED WORK 560.774
INDICATED PUMP WORK -54.205
HEAT LOSS 210._20

CHEM. ENERGY 1603.709

EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

COMBUSTION TAU =0.8930E-04 SEC BETA = 3.200

AR 0.00936 C 0.00052

PERCENT FUEL = 99.9990

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC)

CHARGE 14.7819
FUEL 1_.7818
AIR 0.0001

AVERAGE ENERGY RATE - POWER (KW)

INDICATED POWER 16.356
INDICATED PUMP POWER -1.581
HEAT LOSS RATE 6.137
EXHAUST POWER 23.846

MOLES ENERGY STATE TEMP
CAL/MOL DEG K

2.000000 -10970.801 G 298.10
5.591379 0.000 G 298.15
1.500000 0.000 G 298.15
0.067060 0.000 G 298.15
0.002284 -94049.563 G 298.15
1.000000 -29.792 G 298.15

EQUIVALENCE RATIO = 1.0000 PHI= 0.0000

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 14.7819
CO 0.00000
HOX 0.00291

CYCLE EFFICIENCIES

NET WORK 0.315873
HEAT LOSS 0.131208
EXHAUST 0.509798

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1091.06 K AND 1.0000 ATM
AR 0.006941 CO 0.000000 C02 0.000236
H2 0,000160 H20 0.3103_7 NH3 0.000000
NO2 0.000000 N2 0.682150 0 0.000000

FRESH CHARGE MOLE FRACTIONS AT 236.19 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.007320 C02 0.000249 N2 0.610358 02
AIR 0.000009

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE+

5.7284
-0.5537
40.3115

MOLECULAR WEIGHT =
H 0.000000
X 0.000000
OH 0.000001

26.359
0.163741

24.993
H02 0.000000
NO 0.00016_
02 0.000000

NH3 0.218321

COMPUTER CYCLE TIME = _.094 SEC
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Appendix I

Example VI (Case 222)

Input, Case 222, Initial Run

REAC
C 3. H 8. 1. G298.15 F

NAME
&OTTINP FREQ=3500,BORE=lO.922,STROKE=lO.312,ROD=17.145,CA=129.03,
TW=360.,CR=lO.5,AN=.375,-.5,.125,KASE=222,
PEXH=l.,PMFOLD=.4276,
HC3=O.,HA=.4,HB=.8,HC2=o3872,

SP=T,TAIR=298.15&END
&AFINP DEBUG=T,EQRAT:1.,SPARK:20.,EGR=.OS,THBURN=110.,
NCYCLE=IO,IFLON=4,VARAF=F,KFLAME=4&END

&FLONIN DIN=4.78155,DEX=3.65125,BETAIN=45,BETAEX=_5,LIN=2.2,LINR=2.2,
LEX=l.8,LEXR=l.8,AIN(1)=.95,AINR(1)=1.,AEXR(1)=.95,
EIN(2)=-20,EINR(2)=-20,EEXR(2)=-15,EEX(2)=-lS,EIN(3)=2,EINR(3)=2,
EEXR(3)=2,EEX(3)=2,BINtl)=.OS,BINR(1)=.OS,AEX(1)=I.,
R_=_655_975_69_6_-_2_2266_72_2_5_2769259_552_'-_29_4666_3586_967_59957726191'
-1606.5917666613,1531.2782499752,-777.7261496_883,162.74377189163,
REX=.O1523981981q648,1.269225654956_,2_.316014460188,-83.715719936202,
-146.81709604486,1257.7189438064,-2839.5867388125,3151.0342473402,
-1758.248769365,394.01465307699,POLY=T,
IVOPEN=699,IVSHUT=265,EVOPEN=46S,EVSHUT=_S&END

RESTART

&AFINP VARAF=T,AF= 13.074351&END
&AFINP VARAF=T,AF= 13.464056&END
&AFINP VARAF=T,AF= 15.876776&END
&AFINP VARAF=T,AF= 12.629932&END
gAFINP VARAF=T,AF= 13.958652&END
&AFI_P VARAF=T,AF= 14.&66378&END
&AFINP VARAF=T,AF= 16.708862&END
&AFINP VARAF=T,AF= 19.213028&END
&AFINP VARAF=T,AF= 18.456665&END
&AFINP VARAF=F,AF= 16.368179&END

Input, Case 222, First Restart

RESTART 21
&AFINP VARAF=T,AF= I_.91_374&END

gAFINP VARAF=T,AF= 16.414169&END
&AFINP VARAF=T,AF= 17.O09354&END
&AFINP VARAF=T,AF= I_.286650&END

&AFINP VARAF=T,AF= 16.018585&END
&AFINP VARAF=T,AF= 12.948669&END
&AFINP VARAF=T,AF= 13.566860&END
&AFINP VARAF=T,AF = 16.184128&END

&AFINP VARAF=T,AF= 15.951797&END
&AFINP VARAF=F,AF= 14.974538&END

Input, Case 222, Second Restart

RESTART 31

&AFINP VARAF=T,AF= 14.289288&END
&AFINP VARAF=T,AF= 15.469439&END

gAFINP VARAF=T,AF: 12.718887&END
gAFINP VARAF=T,AF= ]6.008972&END

&AFINP VARAF=T,AF= 14.313013&END
&AFINP VARAF=T,AF= 16.063583&END

&AFINP VARAF=F,AF= 19.820328&END

Input, Case 222, Third Restart
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Output, Case 222

INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 5 LEVEL 1 CASE NO. 222

REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1483.3 K SPARK ADVANCE = 20.00 DEG

FUEL PRESSURE : 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
PRESSURE DISCONTINUITIES ARE ISENTROPIO

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15

AIR H 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29,792 G 298.15

A/F = 15.6787 PERCENT FUEL= 5.9957 EQUIVALENCE RATIO = 1.0000 PHI = 1.0000
FUEL MASS FRACTION = 0.054087 INDICATED MEAN EFFECTIVE PRESSURE (ATM) = 5.0419
AIR MASS FRACTION = 0.848014 PUMP MEAN EFFECTIVE PRESSURE (ATM) = -0.5509

RESIDUAL MASS FRACTION = 0.050420 CHEMICAL ENERGY (JOULES/G) =2712.256
RECIRCULATED MASS FRACTION = 0.047479 MASS EFFICIENCY = 0.969580

MASS FRACTION EXHAUST RETAINED = 0.050416 VOLUME EFFICIENCY = 0.814630
HET WORK EFFICIENCY = 0.345119 FRACTIONAL MASS CHANGE 6 - 7 :-0.670650

THERMODYNAMIC PROPERTIES

STATION 2 3 4 5 6 7
CRAHKANGLE 0.0000 32.406 180.00 340.00 340.00 540.00 540.00 0.0000
P, ATM 0.6276 0.4276 0.6276 6.4934 26.777 2.2365 1.0000 1.0000
T, DEG K 294.6 1234.5 348.9 691.4 2710.8 1756.2 1683.6 298.1
RHO, G/CO 5.2204-4 1.1963-4 4.3983-4 3.3706-3 3.3704-3 6.3983-4 2.3282-4 2.3319-3
H, CAL/G -67.860 -408.70 -85.045 7.5171 153.26 -236.62 -327.86 -746.10
U, CAL/G -87,696 -495.26 -108.59 -39.140 -39.140 -359.76 -431.87 -764.28
S, CAL/(G)(K) 1.6763 2.1518 1.7317 1.7317 2.1519 2.1519 2.1519 1.5334

CP, CAL/(G)(K) 0.2498 0.3190 0.2544 0.2868 0.5735 0.3407 0.3298 0.9192
GAMMA (S) 1.3690 1.2817 1.3610 1.3077 1.1768 1.2595 1.2700 1.1512
M, MOL WT 29.509 28.342 29.448 29.448 27,998 28.340 28.560 32.586

NOTES ON MOLE FRACTIONS:

A) STATION 2 RESIDUAL GAS FROM PREVIOUS CYCLE; B) MOLES NO FROZEN AFTER COMBUSTION(STATION 5)

MOLE FRACTIONS

AR 0.00045 0.00861 0.00088 0.00088 0.00851
CO 0.00024 0.00452 0.00046 0.00046 0.02070

C02 0.00580 0.11135 0.01133 0.01133 0.09379
H 0.00000 0.00001 0.00000 0.00000 0.00079
H02 0.00000 0.00000 0.00000 0.00000 0.00001
H2 0.00009 0.00171 0.00017 0.00017 0.00477
H20(L) 0.00000 0.00000 0.00000 0.00000 0.00000
H20 0.00793 0.15238 0.01S50 0.01550 0.14396
NO 0.00033 0.00629 0.00064 0.00064 0.00621

N2 0.03723 0.7150B 0.07274 0.07274 0.70640
0 0.00000 0.00000 0.00000 0.00000 0.00065
OH 0.00000 0.00004 0.00000 0.00000 0.00627
02 0.00000 0.00000 0.00000 0.00000 0.00793

C3H8 0.03812 0.00000 0.03612 0.03612 0.00000
AIR 0,90982 0.00000 0.86216 0.86216 0,00000

0 00861
0 00658
0 11132

0 00001
0 00000
0 00173
0 00000

0 15238
0 00629
0.71505
0.00000

0.00004
0.00000
0.00000
0.00000

0.00861 0.00864
0.00458 0.00000

0.11132 0.11626
0,00001 0.00000
0.00000 0.00000
0.00173 0.00000

0.00000 0.12752
0.15238 0.02711
0.00629 0.00000

0.71505 0.72048
0.00000 0.00000
0.00004 0.00000

0,00000 0.00000
0.00000 0.00000
0,00000 0.00000

TOTAL COMPUTER TIME= 1.730 SEC DELTA TIME = 0.224 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 3 LEVEL 2 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1208.7 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE : 0.42760 ATM EXHAUST PRESSURE : 1.00000 ATM
PRESSURE DISCONTINUITIES ARE ISEHTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEH : 29.11 DEG IVSHUT = 180.00 DEG EVOPEN = 540.00 DEG EVSHUT = 720.00 DEG

HEAT TRANSFER PARAMETERS Cl : 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B : 0.8000

EQUILIBRIUM FLAME FINITE BURNING INTERVAL =i09.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15

AIR H 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 15.6787 PERCENT FUEL = 5.9957 EQUIVALENCE RATIO= 1.0000 PHI = 1.0000

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.51657 CHARGE 13.9806 EXHAUST 13.9790
FUEL 0.02730 FUEL 0.7963 CO 0.00671
AIR 0.42807 AIR 12.4852 NOX 0.01057

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 328.533 INDICATED POWER 9.582 NET WORK 0.200401
INDICATED PUMP WORK -54.375 INDICATED PUMP POWER -1.586 HEAT LOSS 0.299590

HEAT LOSS 409.854 HEAT LOSS RATE 11.954 EXHAUST 0.504170
CHEM. EHERGY 1368.050 EXHAUST POWER 20.117

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1206.97 K AHD 1.0000 ATM

AR 0.008638 CO 0.000487 C02 0.115734
NO 0.000716 N2 0.719851 OH 0.000006

FRESH CHARGE MOLE FRACTIONS AT 279.78 K AHD 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000449 CO 0.000026 C02 0.006009 H2
NO 0.000038 N2 0.037377 C3H8 0.03&123 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 8.621SEC

3.3560

-0.5554
21.8168

MOLECULAR WEIGHT =

H2 0.000236

29.514
0.000012
0.909952

28.420
H20 0.154329

H20 0.008013
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 4 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1207.0 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 sq CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.15 CC

IVOPEH = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.587200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING IHTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 15.6787 PERCENT FUEL = 5.9957 EQUIVALENCE RATIO = 1.0000 PHI = 1.0000

PERFORMANCE PARAMETERS FOR ONE CYLIHDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.47683 CHARGE 12.9511 EXHAUST 13.9790
FUEL 0.02507 FUEL 0.7377 CO 0.00671
AIR 0.39301 AIR 11.5659 NOX 0.01057

NET 12.8375 NET 13.9790

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 297.760 INDICATED POWER 8.685 NET WORK 0.169939
INDICATED PUMP WORK -84.225 INDICATED PUMP POWER -2.457 HEAT LOSS 0.501741
HEAT LOSS 379.147 HEAT LOSS RATE 11.058 EXHAUST 0.548914
CHEM. ENERGY 1256.535 EXHAUST POWER 20.117

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 3.0417
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8604
MEAN TORQUE (NEWTON-METERS) 16.9925

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1206.97 K AND 1.0000 ATM
AR 0.008638 CO 0.000487 C02 0.115734
NO 0.000716 H2 0.719851 OH 0.000006

FRESH CHARGE MOLE FRACTIONS AT 279.69 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000449 CO 0.000025 C02 0.006009 H2
NO 0.000037 N2 0.037378 C3H8 0.038123 AIR

HOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MOLECULAR WEIGHT = 28.420
H2 0.000236 H20 0.154329

29.514
0.000012
0.909953

HI0 0.008013

COMPUTER CYCLE TIME: 56.562 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 5 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1240.0 K SPARK ADVANCE = 20.00 DEC
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.L45 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEH = 699.00 DEC IVSHUT = 26S.00 DEC EVOPEN = 465.00 DEC

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEC FOURIER COMBUSTION TAU =
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032

A/F = 15.6787 PERCENT FUEL = 5.9957

PERFORMANCE PARAMETERS FOR OHE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASB FLOW RATE (G/SIC)

TOTAL 0.45754 CHARGE 11.8952
FUEL 0.02325 FUEL 0.6775
AIR 0.36453 AIR 10.6229

NET 11.9490

ENERGY PER CYCLE (JOULEB) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 274.508 INDICATED POWER 8.006
INDICATED PUMP WORK -82.183 INDICATED PUMP POWER -2.397

HEAT LOSS 365.514 HEAT LOSS RATE 10.661
CHEM. ENERGY 1168.891 EXHAUST POWER 16.926

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)

MEAN TORQUE (NEWTON-METERS)

EVSHUT = 45;00 DEG

A = 0.4000 B = 0.8000

0.0000 5EC BETA = 0.000

NT FRACTION ENERGY STATE TEMP
CAL/MOL DEC K

1.000000 -24821.770 G 298.15
l. O00000 -29.792 G 298.15

EQUIVALENCE RATIO= 1.0000 PHI = 1.0000

COMPOSITE EXHALIST GAS MOLE FRACTIONS AT 1239.96 K AND 1.0000 ATM
AR 0.008633 CO 0.001290 C02 0.114879

H20 0.153975 NO 0.000125 N2 0.719748

FRESH CHARGE MOLE FRACTIONS AT 281.43 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000448 CO 0.000067 C02 0.005968 H2
NO 0.000006 H2 0.037392 02 0.000041 C3H8

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 66.835 $EC

2.8042
-0.8395
15.3048

MOLECULAR WEIGHT =
H 0.000013
OH 0.000056

29.513
0.000025
0.038122

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 12.4854
CO 0.01588
NOX 0.00165
NET 12.4853

CYCLE EFFICIENCIE5

NET WORK 0.164537
HEAT LOSS 0.312701
EXHAUST 0.496479

28.404
H2 0.000484
02 0.000794

H20 0.007999
AIR 0.909926
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 6 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1221.4 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA :129.030 SQ CM WALL TEMF = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 : 0.000000 C2 = 0.387200E O0 C3 = O.O00000 A = 0.4000 B : 0.8000

KINETIC FLAME FINITE BURNING INTERVAL :109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN : 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP

CHEMICAL FORMULA CAL/MOL DEG K
FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 15.6707 PERCENT FUEL = 5.9957 EQUIVALENCE RATIO = 1.0000 PHI= 1.0000

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.45795 CHARGE 11.9490 EXHAUST 11.9486
FUEL 0.02332 FUEL 0.6806 CO 0.01495
AIR 0.36565 AIR 10.6709 NOX 0.00090

NET 11.9463 NET 11.9485

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 275.399 INDICATED POWER 8.032 NET WORK 0.165012
INDICATED PUMP WORK -81.928 INDICATED PUMP POWER -2.390 HEAT LOSS 0.312417
HEAT LOSS 366.298 HEAT LOSS RATE 10.684 EXHAUST 0.465253
CHEM. ENERGY 1172.466 EXHAUST POWER 15.910

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8133
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8369
MEAN TORQUE (NEWTON-METERS) 15.3959

AND 1.0000 ATM MOLECULAR WEIGHT = 28.405
C02 0.114861 H 0.000013 H2 0.000473
N2 0.719800 OH 0.000052 02 0.000865

29.513
0.000025
0.909928

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1221.43 K
AR 0.008633 CO 0.001269
H20 0.153961 NO 0.000071

FRESH CHARGE MOLE FRACTIONS AT 280.45 K AND 0.4276 ATM MOLECULAR WEIGHT :
AR 0.000448 CO 0.000066 C02 0.005967 N2
N2 0.037393 02 0.000045 C3H8 0.038122 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

H20 0.007998

COMPUTER CYCLE TIME = 66.332 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTD CYCLE 7 LEVEL 5 CASE NO. 222
REF: ZELEZNIK. FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1224.6 K SPARK ADVANCE = 20.00 DEC
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVQPEN = 699.00 DEG IVSHUT = 265.00 DEC EVOPEN = 465.00 DEC EVSHUT = 45.00 DEC

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEC FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEC K

FUEL C 3,00000 H 8,00000 1,000000 -24821,770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F= 15.6787 PERCENT FUEL = 5.9957 EQUIVALENCE RATIO = 1.0000 PHI = 1.0000

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.45989 CHARGE 12.0295 EXHAUST 11.8587
FUEL 0.023_8 FUEL 0.6852 CO 0.01517
AIR 0.36808 AIR 10.7428 NOX 0.00050

NET 12.0259 NET 11.8586

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 277.439 INDICATED POWER 8.092 NET WORK 0.165334
INDICATED PUMP WORK -82.344 INDICATED PUMP POWER -2.402 HEAT LOSS 0.311512

HEAT LOSS 367.584 HEAT LOSS RATE 10.721 EXHAUST 0.459960
CHEM. EHERGY 1180,002 EXHAUST POWER 15.830

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8341

PUMP MEAN EFFECTIVE PRESSURE (ATM) -0,8_12
MEAN TORQUE (NEWTON-METERS) 15.5251

MOLECULAR WEIGHT =

H 0.000013
OH 0.000052

29.513
0.000025
0.909926

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 122q.58 K AND 1.0000 ATM
AR 0.008633 CO 0.001297 C02 0.ii_873
H20 0.153976 NO 0.000040 H2 0.719787

FRESH CHARGE MOLE FRACTIONS AT 280.62 K AND 0,4276 ATM MOLECULAR WEIGHT =
AR 0.000448 CO 0.000067 C02 0.005968 H2
N2 0.037394 02 0.000044 C3H8 0.038122 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

28.4O4
H2 0.000q86
02 0.000840

H20 0.007999

COMPUTER CYCLE TIME = 57.338 SEC
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!_TEDHAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE B LEVEL 5 CASE NO. 222
REF: ZELEZNIK, PRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 5500.0 EGR = 0.050 T(EGR) = 1224.5 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = _65.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR H 1.56168 O 0._1959 AR 0.00936 C 0.00032

A/F= 15.6787 PERCENT FUEL = 5.9957

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.45828 CHARGE 11.9366
FUEL 0.02332 FUEL 0.6799
AIR 0.36565 AIR 10.6599

NET 11.9362

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

IHDICATED WORK 275.522 INDICATED POWER 8.036
INDICATED PUMP WORK -82.136 INDICATED PUMP POWER -2.396
HEAT LOSS 366._87 HEAT LOSS RATE 10.689
CHEM. ENERGY 1172.497 EXHAUST POWER 15.979

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.770 G 298.15
1.000000 -29.792 G 298.15

EQUIVALENCE RATIO = 1.0000 PHI= 1.0000

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1224.52 K AND 1.0000 ATM
AR 0.008633 CO 0.001285 C02 0.114878
H20 0,153978 NO 0.000035 N2 0.719797

FRESH CHARGE MOLE FRACTIONS AT 280.61 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000_8 CO 0.000067 C02 0.005968 H2
N2 0.037394 02 0.000044 C3H8 0.038122 AIR

HOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 61.720 SEC

MEAN EXHAUST MASS FLOW RATE (G/SEC)

2.8145
-0.8390
15.3892

EXHAUST 11.9704
CO 0.01517
NOX O.O00q_
NET 11.9703

CYCLE EFFICIENCIES

NET WORK 0.164935
HEAT LOSS 0.312570
EXHAUST 0.467245

MOLECULAR WEIGHT = 28.40_
H 0.000013 H2 0.000482
OH 0.000052 02 0.0008_4

29.513
0.000025
0.909927

H20 0.007999
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 9 LEVEL 5 CASE NO. 222
REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-IO9q, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1223.2 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE : 1.00000 ATM MANIFOLD PRESSURE = 0.q2760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.1q5 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = q65.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0,000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

7'3ZL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 O 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 15.6787 PERCENT FUEL = 5.9957 EQUIVALENCE RATIO = 1.0000 PHI = 1.0000

PERFORMANCE PARAMETER5 FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.45719 CHARGE 11.9370 EXHAUST 11.9405
FUEL 0.02325 FUEL 0.6799 CO 0.01504
AIR 0.36452 AIR 10.6603 NOX 0.00041

NET 11.9432 NET 11.9404

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 274.612 INDICATED POWER 8.009 NET WORK 0.164576

INDICATED PUMP WORK -82.230 INDICATED PUMP POWER -2.398 HEAT LOSS 0.312938
HEAT LOSS 365.809 HEAT LOSS RATE 10.669 EXHAUST 0.466912
CHEM. ENERGY 1168.953 EXHAUST POWER 15.919

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8052

PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8400
MEAN TORQUE (NEWTON-METERS) 15.3093

MOLECULAR WEIGHT =
H 0.000013
OH 0.000052

29.513
0.000025
0.909927

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1223.17 K AND 1.0000 ATM

AR 0.008633 CO 0.001277 C02 0.114876
H20 0.153974 NO 0.000032 N2 0.719807

FRESH CHARGE MOLE FRACTIONS AT 280.54 K AND 0.4276 ATM MOLECULAR WEIGHT =

AR 0.000448 CO 0.000066 C02 0.005968 H2
N2 0.037394 02 0.000044 C3H8 0.038122 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME= 63,188 SEC

28.405
H2 0.000477
02 0.000856

H20 0.007999
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE I0 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1222.7 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROFIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.1_5 CM CHAMBER AREA =129.030 50 CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.85 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 CS = 0.000000 A = 0.4000 B = O.BO00

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR N 1.56168 0 0._1959 AR 0.00936 C 0.00032

A/F = 15,6787 PERCENT FUEL = 5.9957

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0._5757 CHARGE 11.8786
FUEL 0.02324 FUEL 0.6766
AIR 0.36440 AIR 10.6081

NET 11.9067

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KN)

INDICATED WORK 274.379 INDICATED POWER 8.003
INDICATED PUMP WORK -82.174 INDICATED PUMP POWER -2.39?

HEAT LOSS 365.60_ HEAT LOSS RATE 10.663
CHEM. ENERGY 1168.670 EXHAUST POWER 15.933

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.770 G 298.15
1.000000 -29.792 G 298.15

EQUIVALENCE RATIO = 1.0000 PHI = 1.0000

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1222.68 K AND 1.0000 ATM
AR 0.008633 CO 0.001285 C02 0.114873
H20 0.153972 NO 0.000031 N2 0.719801

FRESH CHARGE MOLE FRACTIONS AT 280.52 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000448 CO 0.000067 C02 0.005968 H2
N2 0.037394 02 0.0000_ CSH8 0.038122 AIR

HOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MEAN EXHAUST MASS FLO_ RATE (G/SEC)

EXHAUST 11.9567
CO 0.01515
NOX 0.00040
NET 11.9566

CYCLE EFFICIENCIES

NET WORK 0.164465
HEAT LOSS 0.312837
EXHAUST 0.467427

2.8028
-0.839_
15.2952

MOLECULAR WEIGHT =
H 0.000013
OH 0.000052

29.513
0.000025
0.909927

28.405
H2 0.000482
02 0.000855

H20 0.007999

COMPUTER CYCLE TIME = 68.595 SEC
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INTERNALCOMBUSTIONENGINE MODEL ZMOTTO CYCLE 11 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1221.0 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOL_S ARE ISENTROPIC
BORE : 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.307200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AH = 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 29&.15
AIR H 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 15.6787 PERCENT FUEL = 5.9957 EQUIVALENCE RATIO = 1.0000 PHI = 1.0000

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.45514 CHARGE 11.7469 EXHAUST 11.9551
FUEL 0.02299 FUEL 0.8022 CO 0.01531
AIR 0.36041 AIR 10.4887 NOX 0.00039

NET 11.8462 NET 11.9551

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 271.117 INDICATED POWER 7.908 NET WORK 0.163698
INDICATED PUHP WORK -81.814 INDICATED PUMP POWER -2.386 HEAT LOSS 0.314226
HEAT LOSS 363.376 HEAT LOSS RATE 10.598 EXHAUST 0.471476
CHEM. ENERGY 1156.417 EXHAUST POWER 15.902

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.7695
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8357
MEAN TORQUE (NEWTON-METERS) 15.0642

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1221.04 K AND 1.0000 ATM MOLECULAR WEIGHT = 28.404
AR 0.00&633 CO 0.001298 C02 0.114872 H 0.000015 H2 0.000488
H20 0.153975 NO 0.000031 N2 0.719790 OH 0.000052 02 0.000845

280.70 K AND 0.4276 ATM MOLECULAR WEIGHT = 29.622
0.000068 CO2 0.005990 H2 0.000025
0.000044 C3H8 0.045343 AIR 0.902513

FRESH CHARGE MOLE FRACTIONS AT
AR 0.000450 CO
N2 0.037533 02

H20 0.008029

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 54.434 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 12 LEVEL 5 CASE NO. 222

REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1219.9 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 $Q CM WALL TERP = 560.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

tlEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 CS = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURHING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 5EC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -2_821.770 G 298.15
AIR N 1.56168 O 0,_1959 AR 0.00956 C 0.00052 1.000000 -29.792 G 298.15

A/F= 13.07q4 PERCENT FUEL = 7.1051 EQUIVALENCE RATIO = 1.1989 PHI = 1.1992

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.4610_ CHARGE 12.0381 EXHAUST 11.8010
FUEL 0.02785 FUEL 0.7890 CO 0.01524
AIR 0.36459 AIR 10.6236 NOX 0.00037

NET 12.0_02 NET 11.8010

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 272.136 INDICATED POWER 7.937 NET WORK 0.158527
INDICATED PUMP WORK --82.856 INDICATED PUMP POWER -2.417 HEAT L055 0.290437
HEAT LOSS 3_7.217 HEAT LOSS RATE 10.127 EXHAUST 0.449657
CHEM. ENERGY 1195.502 EXHAUST POWER 15.679

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.7799
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8464
MEAN TORQUE (NEWTON-METERS) 15.0624

MOLECULAR WEIGHT =
H 0.000015
OH 0.000051

29.603
0.000026

0.903795

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1219.87 K AND 1.0000 ATM
AR 0,008633 CO 0.001310 C02 0.11_864
H20 0.153976 NO 0.000029 H2 0.719784

FRESH CHARGE MOLE FRACTIONS AT 280.59 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR O.O00q50 CO 0.000068 C02 0.005986 H2
N2 0.037509 02 O.O000q4 C3H8 0.0q_093 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED NHEN THE VALVES CLOSE,

28.404
H2 0.000_91
02 0.000846

H20 0.00802_

COMPUTER CYCLE TIME= 52.705 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 13 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO : 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1143.0 K SPARK ADVANCE = 20.00 DIG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 5Q CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DIG ZVSHUT = 265.00 DIG EVOPEN = 465.00 DIG EVSHUT = 45.00 DIG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = O.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DIG FOURIER COMBUSTION TAU = 0.0000 SIC BETA = 0 000
AN = 0.375000 -O.SO0000 0.125000

CHEMICAL FORMULA WT FRACTION ENERGY STATE TEMP
CAL/MOL DIG K

FUEL C 5.00000 H 8.00000 1.000000 -24821.770 G 298.I5
AIR N 1.56168 0 0._1959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F= 13._641 PERCENT FUEL = 6.9137 EQUIVALENCE RATIO= 1.1642 PHI = 1.1645

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SIC) MEAN EXHAUST MASS FLOW RATE (G/SIC)

TOTAL 0.46053 CHARGE 11.9525 EXHAUST 12.0025
FUEL 0.02690 FUEL 0.7617 CO 0._9072
AIR 0.36209 AIR 10.5698 NOX 0.00022

NET 11.9515 NET 12.0025

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 272.096 INDICATED POWER 7.936 NET WORK 0.158703
INDICATED PUMP WORK -82.748 INDICATED PUMP POWER -2.413 HEAT LOSS 0.291283
HEAT LOSS 3_7.529 HEAT LOSS RATE 10.136 EXHAUST 0._92875
CHEM. ENERGY 1193.101 EXHAUST POWER 17.151

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.7795
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8453
HEAN TORQUE (NEWTON-METERS) 15.0679

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1143.04 K AND 1.0000 ATM
AR 0.008283 CH_ 0.000169 CO 0.040177
C2H_ 0.000025 H2 0.016985 H20 0.154874
02 0.000005

FRESH CHARGE MOLE FRACTIONS AT 277.06 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000_4 CH6 0.000009 CO 0.002155 C02
H2 0.000911 H20 0.008309 N2 0.037050 C3H8

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 56._35 SIC

MOLECULAR WEIGHT = 27.526
C02 0.088012 C2H2 0.000850
NO 0.000016 N2 0.690598

29.535
0.00¢722 C2H2 0.000046
0.042771 AIR 0.903579
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 14 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1144.7 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17,145 CM CHAMBER AREA =129.050 Sq CM WALL TEMP = 560.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.15 CC

IVOPEH = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS Cl = 0.000000 C2 = 0.587200E O0 C5 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC SETA = 0.000
AN = 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298,15
AIR N 1.56168 0 0._1959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 13.8768 PERCENT FUEL = 6.7219 EQUIVALENCE RATIO= 1.1297 PHI: 1.1299

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.46263 CHARGE 11.9770 EXHAUST 11.9685
FUEL 0.02625 FUEL 0.8403 CO 0.46450
AIR 0.36420 AIR 10.6133 NOX 0.00021

NET 12.0153 NET 11.9685

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KN) CYCLE EFFICIEHCIES

INDICATED WORK 275.826 INDICATED POWER 8.045 NET WORK 0.160840
INDICATED PUMP WORK -83.024 INDICATED PUMP POWER -2.422 HEAT LOSS 0.293576
HEAT LOSS 351.915 HEAT LOSS RATE 10,264 EXHAUST 0.485561
CHEM. ENERGY 1198.719 EXHAUST POWER 16.976

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8176
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8481
MEAN TORQUE (NEWTON-METERS) 15.3427

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1144.65 K AND 1.0000 ATM
AR 0.008302 CH4 0.000140 CO 0.0_8206
C2H4 0.000021 H2 0.015974 H20 0.154944

FRESH CHARGE MOLE FRACTIONS AT 277.27 K AND 0.4276 ATM MOLECULAR NEIGHT=
AR 0.000446 CH4 0.000008 CO 0.002051 C02
H2 0.000857 H20 0.008316 N2 0.037152 C$H8

HOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MOLECULAR WEIGHT = 27.575
C02 0.089404 C2H2 0.0007S9
NO 0.000016 N2 0.692240

29.598
0.004798 C2H2 0.000040
0.046784 AIR 0.899546

COMPUTER CYCLE TIME: 52.974 SEC
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;IITERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 15 LEVEL $ CASE NO. 222
REF: ZELEZHIK, FRANK J.; AHD MCBRIDE, BONHIE J.: MODELZHG THE INTERNAL COMBUSTION EHGIHE. NASA RP-1096, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1156.9 K SPARK ADVAHCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.62760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISEHTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.165 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 665.00 DEG EVSHUT = 65.00 DEG

HEAT TRAHSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.6000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

NT FRACTION EHERGY STATE TEMP
CHEMICAL FORMULA CAL/HOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -26821.770 G 298.15
AIR H 1.56168 0 0.61959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 12.6299 PERCENT FUEL = 7.3368 EQUIVALENCE RATIO = 1.2610 PHI= 1.2616

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLON RATE (G/SEC) MEAN EXHAUST MASS FLON RATE (G/SEC)

TOTAL 0.66636 CHARGE 12.0651 EXHAUST 12.1023
FUEL 0.02879 FUEL 0.7596 CO 0.61062
AIR 0.36396 AIR 10.6033 HOX 0.00023

NET 12.0662 NET 12.1022

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POMER (KN) CYCLE EFFZCZENCIES

INDICATED NORK 270.603 IHDICATED PONER 7.887 NET HORK 0.156563
INDICATED PUMP NORK -83.256 INDICATED PUMP PONER -2.628 HEAT LOSS 0.280823
HEAT LOSS 3_0.076 HEAT LOSS RATE 9.919 EXHAUST 0.681958
CHEM. ENERGY 1210.988 EXHAUST PONER 17.023

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.7622
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8505
MEAN TORQUE (NENTON-METERS) 16.8929

AND 1.0000 ATM MOLECULAR HEIGHT = 27.682
CO 0.033515 C02 0.0927_5 C2H2 0.000552
H20 0.155159 NO 0.000017 H2 0.695867

29.560
0.000029
0.90_098

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1156.86 K
AR 0.008366 CH6 0.000083
C2H6 0.000016 H2 0.013689

FRESH CHARGE MOLE FRACTIONS AT 277.68 K AND 0.6276 ATM MOLECULAR HEIGHT =
AR 0.0006_5 CO 0.001788 C02 0.006969 C2H2
H20 0.008279 N2 0.037129 C3H8 0.062565 AIR

NOTE: 1HLET AND EXHAUST VALUES CALCULATED NHEN THE VALVES CLOSE.

H2 0.000730

COMPUTER CYCLE TIME= 50.365 SEC
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INTERNAL COMBUSTION EHGIHE MODEL ZMOTTO CYCLE 16 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, PRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPH = 3500.0 EGR = 0.050 T(EGR) = 1117.9 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE : 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 5Q CM WALL TEMP = 360.0 K
TOTAL VOLUME : 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =I09.5 DEG FOURIER COMBUSTION TAU = 0.0000 5EC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

NT FRACTION ENERGY STATE TEMP

CHEMICAL FORMULA CAL/MOL DEG K
FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
_zk H 1.56168 0 0.41959 AR 0,00936 C 0.00032 1.000000 -29.792 G 298.15

A/F= 13,9587 PERCENT FUEL = 6.6851 EQUIVALENCE RATIO= 1.1230 PHI = 1.1232

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.46387 CHARGE 12.0391 EXHAUST 12.0997
FUEL 0.02623 FUEL 0,7179 CO 0.63231
AIR 0.36577 AIR 10.6725 HOX 0.00015

NET 12.0367 NET 12.0996

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 277.371 INDICATED POWER 8.090 NET WORK 0.161128
INDICATED PUMP WORK -83.065 INDICATED PUMP POWER -2.423 HEAT LOSS 0.292381
HEAT LOSS 352,585 HEAT LOSS RATE 10.284 EXHAUST 0.504199

CHEM. ENERGY 1205,910 EXHAUST POWER 17.734

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8334

PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8485
MEAN TORQUE (NEWTON-METERS) 15.4624

MOLECULAR WEIGHT =
C02 0.080615
NO 0.000011

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1117.89 K AND 1.0000 ATM

AR 0.008174 CH4 0.000321 CO 0.050850
C2H4 0.000041 H2 0.022940 H20 0.154131

02 0.000007

FRESH CHARGE MOLE FRACTIONS AT 275.82 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000442 CH4 0.000017 CO 0.002750 C02
H2 0.001241 H20 0.008335 H2 0.036854 C3H8

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

27.256
C2H2 0.001406
H2 0.681496

29.478
0.004359 C2H2 0.000076
0.040026 AIR 0.905895

COMPUTER CYCLE TIME = 55.056 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 17 LEVEL S CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-109_, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0,050 T(EGR) = 1159.6 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0._2760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE : 10.922 CM STROKE = I0.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 sq CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU =
AN = 0.375000 -O.SO0000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032

A/F = 14.8664 PERCENT FUEL = 6.3026

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET NABS FLOW RATE (G/SEC)

TOTAL 0.46358 CHARGE 12.0359
FUEL 0.02472 FUEL 0.6412
AIR 0.36727 AIR 10.7155

NET 12,0360

EHERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 281.101 INDICATED POWER 8.199

INDICATED PUMP WORK -82.530 INDICATED PUMP POWER -2.407
HEAT L055 361.725 HEAT LOSS RATE 10.550
CHEM, ENERGY 1198.295 EXHAUST POWER 17.052

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

EVSHUT = 45.00 DEG

A = 0.4000 B = 0.8000

O.O000 SEC BETA = O.OOO

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.O00OO0 -24821.770 G 298.15
1.000000 -29.792 G 298.15

EQUIVALENCE RATIO = 1.0546 PHI = 1.0546

2.8715
-0.8431
15.8018

MOLECULAR WEIGHT =
C02 0.092545
NO 0.000017

29._39
0.000029
0.911013

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1159.60 K AND 1.0000 ATM
AR 0.0083_6 CH4 0.000087 CO 0.033734
C2H4 0.000014 H2 0.013769 HZO 0.155085

FRESH CHARGE MOLE FRACTIONS AT 277.54 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000444 CO 0.001794 C02 0.004921 C2H2
H2O 0.008246 N2 0.037000 C3H8 0.035814 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 12.0862
CO 0.41255
NOX 0.00023
NET 12.0862

CYCLE EFFICIEHCIES

NET WORK 0.165711
HEAT LOSS 0.301866
EXHAUST 0.487902

27.682
C2H2 0.000547
N2 0.695843

H2 0.000732

COMPUTER CYCLE TIME = 50.674 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 18 LEVEL 5 CASE NO. 222

REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1189.0 K SPARK ADVANCE = 20.00 DEG

FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE : 10.922 CM STROKE = 10.512 CM ROD = 17.145 CM CHAMBER AREA =129.050 Sq CM WALL TEMP = 360.0 K

TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.15 CC

IVOPEN = B99.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT : 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP

CHEMICAL FORMULA CAL/MOL DEG K
FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F= 16.7088 PERCENT FUEL = 5.6469 EQUIVALENCE RATIO = 0.9384 PHI= 0.9383

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.46133 CHARGE 12.0152 EXHAUST 12.0928
FUEL 0.02213 FUEL 0.5606 CO 0.23049
AIR 0.36933 AIR 10.7699 NOX 0.00032

NET 12.0135 NET 12.0928

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KN) CYCLE EFFICIENCIES

INDICATED WORK 271.271 INDICATED POWER 7.912 NET WORK 0.166023
INDICATED PUMP WORK -B2.686 INDICATED PUMP POWER -2.412 HEAT LOSS 0.314328
HEAT LOSS 357.043 HEAT LOSS RATE 10.414 EXHAUST 0.499017
CHEM. ENERGY 1135.894 EXHAUST POWER 16.533

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.7711
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8447
MEAN TORQUE (NEWTON-METERS) 15.0071

MOLECULAR WEIGHT =
C02 0.102870
NO 0.000025

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1188.96 K AND 1.0000 ATM
AR 0.008479 CH4 0.000007 CO 0.019065
H 0.000005 H2 0.007368 H20 0.155058
02 0.000007

FRESH CHARGE MOLE FRACTIONS AT 278.70 K AND 0.4276 ATM MOLECULAR WEIGHT =

AR 0.000445 CO 0.001000 C02 0.005395 C2H2
H20 0.008132 N2 0.037079 C3H8 0.031324 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

29.389

0.000007
0.916227

28.018
C2H2 0.0001_3
N2 0.706967

H2 0.000386

COMPUTER CYCLE TIME = 51.006 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 19 LEVEL S CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR : 0.050 T(EGR) = 1198.6 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.62760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.165 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME : 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN : 699.00 DEG IVSHUT = 265.00 DEG EVOPEH = 665.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C5 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
A!R H 1.56168 0 0.61959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F= 19.2130 PERCENT FUEL = 6.9473 EQUIVALENCE RATIO: 0.8163 PHI = 0.8160

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.45835 CHARGE 11.9535 EXHAUST 12.0307
FUEL 0.01922 FUEL 0.5848 CO 0.00179
AIR 0.36883 AIR 10.7960 NOX 0.00036

NET 11.9596 NET 12.0306

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICZENCIE5

INDICATED WORK 237.116 INDICATED POWER 6.916 HET WORK 0.158066
INDICATED PUMP WORK -83.763 INDICATED PUMP POWER -2.663 HEAT L055 0.323661
HEAT L055 314.054 HEAT LOSS RATE 9.160 EXHAUST 0.540916
CttEM. ENERGY 970.320 EXHAUST POWER 15.308

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.4222
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8555
MEAN TORQUE (NEWTON-METERS) 12.2051

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1198.57 K AND 1.0000 ATM
AR 0.008666 CO 0.000151 C02 0.112015
NO 0.000026 N2 0.722506 OH 0.000060

FRESH CHARGE MOLE FRACTIONS AT 278.85 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000648 CO 0.000008 CO2 0.005795 H20
02 0.000386 C3H8 0.032589 AIR 0.915679

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME= 55.930 5EC

MOLECULAR WEIGHT =
H2 0.000026
02 0.007630

28.646
H2O 0.169117

29.631
0.007714 N2 0.037376
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INTERHAL COMBUSTIOH EHGINE MODEL ZHOTTO CYCLE 20 LEVEL 5 CASE NO. 222
REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BOHNIE J.: MODELZHG THE INTERNAL COMBUSTION EHGIHE. NASA RP-1094, 198S.

COMPRESSIOM RATIO : 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1101.7 K SPARK ADVAHCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATN MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATH
FLOM5 ARE ISEHTROPIC
BORE : 10.922 CH STROKE : 10.312 CH ROD : 17.145 CH CHAMBER AREA =129.030 Sq CM MALL TEMP : 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEHEHT VOLUME = 966.13 CC

IVOPEH : 699.00 DEG IVSHUT = 265.00 DEG EVOPEH = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRAHSFER PARAMETERS C1 = O.OOO000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTIOH TAU = O.OOO0 5EC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

MT FRACTIOH ENERGY STATE TEHP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0._1959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F: 18.4566 PERCENT FUEL = 5.1396 EQUIVALENCE RATIO: 0.8497 PHI= 0.8495

PERFORMANCE PARAHETER5 FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN ZHLET MASS FLOH RATE (G/SEC) MEAN EXHAUST MASS FLOH RATE (G/SEC)

TOTAL 0.46126 CHARGE 11.9047 EXHAUST 11.8376
FUEL 0.01986 FUEL 0.6554 CO 0.00070
AIR 0.36672 AIR 10.7282 HOX 0.00012

NET 11.9027 HET 11.8376

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POHER (KH) CYCLE EFFICZENCIES

INDICATED WORK 243.343 INDICATED POMER 7.098 HET MORK 0.160549
INDICATED PUMP HORK -83._19 IHDICATED PUMP POHER -2.433 HEAT LOSS 0.320848
HEAT LOSS 319.601 HEAT LOSS RATE 9.322 EXHAUST 0.¢50635
CHEH. EHERGY 996.112 EXHAUST POHER 13.092

RISCELLANEOUS

ZHDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.4858
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8521
MEAN TORQUE (HEHTOH-METERS) 12.7264

COMPOSITE EXHAUST GAS HOLE FRACTIOHS AT 1101.66 K AND 1.0000 ATH
AR 0.0087_6 CO 0.000060 C02 0.099352
H2 0.729222 OH 0.000033 02 0.030495

FRESH CHARGE MOLE FRACTIONS AT 273.49 K AHD 0.4276 ATM HOLECULAR HEIGHT =
AR 0.000452 C02 0.005139 H20 0.006834 N2
CSH8 0.036586 AIR 0.911680

HOTE: IHLET AHD EXHAUST VALUES CALCULATED HHEH TIlE VALVES CLOSE.

MOLECULAR HEIGHT = 28.507
H20 0.132098 HO 0.000009

29.495
0.037725 02 0.001578

COMPUTER CYCLE TIME: 50.804 SEC
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IHTERNALCOMBUSTIONENGINEMODEL ZMOTTO CYCLE 21 LEVEL § CASE NO. 222
REF: ZELEZHIK, FRANK J.; AHD MCBRIDE, BONNIE J.: MODELING THE INTERHAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1115.2 K SPARK ADVAHCE = 20.00 DEC
FUEL PRESSURE = 1.00000 ATM MAHZFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISEHTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DZSPLACEMEHT VOLUME = 966.13 CC

IVOPEH = 699.00 DEG IVSHUT = 265.00 DEG EVOPEH = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRAHSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 : 0.000000 A = 0.4000 B = 0.8000

KIHETIC FLAME FIHZTE BURNING INTERVAL =109.5 DEC FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AH = 0.375000 -0.500000 0.125000

MT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEGK

FUEL C 3.00000 H 8.00000 1.000000 -2¢821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F= 16.3682 PERCENT FUEL = 5.7577 EQUIVALENCE RATIO= 0.9579 PHI = 0.9579

PERFORMANCE PARAMETERS FOR OHE CYLIHDER

MASS PER CYCLE (G) MEAN ZHLET MASS FLON RATE (G/SEC) MEAN EXHAUST MASS FLON RATE (G/SEC)

TOTAL 0.46795 CHARGE 12.0899 EXHAUST 12.0130
FUEL 0.02264 FUEL 0.7258 CO 0.00062
AIR 0.37097 AIR 10.82¢1 NOX 0.00011

NET 12.0913 NET 12.0129

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - PONER (KN) CYCLE EFFICIEHCIES

INDICATED WORK 274.096 IHDICATED POWER 7.994 NET MORK 0.168441
INDICATED PUMP MORK -82.835 INDICATED PUMP PONER -2.416 HEAT LOSS 0.311879
HEAT LOSS 354.132 HEAT LOSS RATE 10.329 EXHAUST 0.408609
CHEM. ENERGY 1135._79 EXHAUST POWER 13.532

MISCELLANEOUS

IHDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8000
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8462
MEAN TORQUE (NENTON-METERS) 15.2201

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1115.22 K AND 1.0000 ATM
AR 0.008739 CO 0.000052 CO2 0.100379
H2 0.728681 OH 0.000035 02 0.028609

FRESH CHARGE MOLE FRACTIOHS AT 274.37 K AND 0.4276 ATN MOLECULAR NEIGHT =
AR 0.000_53 C02 0.005203 H20 0.006919 N2
C3H8 0.039998 AIR 0.908170

NOTE: INLET AND EXHAUST VALUES CALCULATED MHEH THE VALVES CLOSE.

COMPUTER CYCLE TIME = 60.836 SEC

MOLECULAR WEIGHT = 28.502
HI0 0.133490 NO 0.000009

29.5¢6
0.037769 02 0.001483
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INTERHAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 22 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1186.7 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS Cl = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = O.O00O SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 14.9144 PERCENT FUEL= 6.2836 EQUIVALENCE RATIO= 1.0512 PHI = 1.0512

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.46641 CHARGE 12.1319 EXHAUST 12.1925
FUEL 0.02481 FUEL 0.6580 CO 0.00108
AIR 0.37022 AIR 10.8011 NOX 0.00030

NET 12.1300 NET 12.1925

AVERAGE ENERGY RATE - POWER (KW)ENERGY PER CYCLE (JOULES) CYCLE EFFICIENCIES

INDICATED WORK 286.322 INDICATED POWER 8.351 NET WORK 0.168482
INDICATED PUMP WORK -82.755 INDICATED PUMP POWER -2.414 HEAT LOSS 0.306656
HEAT LOSS 370.515 HEAT LOSS RATE 10.807 EXHAUST 0.432059
CHEM. ENERGY 1208.244 EXHAUST POWER 15.226

MISCELLANEOUS

2.9248
-0.8454
16.1994

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

AND 1.0000 ATM MOLECULAR NEIGHT=
C02 0.109723 H2 0.000013
OH 0.000058 02 0.011660

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1186.75 K
AR 0.008681 CO 0.000090

NO 0.060023 N2 0.723764

FRESH CHARGE MOLE FRACTIONS AT 278.29 K AND 0.4276 ATM
AR 0.000450 C02 0.005685 H20
C3H8 0.036484 AIR 0,911700

MOLECULAR WEIGHT = 29.491
0.007564 N2 0.037501

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

28.458
H20 0.145985

02 0.000604

COMPUTER CYCLE TIME= 46.534 5EC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 23 LEVEL 5 CASE NO. 222
REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1219.4 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISEHTROPIC

BORE : 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 sq CM WALL TEMP = 360.0 K
TOTAL VOLUHE = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEH = 699.00 DEG IVSHUT = 265.00 DEG EVOPEH = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E 00 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

NT FRACTION EHERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/E = 16._142 PERCENT FUEL = 5.7425 EQUIVALENCE RATIO= 0.9553 PHI = 0.9552

PERFORMANCE PARAMETERS FOR OHE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAH EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0,_611_ CHARGE 12.0185 EXHAUST 12.225_
FUEL 0.02250 FUEL 0.6327 CO 0.09939
AIR 0.36909 AIR 10.7619 NOX 0.00041

HET 12.014B NET 12.2253

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 271.347 INDICATED POWER 7.91_ NET WORK 0.156869
INDICATED PUMP WORK -82.745 INDICATED PUMP POWER -2.413 HEAT LOSS 0,297322
HEAT LOSS 357.467 HEAT LOSS RATE 10._26 EXHAUST 0.471391
CHEM. ENERGY 1202.291 EXHAUST POWER 16.530

MISCELLANEOUS

IHDICATED MEAH EFFECTIVE PRESSURE (ATM) 2.7719
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8453
MEAN TORQUE (NEWTON-METERS) 15.0085

MOLECULAR WEIGHT =
H 0.000010
OH 0.000006

29.461
0.000168

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1219.36 K AND 1.0000 ATM

AR 0.008572 CO 0.008200 C02 0.110518
H2O 0.154686 NO 0.000032 H2 0.714708

FRESH CHARGE MOLE FRACTIONS AT 280.33 K AND 0._276 ATM MOLECULAR WEIGHT =
AR 0.000447 CO 0.000428 C02 0.005762 H2
N2 0.037263 C3H8 0.035243 AIR 0.912618

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME= 50.815 SEC

28.253
H2 0.003213
02 0.000051

H2O 0.008065
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 2_ LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = O.OSO T(EGR) = 1200.1 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0._2760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.1_5 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = _65.00 DEG EVSHUT = _5.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0,125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -2_821.770 G 298.15
AIR N 1.56168 0 0._1959 AR 0.00956 C 0.00032 1.000000 -29.792 G 298.15

A/F= 17.009_ PERCENT FUEL = 5.5527 EQUIVALENCE RATIO = 0.9219 PHI= 0.9218

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.45798 CHARGE 11.8787 EXHAUST 12.0322
FUEL 0.02150 FUEL 0.7_60 CO 0.00185
AIR 0.36551 AIR 10.6581 NOX 0.00035

NET 11.8899 NET 12.0321

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 260.406 INDICATED POWER 7.595 NET WORK 0.16_38_
INDICATED PUMP WORK -82.579 INDICATED PUMP POWER -2._09 HEAT LOSS 0.3187_9
HEAT LOSS 3_.817 HEAT LOSS RATE 10.057 EXHAUST 0.4861_7
CHEM. ENERGY 1081.780 EXHAUST POWER 15.339

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.6601
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8_36
MEAN TORQUE (NEWTON-METERS) 1_.1510

MOLECULAR WEIGHT =
H2 0.000027
02 0.007267

29.569
0.007756

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1200.10 K

AR 0.008665 CO 0.000156
NO 0.000027 N2 0.722_55

AND 1.0000 ATM
C02 0.11210_
OH 0.000061

FRESH CHARGE MOLE FRACTIONS AT 279.29 K AND 0._276 ATM
AR 0.000_50 CO 0.000008 C02
02 0.000378 C3H8 0.0_1672 AIR

MOLECULAR WEIGHT =
0.005826 H20
0.90635_

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

28.4_6
H20 0.14923_

N2 0.0375_9

COMPUTER CYCLE TIME = 57.030 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 25 LEVEL 5 CASE NO. 222
REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1173.5 K SPARK ADVANCE = 20.00 DEC
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOW5 ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CN CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEC IVSHUT = 265.00 DEC EVOPEN = 465.00 DEC EVSHUT = 45.00 DEC

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEC FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.575000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEGK

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 O 0.41959 AR 0.00936 C 0.00032 1.OOOO00 -29.792 G 298.15

A/F = 14.2866 PERCENT FUEL = 6.5417 EQUIVALENCE RATIO: 1.0973 PHI = 1.0974

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.46167 CHARGE 11.9575 EXHAUST 11.8947
FUEL 0.02547 FUEL 0.6628 CO 0.00097
AIR 0.36433 AIR 10.6166 NOX 0.00027

NET 11.9568 NET 11.8946

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 279.154 INDICATED POWER 8.142 NET WORK 0.153619
INDICATED PUMP WORK -82.674 INDICATED PUMP POWER -2.411 HEAT LOSS 0.282290
HEAT LOSS 361.050 HEAT LOSS RATE 10.531 EXHAUST 0.391681
CHEM. ENERGY 1279.003 EXHAUST POWER 14.611

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8516
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8_45
MEAN TORQUE (NEWTON-METERS) 15.6353

MOLECULAR WEIGHT =
H2 0.000011
02 0.013364

29.504
0.037538

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1173.55 K AND 1.0000 ATM
AR 0.008687 CO 0.000083 C02 0.108788
NO 0.000021 N2 0.724262 OH 0.000052

FRESH CHARGE MOLE FRACTIONS AT 277.59 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000450 C02 0.005638 H20 0.007501 N2
C3H8 0.0375_9 AIR 0.910820

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME= 50.407 SEC

28.463
H20 0.14¢730

02 0.000693
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 26 LEVEL 5 CASE NO. 222
REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1191.4 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.q2760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISEHTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.050 Sq CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 26S.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.S00000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 6.00000 1.000000 -24821.770 G 298.1S
AIR H 1.S6168 0 0.41959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 16.0186 PERCENT FUEL = 5.8759 EQUIVALENCE RATIO = 0.9788 PHI = 0.9788

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.46125 CHARGE 11.9773 EXHAUST 12.1145
FUEL 0.02297 FUEL 0.8271 CO 0.23076
AIR 0.36760 AIR 10.7098 HOX 0.00033

NET 12.0147 NET 12.1145

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIEHCIES

INDICATED WORK 276.580 INDICATED POWER 8.067 NET WORK 0.166344
INDICATED PUMP WORK -82.361 INDICATED PUMP POWER -2.402 HEAT LOSS 0.312491
HEAT LOSS 364.856 HEAT LOSS RATE 10.642 EXHAUST 0.487498
CHEM. ENERGY 1167.S75 EXHAUST POWER 16.601

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8253
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8q13
MEAN TORQUE (NEWTON-METERS) IS.4555

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1191.37 K AND 1.0000 ATM
AR 0.0_8479 CH4 0.000007 CO 0.019053
H 0.000005 H2 0.007557 H20 0.155066
02 0.000008

FRESH CHARGE MOLE FRACTIONS AT 279.39 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000448 CO 0.001007 C02 0.00543S C2H2
H20 0.008193 N2 0.037353 CSH8 0.045728 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MOLECULAR WEIGHT = 28.018
C02 0.102871 C2H2 0.000149
HO 0.000025 H2 0.706975

29.607
0.000008
0.901436

H2 0.000389

COMPUTER CYCLE TIME= 53.131 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 27 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = O.OSO T(EGR) = 1217.0 K SPARK ADVANCE = 20.00 DEG

5UEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE : 0._2760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.1_5 CM CHAMBER AREA =129.030 SQ CM WALL TEMP : 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 bEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN : 0.375000 -0.500000 0.125000

NT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/HOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 D 0.41959 AR 0.00936 C 0.00632 1.000000 -29.792 G 298.15

A/F = 12.9487 PERCENT FUEL = 7.1691 EQUIVALENCE RATIO= 1.2105 PHI = 1.2108

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC) MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.461q5 CHARGE 12.0489 EXHAUST 12.0468
FUEL 0.02811 FUEL 0.7832 CO 0.005_5

AIR 0.36q52 AIR 10.6258 NOX 0.00039
NET 12.0500 NET 12.0466

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KN) CYCLE EFFICIENCIES

INDICATED WORK 271.908 INDICATED POWER 7.931 NET WORK 0.157378

INDICATED PUMP WORK -83.136 INDICATED PUMP POWER -2.425 HEAT LOSS 0.2881_B
HEAT LOSS 345.628 HEAT LOSS RATE 10.081 EXHAUST 0.450848
CHEM. ENERGY 1199.483 EXHAUST POWER 15.773

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.7776

PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8492
MEAN TORQUE (NEWTON-METERS) 15.0220

MOLECULAR WEIGHT =
H2 0.000120
02 0,002690

29.599
0.000006
0.904162

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1216.97 K AND 1.0000 ATM

AR 0.008647 CO 0.000459 C02 0.114_22
NO 0.000030 N2 0.720935 OH 0.000062

FRESH CHARGE MOLE FRACTIONS AT 280.37 K AND 0._276 ATM MOLECULAR WEIGHT =
AR 0.000450 CO 0.000024 C02 0.005957 H2
N2 0.037532 02 0.0001_0 C3H8 0.0_3776 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME= q9._35 SEC

28.428

H20 0.152629

H20 0.0079_6

271



INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 28 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1136.5 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISEHTROPIC
BORE : 10.922 CM STROKE : 10.312 CM ROD = 17.165 CM CHAMBER AREA =129.030 SQ CM MALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265,00 DIG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 8 = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0,0000 SEC BETA = 0.000
AH = 0.575000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR N 1.56168 0 0.41959 AR 0.00936 . C 0.00052 1.000000 -29.792 G 298.15

A/F = 13.5669 PERCENT FUEL= 6.8649 EQUIVALENCE RATIO= 1.1554 PHI = 1.1557

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.46155 CHARGE 11.9838
FUEL 0.02681 FUEL 0.6552
AIR 0.36360 AIR 10.6031

NET 11.9812

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KN)

INDICATED WORK 274.051 INDICATED POWER 7.993
INDICATED PUMP WORK -82.812 INDICATED PUMP POWER -2.415
HEAT LOSS 349.497 HEAT LOSS RATE 10.194
CHEM. ENERGY 1197.697 EXHAUST POWER 17.291

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1136.55 K
AR 0.008261 CH4 0.000198
C2H4 0.000024 H2 0.018142
02 0.000005

AHD 1.0000 ATM
CO 0.042384
H20 0.154764

FRESH CHARGE MOLE FRACTIONS AT 276.52 K AND 0.4276 ATM
AR 0.000443 CH4 0.000011 CO
H2 0.000972 H20 0.008294 N2

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 12.0551
CO 0.52096
NOX 0.00020
NET 12.0550

CYCLE EFFICZENCZES

NET WORK 0.159672
HEAT LOSS 0.291808
EXHAUST 0.494980

2.7995
-0.8459
15.2183

MOLECULAR WEIGHT = 27.472
CO2 0.086472 C2H2 0.000955
NO 0.000015 N2 0.688771

MOLECULAR WEIGHT = 29.444
0.002271 C02 0.004634 C2H2 0.000051
0.036910 C3H8 0.036914 AIR 0.909497

HOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 48.432 SIC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 29 LEVEL 5 CASE NO. 222
REF= ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, X985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1151.4 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0._2760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLONS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.050 5Q CM MALL TEMP -= 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEH = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0._000 S = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 $EC BETA = 0.000
AN : 0.375000 -0.500000 0.125000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DEG K

FUEL C 3.00000 H 8.00000 1.000000 -2_821.770 G 298.15
AIR H 1.56168 0 0._1959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 16.1841 PERCENT FUEL = 5.8193 EQUIVALENCE RATIO = 0.9688 PHI= 0.9688

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/5EC) MEAH EXHAUST MASS FLOM RATE (G/SEC)

TOTAL 0._6325 CHARGE 12.0_13 EXHAUST 11.9734
FUEL 0.02290 FUEL 0.6754 CO 0.44791
AIR 0.37004 AIR 10.7755 HOX 0.00022

NET 12.0586 NET 11.9733

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KM) CYCLE EFFICIENCIES

INDICATED MORK 280.950 INOICATED PONER 8.194 NET MORK 0.166254
INDICATED PUMP WORK -82.566 INOICATED PUMP POMER -2.408 HEAT LOSS 0.309200
HEAT LOSS 368.957 HE_T LOSS RATE 10.761 EXHAUST 0.488225
CHEM. ENERGY 1193.26_ EXHAUST POWER 16.992

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8700
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8434
MEAN TORQUE (NEWTON-METERS) 15.7870

COMPOSITE EXHAUST GAS HOLE FRACTIONS AT 1151.41 K AND 1.0000 ATM MOLECULAR HEIGHT =
AR 0.008316 CH4 0.000124 CO 0.056870 CO2 0.090338
C2H4 0.000018 H2 0.015297 H20 0.154999 NO 0.000017

FRESH CHARGE MOLE FRACTIONS AT 277.23 K AND 0.4276 ATM MOLECULAR HEIGHT = 29.459
AR 0.0004q4 CH4 0.000007 CO 0.001967 C02 0.00_820
H2 0.000816 H20 0.008270 N2 0.036992 C3H8 0.037439

NOTE: INLET AND EXHAUST VALUES CALCULATED MItEH THE VALVES CLOSE.

COMPUTER CYCLE TIME= 52.658 5EC

27.607
C2H2 0.000683
N2 0.693329

C2H2 0.000036
AIR 0.909206

i_:̧

15'
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 30 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-I094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1228.6 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = L.O0000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 8 = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -O.SO0000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032

A/F = 15.9518 PERCENT FUEL = 5.8991

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.46078 CHARGE 12.0118

FUEL 0,02307 FUEL 0.7171
AIR 0.36797 AIR 10.7380

NET 12.0123

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 276.784 INDICATED POWER 8.073
INDICATED PUMP WORK -82.381 INDICATED PUMP POWER -2.403
HEAT LOSS 365,857 HEAT LOSS RATE 10,671
CHEM. ENERGY 1171.511 EXHAUST POWER 16.207

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1228.58 K
AR 0.008635 CO 0.001124
H20 0.153877 NO 0.000031

AND 1.0000 ATM
C02 0.114906
N2 0.719963

FRESH CHARGE HOLE FRACTIONS AT 280.89 K AND 0.4276 ATM
AR 0.000449 CO 0.000058 C02
N2 0.037_30 02 0.000052 C3H8

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.770 G 298.15
1.000000 -29.792 G 298.15

EQUIVALENCE RATIO= 0.9829 PHI = 0.9829

MOLECULAR WEIGHT =
0.005974 H2
0.039837 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 12.1154
CO 0.01342
NOX 0.00040
NET 12.1153

CYCLE EFFICIENCIES

NET WORK 0.165970
HEAT LOSS 0.312348
EXHAUST 0,474391

2.8274
-0.8415
15.4701

MOLECULAR WEIGHT =
H 0.000011
OH 0.000054

29,559
0.000021
0.908173

28.409
H2 0.000404
02 0.000992

H20 0.008000

COMPUTER CYCLE TIME: 56.716 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 31 LEVEL 5 CASE NO. 222

REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTIOH ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1219.4 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE : 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUPIE = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS Cl = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA
FUEL C 3,00000 H 8.00000

AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032

A/F= 14.9745 PERCENT FUEL= 6.2600

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.46033 CHARGE 12.0201

FUEL 0.02451 FUEL 0.7491
AIR 0.36724 AIR 10.7043

NET 12.0159

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 279.340 IHDICATED POWER 8.147
INDICATED PUMP WORK -82.458 INDICATED PUMP POWER -2.405

HEAT LOSS 365.473 HEAT LOSS RATE 10.660
CHEM. ENERGY 1184.192 EXHAUST POWER 15.861

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.770 G 298.15

1.000000 -29.792 G 298.15

EQUIVALENCE RATIO= 1.0470 PHI= 1.0470

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1219.38 K AND 1.0000 ATM
AR 0.008643 CO 0.000640 C02 0.114725
NO 0.000031 H2 0.720585 OH 0.000059

FRES_ CHARGE MOLE FRACTIONS AT 280.44 K AND 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000450 CO 0.000033 C02 0.005967 H2
N2 0.037481 02 0.000100 C3H8 0.041663 AIR

NOTE: INLET AHD EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME= 53.251 SEC

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 12.0477
CO 0.00760
NOX 0.00039
NET 12.0476

CYCLE EFFICIENCIES

NET WORK 0.166259
HEAT LOSS 0.308626
EXHAUST 0.459233

2.8535
-0.8423
15.6674

MOLECULAR WEIGHT =
H2 0.000188
02 0.001915

29.567
0.000010
0.906322

28.422
H20 0.153207

H2O 0.007969
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 32 LEVEL 5 CASE NO. 222
REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1205.1 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = I0.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEH = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45,00 DEG

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H a. O0000
AIR N 1.56168 0 0.41959 AR 0.00936 C 0.00032

A/F= 14.2893 PERCENT FUEL = 6.5405

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.45992 CHARGE 11.9752
FUEL 0.02551 FUEL 0.6873
AIR 0.36468 AIR I0.6323

NET 11.9760

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 276.329 INDICATED POWER 8.060
INDICATED PUMP WORK -82.648 INDICATED PUMP POWER -2.411
HEAT LOSS 357.920 HEAT LOSS RATE 10.439
CItEM. EHERGY 1184.374 EXHAUST POWER 16.183

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1205.1_ K
AR 0.008551 CO 0.010687
H2 0.004134 H20 0.154787

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.770 G 298.15
1.000000 -29.792 G 298.15

EQUIVALENCE RATIO = 1.0971 PHI = 1.0972

FRESH CHARGE MOLE FRACTIONS AT 279.74 K AND 0,_276 ATM MOLECULAR WEIGHT =

AR 0.000_47 CO 0.000559 C02 0.005691 H2
N2 0.037303 C3H8 0.038601 AIR 0.909077

MEAN EXHAUST MASS FLOW RATE (G/SEC)

EXHAUST 12.0288
CO 0.12769
NOX 0.00039
NET 12.0287

CYCLE EFFICIENCIE5

NET WORK 0.163531
HEAT LOSS 0.302202
EXHAUST 0.468467

2.8228
-0.8443
15._127

AND 1.0000 ATM MOLECULAR WEIGHT = 28.200
C02 0.108777 C2H2 0.000018 H 0.000008
NO 0.000030 N2 0.712969 02 0.000032

29.509
0.000216

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

H20 0.008099

COMPUTER CYCLE TIME = 49.227 SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 33 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-109_, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0,050 T(EGR) = 1181.6 K SPARK ADVANCE = 20.00 bEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0._2760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.165 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEH = 665.00 DEG EVSHUT = 65.00 DEG

HEAT TRANSFER PARAMETERS Cl = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0._000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 $EC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR H 1.56168 0 0.61959 AR 0.00936 C 0.00032

A/F = 15._696 PERCENT FUEL = 6.0719

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.66022 CHARGE 11.9768
FUEL 0.02370 FUEL 0.8603
AIR 0.366_0 AIR 10.6871

NET 11.9751

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 278.905 INDICATED POWER 8.135
INDICATED PUMP WORK -82.700 INDICATED PUMP POWER -2.612

HEAT LOSS 366.559 HEAT LOSS RATE 10.691
CHEM. ENERGY 1182.0q0 EXHAUST POWER 16.567

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATH)

PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -26821.770 G 298.15
1.000000 -29.792 G 298.15

EQUIVALENCE RATIO= 1.0135 PHI= 1.0135

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1181.61 K AND 1.0000 ATM

AR 0.008_69 CH_ 0.000018 CO 0.022658
C2H_ 0.000006 H 0.000005 H2 0.008766
H2 0.706468 02 0.000006

FRESH CHARGE MOLE FRACTIONS AT 278.96 K AND 0.6276 ATM MOLECULAR WEIGHT =
AR 0.000_68 CO 0.001190 C02 0.005326 C2H2
H20 0.008220 N2 0.037331 C3H8 0.0_6506 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 66.828 SEC

MEAN EXHAUST MASS FLOW RATE (G/SEC)

2.8691
-0.8_68
15.6135

EXHAUST 12.0601
CO 0.27106
NOX 0.00031
NET 12.0_01

CYCLE EFFICIEHCIES

NET WORK 0.165989
HEAT LOSS 0.310107
EXHAUST 0.6805_8

MOLECULAR WEIGHT = 27.962
C02 0,100q65 C2H2 0.000231
H20 0.155121 NO 0.000026

29.615
0.000012
0.900699

H2 0.000665
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 36 LEVEL 5 CASE NO. 222
REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONHIE J.: MODELING THE INTERNAL COMBUSTION EHGIHE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1213.6 K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEH = 699.00 DEG IVSHUT = 265.00 DEG EVOPEH = 465.00 DEG EVSHUT = 45.00 DEG

HEAT [RANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0.4000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR H 1.56168 0 0.41959 AR 0.00936 C 0.00052

A/F= 12.7189 PERCENT FUEL = 7.2892

PERFORMANCE PARAMETERS FOR ONE CYLIHDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.46106 CHARGE 11.9843
FUEL 0.02841 FUEL 0.6593
AIR 0.36191 AIR 10.5552

NET 11.9888

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 268.763 INDICATED POWER 7.839
INDICATED PUMP WORK -82.967 INDICATED PUMP POWER -2.420
HEAT LOSS 341.397 HEAT LOSS RATE 9.957
CHEM. ENERGY 1194.3_5 EXHAUST POMER 16.084

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (HENTOH-METERS)

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1213.58 K
AR 0.008587 CO 0.006448
H2O 0.154587 NO 0.000031

NT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.770 G 298.15
1.000000 -29.792 O 298.15

EQUIVALENCE RATIO = 1.2326 PHI = 1.2327

MEAN EXHAUST MASS FLOW RATE (G/SEC)

2.7455
-0.8475
14.7852

EXHAUST 12.0359
CO 0.07685
HOX 0.00059
NET 12.0359

CYCLE EFFICIENCIES

NET NORK 0.155563
HEAT LOSS 0.285845
EXHAUST 0.461720

AND 1.0000 ATM MOLECULAR WEIGHT = 28.290
C02 0.111731 H 0.00001_ H2 0.002589
N2 0.715916 OH 0.000009 02 0.000087

FRESH CHARGE MOLE FRACTIONS AT 280.09 K AND 0.4276 ATM
AR 0.000_48 CO 0.000336 CO2
N2 0.037321 C3H8 0.037359 AIR

MOLECULAR NEIGHT = 29.495
0.005825 H2 0.000135
0.910510

NOTE: INLET AND EXHAUST VALUES CALCULATED NHEH THE VALVES CLOSE.

H20 0.008059

COMPUTER CYCLE TIME = 47.021SEC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 35 LEVEL 5 CASE NO. 222
REF: ZELEZHIK, FRANK J.; AND MCBRIDE, BONNIE J.: MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 1985.

COMPRESSION RATIO = 10.5 RPM = 5500.0 EGR = 0.050 T(EGR) = 1124.8 K SPARK ADVANCE = 20.00 DIG
FUEL PRESSURE = 1.O0000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLONS ARE ISENTROPIC

BORE = 10.922 CM STROKE = 10.512 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEH = 699.00 DIG IVSHUT = 265.00 DIG EVOPEN = 465.00 DIG

HEAT TRANSFER PARAMETERS Cl = 0.000000 C2 = 0.387200E O0 C3 = 0.000000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DIG FOURIER COMBUSTION TAU =
AN = 0.375000 -0.500000 0.125000

EVSHUT = 45.00 DIG

A = O.qOOO B = 0.8000

0.0000 SIC BETA = 0.000

WT FRACTION ENERGY STATE TEMP
CHEMICAL FORMULA CAL/MOL DIG K

FUEL C 3.00000 H 8.00000 1.000000 -24821.770 G 298.15
AIR H 1.56168 0 0.41959 AR 0.00936 C 0.00032 1.O00000 -29.792 G 298.15

A/F = 16.0090 PERCENT FUEL = 5.8793 EQUIVALENCE RATIO = 0.9794 PHI= 0.9794

MASS PER CYCLE (G)

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MEAN INLET MASS FLOW RATE (G/SEC)

CHARGE 11.8930
FUEL 0.7430
AIR 10.6341
NET 11.9131

AVERAGE ENERGY RATE - POWER (KW)

INDICATED POWER 8.010

INDICATED PUMP POWER -2.399
HEAT LOSS RATE 10.632
EXHAUST PONER 17.320

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

MEAN EXHAUST MASS FLOW RATE (G/SEC)

TOTAL 0.45543 EXHAUST 11.9773
FUEL 0.02258 CO 0.57045
AIR 0.36075 NOX 0.00018

NET 11.9773

ENERGY PER CYCLE (JOULES) CYCLE EFFICIENCIES

INDICATED WORK 274,632 NET WORK 0.164867
INDICATED PUMP WORK -82.255 HEAT LOSS 0.312401
ItEAT LOSS 364.528 EXHAUST 0.508911
CHEM. ENERGY 1166,860

2.8054
-0.8403
15.3089

MOLECULAR WEIGHT =
C02 0.083584
NO 0.000014

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1124.84 K AND 1.0000 ATM
AR 0.008218 CH4 0.000259 CO 0.046533
C2H4 0.000032 H2 0.020_41 H20 0.154_89
02 0.000007

FRESH CHARGE MOLE FRACTIONS AT 276.17 K AND 0.6276 ATM MOLECULAR WEIGHT =
AR 0.000_63 CH6 0.000014 CO 0.002509 C02
H2 0.001102 HI0 0.008329 N2 0.036941 C3H8

NOTE: INLET AND EXHAUST VALUES CALCULATED NHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 58,337 SIC

27.367
C2H2 0.001180
N2 0.685234

29.507
0.006506 C2H2 0.000064
0.041513 AIR 0.906576
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 36 LEVEL S CASE NO. 222
REF= ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.= MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-109_, 1985.

COMPRESSION RATIO = 10.5 RPM = 3500.0 EGR = 0.050 T(EGR) = 1223.7 K SPARK ADVANCE = 20.00 BEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0._2760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISENTROPIC
BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.1_5 CM CHAMBER AREA =129.030 $q CM NALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEC IVSHUT = 265.00 DEC EVOPEN = _65.00 DEC EVSHUT = _S.O0 DEC

HEAT TRANSFER PARAMETERS C1 = 0.000000 C2 = 0.387200E O0 C3 = 0.000000 A = 0._000 B = 0.8000

KINETIC FLAME FINITE BURNING INTERVAL =109.5 DEC FOURIER COMBUSTION TAU = 0.0000 SIC BETA = 0.000
AN = 0.375000 -0.500000 0.125000

NT FRACTION ENERGY STATE TEMP

CHEMICAL FORMULA CAL/MOL DEC K
FUEL C 3.00000 H 8.00000 1.000000 -2_821.770 G 298.15
AIR N 1.56168 O 0._1959 AR 0.00936 C 0.00032 1.000000 -29.792 G 298.15

A/F = 1_.3130 PERCENT FUEL = 6.530q EQUIVALENCE RATIO = 1.0953 PHI = 1.095q

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLON RATE (G/SIC) MEAN EXHAUST MASS FLON RATE (G/SEC)

TOTAL 0._6256 CHARGE 12.0_16 EXHAUST 11.9257
FUEL 0.02561 FUEL 0.6656 CO 0.05128
AIR 0.36686 AIR 10.692_ NOX 0.00038

NET 12.0332 NET 11.9256

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW) CYCLE EFFICIENCIES

INDICATED WORK 278._39 INDICATED PONER 8.121 NET NORK 0.163977
INDICATED PUMP WORK -82.67_ INDICATED PUMP POWER -2._11 HEAT LOSS 0.299905
HEAT LOSS 358.0_3 HEAT LOSS RATE 10._3 EXHAUST 0._53612
CHEM. ENERGY 1193,856 EXHAUST PONER 15.795

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM) 2.8_3
PUMP MEAN EFFECTIVE PRESSURE (ATM) -0.8_5
MEAN TORQUE (NEWTON-METERS) 15.5785

MOLECULAR WEIGHT =
H 0.000025
OH 0.00003_

29.q98
0.000059
0.910771

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1223.66 K AND 1.0000 ATM
AR 0.008619 CO 0.002657 C02 0.11_251
H20 0.15_308 NO 0.000030 N2 0.718619

FRESH CHARGE MOLE FRACTIONS AT 280.57 K AND 0._276 ATM MOLECULAR WEIGHT =
AR O.O00qq8 CO 0.000158 C02 0.005959 H2
N2 0.037357 02 0.000016 C3H8 0.0372_3 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

28.371
H2 0.001139
02 0.000316

H2D 0.008022

COMPUTER CYCLE TIME = 51._B2 SIC
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INTERNAL COMBUSTION ENGINE MODEL ZMOTTO CYCLE 37 LEVEL 5 CASE NO. 222
REF: ZELEZNIK, FRANK J.; AND MCBRIDE, BONNIE J.= MODELING THE INTERNAL COMBUSTION ENGINE. NASA RP-1094, 19a5.

COMPRESSION RATIO = 10.5 RPM = 5500.0 EGR = 0.050 T(EGR) = 1175.q K SPARK ADVANCE = 20.00 DEG
FUEL PRESSURE = 1.00000 ATM MANIFOLD PRESSURE = 0.42760 ATM EXHAUST PRESSURE = 1.00000 ATM
FLOWS ARE ISEHTROPIC

BORE = 10.922 CM STROKE = 10.312 CM ROD = 17.145 CM CHAMBER AREA =129.030 SQ CM WALL TEMP = 360.0 K
TOTAL VOLUME = 1067.83 CC DISPLACEMENT VOLUME = 966.13 CC

IVOPEN = 699.00 DEG IVSHUT = 265.00 DEG EVOPEN = 465.00 DEG EVSHUT = 45.00 DEG

HEAT TRANSFER PARAMETERS C1 = O.O00OO0 C2 = 0.387200E OO C3 = O.OOOOO0 A = 0.4000 B = 0.8000

XINETIC FLAME FINITE BURNING INTERVAL =109.5 DEG FOURIER COMBUSTION TAU = 0.0000 SEC BETA = 0.000
AH = 0.375000 -0.500000 0.125000

CHEMICAL FORMULA
FUEL C 3.00000 H 8.00000
AIR N 1.56168 O 0.41959 AR 0.00936 C 0.00032

A/F = 16.0636 PERCENT FUEL = 5.8604

PERFORMANCE PARAMETERS FOR ONE CYLINDER

MASS PER CYCLE (G) MEAN INLET MASS FLOW RATE (G/SEC)

TOTAL 0.45916 CHARGE 11.9479
FUEL 0.02280 FUEL 0.5591
AIR 0.36585 AIR 10.6853

NET 11.9463

ENERGY PER CYCLE (JOULES) AVERAGE ENERGY RATE - POWER (KW)

INDICATED WORK 274.746 INDICATED POWER 8.013
INDICATED PU_iP WORK -82.279 INDICATED PUMP POWER -2.400
HEAT LOSS 364.335 HEAT LOSS RATE 10.626
CHEM. ENERGY 1163.623 EXHAUST POWER 16.564

MISCELLANEOUS

INDICATED MEAN EFFECTIVE PRESSURE (ATM)
PUMP MEAN EFFECTIVE PRESSURE (ATM)
MEAN TORQUE (NEWTON-METERS)

WT FRACTION ENERGY STATE TEMP
CAL/MOL DEG K

1.000000 -24821.770 G 298.15
1.000000 -29.792 G 298.15

EQUIVALENCE RATIO = 0.9761 PHI= 0.9760

COMPOSITE EXHAUST GAS MOLE FRACTIONS AT 1175.38 K AND 1.0000 ATM
AR 0.008440 CH4 0.000021 CO 0.023476
C2H_ 0.000006 H2 0.009181 HI0 0.155141
02 0.000005

FRESH CHARGE MOLE FRACTIONS AT 278.01 K AHD 0.4276 ATM MOLECULAR WEIGHT =
AR 0.000444 CO 0.001235 C02 0.005246 C2H2
H20 0.008160 H2 0.037013 C3H8 0.030390 AIR

NOTE: INLET AND EXHAUST VALUES CALCULATED WHEN THE VALVES CLOSE.

COMPUTER CYCLE TIME = 65.169 SEC

MEAN EXHAUST MASS FLOW RATE (G/SEC)

2.8066
"'0.8405
15.3161

EXHAUST 12.0619
CO 0.28410
NOX 0.00030
NET 12.0618

CYCLE EFFICIENCIES

NET WORK 0.165404
HEAT L055 0.313104
EXHAUST 0.488056

MOLECULAR WEIGHT = 27.919
C02 0.099745 C2H2 0.000255
NO 0.000023 N2 0.703697

29.370
0.000013
0.917011

H2 0,000483
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Appendix J

Flow Diagrams

Appendix J contains flow diagrams of the main program and subroutine GENEX and a diagram

showing the general flow between subroutines during combustion. The main program directs

program flow according to whether it is an initial or restart run. Subroutine GENEX directs the

cycle-to-cycle program flow for all levels. The purpose of the diagrams is to indicate general program
flow, and only part of the actual code is included.

Numbers on the top left side of the boxes are program statement numbers. Called subroutines or

entries are represented by boxes with double vertical lines. Entry names are followed by the

subroutine name in parentheses. A brief description of what the routine does for the particular call is

given within the box.

Cycle level and station numbers are referred to in many places throughout the diagrams. Figures 1

to 6 illustrate the definitions of these numbers. The variables EGR, HC2, IFLOW, KFLAME,

KINET, PEXH, PMFOLD, RHUMID, and THBURN are defined in tables IV and V. Some other
definitions are as follows:

CNVG

EM

FSTART

ICYCLE

IDEAL

INT

IPT

L1

NLM

NPROC

TRANS

logical variable used for level 1 (ideal cycles); initialized to .FALSE. and set to
.TRUE. when steady state is reached

ratio of mass of fresh charge to mass of residual exhaust gas

logical variable that is true only for level 4 or 5 calculations

cycle number for either ideal or nonideal calculations

logical variable that is true for level 1 calculations

integer that

= 3 for postcombustion calculations without flow (stations 5 and 6)

= 2 for burning calculations (stations 4 and 5)

= 1 for postcombustion calculations (stations 5 to 7) with flow
= 0 for no reactions and no flow (stations 1 to 4 and 7 to 8)

number of next station in cycle

number of chemical components in system plus 1

number of components in chemical equilibrium calculations; equals number of

chemical elements if species NO is allowed to react (i.e., not frozen); equals L1 if NO
is frozen

integer set to -1 if a case reaches normal completion; otherwise set to + 1

logical variable that is true for levels greater than 1
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Main Program

15

READ (5)

WRITE (5)
code card

Code =

REAC

65

SUBROUTINE REACT

Read and process fuel cards

OMIT

75

Store names of species

to be omitted in OMIT array

No

NAME

No

Code =

blank

No

RESTART

No

(8)
Error message

85

ENTRY ADDAIR (AJCOEF)
Add air to chemical system

35

Set ISTART= cycle number

where calculations
are to resume

II

SUBROUTINE SEAR I ]

Search THERMO data

(t/O unit 4) for species in

system. Excludes fuels, air,

and species on OMIT cards

1
Executive routine for

Otto cycle calculations

SUBROUTINEREwtND7 RSTART 1

Read ISTART-1 cycles

(records) from I/O unit 7
BACKSPACE 7

Rewrite last record

WRITE (7) blank record

l
ENTRY CONTNU (GENEX)
Read AFINP namelist

Continue Otto cycles
1 t
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Subroutine GENEX

nter from

in programj

Initialize

IDEAL= .TRUE

ICYCLE = 1

KINET=0

IFLOW = 0

KFLAME = 99999

CNVG = ,FALSE.

READ (5)

WRITE (6)
OTTINP namelist and

AFINP namelist

Process data

ENTRY VALINT (FLOW)

READ (5)

WRITE (6)
FLOWIN namelist

Process data

75

READ (4)

Thermodynamic
data for fuels

SUBROUTINE PLT

Initialize plotting
data

_s

TRANS = .TRUE.

and HC2_0 or IFLOW:_0?

(Will transport properties

be needed?)

Yes

2:0 [ I
CONTINUE

(Beginning of loop

_- for repeated Otto

cycles)

NOTE: This is the end

of initialization and

special calculations

for the first ideal cycle

' IIENTRY SETEXH (AJCOEF) I

Set exhaust gas properties.

Use air for first ideal

cycle

t

I IInitialize properties

of working fluid to air at

manifold pressure PMFOLD

200 l

Combine properties and

compositions ot fuel and
air according to mixture

input parameter

t

Chemical kinetics data

Process data

Yes

KINET_0

or IFLOW_0?

(Will chemical kinetics
data be needed?)

ENTRY VISCON (HTCS)

READ (8)

WRITE (6)

Transport data
Process data

No NLM = LI?

(Is species NO

I
Yes

Permit NO to react

I

ICYCLE >

IFLOW? (Is this a

level 4 or 5 cycle?)

No

No

22O

Is

PM FOLD > PEXH

(supercharge case)
?

IPT=2

Make initial estimate
for mass addition

(EM)

SUBROUTINE AJCOEF

Iterate on mass
addition variable EM

and adjust properties

of working fluid at
station 2

225

Make initial estimates

for mass addition (EM)

at 180 ° for ideal cycles.
IPT-- 3.

No

Yes

®

=®
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Subroutine GENEX (continued)

®

215

Do level 4 or 5
calculations until

intake valve closes

t
Initialize fresh charge

properties including

EGR, if any

25O

l,P 4 I-_

ENTR"ONHSET'A'OOE  IICalculate enthalpy

for chemical energy

calculation

235

Calculate the cycle
between stations 2 and

3 for levels 2 or 3

265

!,_T_61INT=O

(no reaction) I

Yes

260

31o !

Do level 4 or 5

calculations
between stations

5 and 8

FSTART

Yes

Is

THBURN = 0?

(Is this a motoring
cycle?)

No

SUBROUTINE FLEX

Do level 4 or 5 calcula-

tions between

stations 3 and 4

Calculate cycle
between stations 3

and 4 for levels

2or3

__ Yes

245

ENTRY DHHSET (AJCOEF)
Calculate enthalpy for

chemical energy

27O

Initialize some I

variables for start of

combustion

]1

280
IPT = 5

Assign internal

energy and volume
for subroutine EQLBRM

t
SUBROUTINE FROZEN

Calculate properties

for frozen

composition II
27s l

Assign entropy and

volume for isentropic

expansion between
stations 3 and 4

t
4

Executive routine

for finite-rate

burning

calculation

230 l

SUBROUTINE AJCOEF

Iterate on mass addi-

tion variable EM and

adjust properties of
working fluid at
station 3

t

No
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Subroutine GENEX (continued)

.t ®

Yes No
FSTART

II

305

No

Is

there combustion
?

Yes

285

i Setiniti al

estimates for

compositions
for EQLBRM

SUBROUTINE EQLBRM

Do equilibrium constant
volume combustion

calculation

No Yes

ENTRY NOXFRZ (AJCOEF)
Unfreeze NO

NLM = L1-1

No

315

Yes
this level 3

No

330

No

THBURN>0

335 Yes

SUBROUTINE EQLBRM

Do equilibrium

calculations for
station 6

Assign enthalpy or

entropy and
P = PEXH for

FROZEN calculation

3so

_ SUBROUTINE FROZEN _._

Calculate properties
for frozen

compositions

320

4ool I
Print final output

sheet summarizing
cycle properties

t
Do level 2 or 3

calculations

between stations 7 and 8

Yes

I!
II

II'N'"*S"'XH'A"OO' 'IiSet exhaust composi-

tions and properties

Yes

t-
! '*orateooI

q [ u_t'is_:ct;;iEx"I
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Subroutine GENEX (continued)

®

®

| "Did not .'

I stabilize" I

I CNVG=.TRUE. I

No

Yes

Is

PEXH < PM FOLD

(supercharging)

?

No

Calculate {)2,

angle for

station 2

I NPROC= 1 I

540

-_- RETURN _-

515 l

(normal completion) _

IIENTRY HEAD (OOUT)

Print final output

for ideal cycle

Yes

460

or

DEBUG

I

IF-
[ SUBROUTINE DUMPCM

Dumpcommonon

I/Ounit7for

restartandplotting

NPROC = -1

(finished)

No

VARAF

(Is there another

AFINP namelist

to be read?)

No

CNVG
No

READ (5)

WRITE (6)

AFINP namelist

Process data

TRANS

(Are there

levels > 1?)

Yes

IDEAL=.FALSE.

ICYCLE=0

CNVG=.FALSE.

ENTRY CONTNU
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Subroutine GENEX (continued)

s

FLOWIN namelist

Process data

No

J I READ (8)II II
II Transportdata II
L] _c_ssd_ J,.i

No

No

HC2 _ 0?

(Do heat transfer

calculations require

transport properties?)

Chemical kinetics data

Process data

Set AF, EQRAT, J

IPHI, and FPCT

to previous values

this a level

4 or 5 cycle with

the intake valve opening

near the end of

the cycle

No

SUBROUTINE NEWOF

Process new A/F

No

last cycle

level 4 or 5

Yes

430

FSTART

465 No

Yes

Yes

IFLOW = 0
EGR = 0

No

Yes

=9
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Subroutine GENEX (concluded)

.m

®

®

49o I

._ SUBROUTINE HTRANS

Heat transfer

calculations for

stations 1 and 2

+ 0 _

No

540

(RETURN)

I,o_c_=,c_c'E+_I
510_

ICYCLE= ICYCLE+ 1 I

Initialization

for new cycle

470 l

Initialization

for plotting data

II
N+ Yes

Calculate enthalpy

of exhaust gas for

calculating properties

of charge

IISO'ROO"N'FROZE"I'FDo frozen calculation

t

ise   ors iaccording to

input

500 I

='-I P=PMFOLD I

_ Yes
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Program Flow During Combustion

GENEX I

General executive

routine

[
!

BRNEX

Burning executive
routine

Level>2 " ]

(after spark) 1

KSTEP

Interface between -

numerical integration

and rest of program

CB1

Initialization

Station 4 properties

(ignition)

I evel_>2
(spark)

LeVel > 2

t point)

Level = 2

(end burn)

fi) CB3

Complete calculations

for intermediate output

point

!
t

L Complete output point,

level > 2

11
CB2

Choose point for

intermediate output

Calculate properties
for level 2

i

Level = 2

t-

INTEX

Numerical integration
executive routine

INSTEP I_,Perform integration

step

I

Levels > 2

Level = 2

(during burn)

DIFEQ

Evaluate right
side of differential

equations
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