
OR- i
NASA Contractor Report 172541

ICASE REPORT NO. 85'4

) NASA-cR. 172541
19850013693

ICASE
AN ALGORITHM FOR GENERATING ABSTRACT SYNTAX TREES

Robert E. Noonan

[_".,_L:t ii\ tl

Contract No. NASI-17070 : , L; lOgO

January 1985
]J'_d'_GLEYRESEARCHCENFEE

-I_._.RY,I'IASA
U,:,.'_L.'_TON:yjRGIr,_tA

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia .23665

Operated by the Universities Space Research Association

NationalAeronauticsand
SpaceAdministration

LangleyResearchCent_
Hampton,Virginia23665

1

_ntroduction

A compiler takes as input a program in some source language, such as
Pascal or C, and produces as output an equivalent program in machine
language. Compilers are commonly broken down into phases as shown in
Figure i, where a phase transforms the representation of the source
program. Excellent introductions to compilers and their underlying
theory can be found in the texts [Aho, 1977], [Barrett, 1979], and
[Waite, 1983].

The purpose of the lexical analysis phase or scanner is to read
characters from the source file, coalescing them into logically related
groups called tokens. The usual tokens are language keywords, integer
and real numbers, operator symbols such as ":=", etc. These tokens are
passed in a stream to the next phase of the compiler.

The syntactic analysis phase or parser groups tokens into syntactic
entities, such as expresssions, statements, etc. The output of this
phase is either a parse tree, or more commonly, an abstract syntax
tree. In the former, roots of subtrees represent nonterminal symbols
of the grammar, while leaves represent terminal grammar symbols. In an
abstract syntax tree operators are used as root nodes, while leaves
represent operands; furthermore, purely syntactic operators, such as
"-", in Pascal, are often discard from the output tree. This latter
point accounts for the term "abstract" in the name.

Consider the grammar for arithmetic expressions presented in Figure
2, where <no> represents an arbitrary number. A parse tree for the
expression "5 * (4 + 3)" is given in Figure 3, while an abstract syntax
tree is given in Figure 4. Notice that the parentheses used for
syntactic grouping do not appear in Figure 4.

In this paper we present an algorithm for determining the form of an
abstract syntax tree directly from the grammar. We discuss an
implementation of this algorithm named TREEGEN and its use in the
development of a Modula 2 compiler.

The Algorithm

There is surprisingly little literature on the notion of abstract
syntax trees. [Aho, 1977] and [Waite, 1983] each devote less than a
page to the subject, while [Barrett, 1979] devotes no space to the

• concept. Thus, there is no strong basis on which to develop an
algorithm, other than experience with various compilers.

Our goal was to be able to derive the abstract syntax directly from
a grammar in standard BNF. We chose to ignore various, admittedly
useful extensions to BNF grammars so that the grammar used would be
acceptable to a wide variety of parser generators, including YACC

2

Source Program
I
v

i i •
i lexical analyzer I
i I
+. _ •

I
tokens

I
v

4 +

i I
i parser I
i i

i
parse tree

I
V

I i
i semantic analyzerl
i I

I
intermediate code tree

i
v

+

I I
i code improver i
I i
4

i
intermediate code tree

I
V

4 .

I I
i code generator I
I I

i
v

Machine Code Program

Figure i: Phases of a Compiler

[Johnson, 1979], Mystro [Collins, 1980], LR [Wetherell, 1981], etc.
Because of the manner in which LR and LL parsers in these systems apply
semantic actions, there must be a close connection between the rules of

. the grammar and the abstract syntax.

In developing an algorithm, we first established the following
• principles.

-- Following [Aho, 1977], the abstract syntax is a tree with operators
as root nodes and operands as leaf nodes.

-- Terminal symbols representing only punctuation are to be discarded.

-- As noted above, there must be a close tie between the production
rules of the grammar and the abstract syntax. This imposes a
burden on the grammar writer no greater than the one imposed by use
of a parser generator.

-- Each operator should have a unique interpretation. In particular,
the number of operands must be uniquely determinable from the
operator. It would be a violation of this principle to use an
operator named "case" to represent both a case statement and the
variant part of a record in Pascal [Jensen, 1976], since these are
distinct constructs in the language.

-- Subject to the above, the total number of operators should be
minimized. Different forms of the same basic construct should all
use the same operator.

Producing an abstract syntax tree directly from a grammar requires
that operand terminal symbols be distinguishable from operator terminal
symbols. For most programming language grammars the set of operand
terminal symbols is identical to the set of terminal symbols in angle
brackets, i.e., enclosed in "<" and ">". An implementation could
provide for the addition and deletion of symbols to this set.

A naive algorithm can be based on a simple analysis of individual
grammar rules or productions:

(i) If the righthand side of the production is empty, then the subtree
associated with this production is the nil-ary operator "nil_root".

• (2) If the righthand side of the production consists of a single
terminal symbol, then the subtree associated with this production
is the nil-ary operator representing the rule, if the terminal is

" an operator, or the operand representing the terminal symbol.

(3) If the righthand side consists of a single nonterminal, then the
lefthand side nonterminal inherits the tree of the righthand side

<goal> ::= <expr>
<expr> ::= <expr> + <term>
<expr> ::= <term>
<term> ::= <term> * <factor>
<term> : := <factor>

<factor> ::= (<expr>)
<factor> ::= <no>

Figure 2: Arithmetic Expression Grammar

<goal>
I
I

<expr>
I
I

<term>
I

4

I I I
5 * <factor>

I

I I I
(<expr>)

I
4 +

I I I
4 + 3

Figure 3: Parse Tree of 5*(4+3)

I
4

I I
5 +

I
4

I I
4 3

G

Figure 4: Abstract Syntax Tree of 5+(4*3)

nonterminal.

(4) Whenever the righthand side consists of more than a single symbol,
the operands are the nonterminals and operand terminals in the

. righthand side and the operator name is chosen to uniquely
represent the rule. The latter can be accomplished as follows. If
the first terminal operator symbol in the righthand side is unique

. in the grammar then it can be used as the operator name.
Otherwise, the operator name is derived from the lefthand side
symbol.

Applying the above algorithm to the arithmetic expression grammar of
Figure 2, we get the trees shown in Figure 5. Note that in Figure 5,
the trees are given immediately after each production; a "tree"
consisting of a single nonterminal means that the lefthand side
inherits the tree of the associated righthand side nonterminal.

As can be seen, this naive algorithm works fairly well for this
simple grammar. Only for the sixth rule does it generate an undesired
tree, namely, the "(<expr>" rather than merely inheriting the subtree
for <expr>. In this work it was felt that it would be easier for the
user to delete unwanted trees, than to add missing subtrees.

For larger, more complex grammars this simple set of rules proves to
be inadequate. In many programming language grammars, many rules are
used to capture lists of various nonterminals, e.g., identifier lists,
parameter lists, statement lists, etc. In order to cut down on the
number of operators generated, all such lists can use the same generic
operator.

(5) A recursive rule can be mapped to the n-ary operator "listof"
whenever all of the operator terminals represent punctuation.
Since there is no syntactic way to determine which symbols these
are, an implementation must provide a way for the user to enumerate
punctuation symbols.

A more complex problem arises from a language construct having
several different forms. Consider the case of a set expression in
Modula [Wirth, 1983] as shown below:

<set> ::= { }
<set> ::= { <element_list> }
<set> ::= <qualident> { }

• <set> ::= <qualident> { <element_list> }

The naive algorithm above would generate four distinct operators for
these rules, when, in fact, the rules are merely variants of a single,
general form. One way to solve this problem is to rewrite the grammar
as follows:

6

<goal> ::= <expr>
<expr>

<expr> ::= <expr> + <term>
+ <expr> <term>

<expr> ::= <term>
<term>

<term> ::= <term> * <factor>
o

• <term> <factor>
<term> ::= <factor>

<factor>

<factor> ::= (<expr>)
(<expr>

<factor> ::= <no>
no

Figure 5: Abstract Syntax Trees for Expression Grammar

<set> ::= <qualident?> { <element_list?> }
<qualident?> ::=
<qualident?> ::= <qualident>
<element_list?> ::=
<element_list?> ::= <element_list>

This poses an unnecessary burden on the grammar writer.

Thus, we were led to add the following rule:

(6) For a given nonterminal, collect all its nonrecursive productions.
Pattern match each nonempty production against each longer one,
starting with the longest. If the production is a special case of
a longer one, the same abstract syntax is used with each missing
operand replaced by the subtree "nil_root".

Applying this to the first set grammar given above, the trees shown
will be generated:

<set> ::= { }
set nil_root nil_root

<set> ::= { <element_list> }
set nil_root <element_list>

<set> ::= <qualident> { }
set <qualident> nil_root

<set> ::= <qualident> { <element_list> }
set <qualident> <element_list>

The final rule attempts to further minimize the number of operators:

7

(7) For a given nonterminalwhich has no recursiveproductions,collect
all of the productionsfor which rule 6 was not applicable and
which have at most one operand. Distinct operatorsneed not be
generated if the abstract syntax is already distinct for each

• production.

Consider the example below taken from the grammar for Modula [Wirth,
1983]. Since a <qualident>can never be a "nil_root",the second rule
can inherit the tree for <qualident> without introducing the operator
"return_part."

<return_part>::=
nil_root

<return_part>::= : <qualident>
return_part<qualident>

<qualident> ::= <ident>
<ident>

<qualident> ::= <qualident> <ident>
qualident <qualident> [dent

The Program TREEGEN

The rules given above were implemented as a program named TREEGEN.
The rules are applied in order except that rule 4 is applied last. The
input to TREEGEN is a grammar in standard BNF, except that alternation
within a single production is not allowed.

TREEGEN uses a column one convention for its input. A "<" in column
one indicates the start of a new production, a "+" the continuation of
a production, a "*" a line of comment, and a "#" a program directive.

Some directives are used to control the output of the program
itself; these include a list of all the operators generated, a cross
reference, etc. Another directive controls the addition and deletion
of symbols to the set of operators representing punctuation. Another
allows for the specification of a name for various terminal symbols
such as "+" "-" etc.

After TREEGEN reads the directives, the user is presented with a
menu of on-off directives and their current settings, so that he may
invert any option. Next, TREEGEN reads, stores, and analyzes the
entire grammar.

Then, each rule and its associated abstract syntax tree is presented
to the user. Using rule 6 of Figure 2, this would appear as:

[6] <factor> ::= (<expr>)
, factor <expr>

The user can either accept this tree or enter one of his own choice.
To minimize typing, operands are indicated by their position in the
righthand side of the rule. Thus, the desired choice of having
<factor> inherit the abstract tree of <expr> can be entered by merely
typing "2"; TREEGEN verifies that each number is entered at most once
and corresponds to an operand. In the event of a question, TREEGEN "
prints the abstract syntax tree and asks the user to confirm it.

In generating operator names, TREEGEN uses heuristics for
recognizing the use of the relational operators and for distinguishing
between unary and binary "+" and "-". For these operators TREEGEN has
default names wired into it.

In addition to the listings, there are two outputs from TREEGEN.
One is a table that is used by the parser to automatically construct
the abstract syntax tree associated with the production. The tree is
constructed prior to any semantics associated with the rule being
executed.

The other output is a set of constants, types, and routines for
constructing the abstract syntax trees. For example, one of the types
declared is an enumeration of all of the operator names generated.
This text is automatically merged into a skeletal compiler which the
user provides. It is our experience that this automatic text
management is one of the most useful features of TREEGEN.

Experience with Modula

Appendix A presents a full Modula grammar and its associated
abstract syntax. For the case of a production in which a nonterminal
derives a single nonterminal the abstract syntax, was omitted for the
sake of brevity. The grammar shown was taken dlrectly from [Wirth,
1983] and run through a translator that converts extended BNF to
standard BNF. The grammar appears to reflect the fact that it was
derived from a recursive descent compiler.

The first ten rules of the Modula grammar were omitted since they
define lexical tokens. A new goal rule was inserted as the first rule
of the grammar. The syntax of <const_expr> was deleted and <expr>
substituted for <const_expr> for the sake of brevity. Finally, the
syntax for <expr> was rewritten with each operator being substituted
for the appropriate nonterminal. It was interesting that on the parser
generator being used, this had the effect of greatly increasing the
state tables of the parser generator without increasing the resulting
parse tables (due to optimization of the latter).

TREEGEN appears to do extremely well with this grammar. One problem
already noted is that an extraneous operator is generated for the
production in which <factor> derives a parenthesized expression."

9

This abstract syntax is being used in a Modula compiler under
development. Most of the problems encounteredappear to be due to the
fact that the grammar is not always in the most appropriateform for an
LR parser, rather than problemswith the abstract syntax itself.

q

Conclusions
0

In this paper we have presented an algorithm for automatically
deriving the form of the abstract syntax directly from the grammar.
The algorithmwas implementedand used to derive the abstract syntax of
Modula for a compilercurrentlyunder development. The abstract syntax
derived appears to have very few problems.

Acknowledgements

The naive algorithmoriginallypresentedwas derived jointly with
John Knight on the back of an airline boardingpass. Dewey Allen
implementedthe naive algorithm.

i0

Reference_

i. Aho, Alfred V., and Ullman, Jeffrey D. Principles of Compiler
lle_. Addison-Wesley,1977.

2. Barrett,William A., and Couch, John D. Compiler Construction:
Theory and Practice. SRA, 1979.

3. Collins, W. Robert, Knight, John. C., and Noonan, Robert E. A
translatorwriting system for micro-computerhigh-levellanguages
and assemblers,NASA-AIAAWorkshop on Aerospace Applications Of
Microcomputers,(November1980), 179-186.

4. Jensen, Kathleen,and Wirth, Niklaus. Pascal User Manual and
Report. Springer-Verlag,1975.

5. Johnson, S. C. YACC -- Yet another compiler-compiler. UNIX
Programmer'sManual, Bell Laboratories,(January1979).

6. Waite, William M., and Goos, Gerhard. Compiler Construction.
Springer-Verlag,1983.

7. Wetherell,Charles, and Shannon, Alfred. IEEE Trans. Soft.
F_I_K.,7 (May 1981), 274-278.

8. Wirth, Niklaus. Programmingin Modula-2. Springer-Verlag, 1983.

A

ii

Appendix A: Abstract Syntax of Modula

punctuation , ; l
name <> not_eq
name # not_eq
name & and

* the above are program directives; this is a comment
,

<compilation> ::= <comp_unit>
<qualident> ..-.=<ident>

ident

<qualident> ::= <qualident> . <ident>
qualident <qualident> ident

<const_decl> ::= <ident> = <expr>
const decl ident <expr>

<element_list> ::= <element>
<element_list> ::= <element_list> , <element>

listof <element_list> <element>
<set> : := { }

set nil_root nil_root
<set> ::= <qualident> { }

set <qualident> nil_root
<set> ::= { <element_list>

set nil_root <element_list>
<set> ::= <qualident> { <element_list> }

set <qualident> <element_list>
<element> ::= <expr>

element <expr> nil_root
<element> ::= <expr> .. <expr>

element <expr-l> <expr-2>
<type_decl> ::= <ident> = <type>

type_decl ident <type>
<type> ::= <simple_type>
<type> ::= <array_type>
<type> ::= <record_type>
<type> ::= <set_type>
<type> ::= <pointer_type>
<type> ::= <proc_type>
<simple_type> ::= <qualident>
<simple_type> ::= <enumeration>
<simple_type> ::= <subrange_type>
<enumeration> ::= (<ident_list>)

enumeration <ident_list>
o <ident_list> ::= <ident>

ident

<ident_list> ::= <ident_list> , <ident>
listof <ident_list> ident

<subrange_type> ::= [<expr> .. <expr>]
subrange_type <expr-l> <expr-2>

<index_list> ::= <simple_type>

12

<index_list> ::= <index_list> , <simple_type>
listof <index_list> <simple_type>

<array_type> ::= ARRAY <index_list> OF <type>
array_type <index_list> <type>

<record_type> ::= RECORD <field_list_seq> END
record <field_list_seq>

<field_list_seq> ::= <field_list>
<field_list_seq> ::= <field_list_seq> ; <field_list>

listof <field_list_seq> <field_list>
<variant_list> ::= <variant>
<variant_list> ::= <variant_list>] <variant>

listof <variant_list> <variant>
<field_else_part> ::=

nil_root
<field_else_part> ::= ELSE <field_list_seq>

field_else_part <field_list_seq>
<field_list> ::=

nil_root

<field_list> ::= <ident,list> : <type>
field_listl <ident_list> <type>

<field_list> ::= CASE <qualident> OF <variant_list>
+ <field_else_part> END

field_list2 nil_root <qualident> <variant_list>
<field_else_part>

<field_list> ::= CASE <ident> : <qualident> OF <variant_list>
+ <field_else_part> END

field_list2 nil_root <qualident> <variant_list>
<field_else_part>

<variant> ::= <case_label_list> : <field_list_seq>
variant <case_label_list> <field_list_seq>

<case_label_list> ::= <case_labels>
<case_label_list> ::= <case_label_list> , <case_labels>

listof <case_label_list> <case_labels>
<case_labels> ::= <expr>

case_labels <expr> nil_root
<case_labels> ::= <expr> .. <expr>

case_labels <expr-l> <expr-2>
<set_type> ::= SET OF <simple_type>

set_type <simple_type>
<pointer_type> ::= POINTER TO <type>

pointer <type>
<proc_type> ::= PROCEDURE

proc_type nil_root
<proc_type> ::= PROCEDURE <formal_type_list> 8

proc_type <formal_parm_list>
<formal_type_part> ::= <formal_type>
<formal_type_part> ::= VAR <formal_type> •

formal_type_part <formal_type>
<formal_type_seq> ::= <formal_type_part>
<formal_type_seq> ::= <forlaal_type_seq> , <formal_type_part>

13

listof <formal_type_seq><formal_type_part>
<return_part> ::=

nil_root
<return_part> ::= : <qualident>

. <qualident>
<formal_type_list>::= (<formal_type_seq>) <return_part>

formal_type_list<formal_type_seq><return_part>
• <var_decl> ::= <ident_list>: <type>

var_decl <ident_list><type>
<deslgnator_tail> ::= <ident>

designator_taillident
<deslgnator_tail> ::= [<expr_list>]

designator_tail2<expr_list>
<designator_tail> ::=

caret
<designator_seq> ::=

nil_root
<designator_seq> ::= <designator_seq><designator_tail>

listof <designator_seq><designator_tail>
<designator> ::= <qualident><designator_seq>

designator<qualident><designator_seq>
<expr_list> ::= <expr>
<expr_list> ::= <expr_list>, <expr>

listof <expr_list><expr>
<expr> ::= <simple_expr>
<expr> ::= <simple_expr>= <simple_expr>

eq <simple_expr-l><simple_expr-2>
<expr> ::= <simple_expr># <simple_expr>

not_eq <simple_expr-l><simple_expr-2>
<expr> ::= <simple_expr><> <simple_expr>

not_eq <simple_expr-l><simple_expr-2>
<expr> ::= <simple_expr>< <simple_expr>

it <simple_expr-l><simple_expr-2>
<expr> ::= <simple_expr><= <simple_expr>

it_eq <simple_expr-l><simple_expr-2>
<expr> ::= <simple_expr>> <simple_expr>

gt <simple_expr-l><simple_expr-2>
<expr> ::= <simple_expr>>= <simple_expr>

gt eq <simple_expr-l><simple_expr-2>
<expr> ::= <simple_expr>IN <simple expr>

in <simple_expr-l><simple expr-2>
<simple_expr> ::= <simple_expr_tail>
<simple_expr> ::= + <simple_expr_tail>

• plus <simple_expr_tail>
<simple_expr> ::= - <simple_expr_tail>

negate <simple_expr_tail>
• <simple_expr_tail>::= <term>

<simple_expr_tail>::= <simple_expr_tail>+ <term>
add <simple_expr_tail><term>

<simple_expr_tail>::= <simple_expr_tail>- <term>

14

minus <simple_expr_tail> <term>
<simple_expr_tail> ::= <simple_expr_tail> OR <term>

or <simple_expr_tail> <term>
<term> :-=. <factor>
<term> :-=. <term> * <factor>

multiply <term> <factor>
<term> :-= <term> / <factor>

divide <term> <factor>
<term> ::= <term> DIV <factor>

div <term> <factor>
<term> ::= <term> MOD <factor>

mod <term> <factor>
<term> ::= <term> AND <factor>

and <term> <factor>
<term> ::= <term> & <factor>

and <term> <factor>
<factor> ::= <number>

number

<factor> ::= <string>
string

<factor> ::= <set>

<factor> ::= <designator> <opt_actual_parm>
factorl <designator> <opt_actual_parm>

<factor> ::= (<expr>)
factor2 <expr>

<factor> ::= NOT <factor>
not <factor>

<opt_actual_parm> ::=
nil_root

<opt_actual_parm> ::= <actual_parms>
<actual_parms> ::= (<expr_list>)

actual_parms <expr_list>
<actual_parms> ::= ()

actual_parms nil_root
<opt_expr> ::=

nil_root
<opt_expr> ::= <expr>

<expr>
<statement> :.=.

nil_root
<statement> ::= <assignment>
<statement> ::= <procedure_call>
<statement> ::= <if_stmt>
<statement> ::= <case_stmt> •
<statement> ::= <while_stmt>
<statement> ::= <repeat_stmt> •
<statement> ..--=<loop_stmt>
<statement> ::= <for_stmt>
<statement> ::= <with_stmt>
<statement> ::= EXIT

15

exit

<statement> ::= RETURN <opt_expr>
RETURN <opt_expr>

<assignment> ::= <designator> := <expr>
colon_eq <designator> <expr>

<procedure_call> ::= <designator> <opt_actual_parm>'
procedure_call <designator> <opt_actual_parm>

<stmt_seq> ::= <stmt>
<stmt_seq> ::= <stmt_seq> ; <stmt>

listof <stmt_seq> <stmt>
<elsif_part> ::= ELSIF <expr> THEN <stmt_seq>

elsif <expr> <stmt_seq>
<elsif_seq> ::=

nil_root
<elsif_seq> ::= <elsif_seq> <elsif_part>

listof <elsif_seq> <elsif_part>
<else_part> ::=

nil_root
<else_part> ::= ELSE <stmt_seq>

else_part <stmt_seq>
<if_stmt> ::= IF <expr> THEN <stmt_seq> <elsif_part>
+ <else_part> END

if <expr> <stmt_seq> <elsif_part> <else_part>
<case_seq> ::= <case>
<case_seq> ::= <case_seq> [<case>

listof <case_seq> <case>
<case_stmt> ::= CASE <expr> OF <case_seq> <else_part> END

case_stmt <expr> <case_seq> <else_part>
<case> ::= <case_label_list> : <stmt_seq>

case <case_label_list> <stmt_seq>
<while_stmt> ::= WHILE <expr> DO <stmt_seq> END

while <expr> <stmt_seq>
<repeat_stmt> ::= REPEAT <stmt_seq> UNTIL <expr>

repeat <stmt_seq> <expr>
<increment> ::=

nil_root
<increment> ::= BY <expr>

<expr>
<for_stmt> ::= FOR <ident> := <expr> TO <expr> <increment> DO
+ <stmt_seq> END

for ident <expr-l> <expr-2> <increment> <stmt_seq>
<loop_stmt> ::= LOOP <stmt_seq> END

loop <stmt_seq>
8 <with_stmt> ::= WITH <designator> DO <stmt_seq> END

with <designator> <stmt_seq>
<proc_decl> ::= <proc_heading> ; <block> <ident>

• proc_decl <proc_heading> <block> <ident>
<proc_heading> ::= PROCEDURE <ident>

proc_heading ident nil_root
<proc_heading> ::= PROCEDURE <ident> <formal_parms>

16

proc_headingident <formal_parms>
<decl_seq> --=..

nil_root
<decl_seq> ::= <decl_seq><decl>

listof <decl_seq> <decl>
<body_part> :-=.

nil_root

<body_part> ::= BEGIN <stmt_seq>
begin <stmt_seq>

<block> ::= <decl_seq> <body_part> END
block <decl_part> <body_part>

<const_decl_seq> ::=
nil_root

<const_decl_seq> ::= <const_decl_seq> <const_decl> ;
listof <const_decl_seq> <const_decl>

<type_decl_seq> ::=
nil_root

<type decl_seq> ::= <type_decl_seq> <type_decl> ;
listof <type_decl_seq> <type_decl>

<var_decl_seq> ..--=
nil_root

<var_decl_seq> ::= <var_decl_seq> <var_decl> ;
listof <var_decl_seq> <var_deci>

<decl> ::= CONST <const_decl_seq>
decll <const_decl_seq>

<decl> ::= TYPE <type_decl_seq>
decl2 <type_decl_seq>

<decl> ::= VAR <var_decl_seq>
decl3 <var_decl_seq>

<decl> ::= <proc_decl> ;
<decl> ::= <module_decl> ;
<fp_seq> ::= <fp_section>
<fp_seq> ::= <fp_seq> ; <fp_section>

iistof <fp_seq> <fp_section>
<formal_parms> ::= () <return_part>

formal_parms nil_root <return_part>
<formal_parms> ::= (<fp_seq>) <return_part>

formal_parms <fp_seq> <return_part>
<fp_section> ::= <opt_var> <ident_list> : <formal_type>

fp_section <opt_var> <ident_list> <formal_type>
<formal_type> ::= <qualident>
<formal_type> ::= ARRAY OF <qualident>

formal_type <qualident>
<opt_priority> ::=

nil_root 6
<opt_priority> ..--=<priority>
<import seq> --=

nil_root
<import_seq> ::= <import_seq> <import>

listof <import_seq> <import>

17

<export_part> ::=
nil_root

<export_part> ::= <export>

<module_decl> ::= MODULE <ident> <opt_priority> ; <import_seq>
4 + <export_part> <block> <ident>

module_decl ident <opt_priority> <import_seq> _ <export_part>
<block> ident

• <priority> ::= [<expr>]
<expr>

<export> ::= EXPORT <ident_list> ;
export nil_root <ident_list>

<export> ::= EXPORT QUALIFIED <ident_list> ;
export qualified <ident_list>

<import_source> ::=
nil_root

<import_source> ::= FROM <ident>
ident

<import> ::= <import_source> IMPORT <ident_list> ;
import <import_source> <ident_list>

<defn_seq> ..--=
nil_root

<defn_seq> ::= <defn_seq> <defn>
listof <defn_seq> <defn>

<defn_module> ::= DEFINITION MODULE <ident> ; <import_seq>
+ <export_part> <defn_seq> END <ident>

defn_module ident <import_seq> <export_part>
<defn_seq> ident

<type_defn_part> ::= <ident>
type_defn_part ident nil_root

<type_defn_part> ::= <ident> = <type>
type_defn_part ident <type>

<type_defn_seq> ..--=
nil_root

<type_defn_seq> ::= <type_defn_seq> <type_defn_part>
listof <type_defn_seq> <type_defn_part>

<defn> ::= CONST <const_decl_seq>
defnl <const_decl_seq>

<defn> ::= TYPE <type_defn_seq>
defn2 <type_defn_seq>

<defn> ::= VAR <var_decl_seq>
defn3 <var_decl seq>

<defn> ::= <proc_heading> ;
<proc_heading>

• <program_module> ::= MODULE <ident> <opt_priority> ; <import_seq>
+ <export_part> <block> <ident>

program_module ident <opt_priority> <import_seq> <export_part>
• <block> ident

<comp_unit> ::= <defn_module>
<comp_unit> ::= <program_module>
<comp_unit> ::= IMPLEMENTATION <program_module>

implementation <program_module>

I. ReportNo. NASA CR-172541 2. Government Acc_,on No. 3. RK,p,,nt'$ Ca_log No.

ICASE Report No. 85-4
4. Title and Subtitle 5. Report Dire

AN ALGORITHM FOR GENERATING ABSTRACT SYNTAX TREES ,]an,,_y l qRcl
6. Performing Org,Jnlzation Code

7. Author(s) 8. PerfotmingOrgan;zationReport No.

Robert E. Noonan _5-/-+
10. Work Unit No.

9. PerformingOrganizationName and Addreu 6

Institute for Computer Applications in Science 11. Contractor Grant No.
and Engineering •

Mail Stop 132C, NASA Langley Research Center NASI-17070,

Hampton, VA 23665 13.Type of Reportand PeriodCovered

12. Sponsoring Agency Name and Address
_.Op_r_r_nr g_nn'r t"

National Aeronautics and Space Administration 14. SponsmingAgency Code

Washington, D.C. 20546 505-31-83-01

15. SupplementaryNotes

Langley Technical Monitor: J. C. South, Jr.

Final Report

16. Abstract

In this paper, we discuss the notion of an abstract syntax. An algorithm is

presented for automatically deriving an abstract syntax directly from a BNF

grammar. The implementation of this algorithm and its application to the grammar
for Modula are discussed.

&

17. Key Words(Suggested by Author{s)) 18. Distribution Statement

abstract syntax 61 - Computer Programming and Software

parsing

grammars Unclassified - Unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21, No. of Pages 22, Price
Unclas sifled Unclas sifled 19 A02

N-30s For sale bythe NationalTechnical InformationService,Sp)inglield, Vi)i]inia 2216]
=

6

