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MODEL REDUCTION FOR CONTROL SYSTEM DESIGN

Dale Enns, Ph.D.
Stanford University, 1984

In a number of applications areas, the control engineer is faced with
controlling a physical system for whi'ch an analytical model can be derived in the
form of a very large number of coupled, first order, linear, time invariant
differential equations. This high order analytical model is an input to “the

controller design process for any design technique.

This thesis develops an approach and a technique for effectively obtaining
reduced order mathematical models of a given large order model for the purposes

of synthesis, analysis and implementation of control systems.

This approach involves the use of an error criterion which is the H-infinity
norm of a frequency weighted error between the-full and reduced order models.
The weightings are chosen to take into account the purpose for which the

reduced order model is intended.

A previously unknown error bound in the H-infinity norm for reduced order
models obtained from internally balanced realizations was obtained. This
motivated further development of the balancing techhique to include the
frequency dependent weightings. This resulted in the frequency weighted

balanced realization and a new model reduction technique.
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Two new approaches to designing reduced order controllers were also
developed. The first involves reducing the order of a high order controller with
an appropriate weighting. The second involves linear-quadratic-Gaussian
synthesig"based on a reduced order model obtained with an approp-riate
welghting.

Several numerical eXamples are used to illustrate the theoretical
developments of the thesis. These examples include aircraft and large space
structure problems. The examples clearly illustrate the usefulness of this

research for practical problems.
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I. INTRODUCTION

In a number of applications areas, the control engineer is faced witﬁ
controlling a physical system for which an analytical model can be derived in the
form of a very large number of coupled, first order, linear, time invariant
differential equafions. This high order analytical model is an input to the

controller design process for any design technique.

Two important control law design techniques: linear quadratic gaussia.n
(LQG) [Refs. 1-5] and H,, optimization,[Ref. 5] result in high order control laws
that are at least as complex (same number of equations) as the differential
equation model of the system to be controlled. These control laws are typically

overly complex and simplei‘ designs are sought.

Bééau_se of computational and other practical limitations, the order (number
of equations) of such a model or controller must be reduced fbr synthesis, anaiysis
and implementation of the control system. Nowhere is this need more clear than
in the area of flexible vehicle control (aircraft or large space structures) where an
infinite number of resonant frequencies (hence, equations) characterize the flexible

vehicle.

Using model reduction as a part of the controller design process is in effect a
technique for designing a reduced order controller. The reduced order model
must characterize the physical system with sufficient fidelity such that

performance objectives (including, but not limited to stability) for the controlled
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physical system can be met by designing control laws with the reduced order

model.

The intent of this thesis is to develop well understood tools for effectively
obtaining reduced order mathematical models of a given large order model for the

purposes of synthesis, analysis and implementation of control systems.

Related Literature

There is an enormous amount (e.g. see reference list of Ref. 6) of model
reduction literature, however, very few of the researchers have studied this
problem from the perspective of controller design based on the reduced order
model. Indeed, most present their results without any mention of the controller
and the impact of the model reduction on stability or other performance

objectives.

The most common approach cited is to minimize the integral squared
impulse response error between the full and reduced order model (e.g. Refs. 7-10).
For some unknown reason this error criterion was adopted and algorithms for
solving the minimization problem have been developed. Unfortunately, a closed
form solution to this problem has not been found and the iterative algorithms
suffer from such difficulties as: choice of starting guesses, convergence, multiple
local minima, etc. Tilis approach is somewhat dissatisfying since there is no good
reason for choosing such an error criterion and its lack of desirable solution

properties.



-3-

Another approach to the model reduction problem is to neglect states of the
internally balanced realization of the full order model [Ref. 11]. This technique
does not attempt to minimize any error criterion. Rather, it is based on
transforming the realization of the full order model into balanced coordinates
where the states of the balanced realization are as controllablg as observable in a
well defined sense. The reduced order model is then obtained by neglecting the
states which are weakly controllable/observable. In contrast to the previous
approach, this technique permits a closed form solution involving standard

matrix software.

A closely related approach is the Hankel norm model reduction technique,
[Refs. 12-14]. For any error criterion this is the only model reduction technique
which resul-ts in a closed form solution for the optimal reduced order model.
Optimal here is in the sense of the Hankel norm which will be defined in a léter

chapter.

A characteristic common to all of these approaches is that the ultimate use
for which a reduced order model is sought is not formally a part of the model
reduction process. For the purposes of this thesis, the ultimate use is for design,

analysis and implementation of feedback control systems.

Thesis Contributions

An approach to the model reduction problem where control design is a

formal part of the model reduction process was developed. This approach
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involves the use of an error criterion which is the H,, norm of a frequenéy
weighted error between the full and reduced order models. The motivation for
choosing this error criterion (to be defined precisely in a later chapter) was the

relation between model uncertainty and closed loop system behavior.

The balancing technique was extended to include the fréquency dependent
weightings. The weightings are added in the context of the balancing method i.e.

contrbllability/’observability aspects of a weighted system.

A previously unknown error bound (in the H, norm) for the internally
balimcgd realization was discovered. This bound provides the missing error
criterion for the balancing techmique. This bound was compared to an error
bound (in the H., norm) for the Hankel norm technique which was obtained by
Glover [Ref. 15_]. Unfortunately a corresponding, simple error bound (in the H

norm) for the weighted case was not obtained.

An explicit weighting for reducing the order of a controller was developed.
This results in a straightforward reduced order controller design algorithm,
however, the full order controller must first be designed with the full order

model.

Another approach to the reduced order controller design problem, where a
reduced order model is used to design the low order controller directly was also
developed. This approach, however, requires an iterative solution for the reduced

order model.
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The theoretical approaches were applied to several example problems to
illust’rat.e the methodology. A significant desié’n/demonstration example was
carried out for the ACOSS II large space structure. This example clearly
demonstrates the effectiveness of the developments of this thesis. This example

also shows the usefulness of this research for application to practical problems.

Organization of the Thesis

The remainder of this thesis is organized into five chapters. Chapter II will
cover the necessary background material on control system design and model
reduction. Chapter III will cover the new model reduction technique. Chapter
IV will cover control system design with reduced order models. Chapter V will
present the .examples and Chapter VI the conclusions and recommendations for

further research.

Chapter II will serve as a reference for the work that follows. In the area of
feedback controller design some feedback fundamentals as well as the LQG
synthesis procedure will be discussed. In the area of model reduction the
internally balanced realization technique will be discussed. No attempt will be

made at completeness, rather, only those aspects that directly relate to this work

will be addressed.

Chapter III' will discuss the new model reduction approach and techniques.

An algorithm for computing the frequency weighted balanced realization will be
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derived. The properties of the resulting reduced order models will also be

discussed.

Chapter IV will develop two new approaches to reduced order controller
deéign. Both of ‘these approaches are developed by connecting model reduction
and controller design ‘together with the relationship between model uncertainty
and robust design. The first approach involves compensator order reduction and

the second involves plant order reduction.

Chapter V will present several design examples in detail. The control
objectives will be stated and reduced order controllers are designed to meet these

objectives using the techniques developed in this thesis.
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II. BACKGROUND MATERIAL

The purpose of this chapter is to cover background material in the areas of
model reduction and feedback control system design. Some mathematical

“analysis notation and tools will be covered briefly.

Notation

The transpose of the m‘atrix', A will be denoted by AT. The complex
conjugate of the matrix, A will be denoted by A°. Thé conjugate transpose of
the matrix, 4 will be denoted by A#. Eigenvalues and singular values of the
matrix, A will be denoted by A\[A] and o[A] respectively. The maximum and
minimum singular values of the matrix, A will be denoted by G[A] and g[A4]
respectively. The trace and determinant of the matrix, A will be denoted by
tr|A] and det[A] respectively. A‘ positive definite matrix, A will be denoted by
A > 0 and a positive semi-definite matrix, A will be denoted by A > 0. Real
z-md imaginary parts of the complex matrix A will be denoted by Re[A] and
Im|A] respectively. That is A = Re[4] + j Im[A] where j2=-1. Ann X n
identity matrix will be denoted by I, or I depending on context. A diagonal
matrix, A will be denoted by A == diag {a;} where ¢; is the (¢,f) element of the

matrix A. The notation: block col {A;} and block row {A;} is defined



block col{4;} = [4, 4, - A,]

block row{4;} =

where A; are matrices of compatible dimensions.

The symbol, 2 is read equals by definition. The symbol, ¥ is read for any
or for all. The symbol, R represents the field of real scalars. The symbol, R
represents the space of n X 1 real vectors. The symbol, ¢ is read is an element

of (e.g. z¢ R™). The symbol, é(¢) stands for the Dirac delta function (also called

the unit impulse function).

Linear Systems Terminology

Consider the linear system given by

t = Az+ Bu ze¢ R"™ ueR™

y = Cz+ Du ye RP
The order of the system is the integer, n. The system has m inputs and p
outputs. The transfer function of the system is given by C(s[-A)' B + D.
The symbols {4,B,C,D}, or {4,B,C,D} (when D=0, {4,B,C}, or {4,B,C})
represent a realization (above differential equations) of the transfer function of
the system. Note that realizations are not unique. The statements (A,B)

controllable and (A,C) observable have the standard meaning, [Ref. 34]. The
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statement (A,B) stabilizable will'mean that the uncontrollable modes of the
system are stable. The statement (A,C) detectable will mean that the
unobservable modes of the system are stable. The realization {A,B,C,D} will be
“said to be minimal if it is completely controllable and observable. The system is
said to be asyniptotiéally stable if Re[A[A]] < 0. The system is said to be
minimum phase if Re[z] < 0 where z is a transmission zero of the system.
Transmission zeros are defined for minimal systems to be the values of z such

that

{szA :g} loses rank

The Laplace transform of the function, f(¢) will be denoted by L [f (t)](s),
or when context permits f(s), and ¢ will be used exclusively to denote time and
s will be used exclusively to denote the Laplace variable. This is an abuse of
notation but context will always determine whether the function or the transform

is meant.

The function, f(¢) which is the inverse Laplace transform of the function,
F{s) will be denoted by L~![F(s)](t). That is
f(t) = LF(s)|(t)
F(s) = L[f(t))(s)
Singular values will be used throughout this thesis and to make the thesis

self contained some definitions, identities, inequalities and theorems are tabulated

in Appendix A.
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Anélysis Tools

The analysis tools needed for the development of the thesis ideas are several

norms. These norms will now be defined.

Absolute value: The absolute value of the complex scalar, z will be denoted by

| z| and is defined by | z|% & z°.

Vector norm: The norm of the complex vector, 2 will be denoted by ||z|| and is

defined by ||z|]* 2 2%z,

Maximum singular value: The maximum singular value (sometimes called the
spectral norm) of the complex matrix, A will be denoted by &[A] and is defined

L, norm: The L, norm of the complex matrix valued function, f(z) of a single

real variable, z will be denoted by ||f(z)]]p and is defined by

I7(zME 2 [ trlf B (a)f (2)de.

L: The L  norm of the complex matrix valued function, f(z) of a single real

variable, 'z will be denoted by |[[f(z)ll, and is defined by

I (@l = sup 3/ (=)

H, norm: The H, norm of the complex matrix valued function, f(s) of a

single complex variable, s which is analytic in the closed right half plane will be

denoted by ||f(s)||e and is defined by [|f(s)|lc = sup &[f (jw)].
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Hankel norm: The Hankel norm of the complex matrix valued‘ function, f(s) of
a single complex variable, s which is analytic in the closed right half plane will
be denoted by |[f(s)||g and is defined by ||/ (s)]|F L& Ay [UY) where f(s) is
assumed to have a state space realization: f(s) = C(sI-A)'B and U, Y satisly
“the Lyapunov equations:

AU + UAT + BBT = ¢

ATY + YA+ CTC =0
Note that this definition is equivalent to other definitions of the Hankel norm

given in the literature. A finite dimensional realization of f(s) was assumed as a

convenience for this thesis.

General Framework for Control Systems Analysis and Synthesis

The pur'pose of this section is to briefly review a new framework for analysis
and synthesis of control systems develoéed by Doyle, [Ref. 5. This review will
state the assumptions which imply the use of the specific analysis and synthesis
tools to be used in this thesis. The point is that other assumptions could just as

well be made and they in turn would require other analysis and synthesis tools.

A general control system is depicted in Fig. II.1. The diagram already
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INITIAL CONDITIONS

7 CONTROLLER g

Fig. II.1 General Control System

makes the assumption that the actual physical system can be represen'ted as a
nominal system i)lus perturbations. This assumption is necessary since it is
desirable for the nominal model (typically linear, time invariant ordinary
differential equations) of the system to be as simple as possible (otherwise we
cannot do much analysis, let alone synthesis). This is also the motivation for

model reduction.

Typically the input signals are given for a control problem. That is their
magnitude, energy, frequency content, ... are specified in some way. The output
signals on the other hand are functions of the inputs and the rest of the system.
Typically some desirable output signal magnitude, energy, frequency content, ...
are specified. These specifications mathematically take the form of frequency

weighted norms.
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The perturbations denoted by A can typically be bounded in some way. In
general, these bounds mathematically take the form of frequency weighted norms.
A simple example is the system in Fig. ﬁ.2 where the time constant of the

nominal linear system

z(t) = az(t)+ u(t)
y(t) = =(t)

is uncertain but bounded above and below with the absolute value norm, i.e.

lA] < -1-16- |a|]  where a == constant
A
u 1 Y
ol —
S-3

Fig. II.2 Simple Uncertain System

Another less trivial example is an actuator with a finite bandwidth and rate

limit shown in Fig. I1.3. This system can be nominally modeled as unity
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Ye e 1 1 Y
b P - -—>-§- >
e
-+ a

Fig. 1.3 Finite Bandwidth Actuator with a Rate Limit

~

plus a perturbation as shown in Fig. II.4. In this case the uncertainty is bounded

using the absolute value and L , norms and is expressed [Ref. 16]

le(lw <M - =

w o 1. 1o 1.1
b[\/bz+ 4(1+”) + 2(1—r’)]
w2 1
._._+_

[V ﬂj

la(w)| <
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Als)

———] 1

Fig. 1.4 Actuator Nominal Model Plus a Perturbation

Note that the bound for A(s) depends on the signal level.

Without elaborating any further here (see Ref. 5 for more details) Doyle'’s
Table will be introduced now and is shown as Table II.1. This table lists out
various assumptions and the analysis and syntlhesis tools that result. The
assumptions that will be used for the remainder of this thesis are found in the

second and third rows of Table II.1.

The second row assumes the input signals have bounded L , norms and that
the outbut specifications are expressed in terms of L, norms. Actually the
frequency content of these signals is also of interest but withéut loss of generality
the weightings for this frequency content can be absorbed info the nominal
model. The perturbations are assumed to be zero. These assumptions result in
the use of Bode plots of singular values as the analysis tool and for this thesis

loop shaping as a synthesis tool.



Table II.1

Assumptions

Assumptions and Corresponding Analysis and Synthesis Tools

(Structured)

Nominal Inputs Output Perturbations | “Analysis Synthesis
Plant " Spec.
White . - . Wiener-Hopf—Kalhan
Noise Covariance A=20 Covariance LQG
. - Singular H_ (Zames, et al.)
_ L1ﬁear L, L A=20 values - New
Time- - stable L, conic g §
2 Bode Plots Loop Shaping &-© General
Invariant ' sector
Framework
Multiple L
L, Conic Structured New H_
L L Sect Singular
2 2 getors Value Results

= 9L -
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The third row assumes zero inlputs_and guaranteed stability as the only
~output specification. However, a specific class of perturbations is. permitted.
These assumptions also result in Bode plots of singular values and loop shaping

as analysis and synthesis tools respectively.

Note that for these two rows performance and stability robustness are
treated separately. This is, in fact, one of the weaknesses .of lobp shaping as a
design tool and singular values as an analysis tool. Singular values can be used
in general but may be too conservative. In general, the weakness of loop shaping
is that we are t}.'pically concerned with properties of more than one of the

feedback system’s loops simultaneously.

This weakness is eliminated with the use of the structured singular value
[Refs. 17, 18]. The structured singular value permits the inon-conservative
eyalua.tion of robust performance. That is, it answers the question of whether or
not the performance specification is met in the face of the perturbations (not

necessarily small). This is not otherwise possible.

Although the structured singular value and H_ synthesis techniques [Ref.

19] are very promising tools, they were considered beyond the scope of this thesis.

Why Bode Plots of Singular Values?

As already indicated in Table II.1, using Bode plots of singular values is a
consequence of the assumptions of the second and third rows of Table II.1. The

purpose of this section is to develop these consequences in more detail.
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Performance

Let G(s) be the asymptotically stable transfer function from the input, u to

the output, y, i.e.
y(s) = G(s)u(s)
Then the following two statements are equivalent [Ref. 20]:
gl <1 forall - [lu{t)ll; < 1
and

1G(s)lleo < 1

"In other words, the H_ norm of the transfer function (or the L norm of
the transfer function’s frequency response) measures the worst case gain of the
system. The idea is that for an arbitrary input, u(¢), with unit L, norm, the -

transfer function’s H , norm gives the worst case L, norm of the output, y(¢).

Typically frequency content is also important and the utility of this
approach to measuring performance is increased by introducing the weighting
transfer functions W,(s) and W, (s) respectively. In this case the following two

statements are equivalent [Ref. 20]:
LWy (s)y()()llz <1 forall  [ILYWy(s)u(s)] (t)llz < 1

and
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IWy(s)G(s)Wil(s)lloo < 1

The Bode plot of the singular values of G(jw) or W,(jw) G(jw) Wu‘ll(jw) is
just a graphical means of assessing performance {because the magnitude of the
highest peak of the freqhency response is the H_ norm). Often the weightings
are not explicitly constructed, rather, the singular values of G(jw) are plotted
and the effect of certain weightings can be readily assessed by the shape of the

frequency response.

Stability Robustness

The stability robustness of a MIMO control system can be determined with
Bode plots of singular values with the aid of the following theorem. Consider the
perturbed feedback system shown in Fig. II.5 where G(s) is the nominal open

loop transfer function and A(s) is the

Als)

6(S) '—'1""

Fig. 1.5 Perturbed MIMO Feedback System

transfer function of the additive perturbation.
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Stability Robustness Theorem:

Assume that the nominal closed loop system is stable i.e. G(s)[I + G(s)]!

has no poles in the closed right half plane. Then for any stable A(s) such that
IL(s) A(s) R (s)lloe < 1
if
IR ()T + G(s)]! L_l(s)lloo <l
the perturbed closed loop system is stable [Ref. 18].

Note that this test evaluates closed loop stability of the perturbed system for

a large class of perturbations with a single test.

Actually the Stability Robustness Theorem stated above is a special case of
a more general theorem in Reference 18 but it will be adequate for the purposes

of this thesis.

Three stronger requirements for robust stability are:

ol + G(jw) > FlA(jw)] W
ol + G-ljw)] > 3G jwA(w) Ve
oll + Gl(jw)] > FlA(jw) G (jw)] Ve

i.e. satisfaction of any of these three requirements implies that the condition of
the stability robustness theorem is satisfied. A proof of this statement is given in

Appendix B.

The advantage of these more conservative requirements is that bounds for
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the perturbation by itself or the perturbation normalized by the nominal are
most times easily obtained or estimated and then can be readily compared to

something that depends only on the nominal system.

The Bode plot of singular values is again just a graphical means for checking
whether the control system has stability robustness with respect to a given set of

perturbations. For example consider the set of perturbations
{A(s) such that F[GCjwA(jw) < l(w)  Yw}

where /{w) is a known function of frequency. Then if the Bode plot of
g[I + G7'(jw)] lies above the Bode plot of !(w) the perturbed closed loop system

is guaranteed to be stable for any perturbation in this set.

Closed Loop Responses

The pur‘pose of this section is to derive expressions for a MIMO control
system’s closed loop responses. Consider the MIMO feedback control system
shown in Fig. I1.6 where G(s) is the plant transfer function; K(s) is the
compensator transfer function; y, is the commanded value for the output, y; u is

the plant input; d is the disturbance and n is the sensor noise.
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Fig. 1.6 MIMO Feedback Control System

Employing standard feedback algebra results in the following closed loop

responses where for notational convenience, the Laplace variable notation, s has

been suppressed: °

y = d+ GKly, - (n+ y)]
= (I + GK)'[d + GK(y.-n)]

e £ y -y
~(I+ GKY'd + [I - (I+ GK)'GK] y, + (I+ GK) GK n
= (I+ GK) (y.-d) + (I+ GK)' GK n
u = K[y, - (n+ d+ Gu))
= (I+ KG)"! K(y,~n-d)
Desensitization

One important goal of feedback is to accomplish desensitization.
Desensitization means making a system or system component insensitive to

changes in operating conditions. A classic example is the feedback amplifier
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where some of its component’s dynamic characteristics vary widely with

temperature, however, with feedback this variation can be made negligible.

The purpose of this section is to quantify the effect of feedback in
accomplishing this desensitization. Note that this will not be a stability

robustness analysis (which requires another analysis), here, stability is ‘assumed.

To quantify the desensitizing effect of feedback in the multivariable case, the |
comparison sensitivity approach will be used [Refs. 21, 22]). In order that we
compare ‘‘apples to apples,”‘the relative sizes of perturbations to two transfer
functions (open and closed loop) which are nominally the same will be compared.
To facilitate this comparison, constant pre- or post-compensation will be used
such that the nominal closed loop transfer function will be identical to the

nominal open loop transfer function.

Output Sensitivity

For the effects of a perturbation on the output consider the open loop

system in Fig. I1.7 and the closed loop system in Fig. IL8 where G(s) is
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Afs)

Yy
—{ Kis) G(S)

Fig. II.7 Open Loop System With Perturbation

Als)

: |
—F?* KIS | | als) B 1+GOKE) [P

Fig. 1.8 Closed Loop System With Perturbation and Post-compensation

the nominal plant transfer function, K(s) and A(s) are the transfer functions of

the compensator and perturbation respectively.

For notational convenience, the Laplace variable notation, s will be

dropped. Let the perturbed plant be denoted by

G

, 2 G+

(I+P,)' G

>

I
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where

P, & -AG;!

is a normalized (from the right) version of A(s) (i.e. % error). -

Then the transfer functions from § to y for Figs. I1.7 and II.8 are given by

T, = G,K = open loop transfer function

T, (I+ GK)(I+ G,,K)‘1 G,K = closed loop transfer function

It can be verified that when A = 0 (i.e. nominal condition) the two transfer

functions: T, and T, are the same. What is of interest here is the effect of the

perturbation on T, and T,. The effect of the perturbation on the open loop

transfer function is given by
Tol = (I+Po)~l GK

To obtain an analogous expression for the closed loop transfer function,

substitute for G, and perform the following.algebra:

Ty = (I+ GK)I + (I+ P,y GK]! (I+ P,)! GK
(I+ GK)[(I+ P,y (I+ P,+ GK)|"' (I+ P,)! GK
= (I+ GK)(I+ GK+ P,)! GK
(I+ GK) {[I + P,(I+ GK)!](I+ GK) }! GK
I+ P,(I+ GK)™1 ! GK
= [I+ (P,)a]" GK

II

0

where
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‘(Po)cl é Po(1+ GK)—I

At this point the effect of feedback on the perturbation is readily seen. The
closed loop perturbation is essentially a scaled version of the open loop

perturbation. In terms of the spectral norm we have

3P, (I+ GK)™
5|P,] 7{(I+ GK)' ]

1
all+ GK]

a[(Po )cl]

IA

a(P,]

That is if g[/+ GK].> 1 holds at some frequency (s==jw) then the use of
feedback accomplishes desensitization at that frequency. Bode plots of singular
“values again can be used as a graphical means of assessing a feedback system’s

desensitization properties.

Input Sensitivity

For the effects of the perturbation on the input consider the open loop

system in Fig. I1.9 and the closed loop system in Fig. II.10.
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G(S)

. K(8)

Fig. II.9 Opén Loop System With Perturbation

- I+ K(S)G(S)

Als)

| G(S)

e

K(S)

Fig. 11.10 Closed Loop System With Perturbation and Pre-compensation

Let the perturbation be normalized from the left, then

where

= G(I+P,)!

2 -GlA

Performing the same steps as for the output results in the closed loop



- 928 -

perturbation being given by
(Pla £ (I+KG)' P
At this point the effect of feedback on the perturbation is readily seen. The

closed loop perturbation is essentially a scaled version of the open loop

perturbation. In terms of the spectral norm we have

I+ KG)! P
71+ KG)1] 5|P]

1
all+ KG]

EI(Pi)cl]

IA

a:[P :'.]

That is if g[/+ KG] > 1 holds at some frequency (s==jw) then the use of
feedback accomplishes desensitization at that frequency. Bode plots of singular
values again can be used as a graphical means of assessing a feedback system’s

desensitization properties.

Feedback System Transfer Functions

The purpose of this section is to define some special transfer functions which
will be used for assessing a feedback system’s performance, desensitization and
stability robustness properties. The following terminology will now be attached

to some of the transfer functions from above. Let



-99-

L,{(s) 2 G(s)K(s) = output loop transfer function
L;(s) & K(s)G(s) = input loop transfer function |
I + G(s)K(s) = output return difference
I + K(s)G(s) = input return difference

S,(s) 2 [I+ G(s)K(s)]! = output sensitivity

Si{s) 2 [I+ K(s)G(s)]' = input sensitivity

H,(s) 2 [I + G(s)K(s)]™ G(s)K(s) = output closed loop
Hi(s) £ K(s)G(s)[I + K(s)G(s)]! = input closed loop

I+ [G(s)K(s)]™' = H;Ys) = output inverse-return difference
I+ [K(s)G(s)' = H's) = input inverse-return difference

The feedback properties are summarized in Table I1.2.

Typical Control System Design Problem

The design problem assumes that the external inputs (commands,
disturbances, sensor noise) are specified in some way (weighted L, norm bounds).
An assumption regarding the uncertainty of the nominal model (frequency
response error bound) is also required. It is also assumed that the objective of
the design problem (small error between the output and commanded output) is
specified in some way (weighted L, norm bounds again). Another objective may
be that control energy is minimized in meeting the small error objective.
Satisfying the control energy objective will be treated as # secondary objective

and will only be mentioned briefly in a later section.

Mathematically the control design problem takes the following form.
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Table II.2 Summary of Feedback System Properties

Closed Loop Responses:

y(s H,(s) So(s) ~H,(s) Ye(s)
[eésﬂ = S,(s) -5,(3) H,(s) dés;
e Hi(s)G™\(s) -Hi(s)G™!(s) -H;(s)G Y(s)} L"1°

> F[GNjWAGY) | W

| }
a‘[H"( jw) } > a{A( jw)GY(w) ] Ve

Desensitization:
7lFatie) | < BlRGe) Joisite) ] W
7lPatio) ] < olp,Gu) | 7s,0) ] Ve
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Assume that weightings have been obtained such that the magnitude and
frequency content of the commands, disturbances and sensor noise for the control
problem are described by
L Wy, (s )ye(s)] (8]l < 1
IL-1Wals)d(s)] (0l < 1
IL W (s)n(s)] (t)lls < 1
Likewise assume that a weighting has been obtained such that the
acceptable magnitude and frequency content of the error (ie. e 2 y,-y) is

described by

ILWe(s)e(s)] (t)llz < 1

Assume that the modeling process has produced a nominal model of the
plant, G(s) (transfer function corresponding to linear, time invariant, ordinary
differential equations) and one or both of the input and/or output scalar,
frequency dependent, multiplicative uncertainty bounds ;(w) and/.or I,(w). These
bounds desqribe the uncertainty between the nominal model, G(s) and the true
system Gy..(s) as follows. Although the true system is not precisely known we
will assume it belongs to one or both of the sets:

{Grue(s): TIGTH(j0) [Girue (jw) = G(jw)] | < () }
{Giruel8): T([Crreliw) = Gliw)] G (jw)] < 1y(w) }
~ Given the weightings W, (s), Wy(s), W,(s) and We(;s), the nominal model,

G(s) and its uncertainty bounds, [;(w) and [ (w) the control system design
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problem is to find the compensator transfer function such that the performance

objective is satisfied for the feedback system of Fig. II.11.

Ye

KIS [P Gy (S)

Fig. I1.11 Feedback Control System Block Diagram

Although Doyle’s structured singular value and H_/L , synthesis method
[Re}fs. 5, 17, 18, 19] solve this problem, the theoretical background required is far
beyond the scope of this wofk, hence, this thesis will only discuss an approximate
solution. In addition to the substantial theoretical understanding required, the
H /L, synthesis method requires significantly more numerical computations to

obtain the compensator transfer function, K(s).

A major simplifying assumption is to require only that the performance
objective be satisfied for the nominal system (second row of Table II.1) although
stability is required for the true system (3rd row of Table Il.1). The other

simplification is that no formal optimization will be attempted.
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" Performance and Uncertainty Requirements

To meet the performance objective for each one of the command,

disturbance and sensor noise individually requires that

IW () + Lo(s) Wyl (sl < 1

IWe ()T + L) Wills)lloe < 1

|We(s)II + Lo(s)™! Lf,(S)Wn"(S)II00 <1
To satisfy the output stability robustness requirement, requires that
gl + LY (jw)] > 1,(w)
To gain a clearer picture of these requirements, note that they are satisfied if

w,(w)u; (@) < gll + L,(ju)]
v (@)ui'w) < gl + L,(jo)]
31 + L, ()™ Lo(j)] € w(w)u, (@)
Al + L, ()l L,(jw)] < w)

where w,(w) A F(W,(jw)
nw) A oWi(iw] k = y.dm

It will be helpful to choose the simple performance objective

lle@ll; & lue(t) - y()lls <

1
= vwc(s) = -;

and plot —:— w; (w), % wil(w), ew,(w) and I;Y(w) versus frequency. Such a plot

is shown in Flg I1.12 where a log-log scale has been used.
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Satisfying the requirements for the commands and disturbances requires that -
a plot of g[I + L,(jw)} lie above the command and disturbange curves in Fig.
I1.12. Satisfying the requirements for the sensor noise and uncertainty requires
that a plot of & [I + L,(jw)!L,(jw)] lie below the sensor noise and

uncertainty curves in Fig. I1.12.

A
» /DISTURBANCE UNCERTAINTY
log | gWj () | /
FOR COMMAND T
k=yed ~ / SENSOR
log feWylco) | NOISE
OR -
tog 1231 () | \I\
n log W -

Fig. .12  Typical Magnitude and Frequency Content of Commands,

Disturbances, Sensor Noise and Uncertainty
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Large and Small Loop Gain Approximations

Although the requirements are in terms of ¢g[l+ L,(jw)] and
[l + L,(jw)] ™ L,(jw)] they can be well approximated by requirements on
large and small loop gains as follows. Note that if gl + L,(jw)] is large (i.e.

>> 1) then g[L,(jw)] is also large in fact
gll + L,(jw)] & elL,(jw)]
when
glL,(jw)] >> 1

Also note that if 5[[/ + L,(jw)]™! L,(jw)] is small (i.e. << 1) then &F[L,(jw)] is

alsb small in fact
G+ L(jwll™ L(jw)] = FlL,(jw)]
when
lL,(jw)] << 1

These observations éuggest that Fig. II.12 can be used to determine
graphically the suitability of any L,(s) and thus of any compensator, K(s) (since
L,(s8) == G(s)K(s)) by simply sketching the singular values of L,(jw). Such a

plot is shown in Fig. I1.13.
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[ Lgljw)]

/

log © [Lo(iw)]

Idn w

glLolw)]

Fig. II.13 Loop Shape Constraints and Trial Design

The secondary objective of minimizing control energy can be approximately
satisfied by having the &[L,(jw)] line follow as closely as possible to the

command and disturbance limits.
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Crossover Requirements

The large and small loop gain approximations are not valid when the
singular values of the loop transfer function are near unity (i.e. crossover) and
thus additional constraints are required for crossover. These constraints are that
the minimum singular values of the return difference and the inverse return
difference don't get too much smaller than unity near crossover. This is such
that performance and stability robustness are not compromised for frequencies in
the crossover region. Recall that when the minimum singular value of the return
difference is less than unity, disturbance and command responses of the error and
sensitivity are amplified compared to open loop. When the minimum singular
value of the inverse-return difference is much less than unity the closed loop

system could be unstable for small perturbations.

SISO Interpretation

The crossover requirements for SISO systems have historically [Ref.23] been
expressed in terms of gain and phase margins. The relationships between the
gain and phase margins and the magnitudes of the return difference and the

inverse-return difference will now be derived.

Phase Margin

By the definition of the phase margin, PM of the loop transfer function,

L(s); L(jw) = - (cos PM + j sin PM) for some frequency, w. In this case the
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magnitude of the return difference and the inverse-return difference are the same

which can be seen by

|1+ L(jw)]
| L(jw)]

|1+ L(jw)] = |1+ L(jw)]

In terms of the phase margin they are given by

V(1 - cos PM)? + sin? PM
= V2 V1= cos PM

|1+ L(jw)| = |1+ L7Y(jw)|

Thus clearly a small phase margin (say |PM | < 30 deg.) implies a small return

difference and inverse-return difference magnitude.

Gain Margin

By the definition of the gain margin, GM of the loop transfer function,
L{s); L(jw) = - 10%M for some frequency, w. In this case the magnitude of the

return difference is given by
1+ L(jw)] = |1-106¥M]
and the magnitude of the inverse-return difference is given by
1+ L (jw)| = |1-107%M

Thus clearly a small gain margin (say |GM| < 0.3) implies a small return
difference and inverse-return difference magnitude. Historically the gain margin,
GM as defined above is multiplied by 20 to give its value in dB. That is

GM = 1 and GM = 20dB are equivalent.
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LQG Loop Shaping

The process of obtaining satisfactory (in terms of Fig. I1.13) Bode plots of
the singular values of the loop transfer function is called loop shaping. The LQG
design methodology can be a remarkably effective tool for achieving the loop
_shabing demanded by Fig. 11.13. A detailed description of the manner in which
LQG can be used to solve multivariable control problems is given in Reference
24. Some of the properties of LQG loops which fnake the LQG methodology
effective for loop shaping will be briefly summarized below. In addition to LQG
properties, some algorithms for loop shaping and two simple examples will also be

discussed.

LQ Regulator

The linear quadratic (LQ) regulator problem assumes that a model of the

system
z = Az 4+ Bu ze R” ue R™

and a performance index
. .
J=§-f0 {(zT7Qz + uTRu} dt Q>0 , R >0

have been specified where the objective is to minimize J. This results [Refs. 1-5]
in the control law u = -K z where K, is obtained from the positive semi-

definite solution, P, of the Riccati equation:
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ATP, + PA+ Q-P,BR'BTP, = 0

as K, = R-'BT P, where it is assumed that (4,B) is stabilizable.

It was shown in Reference 25 that there is no loss of generality in taking
Q = HTH where H is an m X n matrix. That is for any Q,R the full state

feedback matrix, K, could also have been obtained for some H where
Q = HTH. Thus the designer’s only input to the LQ regulator problem will be
taken to be H. To insure a stable regulator H is always taken to be such that

(A ,H) is detectable.

The L@ regulator’s block‘diagram is shown in Fig. I1.14. It is well known

B (st-A)1 K¢

Fig. [I.14 LQ Regulator Block Diagram

[Ref. 1-5] that if (A,H) is detectable the regulator is stable. Other theoretical
properties of interest here can be derived from the Riccati equatfon as follows.

For notational convenience let
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Bs) A (sI-A)!
Li(s) & K.(sI-A)'B
W,(s) & H(sI-A)'B

Note that L;(s) is just the regulator’s loop transfer function and W,(s) is the
transfer function corresponding to the weighting.in the L@ performance index

which the designer can specify. “Starting with the Riccati equation we have

ATP, + P,A+ HTH-P.BBTP, = 0
(-jwIl-AT)P, + P,(jwIl-A)-HTH + KIK, = 0
Po+ ¢fP, ~¢"HTHo + ¢¥KIK.¢ = 0
BTP.¢B + BT¢#P,B - BT¢®HTH¢B + BT¢UPKIK,¢B = 0
K.¢B + BT¢HKT - Wi jw) W, (jw) + LEjwL;(jw) = 0
I+ LGl + Li(jw)] = I+ WHjw)W(jw) (I1.LQ)

Two important properties of the LQ regulator can be determined from this

final equation and they are

LQ Property 1:  g{I + Li(jw) 21 Yw
L.Q Property 2: olL;(jw)] = o|W,(jw)]
when  g[W, (jw)] >> 1

The first can be seen by observing that the right hand side of (ILLQ) has

eigenvalues which are all greater than or equal to wunity (since

\

WCH( Jw) W,.(jw) 2 0 VYw) together with the definition of singular values

applied to the left hand side. The second can be seen be observing that the

identity matrices are negligible when g[W,(jw)] is large (i.e. >> 1).
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The first property is important since it implies that the LQ regulator’s input
return difference has a minimum singular value which is larger than or equal to
unity for any freqvuency.' This in turn implies that the regulator has desirable
di;turbance rejection and desensitization properties (i.e. both are equal tb or

better than open loop for any frequency!).

The second property is important since the command and disturbance
requirements of Fig. I1.13 are for large loop gain. Thus the regulator loop
;ransfer function’s high gain characteristics can be specified a priori by choosing
the L@ weighting matrix, H such that W,.(s) = H(sI-A)'B has the required

high gain characteristic.

To achieve the high gain performance requirement with H(s/-A)™!'B it may
also be necessary to append additional dynamics. For example, to achieve zero
steady state errors may require additional integrators in the plant (i.e. integral

control). This is equivalent to frequency dependent weighting [Ref. 26).

It is also well known [Ref. 27, 28] that the L@ regulator has certain
guaranteed stability robustness properties. This is also a consequence of
gll + Li(jw)] 21 ¥Yw. It is the multivariable generalization of avoiding the
-1 critical point on the Nyquist diagram for SISO systems. It implies that L@
regulator loops provide reasonable transition or ‘“‘crossover” between the low and -

high frequency regions shown in Fig. IL.13.



-43-

Finally we note that at high frequencies the L@ loop transfer function

approaches [Ref. 24]
= . ~ 1 _
olli(jw)] = — 5(HB]

when HB is full rank. This shows how the high frequency roll-off characteristics
ar‘e related to H. This is a relatively slow attenuation rate and is the price the

regulator pays for its excellent return difference properties. We recognize that no

-physical system can maintain a 1 characteristic indefinitely [Ref. 29). This is
w

not a concern since L;(s) is only a design function and will have to be

approximated by the full state loop transfer recovery procedure.

Full State Loop Transfer Recovery

The next step of the design process is to provide estimates of the states by
processing the output measurements with a Kalman filter. This procedure is also
well known [Refs. 1-5]. It involves the model of the system:

T = Az + Bu + ¢ ze R® ue R™
y = Cz+ 9 ye R?

where { and 5 are uncorrelated white noise processes with spectral intensities

given by

E[6t)eT(1)] == 6(t-7M  where M >0
Eln(t)nT(7)] == 6(t-7N  where N >0
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the estimation equations

H)o
I

= A# + Bu + Kj(y-3)
§j = Ci

and the performance index

J = lim tr E[(2(t) - £()) (z(t) - 2(t))T ]

t—o0
where J is to be minimized by choice of K.

The solution for the constant matrix, K; is well known [Refs. 1-5] and is

obtained from the positive semi-definite solution, P, of the Riccati equation:
AP, + P/ AT + M -P,CTN'CP, = 0
as Ky = P, CT N-! where it is assumed that (4,C) is observable.
Using the estimates of the state in the control law i.e. ¥ = -K_% results in
the compensator transfer function |
K(s) = K,(sI-A + BK, + K; C)“K,

It is also well known that this compensator results in a stable closed loop systeni
for any noise parameters: M,N. For the purposes of this thesis these noise
intensities will be treated as design parameters which can be manipulated by the
designer and not as some sacrosanct noise intensities for the system. By duality
with the LQ results [Ref. 25] there is no loss of generality in taking M=T1TT

and N = ] whereI" is an n X m matrix.
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For full state loop transfer recovery, the following value for I' will be used:
I' = ¢B

where ¢ is a scalar design parameter. Then as ¢ becomes large (assuming
G(s) A C(sI-A)'B is minimum phase) it has been shown in Reference 30 that

the filter gain behaves in such a way that

lim K(s)G(s) = K.(sI-A)'B

g—o00
where the convergence is pointwise in §.

This design procedure essentially inverts the plant from the left i.e.

lim K(s) == K,(sI-A)"'B GY(s)

g0

This inversion, intuitively is why G(s) is not allowed to have zeros in the right
half plane. In practice the recovery procedure is effective as long as G(s) has no
right half plane zeros wiih magnitudes in frequency ranges where high loop gain
is required. The limitations on the achievable performance of feedback systems

because of non-minimum phase zeros is discussed in Ref. 31.

It has been suggested [Refs. 32,33] that an improved recovery is obtained by
using colored rather than white process noise. This procedure however does not

recover the L@ loop transfer function i.e.

lim K(s)G(s) # K,(sI-A)'B

g—o0

when colored noise is used. The reason the authors of References 32 and 33
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concluded that an improvement was obtained is that although their L@ loop
transfer function, K,(sI-A)'B did not satisfy the requi;ements of Fig. 11.13,
their LQG’ loop transfer function K(s)G(s) (obtained with colored noise) did
satisfy the requirements of Fig. II.13. The point is that the desirable K(s)G(s)
loop transfer function could have been recovered with white noise if the L@ loop

transfer function had in fact been desirable.

SISO Double Integrator Example

The design methodology will now be illustrated with a simple example.

Assume the desired loop shape must satisfy the requirements shown in Fig. II.15

where G(s) = Lz The state space matrices are
‘ s

log | KG |

/

log |K(jw)6je) |

log (2¢0,)
| >

Fig. I1.15 Desired Loop Shape For Double Integrator Plant



- 47 -
given by

o 17 __ 0]
A= 1o B=pu ¢

The first step is to choose H such that H(sI-A)™B satisfies the low frequency

requirement. This is obtained by choosing
H = [w? 0]
as can be seen from the plot in Fig. II.16.

Solving the L@ Riccati equation gives

K, = [wf V2 wo} and

]
7

That it satisfies the requirements of Fig. II.15, can be verified by examining the

plot of | K, (jwI-A)'B| shown in Fig. I1.16. L@ Property 2 can also be verified

by comparing
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log IKgljcol-Ar18 | log | Kefiwt-a)is |
OR

log |HGw-A»1B | ‘ log (204) log w

tog g

| miwl-A)-‘nl/

Fig. 11.186 LQ Loop Transfer Function for Double Integrator

|H(jwI-A)'B| and |K,(jwI-A)'B| for frequencies w << w, (i.e. where

|H(jwI-A)'B| >> 1).

Solving the filter Riccati equation gives
v2g
o - [

Computing the compensator transfer function results in
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+ w Vg
V2 (w,+Vq)

K(s) = VZw,Vq (w4 Vq) 77— 3
12+ V2 (wot Vig)s + (w,+ Ve)?

Finally the input loop transfer function is given by

_wig [ w, Vg
w,+ Vq)? V2 (w,+ Vg
K(S)G(s)__:( 82q) , w(:;q_ q)
\/§(w0+\/6)]
(w, + Vg )?

(52 + VB (W, + Ve + (0,4 V) ]

and its magnitude for 8 = jw is sketched in Fig. I.17 for several values of g¢.

The L@ loop transfer function is also sketched in Fig. II.17 for comparison.
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IKglicol-A)1B |

NN\ .

q INCREASING

~—"

IK(jew)Gljeo) |

Fig.I1.17 LQG Recovery for Double Integrator

From the expression for K(s)G(s) above it can be seen that

- 4
lim K(s)G(s) = ﬁs%z -—-w—‘/—i— = K, (sI-A)'B
The convergence oi' K(s)G(s) to Kc(sI—A)"B as ¢ goes to infinity occurs
pointwise on s not uniformly on s. This means that for finite ¢ the
approximation K(s)G(s) = K,(sI-A)'B will be valid only over a restricted
frequency range. Ouvtside that range the approximation can be quite poor. This

is evident from the plots in Fig. I.17. Practically of course the crrors at high
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frequency cause little concern provided | K(jw) G(jw)| stays small.

Designing a full state L@ regulator and then recovering the full state design
with the Kalman filter has just been discussed. This approach was followed
because it is the usual sequence one considers for LG design. This process

allows the designer to shape the input loop transfer function K(s)G(s).

A dual procedure for shaping the output loop transfer function G(s)K(s) is
to design the filter first and recover with the regulator. The equations for this
alternate procedure are mathematical ‘“duals” of the ones given above. The

subtle differences between the two procedures are discussed in I\{eference 31.

The filter loop transfer function, L,(s)= C(sI-A)'K, shown in block
diagram form in Fig. II.18, enjoys the same properties as the LQ loop transfer

function. These properties are summarized in Table I1.3.

» ?- ok [P st P o ]"’

Fig. I1.18 Filter Loop Transfer Function
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Table II.3 Regulator and Filter Loop Transfer Function Properties

Input Output
Minimal Q=HTH R=I [M=ITT N=1
Parameterization where Hism X n wherel'isn X m
Definitions L;(s) = K, (s[-A)'B L,(s) = C(sI-A)'K;

W.(s) = H(sI-A)'B

W(s) = C(sI-A)'T

Return Difference Bound

g{1+ L;(jw)} >1

erH- L,(jw) } > 1

Inverse-Return

Difference Bound

alr+ L) | 2 1/2

elr+ 17w ]

Near Equality of
W(s) and L(s)
(useful for design)

High Frequency

Characteristies
(useful for design)

W — 00
(A,H) observable
HB full rank

for w — oo
(A,T') controllable
CT full rank




-53.

The duality of these two design procedures is easy to see in the SISO double
" integrator example given above by interchanging the roles of w2 and ¢q. That is
since they.appear symmetrically, let w, go to infinity while holding q ﬁxéd to
give the desired loop shape (either K(8)G(s) or G(s)K(s) sincé they are the
same for SISO).

The LQG input and output loop shaping procedures are summarized in

Table 11.4.

Advanced Loop Shaping

The LQG loop shaping procedures just discussed required that the plant
have the dynamics of the desired loop shape i.e. the poles of either K, (s/-A)B
or C(sI-A)! K, are the same as those of the plant. Actually, as already alluded
to, dynamics may be appended if they are not already present in the plant.

Advanced loop shaping just formalizes this process.

Assume the high gain characteristics of the desired loop shape are given by
Ci(sI-A;)! B, i.e. A, B, C; are all three speciﬁed by the designer to satisfy the
high gain requirements of Fig. 11.13. The plant transfer function will still be
given by C(sI-A)'B. This desired loop shape can be approximately obtained
for either the input or output loop transfer function with the appropriate one of

the following two dual procedures.

The procedure for the input will now be discussed and the other will follow

by duality. The augmented plant state space realization is given by -



Table I1.4 LQG Input and OQutput Loop Shaping Procedure

Input Output
append additional dynamics
if necessary and choose H
or T such that the indicat- -1 -1
ed transfer function has H(sI-A) 'B C(sI-A)"'T
satisfactory high gain
characteristics
ATP, + PA+ HH - PBBP_ = 0 Ao+ P AT+ TTT - pclep, = 0

solve the Riccati and e '
gain equations - nl - T

KC B PC Kf PfC
to obtain the ideal -1 -1
loop transfer function KC(SI_A) B C(sI-A) Kf

T 20T T _ T 2.T T -

choose a scalar q and APg + PR + q'BB - PeLCPe = AP+ PA+qCC- P.BB P, 0
solve the Riccati and T T
gain equations Kf = PfC Kc = B PC

then if G(s) =

C(sI-A)"'B
is minimum phase :

6(s)K(s) > C(sI-A) K,

asq -> ©

_vg_



i-fes] m-g]

G =1[Cc o

Note that this does not change the input-output transmission of the plant i.e.

G(s) = C(sI-Ay'B = CTi(sI-A;)" B;

Now to obtain an L@ loop transfer function which has the high gain
characteristics of Cj(sI-4;)! B let
H =1 ¢
and solve the regulator Riccati equation for P, > 0:
A'P, + P.A, + H'H. - P,B,B'P, = 0

to obtain the full state gain

When A is stable K, is given by

K, = [0 K]
with K, = BTP, where P, > 0 is the solution to the (lower order) Riccati
equation:

.A‘ITPC + PCAI + CITC[ - })‘:BIBITPc = 0

Note that when the plant is stable it is not involved in the computations so far.

That is only A;, By, C; (typically of lower dimension than A,B,C) have to be
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manipulated.

Next the full state feedback recovery procedure is used as follows. Let
Ti = q B:'

where ¢ is the scalar design parameter used for recovery and solve the filter

Riccati equation for 1-5/ > 0

— —— _T o e - owco — —

to obtain the filter gain

74 T

The compensator transfer function is obtained as usual from

K(S) = XC(S]'WZ.; + B-,Xc -+ EIC)'J Rf
Assuming G(s) is minimum phase and stable we have

lim K(s)G(s) = K,(sI-A;)" B

g—00

where o[, (jw-A))! B]] & o|Cjwl-4;)' B] for w such that
a[Ci(jwI-A;)t B] >> 1 which was the design objective.

The comments regarding the minimum phase assumption in a previous
section covering ordinary full state feedback recovery apply here as well. That is
thle desirable properties of the L@ loop function K,(sI-A;)™! B, will be recovered

for frequencies other than those near the magnitudes of right half plane zeros.
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Using the pro‘cedure for an unstable system results in a loss of accuracy in
the- approximation of the desired loop shape. This is consistent with the fact
that [Ref. 29] arbitrary loop shapes are not possible for unstable systems. Thus
the procedure is stilll applicable to unstable systems but the choice of A}, B, C;

must be made with attention to the limits to achievable performance.

SISO First Order Example

A simple example will now be discussed to help clarify the steps of this

procedure. Let the plant be given by
G(s) = PUEE A=-1, B=2 C=1

Let the desired loop transfer function be given by -

CJ(SI—‘AI)_I B[ = "1'%9‘ A[ = 0, Bl = 100, Cl =1

The plant is stable and K, can be verified to be given by

Kc = [0 Kc] = [0 1j
This results in the desired loop transfer function being achieved exactly by the
L@ loop transfer function i.e. -

100

K (sI-A)" B = =

= Cy(sI-A4;)" B,

The filter gain can be verified to be given by



-58-

= |[V1+4¢® 1
Ky = 2004°

V1+ 44¢°

from which it can be seen that

- 2q
lim K, =
g—oo 00q

Using this limiting expression for R:j to compute K(s) it can be seen that

lim K(s)G(s) = lim 100g(s + 1) 2
g—00 g oo s2 4 (1014+2¢)s + 1 |8 + 1
. 200
= lim ;
g—
I
g g g
. 100
L

As already alluded to, this procedure has a dual for shaping the output loop

transfer function G(s)K(s). Both procedures are summarized in Table II.5.

The design procedures just discussed vare very powerful for shaping either the
input or output open loop transfer functions. However, in most design problems
both loops must have desirable properties. Thus, one major weakness of the
design procedures is that only the properties of one open loop transfer function
may be formally tailored. Of course for SISO problems the input and output

loop transfer functions are the same since G(s) and K(s) commute.



Table II.5 Advanced LQG Input and Output Loop'Shaping Procedure

_ Input _ Output
X (A 0] = [B] . [A 0] 5 8] F_I_OT
| Tolooa, Ts, ° lo a,| ° [OJ s,
Form the B —
augmented state _ '
space realization C.=[C O T =
p ! ] C, = [C ¢,]
Hi = [0 CK]
Ts .5 1 2nT7 5 & 815 - D g gen
KiPC+PCKi+H1.H1.—PCB1.BiPC- 0 KOFf+PfK0+roro chocopf =0
soive the Riccati _ T _ T
and gain equation >0 K. =B.P P.>0 K. = P.C
to obtain either ¢ ¢ ve ,f f fro
Regulator Loop Transfer: RE(SI-K})']E} jl - A stable ]I A stable
or T T T, - T Tp T -
Filter Loop Transfer: T (sI-A )R, | APc™PcAeCelaPcBeBePe = 0 | AgPetPehytByBy-PelylePe = 0

— T
P. >0 K=[0K.] K=B,P

. = _1J0 -
P> 0 Kf—E(J Ke = PeC

T
£

75 45 Tl 515 7= 5 on | 715 45 2:T= 5wl -
solve the Riccati Aipf+pfﬁf+q BiBi'PfciCin 0 , Aopcwcﬁo+q CoCo PcBoBoPc 0
and gain equation _ I _ I
Pe>0 Ke = P.C. P, >0 K. = B,P,
B — = o= y=] = — e '_]_
Form K(s) K(s)=K (sI-A+B.K +KTo) ™Kl K(s) = K_(sI-A +B K +K:T )™ 'K
then if G(s) Tim K(s)G(s) = K_(sI-K,)"'B Tim G(s)K(s) = T (sI-A )" 'R,

is minimum
phase

q—)oo

I

~
O

——

w
—

)

=

for A stable

q—)OO

[{]

Cz(sI-Az) £
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"k, for A stable
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Motivation For Model Reduction

As we have seen a powerful design technique (L @G loop shaping) exists to
formally solve the control problem. However, this design technique requires the
manipulation of matrices with dimensions greater than or equal to th#t of the
plant model. Also it results in a compensator transfer function which has order

equal to or greater than that of the plant.

For many problems the order of the plant is so high, as to prohibit a
successful design of the compensator (either by cost of computations or accuracy
of computations). Even when the design process can be carried out it may be
desirable to simplify the compensator (i.e. reduce its order) for implementation
purposes. This could be to save implementation computer time and memory,
provide ease of checkout and verification of the implementation, eliminate

excessive gain scheduling, or for any of many other practical reasons.

Thus we are led to search for reduced order models to gimplify the design,
analysis and implementation of the control system. Many methods of obtaining a
reduced order model exist [Refs. 6-15] and the fundamental ideas of the

internally balanced realization method will be discussed next.

Internally Balanced Realizations

Balanced realizations will be used throughout the sequel. When the
adjective internally is used, it represents the essentially unique realization of an

asymptotically stable MIMO transfer function defined by B. C. Moore [Ref. 11].
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A geometric interpretation of the balanced realization, an algorithm for

computing the realization and some of its properties will now be discussed.

A state space realization of the system to be balanced is given by

¢t = Fz+ Gu zeRNY  ueR™
y = Hz yeRP

It is assumed that the system is asymptotically stable, i.e. Re[\[F]] < 0. The
minimal order of the system will be taken to be n where n < N. That is the

given system may be uncontrollable and/or unobservable.

Geometric Interpretation

With reference to the block diagram shown in Fig. II.19 ask the following

two

ult) xit) it
' o [ @et > >

Fig. I1.19 Block Diagram for Internally Balanced Realization Discussion

(dual) questions. What set of points in the x-state space could be part of the
zero initial condition response for some input, u(¢) such that |ju(¢)]]s < 1? and

what set of points in the x-state space as initial conditions could produce an
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output, y(t) such that ||y(t)]ls < 1 with zero external input?

Moore showed that these two sets are in general different ellipsoids. The-

following general theorem was proved by Moore, [Ref. 11].

Grammian-Ellipsoid Theorem

Let F(f{) be an impulse response matrix of some asymptotically stable,

linear, time invariant system. Let

Gr A [, F(OFT(t)dt >0

s, & {x<o)z y(t) = [ FT(t-rz(0)8()d, Vt,ny(t)nz=1}

the grammian, controllable set and observable set for F(t) respectively.

Furthermore let the eigenvalue decomposition of the grammian be given by

Gr = VRVT, VIV = I, Y = diag {0;}, V = block col[z;]

Then
S, == ellipsoid with semi-axes given by +/o;v;

and

S = ellipsoid with semi-axes given by v

1
\/E‘T 0

For the first question let F'(t) = ef* G, then the answer is the controllable
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~set, S,. For the second question let F(t) = ef *HT, then the answer is the

observable set, S,. These grammians have been given special names [Refs. 11,

34, 35):
*® r
U = fo ef* GGTef tdt = controllability grammian
Y = | :o eF"tHT Heft dt = observability grammian

It is well known |[Refs. 11, 34, 35] that these grammians can be computed from
the Lyapunov equations

FU+ UFT+ GoT =0 (IL1a)
FTY + YF + HTH = 0 (I.1b)

These resuits are now summarized. The lengths and directions of the
controllability ellipsoid semi-axes are the square roots of the eigenvalues and the
eigenvectors of the controllability grammian respectively. The lengths and
directions of the observability ellipsoi’d semi-axes are the'reciprocals of the square
roots of the eigenvalues and the eigenvectors of the observability grammian

respectively.

It is well known [Refs. 34, 35] that a zero eigenvalue of the controllal;ility
grammian implies {F,G} is uncontrollable and that a zero eigenvalue of the
observability grammian implies {F,H} is unobservable. The association of these
grammian eigenvalues with the lengths of the ellipsoid semi-axes is intuitively
pleasing in that: an uncontrollable direction wbuld clearly correspond to an

ellipsoid semi-axis of zero length and an unobservable direction would clearly
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correspond to an ellipsoid semi-axis of infinite length. Hence the eigenvalues of
these grammians provide scalar measures of how controllable or observable a

given grammian eigenvector direction is.

Moore also showed that there exists a realization of the system obtained
with a change of variables by a similarity transformation, T, such that thé axes
of the ellipsoids are the same (balanced) for the new state variables (say z, where
z = Tz). For model reduction, this balancing is the key idea because it provides
a basis for the n dimensional x-state space where the direction of a given basis
vector is as controllable as observable in a well defined sense. The lengths of the
ellipsoid’s semi-axes provide a scalar measure of how controllable and observable
a given basis vector direction is. Finally the reduced order model is obtained by

neglecting the weakly controllable/observable states of the system.

Algorithm For Computing the Internally Balanced Realization

There are in fact several algorithms for computing the internally balanced
realization. Most suffer from numerical difficulties when they are applied to non-
trivial problems. The difficulties arise due to the squaring up nature of the
problem i.e. the G and H matrices are squared to compute the grammians and as
will be seen the controllability and observability grammians are then multiplied
together. This is an important research afea and progress has been made by

Laub at USC however these results were not used for this thesis.
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The algorithm for computing the internally balanced realization that will be
presented here is slightly more general than Moore’s in that {F,G,H} may be
uncontrollable and/or unobservable. The objective of any balancing algorithm is
to find a minimal (i.e. controllable and observable) realization, {A,B,C} of the
given possibly non-minimal realization, {F,G,H} such that the controllability

and observability grammians for {4 ,B,C} are equal and diagonal.
To this end consider how the original grammians change due to a similarity

transformation. Starting with (II.1 ab) we have

TAFTTUT-T + TWUT-TTTRTT-T 4 TAGGTT-T
TTFTT-TTTYT & TTYTTFT + TTHTHT = 0

I
(=]

which can be rewritten as

PO+ UFT 4 ¢6T =
FTY + YF 4 HTH = 0

I
o

where

T'FT

3
Q

T-yr-T
TTYT

~ I Y
> e e e i
Iny
~

Now our objective can be stated as follows: find T such that
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0 —_— T_IUT_,T == blOCk diag {Ey Eu}

Y = TTYT = block diag {}, ¥, )
where
Y = diag {0y, 09, ..., 0, }
L, = diag {62, 02,4 ..., 0%}
with o0y 20,2 -+ 20,>0,,) = 0,,0= -+ = oy = 0. Thé

uncontrollable and/or unobservable modes result in £, ¥, = 0.

The similarity transformation, T which accomplishes the objective is

obtained from the eigenvector decomposition
UY = TAT?

That is the columns of T are eigenvectors (eigenvector nonuniqueness discussed
below) of UY corresponding to A = diag {)\;} the real diagonal eigenvalue
matrix of UY (assuming without loss of generality that the X,/s have been
ordered such that XAy 2> X > -+ 2> Ay). The fact that UY has a real
diagonal Jordan form is a consequence of the fact that U and Y are both positive
semi-definite. It is also true that A is positive semi-definite. The proofs of these
facts are not well known and are rather long, hence they are contained in
Appendix C.

Eigenvectors are not unique since a scalar times an eigenvector is also an
eigenvector and when the eigenvalues are not distinct linear combinations of

eigenvectors corresponding to a repeated eigenvalue are also eigenvectors.
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Specific eigenvectors can always be chosen such that

T'UT-T = block diag {£, £,)}

TTYT = block diag {£, 5,}
where
L = diag {0y, 09, ..., 0, }
T.L, = diag {0, 02,2 ., 0F)}
with
0) 2022 """ 20, >0, =0, 9= "' =0y=0

The details of this choice of eigenvectors is messy and hence is also contained in

App. C.

Fortunately any choice of eigenvectors will work for the purpose of model
reduction. The eigenvector scaling just leads to a choice of scale for the
individual balanced state variables (the reduced order model transfer function is
independent of this scaling!). The complication, due to repeated eigenvaiues of
UY, is eliminated by either retaining or eliminating all the balanced states
corresponding to the repeated eigenvalue of UY in the reduced order model
(there is no justification for doing anything else!).

The square roots of the eigenvalues of UY are the singular valhes of the

balanced grammian. That is
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Let T, be the first n columns of T (i.e. those columns which correspond to non-
zero balanced grammian singular values), likewise let S, be the first n rows of
T-1 then the n** order minimal internally balanced realization of {F,G ,H} is
given by {A,B,C} = {S,FT,, S, G, HT,}. That is

AV + $AT + BBT =0 (I.22)
ATY, + YA+ ¢cfe =0 (I.2b)

where
Y, = diag {0y, 09, ..., 0,} >0

Moore showed that the internally balanced realization is essentially unique
when the balanced grammian singular values are distinct. Essentially unique is

taken to mean unique up to a change in sign of a state variable.

The algorithm for transforming a given asymptotically stable, possibly non-
minimal realization {F,G,H} into an internally balanced, minimal realization

{A,B,C} is summarized in Table I.6.

Simple Example

A simple example will now be used to fix ideas. Consider the following 4th
order non-minimal realization with one controllable and observable mode, one
controllable but unobservable mode, one uncontrollable but observable mode and

one uncontrollable and unobservable mode.
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Table II.6 Internally Balanced Realization Algorithm
Given: F,G,H with Re[\[F]] < 0

Solve for U and Y from

FU + UFT + GGT
FTY + YF+ HTH = 0

I
(=4

Solve for eigenvalues and eigenvectors of UY i.e.
UY = TAT?

Partition T,A and T7!such that ¥ > 0

‘ . g
- I 1 _Z2of s T
.T. = |.T” TanJ A = [0 0 T = Snon
Compute A, B, C with

A = S,FT,, B = S5,G, C = HT,

Then AY + AT 4+ BBT
ATY 4+ TA+ CTC =0

I
o
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10 0 0

_lo -2 0 o0 _

F'=10 0 =3 o G =
0 0 0 —4

H=[1 01 0

O O bt e

The two grammians can be verified to be given by

Cow|mto|—~

=N = N A [
co o©
= =

= N N
o O O ©

l~<

fl
=™
o o o o

The similarity transformation or the eigenvector matrix of UY can be verified to

be given by

(o]
I

~

I
‘cowlo ~
co ~
O O o~

0
1
The grammian singular values can be verified to be given by

1

Y=
. 1
Y. = dlag{36,0,0}

. 1
Ey = dla’g {0) 2470}

Finally a minimal realization is given by
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Some Properties of the Internally Balanced Realization

The internally balanced realization has several fascinating .properties. The
properties of interest here are stability, controllability and observability of

reduced order models obtained from the balanced realization.

- As mentioned earlier a reduced order model is obtained from the internally
balanced realization by neglecting the weakly controllable/observable states of
the balanced realization. The singular values of the balanced grammian provide
a measure for determining how controllable/observable a given state direction is.
The idea is that the states corresponding to the smallest singular values can be
neglected. This is expressed by the following. Choose the order of the reduced
order model, r such that o, > 0,,, then let ¥, = diag {0, 03, ..., 0,} and

Yo =diag {0,,, 0,40, ..., 0, }. Partition A, B, C compatibly as

Ay Agey . B = B,
Agy Ag B,

¢ =1[C ¢

A =

then {4, By, C,}, is'the r** order reduced order model of {A, B, C},.

Immediately from (II.2 a,b) it can be seen that the realization of the reduced

- order model is internally balanced i.e.

AHEI + ElAlTi + BlBlT == 0
A1T121+ 21A11+ CITCI = 0

Moore showed that the reduced order model is generically asymptotically
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stable, controllable and observable. Pernebo and Silverman [Ref. 36] proved the
following stronger result. The condition that o, 5% o, ; implies that the reduced

order model will be asymptotically stable, controllable and observable.
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HI. FREQUENCY WEIGHTED MODEL REDUCTION

- One of the _rﬁain points of this thesis is that model redgction and control
system design are not independent of each other. That is, given that a control
system will be designed, analyzed and implemented based on the reduced order
model, the technique used for model reduction must be cognizant of this fact.
The point is that the reduction will introduce error and the criterion used to
define a small verror must reflect the purposes for which the reduced order model

is intended.

Model Fidelity With Respect to Control System Design

The overriding concern in control design is stability of the closed loop
system. The next concern is that the performance objectives are satisfied. In
Chapter 1II, it was shown that for good performance and robustness a loop shape
must be obtained which has high gain (typically at low frequency) to satisfy
disturbance attenuation, desensitization and command response specifications and
low gain (always at high frequency) to satisfy sensor noise and robustness
speciﬁcations. Furthermore the loop must accomplish the transition (crossover)
between these two regions in a stable manner. Therefore the model reduction
error criterion must assess how much the use of a reduced order model can affect

the desired loop shape.

In the low frequency range, the feedback compensator should provide

adequate loop gain, so the high gain of the loop shape will not be seriously
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degraded by some low frequeqcy model error. In the high frequency range the
loop .must be rélled off such that stability robustness to uncertainty in the full
order model is maintained. Thus an accurate approximation df the full order
model is not necessary in the high frequency range. This leaves the mid
frequency or crossover region as the only critical region for accurately mode-li'n'g

the plant dynamics.

To assure stability it is also clear from the Nyquist stability criterion (and
its MIMO generalization) that the reduced order model must not neglect unstable
poles. Thus another requirement for model fidelity is that the reduced order

model have the same number of unstable poles as that of the full order model.

These comments can be interpreted graphically for the SISO Nyquist plot

shown in Fig. III.1 for the loop shape requirements:

[L(jw)] > R w < w
|1+ L(jw)| >1-r w Swlw
|L(jw)| < r wy Sw

where L(s) = G(s)K{(s) = K(s)G(s) and G(s) and K(s) are the plant and
compensator transfer functions respectively. The solid line is the locus of
G, (jw)K(jw) versus w i.e. the loop is analyzed and designed with the reduced

order model transfer function G (8).
It can be readily seen from Fig. III.1 that if G,(jw)K(jw) satisfies the loop

shape requirements and the error between G(jw) and G,(jw) is such that the

locus of G(jw)K(jw) versus w lies in the shaded region, then the loop shape
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A Im{GjiwIKijw)]

Re(G, (jew)Kijco) )
>

Figure III.1 Allowable Reduced Order Model Error Bound
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requirements will be satisfied for G(jw)K{jw) as well. Thus G,(s) is an

acceptable reduced order model and the frequency dependent width of the shaded

region is the frequency dependent allowable model reduction error.

Motivation For Frequency Weighted Model Reduction Error Criterion |

The above comments have already indicated that for control design the
model reduction error criterion must take into account the frequency dependence
of the allowable error. This rather intuitive discussion will be made more formal

now.

Given that the model reduction method will not neglect unstable poles and
that a stable closed loop. system can be designed for the reduced order model, the
stability of the full order model closed loop system can be assessed with the

stability robustness theorem of Chapter II.

Consider the full order model closed loop system in block diagram form

shown in Fig. III.2 where G(s), G,(s) and K(s) are the transfer functions for the

G(S) - G,(S)

K(s) G,() -

Fig. 1.2 Full Order Model Closed Loop System
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full order model, reduced order model and the compensator respectively. Note
that, .Lhe block diagram is really just a rearranged version of the compensator
and the full order model in a standard feedback configuration (i.e. G,(s) cancels
out). Applying the stability robustness theorem to this conﬁ.guration implies that

the full order mode] closed loop system is stable if either
” [G(s) - Gr(s)] VV‘(S) ”oo <1
or

”Wo(s)[G(s) - G,(S)] ”oo <1

where

Wi(s) A K(s)I + G(s)K(s)]"
W,(s) =A[I+ K(s)G,.(s)]™! K(s)

It is of interest to compare the magnitude of these weighting transfer
functions with the intuitive discussion given above. For simplicity consider the
SISO special case. Let

W(s) = W'(S) = W,(s)
= K(s)[1 + G(s)K(s)]"
= G()K()L + G,(s)K(s)! C7Ys)
Now then G,(jw)K(jw)[l + G,(jw)K(jw)]? (the closed loop system frequency
response) will typically have a magnitude as shown in Fig. I3 (i.e.

| G (jw)K(jw)| >> 1 for small wand | G, (jw)K(jw)| << 1 for large w).
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4

e log w

B licolKico)
1+6,GwKiw)| g

Fig.III.3 Typical Closed Loop System

Next the reduced order model transfer function, G,(s) will commonly have a

magnitude plot like one of those shown in Fig. III.4.

log 1G,Gjco) |
log w
0

Fig. 1.4 Two Common Reduced Order Models,.
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Using Fig. III.3 the magnitudes of the weightings corresponding to the two

plants in Fig. 1.4 can be computed and are sketched in Fig. ITI.5.

o 7

Fig. II.5 Two Common Weightings

It can be seen that these weightings indeed emphasize the crossover region
and place less weight on low and high frequency error depending on the reduced
order model DC gain. Thus the intuitive discussion is consistent with the formal

stability analysis.

Definition of Frequency Weighted H , Model Reduction Error Criterion

It has been shown that for stability, the frequency dependence of the model
reduction error is important. That is, errors should be small in some frequency
ranges (crossover) and can be larger in other ranges (low and high). This

motivates the use of a weighted error criterion.
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Stability also requires that an inequality be satisfied for every frequency,
heﬁce, it is the magnitude of the highest peak in the weighted error that is
important (as opposed to some integral squared error criterion). This motivates -

the use of the H_ norm.

To obtain a formal definition of the error criterion let G(s), W;(s) and
W,(s) be the given full order model, input we’ightiﬁg and output weighting

transfer functions respectively. Then the scalar model reduction error, E_ for

the reduced order model transfer function, G,(s) is defined to be given by
Ew £ [IW,()[G(s) - Gp(s)] Wils)lloo

The purpose for which the reduced order model is intended (i.e. control
design) is reflected by the choice of the weighting transfer functions. The
remainder of this chapter will develop the model reduction technique assuming
that the weightings are given. The choice of weightings is important and will be

discussed further in Chapter IV.

Model Reduction Problem

The model reduction problem will be defined to be the following. Given an
nth order state space realization {F, G, H}, of the full order model transfer
function, G(s) = H(sI-F)'G and transfer functions for the input and output
weightings, W:(s) and W,(s) respectively, find an r* order ( r specified and

r < n) state space realization {Ay;, B, C;}, of the reduced order model
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G.(s) == Cy(s[-Ayy)! B such that E is minimized and G(s) and G,(s) have
the same number of unstable poles.

In mathematical notation the problem is

Given: {F, G, H},, W;(s), W,(s), r < n
Find: {4y, By, O}, |
such that F' and A; have the same number of closed right half plane eigenvalues

and
| W, (s)[H(sI-F )G = Cy(sI-Ayy)™ By] Wi(s)lloo
is minimized.
This problem appears to be intractable, however, the SISO special case with
unity weightings and r = n-1 has been solved with the Hankel norm technique

[Ref. 14], although the reduced order model is also required to have a constant

feedthru term, D, i.e. G,(8) = C’l(sl—Au)‘l B, + Dy

Internal Balancing As An Approximate Solution

Consider the unity weightings special case and reduced order models
obtained from an internally balanced realization. This also requires that the full
order model is asymptotically stable. For this special case the model reduction

error criterion, £ can be bounded.
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Internally Balanced Realization Model Reduction Error Bound

Assume that the asymptotically stable, minimal realization {A, B, C}, of

the full order model transfer funection, G(s) = C(s[-A)'B, is internélly

balanced, i.e.

AY + TAT + BBT = 0
AT+ a4+ ¢cTc =0

where

and

Let the matrices A, B,

where the dimensions

L = diag {0;}

02022 ** " 20,

.

C, Y, be partitioned compatibly as

—_ All A12 B — Bl
Agp Agy B,

= [C) Cy

= lo %,

of Ay; and X; are r X r. Assuming that o,,; > o,

implies that the reduced order model G,(s) = Cy(sI-A,;)"! B, is asymptotically

stable and thus satisfies the model fidelity requirement that G(s) and G,(s) have

the same number of unstable poles (zero in this case).
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Then the model reduction error criterion is bounded:
E 2 |IG(s) - Gyls)lleo < 2tr[S]
and for r = n-1 the bound is tight, i.e.
1G(s) - Gpals)lle = 20,

The proof follows. Let

$(s) 2 (sI-Ay)?!

A(s) 2 sl-Agp - Ag9(8)A s
B(s) 2 Ay¢(s) By + B,
Cl(s) A Cig(s)Ap+ Cy

then

G(s) - G.(s) = C(sI-A) B - Cy4(s)B,

-1
(sI-Ay) -4y ] {Bl] _ C14(s)B,

= 16 G -Ag  8l-Ap B,

Using the inverse of a block matrix formula [Ref. 34]
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G(s) - G,(s) = [C; Cy

Bs) + B(5)A 15 A(s)Agid(s) 9(s)A107(s)] [B,
A(s)Ag9(s) Als) | |Bs

-

- C1¢(s) B,

C18(s)A 1287 (s)Ag16(s)By + ColA™M(s)Ag4(s) B,

I

+ C18(s)A A7 (s)By + CoA™Y(s)B,

= C(s)A™Y(s)B(s)

by algebra and the definitions of B(s) and C(s).

From the definition of the maximum singular value we have

Fleio) - 6 w)] = A [latiw) - 6,06t - 6,(w)]" |

Substituting for G(jw)- G,(jw) in terms of B(jw), C(jw) and A(jw) from

above, we have
2l6(70) - 6,6 = N [CULA BB (AT () C¥ ()]

Using the fact that X\ ,,[AB] == M,4|BA] for any matrices A, B ‘where the

products are defined [Ref. 37}, we have

7l0(j0) - 6] = NI A GWBUWBT (AT ()G (ju) Cljw)]

Expressions for B(jw)ég(jw) and C'H(jw)é(jw) are obtained by using -the
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partitioned form of the internally balanced grammian equations

AL, + 048 + BB =
ALy, + LAL + BB =
AgeSe + L,A% + B,BI =
ALS + AL+ COfCy =
ALY, + DA+ CfCy, =
ALTy + TiAp + CIC, =

o O o © o ©o

where the first three of the above equations were obtained {rom
AL + AT 4+ BBT =0 and the last three were obtained from

AT + A + CcTo =o0.

An expression for B(jw)B¥(jw) is obtained as follows. By the definition of

B(s), we have

B(jw)BR(ju) = Aynd(jw)B BT ¢¥(jw)AL + Ayd(jw)B,BT
+ B,BY¢H(ju)AL, + B,BY

Substituting for ByBY, BB and B,BJ from the partitioned form of the

grammian equations, we have
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B(jw)BA(jw) = —{A21¢(jw){A1121+ £, A5 )68 (jw) A,
+ Agdliv) {4 St ,AF)
+ {A2121+ zzAsz}d,H( jwAf + Ap¥y + 22A2T2}
= —{Am {¢(jw){Auz:1+ ElAﬂ}fzSH(fw) + $(Jw)E,
+ 567 (ju)] AF
+ {A21¢(jw)A12+ A22} S, + 22{A£¢”(J'w)e4§i + Asz}}

~ after rearranging terms. Substituting jwl - A(jw) for Ag¢(jw)d s + Agp from

the definition of A(s), we have

B(jw)BY(jw) = “{Azld’(jw){AuEl + DA

+ S G) + 67w)T 9T (w)A,

+ liwr-aGo)ls, + Ljwl - AB( jw)]}
where the first term was also further factored. Noting that the first term is zero
by the definition of ¢(s), we have

B(jw)B(jw) = A(jw)Sy + S87(jw)
The expression for C7 ( jcg)é( jw) is obtained analogously and is given by

CHjw)C(iw) = DA(jw) + Af(jw)T,
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These expressions for B(jw)é”(jw) and éH(jw)é’(jw) are then substituted into

the final expression for 7lG(jw) - G,(jw)] above to obtain

7l6(j) - Giw)] = AL [AGW)[AGWIE, + TpaT (0] AT (ju)
2A(0) + AF(ju)E,]]
= NA[E + A7GE,AT ()]

A (ju)TaAju) + Ty)]

after algebraic simplification.

Consider order reduction by one state (i.e. r = n-1) then £, = ¢, and

FlG(jw) - Guy(jw)] = o, VI + AWl + AN (jw)]

where 4 (jw) & AF(jw)A Y (jw) is an “all pass” ie. |A(jw)] =1 Vw. Thus
after rearranging terms and making use of the ‘‘all pass” property of A(jw) we

have

a6 (j) - Gualiul] = 0,4/ el

N A(jw)
= 0, |1+ A(jw)]
By the triangle inequality we have
7[G(j6) - Gouliv)] S 0, [+ 14G0)|| = 20,

This completes the proof of the bound for r = n-1.

The remainder of the proof is achieved by using the order reduction by one

state result and by noting that {A,, By, C;}; obtained by the k* order
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partitioning is internally balanced with balanced gra.mmian,.
¥, = diag {0y, 02; ey Ok}

Let E(s) =A Gry1(8) = Gi(s) for k =1, 2, ..., n—i and let G,(s) 2 G(s).

Then

&[Ek(jw)] < 2044

since Gi(s) is a reduced order model obtained from the internally balanced
realization of Gy, ((s) and the above bound for order reduction by one state

holds.

Noting that

by the definition of E,(s), we have

7[G () - G,(je)

ll
\s}
<1
<.
£

Using the triangle inequality we have

sle(io) - 6wl < 7[E ()]
L s X J

But §[E(jw)] < 204, from above, hence

E[G(jw) G.(jw } 2 2 Opyy = 2tr{22}

k=r

by the definition of the trace operator and ¥,. This completes the proof of the
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bound:

a[G( jw) - G jw)] < 2tr[z:2]

Note that when r = n-1 by the definition of A(s) we have
A(0) = Ay Ajf Ay~ An

(the inverse of A, exists since A, has eigenvalues with strictly negative real

parts). But, from the determinant of block matrices formula [Ref. 34]

_det A

A(O) = det All

Neither det A or det Au‘ is zero since both A and A;; have eigenvalues with
~strictly negative real parts, thus we have

0 < [A(0)] <€ o0
and hence

A(0) = %% =1

Using this in the equality from above for w = 0 we have

= o,|1+ A(0)|

Ql
—
Q
=2
I
!

)

-
=
.

= 20,

~ Thus the bound is tight for order reduction by one state and is in fact achieved

at DC, l.e. w=0.
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Tightness of the Bound For Two Special Cases

For the following two special cases the model reduction error criterion, E
and the bound, 2tr[%,] can be computed with a limiting process and then
compared. The first example has poles and zeros which alternate along the
negative real axis and the bound is tight in this case. The second example has
poles and zeros which alternate along the jw axis and the bound is not tight in

this case.

Alternating Real Poles and Zeros Example

Consider the SISO system with transfer function given by
n
G(s) = Y —E— p>0
k=1

For s real, the derivative of G(s) with respect to s is negative so the poles and

zeros must alternate along the real axis [Ref. 38]. The results in Reference 39

éhow that
r k
lim G,(s) = —b—
p—o k=1 8+ p
. 1
lim £, = =1,
psco 2 2
im ||G(s) - G,(s)lloe = n-r
p—+c0

Applying the bound and the above result for ¥, to this example results in
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Clim ||G(s) - Gi(8)lleo < 2 lim tr{,y) = n-r
p =00 p—oo

Thus the actual error is equal to the bound in this limiting case.

Alternating Imaginary Poles and Zeros Example

Consider the SISO system with transfer function given by

n wi
G(s) = 2 2
F=1 §° 4+ 2¢wi8 + wf
where ¢ > 0 and 0 < wy < wp < - < w,. Note that ¢ > 0 is required such

that the transfer function is asymptotically stable, but
wi

)
1 8%+ Wi

}1“133 G(s) =

0=

has alternating poles and zeros along the ima.ginafy axis (again, proved in Ref.

38). With the further assumption that the w;’'s are sufficiently separated, i.e.

S'max(‘*’i ?wj)

Iwi - "‘)jl

<1l  Yij=1ln , i#j

the results of References 40 and 41 show that

2

r w
lim G,(s) = lim ¥ 2 -
(—0 =0 y oy 8% + 20wi8 + wf

. 1
}.LI% 22 - 4¢ 2(n-r)

Substituting for G,(s) and by the definition of the H_, norm we have
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im [1G(s) ~ G,(s)lleo = [1G(s) ~ lim G,(s)llcq
¢—0 ¢—0

n WI?

= sup [lim -
wo =0yt w,?—w2+ 2¢) wwy

. 1
= lim ~—
¢—0 2¢

Applying the bound and the above result for ¥, to this example results in

lim [1G(s) = G,(6)ll < 2lim trf53,] = % (n-r)

Thus the actual error is a factor of 2(n—r) smaller than the bound in this limiting
case.

The results for these two cases are indicated graphically in Fig. III.6.
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° im(S]
°
° N

o

X

> Ep <K21tr[T;]

o
X
J
o 0 0
S > © > P
N J Re(s]
V
Ew =21r [2?]

Fig. III1.8 Tightness of the Error Bound For Two Special Cases

On the Quest;lon‘ of Optimality

As already alluded to, the Hankel norm technique does provide a reduced
order model for r = n-1 and SISO which does achieve the minimal £ (with
unity weightings). As was also noted this technique does require that the reduced
order model have a finite D term, whereas the balancing technique uses a zero D
term. With this extra degree of freedom it is expected that the E_ resulting
frofn the Hankel technique wéuld be less than or equal to that resulting from the

balancing technique.
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It is of interest to compare these two results for E_: for the Hankel
‘technique [Ref. 14], £, = o, and as proved above for the 5alancing technique,
E. = 20,. Thus the balancing technique yields a solutionv which has an error
twice that of the Hankel technique which has an extra degree of freedom (i.e. the

D term).

In the more general case of any r < n and MIMO but with unity weightings
Glover [Ref. 15] states an algorithm for model reduction based on the Hankel

technique for which

I's,)

E,< trl |

where again it involves a finite D term.

It should also be noted that if the D terms for these techniques are set to
‘zero and the reduced order model is otherwise unchanged, the following bound

holds in this case

E, < 2tr[22]

Thus short of knowing the optimal solution for the unweighted, zero D case, the
internally balanced realization model reduction technique will be regarded as an
attractive technique for performing model reduction. The computations for the
Hankel technique start with a balanced realization, hence, obtaining the reduced

order model from the internally balanced realization is computationally less
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expensive and satisfies the same error bound as the Hankel technique for the

same assumptions on the reduced order model.

Frequency Weighted Balanced Realizations

We have seen that the internally balanced realization is an attractive model
reduction technique for unity weightings. An extension to the balancing

technique to include weightings will now be developed.

This extension is motivated by the geometric Vinterpretation of the internally
balanced realization given in Chapter II. The n* order, minimal, asymptofica.lly
stable system to be balanced with respect to the asymptotically stable input and
output weightings W;(s) and W,(s) satisfies the given state equations |

z = Fz+4 Gu zeR® ueR™
y = Hz yeRP

With reference to the block diagram shown in Fig. IIL.7, ask the following

1 1 v x y n
— wis [ 6 [ st e R owe)

Fig. II1.7 Block Diagram For Frequency Weighted Balanced

Realization Discussion
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two (‘dual) questions. What set of points in the x-state space could be part of the
zero initlal condition response for some weighted input,.~ u(t) sugh that
[Ju(¢)]ls £ 1 and zero initial conditions for the states of the inpu‘t wei’ghting?

vand what set of points in the x-state space as initial conditions could produce a
weighted output, n(¢) such that ||9(t)]]l; < 1 with zero input and zero initial
conditions for the states of the output weighting?

These questions are again answered by appealing to the grammian-ellipsoid
theorem of Chapter II. First assume asymptotically stable state space
realizations for the input and output weightings are given, i;e.

Wi(s) = Hi(sI-F;)? G; + D;
(s) = H‘o(’SI—Fo)_1 Go + Do

For the first question, let F(t) = 171,~ef" G; where

- F GH; - GD;

(7o

K
Il

then the answer is the controllable set, S,.

For the second question, let F(¢) = H, et G, where

o F 0} = [n
Fo = [G,,H Fo] Co = o]
H-o = [DoH Ho]

The grammians corresponding to these questions are given by
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o0 oy

v A& [, BeFgar S Bla
o 7

vy & [, @ F A, g

and thus can also be computed from the cascaded grammians

0

U A f eft GGl et ar
00 ; _
v & [ CFETH, Fa

which can be computed from the Lyapunov equations

FU+ UFf+ GG = o (IL1a)
FIY+ YF, + HTH =0 . (I.1b)

Partition U and Y such that their upper left block is n X n as

77 Ull Ugi Yll Yl"
U = Y = “
[U2l U22 leé Y22
then
U H U—' = Ull
Y 5 -5 == Yu

Thus again, the two sets are in general different ellipsoids with n semi-axes.
The lengths and directions of the weighted controllability ellipsoid semi-axes are "
the square roots of the eigenvalues and eigenvectors of the weighted
controllability grammian U, respectively. The lengths and directions of the

weighted observability ellipsoid semi-axes are the reciprocals of the square roots
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of the eigenvalues and the eigenvectors of the weighted observability grammian,

Y respectively.

The next step is to obtain a realization of the system such that the two |
~ ellipsoid axes are lined up (balanced). To obtain a new realization with this
property a change of variables with a similarity transformation will be used i.e.
r = Tz

A possibly subtle point should be noted here: this is nof the same as
internally balancing the cascaded systems. That is, the n X n grammians, U
and Y are balanced not U and Y which in general will not even have the same

dimensions.

Algorithm For Computing the Frequency Weighted Balanced
Realization

The objective of the balancing algorithm is to obtain a realization
{A, B, C}, of G(s)= H(sI-F)'G = C(sI-A)'B such that U and Y, the
weighted grammians are equal and diagonal. Towards this end, consider how the

original grammians change due to a similarity transformation on the full order

mode] state variables.

Starting with IIl.1a in partitioned form together with U = U,, we have
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U U U ULLT FT o
Uy Uy, + Un Ul |\HTGT FT

i} = 1o ol

Introducing the transformation, T, we have

1 o] [F GH;
0 I

+

T-1 0
o I

+

0

0

which can be rewritten

0

F.B&

|

F;

BD; 00
i [Ge] p7BT 6] = g o]

F}]lo 1]

U UZ{{T-T of {77 of[ FT o
Uy U1 0 1|0 I[|HTGT FT

T—l 0 GD: T_T 0
1} [G,-] [D"TGT G-'T} [ 0 I} = o o

o I

[T 017" of { U Uj
Up Uy

GGD..'] [DiTGT GT] [0 0]

oy

0

T-T o
I

_ [o ol

0 zy;}Jr{p AT
Ugy Uy Uy Up| |HIBT FF

Similarly III.1b can be rewritten

AT cTq]]
o Ff
+

where

¥
Yoo

Hf

'CTDT

sJ""

}:’12} + [ ); ):’1’2] A 0
Yo, Yip Ygl |G.C F,

]wac H,) =

fo 0]
o o]

|
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T-\FT B A& TG

A A

C & HT
[0 Uf] , [rurT g
Upy Upg] = | UnT T Up
[V V| 4 [TTYT TTYy,
Vo Yo = [ YRT Yo

Now the objective is to find T such that

U = 7Ur7T =%

V = TTYyT =%

where Y = diag {0}, 09, ..., 0, }
with oy 2092 - 20,

The similarity transformz;tion, T which accomplishes the objective is the
eigenvector matrix obtained from the eigenvector decomposition
UY = TAT?!
as for the internally balanced case discussed in Chapter II. Noting that
U>o0 > U>0
and
Y>o = Y>>0 |,

the result in Appendix C shows that A > 0, thus letting

o; L /X i=12,..,n
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where A = diag {)\;} accbmplisheg the objective (assuming without loss of
generality that the X;'s have been ordered such that \; > X\, > - >N\,

The frequency weighted balanced realization {A,B,C} is also- unique to
within a change in sign of a state variable when the singular values of the
balanced grammian are distinct (i.e. o; 7 o; for ¢ ¢ j). The proof of this fact
fér the weighted case is identical to that of the internally balan(‘:ed case [Ref. 11]

and hence is omitted.

The algorithm for transforming a given asymptotically stable, minimal
realization {F,G,H}, into a frequency weighted balanced realization, given state
space realizations for the transfer functions of the asymptotically stable input

and output weightings is summarized in Table II1.1.

Thus it has been shown that there exists an essentially unique realization of
the system obtained by a change of variables with a similarity transformation, T,
such that the axes of thé ellipsoids are the same ('balanced) for the new state
variables (say, z where z = T2z). For model reduction this balancing is the key
idea. It provides a basis for the n dimensional x-state space where the direction
of a given basis vector is as contro.llable with the \{Qeighted input as.observable
with the weighted output in a wel'.l.vdeﬁned sense. The lengths of the ellipsoid’s
_semi-axes provide“a scalar measure, 0; of how imf)ortant' a given basis vector

direction is with respect to the weighted controllability and observability.

The reduced order model is then obtained by neglecting the states which are

weakly controllable/observable with the weighted inpﬁt/output. In mathematical
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Table IlI.1 Frequency Weighted Balanced Realization Algorithm

Given: - F, G, H  wih  RMF] <o
F;, G, H:, D; with R, rX['F;]] <0

F,, G, H,, D, with R, fx[Fo]] <0

where G(s) = H(sI-F)'G
Hi(sI-F;Y'G; + D;
Wo(s) = Ho(SI_Fo)—IGo'*'Do_

=
=
[+
e—
I

Solve for U and Y from

F GH,|| U U] U Uil rT ¢
0 F; | |Uy Ugp|™ Uy Uy HIGT FF
GD: | [ ThT AT o o]
o [P orer o) = B8
FT HTGO Y Y12 Y Y12 F 0
0 FI YL Y| T |YE Yy |GH F,
HTDOT r 1 0. 0]
+ HOT ] I.DOH HOJ = '.0 0_]

Solve for eigenvalues and eigenvectors of UY

e, UY = TAT', A = diag{N}, M =X - - >,
Y = diag{o;} o; & VN i=1Ln
A = TIFT B = T@ »

B = HT
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terms this involves partitioning of the frequency weighted balanced realization,

{4,B,C}:

A

Il

All A12 B = Bl
Agy Agp B,

C [Cy  C4

The rth order reduced order model is then given by G,(s) = Cy(sI-A ) 'B,,

where the partitioning was done such that A;;isr X rando,,; < o,.

Stability of the Frequency Weighted Reduced Order Model
Consider the two special cases:
"~ Case 1: W;(s) = Tand W,(s) # [

" Case 2: Wi(s) £ Iand W,(s) = I

By:examining the partitioned form of the grammian equations we have:

 For Case 1: the reduced order model satisfies;

Ay + £,44 + BB = 0

~ For Case 2: the reduced order model satisfies:

CALT, + T AL+ CTCy = 0

-Since the full order model is assumed to be minimal, the balanced grammian

is positive definite i.e.:
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Casel: AL+ ZAT + BBT =0, £>0

Case 2: AT+ ZA+ CcTCc =0, £>0

Now since ¥, is just a leading partition of a positive definite matrix, it too is

positive definite, thus for either case £; > 0.

It is well known, [Ref. 36] that the partitioned grammian equations (i.e.
Lyapunov equations) together with ¥, > 0 implies that Re[\[A]] <0,
furthermore if for

Case 1: (A,;, B;) is controllable then Re[MA]] < 0

Case 2: (A}, C)) is observable then Re[\A]] < 0

Thus for either case, the reduced order mode] is guaranteed to be stable and
| generically (assuming controllability or observability of the reduced order model)

the reduced order model is asymptotically stable.

For the general case of non-unity weightings it is not known whether the
reduced order model will be stable or not. As will be seen in Chapter IV, the

~general case will not be required for the remainder of this thesis anyway.

Frequency Weighted Balanced Realization Error Bound

The manipulations leading to the internally balanced (unity weightings)
realization model reduction error bound were carried out for the frequency
weighted (non-unity weightings) balanced realization. These manipulations are

contained in Appendix D and result in
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Eew £ [IW,(s)[G(s) - Gols)]Wilo)lloo < 21 + a)tr([Ty]

where mnfortunafely a simple bound for the positive quantity, e could not be
found. The quantity, a is related to the H  norm of the transmission from the
weighted input to the neglected states and/or from the neglected states to the
weighted output. The premise of the model reduction is that these transmissions

are small, hence a conjecture is that: a < 1 when £, < 1.

Short of knowing something in closed form about a it is probably best to

obtain the error, E for the model reduction by direction computation.

Model Reduction of Full Order Models With Unstable Poles

As we have seen, both the internally and frequency weighted balanced
realization mode]l reduction techniques require that the full order model be
asymptotically stable. In many cases model reduction is necessary when the full
order model contains poles in the closed right half plane. Some work has been
done in formally extending the internally balancing technique to include unstable
poles [Ref. 42] however these results were deemed to be beyond the scopé of this

thesis. Rather the following scheme was used and is recommended.

Given the transfer function of the full order model, G(s) it is always

possible to perform the decomposition (partial fraction expansion)

G(s) = G,(s)+ G,f(s)
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where G,(s) contains all the asymptotically stable poles of G(s) and G,,(s)

contains all the unstable poles of G(s).

Now since for control design, the reduced order model must have the same

" number of unstable poles as the full order model anyway, the redﬁced order

model can be obtained by reducing the order of only the stable part, G,(s) and
leaving the unstable part as is. That is apply the balancing model reduction
technique to obtain G,,(s), a reduced order model of G,(s), then the reduced

order model, G,(s) of G(s) is given by
Gu(s) = Gils) + Gyls)

The error using this technique will be that due to the order reduction of the

stable part only, which can be seen by

Ey £ |W,(3)[G(s) - G,(3)] Wi(s) llo
= ”u/o(s) [Go(s) + Guo(s)" Gy(s) - Gua(")] va(s) ”oo
= ”Wo(s) [Ga(s) - G,,(S)] VV,(S) ”oo

The unanswered question is: could a smaller £ be obtained by allowing

‘the locations of the unstable poles to change but remain in the closed right half

plane? A partial answer to the question is obvious for poles on the jw axis. In
this case, the reduced order model must have poles at exactly the same locations
on the jw axis as the full order model or £ will not be bounded. ' A complete

answer to the question was not obtained.
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Model Reduction Concluding Remarks
This chapter has developed a unique model reduction technique which is an
attractive solution to the model reduction for conmtrol system design problem.

The key idea is that of frequency dependent weightings. The choice of

weightings will be discussed in the next chapter.
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IV. CHOICE OF MODEL REDUCTION WEIGHTINGS

FOR CONTROL DESIGN

This chapter will develop two approaches for choosing model reduction
weightings. The first approach assumes that it is the model of the.compensator .
for which a reduced order model is desired and the second assumes that it is the
model of the plant for which a reduced order model is desired. Both §f these
approaches result iﬁ a reduced order controller being designed which provides a

stable closed loop system for the full order model of the plant.

Motivation For The Choice of Weightings

The two approaches for designing reduced order controllers are motivated by
the stability robustness theorem of Chapter I which is repeated here for

convenience. Let P(s) be a multivariable transfer function which is stable under

unity feedback as shown in Fig. IV.1 with

Als)

P(S)

Fig.IV.1 Perturbed Closed Loop System
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A(s) = 0. The result is that the perturbed closed loop system remains stable for
all stable perturbations, A(s) which satisfy either

1A + P(s)] |l < 1

or

NI+ Pls)™ As) |l < 1
and are referred to as input or output uncertainty tests respectively. This
theorem is used to derive appropriate weightings for model reduction as part of

control system design.

Compensator Order Reduction

Assume a compensator transfer function, K(s) has been designed for the
transfer function of the system to be controlled, G(s) by some technique to meet
performance and stability robustness specifications of the closed loop system. It
_ is assumed that K (s) has an order iarge enough to warrant reducing its order to
gii’e K,(s), a reducéd order approximation of K(s). Motivated by the stability

robustness theorem, consider the block diagram in Fig. IV.2. For the nominal

K,(S)-K(S)

- K(S) —>5—> &(S) T

Fig.IV.2 Compensator Order Reduction As a Perturbation
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loop (i.e. K,(s) - K(s) = 0) the closed loop system is the result of the full order
design. On the other hand the perturbed system corresponds to the closed loop
system with the reduced order compensator and the full order model (this. is the.
closed loop system for which stability is required). ‘The stability of the closed |
loop sysﬁém with the full order model and the reduced order compensator is

guaranteed by
Ey = ||[W,(s)[K(s) - K.(s)] Wi(s) |lo <1

where to apply the theorem the uncertainty due to the model reduction is

represented arbitrarily at the input or the output:

for output uncertainty representation

W,(s) = [I + G(s)K(s)]! G(s) and Wi(s) = I

for input uncertainty representation

Wi(s) = G(s)[I + K(s)G(s)]' and W,(s) = I

Actually part of the uncertainty can be put in both places but this generality was

not used in this thesis.

The reduced order controller, K,(s) is now determined by finding the
‘reduced order model of K(s) from the frequency weighted balanced realization of
K{s) with the weightings for either the input or output uncertainty

representation. The algorithm for this approach is summarized in Table IV.1.

It can be readily verified that the two non-unity weightings are the same i.e.

G(s)[I + K(s)G(s)] ' = [I + G(s)K(s)]'G(s). Thus the difference in the two



- 111-

Table IV.1 Compensator Order Reduction Algorithm

Design the full order compensator transfer function, K(s) to meet the desigﬁ

objectives' for the plant transfer function, G(s).

Then choose input and output weightings by arbitrarily representing the

model reduction uncertainty at either the input or the output:

Input Uncertainty

Output Uncertainty

Wils) = Go) [+ K(s)G(a) |1

J

= [I+ G(s)K(s) }'IG("’)

o‘. Obtain the frequency weighted reduced order model, K,(s) of K(s) for

W;(s) and W,(s) such that E, < 1. Then the closed loop system will be

guaranteed to be stable with the reduced order compensator K,(s).
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uncertainty representations results in the weighting being u_sed-éither as an input
or én output weighting for model reduction of K(s). A realization of | this.
weighting is given in Table IV.2.
Note that for either case the input and output weighfings have poles whi‘ch
are those of the closed loop system with the full order compensator and the full
~ order model. This closed loop system will always be stable, ilence, the weightin:gs

will always be stable.

Some examples of the application of this approach are contained in Chapter
V. This approach is quite straightforward and most of the remainder of this
chapter will deal with the second approach. Advantages and disadvantages of

the two approaches will be discussed and compared at the end of this chapter.

Plant Order Reduction

With this approach, the error due to the reduced order model of G(s) is
associated with the perturbation term of the stability robustness theorem. The

block diagram shown in Fig. IV.3 results. When the
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Table IV.2 Realization of G(s)[I + K(s)G(s)]! = [I + G(s)K(s)]'G(s)

let G(s) = C(sI-A)'B
and H(s) = H(sI-F)'G

then a realization of
W(s) & Gl)l + K()GW)[' = [+ G)K(s)]! G(s)
is given by
W(s) = Cy(sl-A,)"B,

where
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G(S)-G,(S)

—b?—» K(S) | Gy(S) -

Fig.IV.3 Plant Order Reduction As a Perturbation

perturbation term, G(s) - G,(s) is zero, the block diagram represents the result
of a reduced order compensator design for the reduced order model, G,(s). That
is, assume K,(s) is designed to satisfy the design objectives for the reduced order
model, G,(s). On the other hand, the perturbed system corresponds to the
closed loop system with the reduced order compensator and the full order model

(this is the closed loop system for which stability is required).

The stability of the closed loop system with the full order model and the

reduced order compensator is guaranteed by
Ep = |[W,(s)[G(s) - G,(s)] Wi(s) |loo < 1

where to apply the theorem the uncertainty due to the model reduction is

represented arbitrarily at the input or the output:

for output uncertainty representation
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Wi(s) = K,(s) I + G(s)K,(s) | and W,(s) = I
for input uncértainty representation

Wi(s) = I and W,(s) = [I + K.(s)G,(s)]"" K,(s)

Again, it can be readily verified that the two non-unity weightings are the
same i.e. K, (s)[[ + G,(s)K,(s)] = [I + K,(s)G,(s)]™" K,(s). Thus again,
the difference in the two uncertainty representations results in the weighting
being used either as an input or an output weighting for model reduction of
G(s).

Note that for either case, the input and output weightings have poles which
are those of the closed loop system with the reduced order compensator and the
reduced order model. This closed loop system will always be stable, hence, the

weightings will always be stable.

Unfortunately the weightings for reducing the order of G(s) are not known a
priori. The weightings depend on both the compensator and the reduced order

model which are not known before the model reduction.

Elimination of Compensator Dependence With Advanced Loop Shaping

Advanced loop shaping, which was discussed in Chapter II is an LQG based
design procedure, which for a large class of design problems, allows the designer
to a priori specify a dééired loop shape for one of the input or output loop

transfer functions, K(8)G(s) or G(s)K(s) respectively. That is before actually
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computing K (s), the input or output loop transfer function is known.

Assuming that advanced loop shaping will be used to perform the reduced
order controller design, it is of interest to make use of the a priori known loop

transfer function to determine the a priori unknown model reduction weightings.

Towards this end let

G (), () [ + Go(s)K, (o) |

=
o
]S

and
His) A [+ K.(s)G,(s) | K,(s)G\(s)
then for input uncertainty:

Wo(s) = [I+ K,(s)G,(s) ] K,(s)
= Hy(s) G\(s)

and for output uncertainty:

Wils) = K,(s) I + G,(a)K,(s) I
= G;(s) H,(s)

Note that H;(s) and H,(s) depend only on the loop transféf functions
K,(s) G,(s) and G,(s) K,(s) respectively, which are known a priori (with
advanced loop shaping). Thus either H;(s) or H,(s) will also be known a priori.
Thus for either the input or output uncertainty representation, the debpendence of
the weightings on the reduced order compensator has been eliminated.

Unfortunately the weightings still depend on the reduced order model which is
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not known a priori.

Plant Ordér Reduction For Control System Design Problem Statement

To simplify the further discussion assume the model reduction uncertainty is
represented at the output.. The dual results will be summarized later. Then the

problem can be stated:
Given: G(s), H,(s), r
Find: a reduced order model, G,(s) of G(s)

such that E, = || [G(s) - Gy(s)] Gi*(0)H,(8) lloo < 1

Well the model reduction technique of Chapter IIl addresses problems like
this, however, it assumes that the weightings are known. In this case the

weighting G, }(s) H,(s) depends on the result of the model reduction.

Parameterization of the Solution

Without loss of generality assume an n'* order, output normal minimal
realization, {F, G, H}, of the stable portion, G,(s) of the plant, G(s) is given.

That is
F+4 FT4 HTH = 0

where G,(s).= H(sk—F)'lG and G(s) = G,(s) + G, (s} (G,(s) has poles in
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the open left half plane and G, (s) has poles in the closed right half plane). Such

a realization (or the input normal, dual) can be readily obtained by performing

the steps in Table IV.3.

For the sake of further discussion assume the input weighting, W;(s) which
solves the problem is known. Then let U be the weighted controllability
grammian for the stable portion of the plant, G,(s) and the weighting, W;(s).
This grammian, U can be computed as shown in Table III.1 with a Lyapunov

equation, however, note that by using Parseval's Theorem, U is also given by
oo
U = = [ (jl-F) GW(j)WHjw)GT (-jul-FTY! du
-00

This is introduced only for the sake of a more compact notation than that of '
Table III.1 and computations are probably easier with the Lyapunov equation of

Table ITI.1.

The next step of the model reduction is to balance the weighted
controllability grammian with the identity observability gr:immian (i.ve. F,G,H
is an output normal realization). This balancing is accomplished by finding the

eigenvalue decomposition of U i.e.
U = wWAwT

where A =diag (M}, \{ 2> X > - 27X, >0 NeR YA and WIW =1,
Then the transformation to a frequency weighted balanced realization is obtained

by letting
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Table IV.3

Input and Output Normal Realizations

Assume an arbitrary, minimal, asymptotically stable realization {A,B,C}

is given.

Input Normal

Output Normal

solve for U from

T T

AU+ UA" + BB = 0

perform the eigenvalue decomposition

U= T, A = diag (A} > 0
AjeR Vi and VIV = 1

let T = val/2

then

Fle+F+66 = 0

b3
pn
(D
-
D
-
H

pa o4
L]
(@]
—

solve for Y from

T

A'Y + T

YA+CC = 0

perform the eigenvalue decomposition

v o= vwvT, A = diag {3} > 0
AeR ¥ and VIV = I
let T = wl/?
then
T, . T
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T = WAV
Note

TUUT-T = AV WT WAWT WA/t = pV/2
TTIT = AV WTIWAYA = A2

and thus Y, = diag {\}/?} is the balanced grammian. The frequency weighted

realization {4, B, C} of the stable portion G,(s) of the plant, G(s) is given by

A = TIFT B = T-¢
C = HT

Note that this frequency weighted balanced realization is equivalent to that
which would have been obtained by applying the alternate algorithm for

computing it, given in Table III.1.

Now then assuming the order, r of the reduced order model is given, the

reduced order model is obtained by partitioning
An Al 5 _ 1B
Agy Ag B,

[Cl 02] Where All iS r X r

C

I

The realization of the reduced order model, G,,(8) of the stable portion, G,(s) of

the plant, G(s) is given by
Gy(s) = Cy(sI-Ay) B,

Note that:
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G"(S) = ’CI(SI '_1411)“1 Bl
9 D] ] -1
= HW, B} lor - 572 wiFw,sie | 5 wiG

= HW,(sI - WIFW,)! wlG

T, 0

where W =[W, W, and £ = {0 22] which are both partitioned

compatibly with A, B, C (i.e. W, has r columns and X, is r X r). Thus the
reduced order model, G,,(s) does not depend explicitly on ¥ and hence only the
eigenvectors of U corresponding to the r largest eigenvalues of U are necessary

to compute the rth order reduced order model.

The reduced order model of the plant is given by
Gy(s) = Gu(8) + Gyls)

Since the input weighting from the beginning of this discussion was assumed to

be the correct weighting it must also be given by
s) = Gr-l(s )H,(s)

k The previous, hYpotheti_cal, discussion is summarized schematically in Fig.
IV4 Note that if either U, W, Wy, G,,(s), G,(s) or W;(s) were known the
problem would be éolved. Note also that the diagram also represents functions of
thése quantities onto themselves. For example, take any positive definite, n X n
matrix U, as an input to the upper left hand block in Fig. IV.4 and regard the
output of the lower left hand block, U,, in Fig. IV.4 as the output of the

function, f(U) i.e.



W
w 1 =W, T =w,T
EIGENVALUE DECOMPOSITION ~ Ay =W TFW; By =W, TG
u=wWAWT > we{w Wy 1 ¢ - uw,
A
r
F,G,H

u GIVEN DATA:

F, G, H, Gys(S), HylS), ¢ Ggp(S) = C4(SI-A11)-1B4

Gus(S)
HofS) =
w,(s) G,{S) Y
wiis) =G, HSIH,(S)  Jag—]  6,(5) = G flS) + B (S)

u= 2 Georerewtomfions ot e

27

Figure IV.4 Schematic of the Inter-relationships for Plant Order Reduction Solution

-2l -
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That is f(U) is defined algorithmically as (assuming F, G, H, G,,(s), H,(s) and

r are given):

U= WAWT W = [W, W,
where W, has r columns

A,y = WIFW, B, = WIG (¢, = HW,
Gr(s) C'l(“}l"All)”l Bl + Gua(s)
Wi(s) = G/Y(s)H,(s)

I

V) = 5= [ GoI-FY'GW(jo)Wi(jw) GT(-jul-FT)" du

This series of steps is rather involved but nevertheless does define the function,

/(U).

Statement of the Plant Order Reduction Problem as a Fixed Point

Problem
The plant order reduction problem can now be stated:
 Given: F, G, H, G, (s), H,(s), r
Find: U such that U = f(U) .
Thus the solution to the plant order reduction problem is equivalent to finding

thé: stationary or fixed point of the function f(U) which maps n X n positive

definite matrices onto n X n positive definite matrices.
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Similar functions can be obtained for W, W,, G,.(8), G.(s) or W;(s) as
~ well. The functions involving the transfer functions: G, (s), G,(s) or W;(s) are
not of interest, since specifying a transfer function typically involves specifying

realizations which are not unique. The function involving W is of interest, since

it involves the fewest parameters as unknowns.

The existence and uniqueness of stationary points for these functions is an
open question. These issues were deemed to be beyond the scope of this thesis

and the following solution technique was used successfully.

Successive Approximation Solution

The successive approximation method to obtain the solution of the equation

g = f(z)is to guess an initial z say, z; and let
x,‘+1=f(2',') ‘.=1,2, e
then under appropriate conditions

z = lim z
1 =—+00

The appropriate conditions [Ref. 43] are that the solution exists and that the
function, f(z) is a contraction i.e. the first derivative of the function as a matrix
should have eigenvalues with magnitudes strictly less than wunity in a

neighborhood of the solution.

This technique resulted in satisfactory solutions for all the examples tested
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for this thesis (see Chapter V). However, the procedure did not always converge
to a unique point. In several examples the procedure converged to a limiting set

rather than a limiting point. That is a limit cycle was reached:
fzige) = f(m)  i>>1

where k was the number of elements in the limiting set. In these cases, the value .
of E, was compared for the k elements of the limiting set and the one

corresponding to the smallest £ was taken as an acceptable solution.

Other Solution Techniques

The problem of solving z == f(z) is also theoretically amenable to more
advanced iterative solution procedures involving derivative(s) of f(z). These
techniques were not used, however, since the computation of the gradient of this

function was deemed to be beyond the scope of this thesis.

Obtaining a Realization of G-'(s)H(s)

In order to cérry out the successive approximation solution procedure, it is
ﬁ:écessa.ry to obtain a realization of G~(s)H(s) wh(;re realizations of the square
m X m transfer fﬁnctions, G(s) and H(s) are given. Although a realization for
G!(s) does not exist in general a realization for G~}(s)H(s) often does exist.
The existence dep;ends on the pole-zero excess of both G(s) and H(s). Two

spécial cases were used in this thesis and they will now be discussed.
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- G(s) With First Order Rolloff

Assume {A, B, C} is a state space realization of G(s), i.e.
G(s) = C(sI-A)'B. Then first order rolloff is defined to mean that CB has
full rank. The connection between this and a rolloff slope of negative one is

obtained from the high frequency expansion of G(s):

G(s) = C(sI-A)'B

= Cls(I- - A" B

—crtu+tasLazy B
$ 8 32
1 1 1 s
=Y+ Lcoa+ Loy
8 82 3

~ Thus if CB has full rank then all the singular values of G(jw) will have a slope

of negative one for large w when plotted on a log-log scale versus w.

‘For a realization of G-!(s)H(s) to exist in the full rank CB case, it is
necessar_v'tha;t H{s) have a rolloff slope of negative one or less. This will always

be true if H(s) has a state space triple (as opposed to quadruple) realization, say,

{F, G, H} (i.e. zero feed thru or D term).

It can be verified by direct computation that for any aeR :

W(s) = Gl(s)H(s) = Cy(sI-A4,)"' B, + D,
where G(s) C(sI-A)'B, CB full rank
H(s) H(sI-F)'G

I

I
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A + B(CBY'C(al-A) -B(CB)‘H(al-F) B(CB)'HG
A, 2 B, &
v 0 F - G
¢, 2 lcByic(er-4) ~(CB)y'H(aI-F)] p, & l(cByHe]

Thus {A,, B,, Cy, D,} is a realization of W(s) = G~!(s)H(s). However,
this realization of W(s) is not minimal, in fact, it has m uncontrollable poles at
s = a (these poles had to be introduced artificially to produce the realization for
W(s)). The fact that these poles are uncontrollable can be verified ’by showing
that the left eigenvectors of A, corresponding té the eigenvalues of A, at s = a

are orthogonal to B, [Ref. 34]. These eigenvectors are given by
r _ [~ 4
Vi = lC H f
and it can be verified that VT4, = aVT and VT B, = 0.

Thus a non-minimal realization of W{(s) has been obtained. There are
several ways of eliminating these m uncontrollable poles at 8 = . In fact, a
method using internally balanced realizations for obtaining a minimal realization

was discussed in Chapter II.

The realization of the dual, W(s) = H(s)_G’l(s) and the realization of

W{(s) == G~Y(s)H(s) are summarized in Table IV.4.

G (s) With Second Order Rolloff

* Assume {A,B, C} is a state space realization of G(s), ie.



Table IV.4 Realizations of G'](s)H(s) and HL§)G'](S) For G(s) With First Order Rolloff

G(s) = C(sI-A)"'B with CB full rank, H(s) = H(sI-F)™'G, ocR

- 82l -

A+ B(CB) 1C(al-A)  -B(CB) H(al-F) | B(cB) 'HG
H(s) = 671 (s)H(s) A, B, ©
-1 F G
= C,(sI-A )" B +D_ 3 0 _ —
Note:
via, = c, & (c8) T ¢c(al-A) ~(c8) 'H(aI-F) 1 D, & [(cB) THe]
i |
vig = o : -
W LI W]
A + (aI-A)B(CB)™'C 0 : (a1-A)B(cB)""
- -1 A -
W(s) = H(s)G A 4 B =
(s) = Hs)6(s) W ~(aI-F)6(cB)"'c F W ~(a1-F)6(cB)""
-1 | |
= ¢, (sI-A)7"B 4D ]
_ -1 - . -
Note: C, = [H&(B) 'C Wl b, = [ H6(CB) ]
va = gV
¢V = 0
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G(s) = C(s[-A)'B. Then second order rolloff is defined to mean that CB = 0
but CAB has full rank. Again the connection between this and a rolloff slope of

negative two is obtained from the high frequency expansion of G(s): |

G(s) = %CB+ L caB + - ca?B +
S 8

Thus if CB = 0 and CAB has full rank then all the singular values of G(jw) will
have a slope of negative two for large w when plotted on a log-log scale versus w.

For a realization of G~Y(s)H(s) to exist in the CB = 0 and full rank CAB
case it is necessary that H(s) have a rolloff slope of negative two or less. Thus if
{F, G, H} is a realization of H(s), i.e. H(s) = H(s[-F)™'G, it is necessary that
HG = 0.

. It can be verified by direct computation that for any a ¢ § and a; feR:

W(s) = GNs)H(s) = C,(sI-A,)" B, + D,

where G(s) = C(sI[-A)'B, CB =0, CAB f{ull rank
H(s) = H(sI-F)'G, HG =0

C, £ Clal-A)(BI-A) D, & CAB
H, 2 H(al-F)(BI-F) - D, 2 HFG
A-BD-'C, BD'H BD'D
g 9 g "'k A A
s [ ] s s [0
" [ p- gy ] -
¢, & [p;'c, p/'H,| p, & [p;'D} |
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Thus {A4,, B,, C,, D,} is a realization of W(s) = G"l(s)H(s_).‘ However,
this realization of W(s) is also not minimal, in fact, it .has 2m uncontrollable
poles: m at s = a and m at s = B (these poles had to be introduced artificially
to produce the realization for W(s)). The fact that these poles are uncontrollgble

_can be verified by showing that the left eigenvectors of A, corresponding to the

eigenvalues of 4, at s = a and s = § are orthogonal to B, [Ref. 34]. These

eigenvectors are given by

vr = [GeT-A) -Her-El

and it can be verified that

and
viB, = 0

The realization of the dual, W(s) = H(s)G Y(s) and the realization of
W(s) =G (s)H(s) are summarized in Table IV.5.

Realizations of W(s) = G Ys)H(s) and W(s) = H(s)GY(s) hav;a been
given for two speciai cases which include a large class of transfer functions, G(s).
In those cases not included it is still possible to obtain a realization of W(s) by

modifying the procedure used to obtain the results in Tables IV.4 and 5.



Table IV.5 Realizations .of G’ks)H(s) and H(s)’GJ(-s) For G(s) With Second Order Rolloff

G(s) = C(sI-A)-]B with CB=0, CAB full rank, H(s) = H(sI-F)'1G with HG = 0, o #Be®

I ¢, & clal-A)(g1-A), D_ & caB, W 2 H(aI-F)(BI-F), D, & wrG
W(s) = G '(s)H(s) g g
— - A1, s
A-BDC'€ BDH BD.'D, |
- -1 gg g h g h
= C,(sI-A)TBD |, & B =
’ W W
Note: ' B 0 F _ B G _
T ]-0‘1 O—I ni N S -1, -1,
VA = | | V c, 2 |-p'C D™'H b = {p_'D, |
W W g g g h W g h|
o _ _ _ ,
T ' T p |C(BI-A)  -H(BI-F) =
v'B, = 0 yi 8 '
‘ C(aI-A) -H(aI-F)
& (al-A)(BI-A)B, Dy = cAB, 6, 4 (aI-F)(BI-F), D, = HFG
W(s) = H(s)6™'(s) - _ _ _
= A-8 07 lc 0 0 (BI-A)B  (al-A)B
= C (sI-A )" 'B +D A A 99 A
W W Wow = -l . By = -1 =
Note: S ¢ 6n0; ~(81-F)G -(BI-F)G
AV - 3 _]
A - -
2 ipo0'c H D = |D0D
h g h
L'h'g i wo | Thg |
c v
w
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Obtaining a Stable Weighting When G(s) is Non-minimum Phase

Often the reduced order model, G,(s) resulting from a balanced realization
will be non-minimum phase (typically at high frequency) and in these cases the
weighting, W(s) = G;Y(s)H(s) or W(s) = H(s)G;}(s) will have unstable poles.
This is because the transmission zeros of G,(s) will become poles of W(s). In
this case it will be necessary to modify the transfer function of the weighting to

make it stable.
Consider the definition of the model reduction error criterion, £
Ee & ||W,(s) [Gls) - G(s)] Wilo)l
then by definition of the H , norm
E., = sup7[W,(jw) [6(jw) - G(jw)] Witse)]

then by definition of the maximum singular value

Ee = sup M2 [W,(0) [G(j0) - G ()] Witie) W ju)

(67 (j0) - GE(jw)] Wh(jw)

then since A\, [AB] = Mpu[BA] VA,B



- 133 -

w = sup M2 G ()G, (ju) Wi (jw) WH(jw)

E max || G

(GH(jo-GHjw)| W)W, (i)

Thus E ., depends only on the products W;(jw)WH(jw) and WE(jw) W,(jw) and

not on the weightings by themselves.

Spectral Factorization |

~ Consider the product W(jw)WH(jw) = W(s)WT(—s)I,___]-w when W(s) has
some poles in the open right half pljcme. To facilitate the following disscussion let
W, (s) & W(s)to denote the fact that W, (s) has poles with positive real parts.
It is well known [Ref. 44] that a transfer function W_(s) always exists with poles

in the open left half plane such that
W (s)WT(-s) = W, (s)WI (~s)

This is called spectral factorization in the literature. Since £ depends only on
products like above, the stable spectral factor can always be used in place of the

unstable factor without changing E'.

Computation of the Stable Spectral Factor
It is well known [Refs. 1-4] that the minimum input (i.e. minimum of

4

J = foo uT(t)u(t)dt) control (i.e. v = -K,z) required to stabilize the unstable,
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controllable system # = Az + Bu just reflects the unstable poles of the system
across the imaginary axié. That is the eigenvalues of 4 — BK, are the stable
eigenvalues of A plus thg stable reflections of the unstable eigenvalues of A. The
gain K, is computed by solving forzP > ‘0 such that
ATP + PA -PBBTP = 0
and then K, = BTP.

It is not so well known that these facts can be used to solve the spectral
factorization problem in the multivariable case (it's trivial in the SISO case). Tt
has been shown in Reference 5 and it can be verified by direct computation that

the given transfer function W (s) L8 (C(sI-A)'B can be factored
Wo(s) = W_(s)A(s)

where

W(s) & C(sI-A+ BK,)'B
A(s) & I+ K,.(sI-A)'B
and where
ATP+ PA-PBBTP =0, P >0

and

K, = BTp

[4

It can also be verified that A(s) is a multivariable all pass, i.e.



Thus we have

Wo(s)WI(-s) = WLs)A(s)AT(=s) W (-s)

which accomplishes the objective.

These results have a dual for the other spectral factorization problem

WI (-s)W,(s) = WT(-s)W_(s) and both cases are summarized in Table IV.6.

The results for plant order reduction are summarized in Table IV.7 for both

representations of the model reduction uncertainty.

Advantages and Disadvantages of the Two Approaches

(Compensator vs. Plant Order Reduction)

Compensator order reduction requires that the high order compensator be
designed for the high order plant. This is clearly undesirable and is in fact the
motivation for searching for reduced .order models. The advantage of this
method is that implementing the #Igorithm for compensator order reduction is
straight{orward (i.g. the model reduction weightings are known a priori). Often a
low order approximation to a given compensator is desired and thus this
attractii/e, formal method for obtaining the approximation is a very useful result

of this thesis.
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Table IV.6 Svectral Factorization
W(s) = C(sI-A)7'B

T B T T T
W+(s)w+(-s) = N_(s)w_(—s) W+(-s)w+(s) = W (-s)W_(s)
Solve for P >0 from Solve for P >0 from
ATp + pA - pBB'P = 0 AP+ pAl - pcleP = 0

_ ol B T
let KC = B'P let Kf = PC
then w+(s) = W_(s)A(s) w+(s) = A(s)W_(s)
where where
W_(s) = C(sI-AveK_)'8 W_(s) = C(sI-A+K.C)'B
A(s) = 1+ KC(sI-A)"]B A(s) = T +C(sI-A)7'K,
. . T _ T B

and in either case: A (-s)A(s) = A(s)A (-s) = 1




Table IV.7 Summary of Plant Order Reduction Results

- Preliminary Assumptions

G(s)=H(sI-F)']G + Gus(s) where Re[A\[F]]<0 and G,s(s) has unstable poles

Use first steps of advanced loop Regulator Loop Transfer Function Filter Loop Transfer Function
shaping to obtain {Table II.5) = Li(s) = Lo(s)
" Then the indicated closed loop _ -1 _ : -1
transfer function is known Hi(s) = [+ Li(s)] Li(s) Ho(s) N Lo(s)[I * Lo(s)] '
??gng gsaggzat1on (F,6,H} s input normal: F+F1466T = 0 output normal: F+FT+HTH = 0
EigenVa]ue decomposition of the T T
positive definite input to Y = WAW U = WAW®
f(-)(to be defined)
Select r columns of W correspond- = di = !
ing to the largest eigenvalues A= d1ag{Ai} where = Ay > *2-3 e 2 A W [wl w2] w
Tey v 1T ‘
Compute the reduced order model Gr(s) = Hw](sl-w]Fw]) W6 + Gy (s)
Compute the weightings - Ty =gt
(Tables IV.4,5) Ho(s) = Hi(s)6, (s) Wi(s) = 6 (s)Hy(s)
Spectral Factorization (Table IV.6) wo(s) = A(s)wo_(s) wi(s) = wi_(s)A(s)

Solve for grammian (Table III.1)

£(Y) = é%ll:}-ij—FT)'lHTWS_(jw)wo_(jw)

H(ij-F)-]dm

(ool

Fu) = 2 [ (i) Teu,_(jo)

H?_(jm)GT(-ij-FT)-]dw

Solve for stationary point of f(-)

Y =»f(Y)

[
~h
—~
Sy

v

Use final steps of advanced loop
shaping to obtain (Table II.5)

»Kr(s) such that Kr(s)Gr(s) = Li(s)

Kr(s) such that Gr(s)Kr(s)
= L,(s)
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Plant ofder reduction on the other hand‘ permits the compensator to be
designed for the reduced order plant. This is clearly an advantage and satisfies
the intentions of model reduction for control design. The disadvantage of this
method is that the algorithm for implementing plant order reduction is not. closed
form (i.e. the mode] reduction weightings are not known a priori). In some cases
it i.s not possible and in many cases it is not desirable to désign a compensafor for
the high order plant and a reduced order model is required. This attractive,
formal approach for obtaining this reduced order model is a very useful result 6f

this thesis.

The examples of the next chapter serve to illustrate the effectiveness of both

of these methods.
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V. EXAMPLES

The purpose of this chapter is to illustrate by example both the model
reduction and control design techniques discussed in the previous chapters. The
intent is to use the examples to make specific points. Thus, typically only
segments of the model reduction for control system design theory will appear in a
given example.

The chapter will illustrate three topics: model reduction, compensator order

reduction and plant order reduction. The order of the full order model will vary

from 2nd to 168th order. |

Model Reduction Examples

The purpose of this section is to: verify some statements made in the
section,'‘On th.e Question of Optimality” of Chapter I, illustrate graphically the
effect of the weighting on the model reduction and‘l to compare results for the
balancing model reduction approach to a more classical model. reduction

approach.

“Simplle” H_, Example

The SISO second order transfer function for this éxample is given by

G(s) = _M_L_

(s+ 1)(s+ 3)
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It can be verified that the first order reduced order model of G(s) obtained

with the internally balanced realization technique is given by

1.8320
s + 1.4453

G, a(s) =
and the smallest singular value of the balanced grammian, o, is given by

0o =0.032871. It can also be verified that the error magnitude,

| G(jw) - G, i (jw)]| is bounded

|G(jw) - G, pliw)| < [G0) - G, p(0)] = 2(0.032871) Wl

It can also be verified that the first order reduced order model of G(s)

~ obtained with the Hankel norm technique is given by

1.6514
G = =2l 4 0.032871
() s + 1.3028 T

It is of interest to compute the error for the Hankel technique. It can be

verified that the error is given by

- LD my _(Jo-1)(jw-3)(jw-1.3028)
Gliw) - Graliw) = 0088 e 8)jwt 1.3028)

Note that the error magnitude is independent of frequency! That is
|G(jw) - G, g(jw)] = 0.032871 Yw !

This is the smallest possible error as measured with the H, norm of

G(s) - G,(s) when a D term is allowed [Ref. 14].

Thus this example is consistent with the comments made in the section:
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“On the Question of Optimality” of Chapter III.v That is the reduced order
| model obtained wi_th the Hankel technique (where D terms are required) has one
half the error magnitude of the reduced order model obtained with the internally
balanced realization technique (where D terms are not used). The error bound

[|G(s) -~ G,(s)lle < 2tr[Y,] is also verified for this example.

An Example to Illustrate the Effect of the Weightings

A 46th order, 3 input and 3 output model representing a large space
structure with many resonances was reduced to 28th order using both the
internally balancing and frequency weighted balancing techniques. The transfer

function for this example was of the form

23 ¢ b

G(s) =
( i1 s? + 2,w;8 + w,-z

where w; = wy = 0 (rigid body poles), six modes had damping ratios of ¢ = 0.7
and the rest had damping ratios of ¢ = 0.005. A Bode plot for G(s) (i.e. log
o;[G(jw)] vs. w, i =1, 2, 3) is shown in Fig. V.1.

For the purposes of >illustration the model reduction weightings for the

frequency weighted balancing case were arbitrarily chosen to be given by

and a Bode plot of W(s) is shown in Fig. V.2.
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Bode plots for a 28th order reduced order model, G.(s) using either
balancing technique (weighted or unweighted) look V;ery similar to that for G(s)
and thus are not shown. The only noticeable difference is that the peaké in the

G(s) plot beyond w = 30 do not appear in the plots for G,(s).

Noticeable differences are however apparent in the Bode plots of the error
G(s) - G,(s). These plots are shown in Figs. V.3, 4 for the G,(s) obtainved from
the internally balanced realization and the G,(s) obtained vfrom the frequency
weighted balanced realization respectively. Notice that the singular valules of the
error are relatively flat for the unweighted reduced order model but that they are
not flat for the weighted reduced order model. In fact, the singular values of the

_error are smaller near the peak of the weighting as expected. Note also, that this_
smaller error is obtained at the expense of larger error at higher frequencies

where there is less weighting.

The example clearly shows the effect of the weighting on the. model
réduction. The example also illustrates the effectiveness of the freqﬁency
weighted balanced realization model reduction algorithm in tailoring the error

with respect to frequency.

Comparison of Balancing to Classical Model Reduction

To facilitate the comparison of model reduction via balancing to more
classical model reduction, an example was chosen for which a classical reduced

order model is readily obtained. The example is a 7th order model of a spinning,
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symmetric projectile. The 7 states are: 3 components of velocity, u, v, w, 3
components of angular velocity, p, ¢, r and pitch angle, §. The inputs are 2
thrusters perpendicular to the axis of symmetry and the outputs are pitch rate, ¢
and yaw rate, r. The coupling of the 3 states: fo;‘ward velocity, u, roll rate, p
" and pitch angle, § with the other 4 states is typically very small for such a
projectile and almost always ignored. This leaves a 4th order model. This 4th

order model will be called the classically obtained reduced order model of the 7th

order model.

"~ It is of interest to compare this reduced order model to that obtained by
internally balanciné. The 7th order model was balanced and the 4th order
reduced order model was extracted. This feduced order model was for all
practical intents and purposes identical to that obtained classically. Detailed

data to substantiate this claim are given in Appendix E.

The point here is that balancing is consistent with more classical model

reduction when the model reduction is trivial.

Compensator Order Reduction Examples

The purpose of this section is '. to present some examples of compensator
order reduction. »Three relatively l§w order SISO compensators (less than 10th
order) were designed and then reduc_“ed with the weighting technique discussed in
Chapter IV. This ig;echnique proved to be effective in obtaining satisfactory (i.e.

maintain closed loo.i) stability) reduced order models of these compensators when
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other techniques failed, such as: internally balan¢ing (i.e. unity weightings),
mode truncation and elimination of modes with small.residues. The fact that the
integral squared impulée response error criterion is not a good discriminator for
‘model reduction for control design is' also demonstrated. The compensator order

reduction algorithm is not limited to LQG designs and was used successfully on a

non-LQG design.

Four Disk Example

The system to be controlled is the subject of an experimental research

project at Stanford [Ref. 45]. The system, indicated in Fig. V.5 consists of

-
N
3

E-]

Fig. V.5 Four Disk System

four disks (unity inertia) connected by a flexible wire (unity spring constant) with

a motor for applying torques to the third disk and a sensor for measuring angular

displacement of the first disk.

The transfer function for this system with non-collocated actuators and
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sensors is given by

'[s2+ Qczs+ 22

=)

2
z
G(s) 412 X
7 | 8%+ 20wys+ wi | | 824 2w+ wd
wf wj
52-0.8bs + b?
b'2
8§24 2wys + wi
w§

where the pole and zero data is given in Table V.1.

Table V.1 Four Disk System Pole and Zero Data

w; = 0.765 2 =1
wp = 141 a = 484
wy = 1.85 __ b = 5.65
¢ = 0.02

_ Note that the vibratory modes are assumed to have 2% damping and that the

system is non-minimum phase.

Note that the vibratory modes are assumed to have 2% damping and that the

system is non-minimum phase.

The performance and stability robustness requirements chosen for this

example resulted in the constraints: for the ldop shape shown in Fig. V.6. The
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relationship between these requirements and Fig. V.6 was discussed in

log [G(jeo)K(jeo) | 2

log 0.3 log W

log 0.07

Fig. V.6 Loop Shape Constraints For Four Disk System

Chapter II and Fig. V.6 is just Fig. I1.13 for this example. Note, that the
frequencies for which high gain is required are significantly less than the
magnitude of the non-minimum phase zeros of G(s) (i.e. 0.07 << &) and thus

the non-minimum phase zeros will have little impact on the design.

A compensator was designed using the standard LQG loop shaping
procedure of Chapter II (see Table II.4). This compensator satisfied the low
frequency constraint of Fig. V.6. However, because LQ loop transfer functions
rolloffl with a slope of negative one it could not satisfy the high frequency

constraint. Hence, the compensator was modified by introducing an additional
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lag to satisfy ithis constraint as well. Note that this additional lag does degrade
loop properties in the crossover region due to the attendant phase loss of the lag.
This degradation (45 deg. compared to 60 deg. of phase margin) was deemed

acceptable.

The compensator is given by

(s+ o ] s+ 2qwis + wi

(04 wlz
Ko(s) = 0.0216 X
2 2
z Bi

824 20was+ wé [ | 824 20wys+ wd

wi wj

s+ 1.25 308+ ﬂ22 §24+ 0.483s+ ﬂ32 [8+ B4 ]
B3 p3 By

where the pole and zero data is given in Table V.2. Note that the compensator

Table V.2 Four Disk Compensator Pole and Zero Data

B, = 2.74 | a = 0.0503
ﬂ2 = 2.87
ﬂs = 2.99

B4 = 0.521 (additional lag pole)

essentially inverts the plant as discussed in Chapter II.

This 9th order compensator was reduced to 6th order with the compensator
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order reduction algorithm given in Table IV.1. The result is given by

2

s+ a, 824 8gwy s + wi
Wi

$24+1.78,, 5+ B2,
b,

32"" 35‘(02, s+ w22r

2
Way

[32+ 2cz8+ 22] 82+ 2¢B5s+ B2
z

2 B2

where the pole and zero data is given in Table V.3.

Table V.3 Reduced Order Four Disk Compensator Pole and Zero Data

I

B, = 0.567 = g, a, = 0.0515 = «

l

,@5 = 3.29 Wo, = 1.47 = Wy

Note that the reduced order compensator essentially inverts only the low
frequency behavior of the plant, i.e. the poles with |s| = w;, w, and the zero
with |s| = z. Results in Appendix E show that w;, w, and z must be known to
within 10% to guarantee closed loop stability. The zero at s = ~a, is nearly the
same as the zero of the full order compensator at s = -~ a. The additional lag
pole at s = -3, of the full order compensator is approximated by a 2nd order

—_—

pole with |s| = f,, = 8,
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This compensator is stable (closed loop poles given in Appendix E) with the
full order model éf the plant and satisfies the loop shape constraints of Fig. V.6.
In addition the crossover properties of this compensator are essentially the same
as those of the full order compensator (e.g. the compensator has a phase margin

of 46 deg. compared to 45 deg. for the full order compensator).

It is of interest to note that reduced order models of Kg(s) for any order
obtained with the internally balanced realization of Kg(s) produce an unstable
closed loop system. The same would be true for any unweighted model reduction
method (e.g. residue technique, covariance cost, minimum integral squared
. impulse response error, ...). The eighth order reduced order model of Ky(s)

obtained by using the internally balanced technique is discussed in Appendix E.

It is also of interest to examine the integral squared impulse response error

criterion for this example. This error criterion is defined

E2 _—é V,T_lHe(t)ll2
‘ [Ear
where for this example
H(t) = L7 [Kofs) - Kg(s)] (t)
H(t) = L7 [Ko(s)] (t)
i.e. H,(t) is the impulse reponse of the error and H(¢) is the impulse response of

the full order compensator. The error criterion is arbitrarily normalized to make

it dimensionless and thus have some meaning with respect to unity.
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The value of E, was computed for K¢(s), the 6th order reduced,order model
of Kg(s) obtained from the internally balanced realization of Kg(s). These

results are given in Table V.4. Note that while the reduced order model obtained

Table V.4 Comparison of E, and Closed Loop Stability

Model Reduction Technique E, Closed Loop System Stability

Frequency Weighted Balancing 0.956 stable

Internally Balancing 0.119 unstable

- with the internally balancing technique has an FE, error criterion eight times
smaller than that of the reduced order model obtained with the frequency
weighted balancing technique, it results in an unstable closed loop system,

whereas the weighted reduced order model results in a stable closed loop system.

These results clearly suggest that £, is not a good discriminator for model
reduction for control system design. It is also clear that properly selected
frequency dependent weightings are critical in obtaining a reduced order model

for this example.

This example is somewhat academic because there really isn’t any need to
reduce the order of the compensator. However, the example has served to
illustrate the procedure and make the following points: frequency dependent

weightings are critical and E, is the wrong error criterion.



- 155 -
Robust Four Disk Design

The above design for the four disk system, although satisfactory with respect
to the constraints of Fig. V.6 and the crossover requirements (say, phase margin
| > 45deg.), it is not satisfactory with respect to more string‘ent stability
robustness requirements. For instance, more robustness .would be required if the
disk inertias were significantly uncertain. This in turn would léad to uncertain
natural frequencies w;, ws, wy as well as overall gain. The above design based on
plant inversion would be suspect in this case.

In another study by this author the inertia of the fourth disk was

taken to be uncertain but bounded between one and four. The pole-zero

configurations for these two extremes are shown in Fig. V.7

? im{ 5 L S
X X
INERTIA=4 INERTIA =1
x X
o)
X
o Re[S] X Re[S]
>T( —- >T< >

Fig. V.7 Four Disk System Pole-Zero Configurations

Note that the inertia variation between the extremes causes the lowest frequency
pole and zero to interchange locations in the s plane. Since the system exhibits

such significant variation, a rigid body model was used for the following.
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G(s) = =5

0.

s
The intent of the previous study was to maximize performance

subject to satisfdctory robustness requirements (including robustness with respect

to the uncertain 4th inertia). The loop shape requirements for this problem are

shown in Fig. V.8. Note that the

A
log | GlwK(jw) | - -2
MAXIMIZE
log 0.5 log W

0 L

log o,
log 0.1—4—
-2

Fig. V.8 Four Disk Robust Design Loop Shape Requirements

high frequency constraint of Fig. V.6 was modified. The loop is required to have
more attenuation for frequencies greater than 0.5 compared to Fig. V.6, to satisfy
the uncertain inertia requirement (more details are given in App. E). However,
the loop is permitted to have less attenuation for frequencies just less than 0.5
, cqmpared to»Fig. V.6 to facilitate achieving maximum performance. Satisfactory

crossover is also required, say phase margin should be 45 deg. or more.
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The design technique of the previous study resulted in w, = 0.13 as the
maximum performance subject to the above constrain’és. It is of interest to note
that this performance is even higher than that of the previous design! An 8th

order compensator which achieves this performance is given by

s2+ 14105+ af [s+ Qy I
' 2

of Qg
Kg(s) = 0.0639 X
s+a;p ) [ s+ 1.930ys + o
0’1 022

$24+ 1.93a354 af | | s24 0.52a35 + of

o
af af

2

s34 L4lags+ of | | 824 052048 + of | (s+
of @z

Qy
where the pole and zero data is given in Table V.5. The magnitude of the pole

Table V;5 Four Disk Robust Design Pole and Zero Data

a; = 0.0850 ag == 0.500
oy = 0.403 ay = 200
at s == - a4 was arbitrarily made very large to make the compensator strictly

pf_.oper.

This 8th order compensator was reduced to 5th order with the compensator
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order reduction algorithm given in Table IV.1. The result

s2+ 1.35a,, 8+ af.

is given by

Ky(s) = 0.0638

824 0.75203, s+ 0F,

2
o3,

§%4 0.5520,, s+ a, [s+ oy, ]

(122, Qyy

where the pole and zero data is given in Table V.6.

Table V.6 Reduced Order Four Disk Robust Design Pole and Zero Data

a, = 00872 = a
g, = 0.382 = a
Qgz, = 0531 = Qg

a, = 32.1
e = 0.310

This compensator provides essentially the same closed loop properties as the

full order compensator. That is the loop satisfies the constraints of Fig. V.8 and

hence the closed loop system is stable for any inertia of

the fourth disk between

one and four (a root locus is shown in App. E). In addition, the compensator

provides essentially the same performance and crossover properties as the full

order compensator.

Again this example did not really require model reduction, however, it shows



- 159 -
that the procedure of Table IV.1 can be applied to a compensator designed with
any method, not necessarily LQG designs. Also it demonstrates that
performance and robustness properties are not compromised as a result of the

reduction.

Flexible Beam Example

The system to be controlled is also the subject of an experimental research
project at Stanford. The system, indicated in Fig. V.9 consists of a

flexible beam with a motor for applying torques at one

e

Fig. V.9 Flexible Beam System

end and a sensor for measuring tip displacement at the other end.

The transfer function for an 8th order model of this system with non-

collocated actuators and sensors is given by
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( A
s+ oy ] [3—02
2.98 aq &2

s

824 20w 8+ wi

2
| “

§2-0.72a35+ aof | | 824 0.74048+ o}

o
af of

824 2¢owos+ wl | | 824 2¢3was+ Wi

wj wi

where the pole and zero data is given in Table V.7. Note that this system is also

non-minimum phase.

Table V.7 Flexible Beam System Pole and Zero Data

o = 103 wy = 113 6 = 005
oy = 117 we = 22.0 ¢ = 0.02
ag = 36.1 wy = 52.8 ¢ = 0.02
ay = 37.6

The performance and stability robustness requirements chosen for this

example resulted in the constraints for the loop shape shown in Fig. V.10. Note
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tog | Gljcwo)K(jco) |

log 25 log w

log 2

Fig. V.10 Loop Shape Constraints For Flexible Beam System

that the minimum phase zeros for this problem will seriously degrade the
crossover properties for designs obtained by any technique. This is because of

the proximity of the non-minimum phase zeros to the crossover region.

A compensator was designed using the standard LQG loop shaping
procedure of Chapter I (see Table I.4). An additional lag was appended as in
the LQG design for the four disk system. This compensator satisfied the
constraints of Fig. V.10. The loop crossover properties were seriously degraded
(only 24 deg. of phase margin and 5 dB of gain margin) due to the non-minimum

phase zeros and the -additional compensator lag. The compensator is given by
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[s+ B4 ] s2-2¢,@ 5+ ©f

By 6)12
st+ap) fs+8) | s2+03055+ 53
[ o [ Ba ] B3
824 20008+ QF [ | %4 260055+ 0F
g of

s2+0.7da s+ af | [s+ B4 ) | s+ 14855+ BE
7 Py B8é

Qg

where the pole and zero data is given in Table V.8. Note that the compensator

essentially inverts the

Tablé V.8 Fleiible Beam Compensator Pole and Zero Data

B, = 156 O = 114 = g = 0.057 = g
By = 22.9 Wy = 224 = w, G = 0.009 = g
By = 82.2 . Gy = 528 = w, G = 002 =
B, = 53.4
By = 470.

minimum phase behavior of the plant as discussed in Chapter II.

This 9th order compensator was reduced to 6th order with the compensator

order reduction algorithm given in Table IV.1. The result is gi\}en by
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8+ ﬂlr l 2§lrwlr‘9+wlr
ﬂl” wlr |

Kg(s) = 1.93 X
s34 1.72a4, s+ of, 824 0.127;s+ 7E
2
(112, M

32+ 2§2ra2r8+ &)221'

A2
w2r

824 0.1798 + 74
7

where the pole and zero data is given in Table V.9.

Table V.9

Reduced Order Flexible Beam Compensator Pole and Zero Data

a;, = 866 = o G, = 116 = w, ¢, = 0.08 = ¢
B, = 159 = B gy = 2013 = wy G = 001 =
7 o= 22.3
7, = 41.8

Note that this compensator essentially inverts the low frequency, minimum phase

behavior of the plant, i.e. the poles with |s | = w;, wy and the zero at s = - a,.

This compensator is stable (closed loop poles given in App. E) with the full
order model of the plant and satisfies the loop shape constraints. The crossover
properties of this compensator wete however degraded (only 17 deg of phase

margin and 3 dB of gain margin).
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It is of interest to compare this 6th order compensator to one that would be
obtained by neglecting the third mode (i.e. the plant pole with |s| == w;). This
is referred to as modal truncation and is often done in practice. An LQG design
was carried out for a 6th order plant model obtained by truncating the w; term
of the partial fraction expansion of G(s). The design was carried out suéh that‘
the low frequency constraint of Fig. V.10 was satisfied to facilitate a meaningful
comparison. The closed loop system with this compensator and the full order

model was found to be unstable. Details of this design are given in App. E.

Again this example does not really require model reduction, however, it
shows that the procedure of Table IV.1 can design a reduced order compensator
that is closed loop stable with the full order model when the classical modal
truncation technique fails. This is not meant to be an indictment of the modal
truncation technique. It is a useful technique when used éarefully. For example

it is used successfully in a later example of this chapter.

Plant Order Reduction Examples

The purpose of this section is to present some examples of the plant order
reduction algorithm discussed in Chapter IV (see Table IV.7). A couple simple
SISO (less than 3rd order) examples as well as a MIMO (6th order) example will
be used to demonstrate the successive approximation solution procedure. This
technique was found to be acceptable for these examples. The section concludes

with a significant design/demonstration example, utilizing a 168th order, MIMO
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non-collocated model of a flexible spacecraft. The model reduction and design

techniques of this thesis are shown to be very effective in performing this design.

Simple Low Order Examples

The plant order reduction algorithm was exercised with the ‘“simple H

example” (i.e. the first example of this chapter) with transfer function given by

G(s) = —2s+2)

(s+1)(s+3)
The closed loop transfer function was chosen to be

0.5

H(s) = s + 0.5

An initial weighting was determined from

and the successive approximation algorithm (Table IV.7) converged after five

iterations. The resulting reduced order model is given by

1.78

Gi(s) = T 136

The compensator, K(s) = G;!(s) -O—f- is guaranteed to produce a stable closed

-~

loop system with G(s) since £, == 0.024 < 1.
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Third Order Example
The plant order reduction algorithm was also exercised with the 3rd order

transfer function:

(s+0.8) (s+2)
(s+ 1.5) (s°+ Lds+ 1)

G(s) =

For this example the closed loop transfer function was chosen to be

1
s+ 1

H(s) =

Ay initial weighting was determined from
Wi(s) = G ls) H(s)
and after 3 and 5 iterations the successive approximation algorithm (Table IV.7)

converged for the 2nd and Ist order reduced order models respectively. These

reduced order models are given by

0.822(s+ 1.14)

Go(s) = —
s+ 1.34s + 1.07
: 1.16
G —2i0
1(s) (s+ 0.819)
The compensators, K,(s) = G’;‘(s)-l- r =1, 2 are guaranteed to produce
s

stable closed loop systems with G(s) since £ = 0.0085, 0.249 < 1 for r =1, 2
respectively.
The only significance of these two examples is that the successive

approximation solution procedure was successful.
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C5A Example

The successive approximation solution procedure was also demonstrated
with a more realistic example. The plant transfer function for this example is a
.6th order represeptation of the C5A aircraft wing root bending and torsion
moments ‘measured in in-lbs due to aileron and elevator commands measured in
radians [Ref. 46]. The MIMO system with two inputs and two outputs has the
poles and transmission zeros given in Table V.10. A Bode plot of the singular
values of the 2 X 2 6th order plant transfer function, G(s) is shown in Fig. V.11

and an output normal realization of the transfer function is given in Table V.11.

Fourth Order Reduced Order Model

To obtain a 4th order reduced order model, the following output closed loop

system was used

1

Hols) = s+ 1

Iy

- An initial input weighting was determined from
Wi(s) = GY(s) H,(s)

The successive approximation algorithm converged after 5 iterations. The
resulting 2 X 2 4th order reduced order model poles and transmission zeros are

given in Table V.12. A realization of this reduced
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Table V.10 C5A Poles and Transmission Zeros

§% w = 14, ¢ = 0.6 short period mode

s w = 5.5, ¢ = 0.09 flexible mode
s = -6.0 aileron actuator
s = -7.5

elevator actuator

Transmission Zeros
s% w =81, = 0.69
s% w=11.3, ¢=044

where the notation s2;

s = —w+t jwV 1-¢.

w=w, ¢=¢ means the complex conjugate

_ pair
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Table V.11 C5A Transfer Function Realization

Fr + Gu G(s) = H(sI-F)'G
Hr F+ FT4+ HTH = 0

[ aileron command] __ [Bending moment]
U lelevator command] ¥ = |Torsion moment]

-1.192¢-01 5.806e-01 4.758e+ 00 -1.464e-+ 00
-4.412¢-01 -4.414e-02 -1.014e-01 1.343e+ 00
-5.366e+4 00 5.039e-01 -9.381e-01 -2.174e+ 00
7.003e-01 -8.856e-01 1.491e-01 -1.232e+ 00
-9.315e-01 -3.954e-01 -1.598e-01 -4.563¢-01
2.980e-02 -2.697e-01 2.673e-02 -4.245¢-01

2.060e+ 00 1.640e+ 00
-4.941¢-01 -5.637¢-01
4.632¢+00 3.238¢+ 00
4.452e+ 00 5.533¢+ 00
-6.579¢+ 00 -~2.592¢4 00
-4.385e¢-01 -7.364¢+ 00

-2.577e+ 08 2.985e- 08
1.865e¢+ 08 2.345¢+ 08

e, -2.491e+ 07 -8.587e¢+ 07
T |-1.875¢e+ 07 -2.817e+ 07
-1.139e+ 07 -1.851e+ 07
~-3.218¢+ 06 -2.683e+ 06

[-4.682e-01 -2.971e-01 -1.356e+ 00 -1.538¢+ 00
[-1.386e-01 2.364¢-03 1.932¢-01 -3.131¢-01

3.010e+ 00 2.784¢+ 00]
-2.024¢e+ 00 2.642¢+ 00]
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Table V.12
C5A 4th Order Reduced Order Model Poles and Transmission Zeros

Poles
s, w = 125, ¢ = 0.511 short period mode
2

s w = 5.30, ¢ = 0.0925 flexible mode

Transmission Zeros

s w = 105, ¢ = 0.395

order model is given in Table V.13. Clearly the algorithm has just eliminated

Table V.13 CB5A 4th Order Reduced Order Model Realization

G.(s) = C(sI-A)'B

[-1.003¢-03 1.140e+ 00 2.218¢-01  1.170e-01

A = -3.387¢+ 00 -8.392¢-03 -1.280e+ 00 -3.100e-01
‘ -5.146e+4 00 9.648¢+ 00 -1.320e-01 ~5.580¢-01
-2.574e+4 01 2.352e+ 01 5.203e+ 00 -2.114e+4 00

[2.759e+ 05 -7.092e+ 07
B — -8.805e+ 07 4.467e+ 07
1.195¢+ 08 3.905¢+ 07
1 3.512¢+ 08 7.355¢+ 06

c [-4.413¢e-02 3.680e-02 1.251e-01 6.998¢-01]
[-2.261e-01 -3.854e~01 -5.397¢-01 9.998¢-02]

the actuator dynamics, leaving the short period and flex mode dynamics

essentially unchanged.

Second ‘Order Reduced Order Model

To obtain a 2nd order reduced. order model, the following output closed loop

transfer function was used
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0.1

Hy(s) = s+ 0.1

Iy

An initial input weighting was determined from

* The successive approximation algorithm did not converge to a single point in this
case. Rather,‘ the algorithm resulted in a limit cycle containing three points. A
graphical. representation of the limit cycle is shown in Fig. V.12a, b where the
balanced grammian’s singular values are plotted versus iteration. Clearly after
the 10th iteration, the successive approximation algorithm cycles between three

points.

As discussed in Chapter IV, when this happens, the solution is the reduced
~order model of the limit set corresponding to the minimum error, £ . Recall

that the error rcriterion in this case is defined
Eoo = ”[G(S) - G,.(S)] Gr—l(s)Ho(s)”oo

Bode plots of the maximum singular value of [G(Jw) - G,(jw)] GiYjw) H,(jw)
versus w are shown in Figs. 13a, b, ¢ for the three points of the limit set
respectively. Recall, from the definition of the H, norm that Eoo 1s just the
peak value of these plots. Thus Fig. V.13c¢c corresponds to the reduced order
model which is the solution by definition. Note that E_ > 1 here and thus a
control ‘design based on this reduced order model is not guaranteed to be

successful.
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This reduced order model has no transmission zeros and a 2nd order pair of
poles with magnitude of 0.755 and a damping ratio of 0.728. Thus the 2nd order
reduced order model retains the short period dynamics. A realization of this

reduced order model is given in Table V.14.

Table V.14
C5A 2nd Order Reduced Order Model Realization

G,(s) = C(sI-A)'B

A = [-5.554e-01 1.142¢-011]
= |-2.344¢+ 00 -5.438¢-01)

B = [-1.188e+07 1.026e+ 07]
— |5.073¢+07 1.700¢+ 08)

C = [3.498¢+ 00 1.851e+ 00]
— |-8.419¢-01 2.896¢-01 |

This example has illustrated the use of the plant order reduction algorithm
on a realistic example. The results obtained are consistent with intuitioﬁ. That
is for the 4th order reduced order model, throwing out the actuator dynamics
seems reasonable. | The fact that a compensator designed with the 2nd order
reduced order model is not guaranteed to be successful is also reasonable. The
procedure for dealing with non-convergence of the successive -approximation

solution procedure was also illustrated.

ACOSS EXAMPLE

The purpose of this example was to demonstrate all the steps of the plant
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order reduction and reduced order controller design algorithm on a realistic
example problém where model reduction was necessary. The example chosen was
the ACOSS II large space structure [Ref. 47] The spacecraft, as illustrated in
Fig. V.14, consists of an equipment section, solar panels and an optical structure

to support the optical hardware for the surveillance mission of the satellite.

The control problem is to provide acceptable line of sight errors in the face
of the disturbance environment. Line of sight error is the focal plane z-y
position error of the image of the optical system of this surveillance satellite.
The disturbance environment consists of external disturbances: solar, gravity
gradient, aerodynami(; and thermal and internal disturbances: imperfectly
balanced rotating machinery on board the equipment section (cryogenic coolers

for the mirrors and control moment gyros).

Sensors and Actuators

Three actuators for solving the control problem are located near the center
of the equipment section ‘(Node 44). They are control moment gyros (CMG) and
provide torque inputs about the z, y and z axes. The sensors for solving the
control problem are located on the opticél structure near the focal plane (Node
11). They are rate-integrating gyros and provide angular position measurements
about the z,y and z axes. Note that the sensors and actuators are non-

collocated.
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Full Order Model

A finite element model of the spacecraft was developed at Draper Labs [Ref.

48] and is given by

84 ¢; b:'T

G84(~9) =
o1 8%+ 2qw;s + wh

where w;, b, ¢; and ¢; ¢ = 1,2, ..., 84 are given in Appendix G. A Bode plot
of the singular values of Gg4(sw) is shown in Fig. V.15. That isl G(s) is the
8 X 3 transfer function relating the CMG inputs to the gyro outputs. The first
six of the modes are rigid body modes and thus w; =0 ¢=1,2, ..., 6. Six of
the remaining modes have damping ratios of ¢; = 0.7 (see App. G) and the rest
have damping ratios of ¢; = 0.005. The higher damping ratios reflect the
presence of passive isolators connecting the equipment section to the optical

structure. The lighter damping is just that due to structural damping.

Loop Shape Constraints

The loop shape constraints for this control problem are shown in Fig. V.16

and would apply for either the input or the output loop shapes.
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log o[ Lijw)]

0

log 0.8
log 0.5 | g

Fig. V.16 Loop Shape Constraints

The low frequency portion of the figure reflects the requirements ‘for maintaining
acceptable line of sight error in the presence of the disturbances. The high
frequency constraint is due to sensor noise and high frequency modeling errors.
T‘he section of negative one slope is due to non-minimum phase zeros and will be
.di's‘cussed shor.t]y. The crossover requirements are that the minimum singular
v;xl'ues of the return difference and inverse-return diﬁ"érepce for either the‘input or

the output remain greater than 0.5.

Cphstraints Due To Actuator Dynamics

Actuator dynamics impose additional loop requirements which are expressed

in terms of the input inverse-return difference. This requirement is due to the



- 184 -
fact that the design will be done neglecting the actuator dynamies.
Requireménts for closed loop stability with respect to neglected actuator

dynamics can be generated with the stability robustness theorem of Chapter II.

Consider the block diagram of the actuator dynamics shown in Fig. V.17.

ACTUATOR ACTUATOR
COMMAND ouTPUT
— 1+ A 3t (S) EEmme—

Fig. V.17 Actuator Dynamics

The actuator dynamics are nominally modeled as an identity (ie. A,,(s) =10
nominally) and Aac;(s) accounts for the actual dynamics of the actuator. The
point is that although A,.(s) is not known exactly it can be bounded. The

bound for this problem is given by

E[Aact(jw)] S lact (W)
and the scalar function of frequency, 1, (w) is plotted in Fig. V18. To fix ideas
this representation includes

Guals) = —— 1

G,.(s) a® I
8) =
oct 82+ l.4as + a°
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Fig. V.18 Actuator Uncertainty Bound

and

- ' als+a
Gact(s) = n ( ) o
8“4+ ldas+ a*

where @ > 200 r/sec as potential actuator dynamics.

To guarantee closed loop stability for any of the actuator dynamics included

in the above representation it is necessary that
1+ KGoeolt ] > 1,
2 + } (jw) (JW)J- J > act(w) w

Thus, this additional requirement is imposed on the input inverse-return

difference.

Motivation For Using Methodology of Chapter IV

A compensator was designed using LQG and a model of only the rigid body

portion of the transfer function Ggy(s), i.e. neglecting the flexibility effects. This
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design satisfied the performance imposed high gain constraint of Fig. V.16.
However, the closed loop system was unstable when the ﬁexible' effects were
added. Clearly the design process must take into account the flexible modes.
But, there are 78 2nd order flexible modes to take account of ! Sureiy not all 78
are important for the control design, but which ones of the 78 are critical? The

plant order reduction methodology of Chapter IV addresses this question.

‘Preliminary Model Simplification

The three rigid body modes corresponding to translation are neither
controllable nor observable with the actuators and sensors and thus were
discarded (see App. G). The modes of the model with w; > 100 r/sec and
[16;11 - lle;]] = 0 were also discarded (see App. G). Note that the modes beyond
100 r/sec are sufficiently far beyond the crossover region and thus it should not
~ be necessary to include them in the model. The closed loop stability of the
system in the presence of these discarded modes, will however, have to be
checked, after completing the design. The justification for eliminating the modes
with small residues and those with magnitudes greater than 100 r/sec (roughly
two decades greater than the desired bandwidth) is that this model reduction is

trivial and the formal balancing would eliminate these modes zinyway.

The preliminary simplification resulted in a model with 29 2nd order modes.
The transfer function for this model will be denoted by Gag(s). A Bode plot of

the singular values of Gag(jw) is shown in Fig. V.19. Note that this plot is
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essentially the same as that for Ggy(s) except that peaks are missing for w > 100

r/sec.

Minimum Phase Approximation of Gyg(s)

The 58th order reduced order model, Gy¢(s) has 15 transmission zeros in the
right half plane. The non-minimum phase zeros all have magnitudes greater than
6 r/sec and all but one are very close to the jw axis. It is desirable to
approximate the system with a minimum phase model, G(s). This will satisfy
the technical requirements for using the LQG loop shaping design procedure

discussed in Chapter II.

This is accomplished by factoring

where G(s) is minimum phase and Ps).is a MIMO all pass, ie.
P(s)PT(-s) = PT(-s)P(s) = 1. 'In addition P(s) was chosen such that

lim [P(s)-I] =0. This can always be done and a general procedure for
., 8=—=00

performing this factorization is discussed in Appendix F. This of course,
introduces additional uncertainty into the design process. The stability of the

closed loop system with Gag(s) can however be guaranteed by satisfying

gl + K (j0) G ()] I> 7 [P(ju) - ]
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A Bode plot of the maximum singular value of P(jw)-I is shown in Fig. V.20

This leads to the portion of the mid frequency loop shape constraint with -1
slope. In other wdrds, the loop must be rolled off for frequencies greater than the

magnitude of the smallest non-minimum phase zero.

Stable and Unstable Decomposition of G(s)

The transfer function G(s) can be expanded into stable and unstable (rigid

body poles for this example) parts:

That is

where B! is the full rank 3 X 3 inertia matrix for the center of mass of the
structure about the z,y and 2z axes and G,(s) represents the flexible

characteristics of the satellite.

?reliminary Design Steps

A filter loop .'ti.ransfer function vwas designed using the standard LQG loop
shaping procedure :(Qnd column of Table ‘II.4) to sati.sfy the high gain constraint
of Fig. V.16. A satisfactory high gain cha.racteri-stic was obtained using only the

rigid body dynamics, i.e. G,,(s). In other words, for tLis step of the design, the
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process noise driving the flexible mode states was taken to be zero.

To be more precise let G,,(s) = C(sI-A)™!B then the scalar p was chosen
such that Wf(s) = C(s[-A)"'T satisfied the high gain constraints of Fig. V.16

where ' = pB. Then the filter ricatti equation was solved for P, > 0:
AP, + PpAT + TIT - P cToP, = 0

and the filter gain, K; = Py CT was computed. This resulted in the filter loop
transfer function L;(s) = C(s[-A )‘IK/ and a Bode plot of the singular values
of L;(jw) is shown in Fig. V.21. Note that as discussed in Chapter II this

transfer function also satisfies the high gain loop shape constraint, since

W, (s) = C(sI-A)'T did.’

Plant Order Reduction

The filter loop transfer function was then used to obtain the output closed

loop transfer function

Hy(s) = Ly(s)[I + L,(s)]"
= C(sI-A+ K, CY'K,

An initial input weighting was obtained from

| _ 100 .
Wi(s) = G;l(s)H,(s) Tt 100 where
the lag at s = -100 (actually three lags since W;(s) is a 3 X 3 matrix transfer

function) was needed such that the initial weighting would be proper.
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The successive approximation solution procedure resulted in a satisfactory
32nd order reduced oder ;nodel, G,(s) of the 58th order G(s). The iterations
had not converged after 32 (32nd order and 32 iferations is just' a coincidence)
iterations but the values of £ were changing verynlittle and hence the process
was stopped. The error plot, i.e. &[[C(jw)- G,(]cu)] G/ Yjw) H(jw) ] versus w
is shown in Fig. V.22. Note that E  is less than one and thus a satisfactory
design based on G,(s) is expected. A Bode plot of the singular values of G,(jw)

is shown in Fig. V.23.

Recall that the model reduction algorithm produces a reduced order model,

G, (s) of G,(s) and that G,(s) is obtained from
C,(s) = Guls) + Gyls)
A realization of G,,(s) is given by
Gye(s) = Cl(SI“Alx);l B, |
L--.étting;

A 0 a B
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o
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we have

Final Design Steps

To complete the design of the compensator, K(s) the filter loop transfer
function L;(s) = C(sI-A)! K, is recovered with the remaining steps of Table

11.4. Th.at is the regulator Riccati equation is solved for P, > 0:
ATP, + P.X + ¢CTC-B,BBTP, = o
and the regulator gain is obtained from
K. = B7P,

The scalar ¢ was chosen large enough to satisfy the loop shape constraints of Fig.

V.16.

Finally the compensator transfer function is given by
K(s) = K, (sI-A+BK,+K,;C)! K;

where

A Bode plot of the singular values of K(jw) is shown in Fig. V.24. Note that the
overall shape 1is that of the familiar lead compensator. Note also that

considerable notch filtering is going on (i.e. plant inversion). The sensitivity of
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this plant inversion is an issue. Hence an analysis is presented in Appendix E for
how accurately the resonant frequencies must be known to guarantee closed loop

stability.

Verification of Stability

Well the compensator is certainly closed loop stable with the reduced order
model, G,(s) (it is an LQG design). However the stability with the actual
system Ggyls) m.ust still be ascertained. The stability of the compensator, K(s)
with the 58th order non-minimum phase model, Gyg(s) was verified with an
eigenvalue check (results are tabulated in App. E). Finally the stability of the

compensator, /{(s) with Gg,(s) was verified by checking that

1Goi(s) = Gals)] K(6) I + Gs()K ()] lloo < 1

This is just the stability robustness theorem of Chapter II applied to this
problem. A plot of 7[|Gg4(jw) - Gag(jw)] K(jw)[I + Gog(jw)K(jw)]™!] versus w
is shown in Fig. V.25. Note that its peak value is less than one and thus the

closed loop system is stable with the full order model, Gg,(s).

It remains to verify that the neglected actuator dynamics do not cause an
instability. This can also be verified with the stability robustness theorem of

Chapter II. In this case the following inequality must be satisfied

all + [KG)Gelio) ]| > L) W
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By comparing the plot of gll:l + [K(jw)Ggy(jw))™ ] versus w shown in Fig.i V.30

to the plot of [ ,,(w) shown in Fig. V.18, it can be verified that this condition is

satisfied.

In conclusion with regard to stability, the 32nd order compensator is closed
loop stable with the 168th order full order model Ggy(s) in the presence of the

actuator uncertainty.

Verification of the Other Loop Requirements

Bode plofs for the input loop transfer function, K(s)Gg,(s) and the outpﬁt
loop transfer function, Gg4(s)K(s) are shown in Figs. V.26 and 27 respectively.
By comparing these plots to the constraints of Fig. V.16 it can be seen that the
low and high frequency constraints are satisfied but the mid frequency constraint
with negative one slope is not. Recall that this constraint was imposed for
stability requirements due to the minimum phase approximation used for design.
Since stability was checked and found to be satisfactory (i.e. stable closed loop
system) violation of this constraint is of no concern.

Bode plots of the input return difference, I + K(s)G(s) and the output
return difference I + G(s)K(s) are shown in Figs. V.28 and 29 respectively.
Recall that the loop shape constraints required that the minimum singular valué

of these return differences be greater than 0.5 for all frequencies. It can be seen
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from the plots that while the output return difference satisfies this constraint, the
input return difference is in violation of the constraint for a narrow band of

frequencies near 8 rad/sec.

Similar -remarks apply to the input inverse-return difference,
I+ [K(s)G(s)~-1 and the >output inverse-return diﬁ"‘erence I + [G(s)K(s)]?
with Bode plots shown in Figs. V.30 and 31 respectively.

Note that the input loop properties are not as good as the output loop
properties. This is a consequence of the LQG loop shaping design methodology.
That is the desirable properties of the output loop were designed formally (i.e.
2nd column of Table I1.4 and Table IV.7) but the input loop properties are just a

consequence of the design.

Step Responses

Time histories (see App. E) were computed for step commands and were
found to compare favorably with expected results based on the performance

specification.

Conclusions For ACOSS Design

The plant order reduction and reduced order compensator design
methodology of Chapter IV has been shown to be effective on a realistic, high

order design example.
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VI. CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER RESEARCH

Conclusions

The major conclusion of this thesis is that model reduction and control
design, which have long been treated tacitly as independent design steps, can be

successfully interrelated through a formal design process developed in the thesis.

The formal process combines frequency weighted model reduction with
modern linear quadratic gaussian loop shaping design. The model reduction
approach involves a frequency weighted error between the full and reduced order
model. An important point is that the size of this error is measured by the peak
value of its frequency response. This criterion is important because it enables the
size of the model reduction error and closed loop stability to be related by
- appropriate choice of frequ;ancy weightings.

Internally balanced realizations were investigated and found to have
desirable properties as a model reduction tool. A new theoretical result for
bounding the peak value of the error frequency response was obtained. The
balancing mechanics was extended to include frequency dependent weightings.

Appropriate weightings for control system design were derived.

Several example problems demonstrated the effectiveness of the model
reduction technique for obtaining successful control designs. The examples

illustrate that the frequency weightings and peak value error criterion are critical
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fbr non-trivial model reduction problems. For trivial (i.e. near pole-zero
cancellations, sm_all residues, modes with frequencies far beyond control
bandwidth) model reduction problems any reasonable model reduction method

will give acceptéble results.

Recommendations For Further Research

There are always some open questions left at the end of a research endeavor.
Some of the open questions of this thesis and the author’'s comments regarding

them are:

1. Are reduced order models obtained from frequency weighted balanced
realizations asymptotically stable if both the inbut and output weightings
are non-unity? The author believes that they are stable (possibly a weak
condition on the weightings is required, say no transmission zeros on the jw'

axis).

€

Can a simple error bound for frequency weighted balanced realizations be

proved? The author’s opinion is that this is hopeless.

3. Would a scalar transfer function times an identity used as an input
weighting produce the same reduced order model if it were used as an
output weighting? Intuitively the answer is yes and a proof should be

possible.
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Can the theoretical properties of the plant order reduction fixed point
problem be established (existence and uniqueness of solutions)? The author’s

opinion is that solutions do exist and probably more than one in many cases.

What are the similarities and differences of plant and compensator order
reduction in terms of the resulting control system design? It would be
pleasing if the results were the same but the author’s opinion is that they

won't be the same.

Can the Hankel results be generalized to include the frequency dependent
weightings? Certainly a weighted Hankel model reduction can be done. The

interesting question is: can an error bound be proved?

Can the plant order reduction problem be solved with something other than
the linear quadratic gaussian synthesis procedure? Combining the model
reduction ideas with the recent results in H, optimization is a fruitful area

for several Ph.D. dissertations.

Can better numerical algorithms for solving the model reduction problem be
obtained? Any progress in this area would be of great value to the

practicing control engineer.
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9. Can model reduction weightings be chosen for purposes other than
guaranteeing closed loop stability? Certainly weightings can be chosen for

other purposes e.g. to satisfy performance objectives.
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APPENDIX A

SINGULAR VALUES

The singular values-of a complex, n X m matrix, A are denoted by o,[A]
(or just o; when context permits) and are defined to be the k& largest,
nonnegative square roots of the eigenvalues of A#A (or equivalently AAT) where

k = min (n,m). That is
o;[A] & \/?2[A84] =12 ..,k
and the ordering is such that o; > ;..

The maximum and minimum singular values ofA, denoted by #A] and g[A]

respectively are equivalently given by

4] = max LAZLL o, LlAzll
2

20 | |z]] Hzll=1 ||z]]
glA] = min L4z . {lAz| ]
a0 | |z]| Hell=t |lz]|

If A! exists, the minimum singular value is also equivalently given by

1
7lA™Y

glA] =
By the definition of singular values it is also clear that
FlaA] = |a| F[A]

for any complex scalar, a.

The complex, n X m matrix, A can be decomposed in terms of its singular

values, o; as follows



where

U=[ulu2”' un]
Vo= [vyvp " v,]

(

El ~

L[EZI 0] n<m

and I, = diag {0}, 09, ..., 01 }.

The columns of U and V are right eigenvectors of AA¥ and A% A4,
respectively and are known as the left and right singular vectors of the matrix A.
In addition the matrice§ U and V are unitary, that is

VAU UUH =
VAV = VVE = |

|
b~

Several standard inequalities and theorems involving singular values are

stated in Table A.1.
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Table A.1 Singular Values: Some Inequalities and Theorems

Inequalities:
7lA+ B] < #FA]| + E{B]r
o[AB] < 3[4 7(B]
g[A] -1 < g[I+A] < glA]+ 1
glA] < INA]l < FlA]
Theorems:

glA], g[B] # 0 = g[AB] > g[Ale(B]
GE] < gld] = ¢lA+E]| >0
FlA] <1 = glI+A] > 1-7[A]
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APPENDIX B

STABILITY ROBUSTNESS CONDITIONS

This appendix will give proofs that either of

gll + G(jw)] > FlA(jw)] Vo
gl + GTl(jw)] > FGT(jwA(jw)] Y

ol + Gljw)] > FAGw G jw)] W

implies that there exists an L (s) and an R(s) such that

and

L (s)A(s)R™(s)lleo < 1

IR () + Gl LY (s)lleo < 1

Proof for 1):

gll + G(jw)] > FA(jw)] Voo

1
all + G(jw)

< Fll+ GUwNFaGw)] < 1 Yw
s+ G AWl < 1
< T+ Gs)TAB)le, <1
let  L(s)=AYs) and R(s) =1 QED.

slA(jw)] <1 Yo
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Proof for 2):

gll + G Y(jw)] > F(G N jw)A(jw)] Ve
1 ol
<> 2l + GG FlG(jwA(jw) < 1 Yw
7l + GG FG WA <1 Y
A+ Gl GG <1 Ve
<> oI+ GUwI!Aw)] < 1 Vw

< IlF + G A, <1

v !

let L(s)=A"Ys) and R(s)=1 Q.E.D.

Proof for 3):

gll + G l(jw)] > FA(jw)G Y (jw)] Vo
' A N ly s 1
= FA(jw)G(jw) 2l + Gjo] <l YW
< FAGw)GTGW I+ ¢TGWT <1 W
> FAw) G + GlGw) <1 Ww
< FAGw + GUw <1 Vw

AT + G(s)[ Moo < 1

le¢ L(s)=1 and R(s)= A(s) Q.ED.
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APPENDIXC
DETAILS OF BALANCING THE CONTROLLABILITY AND
OBSERVABILITY GRAMMIANS WITH EIGENVECTORS

OF THEIR PRODUCT

Lemma C1l: Product of Positive Semi-Definite Matrices is Similar to a

Positive Semi-Definite Matrix

Let A and B be positive semi-definite matrices, i.e. A,B > 0. Since A is

positive semi-definite it has the singular value decomposition:

4 = VAVT
where
o=l mso
and
vvT = |
Let

where §; has the same dimensions as A;. Note that:
B>20=>52>20=25,2>20

"Hence §;, has the singular value decomposition:
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Sy = uvzut
where
£, 0
o
U=1[U U
and
vuT = 1
Let
[..7 w1l Su S {Uz}
Xy = U@ x
(X) = (Ve J{s,g Sl | X
Note that:

S§20=> c(X)y>o0 VX
From the singular value decomposition of S, it can be seen that
Ufsy = o
and thus
C(X) = UISpX + XTSLU, + XTSpX
From this expression for C(X) and the fact that C(X) > 0 for any X it can
be seen that UJS,s = 0 or else it would bbe possible to find an X such that C'(X)

was not positive semi-definite. To be precise, say U2TS,2 # 0, then there exists a

z such that § & zTULS ,5TL U,z > 0. Next let v & :TUT§,,5.055U,z, then
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S >0, implies Sps > 0, implies v > 0. Then let

)
e & 17 77# 0
1 =0
Finally let X = -eSLU,, then
TCO(X): = 26 + ey
62
= = 170
-
-26 N=0

In either case z7 C(X)z < 0 and hence if UJS;, 7 0 it is always possible to

choose X such that C(X) is not positive semi-definite. Since C(X) > 0 for YX

it follows that UJS,, = 0.

Let

vV

0 I

A11/2 ‘UlzflUlTSm]
then it can be verified that

T1ABT = [‘

\ll/‘JS“All/Z 0
0 0

This complétes the proof since S;; > 0 and A; > 0 imply that T'ABT > 0.
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Lemma C2: Nonzero Off-Diagonal Elements of Two Sythetric

Matrices Whose Product is Diagonal Correspond to Repeated Elements

of Their Diagonal Product

Let A with elements, ¢;; and B with elements, b;; be nXn symmetric

matrices, i.e. A=AT and B=BT where AB = A = diag {\;}. Then it will be

proved that a;;(X\;=);) = 0 and b;;(\;-X;) = 0 for V/ 1,j.
Firstly note that it is sufficient to prove the result for A since

BA = BTAT = (4B)T = A

Next partition A, B and A compatibly:
An Ap By By [Al 0}
[AxTz Agp Bf; By 0 A,

where A,,, By, A, are r Xr with 1 < r < n but r is otherwise arbitrary. The

equation AB = A is then equivalent to the following four equations:

Ay Bu+ Ap B = A - (1,1)
Ay Bz + Ap By = 0 (1,2)
Al B+ ApBhL =0 (2,1)
Afy By + Ap By = Ay (2,2)

Multiplying the transpose of equation (1,2) by A,, on the left and equation

(2,1) by A, on the right and then subtracting the two equations results in
ApBpAl, = ALBL A,

Using this result to substitute for A%B;;A,, in the equation obtained by
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multiplying the transpose of equation (1,1) by AL on the left results in

Agy Bog AL + AL By AL = Al

{Azz By + Al 312] AL AL A

A AL = AL A

where equation (2,2) was used to substitute for the term in brackets. Examining
the final equation for all » between 1 and n implies that
¢;;(A; ~Xj) = 0 YV ij

Q.E.D.

Lemma C3: Transformation Always Exists Which Diagonalizes Both

Grammians, U and Y

Lemma C1 shows that a transformation, T, always exists such that

TIUYT, = A = diag {\;}. ‘In fact T, is any eigenvector matrix of UY. Let
A B8 TiutiT
and
B & 1fyT,
then
AB = T{WUT{TT{YT,

Noting that A = AT and B = BT, Lemma C2 shows that the elements of A

" and B, a;; and b;; respectively satisfy
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;;(Ni = N;)

I
(=]

and
b,J(A, - k]) = 0
Clearly if \; 2 \; for i 3¢ j then T, is a transformation with satisfies |

Lemma C3. Otherwise without loss of generality, order the elements of A such

that

M= = =M O 1=Np2= """ =Ny >

> >‘k,+ kot et byt 1= 77T = )‘kl+ kot .t Ky
- That is A has k; elements equal to N4y 44 for i=1,2, .., ¢ and
q
n= ¥ k".
i=1
Then Lemma C2 shows that

A block diag {A;}
B = block diag {B;}

A = block diag {)‘kﬁ otk I,,'}
where A; and B; are k; X k;. Then let V; be any eigenvector matrix for 4;, i.e.
Vj_lAj V; = diag {ak.+ kot oot kygt .‘}

The fact that A; can be diagonalized is a consequence of the symmetry of A;

which is a consequence of the symmetry of A. Another consequence of the
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symmetry of A; is that V; can be chosen such that V; = VJ-'T.

Next let
T, = block diag {V;}
then let
A =Ts'AT;T
and B=7TIBT,

Then A = diag {;} and

AB = T3P AT;TTIB T,
= T;! AB T,
= T5' AT,
= A

but since A and A are diagonal B must also be diagonal, i.e. B = diag {8;}. In

conclusion T T, is a transformation which satisfies Lemma C3.

Q.E.D.

Choice of Scaling Such That Controllable and Observable Portions

of Balanced Diagonal Grammains Are Equal

It has been shown in Lemma C3 that there exists a transformation, T such

that
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T-WT-T = diag {a;}
TTYT = diag {3;}
TWWYT = A = diag {)".}
and \; = a;0;; 1=1, 2, ..., N. Without loss of generality assume the \;

have been ordered such that

M Z A 20 > A =Aga= 0 =y =0
Let
[ 1. T/
& o;, B #0
i = B;
\ 1 a; =0 or g =0
and
D = diag {4;}
and
Ty, = TD

then
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7Tyt = D TtuT-TD!
= D! diag {o;} D!

. a;
= diag Tl.?

= block diag {%, I, }

and
TIYT, = DTTYTD
= D diag {;}D
= diag {§;d?}
= block diag {Z, E£,}
where

5 — ding {\/x“ S «i‘;}
L, = diag {au+ D X2 ooy AN ]

Ey = diag {ﬂn+ U Bns2r ﬁN}
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APPENDIX D
CONJECTURE REGARDING E_, BOUND FOR FREQUENCY

WEIGHTED BALANCED REALIZATIONS

The objective of this appendix is to carry out the manipulations leading to
the conjecture about the £ bound for frequency weighted balanced realizations.
The notation and results of Chapter III for the proof of the unweighted error

bound for internally balanced realizations will be used.

From Chapter III we have that
G(s) - G,(s) = C(s)a™(s)B(s)

Let E(s) & W,(s)[G(s) - G,(s)]W;(s) where W,(s) and W,(s) are the spgciﬁed

output and input model reduction weightings. Letting
B,(s) & B(s)W(s)
and
Cw(S) 2 W,(s)C(s)
it can be seen that
E(s) = C,(s)A™Y(s)B,(s)

From the definition of the maximum singular value we have
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7(B(e)] = M2 [Culiwa(0)By(j)BI-j)A T () CT-je)]

= NE [67G0B, (0BT ju)AT (ju) CT-je) Cy (j0)]

The fact that the realization is balanced with respect to the model reduction
weightings: W, (s) and W;(s) is then used to derive expréssions for
B,(jw) BT (—.j.w) and Cl{~jw) C,(jw). This réquires an enormous amount of
algebra which will only be sketched here.

The basic idea is the same as that f;)r the proof of the bound for the
unweighted case given in Chapter IIl. That is the two grammian equations:

+ UAT+ B;Bf =
+ YA, + CIC, = o

A

A
AT

~i
i
=

are partitioned into six equations each, by substituting

_ An Ap BiH; _ B\D;
A; = [Aq Ay BoH; B; = |B,D;
0 o F G,
_ Ay Ap 0 _ :
A, = | Ay Ap O ¢, = LDoOl D,C, Ho}
Gocl GoOZ Fo
-E 0o Ul '
B 1 31 _ Xy, 0 Yy
U=1|0 %, UL Y =[]0 I, Yy
Usy Usp Usg YL YR Yy

The result for B, (s) will be discussed and the result for C,(s) will follow by
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duality. Using the definition of B,(s) and B(s) to expand B,(s) B,Z'(—s) results
in terms involving B;D; DIBT, B\D;DFB], B\H;Uy,, B,D; DTBY, BoH; Uyy and
GGT. Substitutions are made for these six terms using the six equations for the
weighted controllability grammian. |
This results in an expression involving £, and U,y (the X,, Us,, Uss terms
exactly cancel). This final expression and its dual for CI{-s)C,(s) are given by

B,(s)BJ(-s) = A(s)+ E,aT(-s) + Ni(s)
Cl(-8)Cy(s) = AT(-8)Ty + ThA(s) + N,(s)

where
Ni(s) & A(s)UL(-sI-FN'HIBT (-s) + B(s)H;(s[-F;) ' UgAT(-s)
A AT(-s)Yy(sl-F,)G,C(s) + CT(-8)GT(-sI-FIy' YL A(s)

N,(s)
With these expressions for B, (s)BJI(-s) and CI{-3)C,(s) we have

AlB(w)] = M [[Be + AG)EAT(jw) + A (u)Ni(jw)]
1% + AT(-ju)SA(w)

+ AT(ju)N, (ju)]]

If N;(jw) = N,(jw) = 0 then with the same steps as in Chapter III it can be

shown that

#E( jw)] < 2tr[}32] W,
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however, N;(jw) and N, (jw) are not zero in general. A bound for the general

case could not be found but a conjecture is that

Eo = sup FlE(jw)] < 21+ a) tr[Z,)

where the conjecture is that

a<1l when F_ <1
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APPENDIX E

SUBSTANTIATING DATA

Spinning Projectile Data

A seventh order realization of the rigid body dynamics of a spinning

projectile is given by

z = Ar + Bu

where

' = luvwpqr
uT = [F, Fl

¢ ]

<2
Il

The matrices, A, B, C' are tabulated in Table E.1.

The units of the velocity components, u, v, w are measured in terms of the

magnitude of the velocity, V (=1033 ft/sec). That is —u; which is dimensionless

and —‘l- 120 and -% 180 which represent sideslip and angle of attack in degrees
o s

respectively. The units of the components of the angular velocity p, ¢ and r are
measured in degrees/sec, the units of the pitch angle,  are measured in degrees

and the units of F, and F; are measured in pounds (lbs).
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Table E.1

-4.,7%7e-0?
=5 .11 1a-01
=1.204e+000
-3.855e+02
3.6821e+02
1.729e+003
0, 0002+ 0N

0. 000e+00
1,.7010=-002
0, 000e+00
0, N0+ (V)
O, ON0e+ NN
-4.,9584e+0)
L O, 0NN e+ (X)

0. D00+ O

| 0.0n0e+0n

8.317e<-04 2,594,005
~1.554e=-01 -1, 37ha-02
1.410e~02 -1 5612~
3.20Re=)] =} H49a=N]
-4 N3ty H,I00a+N0D
-6.433e+n2 =7 576a+)
O, M00e+00 3, 0N02+00

0, 0N0e+ 00
Y, ONe+(Y)
1.701e-02
0, MNNa+ NN
4,594e+07
0, 900e+00
0, (w)p,u\()—,

0, 0NNe+NNO N 0NNa+0)
0O, ONe+N) O OO0 a+ )

3.000e+(¥) -4,01 e~04
=2,2R8%e-07 9,000a+00
-Q,3n7e-007 9, 085e-M
=-5,487e-03 0, 000e+00}
=1,43e=-n7 =2, 200e-01
=2,000e-N1 1 ,27/8p+02

Q. 00+00 ], 000a+00

3, 000e+00) 1, 000e+00
0, 000a+ 0 O, N0NYa+ (0

A, B, C Matrices For Spinning Projectile

-8,310e-14
=-9.8353e-Ul
2.740e=12
0. 0N0e+00
=1 .2 ]1R3a+ (12
=2 .N00a=n1
0. 900e+00

0, NN+ 00
1., 0008400

~4 ,h1AHe=04
-5.350e~04
1.416e0=02
1), 000e+ N0
-4, 0RDa=-N4
-4 ,062e~-14 I
0,0009+00J

0, 000 +N0)
0, (Ne+ NN

6€2 -
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Fourth order reduced order models were obtained with the internally
balancing technique and the “classical” technique of neglecting the u, p and ¢
states. These two reduced order models are compared below. To facilitate the
comparison of the two reduced order models and the full order model let the
transfer function relating #(s) and y(s) be parameterized as shown in Table E.2.
Then fhe differences between the two reduced order models. can be seen by

examining the data in Table E.3.

Note that all the parameters differ by less than a few percentage for the two.
reduced order models. The only exception is the precession damping for which
the internally balanced reduced order model is in closer agreement with the full
order model than the classical reduced oder model. The authors opinion is that

for all practical intents and purposes the two reduced order models are identical.

Four Disk Example

Sensitivity With Respect To Knowledge of w;, w, and z

The fact that the éompensator, Kg(s) involves pole-zero caﬁcellation near
the jw axis is a concern. The poles of G(s) with |s| = w,, ws and the zero of
G(s) with |s| = z are cancelled. Hence, an analysis was performed to assess
the stability of the closed loop system in the face of simultaneous =+ 10%
uncertainty in these three critical parameters, w;, w, and z (sensitivity to other
parameters would be less severe). The analysis was performed assuming that for

any uncertainty the DC gain of G(s) was known exactly.



915(5) (5%a;,) (5-by,) (s%¢y )

i - 2
9o ($I{s7+20,5uy,5%w5, )

Table E.2 Parameterization of Spinning Projectile Transfer Function
0y (s) (42 qup sl
1
G(s) = :
2 2,,.2 2
(s +2cpwps+mp)(s +2cnwns+wn)
'92](5)(S+32])(S‘b2])(S+C2])

For Full Order Model:

let d(s) = (s+5.2e-3)[52+5.8e-25+1.1e-3]

then g]](s) = K]]s(s+4.5e—3)(s—2.3e-2)/d(s)

912(5) = K]Zs(s+5.5e-3)(s+4.5e—2)/d(s)

92](5) = KZ](s+5.2e-3)(52+6.1e-25+1.1e—3)/d(s)

922(5) K22(s+5.6e-3)(s-6.1e-2)(s+0.1)/d(s)

For Reduced Order Model:

il

gij(s) = Kij i,j 1,2

- lve -
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Table E.3 Comparison of Full Order Model, Internally
Balanced and "Classical” Reduced Order Models

Description | Parameter | Full Order| Internally | Classical % Ni{fference {n
Model 3alanced Reuced Order Mocels

precession {p 0.0045631 0,0045A31 0.0056017 -22,7A
poles wp 5.1780 5.1780 5.1860 -,15
nutation ¢{n 0,01n27824 n,NN27824 N,M27816 n,n3
poles wn 122,44 122,46 122.A5 0.0t

Fy to g K11 5R50,2 5859 ,2 5859,2 0
numerator {11 n,77813 n,7n741 n, 71171 -M,41
wll 0.32345 J.2AA11 0,24782 -, A4

) Ki2 45,342 T 45,A4) 45,842 0
. Fz to q at2 0,332 0.37864 0,39244 -3.44
numerator b12 24,952 24,955 24,082 -, 11
cl2 25.1319 25,322 25,344 -0,09

K21 45,242 45”40 45,842 0
Fy tor a2 ", 39520 n,39835 n,32483 0,98

numarator b21 25,109 25,006 25,1709 0
c21 25,40 25,359 25,383 -0,04

Fz tor K22 5859,5 5R59.6 5859,6 0
numearator {22 49510 n,71724 n,71056 2.3
w?2 3.34375 0.328%8 0.,34772 -5,33

MIMO .
Transmis=- 4 1, 098064 1, 00054 n,00017 n,n4
sion zeros w 2,3930° 0,33759 0,39282 -1,15%

Notet The ¥ f ffarence was comntted hy subtractina the 2lassical paramater
from the {ntarqally halanced ocarameter, ~ividina "y the internally
balanced narameter and then multiolyina by 101,
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Consider the multiplicative perturbation implied by the uncertainty in wy, wq

and 2

Gl(s; wy. wa. 2) = G(s; Wy, Wo, £)
Als) = AT '

‘ G(s; wy, Wa, 2)

(. . , 2 9 9
I A e 8§+ 2¢28 4 2°
= — == " - =
2 W W §° 4+ 2¢is + 2

. .2 9 . )

$° 4+ 2¢ns + wy §° 4+ 2¢wes + W

-1
: 2 2 9
52 4 28 + wi|]s®+ 2wes + wi

where G/(s; wj. wo, 2) represents a possible true system and G(s; o 2y 2)
represents the nominal system. Note that the other poles and zeros cancel out of

the expression for A(s). Also note that A(0) = 0.

Let /() be a bound for the magnitude of the perturbation, i.e.

) = max | A(jw)]

09< < <11
4 _
(] =w) Wyt

The bound, {{w) is plotted versus w in Fig. E.I.

The stability robustness theorem of Chapter II (see also App. B) guarantees

stability of the closed loop system in the presence of the uncertainty if
-1
1+ [G(jw: 1. G, 3) sz)] > I(w) Yo

This condition can be seen to be satisfied by examining Fig. E.1 where the left

-and right hand sides of the inequality are plotted versus w. Thus the closed loop
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system is stable in the face of simultaneous + 10% uncertainty in w;, wy and 2.

Closed Loop Poles

The closed loop poles for the control system with G(s) and Kg(s) are given
in Table E.4. Note that all have negative real parts which is guaranteed by the
fact that E, < 0.2 (i.e. less than unity) for the weighted model reduction of

K(s) to Kg(s).

Results With Internally Balanced Model Reduction

An eighth order reduced order model of K(s) was found using unity

weighting or the internally balanced method. This compensator produces an
unstable system with closed loop poles shown in Table E.5.. The fact that unity
weighting produced an unstable closed loop system is easily seen by comparing
the Bode gain plots of the three compensators K(s) or Kg(s), Kg(s) and Ig(s)
shown in Fig. E.2. While Kg(s) (unity weighting) captures the high gain portion
of K(s) nicely it sacrifices low frequency model fidelity, whereas, K4(s) (non-
unity weighting) with only six poles matches the low frequency behavior and

produces a stable closed loop system.

Robust Four Disk Design

For zero damping the transfer function of the four disk system as a function
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Table E.4 Four Disk System
Closed Loop Poles for G(s) and K6(s)

(Non-unity model reduction weighting)

real imaginary frequency damping
-7,30742-02 6,4415e-02 9,7412e=~02 7.501he=0}
=7.3074e~02 -6.4415e=02 Q,7412e=-02 7.5016e-M1
-4.,0331e-01 1,8A81e=01 4,4447e-01 9,0739e-01
-4.,N2331e=01 =-1.8681a-01 4,4447e~N1 Q,1"73Ge-M
-1.4689e-02 T7,5457e-01 7.A471e=01 1,920908-02
-1.468%e-02 =7.6457e-01 7.6471e=-01 1.9209e=02
=2.0000e-02 Q,9980e-01 1,N000e+N0 2,0000e-0>
=2.0000e~-02 -9,098MNa=-N1 1.0000+¥)Y 2, 0NN a=ND
=2.9580e~02  1.4082e+00 1,40850+00 2.100]e-=02
=2.9580e-02 ~1.,4082e+N00 [,4985e+00 2.100]1e=0?
-4.,24712=02 1.8470e+0N0) 1,8475e+0) 2 ,2088a=12
=4.2471e=-02 -1.3470e+00 1,8475-+)0 2.29R8e-0?
=6.5126e0-02 3,2895a+0  3,2901e~+(¥) 1,Q97Q4e-(12
-H.512he=02 =3,2805e+00 3,7901-+00 1.9794e-02

Table E.5 Four Disk System
Closed Loop Poles for G(s) and Kg(s)

(Unity model reduction weighting)

real imaginary frequency damping

1.4037e=02 1.6785e-01 1.,6843e-N1 -8,3338e-N2

1.4037e~02 -1,6A785e-01 1| ,6A8432e-01 -8,3338¢-02
-1.2746e-02 7,6926e-01 7,5937e-01 1,6567e-02
=-1.,2746e-02 ~7.4926e=01 T7.hA937e=01 |.h5A7e~-0>
=-1.9501e=02 1.0012e+00 1,0014e+0)) 1,94740-012
-1.9501e=02 =1,0012ae+00) 1 ,0014e+00 1,9474e-02
~2,7707e=02 1.4088e+00 1.4091e+00 1[|.9AA3e-02
=2.,.7707e=nN2 -1,4088e+00 1,4N091e+0) 1 ,9663,-012
~3.6872e=02 1.,349A2+00 1.8500e+00 1.9932e-02
-3.6872e-02 =1,8496e+00 1,85Me+) 1,9932a-02 -
-1.4981e+00 2.1873e+00 2,6512e+00 5,6508e0=-01
~1,4981e+0) =2,1873e+0X) 2,6512e+0) 5 ,65082~-01
=5,0795e=01 2,9355e+00) 2,0953 -+N) 1,096Ne=11
-5.9795e-01 =2.,9355e+00 2.9958e+00 ‘|.9960e-0I
=3.N348 e+0()° 1,9088e+00)  3,636Ne+00) 8,5115e-M
=3.09482+00 ~t.9086e+00 3,A350e+70 8.5115e~0l
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of the inertia of the fourth disk is given by

GO[S'—I‘] _ (s2+ ) .
_s"’{s“+ (5+ P)st + (6+497)s% + (1+ 3“/2)]

where —l;- is the inertia of the fourth disk. A partial fraction expansion of

"

Gols: -%) is given by
. ) '7" .

o 1 233 R;
o 5| < 2 . 9
+ i=0 8% + w?‘
where the residues, R; +=20,1,2,3 and w; ¢=1,2, 3 are functions of the
inertia of the fourth disk and wy = 0. The constant damping ratio ¢ = 0.02 was

introduced to produce the transfer function

c 1 233 R,
s; —=| =
i =0 8%+ 2qw;s + w?

Consider the multiplicative perturbation given by

G;{s; %] - G(s)
v

G(s)

Afs) =

where the nominal model, G(s) was chosen to be given by

os) = &2

8

(-]

Let /{w) be a bound for the magnitude of the perturbation, i.e.
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@) = max  |A(jw)]

1
1€—<14
—-71—

This bound is plotted versus w in Fig. E.3 and resulted in the high frequency

constraint of Fig. V.8.

The stability robustness theorem of Chapter II (see also App. B) guarantees
stability of the closed loop syétem in the presence of the uncertain but bounded

inertia of the fourth disk if
1+ [GHw)Ks(Fw)] ] > Hw) Y

where Kj(s) is the compensator of Chapter V. This condition can be seen to be
satisfied by examining Fig. E.3 where the left and right hand sides of the

inequality are plotted versus w.

It may also be of interest to examine the closed loop pole locations as a

function of the inertia of the fourth disk. A root locus plot is shown in Fig. E.4

L

72

by the stability robustness theorem. Also note that a closed loop pole at

for1 < < 4. Note that all the poles are in the left half plane as guaranteed

8 = - a4, = -32.1 is not shown.

Flexible Beam Example
Closed Loop Poles

The closed loop poles for the control system with G(s) and K4(s) are given

in Table E.6." Note that all have negative real parts.
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Table E.6 Flexible Beam Closed Loop Poles for G(s) and K6(s)
(Non-unity model reduction weighting)

HBLUNVSSO0OLDNOLIE WO

Sl wd e ol

real imaginary frequency damping
-2.8533e+00 0,0000e+00 2.8533e+00 1.0000e+00
-9.9263e~0)1 4.,6585e+00) .4,7631e+00) 2.,0840e~01
~0.9263e~-01 =4,A585e+00 4,7h31e+0N0 2,0840e-01
=6.3522e+00 - 0.0000e+00) 5,3522e+00 1, 0000+
-1.,1824e+00 1,.1811e+01 1.1870e+0Q1 Q,9A10e=02
~1.1824e+00 ~-1,1811e+01 1,1870e+01 9,9610e~02
-9,8649e=-02 2,1721e+01 2,1721e+01 4,5417e~03
-0.86490<02 ~2,1721e+01 2,1721e+01 4,541 7e-03
-2.9323e+0) 2,1774e+01 2,1971e+M  1,3347e~-M
-2.,9323e+00 -2,1774e+0]1 2,1971e+01 1,3347e~-01
-1.1634e+00)  4,2174e+01 4,219Ne+N1 2.7575e~02
-} .1634e+00 =4,2174e+01 4,2190e+01 2,7575e-00
-1.9634e+00  5,2381e+01 5,2417e+01 .3,7458e-02
-1.9634e+00 -5,2381e+001 5,2417e+n1  3,7458e~02

Table E.7 Flexible Beam Closed Loop Poles for G(s) and Kmt(s)

(LQG design based on reduced order model of G(s)
obtained with mode truncation)

VOO A W =

real imaginary frequency

~3.4733e+00 2,4961e+000 4,2772e+00
~-3.4733e+00 =2,4961e+00 4.,2772e+00
=1.0143e+01 3,4765e+00 1,0722e+01
-1.,01432+01 =3,4765-+001 1 ,.0722 s+
~2.1691e+00 1.1K28e+01 1,1829e+0I
~2,169Te+00) =1,1628,+01 1,1829r+N1
=-7.3621e<01 2,2054e+01 2,20A6e+01
-7.3621e=01 =2,2084e+01 2,20A6e+01
-4,0673e+00  3.A747e+01 3,A971e+0l
-4.,1673e+00) =3,5747e+01 3.6971e+01

1.5150e+01 6.,0890e+01 6,27460+01

1.5150e+01 =6,0890e+0] H.274Ae+01
=2.N670e+0)2 2,0346e+02 2,9003a+()2
-2.0670e+02 =2,034Ke+02 2.,9003e+02

cdamping
8.1206e-01
9,.45908e~-01
9,4508 e~-M
1 .8338e~01
1.8338e-M
3.33K4e-02
3.3364e~02
11001 e=0l
1.1001e=01
-2 ,4145e-M
=2.4145e-01
7.1267e~-M
T.1267e~-01
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" Results With Modal Truncation

Another sixth order compensator, K,,(s) was obtained by truncating the
second order mode with |s| = ws in the partial fraction expansion of G(s) and
doing a LQG loop shaping design with this sixth order reduced order model.
:This compensator produces an unstable system with closed loop poles shown in
~Table E.7. The differences between the two designs involving Kg(s) and K,,,(s)
are readily seen from the loop gain plots for the two designs shown in Fig. E.5.
* While both loops have the same low frequency performance characteristics, the
peak at s = jws is less than one for Kg(s) and greater than ten for K,,(s).

Note that the unstable pole has a magnitude of approximately ws.

ACOSS Example

Sensitivity With Respect To Knowledge of Resonant Frequencies

The transmission zeros of the compensator K(s) are given in Table E.8.
Comparing these zeros with the poles of Ggys) it can be seen that the
compensation involves pole-zero cancellation near the jw axis which is a concern.
An analysis was performed to assess the stability of the closed loop system in the
face of simultaneous uncertainty in the critical resonant frequencies given in
Table E.9 (sensitivity to other resonant frequencies would be less severe). The
analysis was performed assuming that for any uncertainty the DC gain of Ggy(s)

was known exactly.
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 Table E.8 Transmission Zeros of K(s)

real imaginary frequency  damping
-2.9816e=02 8,8006e-02 9,3N05a=N2 3,205%9e-011
-2.981he=02 -8,.,8006e-02 9,3005a-=02 3.2059e-=01
=~5.5829e=01 0.0000a+0)  5,582Q0a~01 1, N000—+)
-5,9824e-01 0.0000e+00 5,9824e-01 1 . 0000e+00
=8,5396e~01  0.N00Ne+0ON  8.5305e=01 1,0000e+00N
~5.8649e-01 7,955he~01 Q,8838e-01 5.9339e~01
=-5.86409e=-01 «7,9556e-N1 Q,8838e~01 5,9339a~N1
—-1.2038e=02 =2.0914e+00 2,0915e+00 5,7559e-03"
=1.2038e~002 2.N914e+00 2,M915e+00) 5,7559a-n3
=4,4255e~0)2 ~7,7002e+00) 7,7004a+0) 5 ,7471e-073
-4,42552-02 7,7002e+00 7.7004e+00 5,7471e-03
~3.7544e-02 -8,1589e+0) 8,159Na+)Y) 4 _,AN16e-03
=-3.7544e-02 8,1580e+00 B8.1590=+00 4,6016e-03
-Q.0N18e=N2 1.N757e+01 1,1N/57e+N1 8,3680e=Nn3
-9.0018e=02 ~1,0757e+01 |.0757e+31 8,3A80e~03
-6,8857e=02 1.4851e+001 1.,4852e+MN1 4 ,6363e-03
~-6H.8857e~02 ~1.4851e+01 1,4852-+01 4.63A3e-03
-1.N0316e=01 «1.8770e+001 1,83770~+N1  5,4960e-03
-1.031/e-01 1,8770e+01 1.3770e+01 5,4960e-03
=-1.03408=01 =1,0954e+0)1 1,9055a+MN1 5,1816a=-n3
-1.0340e,=01 1,9954e+N1 1,9955a+N1 5,1318e~03
-1.0712e=01 2,1283e+01 2.12832+01 5,0329e-03
=-1.07128=01 «2,1283e+01 2,12832+01 .- 5,N329e-n3
-1.2568e=01 5,3099e+01 5,3009a+01 2,3AARa=03
-1.2568e~01 =5,3009:+01 5,3N9%a+n1 2,3A68e-03
=3.4154e~-01 =7,1233e+01 7.1234e+01 4,7946e-03
-3.4154e=01  7,1233e+01  7,1234e+N01 4,79460-03
-4,1136e=04 .8.5839e+01 8.,5830e+d1 4,7922e,=04
-4,1136e-04 =8,5839e+01 8,5839e+N1 4,79222-06
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Table E.9 Critical Resonant Frequencies and Their Uncertainty

Mode Wi % Uncertainty
10 2.09 | 0.5
14 | 7.69 0.2
15 8.17 0.2
17 | 10.8 | 1.0
21 149 2.0
22 188 2.0
23 20.0 2.0
24 21.3 ' 2.0
29 | 52.5 20.
30 | 539 20.
33 713 20.
36 85.3 | 20.
37 86.2 20




Recall that Ggy(s) can be written

R 84 ¢ b, w?

LI} 1
G84(8;Q) = —5 + 9 2 9
s i=7 WS 874 2¢wis 4+ w/

w |

where (1 denotes the actual values of the thirteen resonant frequencies given in

Table E.9. Let the nominal system be given by

~ 2

. R 8 ¢ bi Wy
G84(‘9;Q) = 75 + Z 2 9 N -2
s~ =7 WS o874 2qws + wi

where (1 denotes the nominal values of the thirteen resonant frequencies given in

Table E.9. Note that in general w; 5% @, for w;eQ and w; = W, for w,¢N:

Consider the additive perturbation implied by the uncertainty in w;e()

Als) = Ggys;0) - Gayls;0)
¢; b
-y

Let W (82+ 2{"(4)"8 + w?)(82+ 25.{(:-)1'3’*' (/:)|2)

2 .92 N ~
s[(w,—‘—w,-)s + ng'wiwi(wi"wi)]

Note that the resonant frequencies not included in 2 do not appear in the

expression for A(s). Also note that A(0) == 0.

The stability robustness theorem of Chapter II guarantees stability of the

closed loop system in the presence of the uncertainty if

max -[ErA(juJ)K(jw)r[ + G (juJ‘Q)‘I‘\"("w)]‘l]1 <1 Yw
aqr | L Y R I ]

where {1 represents any Q such that
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Wy
l-p; < — <1+ p w; €l

Wy

and the percentage uncertainties, 100 p; are given in Table E.9. This condition
can be seen to be satisfied by examining Fig. E.6 where the left hand side is
plotted versus w and can be seen to be less than unity for any frequency. Thus
the closed loop system is stable in the face of simultaneous percent uncertainty

given in Table E.9 for the thirteen critical resonant frequencies.

Closed Loop Poles

The closed loop poles for the control system with Gqog(s) and K(s) are given

in Table E.10. Note that all have negative real parts.

Step Responses

Consider the closed loop system shown in Fig. E.7 where y is 2 3 X 1 vector

containing

y
Ye ' Ks) SEm— ng(s) »-

Fig. E.7 ACOSS Closed Loop System
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Table E.10 ACOSS Closed Loop Poles for ng(s) and K(s)

real imaginary frequency damping
-2.9816e~02 8.83100e-02 Q,3009e-02 3.2058e-01
-2.9816e~-02 =8.8100e~02 G,3n009e~02 3,2N58e-01
-6.1360e~01 3,0984e~-01 6.8739e=01 8.92A5e-01
=6.1360e=-01 -3,N984e~-01 6,8739e-N1 8.9265e-N1
-4,0492e-01 7.9540e-01 8.9254e-01 4.53487e=0]1
-4.,0402e-01 =7,9540e-01 8,9254e-N1 4,5357e-1
-6.4070e=01 6/,9728e=01 9,4694e-01 6,.7A60e-0]
-6.,4070e~01 -=6,9728e-01 Q,4694e-01 6,7660e-01
-0.3599e~-01 6.,1517e~01 1,1201+00 8,3567e~01
-3,3599e-01 -6,1517e~01 1.1201e+00 8.35A476=01
=-7.,2532e~01 1,7343e+000 1.,8798e+)) 3.8584e-01
~7.2532e=01 =1,7343e+00 1,8798s+00 3.8584e-01
=-1.3664e-02 1,9930e+00 1|.,9930e+00 6.8558e-03
—-1.3664e=02 =1,9930e+0) 1,9930e+(¥) 6&.8558e-013
-6.8568e-03 2.0257e+00 2,0257e+00 3.3849e-03
=6.8568e=03 «2,0257e+00) 2,nN257a+00) 3,3849e-03
=1.0646e-02 2.0926e+00 2.,0927e+00 5,0874e-03
=1.0646e-02 =2.,N926e+00) 2.10927e+X) 5§ MBT74a=03
-1.363%9e+00 1,9261e+00 2.3601e+00 5,7790e-=01
=1.363%e+00 ~1,9261e+000 2.3601e+0) 5,770Ne~N1
=1 .9663e+00 1.9916e+00 2,7983-+00 7.0258e~0I
=1.9663e+00) -1,9916e+0) 2 ,7988e+(¥) 7 «N258e-01
=3.3905e+00 1.2301e+00 3,6067a+00 9 .4005e~(}1
-3.3905e+00 ~1.2301e+00 3.6067e+N0 9,4005e-01
=3.6342e+00 4,1695e~-01 3.6580e+) G,0348e-01
-3.h342e+00 =4,1695e-01 3,5580e+00 9,9348e-0]
-2.5629e+M00) 4,84926+0 5,4848e+00 4 ,6727e=-M
=2.5629e+00 =-4,3492e+00 5,4848e+00 4.5727e=-0]
=7.9609e~01 6.7097+00 6,7568e+00 1,1782e=01
~7.9609e-01 =h,7097e+00 6,7568e+00 1.1782e=01
=3.4522e+00 6.17854e+(0X) 6,.9964e+N) 4.9343e~01
=3.45220+00 -6,08540+00 ‘A,99h48+00 4,93436-0]
=5.2907e~01 7.4876e+00 7.5063e+00 7.0603e-02
=5.2997 =01 =7,4876a+00 7.,5063e+000 7 .06030=()2
—=3.7437e~02 7.6858e+00 7.A4859e+00 4,8709e-03
=3.7437e~02 ~7,6858e+0) 7,685%9e+00) 4,8709e=03
-5.3200e~02 8.1980-2+00 8,1981e+00 6,.4393e-03
=5.3200e=02 =8,1980e+0N 8,1981a+0) &,4893p=-03
=5..1140e~02 1,0824e+01 1.0824e+01 4,7248e-03
=5,1140e=02 =1,N824,+01 1,08240+N1 4,7248e=03
=2.0123e=01 1,1277e+01 1,1279e+01 1.734]e=02

-2.,M123a=01
-8, HA68 e+ 00
-8, hAABe+00
-1 .690Qa+0))
-1 ,A999s+00
-7.8180e=-2
~7.8180e~-02
~-1.2081a+01
—~1.,2081e+01
-9.62332-02
-9.A233e~-02

-1.1277e+M
7.35108+00)
-7.3510e+00
1.4005e+0)1
~1.,4005%e+01
1.4847e+01
-1 ,4847e+0]
8,9556a+00
-8,9R5Ae+00
1.8733e+01
-1.8783e+01

1.127%e+M
1.13640+M
1 .13A4e+01
1.4107 a4+
1.41072+0]1
1.48470+01
| « 4847 e+0)|
1.503%e+M1
1 .5039e+01
1.3783e+M1
1 +8783a+01

1.78412-02
7.62620-011
T.6262e-01
1.2050e~01
1 .2050e-01
5.2658e=03
5.2A58e~03
8.MN335e~M
8.0335e-01
5.1234e=n3
5.12340-03



Table E.10 ACOSS Closed Loop Poles for G,o(s) and K(s) (continued)

53
54

56
57
58
59
60
61

62
63
64
65
hb
67
68
69
70
71

12

74
75
76
77
8
79
80
8l

83
B4
85
86
87
88
89
90

-7.8238e-01

-7.8238e-01

-9,7238e~-02
-GQ,7238e-0)2
-} ,0795e=01
-1.0795e-01
~1.9858e+00
-=1.9858e+ 00
-3,.7302e+00
=3.7302e+00
~-1.6470e-01
-1 .hA470e-01
-2 .5546.e~01
-2.5546e~01
=2.5671e-01
=2.5671e-01
-2 .30958=-01
-2.3095e-01
-2,.,7437e-011
~2.,7437e-01
-3.,6814e=01
-3.6814e~0)1
~3.58A7e=0]
-3.5867e~-01
=3.A1 35e=-01
=3.6135e=01
-4.,0078e-01
-4 ,00.78 e-01
-4,4628e=01
=4 .,4628e-01
-6,7891 e=02
-6.7891 =02
-4 ,1536e~M1
-4,153ke-01
-4 ,42610-01
-4,4261 =01
-4 ,9289e-M1
-4 ,09289.-01
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1.3999e+0)1
-1 .8999e+0!1
1 .9954e+01
-1,9954.e+M1
2.1283e+01
-2.1283e+01
2.1922e+01
2.2085e+01

-2.2085e+01:

3.3051e+0)1
-3.3051 e+01
5.M19G8 e+
-5,00898e+01
5.2528e+01
-5.2528e+01
5.3103e+0)1
-5,.3103e+01
5.3848e+M
-5.3848a+01
7.1237e+0!
-7.1237e+01
7.1286e+01
~7.1286a+01
7.2242e+0]
=7.22428+0M1
7.9957e+01
-7.9957e+001
8.5342e+01
-8.5342e+01
8.5837a+01
-8.5837e+01
8.6172a+01
-8.A172e+01
8.8972e+M
-8.8072e+01
9,.3345e+M
=0.3345e+01

1.9015e+01
1.9015e+01
1 . 9955e+01
1.9955a+M
2.1283e+01
2.1283a+01
2.2012e+01
2.2012e+M1
2.2308e+01
2.2398e+01
3.3052e+N1
3.3052-.+01
5,.0999 e+
5.0999e+01
5.2528 e+N1
5.2528e+01
5.3103e+01
5.3103e+01
5.3849+0)1
5.3849 a+(Q1
7.1238e+01
7. ’ 238 9+()1
7.1287e+01
7.1287e+01
7.2243e+01
7.2243e+01
7.9958e+01
7 .9958 e+
8.5343e+01
8.5343e+01
8.5837e+N1
8.5837e+01
8.5173a+M
8.A173e+01
8.8973e+M
8.8073e+0!
G.83445a+M1
Q.834Ae+01

4,1146e-002
4,114he<=02
4,8730e~03
4,3730e-03
5.0723e-03
5.N723e=03
9,0213e-~02
9.N213e~0N2
1 « A654e~01
1.6654e-011
4 ,9830e~-013
4,9830e~03
5.7MM91e=013
5.0001e-03
4,8371a=03
4,8371e~03
4,34G0e=~03
4,3490e=-03
5.M951e-03
5.0951 e-03
5.1A78e-03
5.1678e-013
5.0313e-03
5.0313e-03
5.00{9e-03
5.0019e-03
5.0124e-03
5.MN1242-03
5.2283e-03
5,7293e-03
7.90Q2e~n4
7.9002e-04
4,821 e=03
4,8201e-03
4,Q746e~013
4,974Ae-03
5.M118e-03
5.0118e-03
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the Node 11 gyro outputs for attitude about the z, y, z axes measured in radians

and y, is the commanded value of y.

Based on the low frequency performance specification of Fig. V.16, the

design of N(s) was carried out such that
yls) = C(sl-A+ K, C’)“Kf y.(s)

where A, Ky, (' are defined in the “Preliminary Design Steps” section of
Chapter V and are based on rigid body characteristics of the spéce structure.

The poles of this rigid body closed loop transfer function are given in Table E.11.

It is of interest to compare the step responses of the actual closed loop
system with K(s) and Gag(s) to the rigid body response, i.e. that of
Clsl-A+ K, C’)“IK/. The x, y, =z gyro responses are shown in Figs. E.8a, b for
an r command, i.e. yI = [1 0 0]. The z, y, z gyfo responses are shown in Figs.

E9a, b for a y command, i.e. yI=1[0 1 0. The z, y, z gyro responses are

shown in Figs. E.10a, b for a z command, i.e. yI = [0 0 1].

Note that the actual responses are basically the same as the rigid boéi}'
responses. The actual response is a little slower, has a little more overshoot and
takes a little longer to settle out compared to the rigid body responses. Note also
that the off axis coupling Figs. E.8b, E.9b, E.10b is always less than 87 of the

command and less than 2 of the command after 6 sec.



Table E.11

LN =

Poles of
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the Rigid Body Closed Loop Transfer Function

real imaginary frequency damping
-6 ,3465e~01 6.3465e=01 B8,9753e~01 7.0711e-01
=6,3465e-01 =6.3465e~01 8,9753e~-01 7.0711e~01l
«6,6044e=0)1 6.6044e-01 9,3400e~01 7,0711e-01
-6.60442-01 =6.6044e~-01 9,3400e-01 7,0711e=-01
-0.,.8923e=-01 9,8923e=-01 1.,3990e+00) 7,0711e=-01
-9.8923e~01 -9.8923e~01 1,3990e+00

7.0711e~01



3

XD

el - XA

1.25

1.00

0.75

0.50

0.25

0.00

x GYRO RESPONSE DUE STEP x COMMAND

Jd

i

. |

ACTUAL

& RESPONSE

B S . {

RIGID
BODY

RESPONSE

1

1.1
-

—

- $9¢ -

-u‘—

1

§
1t L.

Figure 8a Response of x Gyro to Step x Command

- TIME (SECONDS)

10



N oE2» <

oOX <D

gl - - R

0.02

0.01

0.00

0.01

0.02

y AND z GYRO RESPONSE DUE TO STEP x COMMAND

TIME (SECONDS)

Fig. E.8b Response of y and z Gyros Due To Step x Command

10

- §9¢ -



OX<KH =X

o

y GYRO RESPONSE DUE TO STEP y COMMAND

15
-
- ACTUAL
" RESPONSE
1.0 T
RIGID BODY
RESPONSE
1
~nN
[¢)]
(o))
]
05
0.0 Y r ) r -
0 2 4 6 8 10

" TIME (SECONDS)

Figure E.% ;Response of y Gyro to Step y Command



x AND zGYRO RESPONSE DUE 70O STEP y COMMAND

- 267 -

0.075

o
-
-
—
""“
N .”J
\ - P
"‘/“
lu..l..t =
1 T e ee ]
‘n\"’_'\
p-
SUr =
-l -

LLELEL) L B B LILEL BB LIRS LR
=) 0 (= n o "y
2 S 3 S g S
=] =] ] @ < [

x 2O N O>ED —ELD

10

Figure E.9b Response of x and z Gyros Due To Step y Command



~

ODV<D

hadl B _3--Ra

15

2 GYRO RESPONSE DUE TQ STEP z COMMAND

ACTUAL
RESPONSE

TIME {(SECONDS)

Figure E.10a Response of z Gyrobto §tep z Command

10

- 89¢ -



x

OB <oga2»

- D@~

0.10

0.05

0.00

0.08

0.10

x ANDy GYRO RESPONSE DUE TO STEP z COMMAND

- =%
R
ot . H
1
= | '
‘ &
’ )
. : \
- ! }
, i ,fu‘
= t 3 X s L}
N A AR A L s
NP A N;', 1P N 4.\ )ﬁ\ﬁs 25N >
) ‘l\/ ' V V A,l“- o \’
-1 ¢ ! -
y } : '
1 ' v )
1 ¢
4 v t
—
) /
- Ve
\?
7 T L
0 2 4 6 8 10

TIME (SECONDS)

Figure E.10b Response of x and y Gyros Due To Step z Command

- 69¢ -



- 270 -

APPENDIX F
TRANSFER FUNCTION FACTORIZATION

INVOLVING TRANSMISSION ZEROS

An nth order MIMO transfer function, G(s) with ¢ < n transmission zeros

at s = 2, 23, ..., Z, can always by factored in the two ways:

G(s) = Gi(a)Pils) = P,(s)G,(s)

where G;(s) and G,(s) have transmission zeros at s = -z;, -2y, ..., ~z, and

P;(s) and P,(s) are MIMO all pass transfer functions with transmission zeros at

§ = 2y, %3, ..., Z, and poles at s = -z), ~z9, ..., -z,. MIMO all pass transfer

¢

functions have the property that

These factorizations are not unique. Consider a unitary transformation, i.e.

a matrix V such that VTV = I. Let

]

i(s) = Gis)VT  Pifs) = ViPy(s) VIV, = 1
Po(s) Po(s)VoT éo(s) = Voé’o(s) VoTVo = [

then

for any unitary matrices V; and V,. Thus the factorizations are only unique up

to a unitary transformation.
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These factorizations can be expressed in state space terms [Ref. 31]. Let
{A,B.C,D} be a realizatioﬁ;of G(s) i.e. G(s)= C(s[-A)'B + D. The
factorizations are expressed in terms of the generalized eigenvectors for the
transmission zeros generalizedi eigenvalue problem. The res\ults for a single
(¢ =1) real zero at s = z and a complex pair (g = 2) of zeros at s = z and

.

s = z" are given in Table F.1. More than one zero or one complex pair can be

handled by repeated application of the formulas in Table F.1.

These factorizations are particularly useful for obtaining a minimum phase
approximation of a non-minimum phase transfer function. The factorizations are
applied for the non-minimum phase zeros of G(s) resulting in a minimum phase
approximation G;(s)VT or V,G,(s) for any V;, V, such that VIV, = I and

VIV, = I. Important measures of the approximation error are defined by

ais) & [eo v [6(o) - GV = WiPi(o) - 1
r
L

a,0) & fee)-vie ] Ve = Plovi-1

Typically the unitary transformations, V; and V, are chosen such that
A;(0) = A,(0) = 0. This is accomplished by letting

v, = PI0)
vV, = .Po(o)
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Table F.1
Transfer Function Factorization

Involving Zeros In State Space Terms

Input or Output : - A = G
‘Factorization G(s) P(s)G(s) G(s) 6(s)P(s)
Generalized 1T (z1-A) -8 (21-A) -B| |x _
Eigenvalue Lx WJ = 0 = 0
Problem -C -D -C -D W
Eigenvector - H. = _
Normalization Wweo=
a(s) 8(s) = &(s1-A)TB + D 8(s) = C(sI-A)7'B + D
Im{z] = O " Special Case
g, E 6 ‘= € - Zzwa B = B - szwT
P(s) P(s) = I - s%fz wa
Im[z] # O Special Case
A AT A 2|B]2 '
Definitions o £ Re[z] B = ww y & - “‘
, : z|
B, C C = c-4ayRe[wx“-9iZ§w*x”] B = B- 4owRe[XWH 9B* ]
P(s) P(s) =1~ _7__5‘“_2_ {sRe[wwH- .0‘_8w wH]+Re[zwwH-a6w*wH]}
' s“+2as+|z|

Note: The expressions for B and vy in Reference 31 have typographical
errors. The above expressions are correct.
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APPENDIX G

ACOSS I MODEL DATA

The ACOSS 0 transfer function is given by

84 ¢ b”

i=1 8%+ 2wis + wf

where b; is a 3 X 1 vector corresponding to 'a:,yv and z torque inputs at node 44,
¢; is a 3 X 1 vector corresponding to z, y and z attitude outputs at node 11, w;
is the frequency and ¢; is the damping ratio for the ith mode. The data for w;, b;
and ¢; is tabulated in Table G.1. The damping ratios are 0.005 for all modes

except: 7,8, 11, 12, 13, 16 which have damping ratios equal to 0.7.

The three rigid body modes corresponding to translation were eliminated by

letting
Bp 2 block row [b,-T] i=1,2,..,6
Cp 2 block col {c,-] 1=1,2, ...,6
Then
84 T
G(s) — _Ro_ -*- - Cg ] ~
8% =1 8"+ U;wis + wi
where
R & CpBg

Note that R~! is the 3 X 3 inertia matrix for the center of mass of the structure



Mode

ABWN=2Z009>PNHWN—

— ol aee b

15

Freg

rad/sac

0.00e+00
(0, NN+
0. 00e+00

0.00e+00

0, NNa+N0
0.00a+00
Q.14e-M
1 s A50+00
| +9GQe+ 0N
2.0Qa+01)

2.782+00

3,63e+0
3.65e+0
7.69e+00
8,178+
8.47e+00
1.08e+01
1.140+01
| .144+01
1.1Qe+01
1 .4Qe+01
1.88e+01
2.8+t
2.1 32e+0!
3.24a+0M
3.31a+01
4,65e+01
5.10Na+N1
5.2%e+01
5.30%e+01
5.540+01
5.548+0}1
7.130+01
7.2%e+01
8,N0e+Nn1
R,.53e+(1
R.A2e2+0]
2,Q0Ma+1
9,3 +0!
1.012+02
|, 04e+0)D
1.,05e+22
1.08p+02
1.12e+0)2
1.,2Ne+?
| «4Qa+)D-
1.53e+02
1.632+02
I . AAe+()D
1.40e+12

"1 ,AQe+N2

Torque
X
1/Nm

1 .380=05%
-4 .,6%a=Nn4
4083"”5
.31e=04
-7,938=Nn4
-4 .01 8=05
2.83e-0n9
-7.370~n8
4,745e-04
2.52a=nN1
-1.432-01
-0,28e=-N4
2.9h8=NA
-3,07e-08%
2.148=N4%
-9 ,85a~0%
-3,94a=n7
=2,7%a=%
=1.03e=05%
1.9%a8=12

l .5%8=07
~1,72e=n2
=5,258=~18
5.A%e=0%
1.5%5e=~12
-4 ,45a=00R

9,3%~14

-9,91p=n7
-7.8%2a-03
1.3%2=n4
-1, NTa=n’
2.,90e=-05
1.5652=018
1.770=0%
~8,4e=15
2. 7%e=017
ALl de=0A
2 .198=05
5.47e=08
-2 .8%5e=N%
1 ,97a=n5
2,39e-05
3.458=04
2.750=03%
3.8 e=N4
AJDNa=4
4,09e~04
24,2807
-h,8Ta=0A
'7.416-16
2.390=05%
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Table G.1 ACOSS II Data

Inouts at

Yy
1 /Nm
~3,840-04
-4 ,5Qe=-5
1,.4%50=N5
-2.%0e=n4
4 ,540=N5
-7.340=04
1.54e=N1
~2.37e=05
=-1.04e~11
1. 13e=NA
-7.99e=i0
-5.432=07
-1,29a8=N4
5.54e-03
6,798="5
60055-00
-8,22e-n7
-4 ,270=10
1.50e-09
3.4800=14
~2,7l8=04
~2,742=18
-4 ,1458=15
-1 ,20e=0N2
-2,1A8=-14%
1.A0=)Q
5.540=17
3.25e=N4%
~3.756=10
-1,8%e=-19
3. ANB=12
1,27e=11
-5,02a=18
7.908=07
& ,B4a=07
1.728<12
=1.24e=-3
1.10p=Nnd
| JA2p=0A
5, 77e=N5
=7.470=\A
3.19e=0A
-4 ,3Na=Ng
) Te=04
2.11e=005
4,27 e=014K
~1,13e=05
-1.069-”6
-4,450-08
3.742-17
7.,970=n6

-1

Node 44

z
1/Nm
-A,NQa=N4
2.,70e=n4
-1 .450=N4
| .21e=07
A, N2 a=nNg
-2,01a=04
=9 ,8%5e=N%
-5 ,4Qa=014
=5,41e~1l1
5 .A5ha=N0
-3.3%a=00
1,21e=N14
50179_04
7.70e-0%
=4 ,81a=13
-Q,70a=07
1.41e=04
5 ,320=N0Q
=2.51a=0R
5.AhAR=14

-9,480=014

-4,Q4p-~3
1.Na=0D
-2.910=0%
7.Ma=14
-7.45a8=1n
-1 ,04e=14
=T7..5 Ta=A
2.27a=09
3,74e=8
2,.3%e=11
5.75e=11
1.MN%a=n)
~Q,05a=0A
-1 ,70a=n4
~1.52e=N7
-4 ,RNe=04
-1.128=n8
| «270=04
=2 .,0Ng=NA
-4 .1%a=N7
I« 77e=04
4,0 =4
A, T77e=07
-1,71a=n§
=-A 2 1a=07
2.1 7a<0A
Q,30e=Nn7
~d,4Aa=07
~5.3%5e~17
7.,4A0=19

Attituge

X

rad
1.38e=05
-4 ,AQa=4
4.,83%0=15
1.31e-04
-7 .Q%0=1g
=A,01e=05
=1.38%2=n4
-1,3Q0a=n§
3.58e=0A

2.27e=na

-9 ,31 =06k
=7.09a-04
=5.,558=164
=3 .A8e<0A
-Q,QAp=5
9.41s=05
-A,4Da8=N4
~7.,468=7
7.37e=06
-8,27e=~15
2.,A0e=04
1.812-05
«? ,54a8-n5
- LQRe=NA
4,97a-1A
-1,750=n6
2.01e=16k
1.24p=N3
«2,058a=05
=1,78a=13
3.37e=N4
4,9Ra=0A
-5 ,550«n4
-7,.00e=04
1.M0a=n]
2.05a=n5
=-Q,M0e=05
=1,3Ae=n]
=2 ,4A0=03
-2, NBa=N2
-1 .,MN1a=n1
«7.%4a=N4
3,72e<4
-1 ,7%e=N1
=2 .RBe=N2
=2, s=N4
=2,73e=04
2, 18a=n5
A,QA8=N4
-A,12a=14
-1.762=Nn23

Outputs at Node 11

V4
rad
~3,848=04
-4,5Q0e-05
2,45 a=15
=2 ,2Na=N4
4,540=15
-7 .R40=-04
=-1,840204
2., 2he=nd
1.14a8=04
2.50%e~017
=3.45a=04
-4,Q%e~04%
-2 ATp=N4
1.13e=0%
B8 .51e=N%
=5 .02 0=0A
101’9-03
1.530=n7
9.9%e-07
9,.1Na=15%
-2.,290-013
-8.9%5e~04
6 ,3760=14%
7.91 =05
A .450=14%

=2,1860=n%

-2,10e-18
-2.2%e=013
R, 11 a=0A
Q,19e=04
-1,A00=%
-, A%e=0A
1.2Ne=N5
3.5N0e=04
-1.,21a=N%
-1 .,MNdowd
=1 ,19e=03
1, 77a=007
-2,5A0=01
-7.ARn=N4
1.9%50~17
-4 ,77e=05
-8 SRe=Nf
~1.,21e8=05
. 3,.A4e=01
S ."Qp=n4
I .N1a=0R}
2,87a=n4
=3.490=05
-0, 51e=17
-1 ,756=N4

Z H
rad
-~ ,09e-N4
2.20s=-04
-1 ,45a="4
1.21e=023
A N2a=18
«2,01e=04
-1 ,760=05
1.15e~N3
=5,.81e=08
4,MN3a=n7
1 .A4p=-07
-3.0Ba=0A
1.N58=4
| .0Qa=N8
-2 .87 =4
2 .A5e=06h
~2,67e=02
2.7Ne=017
'Q.She-07
-3,420~16
«-7.Nda=04
3.87e=0A
-2 .,20e=N4
2.47a-05
-3,76e=145
1.05a=0%
1.,07e-1R
Q,77e=n4
=2 ,486e-06
-4 ,00e=N4
1.17e=N%
00309-)7
=1.50%a=15
-4, 85805
=] ,20e-7
-4 ,00p-15
~-A,ANs=1)4
2.2 MW=
-5 ,47m=N4
-4,106-04
-1,4A8=15
-2 .,2ha=N4"
-2 ,4Qp-n4
-] .91 e=N4
1 .A2e=08
-1,108="4
-2.,A0n=N4
=-5.238=15
2.39a=-04
1.77e-1A
1.23e=18%



Vode Fregq
rad/sec¢

52 1,75e+02
53 1.75e+02
54 1,79a+02
55 1.80e+N2
55 1,93e+Nn2
57 2.0Ae+0?
58 2.11e+02
59 2.1 7e+0>
41 2,36e+02
41 2.408+02
AD 2,552+02
63 2.59e+0D
A4 2,91 p+0D
65 3.01e+N2
65 3.21p+02
67 3.97e+02
AR 3,97e+N2
AQ  4,54p+02
70 4,55e+02
71 5,70e+n2
72 5,7Qe+02
73 6.,Q20+02
74  7.00e0+02
75 9,47e+02
74 Q,51a+02
77 1.,01e+03
73 1.,028+0
/Q  1,1Qp+02
[ ]1.19e+03
1 1,31e+n3
32 1, a+3
871 1,.359+03
14 1,55e+N3
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Table G.1 ACOSS II Data (continued)

Torque
X
1/Nm

-9.32e~09%

2,72e=n5
| .98 a=04
-1,84e=-09
-3 ,510=N7
I .59a8=0%
-1 ,AAe=NA
~1.0Ne=N%
~1.3%%=07
4.440=07
-1,31e=07
~1,08e=04
31.940-07
=2 .,4Na=N"8
-2,17a=n7
-1 .,74e=07
-5 ,45a="7
Q,7%5a~19
1.7%=113
-1.97a=n7
3,1 32=00
5. 0e=172
-3.4%=114
| . RSe~12
-4, 1%9a=1]
-7,39a-03
1.48e=-N1]
1.158=n9
5.7 7e~0"
4 ,MN0g=0Q
-3,M%a20q
-1.e=19
1, 3%e=nQ

Inouts at
v
1/Nm
3.A3e=0A
-8,45e~-n7
~3.872=-0A
5,N002=-09
-6.,MN3e=17
4,5%e=-07
-3,41e=-007
2,h40=-07
-7,18e-08
-1.,50Q0=17
-3, vAhe=0N7
7.45e=N8
-2,M%5a«~07
~1.632-08
-1.580=18
=2.92.=07
7.110-n8
-3,Ale=18
-] ,78e~-13
-4 ,AGa=nQ
=1.,242-07
-1.2%e=19
-l .,17e=12
2.8%e=08
1.4Rp=NQ
-1 ,4%0=NR
=2.958=08
-4 ,6Q08=10
3.7he=-10
-1."2e=-08
-A,4Q90~1 0
~3.%e<00
T,37e=11

Node 44
e
1/Nm
-3,7Ne-04
=-5.57e=07
7. ARa=07
~1 ,4Ra=0A4
4,6Ne=N8
~9,78e~=07
A.51e-N8
=1 50a=04
Q,5Ae-0R
-7 .1 =T
1. 70a=07
A .NQp=NT
.1 1e~09
5.340=0%
-4 ,468p=NJ
-1.542=08
-4 ,"Qn=~3
-5 ,2ha=17
40"0' e-0R
1,57 e=Q
A, 2Re-01]
<2.372-18
=31.53a=NR
<1 .94e=07
1.44e-N8
| «342=()9
A ADe=~N
?,048-]
-3,052-00
4, 33e=-18
I . 750=0R8
A,552-00
-5 ,RAa=1n

Attitude
X
ranr
| .1Aa=03
-2 ,4Q0-N4
2.30a=04
-5,00e=07
-2.312p=115
5.42e=03
~1,4Qp-n4
7.090-03
-4,23e-04
5.,4Ne=N3
| .7Ra<-04
=A,.7%52-=N3
l.31a=0k
AR, WNe-05
1.08p="4
-1 .58e-03
—Q. 7(\e—f\d
-4,9] p=20
=A,ATe=09
4,31a=08%
3,20e-05
5.2%2a=17
7 - 41 a=N0
-1,340-03
3,740-N13
-5, A7p=0N4
-1.940-04
1.870=12
-2 ,31e=02
?.,78e=N3
4,57e=n3
1.N4e=07
-1,M0a=N2

Outputs 3t Node I

74
rad
-3.1Re=-04
1.,MRe="4
2,11 p=N4
R,02%2e-08
3.37s-n4
~Q,34a-01
7.05a=-n4
4,570=n1
3.0%e-05
1.Me=Nn4
-] ,435=04
4,R1p=N1
-1 ,578=n4
-1 ,55e-04
5., A00=15
~4,47a=04
3.3Na=4
4,31 e=17
~7.5Ae=083
=3.34e=N4
«3,ARa=N4
2.4%e-17
1.47 a7
=3,3Ae=01
2.,18e-013
-5 .85a=05
q,00e=05
1.727e=011
-1 .NARe=03
3,70p-M
2.72e=01
2,4%e=15
-8, 6-N5

4
rad
~A,15a=-04
-4 ,1Q0=N4
-1 . NNa=na
9,ARa-NA
1.76e0=8
1 .39a=02
-3,260=N4
-3 .848=n2
| JAYp=0N4
7.32e0=n4
2.00e=N4
-1.,42%a="V3
-5 ,18p=n5
-1 .18a=04
-1,718=n5
~Q,11e=04
-5 ,30a=n4
~4,94p=17
l.140=08
7.506=4
4,50p,=N4
-4 ,Q00-18
=2 ,N4a=NR
-1 .51e=~03
2.%11e-n3
=3.,2hp=N4
~2.28a=05
2.38e=4
-A,3) =04
1.65e-=N4
1.18e-Nn3
f.21e=04
-1.,580=n4
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about the z, y and z axes. Finally a minimal realization of -}i,; with 6 states is

Y

obtained as

w Im
l
Q
=
s
L
o

where

A={°fs] B = [

00
- [ 1
¢ = 0

The modes with small residues: 18, 19, 20, 25, 27, 31, 32 and the modes
with frequencies greater than 100 r/sec: 40, 41, ..., 84 were also eliminated as

part of the preliminary simplification to form Gag(s).
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