
NASA Technical Memorandum 86369

NASA-TM-8636919850015006

A Theoretical Basis for the Analysis of

Redundant Software Subject to

Coincident Errors

Dave E. Eckhardt, Jr. and Larry D. Lee

JANUARY 1985

NI\5I\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

LANGLEY RES~hRCH CENTER
LIBRARY, NASA

HlIMilTOt'!, VIRGINIA

111
NF00561

SUMMAHY

Fundamental to the development of redundant software techniques (known <is

fault-tolerant software) is an understanding of thn impact of multipl~ Joint

occurrences of errors, referred to here as coincident errors. A ~heor~tic~l

basis for the stul1y of redundant software is developed which (1) prov i(j'.::l ;J

pl'obabilistic framewot'k for empirically evaluating the effectiveness of th',:

general (N-Version) strategy when component versions are subject to coinci~~n~

errors, and (2) permits an analytical study of the effects of thes~ errors.

The basic assumptions of the model are: (i) independently designed 30ftwar~

components at'e chosen in a random sample and (ii) in the user environment, th~

system is I'equired to execute on a stationary input series. An int~n3i t'j

function, called the intensity of coincident errors, has a central ro18 in th~

model. This function describes the propensity of a population of programmers

to introduce design faults in such a way that software components fail together

when executing in the user environment. The model is used to give conditions

under which an N-Version system is a better strategy for reducing syste~

failure probability than relying on a single'version of software. In additio~,

a condition which limits the effectiveness of a fault-tolerant strategy is

studied, and we ask whether system failure probability varies monotonically

with increasing N or whether an optimal choice of N exists.

I. fl'J C- _ ') '2.., 1'7

1.0 INTRODUCTION

The use of independently designed, redundant software is an intuitively

appealing approach to increasing software reliability. The redundancy

principle, after all, has long been accepted as an effective means for

improving the reliability of hardware devices. The basic premise in both cases

is that components (either software or hardware) will have independent failure

characteristics so that the probability of failures occurring simultaneously is

small (ideally the product of the individual component failure probabilities).

Fault-tolerant software is the methodology for structuring software components

to cope with residual software design faults. The most widely known, N-Version

programming [1J and recovery block [2J, are analogous to the hardware

techniques of N-Modular redundancy and stand-by sparing, respectively.

Although redundancy has been successfully applied to fault-tolerant

computer systems (e.g., [3J, [4J), its application to software has been slow to

develop. One reason for this may be that little empirical data is available

that demonstrates an increase in reliability' sufficient to justify the

increased cost of the software development, although it has been suggested that

fault-tolerant software is cost effective [5J.

More importantly, however, is the reliability degradation of fault-tolerant

software structures caused by either: (1) multiple faults which produce

dissimilar outputs but are manifested by the same input conditions, or (2)

related software design faults causing identical incorrect outputs. The

2

general notion of related software design faults is often referred to as

"correlated" faults. This term, however, appears to have different meanings to

different authors and it is sometimes not clear what combinations of the above

fault types and the degree of the attribute, "related", is being discussed. We

will refer, collectively, to errors manifested by both of the above fault types

as coincident errors. What will distinguish correlated errors from those that

occur simultaneously by chance, we presume, will be the intensity of coincident

errors as discussed in more detail later. In an extreme case one might imagine

that all residual design faults are common to all versions of a redundant

software structure and thus there is no reliability gain over randomly

selecting a single version of the software. More typical might be a situation

where a majority of identical faulty modules, in a voting scenario, outvote the

correct versions which are in the minority.

Although it is true that detected failures are potentially less serious

than undetected failures since control, in the case of detected failures, can

be passed to a higher authority, both are, in fact, failures of the fault

tolerant structure. For applications in which fault-tolerant software is

performing some critical function, we take the conservative position that any

higher authority could not adequately cope with this loss of critical function

and that there is no safe-down state to repair the software (more likely reset

to some initial state). Thus we are concerned with both types of errors, which

are described by coincident errors.

3

Given that coincident errors are potentially devastating to redundant

software systems, it is fundamental to understand and assess the effects of

these errors, both analytically and empirically, on the general strategy of

software redundancy. Hardware designers, to date, have not been concerned with

this issue. The assumption is that hardware components do not share common

design faults but rather it is their independent degradation processes which

mainly contribute to unreliability. Independence, then justifies the use of

combinatorial methods for estimating hardware reliability. In the independence

case, conditions for which redundancy is a better strategy for reducing failure

probability than the use of a single component are well known [6J.

In the case of redundant software, it is suggested in [7J that the

independence model when applied to software components leads to poor

predictions of reliability. Further, the analysis given in this paper shows

that for cases of coincident errors which appear reasonable to expect in

applications, the independence model gives estimates which fail to be

conservative.

Upon recognizing that statistically independent failures among software

components is a questionable assumption, the model suggested in [8J includes a

"correlation" factor. However, it too assumes a form of higher order

independence by representing the probabilities of jOint occurrence of

identical, incorrect output in terms of the probability of pairwise occurrence

of such events. Furthermore, since the probability of identical, incorrect

output among component versions will likely vary with the input, the idea that

all of this complexity can be captured in a single scalar correlation

4

coefficient is questionable. For this' reason, we employ an intensity function

defined on the input space (similar in several ways to a parameter vector)

which permits variation in the probability that software components fail

together. We shall not attempt to evaluate one fault-tolerant technique over

another but rather we shall examine the principle of redundant software as

represented by multiple (i.e., N) versions which are independently developed to

a common set of requirements and then operationally subjected to a perfect

majority voter.

We submit that there are a number of questions which must be answered in

order to provide a basic understanding of the effects of coincident errors on

redundant software. The framework discussed in the present paper does not

require unnecessary assumptions concerning independent failure of software

components; rather a model is derived from assumptions concerning the process

of selecting independently designed software components and testing them on an

input series chosen to emUlate the user environment. In other words, we

believe the model has sufficient generality to warrant conclusions concerning

questions of the following type:

(1) Is an N-Version software structure always more effective at reducing

failure probability than a single version of software? If not, what are

the conditions which cause this?

(2) What are the effects of different intensities of coincident errors on a

general N-Version system?

5

(3) What are the effects of increasing N? Does the failure probability always

increase or decrease with increasing N, as for the independence model used

for hardware, or might there exist an optimal choice of N other than N=l or

N=m? Is there a limit on the effectiveness of fault-tolerance at reducing

the probability of failure?

(4) Does the independence model give a valid estimate of the failure

probability of a redundant N-Version system?

(5) Under what conditions does the assumption of independence hold?

In order to give a framework for evaluating the effectiveness of a fault

tolerant strategy and, in particular, to answer the above questions, we propose

a model based on formalizing the notion of coincident errors. The basic

assumptions of this model are: (i) that independently designed software

components are chosen in a random sample and (ii) each component and each

system is required to execute on a stationary, independent input series. We

derive the failure probability of-a redundant N-Version system and establish

general conditions giving answers to (1), (3), and (5) above. The main

quantities describing the model are: an intensity function defined on the

input space which models the occurrence of coincident errors and a usage

distribution which gives the probabilities of inputs occurring in various

subsets. Also important to our description is an intensity distribution

derived from the intensity function and the usage distribution. The intensity

distribution completely specifies the failure probability of a redundant

system; that is, if the intensity distribution is known or can be estimated,

answers to questions of type (1) - (5) can be given. Since empirical

information concerning the intensity distribution is unavailable, we study the

effects of coincident errors by varying the choice of intensity distributions.

6

Notation

We follow the usual convention in which random variables are denoted by

capital letters and their realizations are denoted by the corresponding lower

case. We also use the'following:

x

Q

v(x)

input set for software components designed to a common

specification;

a variable representing elements of 0;

the usage distribution, a probability measure defined on

(measurable) subsets of 0;

the score function, a binary function distinguishing the

occurrence of correct and incorrect output when a software

component executes on x£O;

9(x) intensity of coincident errors;

E(·) (P(.» mathematical expectation (probability) derived from a product

n

G(y)

probablli ty space as· specified by the two-stage process of

selecting software components at random and testing them on inputs

chosen at random from 0;

average probability of failure of an N-Version system

average probability of failure of a single software component;

number of software comppnents in a multiple version program;

number of software components chosen in a random sample;

intensity distribution induced by the mapping x ~ 9(x) from 0

into [0, 1 J;

left continuous version of G(y);

7

gee)

h(y;N)

2
a

~(y;N)

probability mass function for a discrete intensity distribution;

where m = (N+l)/2;

variance of the intensity distribution;

h(y;N) - y.

2.0 THE MODEL

Suppose we are told that a particular software component, having input set

0, gives incorrect output when executing on inputs in some subset F of 0

and gives correct output when executing on inputs in the complementary set F'.

If all inputs arriving in the user environment belong to F, then the component

is totally unreliable whereas if all inputs arrive in F',_ then the component

is perfectly reliable. It is clear that some structure is required of the

input process in order to evaluate reliability; for example, the inputs could

alternate between F and F' or they may occur randomly in O.

We assume that an input series Xl' X2, ••• , is stationary and independent;

that is, successive inputs occur or are chosen at random in a series of

independent trials according to a common distribution. Some software

reliability models [9] and software testing experiments [10], [llJ implicitly

assume or suggest this structure. The common distribution, say Q, is the usage

distribution which gives the probabilities Q(A) that successive inputs are

chosen at random in subsets A of o.

8

At this stage of the discussion, other than the usage distribution itself,

the full probabilistic structure of an input series is not needed. Our concern

is mainly with the probability that a software component, and a redundant

structure developed from a set of components, fails on successive trials.

Let vex), x£O denote the score function for a particular component: vex)

= 1 (v(x) = 0) if the component gives incorrect (correct) output when

executing on x£O. Note that the subset F of 0 for which the component

gives incorrect output is {x: vex) = 1}. The probability Q(F) that the

particular component fails on successive trials is

Q(F) f v(x)dQ. (1)

Now consider either a physically existing population of programmers who

would design software to a given specification, or a conceptual population

based on what would happen in a large number of repetitions of an experiment

such as one which is designed to study the long term effectiveness of a fault

tolerant strategy. Let Sex) describe the proportion of this population giving

errors in the output when executing on x£O. This intensity function can be

interpreted a number of ways: for example, it models the occurrence of

coincident errors; it gives the probability that a software component, when

chosen at random, fails on a particular input; and it describes a propensity

for software components to fail together when executing on a single input.

If a component is chosen at random, then for fixed x£O, its score function

Vex) is a binary random variable taking values zero and one with probabilities

1 - sex) and sex) and, therefore, its mathematical expectation is

E[V(x)] = sex) for each x£O.

9

As previously stated, (1) gives the probability that a particular component

gives an error in its output. This probability, however, is a random variable

which varies over repeated selections of software components. The mean of its

distribution is

E[!V(x)dQ] !e(x)dQ. (2)

The conceptual distinction between (1) and (2) is analogous to the process

for estimating the reliability of hardware devices. That is, they capture,

respectively, the difference between the reliability of a particular hardware

device and the reliability of a population of devices of its type. While

reliability predictions are actually desired for the device on hand, they are

usually made on the basis of empirical results reported from testing a subset

of the population.

Neither the score function nor its expected value has introduced any

assumptions to our model. However, when describing the reliability of a

redundant structure, we need to state what is meant by independently designed

versions of software components. We shall mean a set of n c9mponents which

is chosen at random from a population so that: (a) {V 1(x); XEO}, {V 2(x); XEO},

... , {V (x); XEO}
n

are independent collections of random variables and (b) for

each XEO, V1(x), V2(x), ••• , Vn(x) are identically distributed random

variables. This assumption describes the usual conditions required of a random

sample. The condition that . .. , V (x)
n

are identically

distributed implies that the probabilities !Vi(X)dQ, i = 1, 2, ••• , n of

10

incorrect outputs, which are themselves random variables, vary according to a

common distribution and the mean of this distribution is Ja(x)dQ, as given

earlier. Note that condition (a) is similar to the condition defining

independence of a collection of stochastic processes indexed by a time

parameter. It is also similar to the process of recording independent vector

measurements for a sample of individuals taken from a human population. We

emphasize that statistical independence in the current context refers only to

the selection process and does not imply statistically independent failures

among software components. This point is discussed further in Section 3.0.

Although empirical studies of fault-tolerant software are not likely to

often be conducted in the strict sense defining a random sample, repetitions of

the version selection process does involve uncertainty concerning the subsets

of n on which the component versions fail. The probabilistic structure

implied by the' conditions defining a random sample gives a meaningful way to

interpret experimental results when the main interest lies in the long term

effectiveness of a fault-tolerant strategy rather than the study of a

particular instance of its application.

Now consider an N-Version (N ~ 1, 3, 5, •••) structure consisting of N

software components, each designed to a common specification and required to

execute on a single input series in the user environment. The outputs given

after each execution are compared and, in case of disagreement, a consensus

result is obtained by majority vote. An N-Version structure fails when

executing on some subset F of n and, as before, this subset is conveniently

described by a score function vex), XEO, which is

11

vex)

where vi(1)(x), vi(2)(x), ••• , Vi(N)(x) is a permutation of the score

functions for the component versions. The second sum in (3) is over all

distinct subsets of {1, 2, ••• , N} and m = (N+1)/2 corresponds to the case of

a redundant system that fails when at least a majori ty of its components fail.

We now state the main result of this Section:

Theorem 1. Under the condition that the component versions are the result of a

random sample and each is required to execute on common inputs chosen at

random, the expected probability of system failure is

N
IE (~)[e(x)]t[l

t=m
(4)

Proof. Upon condi tioning on V 1(0), V 2 (0), ••• , V
N

(0), the probab ility of

failure is Iv(x)dQ wherev(·) "is given by (3). Now taking the expectation

inside the integral and using the independence of V
1

(o), ••• , VN(o) due to

sampling, together with the condition E[Vi(x)] = S(x), i = 1, 2, ••• , N, gives

the desired result.

12

Although the main interest may often lie in the probability, Jv(x)dQ (where

vex) is given by (3», of failure of a particular N-Version system rather than

the population average, PN' as given by (4), the quantity, Jv(x)dQ, will vary

from one application to another and, unless we replace vex) by its expected

value as done in (4), there is no basis for further simplification. This same

point was mentioned earlier when comparing (1) and (2) and, as before, is

analogous to the difference between the reliability of a particular hardware

device and the average reliability for a population of devices of its type.

While sex), x£Q together with N and the usage distribution completely

specify PN' little empirical evidence is available from which to estimate

S(x), x£Q; thus reasonable choices of the intensity to expect in applications

is unclear. For this reason, we reparameterize PN in terms of the following:

h(y;N)

and

G(y) J
{x:S(x) :;;

dQ, -00 < y < 00

y}

(5)

(6)

We shall refer to G(y) as the intensity distribution which is induced by the

mapping x ~ S(x) from Q into [0, 1J.

13

Before proceeding to give a reparameterization of PN' consider the

interpretation of G(y) in the discrete case which arises when 6(x) takes a

finite number of values over subsets of n. Suppose 6(x) = 6i for x£A i

where A1 , A2 , ••. , Ar is a partition of n and suppose the sets giving a

common value under the mapping have been combined and indexed so that 0 $ 6
1

<

62 < ••• < 6r ~ 1. Then, in this case,

G(y) L q., -~ < y < ~
{i: 6

i
~ y!

where qi = Q(A i), i= 1, 2, .•. , r is the probability mass given by the usage

distribution. Since G(y) is right continuous, G(b) - G(a) gives the

probability that inputs are chosen so that the proportion of a population of

components that fail is in the range (a, bJ, a < b (the upper limit, b, is

included in the interval (a,bJ but the lower limit, a, is not included).

For later reference, we restate our earlier result in reparameterized form:

Corollary. Under the conditions stated in the previous theorem,

!h(y; N)dG(y) (8)

where hey; N) is given in (5) and G(y) is given by (6).

The result follows by substitution (e.g., see [12J, p. 43).

14

3.0 INDEPENDENT ERRORS

The assumption that failures occur independently (in a statistical sense)

in hardware components is a widely used and often successful model for

predicting the reliability of hardware devices. Thus, it is tempting to assume

that software components also fail independently and, on this basis, estimate

the failure probability of a redundant N-Version system from

N
(9)

~=m

This gives a computationally convenient formula for which the only

information required is the average failure probability p of the software

components. However, it clearly differs from the representation of PN given

earlier in (4). In this Section we ask whether independence implies a

condition on the intensity distribution which is reasonable to expect in

applications. Also, we ask whether it is correct to interpret a low intensity

as implying statistical independence and a high intensity as implying

statistical dependence in the context of coincident errors.

Consider for the moment only two versions. Suppose, as before, they are

chosen in a random sample and each is required to execute on common inputs

chosen at random from n. The two versions fail independently if

o. (10)

15

We have

and

P(F.)
1

!e(x)dQ, i 1, 2 (11)

(12)

where v (.)
1

and v (0)
2

are the score functions for the individual versions.

Upon taking the expectation inside the integral in (12) and using the

assumption that v (0)
1

and v (0)
2

are the result of a random sample, we have

(13)

Now the condi tion for independence, as stated in (.10), is that

2
Je (x)dQ - Je(x)dQ 0 Je(x)dQ = O. (1 4)

However, the term on the left is the variance,

2 2 a = Jy dG(y) - JydG(y) 0 JydG(y) , (15)

of the intensity distribution and

JydG = Je(x) dQ (16)

is its mean.

The variance of a distribution can equal zero only if the mass of the

distribution is concentrated at a single point. Therefore, we state the

following:

Theorem 2. Under the conditions stated in the previous theorem, a necessary

and sufficient condition for (unconditional) independent failure of the

component versions is that e(x) be constant except on a subset A of n for

which Q(A) = O.

16

Proof. In the general case, independence holds if

or if,

n
II P(F.),
1 1

By substitution, a constant intensity implies that F1 , F2 , ••• , Fn are

independent events. Conversely, independence of F1, F2 , ••• , Fn implies

pairwise independence which in turn implies a constant intensity as shown for

the case n=2.

A few words of explanation are in order to illustrate the difference

between unconditional probabilities which are used in Theorem 2 and conditional

probabilities that are appropriate when the discussion is limited to particular

versions. This difference was discussed earlier following the statement of

Theorem 1 and also when comparing (1) and (2). Suppose that two particular

independently designed versions fail on inputs chosen from the sets

Fi = {x:vi(x) = 1}, i = 1,2. The conditional probability (given the particular

versions) that both versions fail on inputs chosen from n is

and" the individual condi tional probabili ties are

JV.(x)dQ, i
1

1 ,2.

17

and are disjoint sets and if Q(F.»O,i
1

, ,2, then

Thus the two particular versions represent a case of negative (conditional)

dependence. Further these two versions may have been chosen from a population

hav ing constant intensi ty. This does not invalidate the statement of Theorem 2

for the same reason that a coin cannot be declared biased on the basis of

observing two heads in two tosses. Repetitions of the process of selecting

independently. designed versions would typically result in conditional

probabilities which vary over repeated selections and it is the average of

these conditional probabilities to which we refer in Theorem 2.

A constant intensity is probably unreasonable to expect in most

applications. For example, if for some population, none of the component

versions fail on most inputs while a small percentage fail on a small portion

of the inputs, then independence cannot hold.

Now consider whether it is physically plausible that a constant intensity

should imply the independent occurrence of errors in component versions. This

same question can arise in the context of a coin tossing experiment. Suppose

that if two similar coins (software components designed to a common

specification) are tossed (execute) under one condition (on input x,) then the

probabili ties of each giving tails is ;4, but if each is tossed under another

condition (input x2), the probability of each giving tails is .6. Now if the

condition (input) is chosen at random and the pair of coins is tossed, the

,8

probability of both giving tails is 2 2 .5(.4) + .5(.6) = .26 while the

probabilities that they individually give tails is .5(.6) + .5(.4) = .5.

Independence fails to hold (.26 ~ (.5)2) since the probability of tails varies

with the input conditions. Independence in the software context is, therefore,

no less plausible than for other experiments in which the results are given by

a two-stage process.

Even though the notion of a constant intensity might seem unacceptable at

first, we assert that users of the independence model implicity make this

assumption. Given that information concerning the intensity is unavailable,

the most logical choice would be the average intensity fa(x)dQ, which is also

the mean component failure probability. Substituting the average intensity for

sex) in (4) gives the independence model.

Our results show it is incorrect to interpret a low intensity as implying

statistical independence and a high intensity as implying statistical

dependence. Rather the variance 2
a of the intensity distribution gives a

measure of departure from the independence model. However, a more useful

approach may be to compare directly computations given by (8) and (9). This

difference describe~ the effect of assuming independence when predicting 'the

failure probability of an N-Version system. We examine this difference in a

later section.

19

4.0 A SUFFICIENT CONDITION FOR REDUNDANCY TO IMPROVE RELIABILITY

Whereas estimates of PN, N = 1, 3, 5, .•. can be given directly on the

basis of a random sample of independently designed versions, such estimates

would provide little insight concerning the effect of coincident errors.

Moreover, in terms of efficiency, rather than examine a series of parameters to

decide whether redundancy improves reliability, it is desirable to give a

global condition which permits examining the intensity distribution. The

difference in failure probabilities for the N-Versionand single version cases

is

J[h(y;N)-y]dG(y) (17)

where G(y) is the intensity distribution and h(y;N) is given in (5). We

desire a condition on G(y) which insures that (17) would be negative. Here and

in later discussion of this problem we refer only to the case m = (N+1)/2.

Insight into the type of condition required is gained by examining the

integrand ¢(y;N) = h(y;N) - Y appearing in (17). As shown in the Appendix,

~(y;N) is an antisymmetric function (a class of functions studied in [13]),

with center of antisymmetry at .5; that is,

~(.5 + y;N) - ~(.5 - y;N), 0 ~ y ~ .5. (18)

In addition, ~(y;N) is convex over the range 0 ~ y ~ .5, concave over .5 ~ y

S 1, ~(O;N) = ~(.5;N) ~(l;N) = 0, and ~(y;N) lies below (above) the

horizontal axis for 0 < y < .5 (.5 < y <'1). The antisymmetry of ~(y;N)

20

suggests that a sufficient condition for (17) to be negative is when the

intensity distribution assigns greater mass to intervals of the type (.5 - b,

.5 - a], 0 S a < b, than to their symmetrically located counterparts [.5 + a,

.5 + b).

To describe this condition, we require that

for alIOS a < b where G_(y) is given by the left continuous version of

G(y); namely, by

J dQ
{x: e(x) < y}

Note that if equality holds in (19) for alIOS a < b, then G(y) is a

symmetric distribution with center of symmetry at .5. Thus condition (19)

describes an asymmetry of the intensity distribution relative to the center

point of [0, 1J.

The asymmetry condition (19) can also be described by either of the

following conditions:

G(.5 - y) + G_(.5 + y) is nonincreasing in y ~ 0

or

y) is nondecreasing in y S .5.

21

(19)

(20)

(21)

(22)

A sufficient condition under which redundant N-Version (N = 1, 3, 5,

and m (N+1) 12) structures "on the average" have smaller probabili ty of

failure than do single versions is as stated in the following:

Theorem 3. If the intensity distribution satisfies the asymmetry condition

(19), then J ~(y;N)dG S O. Equality holds when G(y) is a symmetric

distribution.

Proof.

Since ~(.5;N) 0,

.5 00

J ~(y;N)dG J ~(y;N) dG + J ~(y;N)dG_
-00 .5

and by substitution, the expression on the right becomes

-J ~(.5 - y;N)dG(.5-y) + J~(.5 + y;N)dG_(.5+y).
o 0

Now using the antisymmetry of ~(y;N) gives

J ~(y;N)dG
00

J ~(.5 + y;N)d[G(.5 - y) + G_(.5 + y)].
o

If G(y) is symmetric then G(.5 - y) + G_(.5 + y) is constant in 'y ~ 0 so

that J~(y;N)dG = O. On the other hand, if condition (19) holds then (21)

implies that G(.5 - y) + G_(.5 + y) assigns a negative measure to each

interval and implies the desired result.

Although asymmetry of the intensi ty distribution is not a necessary

condition, it does describe a wide class of cases for which an N-Version

structure is better than a single version. In particular note that if 1-

22

G(.5) = 0, then the-sufficient condition is met; that is, if 6(x) ~.5 for

x€~ except on a set A for which Q(A) 0, then an N-Version structure gives

a smaller probability of failure than does a strategy based on a single

version.

Whereas for hardware devices the independence model and the average

component failure probability, p, can be used to give a condition under which

redundancy improves reliability, this is not true, in general, for redundant

software subject to coincident errors. In particular, the average component

failure probability being less than .5 does not imply that redundancy decreases

system failure probability as is demonstrated in the next section.

5.0 EFFECTS OF COINCIDENT ERRORS

In this section we examine the effects of coincident errors on the failure

probability, PN' (N = 1,3,5, •..) of an N-Version software structure. Since

cOincidence, in the current context, refers to an intensity function S(x),

X€n, we are confronted with the problem of having to hypothesize a probability

mass function (pmf) , g(S), of the type suggested earlier in (7). We will

assume a highly skewed distribution as in Table 1a to represent a form we

believe is reasonable to expect in applications of software redundancy.

The interpretation of g(S) is the probability of encountering an X€n

whose coincidence intensity is the proportion S. Thus ideally, we have high

probabilities of encountering inputs that result in low values of sand

significantly less probability of encountering the higher intensity

23

coefficients at the tail of the distribution. For the given pmf, we wouid

expect all (i.e. S~O) of the programs of our population to provide correct

outputs on 98.98% of· the input cases. The average faIlure probabIlIty ~or a

single version (which is the same as the mean of t.he Intensity dlstribution) is

-4
p a ESg(S) - 2 X 10 •

8 g(el e I,<e) 12<e) 1
3
(8)

0 .98977 0 .99999 .99997 .99993

.01 .00512 .05 .0000' .00002 .00004

.02 .00256 .10 0 .00001 .00002

.03 .00128 .15 0 0 .00001

• 0_ .0006 •

.05 .00032

.06 .00016 (b)

.07 .00008

.08 .00004

.09 • 00002

.10 .00001

(.)

Table 1. - Probability mass functions for figures 1-6.

24

,
I,
i

i

,

... i

i .

'-0,
',,"
~, ,

¥,~~ :.
-"WI- .

.... ,

,.

... ", ...

,. · .

.
I

I'

· -~ ..

I ;
"

,,,'\ ...

, :,

.,";

.;'~' .. ,
· , . . -
.. '

Effect of Independence Assumption

The expected system failure probability on the basis of the pmf of Table 1a

is shown in Figure 1. Also shown is the result of assuming independent errors .

It is evident that increasing N does substantially reduce the probability of

incorrect output for an N-Version system. A N=5 version system, for example,

will reduce this failure probability by approximately two orders of magnitude

relative to that of a single version .. However, also evident is the fact that

the assumption of independent errors leads to predictions of improvement of

more than five orders of magnitude. This underestimation can be seen another

way: it would take seventeen versions from a population whose average failure

probability is 2 x 10-4 to produce a system with PN < 10-9 rather than the five

versions when independence is assumed .

cu
II-= 10-
~

.~ o Coincident Errors ~odel. as
t:a:.. o Indeperident Errors Model \ " •• 5l
QJ \ "-

.-)

~ CJl \
;.... (i)

CZl n. -- \ 'Q lQ-8 "'" \ ~ Q...

\

1 5 9 13 17 21
N

Figure t. - Effe,ct of independent errors a9s~tion.

25

Effect of Shifted Intensity Distribution

Figure 2 shows the effect of shifting the mass pOints of the intensity

distribution to the right, thereby, increasing the intensity of coincident

errors. The coincident errors increase from a maximum of 5.0 percent for gl<S)

to .15.0 percent for g3<S) as shown in Table lb. This shift has degraded

average component failure probability, p, from 5.0 x 10-7 to 5.5 x 10-6 • If

these components were used in a critical application requiring PN < '0-9 then

twenty-one components would be required from the population with g3<S) compared

to nine components corresponding to g,<S).

-~
==' " .-4 ~,
as

D~ CEo.

• ' " b. ,
CJ , 0-

....J Q " 6:
til
~

, '0, A en
10-8 Q n -- gl '0.. g2

......
~ g3 ... , "

......
c.

~
6) 't::.

" 'n

1 5 9 13 17 21
N

Figure 2. "- Effect of a shifted intensity distribution.

26

'"

The Limiting Probability of System Failure

Here we examine the limiting value of PN as N increases. Using property

(ii) of the Appendix it is easily shown that this limiting value is

1
~im PN • .5[G(.5+)-G(.5-)J + f.5+ dG(e).

This effect is illustrated in Figure 3 using the pmf of Table 1c.

-tJ
I-
:::J-
ttS

tz..

EI
Q)
~

~

~
cr. --

10 xlO- 6
\

8

6

\

\
\
[!}

\

\
\

l-
D- -0- -0- -0- -[3- - 0

e..

4
1 5 9 13 17 21

N

Figure 3. - Limit on Pr {System Failure} •

Although it 1s true for this example that a fault-tolerant approach is

better than a single version of software, the coincidence mass points

(23)

distributed along the interval .5 $ e $ limits the reliability that can be

obtained with fault tolerance. For this example PN can never fall below

5 x 10-6 with any degree of fault tolerance.

27

A Condition For System Degradation In The Limit.

Consider the pmf of Table ld and the corresponding PN shown in Figure 4.

Here we have a case where the value of N corresponding to the minimum failure

probability is not the limiting case (N + =) but rather an intermediate value,

N - 7. Increasing N beyond this point actually degrades the system. What

has been the condition that has brought about this degradation with increasing

N?

....:..-
ClJ
s-.
::::I -.-
~

c:::...
e
c:.>
~

~

~
tn -
....

Q...

10

B

6

4
1 5

s 8 - 8-B-

9 13
N

-EJ- .fJ- -[]- -0

17 21

Figure 4. - Existence of optimal N.

This condition will exist when the failure probability for some ~-Version

system is less than the limiting failure probability, i.e., when for some N,

PN < .5[G(.5+) - G(.5-)] + J dG(e)
.5+

(24)

28

".

Using (8) for PN this can be written as

.5- ~

f h(ajN)dG(a) + f [h(a;N) - 1]dG_(e) < o.
.5+

Using the symmetry, h(e; N)

we have

.5-

1 -h(1 - e; N),

f h(e; N)d[G(e) + G_(1 - e)] < o.

(25)

(26)

The sufficiency condition of Theorem (2) implies that G(e) + G_(1 - e) is

increasing for e:5i.5 which is inconsist'ent wi th inequali ty (26) above.

Therefore~ a necessary condition for a system to degrade in the limit is a

violation of the sufficiency condition of Theorem (2).

This exampl'e illustrates the possibili ty of coincident errors causing an

increase in system failure probability with increasing N. However, the end

resuitis still better than a single version system. Also note that the

sufficiency condition given in Theorem 2 is not a necessary condition for

Effect of Highly Coincident Er.rors

As we have shown earlier, certain intensity functions can result in an N-

Version system being more prone to failure than a single software component.

An example of this, although perhaps highly unlikely, is shown in Figure 5a

(corresponding to the pmf of Table 1e). Here all programs produce correct

output except for a subset A of the input space for which e(x) = e = .6,

29

xEA. Thus for this subset, 60 percent of the population would produce an

error. In this case it is clear why increasing N degrades system

reliability. In the case of the independence model, if the average component

failure probability, p, exceeds .5, it becomes increasingly more difficult with

increasing N to realize a majority of components having correct output.

Similarly, for the coincident error model, if e(x) > .5 for x in some

subset A for which Q(A) > 0, it also becomes increasingly more difficult with

increasing N to realize a majority of components having correct output.

Moreover, conditions could exist when one must specify a value of N in order

to assess whether N-Version is better than a single version. This is

illustrated in Figure 5b (corresponding to the pmf of Table If). Increasing N

initially decreases system failure probability but eventually heads for its

limiting value which is worse than for a single component.

30

-Q,)
I-.
=»

• pot

c.U 8 ~
'.

I!I
(l),
t.Q

>.
CIJ ---.....
t:l..

4
1

-cu
I-.
~
. -
tt!

tz...

Ei
C>

j ~ ,
I

cr.
~

en --....
c..

4 t

1

5 9
N

(a)

13 1 7 21

-8 -8 -8- 8- B- B- 8- -£]- -£]--0

5

Figure 5.

9
N

(b)

13 17

- Effect f o highl . Y coincid . ent errors.

31

21

/

6.0 CONCLUSIONS

The application of redundancy to hardware components has long been

established as an effective methodology for increasing reliability. Its

application to software is a relatively new and untested technology largely

motivated by the need for high reliability in life-critical applications such

as flight control. Thus, at least in the initial stage of studying fault

tolerant software, much interest is likely to lie in evaluating the long term

effectiveness of a fault-tolerant strategy rather than in examining only a

single instance in which, for example, a particular system has smaller failure

probability than its component versions.

In this paper a theoretical basis for the analysis of redundant software

has been developed which directly links certain basic quantities with the

experimental process of testing independently designed software components. We

used this model to study in some detail the case of N-Version redundancy in

which the system fails if at least a majority of its components fail. Our main

conclusion in this case is that if the intensity distribution is asymmetric in

a certain way (see Section 4), then we can ensure that an N-Version strategy is

better than one based on using a single software component •

. This condition differs sharply from what is required on the basis of the

independence model commonly used to estimate the reliability of hardware

devices. In the latter case, a necessary and sufficient condition (assuming an

N-modular redundant system which fails if a majority of its components fail)

32

C I

for redund~ncy to improve reliability over that of a single component is that

the component failure probability be less than .5 and, further, system

reliability would then increase as the number of components is increased. The

same thing cannot be said of .redundant software systems which are subject to

coincident errors (see Section 5).

This only points out one major difference between the type of model needed

for redundant software and the independence model used for hardware devices.

Our model also gives some insight concerning the validity of assuming that

software components fail independently in a statistical sense. A low

coincidence of errors does not describe independence. Rather a constant

intensity characterizes the case of independence and the variance of the

intensity distribution measures departure from the independence model •. We

believe a constant intensity is a condition unlikely to hold in most

applications. Therefore, the combinatorial method, based on independence and

requiring only information concerning the failure probability of component

versions, is unlikely to give accurate estimates when applied to redundant

software systems.

We have illustrated the effects of coincident errors on the failure

probability of redundant software· systems. It is clear that redundancy under

certain conditions can improve reliab 11 i ty. However, the effects of coincident

errors,as a minimum, required an increase in the number of-software components

greater than would be predicted by calculations using the combinatorial method

which assumes independence. Futther, the effects of a.high intensity of

coincident errors can be much mor~ seri6us to the extent of making afa~lt

tolerant approach, on average, worse than using a single version. Here again

33

we must reassert that the assumption we are making is that we equate the

process of developing a single version with that of randomly selecting a

program from a population of programs which have been independently developed.

For purposes of illustration we have postulated in some cases a rather high

intensity of coincident errors. It is clear we need empirical data to truly

assess the effects of these errors on highly reliable software systems.

Additionally, efforts to identify the sources of coincident errors and to

develop methods to reduce their intensity (hopefully that will come with an

understanding of the common source of the errors) will not only benefit the

development of fault-tolerant software but also software engineering in

general.

.'

....

APPENDIX

Here we summarize some properties of h(y;N). A real valued function fey),

say, is antisymmetric [13] on [0, 1] with center at .5 if

f(.5-y) + f(y+.5) 2f (.5), 0 :S y :S .5. (A. 1)

The function h(y;N) given by (5) for N 1, 3, 5, ••• and m = (N+1)/2

can be written

-2 Y k k
h (y ; N) '" N 1 (k !) f u (1-u) d u, 0 :S y :S 1, (A.-2)

o

where k (N-1)/2; this is a well-known formula [14] for a sum of binomial

terms.

The main properties of interest concerning h(y;N) and ~(y;N) h(y;N)-y

are:

(1)

(11)

h(O;N) = 0, h(1;N) = 1 and

as N+"', lim h(y;N) .. 0, .5,

respectively;

h(.5;N) = .5 for N = 1, 2, 3, ... ,
whenever y<.5, y=.5, and y>.5,

(iiI) h(y;N) Is antlsymmetrlcal wIth center at .5;·

(1v) h(y;N) is convex on [0,.5] and is concave on [.5,1];

(v) ~(y;n) Is antlsymmetrical with center at .5 and ~(0;N)=~(.5;N)=~(1;N)=0

for N '" 1, 3, 5, ... ,
(vI) q,(y;N) 1s convex on [0, .5] and 1s concave on [.5,1];

(vii) h(y;N) is nonlncreaslng in N = 1 , 3, 5, for y<'5;

(viiI) h(y;N) is nondecreasing in N '" 1 , 3, 5, for y>.5.

35

Proof. The result (i) follows by substitution and by symmetry of the binomial

distribution when y=.5; (ii) follows from the weak law of large numbers applied

to the binomial distribution; (iv) and (vi) can be seen directly by examining

the second derivatives of h(y;N) and ~(y;N).

To prove (iii), note that symmetry of the integrand in (A.2) gives

where the term on the left is h(.5+y;N) and the term on the right is 1-h(.5-

y;N). Therefore, h(.5+y;N) + ~(.5-y;N) = 1 = 2h(.5;N). Now (v) also follows

by using the antisymmetry of h(y;N) established in (iii).

To prove (vii), let fey) h(y;N+2)/h(y;N) and use (A.2) to get

fey)
Y k+1 k+1 Y k k

c J u (l-u) dul J u (1-u) du
o o

-2 where c = (N+2)(N+1)(k+1) , k=O, 1, 2, The derivative a/ay{f(y)} is

nonnegative when y <.5 providing

y(l-y)
o o

But u(1-u) when ° ~ u ~ y <.5 takes the maximum value y(l-y) so that

y y
J u(l-u)uk(l-u)kdu ~ y(l-y) J k k u (l-u) du
o o

36

which proves that f(y) is nondecreasing for 0 ~ y ~ .5. This proves (vii)

since f(.5) = 1. Since h(.5+y,N) = 1 - h(.5-y;N) and h(.5-y;N) is

nonincreasing in N = 1, 3, 5, ... , we have also proved (viii).

37

REFERENCES

1. Avizienis, A., "Fault Tolerance and Fault Intolerance: Complementary
Approaches to Reliable Comput ing ," Proc. 1975 Int. Conf. Reliable
Software, pp. 458-464.

2. Randell, B., "System Structure for Software Fault Tolerance," IEEE Trans •
. Software Eng., June 1975, pp. 220-232.

3. Weinstock, C. B., "SIFT Design and Analysis of a Fault-Tolerant Computer
for Aircraft Control," Proc. of IEEE, Vol. 66, No. 10, 1978, pp. 1240-
1255.

4. Hopkins, A. L., et al., "FTMP - A Highly Reliable Fault-Tolerant
Multiprocessor for Aircraft," Proc. of IEEE, Vol. 66, No. 10, 1978, pp.
1221-1239.

5. Migneault, G. E., "The Cost of Software Fault Tolerance Techniques," NASA
Technical Memorandum -84546, Sept. 1982.

6. Barlow, R. E., and Proschan;. F., "Statistical Theory of Reliability and
Life Testing," Holt, Rinehart, and Winston, Inc. 1975.

7. Scott, R. K., Gault, J a W., McAllister, D. F., and Wiggs, J.,
"Experimental Validation of Six Fault-Tolerant Software Reliability
Models," IEEE Conf. on Fault-Tolerant Computing, 1984, pp. 102-107.

8. Grnavou, A., Arlat, J., and AVizinienis, A., "Modeling of Software Fault
Tolerance Strategies," Proc. 1980 Pittsburgh Modeling and Simulation
Conf., Pittsburgh, Pennsylvania, May 1980.

9. Li ttlewood, B., "Theories of Software Reliability: How Good Are They and
How Can They Be Improved," IEEE Trans. on Software Eng., Vol. SE-6, No.5,
1980, pp. 489-500.

10. Nagel, P~M., and Skrivan, J. A., "Software Reliability: Repetitive Run
Experimentation and Modeling," NASA CR-165036, 1982.

11. Nagel, P. M., Scholz, ,F. W., and Skrivan, J. A., "Software Reliability:
Additional Investigations into Modeling with Replicated Experiments," NASA
CR-172378, 1984 •.

12. Chung, Kai Lai, "A Course in Probability Theory," New York: Harcourt,
Brace and World Inc., 1968.

13. Van Zwet, W. R., "Convex Transformations of Random Variables," Armsterdam:
Mathematisch Centrum, 1964.

14. Abramowitz, M.·, and Stegun, 1. A., ed., "Handbook of Mathematical
Functions," New York: Dover Publications, Inc., 1965

38

1. Report No. I 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM-86369
4. Title and Subtitle 5. Report Date

A Theoretical Basis For The Analysis Of Redundant January 1985

Software Subj ect To Coincident Errors 6. Performing Organization Code

505-34-13-35 .'
7. Authorlsl 8. Performing Organization Report No.

Dave E. Eckhardt, Jr.
Larry D. Lee 10. Work Unit No.
9. Performing Organization Name and Address

NASA Langley Research Center 11. Contract or Grant No.
Hampton, Virginia 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration
Washington, DC 20546 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Fundamental to the development of redundant software techniques (known as
fault-tolerant software) is an understanding of the impact of multiple joint
occurrences of errors, referred to here as coincident errors. A theoretical
basis for the study of redundant software is developed which (1) provides a
probabilistic framework for empirically evaluating the effectiveness of the
general (N-Version) strategy when component versions are subject to coincident
errors, and (2) permits an analytical study of the effects of these errors.
The basic assumptions of the model are: (i) independently designed software
components are chosen in a random sample and (ii) in the user enVironment, the
system is required to execute on a stationary input series. An intensity
function, called the intensity of coincident errors, has a central role in the
model. This function describes the propensity of a population of programmers
to introduce design faults in such a way that software components fail together
when executing in the user environment. The model is used to give conditions
under which an N-Version system is a better strategy for reducing system
failure probability than relying on a single version of software. In addition,
a condition which limits the effectiveness of a fault-tolerant strategy is
studied, and we ask whether system failure probability varies monotonically
with increasing N or whether an optimal choice of N exists.

17. Key Words (Suggested by Authorlsll 18. Distribution Statement
Fault-Tolerant Software
Redundant Software Reliability Unclassified - Unlimited .;. i

Coincident Errors
Intensity Distribution Subj ect Category - 61 & 65

19. Security Oassif. (of this report) 20. Security Classif. (of this page) 21, No. of Pages 22. Price

Unclassified Unclassified 39 A03

N-lDS For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

