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I 1.0 SUMMARY

I A feasibility study has been conducted to assess the applicability of anexisting parabolic analysis (ADD-_Axisymmetric Diffuser Duct), developed pre-

viously for subsonic viscous internal flows, to mixed supersonic/subsonic flows

with heat addition simulating a SCRAMJET combustor. A study was conducted with
the ADD code modified to include additional convection effects in the normal

momentum equation when supersonic expansion and compression waves were present.

I A set of test problems with weak shock and expansion waves have been analyzed
with this modified ADD method and stable and accurate solutions were demonstrated

provided the streamwise step size was maintained at levels larger than the

I oundary layer displacement thickness. Calculations made with further reductions
in step size encountered departure solutions consistent with strong interaction

theory. Calculations were also performed for a flow field with a flame front in

I hich a specific heat release was imposed to simulate a SCRAMJET combustor. Inthis case the flame front generated relatively thick shear layers which aggra-

vated the departure solution appearance. Qualitatively correct results were

i obtained for these cases using the marching technique with the convective terms

g in the normal momentum equation suppressed. It is concluded from the present

study that for the class of problems where strong viscous/inviscid interactions

I are present a global iteration procedure is required.
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2.0 INTRODUCTION I

for the prediction of supersonic internal flow fields with heat IiAn analysis

addition is required to support the development of SCRAMJET engine configurations

by generating design information and by evaluating test data. Certain require-
ments should be met in order for this analysis to be applicable to a wide range

of SCRAMJET configurations. First, the analysis should be able to treat mixed

supersonic/subsonic flow fields because the boundary layers are subsonic and i

because realistic rates of heat addition may reduce the flow velocity to subsonic I
conditions behind the flame front. The analysis should be able to treat trans-

verse pressure gradients produced by expansion waves, compression waves, and I

shock waves. Heat addition may also produce transverse pressure gradients. In I

addition, although not addressed in this study, the analysis should be able to
I

treat hydrocarbon combustion chemistry with multi-species product gases and tur- I

bulent mixing controlled reactions. Finally the analysis should be three dimen- I
sional since almost all SCRAMJET configurations are three dimensional. These

requirements place a great burden on the type of analysis that should be devel- &m

oped, on the solution algorithms required, and on the computer hardware. In the !
present feasibility study, only the first and second requirements were con-

sidered. I
Forward marching procedures are attractive for supersonic internal flows

since they require less computer time and storage than solution techniques

required for the full Navier-Stokes equations. The successful implementation of In
these schemes, often referred to as parabolic methods, involves a fundamental

problem in fluid mechanics, namely numerical instabilities which arise in pard- i

which are associated with upstream propagation in viscous inter- Ibolic codes and

action regions of the flow field. Existing analyses, such as those developed in
I

Refs. 1 and 2, are unable to adequately treat this problem which may be described I

in the following manner. In supersonic flow, the inviscid Euler equations can be E

solved by forward marching numerical methods because there is no upstream propa-

gation of information. In subsonic flow upstream propagation always exists and i

hence forward marching solutions are inherently unstable. However, in viscous !
interacting supersonic flow, portions of the boundary layer admit some upstream

propagation; hence, forward marching solutions of the parabolized Navier-Stokes i

equations are unstable. Successful methods have been developed for suppressing |
these instabilities in two dimensional flows by modifying the streamwise pressure

gradient in subsonic regions in an approximate manner (see Refs. 3-8).

Similarly, in subsonic two dimensional flow fields parabolic solution techniques I
can be employed for the composite inviscid/viscous equations by treating the

streamwise pressure gradient in some appropriate manner as was done in Ref. 9. I

While such techniques have a numerical attractiveness, they force a compromise of

the physics of the problem by eliminating the streamwise pressure gradient over a
I

finite region of the flow field - a region that would be sizable in a SCRAMJET

combustor where heat addition may produce large regions of embedded subsonic I
flow.

l
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Another method which is stable for forward marching solutions of an

approximate form of the Navier-Stokes equations is the ADD (_Axisymmetric _iffuser

I _uct) approach (Refs. i0 and Ii) which has been demonstrated for a wide range ofproblems in subsonic viscous duct flow (Ref. 12) and in supersonic jet flows with

subsonic coflowing outer streams (Ref. 13). This method provides the starting

°_ point for the present study. In the ADD approach a parabolic set of equations

are obtained by writing the governing equations in an intrinsic coordinate system

that approximates the actual streamlines. The use of this coordinate system

i ermits the deletion of the convection terms in the normal momentum equationsince the coordinate curvature approximates the streamline curvature. The

resulting set of equations have been shown to be formally parabolic and devoid of

i ranching solutions (Ref. ii) and, thereby, result in a stable forward marchingprocedure with the pressure allowed to vary across the viscous flow subject to a

specificed streamline curvature. The essential issue is that branching is

_ avoided by control of the normal pressure gradient at the outer edge of theviscous interacting layer. The applicability of this concept to SCRAMJET

combustors is verified here for model flow problems with and without heat

I addition. Additionally, since the complex flow field in a SCRAMJET combustormakes it difficult to obtain an a priori good approximation to the streamline

curvature, this issue is addressed in a limited way. In this study an

I investigation was conducted of a means of improving the streamline curvatureapproximation while still controlling the imbedded instability of the interacting

flow using the method of Ref. 11 by controlling the convection terms in the

i transverse momentum equations.
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3.0 ANALYSIS -I

3.1 Governing Equations and Solution Algorithm I

Basic Equations ..

The derivation of the governing equations which comprise the basic ADD

approach are given by Anderson (Ref. II). These equations are written in a

general orthogonal coordinate system which is constructed from incompressible i

plane potential flow in which the velocity potential is the streamwise coordinate l
and the stream function is the normal coordinate. The Navier-Stokes equations

are then parabolized by assuming the velocity component normal to the streamwise i

coordinate (incompressible potential flow streamline) is small compared to the Q
streamwise velocity component. Thus we have a coordinate system in which one set

of coordinate lines are the incompressible streamlines which serve as a first _I

order approximation of the streamlines in subsonic flow. Figure I shows a

schematic diagram of the coordinate system and definition of curvature for a

typical duct. I

The basic parabolized Navier-Stokes equations used in the ADD code (Ref. 11)

are given as follows: _I

continuity !

hrpU s (la) i_n

++ I-- = -hrpU (ib)
_s n

s-momentum i

P_U _Us + OUn _U 1 _P 1 _ lhrTns ) + K T 0 (2) _I---_- K PUnU s + =h _s h _n s h Bs rh2 _n s ns

I
i
I
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I n-momentum

i _ pUs _Un PUn _Un _ 1 _P
_----+ --- --\ + K pU U + - -- = 0 (3)

I h _s h _n _ s s s h _n

I energy

__ + ___R __ + ---T- -- (rhq) - -- Tns ---- kh ]- = 0 (4)h _s h _n rh_T 8n T _n T

I
shear stress

Tns - pT _n (_) (5),I
i heat flux

-kT _T (6)

I q - h _nI

I entropy

I = _-i in - In (7)

i state

I P = 0RT. (8)

I Thus we have a set of eight equations for eight dependent variables (Us,

@, Tns , q, P, T, P, I), where the normal velocity component Un is elimi-

I nated using Eq. (Ib). In order to model the effect of heat addition, a sourceterm q/T has been added to Eq. (4). For the purpose of the current study, this

heat addition was specified a priori throughout the duct. In subsonic flow,

I Ks, the coordinate curvature, is a good approximation to the actual streamlinecurvature and the bracketed terms in Eq. (3) may be neglected. However,

supersonic flow can only be turned by expansion/compression waves or

!
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m
inclined shock

waves; therefore, in supersonic flow, the streamline curvature i

differs significantly from the coordinate curvature (Ks) as computed from an

incompressible theory and a correction is needed. Vatsa et al. (Ref. 13) found

that for some supersonic flows a simple linear theory could be employed to i

approximate Ks . However, in general supersonic cases this approximation will
not be sufficient and the bracketed terms must be included.

a

Boundary Conditions and Initial Conditions i

The initial conditions for this problem require specification of all depen- g

dent variables Us, Un, 4, _ns' q, P, T, p, I on the inlet plane. The
a

normal velocity Un is added to this list since its derivative with respect to s i

now appears in the equations in the bracketed term of Eq. (3). In the free i

stream, it is assumed that Tns , q, and Un are zero. The remaining vari-

ables are uniquely defined by specifying Us(n) , P(n), and T(n) and using

isentropic flow relations and continuity (Eqo la). In the boundary layer, Cole's i
wall-wake law (Ref. 14) is used to determine initial conditions consistent with

the turbulence model (Ref. 11).
|

The boundary conditions for these equations are given as follows:

i

inside diameter wall: i

q = 0 (9)

4=0
i

outside diameter wall: R

q = O (10)

= constant

Solution Al_orithm I

i

When the turbulent viscosity (LIT) is properly modeled and the inlet mean I

flow is specified, Eqs. (1)-(8) can be solved by a forward marching integration
Im

scheme. Equations (i)-(8) are first linearized by expanding all dependent

!
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I variables in series in the direction (s), and
a Taylor expansion marching

dropping terms of 0 (As2). Finite difference equations are then obtained using

the two point centered difference scheme of Keller (Ref. 15). Figure 2 shows the

t finite difference modules corresponding to the finite difference equations solved
in the ADD code. Figure 2a is a schematic of the finite difference module

related to all of the ADD code equations except the normal momentum equation, Eq.

t (3). 2b shows the finite difference module for the normal
Figure momentum

equation used in the subsonic version of the ADD code. In the present version,

Eq. (3), however, uses a modified box scheme which employs a centered difference

in the normal direction and a three point backward difference in the streamwise

direction (see Fig. 2c). The resulting matrix equations are block tridiagonal

and are solved by block factorization using the method of Varah (Ref. 16).

!
i 3.2 Characteristic Analysis

Following the method of Ref. 17, the characteristic determinant of Eqs. (1)-

(8) can be shown to be:

!
= -- R (11)

D -XT_ _ _j { }_ h

I where _ (n,s) is a characteristic line, R the gas constant, T the temperature,
and

l U _a U _
=_/_ __ +__Kn __ (12)

i h _s h _n

If the bracketed term of Eq. (3) is dropped, the characteristic determinant for

i the original ADD code is recovered by recognizing that the bracketed term in Eq.
(11) does not appear and thus,

i D = -RITBT 2 _s I (13)

I
This result, (Eq. 13), implies that the ADD code equations are formally

i parabolic, since all six roots of Eq. (13) are equal and real. Additionally, aspointed out in Ref. 11, these equations are devoid of viscous interaction

branching solutions and a forward marching numerical procedure can be used.

!
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I
Returning now to the characteristic roots of the full equations, Eq. (11), E

the relationship between temperature (T) and speed of sound (a) is introduced,

and the determinant in Eq. (11) is set to zero. Then we have:

J

I _ & + (14a)

h _s Us h _n

I
4

= o (14b)

Thus for a full set of equations (Eqs. i to 8), four roots are real and equal,

Eq. (14b), and two roots are real and unequal, Eq. (14a). J

Additionally note that for the subcharacteristics, which are the
characteristics of the inviscid flow, the determinant can be shown to be: J

D

a a 'il
I

In this case, two roots are real and unequal in supersonic flow and complex in i

subsonic flow and easily identified with the Mach lines. The remaining two roots I

(_=0) are the streamlines.
D

This characteristic analysis leads one to expect certain properties in the I

forw _d marching numerical solution of the mixed supersonic/subsonic flow problem
l

based on the dominant characteristics in each flow regime. For internal flows

without heat addition, the flow field consists of a supersonic, essentially I

inviscid core flow, and a viscous, partly subsonic, boundary layer flow (as shown
I

schematically on Fig. 3). Therefore the core flow (R3) is dominated by the real

subcharacteristics of Eq. (15), and one would expect forward marching solutions I

to be possible. The wall boundary layer, however, is viscous and therefore
i

governed by Eq. (11) and the characteristic roots of equations (14a) and (14b).

Formally this implies a parabolic/hyperbolic mixed flow which one might expect I

to be well posed as an initial value problem. Note that the fact that the sub-

characteristic analysis of Eq. (15) might imply ill possessedness in the subsonic

region is not directly applicable because such is true only near the wall where J
B

I
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i the viscous terms are active and thus Eqs. (14) hold. Therefore the characteris-
tic analysis does not provide a clear picture of how to establish a well posed

problem and solution algorithm for such viscous interacting flows. However,

I interaction theory does provide some guidelines that will be discussed below.

l 3.3 Branching

The concepts of branching solutions which occur in viscous interaction prob-

l lems has been discussed by numerous previous authors and is well summarized in
the recent work of Barnett (Ref. 18) for external flows and by Smith (Ref. 19)

for internal flows. The essential issue is that all viscous interaction equa-

l tions (subsonic or supersonic) are illposed as initial value problems because
they contain imbedded eigenvalue solutions (branching solutions) with scale

lengths shorter than a boundary layer thickness. This family of solutions repre-

l sents the strong interaction situations where some physical event causes the
viscous region to significantly modify the overlaying inviscid flow such as

separation of the boundary layer. In situations where this is not expected to

I occur, such branching solutions may be suppressed using numerical expedients to
purge short length scale solutions. Thus for example, Barnett (Ref. 18) found

that the eigenvalue solution could be formally eliminated for supersonic flows by

i suppressing the longitudinal gradient term of Eq. (2) at the wall.
pressure

Anderson (Ref. 11) used the conclusions of Smith (Ref. 19) to suppress and avoid

branching in subsonic channel flow by controlling the normal pressure gradient in

I the viscous/inviscid overlap region at the boundary layer edge.

In SCRAMJET combustors, a major dilemma again occurs because a mixed situa-

I tion appears in a more pronounced form. Boundary layers develop along the walls
under supersonic portions of the core flow. In addition the flame front produces

large temperature gradients and because heat addition decelerates the flow, large

I shear layers are also produced through the flame front. With sufficient heat
addition, the flow becomes subsonic. Thus the region of viscous/inviscid inter-

action is greatly expanded (see Fig. 3). Since this latter effect is dominant in

I SCRAMJET combustors, attention was focused on the use of subsonic strategies toaddress the branching issue. Thus attention has been focused only on the normal

pressure gradient effects for the present limited scope study. To this end in

I fully subsonic flows the bracketed terms of Eq. (3) are neglected and the normal
pressure gradient is determined by the curvature term Ks . In supersonic

regions of the flow, the bracketed terms are included to allow modification of

I the streamline curvature over those of the incompressible streamline curvature.The expectation would be that the resulting set of equations would still contain

branching solutions since they contain all the interacting effects in the overlap

I region at the viscous layer edge.
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I
4.0 RESULTS AND DISCUSSION I

m

4.1 Results of Flows Without Heat Addition
m

Expansion Wave Case I

The first model problem was selected to demonstrate that a forward marching I
numerical method exists for mixed subsonic/supersonic flow when the bracketed

terms in Eq. (3) are treated properly, and that the modified equations can model

the behavior of flow turning by expansion waves. The model problem was a two I

dimensional duct with a five degree expansion turn. This turn results in a m
centered Prandtl--Meyer expansion from the corner which reflects back and forth

between the two walls as shown in Figs. 4 and 5. The inlet Mach number was 2.0,

expanded from plenum conditions set at a standard atmosphere and with a pre- i
scribed normal velocity, Un = O. The initial turbulent boundary layer dis-

placement thickness was 1.0 percent of the duct height, and the flow Reynolds •

number based on duct height was 1.2 x 106 . The computational mesh consisted of a |
50 x 50 grid in which the streamwise step size was such as to approximately

satisfy the CFL (Courant-Friedrich-Levy) condition everywhere except in a thin
region in the boundary layer. Two calculated results are shown for this con-

figuration in Figs. 4 and 5.

Figure 4 shows the calculated wall pressure distribution using the original I

ADD code for the upper and lower walls, without the addition of the bracketed

terms in Eq. (3), compared with the wall pressure distribution calculated usingthe one dimensional isentropic flow relations. This figure shows, as expected,

that the incompressible coordinate curvature, Ks, (see Fig. i) completely fails

to model flow turning in supersonic flow. Downstream from the corner where Ks I

is small, the equations appear to model one dimensional flow with boundary layer g
blockage.

Figure 5 shows the results of a second calculation in which the convection I

terms (bracketed terms of Eq. (3)) are included in the supersonic regions of the

flow and neglected in the subsonic regions of the flow. In this figure, the E

calculated wall pressure distribution for the upper and lower walls is compared W
to the wall pressure distribution calculated by the Method of Characteristics

(MOC). In this case the supersonic flow field is properly modeled since the

Prandtl-Meyer expansion is captured. The initial drop in pressure at the corner

is very sharp and does not appear to cause numerical difficulties. The effect of

blockage was calculated by using the method of characteristics on a new duct B

shape modified by the calculated displacement thickness. Figure 5 shows that the W
calculated wall pressure distribution agrees well with method of characteristics

when blockage is included, i

m

i
I
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l During the course of the investigation, it was found that, for large stream-
wise step sizes, the resulting pressure distribution exhibited oscillations about

a mean pressure distribution. This behavior is typical of the Keller Box scheme

i for which the difference module is shown Figs. 2a and 2b. As stated
on

previously, the differencing of Eq. (3) was modified to reduce this oscillation

using the difference module shown on Fig. 2c. Figure 6 shows a comparison

J between results calculated using the two schemes. All solutions given in this
report were calculated using Eq. (3) in the modified difference form.

Figure 7 shows the effect of streamwise step size on the Calculated pressure
distribution on the outer wall. The streamwise step size AX is referenced to two

nominal length scales. The first, AXcFL, is that step size satisfying the CFL

I condition using the inlet centerline Mach number and AY grid spacing. The
second, 6o, is the inlet displacement thickness used as representative thickness
of the wall boundary layer. The results shown in Fig. 7 indicate that the reduc-

I tion of the streamwise step size sharpens the centered expansion wave, suggesting
that some of the spreading of the wave relative to that calculated by the method

of characteristics is due to truncation error.

i Shock Wave Case

I A second model problem was selected to demonstrate that the modified equa-
tions can capture the behavior of flow turning by shock waves. The model problem

was a two dimensional duct with a five degree compression turn and a five degree

I expansion turn. The compression turn results in a shock wave which reflects off
of the opposite wall as shown in Fig. 8. The inlet Mach number was 4.0 with

initial conditions: PT = 32143.5 psf, TT = 2184°R, and Un = O. The initial

l turbulent boundary layer displacement thickness was 1.0 percent of the duct
height, and the flow Reynolds number based on duct height was 1.4 x 10 6

As in the previous case, the computational mesh was constructed such that the CFL

I condition was approximately satisfied everywhere except for a thin region in the
boundary layer.

II Figure 8 shows the configuration and computed results for this model
problem. In this figure, the calculated wall pressure distribution for the upper

and lower walls is compared to the pressure distribution calculated by the method

i of characteristics. The shock wave and the Prandtl-Meyer expansion on the upper
wall, as well as the reflected shock wave on the lower wall, are captured

reasonably well. As in the previous case, the abrupt pressure changes do not

I seem to cause numerical instabilities for the streamwise step sizes chosen inthis calculation. Figure 9 shows the effect of streamwise step size on the

pressure distribution along the upper wall for this case. The steepening of the

l pressure changes near the compression and expansion turns, as in the previouscase, indicate that the effect of truncation error is reduced for smaller step

!
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I

sizes. Figure 10 shows the calculated streamlines for this configuration

compared to the incompressible streamlines used as a streamwise coordinate. This

figure shows that the additional terms included in the supersonic region allow
the equations model the actual flow even though the streamline curvature is ito

significantly different from the incompressible streamline curvature.
I

Departure Solutions I

Although the preliminary step size studies, presented in the previous

sections, indicate that reducing the step size reduces the truncation error, it l

has not been demonstrated that with very small step sizes numerical instabilities

called departure solutions actually occur. Towards this end a model problem was

selected in which all extraneous phenomena such as shock waves or expansion waves

were removed. The configuration was a two dimensional straight duct with an
'l

inlet Mach number of 2.0, expanded from plenum conditions set at a standard

atmosphere and an inlet normal velocity, Un = O. The initial turbulent boun- I

dary layer displacement thickness was 1.0 percent of the duct height, and the

flow Reynolds number based on the duct height was 1.2 x i06. Figure 11 shows the

wall pressure distribution for this case at various values of streamwise step

size. Note again, that the streamwise step size, AX, is referenced to the
U

nominal length scales AXcFL and _odeflned earlier. At the two larger step sizes

AX/AXcF L = 0.22 and 0.Ii, the solution appears to be well behaved as a slight •

increase in pressure is observed downstream from the inlet due to boundary layer

blockage. However, further reduction in the streamwise step size with a fixed y-

grid produces results which differ significantly from the expected pressure I
rise.

One possible cause for these instabilities is suggested by the discussion on J

branching presented in Sec. 3.3. Barnett (Ref. 18) observed similar behavior and
J

was able to show through detailed step size analysis that these branching solu-

tions were precisely the exponentially growing eigenvalue solutions predicted by I

triple deck analysis for the viscous interaction equations embedded in the

current composite equations. Thus it appears that the current equation set with

the bracketed term of Eq. (3) included still contains the fundamental mechanisms I

for strong interaction effects. Branching solutions can thus be filtered by
l

dropping the bracketed terms in Eq. (3) altogether or by keeping the streamwise

step size large when it is retained. For flows in which strong interaction I

effects are believed to be important, a global iteration scheme would be required
i

(see for example Ref. 18 and 21) to properly represent these viscous interaction

effects. I

4.2 Results of Flow With Heat Addition l

A SCRAMJET model problem was selected to demonstrate that the numerical

method was stable for heat addition in a mixed subsonic/supersonic flow and that I
the equations properly model the effect of the heat addition. The model was a

!



I wo dimensional straight duct with a majority of the mass flow (90%) in the free-
stream (cold) portion of the duct at the initial plane and the remaining flow in

the pilot (hot) portion of the duct. The combustion process was modeled by

i specifying the heat input per second (_) as a function of axial distance and
radius, thus defining a flame front. Figure 12 shows the configuration for this

model problem. The UTRC Mixing and Combustion code (Ref. 20), currently being

I sed in connection with another NASA contract to analyze SCRAMJET configurations,
was used to determine realistic initial conditions, heat input, and flame front

location. The inlet Mach number was 3.1 and I.I and the inlet stagnation tem-

I perature was 2200°R and 5000°R for the cold and hot portions of the duct, res-
pectively. A constant static pressure of 1227.5 psf and normal velocity, Un =

O, were also specified. Figure 13 shows the specified heat input which models

I the combustion process. Figure 13a shows how the heat input per second was
spread over a small region about the flame midpoint and Fig. 13b shows the value

of the maximum heat input at the flame midpoint as it varies with axial

I distance.

Figure 12 shows that there is a rise in static pressure when heat is added,

I as expected. Figure 14 and 15 are detailed plots of the static temperature and
Mach number profiles at the inlet and exit planes, respectively. The extent of

the cold portion of the duct has decreased considerably due to the heat addition.

I Note also that the flow is sheared over a majority of the duct. As this shear
layer increases, it was found that the numerical method becomes unstable when the

bracketed terms in Eq. (3) are included. This result is consistent with the

I characteristic analysis presented in Section 3.2 in that the existence of the
flame front greatly enlarges the region (R 2) where the weakly elliptic character-
istics dominate (see Fig. 3). The results shown here were calculated with these

I terms neglected. Since the streamline curvatures are nearly identical for incom-
pressible and supersonic flow in this case, neglecting these terms should not

effect the results. Additional work is needed to determine how to properly

I handle these terms for flows with large shear regions. Figures 16 and 17 showthe static temperature and Mach number profiles, respectively, through the duct.

The flame front can be clearly seen by the large gradients in its vicinity. As

i n additional check of the heat addition model, the total enthalpy change across
the flame front was compared to the results of the UTRC Mixing and Combustion

code. The ADD code gives:

-- = 0.28

I Hin
and the UTRC mixing and combustion code gives:

I
Nt

= 0.29

I Hin

I 13
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5.0 CONCLUDING REMARKS I

m
The subsonic parabolized Navier-Stokes technique used in Ref. II has been

extended to treat mixed supersonic/subsonic flow fields in which the core flow is

supersonic and the inner region of the boundary layer is subsonic. This exten- R

sion to supersonic flow was made by including the convection terms in the normal |
momentum equation when the flow is supersonic and neglecting these terms when the

flow is subsonic. Stable and accurate solutions have been demonstrated for weak m

shocks and expansion waves provided the streamwise step size is carefully |
selected. Calculations have also been obtained for a simulated SCRAMJET engine

with a priori heat input which generates a large subsonic flow region downstream B
from the flame front. These latter calculations were found to be possible only |
when using the subsonic parabolized Navier-Stokes technique used in Ref. Ii.

Departure solutions have been demonstrated for the mixed supersonic/subsonic I

flow field problem when the streamwise step size is of the order of the inlet

displacement thickness or less. A characteristic analysis shows that the

parabolized Navier-Stokes equations used in this analysis are always of the mixed |
hyperbolic/parabolic type whereas interaction theory indicates an illposed

problem due to the inclusion of the convection terms in the normal momentum

equation. Thus the possibility of instability (departure solutions) always |
exists and special strategies are required for suppression of such weak

interaction solutions, i

For SCRAMJET combustors, the flame front prc,duces shear layers which greatly

enlarge the region of viscous interaction and may with sufficient heating produce

a subsonic region behind the flame front. To completely capture such strong S
interaction effects_ it is believed that a global iteration procedure could be

developed. I

I
!
I
i
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I 6.0 LIST OF SYMBOLS

a Speed of sound

1
Cp Specific heat

H Enthalpy

Hin Inlet enthalpy

l h Metric scale coefficient

l I Entropy

JL Number of steps in streamwise direction

KL Number of steps in normal direction

l Ks Curvature of coordinate streamline

n Normal coordinate

P Static pressure

Pr Reference static pressure

i PT Total pressure
q Heat flux - dependent

i _ Heat flux added by combustion

r Radial coordinate

l s Streamwise coordinate

I T Static temperature

Tr Reference temperature

I TT Total temperature

l Un Normal mean velocity

Us Streamwise mean velocity

X Streamwise direction

1
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LIST OF SYMBOLS (Cont'd) g

Y Distance from lower wall !

Yf Location of flame front

I
YT Height of the duct

a Characteristic direction I

Ratio of specific heats

_X Streamwise step size I

_XcFL Step size satisfying CFL condition !

_* Displacement thickness at inlet

o !
Effective turbulent thermal conductivity

See Equation 12 i

_r Effective turbulent viscosity

I
p Density

_ns Shear stress I

Stream function i

I
I
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