
•

NASA Technical Memorandum 86327

NASA-TM-86327 19850015009

M68000 RNF Text Formatter User's Manual

Ralph W. Will and Carolyn Grantham

March 1985

. 1:"
i :~~, ;:';'~~J

iJd\)(~'-F'(RES::"AR(;i~' TI\' j If<
l.i3RPIF<"(;\ll-\S.i~t

I-:,:.;.:~roj\j, VIRGINiA

NJ\S/\
National />.eronautics and
Space Administration

Langley Research Center
Hampton Virginia 23665

NASA Langley Research Center
Software Development Lab

====:=============

M68000

RNF

TEXT FORMATTER

USER'S MANUAL

==================

Adapted and Modified by:

Ralph W. Will
Carolyn Grantham

MARCH 1985

RNF
MARCH 1985

~
!/YS.- ;z,3J;<~

--------------------------------~

..

NASA Langley Research Center
Software Development Lab

==================
I R N F
I
I Text Formatter
==================

Contents

RNF
MARCH 1985

Section Page Section Page

Introduction
About RNF ••••••••. _...••••
About This Manual .•••••.•

For the Beginning User
RNF Features •••••.•••..•.
Most Commonly Used

Commands .

Basic Commands
How RNF Works
Words ..
Lines .
Spac ing II ••

Paragraphs .•.•..•..••...•
Pages •.•••••. II •••••••••••

Page Format .••..•.•.•..••
Environments ••.•........•
Special Characters

and Flags .

1
2

5

6

7
8
9

10
12
12
13
14

15

Specialized Commands
Figures 31
Footnotes .•••••.••••..•.• 32
Control Sequences <Sub-
scripts and Superscripts) 33

Cross-References ••.•••••• 35
Hyphenation •••••••.••••.. 38
Miscellaneous Commands 39

List of Commands and
Command Format ••..••..•.• 41

Examples 55

Control Statements, Error
Messages, and Utilities 95

How to Run RNF .••...•.•.• 95
The RNF Control Statement 95
Error Messages ..•••.••.•. 96
Printing RNF Output Files 98

Macros
Introduction ...•....•.... 17
Simple Macros .•.....•.... 18
Macros with Parameters •.. 19
Page Format -- the

FRCPAGE Macro ••.••..••. 21

Variables and Expressions
Simple Variables

and Arrays •.•••...••••• 25
Expressions ..•...•...••.• 27
Conditional Execution .••. 28
Looping 30

iii.

Appendices
A: Details of Parameter

Substitution •..•.... 99
B: Standard Macros ...•... 101
c: Formal Expression

Syntax 102
D: Restrictions •..••.•.•• 103
E: Command Summary ...•... 104

NASA Langley Research Center
Software Development Lab

(This page is intentionally blank.>

iv

RNF
MARCH 1985

•

NASA Langley Research Center
Software Development Lab

Introductinn

About RNF

RNF
MARCH 1985

RNF is a program that formats document-oriented text such as this
manual. It is designed to automate many of the tedious elements of
typing, including breaking a document into pages with titles and
page numbers, formatting chapter and section headings, keeping track
of page numbers for use in a table of contents, "justifying" lines
by inserting blanks to give an even right margin, and inserting
figures and footnotes at appropriate places on the page. RNF
greatly facilitates both preparing and modifying a document because
it allows you to concentrate your efforts on the content of the
document instead of its appearance and because it removes the
necessity of retyping text that has not changed.

RNF is not restricted to formatting large and formal documents,
however. Many people find it quick and convenient to produce short
memos and other correspondence using RNF and an interactive editor.

It is important to understand that RNF is a formatter, not an
editor. Both editors and formatters belong to the class of programs
called "text processors". However, editors are used to create text
files and to modify them by inserting new words, deleting old ones,
swapping sentences, and so forth, while formatters like RNF modify
text only by shoving words around to make them fit neatly on the
page. RNF does not modify text by adding, deleting, or replacing
lines or words. When you want to change the document, the
modifications are actually made in the RNF input, using a keypunch
or an interactive editor, and then RNF is executed again to reformat
the document. Producing a finished document will ordinarily require
repeating this process many times.

The original version of RNF was received from the Academic Computer
Center of the University of Washington and runs under CDC NOS at
NASA Langley. The version described here runs on the Renaissance
Operating System (ROS) 2.0 on an M68000 facility in FDCD's Software
Development Laboratory.This manual was adapted from the ACD manual,
RNF - TEXT FORMATTER Users Manual(n-35) , February 1984.

1

NASA Langley Research Center
Software Development Lab

About This Manual

RNF
MARCH 1985

Thi~ manual attempts to serve both as a primer for beginning users
of RNF and as a reference manual for experienced RNF users. The
presentation is organized into ten main sections:

1. Introduction

Which you are reading now.

2. For the Beginning User

A brief summary of RNF's features and most common commands,
intended to introduce you to RNF's basic capabilities as
gently as possible.

3. Basic Commands

A narrative description of RNF's basic commands arranged
roughly in order of complexity, intended to teach the
intermediate user how to get the most utility from them.

4. Macros

An explanation of RNF's macro capability, which lets you do
more formatting with fewer commands.

5. Variables and Expressions

The basics of using arithmetic variables and expressions to
control formatting.

6. Specialized Commands

How to use RNF to produce footnotes, figures, superscripts and
subscripts, cross-references, hyphenation, lists, Roman
numerals, and other assorted formatting effects.

7. List of Commands

Concise descriptions of all RNF commands, in alphabetical
order, intended as a reference guide for experienced users.

8. Examples

Input and output showing the actions of most of RNF's
commands and all of its major features.

2

NASA Langley Research Center
Software Development Lab

9. Control Statements, Error Messages, and Utilities

RNF
MARCH 1985

System control statements and utility programs needed to use
RNF on. ROS in the Software Development Laboratory at NASA
Langley.

10. Appendices

Additional details of certain specialized areas, and a
quick-reference list of commands.

If you are just getting started with RNF, most of this manual won't
make a bit of sense. So, just read the next section, "For the
Beginning User" and look at the first few examples. Then read "How
to Run RNF" in the section "Control Statements , Error Messages, and
Utilities" and dive in and try it--there's nothing like a little
experience.

If that brief introduction gives you enough information to
comfortably handle your problem, fine. But if you're feeling
cramped by the simple commands, then keep reading. The parts of
"Basic Commands" from "How RNF Works" through "Environments" are
mostly background, but they will reinforce what you have already
learned and will fill in the gaps in the earlier presentation of the
common commands. They may also give you some ideas on how to
combine commands to get more interesting results.

When you are ready for some heavy thinking, read the parts on
"Macros" and "Expressions". These provide the real power of RNF,
but they are not easy to use. If you don't have much programming
experience, you can expect to have some trouble understanding them.
The best thing you can do is to imitate ours, try some, and see what
happens--as we said earlier, there's nothing like a little
experience.

This manual assumes that you know nothing about text formatting
programs like RNF but that you are familiar with the ROS operating
system and can use the interactive ROS text editor.

3

NASA Langley Research Center
Software Development Lab

(This page is intentionally blank.)

4

RNF
MARCH 1985

NASA Langley Research Center
Software Development Lab

======================
For the Beginning User
======================

RNF Features

RNF does the following things for you:

RNF
MARCH 1985

Pagination RNF breaks text up into sequentially numbered
pages. The format of a page is up to you--you can
put the page number anywhere you want and you can
have any number of heading lines at the top and
bottom of each page.

Filling With RNF, you don't have to worry about margins or
line length while you are typing the document.
Using margins that you specify, RNF runs together
separate lines of input text to make lines of
output that are more nearly equal in length.
Filling can be turned off if you prefer to format
some parts of the document yourself.

Justification RNF will automatically justify filled lines by
inserting blanks so that the right margin is even.
This can be turned off if you prefer a "ragged
right" margin.

Figures If you have illustrations to paste in, RNF will
leave blocks of space for them at attractive
locations, with the body of the document flowing
around them. For figures containing just text,
such as tables of data, you don't even have to
cut-and-paste. Just put the text of the figure in
the RNF input and RNF will position it neatly on
the page for you.

Footnotes You can embed footnotes in the text and RNF will
automatically move them to the bottom of the page.

RNF can also do hyphenation, via a "phantom hyphen" character, and
will handle superscripts and subscripts on hardcopy terminals that
can move the paper in half-line increments. It can cross-reference
your document and produce a table of contents, and there are also
built-in functions for numbering and titling chapters, sections, and
lists.

5

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

Probably the most powerful feature of RNF is an easy-to-us~ macro
facility that lets you combine built-in functions to create new
commands or tailor old ones to match your application. The macro
facility is particularly useful for redefining the page format, such
as the number of title lines and the position and format of the page
number. Macros are frequently used instead of the built-in chapter,
section, and list features.

The most commonly desired features that RNF does not have are
a) automatic hyphenation (not requiring phantom hyphen characters),
b) automatic generation of an index, c) variable pitch justification
(for those sophisticated terminals that can do that), and d)
multi-column pages.

Most Commonly Used Commands

If you are just getting started with RNF, it may look rather
forbidding. After all, how simple can a program be that requires a
l06-page manual? The answer is that it is as simple as
your application. While you are getting started with RNF, you won't
be needing much of its power and you can get by with only a handful
of commands. The ones you really need are the following;

Margin control;

Spacing:

Paragraphs:

Indented Lines:

.LM, .RM, and .RIGHT

.SP

.P and .pp

. I

"As is" Text and Significant Blanks: .ASIS and the pound sign (#)

Now is a good time to look first at page 55and then Example 1 on
page 56, which illustrates the use of these commands in an RNF input
file. This will also introduce you to the basic structure of an RNF
input file. Tab stops, titling, underlining, and other capabilities
are illustrated in the subsequent examples.

All of the commands illustrated in the examples are described in
detail in the List of Commands starting on page 41.

6

NASA Langley Research Center
Software Development Lab

.==============
Basic Commands
==============

How RNF Works

RNF
MARCH 1985

You can think of RNF as a "programmable typewriter" that reads an
input file, formats it, and writes an output file. The RNF input
file contains all the text you want to appear in the final document
and some RNF commands to control the formatting. As text is read
from the input file, a word at a time, it is assembled into lines.
Each time a new line is finished, RNF checks to be sure that there
is space for it on the current page. If the page is full, RNF
starts a new page by writing a title, subtitle, page number, or
whatever. Then the newly finished line is written to the output
file and the next word is read from the input file. The process
continues until all the input has been read.

RNF commands that control the formatting of the lines and pages are
interspersed with the text in the input file. Many of the commands
simply set parameters that are used to control subsequent
formatting, such as the left and right margins, page length, tab
stops, and so on. Other commands are used to invoke special
formatting functions at the point where the command appears.
Examples of these are commands to start a new paragraph, to force a
page eject, and to insert blank lines.

All of the previous functions are built-in, meaning that they are
simply coded into the RNF program. You can also define commands of
your own, called "macros", that allow you to invoke long sequences
of the built-in functions with a single command. One special macro,
named "FRCPAGE", is used internally by RNF to control what is done
to end one page of the document and start a new one. By redefining
this macro you can have complete control over the formatting of
titles, subtitles, page numbers, etc.

7

NASA Langley Research Center
Software Development Lab

Words

RNF
MARCH 1985

Probably the most important thing to keep in mind when using RNF is
that it does not speak English--as far as RNF is concerned, a "word"
is simply any sequence of nonblank characters. Thus, "word" is a
word, as are "all-this.-hyphenated-stuff" and "(&*S&)".

Blanks in the input file serve to separate words but usually do not
have any significance of their own. RNF simply inserts one blank
between words in the output, and then inserts more blanks as
necessary if the lines are being justified.

On the assumption that it ends a sentence, a word with a period,
question mark, or exclamation point after its last letter or digit
will be followed by two blanks. For example, U.S.A. will
ordinarily be followed by two blanks. (Extra blanks may be inserted
by justification, of course.) You can eliminate the extra blank by
flagging the character that causes it with an underscore. For
example, U.S.A_. will be printed as U.S.A. followed by only one
blank. If the problem occurs frequently (in a table of numbers, for
example), you can turn off the extra blank with the • NOPERIOD
command.

There are several ways for you to explicitly determine the placement
of blanks in the document. The easiest way, for small amounts of
text, is the "significant blank" shown in Example 2 (page 58).
Besides occupying a fixed amount of space, significant blanks also
prevent a word from breaking across two lines. For example,
be###tween will print as be tween, with the "be" always on the
same line as the "tween".

For larger amounts of text, such as a sample computer program, the
easiest approach is to use "as is" text as shown in Example 1 (page
56). It lets you supply text that is already formatted,
so that RNF simply copies it to the document. In rare instances,
you may want to use the .SIG command (usually with .NOF selected
also--see page 10). Both .ASIS and .SIG cause the output to be
spaced like the input, but .ASIS causes subsequent commands to be
ignored while with .SIG subsequent commands are still executed. For
example, you can't do underlining inside "as is" text because
underlining is controlled by a command (.U), but you can underline
following .SIG .

In some cases, it is convenient or necessary to produce a single
output word from two or more input words. One example would be to
create (2], where the brackets are just text and the "2" is the
result of an arithmetic computation. (See page 32 for the source of
this example.) The command that suppresses the blank between two
words (i. e., concatenates two words) is .X ("extend")--see Example
6 on page 68 or almost any macro in this manual. Most simple
documents will not need .X •

8

"

________"IMIoo.o **'WlilIF • t 't! •

NASA Langley Research Center
Software Development Lab

RNF
September 1984

.. Underlining
(page 65) •
interesting
struck) •

and overstrlking are described and shown in Example 6
Notice that overstriking can be used to produce some

graphics like. (the characters X, 0, H, and I over-

A word of caution: the following characters have special meaning to
RNF and should be used with care:

\ # I $. ? 1

Special Characters and Flags, page 15, describe how to control the
use of these characters.

Lines

document is
RNF commands.

justification

The format of lines in the
parameters that can be set by
right margins, the filling and
stops.

controlled by several
These are the left and
flags, and the tab

The left and right margins are set by the .LM and .RM commands,
respectively. The margins can be set either absolutely or relative
to their current position. For example, the command .LM 5 sets the
left margin to column 5, regardless of where it previously was,
while .LM +5 moves it 5 columns to the right and .LM -5 moves it 5
columns to the left. .LM +0 does nothing and .LM 0 is illegal
(there is no column 0). Simple usages of .LM and .RM are shown in
Example 3 (page 58).

Also, you can use any "expression" (see Variables and Expressions,
page. 25) to set the marg ins relative to each other or to another
parameter. For example, the command .RM $$LM+50 sets the right
margin 50 columns away from the current left margin. The use of
expressions is described fully in Variables and Expressions, page
25, but you should keep in mind throughout this manual
that an expression can be used anywhere a command expects a numeric
argument.

Centering (.C) and indentation (.1) are shown in Examples 1 and 2,
respectively (pages 56 and 57). Note that the .C command does not
have to be on the same input line as the text being centered--it
just sets a flag that causes the next line to be centered before it
is printed.

Tab stops are described fully in Example 4 on page 60.

Most documents have to be printed with a sizable blank space at the
left of each page to allow for binding and punching. You can of

9

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

course provide this space with an appropriate .LMsetting, but it is
easier and better to use the special .RIGHT command instead. You
can think of .RIGHT as simply picking up the entire document and
sliding it to the right before printing it. This lets you start
every document with the left margin at "column 1" (the default), and
still have it printed with a blank left margin--see Example 1 for an
illustration (page 56). .

Justification is default; it can be turned off with .NOJ and turned
back on with .J. Filling is also default; it is controlled with
.NOF and .F •

Spacing

RNF input is always single spaced, but the output can be any spacing
you want: single, double, triple, or wider. The spacing is easy to
change and it is common to produce double- or triple-spaced draft
copies and a single-spaced final version.

The overall spacing between output lines is set with the .SP
command; ".SP 1" sets single spacing, ".SP 2" sets double, and so
on. The spacing can be changed within a document, such as to have a
single-spaced excerpt in a double-spaced thesis.

RNF is usually run in filling mode, in which input lines are run
together to make output lines as long as possible without exceeding
the right margin. This is handy for most text, but there are many
situations in which you do not want input lines run together or
would like to explicitly advance to the next output line. Common
examples are when listing a mailing address and when putting titles
on the columns of a table.

To turn off filling, use .NOF, shown in Example 4 (page 62). Fol
lowing .NOF, RNF will advance to the next output line every time it
finishes an input line. The last line of a paragraph is never
filled, even if .F is on.

You can also explicitly advance to the next output line, which is
called a "break" or a "carriage return" depending on how spacing is
handled. The commands are .BR , which ignores spacing, and .CR,
which uses it. For example, in a double spaced document (".SP 2"),
the command .BR will print the current line and leave you positioned
at the start of the very next line on the output page. A .CR will
print the current line and then print a blank line to give double
spacing. In a single spaced document, of course, there is no dif
ference between .BR and .CR .

To save you the trouble
throughout your document,

10

of sprinkling .BR and .CR commands
many commands do a break or a ca~riage

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

•

return before they do anything else. For example, a .PP command
(see Example 3, page 60) starts a new paragraph, but it first does a
.CR to end the current one. Similarly, .B (next paragraph) prints a
blank line after first doing a .BR. The List of Commands starting
on page 41 indicates which commands have implied .BR or .CR commands.

You can insert blank lines in the formatted document with the .B and
.S commands. The difference between them is that .B ignores spacing
whereas .S uses it. For example, in a double spaced document the
command .B 3 will produce 3 blank lines while .S 3 will produce 6.
If the spacing were set to single in a later version of the document
(.SP 1), then both .B 3 and .S 3 would produce 3 blank lines. Both
.B and .S are ignored at the top of a page because it is assumed
that the page eject provides the visual separation intended by the
blank lines. If you want blank lines at the top of a page, just
precede the .S or .B command with a significant blank. (Significant
blanks are shown in Example 2, page 58.)

If RNF is not autoparagraphing (see .AP command--Example 3 page 60),
then a blank line is interpreted as a .B 1 command. This means that
you can get blank lines in your output by simply putting blank lines
in your input at the desired places.

Another way to insert blank lines is with the .VT command. This is
a "vertical tab"--you specify the line number and .VT puts out
enough blank lines to get you there.

Most documents will have sections of text that must be kept together
on one page to protect the continuity or to avoid "widows". (A
widow is a single line of a paragraph left hanging at the top or
bottom of a page.) RNF provides several ways to do this. One
simple command is .TP n ("test page"), where n is the number of
lines you want kept together. This forces a page eject if there are
less than n lines left on the current page, otherwise it does
nothing. .TP does not break the current line--if a page eject is
needed it is deferred until the current output line has been
finished--so you can stick a .TP a few lines before the end of a
paragraph if preventing a widow is important. (RNF automatically
invokes .TP 2 at the beginning of each paragraph.) .TP is a very
common command in macros, particularly for section headers.

Another way to keep text together is to bracket it with the .KEEP
and .ENDKEEP commands. .KEEP is a little more restrictive than .TP
in that .KEEP does break the current line, so it cannot be used in
the middle of a paragraph. However, .KEEP has the advantage that it
does not require you to count lines--RNF does the counting for you .

. TP, .KEEP, and .ENDKEEP are illustrated in Example 4, page 62 .

11

NASA Langley Research Center
Software Development Lab

Paragraphs

RNF
MARCH 1985

The two modes, manual and autoparagraphing (.PP and .AP commands),
are described in Example 3 (page 60). Inside RNF, automatic
paragraphing is implemented by simply generating a .PP command on
your behalf whenever there is a blank in column 1, so the two modes
are exactly the same except for the way a new paragraph is
indicated. You may prefer either, depending on the type of document
and your writing and editing style. Even in autoparagraphing mode,
it may be convenient on occasion to use an explicit .PP to start a
paragraph.

Example 3 also describes .P, the command that determines the format
of the paragraphs. Note especially that the meaning of the indent
parameter depends on whether it is signed. If the indent is
unsigned, then it is interpreted as an absolute column number and
the first line of each paragraph will start in that column
regardless of where the left margin happens to be. If the indent is
signed, then it is interpreted as being relative to the left margin
at the time the paragraph starts. Relative indents are particularly
handy to use if you change the left margin a lot, because they cause
the paragraphs to look the same regardless of the margins.

For example: The command ".P +5 0 3" produces paragraphs indented
fi ve spaces from the left margin, with no blank lines between para
graphs and at least the first three lines of each paragraph on a
page. The command ".P +0 1 3" produces block paragraphs like the
ones in this manual (no indention). The command ".P 15 1 3" would
be very unusual, because it would cause the first line of each para
graph to start in column 15 regardless of the left margin, and
".P 0 1 3" would be illegal--there is no column O.

Note that paragraphs with a "hanging indent" can be specified with a
negative indent or with a column number to the left of the left
margin. Example 3 shows only the negative indent form.

Pages

RNF automatically breaks your document into pages by counting lines,
or you can force a new page at any point with the .PAGE command.

The size of an output page is controlled with the .PS command, which
has two arguments: the number of lines on a page and the width of
the page. The page width specified to .PS is really nothing more
than another way of setting the right margin--it just saves you from
having to put a .RM command at the start of your document.

12

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

In counting the number of lines per page, you should keep in mind
that "line 1" is physically the fourth line on the page, because of
the way that line printers execute a page eject. Thus, the maximum
number of lines on standard ll-inch paper at 6 lines per inch is 63
(11*6-3=63). The default is 57 lines per page, which produces a
1-inch margin at the bottom. This manual uses .PS 57 68 .

When you are using a line printer for output, .PS is the only
command you will ever need. However, if you are using a hardcopy
interactive terminal, then you will also need to use the .LINES
command. The problem that .LINES addresses is that most hardcopy
terminals using continuous forms do not have a "page eject" function
that RNF can use. Since normally some pages may be shorter than
others (if .TP forces a page eject, for example), a hardcopy
terminal will gradually lose alignment between the pages as produced
by RNF and the paper running through the terminal. The cure for
this is to have RNF make each page the same length by adding blank
lines to the end. The .LINES command specifies how many physical
lines each page should contain, including the top, middle, bottom,
and blanks.

The argument to .LINES depends on the size of paper that the
terminal is using and how many lines per inch it prints. For
example, when using 11 inch paper on a terminal that prints at 6
lines per inch, the correct command is ".LINES 66". For 8 1/2 inch
paper at 8 lines per inch, it is ".LINES 68" , and for 8 1/2 inch
paper at 6 lines per inch it is ".LINES 51".

Page Format

The standard page format provided by RNF is as follows:

Lines 1-3:

Line 4:

Line 5:
Lines 6-7:
Lines 8-n:

Blank - This format actually provides 6 blank lines
(a 1-inch margin) because "line 1" is physically
the fourth line on the page.

A title on the left and a page number in Arabic
numerals on the right.

A subtitle
Blank
Your text

The default title and subtitle are blank; they can be set to
something else with the .TITLE and .ST commands, as shown in Example
5 (page 66). The page number is optional; it is present by default
but can be turned off and on with .NONMP and .NMP. Pages are still
counted even when the page number is not being printed. The page
number can be set to a particular value with the .PNO command. It
can be accessed through the predefined variable $$PAGE (see page 25)
and through the .ASSIGNPN command (page 84).

13

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

This default page format is a reasonable compromise for many
applications, particularly draft copies, but almost all polished
documents demand something different. The page format is determined
by a predefined macro named FRCPAGE, and you can get almost any
format you can imagine by writing your own macro. Details on
writing FRCPAGE macros start on page 21, but you'll have to read
about macros in general first (see page 17).

Environments

A feature that contributes greatly to RNF's ease of use is the
ability to save and restore the "environment". The environment is
nothing more than the current settings for most of the flags and
parameters that control formatting. Specifically, the environment
contains the values of the following parameters:

Left margin (.LM), right margin (.RM), paragraph parameters
(.P), spacing (.SP), and tab stops (.TABS, .TAB).

It also contains the current settings of the following flags:

Justification (.J), filling (.F), significance of blanks
(.SIG), underlining (.U), periods in tabbed fields <.DOT), and
hyphenation (.FLAGHYPH).

There are two common uses for saving and restoring the environment.
The first is when you make a lot of changes to formatting parameters
and then want to restore all the old values. In this case, the best
commands to use are the .SAV and .RES commands. The second is when
you want to restore a fixed environment several times to get a known
starting point, such as at the beginning of each chapter of a
document. Here, the best commands to use are .SAVPAG and .RESPAG or
.SAVENV and .RESENV .

The environment-saving commands differ as follows: .SAV and .RES
work with a pushdown stack of environments and can be nested up to
20 levels deep. Each .RES restores the environment that was saved
by the matching .SAV. .SAVENV and .RESENV work with a table of up
to 10 environments that are referenced by name. .SAVENV and .RESENV
don't have to be used in pairs-- typically you .SAVENV a particular
environment once and then .RESENV it many times. .SAVPAG and
.RESPAG are like .SAVENV and .RESENV except that they reference a
special "page environment". The page environment is just the
environment in effect when the first page eject is done--it is
provided for ease of writing FRCPAGE macros.

All the environment commands are very common in macros. See Example
3 (page 60) for an application of .SAV and .RES in normal text. A

14

NASA Langley Research Center
Software Development Lab.

RNF
MARCH 1985

typical use of the environment commands in a FRCPAGE macro is shown
on page 21.

Special Characters and Flags

There are several
of these is under
the corresponding
meaning and is
and the commands

characters that have special meaning to RNF. Each
control of a flag that can be either on or off--if
flag is off, then the character has no special
just one more printable character. The characters

to set their flags are:

Character Name Usage Flag Command Page

underscore escape character .FLAGESC 15
\ backslash overstrike .FLAGOVER 68
pound significant blank .FLAGSIG 58
/ slash phantom hyphen .FLAGHYPH 68
$ dollar (leading) flags variables (none)

period (leading) flags commands (none)
(trailing) ends sentence . PERIOD 8

? question (trailing) ends sentence .PERIOD 8
exclamation (trailing) ends sentence . PERIOD 8

(in column 1) ends "as is" (none)
mode

The phrase
containing
one.

"ends sentence" in the table means that the word
the character will be followed by two blanks instead of

Except for phantom hyphen, all of these flags are on by default.
Any flag can be turned off by prefixing the command with "NO", as in
.NOFLAGSIG and .NOFLAGOVER .

In "as is" text (see Example 1, page 56), all of these characters
are printable.

To use any of these characters as a printable character without
having to clear its flag, simply precede it by the escape character
underscore (_). For example, the RNF input:

The pound character (_#) is a significant blank.

will be printed as:

The pound character (#) is a significant blank.

15

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

For this to work, the escape character must be enabled with .FLAGESC
(which is the default>. Do not use the underscore indiscriminately,
when it precedes a letter, digit, or colon a nonprintable control
code results. Also, when one of the special characters follows a
backslash for overstriking, an underscore is not needed. For
example, the following RNF input line:

An "0" overstruck with a pound sign looks like:##O\#

will be printed as:

An "0" overstruck with a pound sign looks like: •

16

.

NASA Langley Research Center
Software Development Lab

Introduction

Macros

RNF
MARCH 1985

The macro facility is a very basic part of RNF. Macros are used to
do the following:

• Define the page format by adjusting the number and contents of
the header and footer lines, position of the page number, and
so on.

• Extend the basic set of RNF commands (the built-in commands) by
adding macros tailored to a specific application.

Abbreviate commonly used series of RNF commands to reduce
typing and make it easier to change the format of the document.

• Abbreviate commonly used phrases or long words.

The simplest way to think of macros is that a macro is a one-word
abbreviation for a whole line of input. To those of you who are
programmers, a macro is similar in concept to a subroutine or
procedure. The power of macros comes from two additional features:

• The line of input represented by a macro can contain both
commands and text.

· A macro can have "substitutable parameters" that let you change
part of the input represented by the macro at the time the
macro is called.

There are many situations in which a carefully considered macro
definition will save you a great deal of typing, particularly for
formatting tables, lists, and repetitious examples. Macros are also
very useful for setting up headings for chapters, sections,
subsections, and so forth. Some macros that have been found useful
are shown in Examples 9 and 10 (pages 76 and 78). The FRCPAGE macro,
which determines the page format, has a section of its own starting
on page 21.

17

NASA Langley Research Center
Software Development Lab

Simple Macros

RNF
MARCH 1985

There are tW6 steps to using a macro: defining it and calling it~

For example, a macro named "SDL" can be defin~d by the following
command:

.MACRO SDL = Software Development Laboratory

The SDL macro can then be called by simply prefacing it with a
period (.SDL), so that it is in the standard command format, and
plugging it into your input. Whenever RNF encounters this new .SDL
command, it will remove the .SDL and substitute "Software
Development Laboratory". For example, the input line:

RNF: A Text Formatter for .SDL Computers

will be treated exactly as if it read:

RNF: A Text Formatter for Software Development Laboratory
Computers

This example illustrates the simplest type of macro, one with no
substitutable parameters. In general, you can define a macro like
this with the command:

.MACRO name = stuff

where "name" is the name of the macro and "stuff" represents the
actions to be performed by the macro. The entire macro definition
must be contained on one RNF input line. The syntax requires the
blanks to separate everything. The macro name is limited to 10
characters and must start with a letter or a period. The case of
macro names is irrelevant--"xxx", "Xxx", and "XXX" represent the
same macro. "Stuff" can contain almost anything, including text,
commands, or calls to other macros, even macros that haven't been
defined yet. The only restrictions are:

· You can't nest macro definitions. This means simply that a
macro cannot contain another .MACRO command. It is legal and
very common, however, to nest macro calls (i.e., to have one
macro call another).

· All macros must be defined by the time they are actually
called. You can refer to undefined macros when defining
another one, but be sure they are all defined by the time the
calling macro is invoked.

• Macros can't be called recursively (i.e., a macro can't call
itself).

18

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

A macro definition is limited to one line of input. However, you
can imitate a very long macro by simply breaking it up into smaller
macros that are each short enough to fit on a single line, as
follows:

This is a lot of stuff that we would like to
have in a single macro but can't because a
= macro is limited to one line and this is

too much to fit.
= .ONE .TWO .THREE .FOUR

ONE =
TWO.=
THREE
FOUR =
ALLOFIT

. MACRO

. MACRO

. MACRO

. MACRO

. MACRO

The macro call ".ALLOFIT" will then act as if ALLOFIT were defined
to contain all four lines of text.

For almost all purposes (two exceptions will be described later),
macro expansions are considered to take place on the same input line
as the outermost macro call. This means that text following the
macro call can serve as arguments to the final command in the macro.
Thus, one simple but very handy use for macros is to "rename" a
command to make it easier to remember. For example,

.MACRO RIGHTMARG = .RM

can be called with

.RIGHTMARG 65

Obviously, this approach is rather limited. Fortunately, macros
with real substitutable parameters are only a little harder to
define and use, and they are much more powerful.

Macros with Parameters

There are two ways to define macros with parameters:

.MACRO name n = text
and

.MACRO name * = text

The "n" in the first form stands for the number of parameters used
by the macro, which is a number from 1 to 7. In this case, the n
words following the macro call are the parameter values. The "*" in
the second form indicates that the macro has one parameter, which is
the entire remainder of the input line on which the macro is called.

19

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

In the definition of macro "name" the formal parameters are called
"name1", "name2", and so on, for however many parameters were
declared. (In other words, parameter names are formed by appending
a digit to the macro name.~ These parameters are implicitly defined
macros called "parameter macros"1 the macro for which they are
parameters is called their "owner". For example, consider the
following macro definitions:

.MACRO ADDRESS 1 = NASA LaRC, MS .ADDRESS1 , Hampton, VA 23665

.MACRO XXX * = just as .XXX1 mud?

.MACRO SWITCH 2 = two things: .SWITCH2 and .SWITCH1

The first macro, ADDRESS, replaces its argument, .ADDRESS1, with the
first word following ".ADDRESS" when ADDRESS is called. The second
macro, XXX, accepts as an argument everything after ".XXX" in the
call, and accesses it with ".XXX1". For example, the following RNF
input:

My work address is .ADDRESS 1520
Isn't this .XXX clear as

will generate the following output:

My work address is NASA LaRC, MS 1520 , Hampton, VA 23665
Isn't this just as clear as mud?

The third macro defined above, SWITCH, illustrates the fact that
there is no need to use the parameters in the macro definition in
the same order that they appear in the call. (In fact, any
parameter can be used more than once or even not at all.) SWITCH
replaces its arguments, .SWITCHl and .SWITCH2, with the two words
following ".SWITCH" when SWITCH is called. The first of these words
replaces every occurrence of ".SWITCH1" within the macro and the
second replaces every occurrence of ".SWITCH2". Notice how SWITCH
uses its second parameter first and its first parameter second to
perform its function of printing the values of its arguments in
reverse order. For example, the following RNF input:

Consider .SWITCH that this

will generate the following output:

Consider two things: this and that

Some macros with parameters are shown in Examples 10 and 11 (pages
78 and 80).

20

NASA Langley Research Center
Software Development Lab

Page Format -- The FRCPAGE Macro

The page format produced by RNF is entirely under control
having the special name "FRCPAGE". It works like this:
RNF finishes an output line, it checks to see if there is
the line on the current page. If there is, then RNF just
line and goes on to the next one. If there is not, then
the output line to another area for safekeeping and
FRCPAGE macro, which looks something like the following:

.MACRO FRCPAGE = .BOT footer .TOP header .MID

RNF
MARCH 1985

of a macro
Each time
room for

prints the
RNF moves

invokes the

The .BOT command causes RNF to prepare for a footer. This involves
putting out any figures and footnotes that have been queued (see
pages 31 through 33 for a discussion of figures and footnotes).
Subsequent commands, represented by "footer", are then used to
control the formatting of the bottom of the page.

The .TOP command signals the absolute end of text on the page. It
causes RNF to issue enough blank lines and/or carriage control
characters to physically get to the top of the next page. The
commands after .TOP, represented by "header", control formatting
the page header, if any.

The .MID signals the end of the header. .MID prints any figures
that are pending (see Figures, page 31), then prints the output line
that was saved for safekeeping at the beginning of all this
activity. After .MID is done, RNF resumes scanning the input where
it left off.

The default FRCPAGE macro used by RNF to set up the page format
defined on page 13 actually looks like this:

.MACRO FRCPAGE = .BOT .TOP .HD .MID

.MACRO HD = .SAV .RESPAG .B 3 .TITLEl •. PNO .BR .STl .B 2 .RES

.MACRO .PNO = $$PAGE=$$PAGE+l; .IF $$NMP .TAB S$RM .RT $SPAGE

The following is another fairly typical FRCPAGE macro:

.MACRO FRCPAGE = .BOT .FOOT .TOP .HEAD .MID

.MACRO HEAD = .SAV .RESPAG $$PAGE=$$PAGE+1; .B 3 .TOPPN .RES

.MACRO TOPPN = .SP 1 .C $$PAGE .B 3

.MACRO FOOT = .REM no page footer if page number at top

When combined with the commands ".PS 57 58", ".RIGHT 15", and
".SP 2", this FRCPAGE macro will produce output in the format
required by the graduate school for text pages: blank borders of 1.5
inches on the left and 1 inch on all other sides, with the page
number in the center at the top. The page number will be separated
from the text by 1/2 inch (3 blank lines).

21

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

The .SAV, .RESPAG, and .RES commands inside macro HEAD deserve some
comment. The .RESPAG resets the "page environment" (see page 14) so
that .C centers the page number above the page as a whole, not just
above the first line. This is necessary so that the placement of
the page number does not depend on the left and right margins at the
time the page eject happens. Without it, an indented paragraph that
just happened to have a page eject in the middle would move the page
number. The surrounding .SAV and .RES commands save and restore the
environment in effect outside FRCPAGE. Without them, the effects of
.RESPAG would propagate outside FRCPAGE.

In macro TOPPN, the purpose of setting single-spacing (.SP 1) is to
prevent an extra blank line from being generated by the implied .CR
that is part of .C .

There are some restrictions on changing the environment within
FRCPAGE that will be discussed later. For now, let's resume the
example. To get the page number at the bottom of the page in Roman
numerals, the TOPPN and FOOT macros would be altered as follows:

.MACRO TOPPN = .REM nothing extra at top of page

.MACRO FOOT = .SAV .RESPAG .SP 1 .B 3 .C .FMT 4 SSPAGE .RES

The .FMT command is described in detail on page 40. Briefly, .FMT
formats the value of its second argument according to a code given
as its first argument. In this application, the value to put out is
the page number and the 4 says do it in lower case Roman numerals.

Because the footer now requires four extra lines, the page length
must be reduced to .PS 53 58 to get the correct margin below the
page number. Because the header is four lines shorter, however, the
amount of text material on a page is unchanged.

More complicated FRCPAGE macros can produce more interesting
results, particularly if you use some expressions and conditional
execution commands--see Variables and Expressions, page 25. For
example, to get alternating page numbers--odd on the right, even on
the left--you can use the following trick:

.MACRO FOOT = .SAV .RESPAG .B 2 .SETRT .EVENPN .ODDPN .RES

.MACRO SETRT = .TAB $$RM

.MACRO EVENPN = .IF (SSPAGE-(SSPAGE/2)*2).EQ.O SSPAGE

.MACRO OOOPN = .IF ($$PAGE-($SPAGE/2)*2}.NE.0 .RT SSPAGE

This looks much more complicated than it really is. The SETRT macro
simply sets a tab at the right margin for possible later use by
OOOPN. Macros EVENPN and OODPN are then both executed, regardless
of the page number, but only the appropriate one actually produces
any output. Because RNF truncates the result of any division, the
result of evaluating n-(n/2}*2 will be 0 if n is even and 1 if n is
odd. So, for even page numbers, the .IF statement in macro EVENPN
is satisfied and the page number goes out at the left m~rgin.

22

Meanwhile, ODDPN produces no output because its .IF tests
condition. For odd page numbers, the reverse is true,
then puts out the page number via a right-justified tab to
margin.

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

a false
and ODDPN
the right

Conditional execution in the FRCPAGE macro can also make formatting
control easier, by allowing you to define mnemonic commands. For
example, consider the following macro definitions:

.NMP

.VAR $PNP .VAR $PNF

.MACRO FRCPAGE = .BOT .FOOT .TOP .HEAD .MID

.MACRO HEAD = .SAV .RESPAG $$PAGE=$$PAGE+1; .8 3 .TOPPN .RES

.MACRO TOPPN = .IF $PNF.EQ.O .TOPPNA

.MACRO TOPPNA = $PNP=$PNP+l; .IF $$NMP .IF $PNP.GT.1 .SP 1 .C $$PAGE .8 _

.MACRO FOOT = .SAV .RESPAG .FOOTA .RES

.MACRO FOOTA = .IF $PNF.EQ.1 .SP 1 .FOOTB

.MACRO FOOTB = $PNP=$PNP+l; .IF $$NMP .IF $PNP.GT.1 .B 3 .C .FMT 4 $$PAGE

In these macros, the variables $PNP and $PNF are used to control the
presence and location of the page number. $PNP controls the
presence of the page number--if $PNP is set to 0, the page number
will be skipped on the next page and printed thereafter. $PNF
controls the location of the page number--if $PNF is 0, the page
number will be printed in Arabic numerals at the top of the page,
while if $PNF is 1, the page number will be printed in Roman
numerals at the bottom of the page. These formats correspond to the
graduate school requirements for text pages and preliminary pages.

Of course, it is a little hard to remember that "$PNP=O;" prevents
the page number from being printed and "$PNF=1;" causes Roman
numerals at the bottom of the page. So, we define three more macros
simply for their mnemonic value:

.MACRO PRELIMF = $PNF=1; .PS 53 58

.MACRO TEXTF = $PNF=O; .PS 57 58

.MACRO SKIPPN = $PNP=O;

The result of this string of macro definitions is to define a set of
three extremely convenient commands specialized for thesis
formatting:

.PRELIMF causes subsequent page numbers to be printed in Roman
numerals at the bottom of the page.

•

.TEXTF

.SKIPPN

causes subsequent page numbers to be printed in
Arabic numerals at the top of the page .

causes the page number to be skipped on the next
page. The page is still counted, and printing of the
page number will be resumed automatically on
subsequent pages.

23

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

Now that you have seen how to write correct FRCPAGE macros, we must
talk about the restrictions so that you can avoid writing incorrect
ones. First, note that you do not need to make any special effort
to avoid extra page headers and footers at the ends of your
document, because RNF treats the first and last invocations of
FRCPAGE specia·lly. On the first page of the document, FRCPAGE acts
as if it were coded:

.MACRO FRCPAGE = .TOP header .MID

Similarly, the last invocation of FRCPAGE, to do the final page
footer, acts as if it were coded:

.MACRO FRCPAGE = .BOT footer

Thus, you do not have to write .IF statements to explicitly avoid
spurious stuff at the beginning and end of your document-- RNF
handles this for you. However, this special handling does introduce
some restrictions on the use of environment-changing commands within
FRCPAGE. Basically, you cannot make a change in the environment
between .BOT and . TOP (the footer) that is supposed to be undone
between .TOP and .MID (the header). In particular, the following
would not work correctly:

.MACRO FRCPAGE = .BOT .SAV footer .TOP header .RES .MID

The problem
.SAV would
result, the
match it.

with this definition is that, on the first page, the
be skipped because it is between .BOT and .TOP. As a

.RES would be in error because there would be no .SAV to

There are some other restrictions regarding FRCPAGE. The main one
is that the .BOT, .TOP, and .MID commands should not be used outside
FRCPAGE--it is legal but hard to handle. You should be careful to
make .BOT the first command in the macro and .MID the last command.
Certain commands will work correctly before the .BOT and commands
are sometimes legal after the .MID, but both situations are governed
by a plethora of complicated conditions. In general, none of these
usages are checked for validity--mistakes will produce bad output
instead of coherent error messages.

You can call FRCPAGE explicitly yourself, but it is usually better
to use either the the .PAGE or .ENDPAGE commands. .PAGE is the
command usually used--it simulates the sequence .CR .FRCPAGE, which
ends the current page and starts a new one. In a few very
complicated situations where both footers and headers change between
chapters, you may need .ENDPAGE. Its action is to end the current
page but not start a new one. Typically you would use .ENDPAGE to
force a footer, then redefine FRCPAGE to get a new format for the
start of the new chapter.

24

..

NASA Langley Research Center
Software Dev~lopment Lab

=========================
Variables and Expressions
=========================

Simple Variables and Arrays

RNF
MARCH 1985

The ability to do arithmetic on numeric variables is another RNF
feature that contributes greatly to its flexibility. Numeric
variables are very handy (and are used internally) for keeping track
of page numbers, chapter numbers, header levels, and so forth, and
for adjusting formatting parameters such as the margins and tab
stops. For example, the variable $$LM is used internally to hold
the left margin, so the command ".TAB $$LM+10" can be used to set a
tab stop 10 columns from wherever the left margin happens to be.

Variable names begin with a dollar sign ($), followed by up to 10
letters, digits, or dollar signs. The case of variable names is not
significant--$abc and $ABC are the same variable. The first
character after the leading $ cannot be a digit. This restriction
prevents $12 from being interpreted as a variable, which would be a
nuisance.

There are a number of predefined variables used by RNF for various
bookkeeping functions. Notice that all the predefined variables
start with two dollar signs. To avoid problems, you should not
define any variables of your own that begin with two dollar signs.
The predefined variables, their meanings, and the commands that set
them are:

$SPAGE
$$OLNO
$$ILNO
$$LM
$$RM
$$SP
$$NMP
$$CH
$$ATITLE

$$HL

$$LIST

page number
output line number
input line number
left margin
right margin
spacing
page numbering flag
chapter number
automatic titling flag

for chaptering
header level, array of

6 elements
list level, array of

6 elements

(. PNO)
(no command)
(no command)

(. LM)
(. RM, . PS)

(. SP)
(. NMP)
(. CH)

(. ATITLE)

(. HL)

(.LIST, .LE)

These variables can be examined or changed at any time by using them
in expressions. Of course, changing these values will affect the

25

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

operation of the built-in RNF functions that use them--you generally
should use the standard commands rather than changing the values
directly.

To declare variables of your own, use the .VAR command, which has
the format:

.VAR $name
or

.VAR $name = value

Note that the variable name is both declared and used with a leading
dollar sign ($). This is different from macro names, to which you
must add a period when you call them. The function of .VAR is to
allocate space for the variable, give it the specified name, and
initialize its value. The first form initializes the value to zero;
the second form uses the specified value. (More will be said about
this second form later--it has special uses.)

You can declare
variables. If
appears in more
space.

only 200 variables in addition to
a variable is "declared" more

than one .VAR command), it still

the predefined
than once (i.e.,
uses only one

Variables declared with .VAR can hold only a single value. Arrays
can also be declared, by using the .ARRAY command as follows:

.ARRAY $name n

This command declares an n+1 element array named $name. The array
elements are indexed from 0 through n and are referenced as $name[Ol
through $name[nl. The subscript can be any arithmetic expression,
and an array element can be used anywhere that a simple variable
can. If the array subscript is omitted, then the reference is to
the zeroeth element--$name and $name{Ol are exactly the same. It is
very common to take advantage of this fact by using the zeroeth
element of an array as an index into the other elements. For
example, if $name[Ol is set equal to 5, then $name[$namel references
$name[51. This merely avoids your having to define a separate
variable to use as an index--there is no advantage in space or
execution time.

Array space is allocated in the same tables that hold simple
variables, so the n+1 elements of an array count against your total
space of 200 variables.

26

NASA Langley Research Center
Software Development Lab

Expressions

RNF
MARCH 1985

Almost all nontrivial uses for variables and arrays involve
expressions that compute numeric values by combining variables,
numbers, and operators. For the most part, RNF expressions look
like any other arithmetic expressions. The biggest difference is
that RNF expressions cannot have any embedded blanks. For example,
the following are legal expressions:

$$RM
($SIZE-15-$$OLNO) 12
($$PAGE/2)*2

The following is not legal because of the embedded blanks:

$$RM - 15

It is also a good idea to use parentheses freely to eliminate any
ambiguity in expressions involving both multiplication and division.
This is required because RNF evaluates multiplication and division
from right to left--the reverse of the way it is usually done. For
example, the expression $$PAGE/2*2 will be evaluated as
$$PAGE/(2*2) To be interpreted as you would ordinarily expect, it
must be written as _($$PAGE/2)*2 .

Incidentally, all RNF calculations are done in integer mode-
division truncates the result.

Expressions can be used either as
themselves. If an expression
command argument), then its value
sequence:

arguments for RNF commands or by
appears by itself (i.e., is not a
is printed. For example, the

.LM 15 .RM $$LM+50
The current right margin is $$RM .X

will print out "The current right margin is 65." (Recall that the
.X command concatenates two words.)

Expressions occurring by themselves are evaluated only if their
first character is a dollar sign. For example, the expression $A+2
occurring by itself will be evaluated before it is printed; the
expression 2+$A will not be. If $A has the value 3, then $A+2 will
produce "5", while 2+$A will produce "2+$A". In the rare case you
need to force an expression to be evaluated, you can use the syntax
$(expr) or use the .FMT command (see page 40).

27

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

An RNF expression can also be used to assign a new value to a
variable. For example, the expression:

$$PAGE=$$PAGE+1

$$PAGE is the
An assignment

effect. To keep
the expression,

will increment the page number. (Remember that
predefined variable used to hold the'page number.)
like this will also print the new value as a side
the value from being printed, add a semicolon after
as in:

$$PAGE=$$PAGE+l1

As usual, embedded blanks are not permitted~ the semicolon must
immediately follow the expression.

To use the value of a macro argument in an expression, you have to
be a little indirect. The trouble is that RNF's expression
evaluator does not know how to recognize and expand a macro call.
For example, suppose we want to change the value of the predefined
variable $$PAGE using a macro. The obvious solution is to define
the macro as follows:

.MACRO PAGENO 1 = $$PAGE=.PAGEN011

.PAGENO 15

However, this will not work - a call to this macro will simply yield
an error when the expression evaluator encounters the period.

Accessing a macro argument in an expression generally requires two
steps: assign the value to an intermediate variable, then' use that
variable in the expression. For example, the follOWing will work:

.MACRO PAGENO 1 = .VAR $JUNK = .PAGEN01 $ $PAGE=$JUNK 1

.PAGENO 15

Another example of using the value of a macro argument in an
expression can be found in Example 10 on page 78.

Conditional Execution

Expressions can contain logical operations in addition to arithmetic
operations. These logical operations are a little unusual in that
they check logical conditions but return numeric results. A true

28

NASA Langley Research Center
Software Development Lab

RNF
·MARCH 1985

condition is represented by a value of 1, false by a value of O.
For example, the expressions:

.4.EQ.5
(4.EQ.4)+(5.EQ.5)
«4.EQ.4)+(5.EQ.5»*(G.EQ.99)

have values 0, 2, and 0 respectively. The command that checks
"true" and "false" actually checks for nonzero and zero. An
arithmetic multiply (*) ·is equivalent to a logical "and" while an
arithmetic add (+) is equivalent to a logical "or". For logical
"not", there is a special operator, the pound sign (#).

To use the results of these logical operators, there is an .IF
command that controls conditional execution. The syntax for .IF is:

.IF expr anything

where "expr" represents
any legal RNF input.
value of the expression
input line or macro
value of the expression
executed as usual. For

any expression and "anything" is literally
The behavior of .IF is quite simple--if the

is zero, then the entire remainder of the
call containing the .IF is skipped. If the
is nonzero, then the rest of the line is
example:

.IF 1.EQ.1 Print this .IF 2.EQ.1 and this .IF 1.EQ.1 stuff

will produce just "Print this". The first condition is true, so
execution continues, putting out "Print this" and encountering the
second .IF. The second condition is false, so the entire remainder
of the line is skipped and the third .IF is never even checked.

For the purpose of conditional execution, macro expansions are not
considered to be on the same line as the outermost macro. This is
one of the exceptions mentioned in the description of macros. A .IF
testing a false condition will terminate only one level of macro
call. For example, the sequence:

.MACRO INNER = Here .IF 1.NE.1 and there

.MACRO OUTER = .INNER and everywhere

.OUTER else

will produce "Here and everywhere else"--the false .IF terminates
only the innermost macro. Because of this convention, the
expression being tested by the .IF cannot be contained in another
macro~ the expression must immediately follow the .IF on the same
line.

29

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

Conditional execution is usually used in macros to make them more
general. The standard macros, for example, use .IF to test several
flags that are set by other commands. An interesting use of .IF is
shown on page 22, in connection with the FRCPAGE macro and placement
of the page number. Other macros that make use of conditional
execution can be found in Example lion page 80.

Looping

To go along with its arithmetic variables and expressions and its
conditional execution, RNF has a looping command. The command is
".AGAIN"--its action is to cause RNF to start scanning again at the
beginning of the current input line or macro. For example, the
sequence:

.VAR $1

.IF $I.LT,10 $I=$1+1 ,AGAIN

will print
initializes
"$I=$I+1"
terminated
as in:

out "1 2 3 4 5
$I to zero and

is printed each
with a semicolon,}

678910", (Remember that It,VAR $I"
that the value of the expression

time it is evaluated because it is not
To nest loops, you must use macros,

,VAR $1 ,VAR $J
,MACRO DOlT = $I ,X , ,X $J=$J+1 ,IF $J,LT,2 ,AGAIN
$J=O; $I=$I+1; ,DOlT ,IF $I.LT,3 ,AGAIN

The output of this will be "1.1 1.2 2,1 2.2 3,1 3.2". The ,AGAIN
command is mostly useful in macros dealing with sequentially
numbered sections. For example, the built-in ,HL command, which is
described in Example 7 (page 70), can be mimicked by the following
string of macros:

,MACRO HL 1 = ,VAR $HLN = .HLI ,VAR SHLI .HLA .HLB .HLC .HLD .HLE .HLF
,MACRO HLA = ,TP 8 .RESPAG ,B 3 ,IF $HLN.GT,$$HL $$HL[$HLN1=O;
,MACRO HLB = $$HL=$HLN; $$HL[$$HL1=$$HL[$$HL1+1;
,MACRO HLC = .IF $$CH.GT,O $HLI=O; $$CH
,MACRO HLD = .IF $$CH,EQ,O $HLI=l; $$HL[11
,MACRO HLE = $HLI=$HLI+l; ,IF $HLI,LE,$$HL ,X . ,X $$HL[$HLIl ,AGAIN
,MACRO HLF = ,X ## ,X

This string of macros will execute significantly more slowly than
the built-in HL command, but the time spent processing section
headers is almost never significant anyway, If you don't like the
standard ,HL command, you can probably get something you do like by
modifying the above macros and using them instead.

30

•

NASA Langley Research Center
Software Development Lab

====================
Specialized Commands
====================

Figures

RNF
MARCH 1985

The figure facility provided by RNF comes very close to the ideal
that "a formatter should act like a smart typist". It virtually
eliminates any need to cut-and-paste figures containing just text,
such as those shown in Example 12 (page 82). Consider how these
would have been described to a human typist. You probably would say
something like:

"Ok, now here is the text for these two figures. Please
type them up neatly and set them aside, but remember how
many lines they contain. Then, while you are typing the
section that refers to them, look for a place to put the
figures where they will be tidy, such as at the top or
bottom of a page. When you get to a good place, then copy
the figures onto the page just the way you originally
typed them."

Instructions like these might not get you output that you would
consider perfect, but it would certainly be acceptable. If you
wanted to make the document prettier, then you could come back and
give more explicit instructions on where to put the figures in the
final copy, after all the content revisions were in and the
pagination was set.

RNF works the same way. There are two commands, .DEFFIG and
.ENDFIG, that are used to bracket the text of a figure to "define"
it and give it a name. Between .DEFFIG and .ENDFIG, you can put any
sort of formatting commands and text you want--RNF formats output
lines just as usual, except that instead of writing them directly to
the output file it puts them on a scratch file instead. When the
figure is finished (when .ENDFIG is encountered), RNF makes a note
to itself of how many lines the figure contained, then goes back to
whatever it was doing when the .DEFFIG command was encountered.

The output file will show no evidence at this point that anything
has happened--the only effect is that RNF has an extra table entry
and some text salted away on a scratch file. The visible effects
start when the figure is "called" by a .FIG command. At that time,
RNF calculates a good place to put the figure, based on the figure's
size, the current line number, and whether any other figures have
been called but not printed. RNF then makes a note to itself that

31

NASA Langley Research Center
Software Development Lab

"queues" the figure to be printed and goes on
doing. When the selected place is reached. RNF
the output (it is already formatted, remember),
document text that surrounds the figure.

RNF
MARCH 1985

with whatever it was
copies the figure to
and then resumes the

Now go read Example 12 on page 82. Most of the details of using
figures were moved there to make the example long enough to span two
pages.

There are several commands that cannot be used inside a figure. The
main ones are .DEFFIG•• KEEP, . FOOTNOTE. and .TP. .PAGE is allowed
inside a figure--it has no immediate effect. but causes a page eject
after the figure is finally printed.

Footnotes

Footnotes are handled by RNF as a special case of the general figure
facility. The basics of using footnotes are both explained and
illustrated in Example 13. page 86. so you should go read that
immediately.

There is one important restriction on footnotes: they
inside a figure (between .DEFFIG and .ENDFIG).
footnote (between .FOOTNOTE and .ENDNOTE). or inside
(between .KEEP and .ENDKEEP).

cannot be used
inside another
a keep block

If your document has many footnotes. you may wish to define a macro
to take care of numbering them consecutively. so that you can insert
more or delete some painlessly. The following macro would be
typical:

.VAR $FN

.MACRO FN = .FNA .FNB

.MACRO FNA = $FN=$FN+l; .X .BRACKFN .FOOTNOTE .SAV

.MACRO FNB = .RESPAG .LM +4 .I -4 .BRACKFN .X

.MACRO BRACKFN = [.X $FN .X J#

.MACRO ENDFN = .B 1 .RES .ENDNOTE

With these definitions and margins of 6 and 50 (including the page
environment). the following sequence:

This sentence is referenced .. FN This is the stuff
that references the sentence above. Notice how it is
done with a hanging indent .. ENDFN This follows the
referenced sentence .• FN And this is a second footnote .
. ENDFN

32

"

NASA Langley Research Center
Software Development Lab

produces the following output:

This sentence is referenced.ll1 This follows
the referenced sentence.{21

RNF
MARCH 1985

• {11 This is the stuff that
sentence above. Notice
with a hanging indent.

references the
how it is done

[21 And this is a second footnote.

Ordinarily, the footnotes are separated from the nearest main text
above them by two blank lines (independent of spacing). If this is
not suitable for your application, you oan change it by defining a
figure named "FOOTBREAK". For example, invoking the following
macro:

.DEFFIG FOOTBREAK .B 2 -------------------- .B 1 .ENDFIG

will cause the footnotes to be separated from the main text by two
blank lines, a row of dashes, and another blank line.

Control Sequences (Subscripts and Superscripts)

There are many types of devices that can produce output containing
superscripts and subscripts. Most of these are printing terminals
of the "daisy wheel" type, which communicate with the computer over
phone lines at a rate of 30 characters per second. (The name "daisy
wheel" oomes from the shape of the print mechanism.) However,
although all daisy wheel terminals can print superscripts and
subscripts, the way in which a program controls such printing is
different for virtually all of them. Most programs therefore
support only one or a few brands of terminals.

RNF has no restrictions on what brand of terminal you can use.
Superscripts and subscripts are implemented in RNF via a very
general "control sequence" facility, which can also be used to
control other special hardware features such as page ejects.

First, some background is required. All terminals communicate with
the computer using a set of 128 different codes called the "ASCII"
character set (American ~tandard ~ode for Information Interchange).
Of the 128 codes, 95 are used to represent the "printable"
characters--letters, digits, punctuation, and special characters.
The remaining 33 codes are not usually printable, but are used to
control special hardware features, such as moving the paper 1/2 line
to do a superscript. RNF output usually contains only the 95
printable characters, but you can force RNF to put out almost ~~y of

33

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

the other codes (ASCII DELete, code 7F hexidecimal, cannot be
obtained). Thus, you can tailor RNF output to correctly control any
type of terminal by choosing the control sequences needed by that
terminal. •

The way you make RNF put out an ASCII control
two-character combination composed of an
character. For example, the combination "_0"
cause RNF to output an ASCII "ESCape"
hexidecimal. The character following the
which ASCII code is produced, as follows:

code is by using a
underscore and another
(underscore zero) will
character-- code lB

underscore determines

There are some restrictions. The RNF escape character must be
enabled with .FLAGESC. This is the default and you needn't worry
unless you have turned it off with .NOFLAGESC. Control sequences
can't be used in "as is" text (same problem as underlining - see
page 8), and they can't be used in display code output.

There is more to consider, however. Obviously, there is no way for
RNF to infer that the "8" in ESCape-8 is not just another printable
character. RNF will therefore count the "8" (and the ESCape too,
for that matter) as being just another character on the output line.
Unfortunately, this means that the "8" will certainly affect
justification and may even force a new line. The resulting output
would be a little strange.

To solve this dilemma, there is a pair of special RNF commands,
.CTLSEQ and . NOCTLSEQ, that are used to bracket sections of
invisible "text" such as control sequences. When RNF encounters
.CTLSEQ, it stops checking margins and counting characters for
justificaton. Checking and counting is resumed by .NOCTLSEQ. To
avoid having RNF insert extra blanks to separate "words" (even
invisible ones), control sequences are usually concatenated with the
text around them via the .X command.

The following macro definitions illustrate the use of .CTLSEQ,
.NOCTLSEQ and .X. Macros similar to these may be used to produce
additional character sets, printer control characters and to change
character fonts in an RNF output file that is to be printed on the
Data South 220 letter quality printer in the Software Development
Lab at LaRC .

. MACRO FEED = .CTLSEQ _J .NOCTLSEQ .X

.MACRO FONT16 = .CTLSEQ _O$16M .NOCTLSEQ .X

34

..

NASA Langley Research Center
Software Development Lab

.MACRO FONT10 = .CTLSEQ _O$lM .NOCTLSEQ .X

.MACRO TOGREEK = .CTLSEQ _O(G .NOCTLSEQ .X

.MACRO TOASCII = .CTLSEQ _0(8 .NOCTLSEQ .X

For example, the following RNF input

RNF
MARCH 1985

•
.CR .LM +15 .FONT16
Here is an example that selects a new character font for printer
output, executes a line feed .FEED , and selects a new character
set (greek I) •• CR .TOGREEK this line is GREEK - abcdefghijk ••.
•CR .TOASCII
Don't forget to reset the character set (ASCII) and the font size
before continuing the program. .CR .FONT10
.LM -15

will produce the following output

Here is an exaaple that selects a new character font
for printer output, executes a line feed

, and
selects a new character set (greek !).
TalI hINE II GREEK - ABrOEZH8IJK... •
Don't forget to reset the character set (ASCII) and
the font size before continuing the program.

Please note that character fonts should be
note that font changes within a document
print the document in an arbitrary font and
be known at RNF time which font and size to

Cross-References

used with care. Also
remove the capability to
size, since it now must
reset to.

If you work with documents that have to be modified frequently, one
of the most endearing features of RNF is its ability to maintain
accurate cross-referencing and tables of contents no matter how the
pagination changes. In theory, the idea is that you always refer to
other points in the document by name, not by page number, and leave
it to RNF to associate the correct page number with the name. In
practice, there are two ways to handle the association: using
variables and using the .DEF and .REF commands.

Using variables is the more primitive of the two and is probably
easier to understand. It is also cheaper to use, but unfortunately
it is restricted to backward references, in which a named point is
defined before it is referenced. To define a named point using a

35

-NASA Langley Research Center
Software Development Lab

variable, just piak a variable name and insert
commands at the point to which you want to refer:

.VAR $var .ASSIGNPN $var

RNF
MARCH 1985

the following

Then, later in the document, you can use the variable to access the
referenced page number, as in:

•.. as previously described on page $var .X .

If the definition was on page 7, then $var will have the value 7,
and the output produced will be:

.•. as previously described on page 7.

The second method, illustrated in Example 14 (page 88), is to use
the special .REF and .DEF commands. (They are actually macros, but
that will be described a little later.) To define a named point
using .DEF, just pick a name (not a variable name--no dollar sign)
and insert the following command at the point to which you want to
refer:

.DEF name $$PAGE

To reference that definition, you can insert at any point in the
document the command:

.REF name placeholder

The "placeholder" is any string that contains exactly as many
characters as the defined value will have. For example, if name
will have a defined value of "26", then placeholder can be anything
with two characters, such as "xx". The function of the placeholder
is to enable RNF to correctly justify the line containing the
reference. In some cases the length of placeholder will be in
doubt, such as when you are not sure whether the defined point will
be on page 9 or page 10. In those cases, the easiest approach is to
pick one and try it--the situation doesn't come up very often and it
only takes one run to fix it if you miss.

There are several points to remember about .DEF/.REF.

1. There is a limit of 500 defined names with a total
length of 7000 characters for all names and values
combined. There is no limit on the number of
references.

2. Because of a limitation in RNF's design, you cannot
use .RT and .CT to right-tab or center-tab a
reference. The.T command can be used. (This is not
a severe restriction, since you have to know the
length of the reference anyway.)

36

•

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

3. When .REF is used, the next
follow the referenced value.

output will
For example:

immediately

•

"

.DEF JUNK 15
What is the value of .REF JUNK xx ?

will produce:

What is the value of 15?

Notice that the question mark is adjacent to the "5".
In most uses, the reference will be followed by
punctuation, so this action is convenient. In cases
where you would prefer a space left, just follow the
.REF command with a .NOX, as in:

The value of .REF JUNK xx .NOX is meaningless.

To understand the need for placeholder and the REF parameter, you
have to know how .REF and .DEF work. .REF and .DEF are actually
macros -- for ASCII output files their definitions are:

. MACRO El = .ESC

. MACRO E? = .CTLSEQ

. MACRO N? = . NOCTLSEQ

. MACRO 0* = t .X .FMT 1 4

. MACRO R* = * .X .FMT f 18

. MACRO DEF 2 = .E? . E1 .X .Dt .X .DEFl .X . E! .X .DEF2
(continued) .X . E1 .N? .X

•MACRO REF 2 = .E? . El .X .Rt .X .REF1 .X . E! .N? .X .REF2
(continued) .X .E? . E1 .N? .X

In general, these macros are called by:

.DEF name value
and .REF name placeholder

The immediate result is that .DEF and .REF propagate the following
sequences into RNF's output file:

<esc> to name <esc> value <esc>
and <esc> tR name <esc> placeholder <esc>

These sequences are for an ASCII output file; the <esc> represents
an ASCII ESCape.

For .DEF, the entire output is a RNF "control sequence" because it
is surrounded by .CTLSEQ and .NOCTLSEQ commands. RNF therefore
considers it to be invisible and calculates margins and justifi
cation as if the definition were not there. The same is true for
.REF, except that the placeholder is excluded from the control

37

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

sequence and RNF therefore calculates margins and justification to
allow for the number of characters in placeholder. RNF cannot use
the number of characters in the definition because it has no idea at
the time of the reference how many characters that might be. (In
fact, RNF has no idea it is even doing a reference--.REF is just
another macro as far as RNF is concerned.)

With these macro definitions, there is absolutely no restriction on
what "value" can be as long as it can be represented in the .DEF
call by a single word •. (This restriction is imposed by the rules
for macro parameter substitution-- see page 19.) Of course, you can
always represent anything by one word by writing another macro. For
example, to make "value" be the page number expressed in Roman
numerals, you could use:

.MACRO ROMANPN = .FMT 4 $$PAGE

.REF PAGEREF .ROMANPN

Hyphenation

RNF handles hyphenation in a rather crude manner that is just barely
good enough to live with. RNF knows when to hyphenate (at the end
of a line) but does not know where to hyphenate (between syllables).
So, you have to explicitly mark every place that you are willing to
allow hyphenation.

This is done by turning on hyphenation with the .FLAGHYPH command
and marking each place you will accept hyphenation with a "phantom
hyphen" character, the slash (/). When RNF generates its output,
the phantom will be removed if it occurs in the middle of a line and
will turn into a hyphen if it occurs at the end of a line.
Inserting phantom hyphens is clearly no easier than simply breaking
the words yourself and inserting real hyphens, but it does protect
you from the chance that subsequent document changes will move a
word from the end of a line to the middle.

For example, the following RNF input word:

hy/phen/ated

38

..

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

would be printed either with or without hyphens, depending on where
it happened to fallon the output line:

Left margin Middle Right margin
+------------------------------------+

•

iJ ated
phenated

hyphenated hyphen
hy-

RNF will not automatically break a word that is already hyphenated.
If you want to allow "built-in" to break at the hyphen, it must be
coded as "built-lin". The combination "-I" is special-cased to
produce only one hyphen even if the word breaks across two lines.

In "as is" text or if hyphenation is turned off with . NOFLAGHYPH,
the slash is just another printable character. Note that
.NOFLAGHYPH is the default--you must explicitly allow hyphenation by
including a .FLAGHYPH command.

You should not bother marking hyphenation when you are working with
rough drafts, because there will be so many places to mark. Wait
until all the content changes have been made so that the layout is
fixed, then look at the document and pick out particularly bad
places. There will typically be only one or two per paragraph. Fix
those by putting in phantom hyphens and try again. A few more bad
places will appear as the hyphenation allows words to shift around,
so you may have to make two or three passes to make the document
look right.

Miscellaneous Commands

The following commands, although important and convenient, are best
illustrated by example and thus don't need much introduction:

If your document has a hierarchical organization with sections
inside sections, you may like the .HL command for formatting
titles at the various header levels. See Example 7 on page 70.

If you have many numbered lists, you may
cohorts .LE and .ELIST--see Example 8 on

like .LIST
page 74.

and its

If you don't want to
formatting of chapter
Example 7 on page 70.

write
titles,

your own macros to control
then try the .CH command--see

If your document is frequently updated and its readers must be
alerted to changes in its contents, then change bars may be
useful--see Example 15 on page 90.

39

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

If you want to put comments in your RNF input to document some
subtle RNF commands or to identify sections for your own use, then
you need .REM --its syntax is:

anything .REM stuff to be ignored

.REM just causes RNF to skip the remainder of that input line. Any
text or commands before the .REM are processed as usual.

If you need Roman numerals, say for page numbers in an introduction,
then you need the .FMT command. It can also be used to number lists
or sections alphabetically instead of numerically. The syntax is:

.FMT nl n2

.FMT formats the value of n2 according to the format code
by the value of nl. Both nl and n2 may be constants,
expressions, or macros that expand as expressions. Legal
n1 are 0 through 4, with the following meanings:

specified
variables,
values of

n1

o

1

2
3
4

Format n2 as

Arabic numerals (.FMT 0 n2 is the same as just n2
except that it forces n2 to be evaluated.)

upper case alphabetic characters, selected from
the CDC character set by using n2 modulo 64.

lower case alphabetic characters
upper case Roman numerals (I, V, and X only)
lower case Roman numerals (i, v, and x only)

.FMT is illustrated in connection with the FRCPAGE macro on page 22
and is used in Example 10 on page 78.

40

NASA Langley Research Center
Software Development Lab

===================================
List of Commands and Command Format
===================================

RNF
MARCH 1985

• Any sequence of non-blank characters beginning with a period (.) is
taken by RNF to be a command. If the command is not recognized, an
error message is produced. Commands may be freely interspersed with
text, but commands and arguments must be separated from each other
and from other commands and text with blanks. The input ".B.I5" is
not correct--it must be written ".B .I 5". Commas are not valid
command delimiters. The case of a command or a variable name is not
significant--it can be upper, lower, or mixed.

If an argument is indicated, it is
commands that permit a variable
.TABS), .B, and .S. An expression
argument is indicated.

usually mandatory. The only
number of arguments are .TAB (or
can be used anywhere a numeric

Some commands have an implied "break" or "return" as part of their
action. These commands are indicated by flagging them with
 or
<CR> in the left column in the list that follows.

For commands that set parameters or flags, the default value of that
parameter or flag is indicated to the right in parentheses. In all
cases, if .xxx is the command to set a flag, .NOxxx is the command
to clear it.

Except for the leading period to flag commands and the leading
dollar sign to flag variables, all characters that are special to
RNF are under control of flags (e.g., .FLAGESC and .FLAGHYPH). In
all cases, if the corresponding flag is off the character is
printable .

•AGAIN

Looping command--causes RNF to reprocess the current input
line or macro.

.AP

Sets auto-paragraphing mode; turned off by .NOAP .
on, any line with a blank in column 1 is interpreted
command to start a new paragraph. With .AP off
blank lines are interpreted as .B 1 commands .

. ARRAY $name size

(off)

With .AP
as a .PP
(•NOAP) ,

Declares an array variable with size+1
as $name[il with i in the range

elements, referenced
of 0 to size. If no

41

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

subscript appears, the reference is to the zeroeth element.
An array counts as size+1 elements against the limit of 200
variables.

 .ASIS

Terminates
with the
line with
that line
is done •

the current line and starts "as is" mode beginning
next input line. The mode is exited by having a

an exclamation point (I) in column 1 (the rest of
will be skipped). In .ASIS mode, no interpretation

. ASSIGNPN variable

Assigns the "current" page number to the specified variable.
When used within a figure definition, the assignment is
deferred until the figure is actually printed. Also used for
the same function inside a .KEEP/.ENDKEEP block. When used
outside figures and .KEEP blocks, .ASSIGNPN $VAR is exactly
equivalent to $VAR=$SPAGE; •

.ATITLE (off)

Turns on automatic titling, which causes chapter headings as
specified in .CR commands to become the title for subsequent
pages. .ATITLE is exactly equivalent to "$SATITLE=l;" and
.NOTITLE is exactly equivalent to "$$ATITLE=O;"--the variable
$$ATITLE is tested as part of the default .CH macro. Default
is .NOATITLE •

 .B number (1)

Writes blank lines independent of current line spacing until
either number lines have been written or end-of-page is
encountered. Number must be 1 or greater.

• BAR (off)

Indicates that this document will have modified sections
flagged with "change bars" in the left margin. .BAR causes
the document to be shifted three columns to the right to make
space for the bars. The change bars themselves are turned on
and off with .BB and .EB •

. BB

Turns on change bars. Must be preceded by a .BAR command.
Change bars are turned off with .EB .

. BOT

Used only within the .FRCPAGE macro, .BOT puts out a bottom
of-page figure if one is pending and the footnotes scheduled

42

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

•

for this page, and sets the internal page size to infinite so
that further output will continue on the same page .

• BR

•

**** This command
Break causes
printed without
selected).

<CR> .C

is temporarily a DO NOTHING
the current output line

justification (but with

COMMAND ****
(if any) to be

centering, if

Causes the next output line to be centered between the left
and right margins at the time the line is printed •

• CH text

Standard macro that does a page eject, restores the page
environment, skips 12 lines, centers the word CHAPTER, leaves
two blank lines, centers the text supplied in the call, and
leaves three more blank lines. (See Example 7, page 70.) If
.ATITLE is on, also sets the page title to the text supplied
in the .CH call •

•CR

Carriage return -- causes a break followed by the number of
lines selected by .SP . This command is automatically invoked
after each line is justified and printed. In rare cases it
can be useful to define a macro named .CR, in which case that
macro will be invoked at the end of each line •

• CT

Center tab -- causes the next output word to be centered on
the next tab stop .

. CTLSEQ

Starts a control sequence. As far as RNF is concerned, a
"control sequence" is simply any string of characters that
are not to be counted for filling and right-justification, on
the assumption that they will be eaten by the output device
and will not be printed. .NOCTLSEQ terminates the control
sequence. Usually used for device-control such as
superscripts and subscripts .

•DEF name value

Standard macro for cross-referencing. Defines a name that
can be used by .REF .

43

NASA Langley Research Center
Software Development Lab

<CR> .DEFFIG name

RNF
MARCH 1985

Defines a figure~ terminated by .ENDFIG. Figures are called
for printing by .FIG and .FIGHERE. .DEFFIG does not alter
the environment and does not break the output line.

. DOT (off)

Causes all following .T, .RT, and .CT commands to fill with
dots (periods) instead of spaces. A blank is always left
before and after the string of dots. .NODOT cancels .DOT .

. EB

Turns off change bars (.BB turns them on).

<CR> .ELIST

Terminates the current list. Must be preceded by .LIST .

. ENDFIG

Terminates a figure definition .

. ENDKEEP

Ends a .KEEP block (see .KEEP) .

. ENDNOTE

Terminates a footnote.

<CR> .ENDPAGE

Terminates the current page but does not start a new one
(c.f. .PAGE, which ends the current page but also starts a
new one). Used for switching header and footer formats in
the middle of a document by having .ENDPAGE precede the
redefinition of the .FRCPAGE macro. There is an implied
.ENDPAGE at end-of-input .

. ESC

Inserts an escape character(HEX 1B) into the output file.

.F (on)

44

Turns on filling, which runs together input lines to make
output lines that are as long as possible without exceeding
the right margin.

NASA Langley Research Center
Software Development Lab

.FIG type

RNF
MARCH 1985

"

Calls for a "figure" to be put out. The "type" parameter is
either a name (an alphanumeric string) or a number. If it is
a number, then the figure will consist of that many blank
lines. If it is a name, then the figure must have been
previously defined by a .D~FFIG/.ENDFIG sequence. .FIG
always puts the figure at the top or bottom of a page, never
in the middle-- c.f .. FIGHERE .

. FIGHERE name

Same as .FIG, except that .FIGHERE puts out the figure
immediately if there is room, instead of waiting for top or
bottom of page. Used when a document is nearing completion
and you can tell that a figure would look better in the
middle of a page instead of at the top or bottom .

. FIGLINES name Svar

Following a figure definition, assigns to Svar the number of
lines in the figure. Used to determine line counts for
positioning a figure on a page (e.g., centered).

.FLAGESC (on)

Causes the underscore character to mean either "literal" or
"control". If .FLAGESC is on and the character after the
underscore is in the range of ":" through "4", then RNF will
output an ASCII control code in the range of NUL (OOOB)
through US (037B). An ASCII ESC is thus represented as _0 .
If the character following the underscore is not in that
range (i.e., is a special character), then RNF simply puts
out the character without attempting to interpret it. The
most common use for is to print a character that would
otherwise have some special meaning, e.g. if .FLAGSIG is on,
then # must be coded in the input as _# •

. FLAGHYPH (off)

Causes the character to be interpreted as a phantom hyphen .

• FLAGOVER

Causes the \ character to mean overstrike .

• FLAGSIG

Causes the # character to mean significant blank.

(on)

(on)

45

NASA Langley Research Center
Software Development Lab

<CR> .FLUSHF1GS

RNF
MARCH 1985

Causes all figures that have been called with .FIG and all
outstanding footnotes to be printed before any more of the
body of the document is output. .FLUSHFIGS is usually used
at the end of a chapter. to prevent late-called figures from
propagating into the beginning of the next chapter. There is
an implied .FLOSHFIGS at end-of-input •

. FMT n1 n2

Formats the value of n2 according to the format code
specified by n1. Both n1 and n2 may be macros or
expressions. Legal values of n1 are 0 through 4. where:
O=Arabic numerals; l=upper case alphabetic characters;
2=lower case alphabetic characters; 3=upper case Roman
numerals; and 4=10wer case Roman numerals .

. FOOTNOTE

Defines a footnote and queues it to appear at the bottom of
the page if it will fit. or the bottom of the next if it
won't go on the current page. The text of the footnote is
everything between the .FOOTNOTE and the .ENDNOTE .

<CR> .HL n heading

Begins a new section with the heading specified and
automatically numbers it. The n in the command must be in
the range 1 to 5. Section numbers have the form i.j.k.l.m.
If a .CH command preceded the .HL command. i is the chapter
number; otherwise it is the number of .HL 1 commands. Within
Chapter 2, the sequence .HL 1•. HL 2•. HL 3, .HL 3•. HL 2 •
. HL 1 produces sections numbered 2.1, 2.1.1, 2.1.1.1,
2.1.1.3, 2.1.2, and 2.2. Three blank lines are left before
each section and two blank lines follow the section header .
. HL restores the page environment.

<CR> .1 n

Indents
same as

.IBL

the next line by n columns.
in the .LM command.

The meaning of n is the

(true)

Includes blank lines in the output file just as they are
found in the input file. This command was created to take
care of an ROS editor convention which requires a blank line
between paragraphs. RNF considers a blank line between
paragraphs as a seperate paragraph and therefore prints it as
a paragraph with spacing above and below, thereby introducing
2 or more extra blank lines depending on the specified
spacing. To retain the ROS spacing use .NOIBL and set

46

NASA Langley Research Center
Software Development Lab

paragraph spacing to 1 .

. IF expression

RNF
MARCH 1985

Executes the rest of the input line if the value of the
expression is nonzero, otherwise skips the rest of the input
line. Usually used within macro bodies to test conditions.
If the desired conditional operations are too long to fit on
one line, they can be defined as a macro and that macro
called behind the .!F .

. INCLUDE filename

Allows additional text files to be included as part of the
RNF input file. . INCLUDE interrupts the reading of the
current file and reads the file to be included, 'filename'.
After the included file is read RNF resumes reading the
current file right where it left off. The .INCLUDE command
can be nested to any level. The only restriction is it
cannot be used recursively .

. J (on)

•

Sets the justification flag so that all future lines that are
filled are right-justified by inserting blanks. Lines that
are broken, either by .BR or by a command with an implied .BR
or .CR, are never justified.

 .KEEP

Starts a block of text that is to be kept together even if it
has to be printed on the next page. The block is ended with
.ENDKEEP ; you do not have to count the lines. .KEEP cannot
be used in the middle of a paragraph because it forces a
break. .KEEP is illegal (and logically redundant) inside a
figure. See also .TP .

<CR> .LE

Starts a new list element. Must be preceded by .LIST .

. LINES n (0)

Sets the physical page length to n lines. .TOP produces
blank lines to fill out the page to this many lines if neces
sary. .LINES is not needed for line printer output. For
hard-copy terminals, set n to the number of physical lines on
a page (e.g., for 8 1/2 inch paper at 6 lines per inch, use
n=51).

47

NASA Langley Research Center
Software Development Lab

<CR> .LIST spacing [indent)

RNF
MARCH 1985

Starts a new list; a list is ended with the .ELIST command.
Lists may be nested up to 5 deep. Within the list, each list
element is preceded by an .LE command. The elements are
numbered starting with 1 and are separated by ~spacing" blank
lines. Each list is indented on the left.The "ident"
specification is optional. It permits the user to specify
the number of spaces the list level is to be indented
relative to the previous level. The default "indent" is 4
spaces. The outermost list is indented 5 + the "indent" spaces
with other nested lists indented by "indent" spaces.

.LM value (1)

Resets the left margin. The value parameter can be any of
the forms n, +n, or -n, or any macro or expression that
evaluates to one of those forms (an expression is always
unsigned). If the value is an unsigned number, then the left
margin is set to that value, otherwise it is set to its
current position plus the value (i.e., .LM +5 moves the
margin 5 spaces right, .LM -5 moves it left) .

. MACRO •.•

Defines a macro . .MACRO can have any of the following forms:

. MACRO name = body

.MACRO name n = body

.MACRO name * = body

The first form defines a macro that has no parameters. The
second form defines a macro that has n parameters (1<=n<=8);
when the macro is invoked the next n "words" on the line are
taken to be the actual parameter values. The third form
defines a macro with one argument--the entire remainder of
the line that calls it. The parameters are implicitly
defined macros with names of namel through name8 (or however
many parameters there are). Parameter macros are initially
defined as null; they are redefined when their owner macro is
called. A parameter macro can be referenced at any time,
even outside a call to its owner.

 .MID

Used only within the .FRCPAGE macro. .MIO puts out a top
of-page figure if one is pending, then restores the output
line that was saved when .FRCPAGE was invoked because of page
full and resumes the body of the document.

48

Turns on page numbering. .NMP is exactly equivalent to
"$$NMP=l;" and .NONMP is exactly equivalent to "$$NMP=O;"-
the effect of turning on or off page numbering is because
$$NMP is tested as part of the standard .FRCPAGE macro.

..

NASA Langley Research Center
Software Development Lab

.NMP

.P indent spacing test

RNF
MARCH 1985

(on)

(+0 1 3)

called outside a figure
equivalent to .CR .FRCPAGE •
has no immediate effect, but
after the figure is actually

Sets parameters for paragraphing. The "indent" parameter
sets the indent for the first line of a paragraph; it can be
either signed or unsigned and is interpreted the same way as
the argument to .LM. The "spacing" parameter sets the
number of blank lines between paragraphs (min 0). The "test"
parameter sets the minimum number of lines that must remain
on the page at the time the paragraph starts (i.e., an
implicit .TP 2 is done at the start of each paragraph).
Paragraphs themselves are delimited either by .PP commands
or, if .AP is set, by lines with a blank in column 1.

<CR> .PAGE

Causes a page eject. When
definition, • PAGE is exactly
When used inside a figure, .PAGE
causes a page eject immediately
printed.

.PERIOD (on)

Causes two blanks after each occurrence of the characters
period (.), question mark (?), and exclamation point (1) •

• PNO n

Sets the page number of the next page to n.
equivalent to $$PAGE=n-1; .

<CR> . PP

.PNO is exactly

Starts a new paragraph. If .AP is set, new paragraphs can
also be started by a line with a blank in column 1. Note
that .PP only starts a new paragraph--paragraphing parameters
are set by the .P command •

• .PS nlines ncolumns (57 72)

•
Sets page size. Sets the right margin to ncolumns (which
must be an unsigned number, c.f •. RM) and causes the FRCPAGE
macro to be invoked after each nlines of output is produced.
Note that this "page size" does not include any footer lines
generated by FRCPAGE (between .BOT and .TOP), so output pages

49

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

will contain more than nlines lines of output if a footer is
present. C.f •• LINES •

•REF name placeholder

Standard macro for cross-referencing. References a name
defined by .DEF. The reference can be before or after the
definition. Placeholder is any string with as many
characters as the corresponding value in .DEF .

• REM

Remark; causes the remainder of the input line to be ignored .

. RES

Restores the environment by popping it from the environment
stack; the current environment is lost. .RES is the opposite
of .SAV •

. RESENV name

Restores the environment from the specified name .

•RESPAG

Restores the "page environment", which was stored by the last
.SAVPAG command or, if no .SAVPAG command has appeared, by
the first page eject .

. RIGHT n (0)

Causes the entire document to be shifted right by n spaces.
This command is extremely useful for producing output that is
to be printed instead of examined at a terminal, because it
allows you to physically shift the document without having to
go through and adjust all your .LM and .RM commands. For
example, if .RIGHT 10 is in effect, then .LM 1 will result in
the first character being physically in column 11 of the
output .

. RM value (72)

Resets the right margin. See the .LM command for syntax .

•RT

Right tab; causes the next symbol to be right-justified to
the next tab stop. Used for lining up columns of numbers.

50

NASA Langley Research Center
Software Development Lab

.<CR> . S number

RNF
MARCH 1985

Space: similar to .B except that .S acknowledges the current
spacing set by .SP ;

.SAV

Saves the current environment by pushing it onto a stack
(maximum of 20 environments). The opposite of .SAV is .RES .

. SAVENV name

Saves the current environment under the specified name (up to
10 different names can be used) .

. SAVPAG

Stores the current environment into the "page environment",
from which it can be retrieved via the .RESPAG command.

.SIG (off)

Indicates that all blanks in the input text are significant:
turned off by .NOSIG. Having .SIG on is very similar to
being in .ASIS mode except that commands and special
characters are still interpreted. .SIG is the only way to
underline in "unformatted" text, since .U will not be
interpreted in .ASIS mode. When .SIG is on, command
arguments must be separated from the command and from each
other by exactly one blank .

. SP number (1)

Sets the interline spacing, where a value of 1 gives single
spacing, 2 gives double, and so on .

. ST text

Sets the subtitle for all successive pages. .ST interfaces
to the standard FRCPAGE macro: if you redefine FRCPAGE then
.ST may not work .

. STANDARD

Sets up the standard enviroment for RNF operations. Standard
command settings are shown below:

.AC off .FLAGHYPH off

.AP off .FLAGOVER on

.ATITLE off .FLAGSIG on

.BAR off.J on

.DOT off .PEMOD on

.F on .SIG off

.FLAGSC on .USB on

51

NASA Langley Research Center
Software Development Lab

.SUP

RNF
MARCH 1985

Very rarely useful; causes the current output line to be
discarded (not printed) ..

. T

Tab--advances to the next tab stop •

. TAB c1 c2 ... c16 (no tabs)

Clears all tabs and sets new tab stops at the indicated
columns .

. TABS ...

Same as .TAB

.TITLE text

Sets the title for all successive pages. .TITLE interfaces
to the standard FRCPAGE macro; if you redefine FRCPAGE then
.TITLE may not work.

 .TOP

Used only within the .FRCPAGE macro, .TOP finishes the
previous page by writing enough lines to fill out the, count
specified by ,LINES and starts the next line with carriage
control to cause a page eject on a line printer. This first
line is numbered 1, though it will usually be physically line
4 on the page .

. TP n

Test page--if fewer than n lines remain on the page (allowing
for spacing set by .SP), then do a page eject, otherwise do
nothing. ,TP does not break the current line--the page eject
is deferred until the current line is finished .

. U

Starts underlining, which is turned off by .NOU. All
characters output between the ,U and .NOU commands will be
underlined except for blanks. Significant blanks will be
underlined if and only if .USB is on.

.USB (on)

Causes significant blanks to be underlined when .U is on.
This is the default; .NOUSB turns it off.

52

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

.VAR $name or .VAR $name = value

•

Declares a single-valued variable which can be used in
subsequent expressions. The value.is initialized to zero in
the first form. In the second form, value can be any
expression or macro that evaluates to an expression.

<CR> .VT n

Vertical tab--issues enough blank lines to make the next
output be on line n •

. X

Extend--causes the first character output after the .X to
immediately follow the last character output before the .X .
That is, it concatenates the word preceeding the .X with the
word following the .X. An outstanding .X can be canceled by
.NOX (usually after a macro sets .X when you don't want it).

53

NASA Langley Research Center
Software Development Lab

(This page is intentionally blank.)

54

RNF
MARCH 1985

..

..

"NASA Langley Research ~enter

Software Development Lab

========
Examples
========

RNF
September 1984

The following examples
its major features.
difficulty--Examples 1
simple applications.

illustrate most of RNF's commands and all of
They are arranged roughly in order of

through 3 will show you enough to use RNF for

In most of these examples, an RNF input file is presented followed
by the corresponding RNF output. The format of the examples may be
somewhat distracting. Please note carefully that the text of each
example is, in fact, an explanation of what the example is
illustrating. This means that you are reading what is being
operated on by RNF. (Actually, this entire report is written in
RNF.) You should, therefore, read the "RNF OUTPUT" sections of the
examples and refer only to the preceeding input to see how the RNF
commands are used. The RNF output(which you are reading) may then
be referred to in order to see the effect of the RNF command. The
examples are intended as comprehensive, detailed reference manual
for someone who is actually writing RNF code and will probably
represent overkill to the person who simply wants to determine the
features and capabilities of RNF. All examples were prepared on
ASCII terminals at an M68000 machine with a ROS operatin9 system.

List of Examples

Example Page

..

1. Common Commands ••.••.•••..••.•..•.........•...• 56
2. Indention and Significant Blanks •.............. 58
3. Paragraphing 60
4. Tab Stops 62
5. Paging Controls 66
6. Underlining, Overstriking, and Hyphenation 68
7. Header Levels and Chapters <.HL and .CH) 70
8. Lists <.LIST, .LE, and .ELIST) 74
9. Some Macros •.••••.••.••...••••..•••....•..•.••. 76

10. More Macros•...••..•••...•..............•. 78
11. Macros For This Manual 80
12. Figures 82
13. Footnotes 86
14. Cross-References 88
15. Change Bars 90
16. Including Blank Lines <.IBL) 92

55

NASA Langley Research Center
Software Development Lab

Example 1: Common Commands

RNF
MARCH 1985

.LM 1 .RM 65 .SP 1 .P +3 1 3

.C RNF .C Input file

.PP A RNF input file consists of a sequence of words
and commands separated by blanks. A "word" is any sequence
characters that does not contain a blank, Any word that
starts with a period and is not a number is a command.
For example, _.1 is a command but .234 is not. (A word that starts
with underscore/period is not a command.)
.NOJ .PP
RNF gathers words together into
lines, which start at the left margin unless they start a paragraph
or are indented with a _.I command. Normally, RNF justifies lines by
inserting blanks, but this can be turned off with a _.NOJ command.
To insert tables or examples, the simplest way is to use "asis" text:
.ASIS

1. Precede the table with an .ASIS command.
2. Type the table exactly as you want it to appear in

the output. RNF does not reformat it at all.
3. Follow the table with a line containing just an

exclamation point in column 1.

******************* RNF OUTPUT STARTS ON NEXT PAGE

56

NASA Langley Research Center
Software Development Lab

Example 1 (continued)

RNF
Input file

RNF
MARCH 1985

•

A RNF input file consists of a sequence of words and commands
separated by blanks. A "word" is any sequence characters that
does not contain a blank. Any word that starts with a period and
is not a number is a command. For example, .I is a command but
.234 is not. (A word that starts with underscore/period is not a
command.)

RNF gathers words together into lines, which start at the left
margin unless they start a paragraph or are indented with a .I
command. Normally, RNF justifies lines by inserting blanks, but
this can be turned off with a .NOJ command. To insert tables or
examples, the simplest way is to use "asis" text:

1. Precede the table with an .ASIS command.
2. Type the table exactly as you want it to appear in

the output. RNF does not reformat it at all.
3. Follow the table with a line containing just an

exclamation point in column 1 •

57

NASA Langley Research Center
Software Development Lab

Example 2: Indention and Significant Blanks

.P +0 1 3

.PP To indent a single line, use the _.1 command:

RNF
MARCH 1985

1.#Use the _.B or _.S commands .
2.#Put a blank line in the input (assuming that you are
#####not auto-paragraphing) .

.1 +5 This sentence is indented 5 spaces .
• PP When using _.I, don't forget the plus sign (+) in front of the
number--if the plus sign isn't there the number will be treated
as a column number instead of an indent .
• PP There are two easy ways to get blank lines in the output:

• 1 +5
.I +5
. 1 +5
.B 5
One easy way to force blank characters in the output is by
using the "significant blank" character, the pound sign (_#).
The pound character acts like any other character during filling
and justification, but is replaced by a blank just before the
line is printed.

******************* RNF OUTPUT STARTS ON NEXT PAGE

58

..

NASA Langley Research Center
Software Development Lab

Example 2 (continued)

To indent a single line, use the .r command:

This sentence is indented 5 spaces.

RNF
MARCH 1985

When using .I, don't forget the plus sign (+) in front of the
number--if the plus sign isn't there the number will be treated as a
column number instead of an indent.

There are two easy ways to get blank lines in the output:

1. Use the .B or .S commands.
2. Put a blank line in the input (assuming that you are

not auto-paragraphing).

•

One easy way to force
"significant blank"
character acts like
justification, but
printed .

blank characters in the
character, the pound

any other character
is replaced by a blank

output is by using the
sign (#). The pound
during filling and

just before the line is

59

NASA Langley Research Center
Software Development Lab

Example 3: Paragraphing

RNF
MARCH 1985

.P +5 1 2

.PP The paragraphing facility in RNF enables fast, convenient
text entry in a natural format •
• PP Paragraphing is set up by the _.P command, which has the
format:
.8 .I 9 _.P indent spacing test
.PP Indent specifies how the first line of each paragraph is to
be indented. Usually indent will be signed (+5), in which case
it is relative to the left margin at the time the paragraph
starts. If indent is unsigned (5), it is the column number in
which the first line should start. Spacing specifies the number
of spaces between paragraphs and is dependent on the overall
spacing set by _.SP#. Test specifies the minimum number of
lines that must be left on a page to start a new paragraph .
• SAV
.LM +10 .RM -5 .SP 2
.PP Each paragraph is started with a _.PP command.
Notice how this indented paragraph still has a 5-space indent
as a result of the _.P command. Also, notice that it is
double-spaced.
You can change margins and spacing
as often as you like with the _.P and .SP commands, such as to
insert a single-spaced indented quote into a double-spaced thesis .
. P -8 1 2 •SP 1
.PP This paragraph is done with a "hanging indent", in which the
first line of the paragraph sticks out to the left of the body
of the paragraph .
. RES .AP
As an alternative to starting each paragraph with an explicit .PP

command, you can also set "autoparagraphing" mode with the _.AP
command. In autoparagraphing mode, any blank line or line with
a blank in its first column starts a new paragraph, just as if it
were a _.PP command.

Be careful that you do not confuse the _.PP and _.P commands.
_.PP is used to start each new paragraph (assuming that you
are not autoparagraphing) and _.P is used to establish
the format of all successive paragraphs until another
_.P command is encountered.

******************* RNF OUTPUT STARTS ON NEXT PAGE

60

NASA Langley Research Center
Software Development Lab

Example 3 (continued)

RNF
MARCH 1985

•

The paragraphing facility in RNF enables fast, convenient text
entry in a natural format •.

Paragraphing is set up by the .P command, which has the format:

.P indent spacing test

Indent specifies how the first line of each paragraph is to be
indented. Usually indent will be signed (+5), in which case it is
relative to the left margin at the time the paragraph starts. If
indent is unsigned (5), it is the column number in which the first
line should start. Spacing specifies the number of spaces between
paragraphs and is dependent on the overall spacing set by .SP
Test specifies the minimum number of lines that must be left on a
page to start a new paragraph.

Each paragraph is started with a .PPcommand.

Notice how this indented paragraph still has a

5-space indent as a result of the .P command. Also,

notice that it is double-spaced. You can change

•

margins and spacing as often as you like with the .P

and .SP commands, such as to insert a single-spaced

indented quote into a double-spaced thesis.

This paragraph is done with a "hanging indent", in which the
first line of the paragraph sticks out to the left of
the body of the paragraph.

As an alternative to starting each paragraph with an explicit
.PP command, you can also set "autoparagraphing" mode with the .AP
command. In autoparagraphing mode, any blank line or line with a
blank in its first column starts a new paragraph, just as if it were
a .PP command.

Be careful that you do not confuse the .PP and .P commands .
• PP is used to start each new paragraph <assuming that you are not
autoparagraphing) and .P is used to establish the format of all
successive paragraphs until another .P command is encountered .

61

NASA Langley Research Center
Software Development Lab

Example 4: Tab Stops

RNF
MARCH 1985

.DEF RTABS $$PAGE .rem cg- used in following exampleoPP
RNF tab stops are set with the _.TABS command, which can also be
written as .TAB#. The format is:

.I +5 .TABS cl c2 _0_0_. c15

.TP 2
where c1 through c15 are character positions, in ascending order,
where the tab stops are to be set. All previous tab stops are
cleared by _.TABS, so you must set all stops simultaneously.
There are three commands for using tabs: _.T, _.RT, and _.CT#.
_.T is similar to the tab key on a typewriter--it causes the
next word to begin at the next tab stop. _.RT (right tab)
causes the next word to end at the next stop, and _.CT (center tab)
causes it to be centered on the next tab stop. To illustrate:

.TABS 15 30 45 .T * .T * .T * .BR
These are .T normal .CT centered .RT and#right tabs .
. PP
The following feature should be noted:
.SAV .LM 30 .TAB 30 .P -25 1 5 .DOT
.PP Justification .T Having tabs in a line does not suppress
justification. Only the text after the last tab in a line is blank
padded, which is very convenient for hanging indention. Notice
also the use of _.DOT to fill the tabbed-over space with periods .
•RES
.PP .KEEP
For tabular data, it is usually most convenient to turn off
filling with a _.NOF command. For example:

.SAV .NOF .LM 10 .TABS 25 38 53
Item .CT Price# .CT Quan.Sold .CT Total#Price####

.CT -----# .CT --------- .CT -----------####
Worms .RT .79 .RT 6 .RT 4.74
Eggs .RT 1.39 .RT 10 .RT 13.90
Fish .RT 3.19 .RT 76 .RT 242.44
.RES .ENDKEEP
.PP Notice also the use of _.KEEP_I.ENDKEEP to surround the table.
This guarantees that the table will not be broken across two pages .
• PP
To right-tab or center-tab
a word constructed of several input words "stuck
together" with the _.X command, the _.RT or _.CT command
must come just before the last input word. For example:

.TAB 60 .T * .BR This .X is .X s~uck .X .RT together .
• PP
If you use .DOT a lot, you may need to know one subtlety of
tab stops: a tab movement is not actually done until the next
word is added to the output line. This means that the

62

NASA Langley Research Center
Software Development Lab

Example 4 <continued)

RNF
MARCH 1985

•

•

"tabbed-over" field will not be filled with periods unless
there is actually another word after it.
This word may, however, be a significant blank <_I), in which case
the output will appear as if there is no word following the dots.
For example, with tab stops set at columns 10 and 50, the following
RNF input

· TAB 10 50 .NOF
· I +5 _.T before _.DOT _. T after _.NODOT
· I +5 .T before _.DOT .T • NODOT
· I +5 _. T before .DOT _.T - # . NODOT
• I +5 _.T tabs _.DOT _. T - # _.REF RTABS ?? _.NODOT

will produce

.T before .DOT .T after • NODOT

.T before .DOT .T . NODOT

.T before .DOT .T # . NODOT

.T tabs .DOT .T # .REF RTABS ?? . NODOT..

******************* RNF OUTPUT STARTS ON NEXT PAGE

63

NASA Langley Research Center
Software Development Lab

Example 4 (continued)

RNF
MARCH 1985

RNF tab stops are set with the .TABS command, which can also be
written as .TAB. The format is:

.TABS c1 c2 ••• c1S

where c1 through ciS are character positions, in ascending order,
where the tab stops are to be set. All previous tab stops are
cleared by . TABS, so you must set all stops simultaneously. There
are three commands for using tabs: .T, .RT, and .CT. .T is similar
to the tab key on a typewriter--it causes the next word to begin at
the next tab stop. .RT (right tab) causes the next word to end at
the next stop, and .CT (center tab) causes it to be centered on the
next tab stop. To illustrate:

These are
*'
normal

*'
centered *'

and right tabs.

The following feature should be noted:

Justification•... Having tabs in a line does not suppress
justification. Only the text after the
last tab in a line is blank padded,
which is very convenient for hanging
indention. Notice also the use of .DOT
to fill the tabbed-over space with
periods.

For tabular data, it is usually most convenient to turn off filling
with a .NOF command. For example:

Item Price Quan.Sold Total Price
----- --------- -----------

Worms .79 6 4.74
Eggs 1. 39 10 13.90
Fish 3.19 76 242.44

Notice also the us~ of .KEEP/.ENDKEEP to surround the table. This
guarantees that the table will not be broken across two pages.

To right-tab or center-tab a word constructed of several input words
"stuck together" with the.x command, the .RT or .CT command must
come just before the last input word. For example:

*'Thisisstucktogether.

If you use .DOT a lot, you may need to know one subtlety of tab
stops: a tab movement is not actually done until the next word is
added to the output line. This means that the "tabbed-over" field
will not be filled with periods unless there is actually another

64

NASA Langley Research Center
Software Development Lab

Example 4 (continued)

RNF
MARCH 1985

•

word after it. This word may, however, be a significant blank (#),
in which case the output 'will appear as if there is no word
following the dots. For example, with tab stops set at columns 10
and 50, the following RNF input

.T before .DOT .T after • NODOT

.T before .DOT .T . NODOT

.T before .DOT .T # • NODOT

.T tabs .DOT .T # .REF RTABS 11 . NODOT
will produce

•

before
before
before
tabs

after

63

65

NASA Langley Research Center
Software Development Lab

Example 5: Paging Controls

RNF
MARCH 1985

.NMP
•TITLE RNF Paging Controls .TAB 34 .T .U Example .NOU
.ST .B 1 (An illustration for the manual)
• PAGE
.C Paging Controls
.C ---------------
.PP The standard page format consists of a 1-inch top margin, a title
line with a page number, a subtitle line, two blank lines, and then
your text. By default the title and subtitle are blank. You can
fill in the title and subtitle lines with the following commands:

•

.I +5

.I +5
_.TITLE anything
_.ST anything

where "anything" means any combination of text and RNF commands.
Notice how the title defined for this example contains tab commands,
while the subtitle even generates an extra blank line .
•PP
The page number is normally present but can be turned off with
the _.NONMP command. If you want the page number 'in a different
position or, for example, in Roman numerals, then you have to
write a FRCPAGE macro--see the Table of Contents to find the
appropriate section •
• PP
Once you have defined a title and subtitle, RNF will automatically
put them on each page. RNF advances to a new page when the page
is full or when you tell it to with a _.PAGE command. The
length of a page is set with the _.PS command .
• PP
Frequently you will
want to guarantee that blocks of text, such as a table or an
example with its introduction, do not split across page boundaries.
The easiest way to do this is with _.KEEP and _.ENDKEEP#. Simply
put a _.KEEP command before the text you want kept together and
an _.ENDKEEP after it--no counting lines! The _.TP command
can also be used if you don't mind counting lines. In the
middle of a paragraph, _.TP is your only option because _.KEEP
causes a "break". See Example#4 on Tabs for an example of _.KEEP# •
. PP
Other paging controls, much more exotic, are provided by the
figure and footnote facilities. See the Table of Contents.

******************* RNF OUTPUT STARTS ON NEXT PAGE

66

RNF Paging Controls

(An illustration for the Manual)

Example 67

Paging Controls

The standard page format consists of a i-inch top margin, a title
line with a page number, a subtitle line, two blank lines, and then
your text. By default the title and subtitle are blank. You can
fill in the title and subtitle lines with the following commands:

.TITLE anything

.ST anything

where "anything" means any combination of text and RNF commands.
Notice how the title defined for this example contains tab commands,
while the subtitle even generates an extra blank line.

The page number is normally present but can be turned off with the
.NONMP command. If you want the page number in a different position
or, for example, in Roman numerals, then you have to write a FRCPAGE
macro--see the Table of Contents to find the appropriate section.

you have defined a
them on each page.
or when you tell it
is set with the .PS

Once
put
full
page

title and subtitle, RNF will automatically
RNF advances to a new page when the page is
to with a .PAGE command. The length of a
command.

•

Frequently you will want to guarantee that blocks of text, such as a
table or an example with its introduction, do not split across page
boundaries. The easiest way to do this is with .KEEP and .ENDKEEP •
Simply put a .KEEP command before the text you want kept together
and an .ENDKEEP after it--no counting lines! The .TP command can
also be used if you don't mind counting lines. In the middle of a
paragraph, .TP is your only option because .KEEP causes a "break".
See Example 4 on Tabs for an example of .KEEP •

Other paging controls, much more exotic, are provided by the figure
and footnote facilities. See the Table of Contents •

67

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

Example 6: Underlining, Overstriking, and Hyphenation

.FLAGHYPH

.P +5 0 3 .SP 2

.PP Underlining is turned on with the _.U command and turned off
with _.NOU#. For example, .U thi~ stuff is underlined .NOU and
this isn't. Punctuation.U will be underlined also, .NOU (note
the preceding comma) so you may want to use _.X to concatenate
the punctuation after turning underlining .U off .NOU .X. (Note
the period.) Significant.U bl##anks .NOU are ordi/narily
under/lined, but you can turn this off .NOUSB with the _.NOUSB
.U com###mand .NOU .X. Note the use of phantom hyphens to
syl/lab/icate un/com/fort/ablY long words, after turning on
hyphenation with the _.FLAGHYPH command .
• PP .SP 1
Arbitrary characters can be "overstruck", or printed at the same
position, by using the overstrike character backslash (_\).
For example, a tolerable 0\/ can be produced by overstriking an "0"
with a "_I". Overstriking is limited to four characters at a single
posi/tion (or three characters and an underscore).

******************* RNF OUTPUT STARTS ON NEXT PAGE

68

NASA Langley Research Center
Software Development Lab

Example 6 (continued)

RNF
MARCH 1985

•

Underlining is turned on with the .U command and turned off

with .NOU. For example, this stuff is underlined and this isn't •

punctuation~ be underlined also, (note the preceding comma) so

you may want to use .X to concatenate the punctuation after turning

underlining off. (Note the period.) Significant bl anks are ordi-

narily underlined, but you can turn this off with the .NOUSB command.

Note the use of phantom hyphens to syllabicate uncomfortably long

words, after turning on hyphenation with the .FLAGHYPH command.

Arbitrary characters can be "overstruck", or printed at the same
position, by using the overstrike character backslash (\). For
example, a tolerable 0 can be produced by overstriking an "0" with a
"I". Overstriking is limited to four characters at a single posi
tion (or three characters and an underscore).

69

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

Example 7: Header Levels and Chapters <.HL and .CH)

.AP

.CH Standard Chapter and Section Headers

.HL 1 PURPOSE
The purpose of this section is to demonstrate the effect of

the standard _.CH and _.HL commands •
• HL 1 HOW TO USE H_EADER L_EVELS <_.HL)
The _.HL command enables the typist to organize text into

sections, and sections within sections, with sequential numbers
which are changed by the computer if sections are added or
deleted .
• HL 2 Format of the Command
The format of the _.HL command is:

.I +5 _.HL number text
The number is the level number, where 1 is the outermost

level, 2 is the next level, and so on. The text is the title
of the section .
. HL 3 Effect of the Command
The _.HL command starts a section at the level specified and

uses text as the header. The number can be in the range of
1 to 5. The section number output is in the form i.j.k.l.m#.
If a .CH command has been used, i is the chapter number;
otherwise it is the number of _.HL#l commands so far .
. HL 3 Format of the Output
The command does a _.CR, a _.TP 9, a _.RESPAG, and a _.B#3#.

Then it prints the section number and the section title (the
text). Two blank lines follow the header line .
. HL 2 Numbering Convention
Each time levels are nested (for example, _.HL 1 followed by

_.HL#2), the numbering is restarted at 1 for the higher numbered
level. Successive .HL commands at the same level increment
the section by 1 in the last position.

******************* RNF OUTPUT STARTS ON NEXT PAGE

70

•

NASA Langley Research Center
Software Development Lab

Example 7 (continued)

CHAPTER 1

Standard Chapter and Section Headers

1.1 PURPOSE

RNF
MARCH 1985

The purpose of this section is to demonstrate the effect of the
standard .CH and .HL commands.

1.2 HOW TO USE HEADER ~EVELS (.HL)

The .HL command enables the typist to organize text into sections,
and sections within sections, with sequential numbers which are
changed by the computer if sections are added or deleted.

1.2.1 Format of the Command

The format of the .HL command is:

.HL number text

The number is the level number, where 1 is the outermost level, 2 is
the next level, and so on. The text is the title of the section.

71

NASA Langley Research Center
Software Development Lab

Example 7 (continued)

L 2 .1.1 Effect of the Command

RNF
MARCH 1985

The .HL command starts a section at the level specified and uses
text as the header. The number can be in the range of 1 to 5. The
section number output is in the form i.j.k.l.m. If a .CH command
has been used, i is the chapter number; otherwise it is the number
of .HL 1 commands so far.

1.2.1.2 Format of the Output

The command does a .CR, a .TP 9, a .RESPAG, and a .8 3. Then it
prints the section number and the section title (the text). Two
blank lines follow the header line.

1.2.2 Numbering Convention

Each time levels are nested (for example,
the numbering is restarted at 1 for
Successive .HL commands at the same level
in the last position.

72

.HL 1 followed by .HL 2>,
the higher numbered level.
increment the section by 1

•

NASA Langley Research Center
Software Development Lab

(This page is intentionally blank.)

RNF
MARCH 1985

73

NASA Langley Research Center
Software Development Lab

Example 8: Lists (.LIST, .LE, and .ELIST)

RNF
MARCH 1985

.C Using Lists

.P +0 1 3

.AP
Automatically numbered lists can be generated by the _.LIST,

_.LE, and _.ELIST commands. The _.LIST command has the format:
.1 9 _.LIST spacing
where spacing is a number in the range 1 through 5 which

specifies the spacing to be used within the list.
The list is generated as follows:

.LIST 1

.LE Each list element is preceded by the .LE command .
•LE List elements are separated by "spacing" blank lines .
•LE Each element is automatically numbered beginning at
1 and incremented by 1 •
•LE The list is terminated by the .ELIST command (which
also resets the margins and spacing) •
•LE Lists can be nested within lists. This is handled
as follows:
.LIST 1
.LE The left margin is set 9 columns to the right for
the outermost list, and 4 columns to the right for each
inner list •
. LE Each _.LIST must be terminated by a matching _.ELIST.
The _.ELIST resets the margins and spacing as they were
before the _.LIST command •
•LE For users of autoparagraphing, the paragraph margin
is set to coincide with the left margin, and paragraph
spacing is set to the list spacing.
This means that autoparagraphing can be conveniently

used at any list level.
The paragraph values are reset by the _.ELIST command .

•ELIST
.LE Lists can be nested up to 5 levels •
. ELIST
_.LIST cannot produce lists numbered in Roman numerals or

alphabetically, but macros that can are not too difficult
to write--see Example 10.

******************* RNF OUTPUT STARTS ON NEXT PAGE

74

•

NASA Langley Research Center
Software Development Lab

Example 8 (continued)

Using Lists

RNF
MARCH 1985

Automatically numbered lists can be generated by the :LIST, .LE, and
.ELIST commands. The .LIST command has the format:

.LIST spacing

where spacing is a number in the range 1 through 5 which specifies
the spacing to be used within the list.

The list is generated as follows:

1. Each list element is preceded by the .LE command.

2. List elements are separated by "spacing" blank lines.

3. Each element is automatically numbered beginning at 1 and
incremented by 1.

4. The list is terminated by the .ELIST command (which also
resets the margins and spacing).

5. Lists can be nested within lists.
follows:

This is handled as

•

1. The left margin is set 9 columns to the right for the
outermost list, and 4 columns to the right for each
inner list.

2. Each .LIST must be terminated by a matching .ELIST.
The .ELIST resets the margins and spacing as they were
before the .LIST command.

3. For users of autoparagraphing, the paragraph margin is
set to coincide with the left margin, and paragraph
spacing is set to the list spacing.

This means that autoparagraphing can be conveniently
used at any list level.

The paragraph values are reset by the .ELIST command.

6. Lists can be nested up to 5 levels .

.LIST cannot produce lists
alphabetically, but macros
write--see Example 10.

numbered
that can

in
are

Roman
not too

numerals or
difficult to

75

NASA Langley Research Center
Software Development Lab

Example 9: Some Macros

RNF
MARCH 1985

This example illustrates "a couple of simple and useful macros with
parameters. MacroD is typical of those used for section
headers, document lists, command summaries, etc. Macro HI is used
throughout this manual-- the only reason it is not in the standard
set is that its exact form depends on the type of paragraphs you
like to use .

•MACRO D 2 = .RESENV DENV .B .TP 4 .D1 .RT .D2 .B .LM +4 .RM -4
.MACRO HI 2 = .SAV .LM .HI1 .p $$LM 1 2 .LM .HI2 .TAB $$LM
.PP A little explanation of these macros may be needed. Macro HI
is used for establishing hanging indents. It is called as follows:

.I +4 _.HI indent1 indent2

where:
.HI +5 +10
.PP indentl .T indicates where the first line of each paragraph
of the hanging indent should start. It follows the conventions
for _.LM, in that it can be either signed or unsigned. If indent1
is unsigned, it is an absolute column number; if it is signed,
then the position is relative to the left margin at the time
HI is invoked •
• PP indent2 .T indicates where succeeding lines of the hanging
indent should start. Like indent1, indent2 can be either signed
or unsigned. If indent2 is signed, then the indicated position
is relative to the position set by indent1 .
. RES
.PP The most subtle aspect of HI is probably the use of _$$LM as
an argument to _.P and _.TAB#. Remember that _$$LM is a predefined
variable that is the current left margin and is set by the _.LM
command .
. PP To use macro D, it is first necessary to set up the proper
envi/ron/ment, named DENV. The rest of its use is fairly straight/
forward. For example, consider the following:

.SAV .LM 4 .RM 66
#

Document#Name

.TAB $$RM .DOT .SAVENV DENV .NODOT
.RT Doc.#Number
.RT (if#any)#
.RT ----------

.D RNF#Users#Manual TM#86327
M68000 users manual for RNF, the text formatter for the M68000 .

. RES

******************* RNF OUTPUT STARTS ON NEXT PAGE

76

NASA Langley Research Center
Software Development Lab

Example 9 (continued)

RNF
MARCH 1985

A little explanation of these macros may be needed. Macro HI is
used for establishing hanging indents. It is called as follows:

.HI indent1 indent2

where:

indent1

indent2

indicates where the first line of each paragraph of
the hanging indent should start. It follows the
conventions for .LM, in that it can be either signed
or unsigned. If indent1 is unsigned, it is an
absolute column number; if it is signed, then the
position is relative to the left margin at the time
HI is invoked.

indicates where succeeding lines of the hanging
indent should start. Like indent1, indent2 can be
either signed or unsigned. If indent2 is signed,
then the indicated position is relative to the
position set by indent1.

The most
argument
variable
command.

subtle aspect of HI is probably
to .P and .TAB. Remember

that is the current left margin

the
that
and

use of $$LM as an
$$LM is a predefined

is set by the .LM

To use macro 0, it is first necessary to set up the proper environ
ment, named DENV. The rest of its use is fairly straightforward.
For example, consider the following:

Document Name

RNF Users Manual

RNF Number
(if any)

TM 86237

M68000 users manual for RNF, the text formatter for the
M68000.

77

NASA Langley Research Center
Software Development Lab

Example 10: More Macros

RNF
MARCH 1985

.ARRAY $AL 5
•ARRAY $ALF 5
,MACRO FLIST 1 = ,FLISTA ,FLISTB
.MACRO FLISTA = ,SAV ,LM +6 ,VAR $ALTEMP = ,FLISTl
,MACRO FLISTB = $AL=$AL+l; ALlAL1=0; $ALFl$AL1=$ALTEMP; .TAB $$LM-3
,MACRO FLE = ,B ,I 1 ,RT ,FMT $ALFl$ALl ALlAL1=$AL[$AL1+1 ,X .# ,X
,MACRO FELIST = ,RES $AL=$AL-l;
,P +0 1 3 • TP 20
,PP This example shows some fairly complicated macros that
are very easy to use, They implement some new list commands that
are similar to the standard _,LIST, _,LE, and _,ELIST commands (see
Example 8), but that can number lists in Arabic numerals,
alphabetically, or in Roman numerals, They work as follows:
,FLIST 1 ,REM (set for upper-case letters)
,FLE The _,FLIST macro does the following;
,FLIST 4 ,REM (set for lower-case Roman numerals)
,FLE The environment is saved with _.SAV#.
,FLE A _,LM command is used to indent the left margin,
,FLE The value of the _,FLIST argument is transferred to a
temporary numeric variable, _$ALTEMP#.
,FLE The list level is incremented, the count for this level is
set to zero, and the format of the indexing is saved.
,FELIST
,FLE Then, each invocation of _.FLE does the following;
,FLIST 2 .REM (set for lower-case letters)
,FLE A blank line is issued and _.I is used to start the output
line at column 1 so that the list number can be right-tabbed
to line up with the left margin.
,FLE _.FMT is called to output the current list number in the
selected format,
.pp The number is incremented in the process as a result of
evaluating the expression _ALlAL1=$AL[$AL1+1;#.
,FLE A period and one significant blank are added to the
"number".
,FELIST
,FLE The _.FELIST macro has it easy--all it has to do is .REStore
the previous environment and decrement the list level.
,FELIST

******************* RNF OUTPUT STARTS ON NEXT PAGE

78

NASA Langley Research Center
Software Development Lab

Example 10 (continued)

RNF
MARCH 1985

. .

This example shows some fairly complicated macros that are very easy
to use. They implement some new list commands that are similar to
the standard .LIST, .LE, and .ELIST commands (see Example 8), but
that can number lists in Arabic numerals, alphabetically, or in
Roman numerals. They work as follows:

A. The .FLIST macro does the following:

i. The environment is saved with .SAV

ii. A .LM command is used to indent the left margin.

iii. The value of the .FLIST argument is transferred to a
temporary numeric variable, $ALTEMP .

iv. The list level is incremented, the count for this
is set to zero, and the format of the indexing is

level
saved.

B. Then, each invocation of .FLE does the following:

a. A blank line is issued and .I is used to start the
output line at column 1 so that the list number can be
right-tabbed to line up with the left margin.

b .. FMT is called to output the current list number in the
selected format.

The number is incremented in the process as a result of
evaluating the expression $AL[$AL1=$AL[$AL1+1;

c. A period and one significant blank are added to the
"number".

C. The .FELIST macro has it easy--all it has to do is .REStore
the previous environment and decrement the list level.

79

NASA Langley Research Center
Software Development Lab

Example 11: Macros For This Manual

RNF
MARCH 1985

In this example are listed all the major macros that were used to
format this manual, These macros are intended to give experienced
RNF users some ideas about what is possible, Do not bother to read
this example unless you are experienced with RNF, and even then do
not expect to understand it on the first try--these macros are even
more complicated and subtle than the ones that implement the
standard page format. The results of these macros are not shown as
part of this example because they are abundantly illustrated in the
remainder of the manual,

The following macros handle the page formatting. They are
very similar to the versions described in the narrative on
FRCPAGE (page 21), Notice how macros CHECKODD and CHECKEVEN
are used to determine whether the page number is odd or even,
and how ,RIGHT is used by macro XTOP (via XTOPA and XTOPB) to
set different margins for left and right pages, to make
printing and binding easier .

. rem latest revision date

.MACRO REVISED = September#1984

.rem margin shifts for even and odd pages

.VAR $EVENRIGHT = 6 .VAR $ODDRIGHT = 10
,rem page size in lines and right margin
,VAR $PS = 57 .VAR $RM = 68
,rem even/odd page evaluating functions
.VAR $TRUE
.MACRO CHECKODD = $TRUE=($$PAGE-($$PAGE/2)*2.NE.O);
.MACRO CHECKEVEN = $TRUE=($$PAGE-($$PAGE/2)*2.EQ.O);
.rem page formatting macros
.MACRO FRCPAGE = .BOT .FOOT .XTOP .HEAD .MID
,MACRO XTOP = .BR .TOP $$PAGE=$$PAGE+l; .XTOPA .XTOPB
.MACRO XTOPA = .CHECKEVEN .IF $TRUE .RIGHT $EVENRIGHT
.MACRO XTOPB = .CHECKODD .IF $TRUE .RIGHT $ODDRIGHT
,MACRO FOOT = .SAV ,RESPAG ,FOOTA ,RES
.MACRO FOOTA = ,IF $$PAGE.NE.O .B 2 .LEFTPN .RIGHTPN
.MACRO LEFTPN = .CHECKEVEN .IF $TRUE SSPAGE
.MACRO RIGHTPN = .CHECKODD .IF $TRUE .RT $$PAGE
.MACRO HEAD = .SAV .RESPAG ,HEADA .HEADB .RES
.MACRO HEADA = NASA Langley Research Center .RT RNF .BR
.MACRO HEADB = Software Development Lab .RT .REVISED.B .SST1 .B
.MACRO SST * =

Macros SEC and MAIN handle the headers for each main section
and subsection .

. MACRO SEC * = .RESPAG .B 4 .TP 10 .SECl .BR

.MACRO MAIN = .STARTONODD .RESPAG # .B 2

.MACRO STARTONODD = .ENDPAGE .CHECKODD .IF $TRUE .BLANKPG

.MACRO BLANKPG = .VT 25 .C (This page is intentionally blank.) .PAGE

80

NASA Langley Research Center
Software Development Lab

Example 11 (continued)

RNF
MARCH 1985

Macro EXAMPLE is used to head all the examples. Notice how it
uses SST to interface 'with FRCPAGE to produce the "Example n
(continued)'" header lines on continuation pages. Also notice
how each call to EXAMPLE causes a name EXAMPLEn to be .DEFined
for cross-referencing .

. MACRO EXAMPLE 2 = .EX1 .C Example .EXAMPLE1 .X : .EXAMPLE2 .EX4

.MACRO EX1 = .BR .CLRSST .PAGE .EX2 .RESPAG .NOAP

.MACRO EX2 = .SST .C Example .EXAMPLE1 (continued) .B

.MACRO EX3 = EXAMPLE .X .EXAMPLE1

.MACRO EX4 = .DEF .EX3 $$PAGE .B 2 .ASIS

.MACRO CLRSST = .SST

Sample call: .EXAMPLE 1 Common#Commands

SECDESC is used in the Introduction to format the
the 10 sections of the manual. SPC and XREF
Special Characters and Flags to format the table
characters, commands, and column numbers

listing of
are used in
of special

•

.MACRO SECDESC * = .B 1 .TP 4 .I 2 .SECDESC1 .P +0 0 2 .LM 7 .I -2

.MACRO SPC 4 = .BR .CT .SPC1 .CT .SPC2 .CT .SPC3 .CT .SPC4 .T

.MACRO XREF 3 = .X .XREF1 .X .REF .XREF2 .XREF3

Sample call:

.SPC _, backslash overstrike _.FLAGOVER .XREF # EXAMPLE7 ??

Macro CMD is used to format the List of Commands .

. MACRO CMD 3 = .CMDA .CMDB

.MACRO CMDA = .BR .LM 1 .B 1 .TP 4 .TAB 6 $$RM .CMD2

.MACRO CMDB =.T .CMD1 .RT .CMD3 .LM 8 .B 1

Sample calls:

.CMD _.KEEP

and .CMD _.P#indent#spacing#test # (+0#1#3)

81

NASA Langley Research Center
Software Development Lab

Example 12: Figures

RNF
MARCH 1985

• PAGE
.DEFFIG FIGFEAT
.SAV .LM 8 .RM 64 .P -3 1 1 .SAVENV FIGENV .B 2
.PP 1.#The whole text of a figure is guaranteed to appear on one

page. This restricts the maximum size of a figure to
somewhat less than the page size •

• PP 2.#The surrounding document text "flows" around the figure,
eliminating excessive white space that would result from
just doing a page eject before the figure .

• B 1 .C .U Figure 1 •• NOU Features of Figures .B 2 .RES
.ENDFIG
.DEFFIG FIGUREDC
.SAV .RESENV FIGENV .B 2
.PP 1.#Any lasting environment changes made during the definition

will affect text after the definition, not after the call •
• PP 2.#References to the page number of a figure must be made

with the _.ASSIGNPN command .
• PP 3.#When the figure definition starts, the output line number

(variable _SSOLNO) is set to 1, so that any line number
reference will be relative to the start of the figure, not
the start of the page on which it is printed .

•B 1 .C .U Figure 2_.• NOU Aspects of Figure Definition_ICall
.B 2 .RES
.ENDFIG
.DEFFIG FIGRSTRCT
.SAV .RESENV FIGENV .B 2
.PP 1.#You can have a maximum of 200 figures and footnotes

defined at anyone time. It is common to define all
figures at the start of the document and then just call
them where they are needed. A figure becomes undefined
when it is printed, so any number of figures can be
handled by judicious interspersing of definitions and
calls •

. PP 2.#The maximum number of ."outstanding" figures is 20.
An outstanding figure is one that has been called but
has not yet been printed .

. B 1 .C .U Figure 3_.• NOU Restrictions on Figures .B 2 .RES

.ENDFIG

.PP
In this example of figures, note how the figures are defined
and called in two separate steps. This makes it very easy to
move the figure around in the final document, because the command
that calls the figure is only one line. Notice how the text
outside of the figures "flows" around them to close
up all the blank space. The small amount of blank space before and
after each figure is provided with _.8 commands within the figure
definition .
•REM Now seems like a good time to call the figures
. FIG FIGFEAT .FIG FIGUREDC .FIG FIGRSTRCT
.PP

82

NASA Langley Research Center
Software Development Lab

Example 12 (continued)

RNF
MARCH 1985

..

The _.DEFFIG and _.ENDFIG commands have been previously described,
as has the form of _.FIG used in this example. There is an alternate
form of _.FIG that is useful if you merely want to reserve space for
subsequent cut-and-paste. That form is;

.I +5 _.FIG n

where n is the number of lines of blank space desired (independent
of spacing). In this case no explicit figure definition
is needed •
. PP
If you do not like RNF's placement of a figure, you can override it
via the _.FIGHERE command. It has the same syntax as _.FIG;
the difference is that _.FIGHERE causes the figure to be printed
immediately if there is space on the page and no other figures are
queued. If other figures are queued or you are too near end-of-page,
_.FIGHERE converts to _.FIG# .
. PP
Outside figures, you can access the page number by referring to
the predefined variable _SSPAGE.
This trick will not work for figures, however, because it will get
the page number current at the time the figure is defined, not the
page number on which the figure is eventually printed. To circumvent
this problem, there is a special _.ASSIGNPN command, which has the
syntax:

.I +5 _.ASSIGNPN _$var

The variable _$var must have been previously declared. When .ASSIGNPN
is used outside a figure definition, it is equivalent to "Svar=SSPAGE;",
but when used inside a figure definition, the assignment is deferred
until the figure is actually printed .
• PP
There are two other special commands for use with figures:

.1 +5 _.FIGLINES figurename _Svar

.r +1 and .FLUSHFIGS

_.FIGLINES will assign to _$var the number of lines in the indicated
figure. It can be used to determine how many blank lines are needed
to center a figure on a page, for example. .FLUSHFIGS is used at the
end of a section to guarantee that any figures called within that
section have been printed. (Otherwise, figures from chapter 3 can
migrate into chapter 4, which looks terrible.) There is an implied
_.FLUSHFIGS command at the end of the document .

******************* RNF OUTPUT STARTS ON NEXT PAGE

83

NASA Langley Research Center
Software Development Lab

Example 12 (continued)

RNF
MARCH 1985

In this example of figures, note how the figures are defined and
called in two separate steps. This makes it very easy to move the
figure around in the final document, because the command that calls
the figure is only one line. Notice how the text outside of the
figures "flows" around them to close up all the blank space. The
small amount of blank space before and after each figure is provided
with .B commands within the figure definition.

The .DEFFIG and .ENDFIG commands have been previously described, as
has the form of .FIG used in this example. There is an alternate
form of .FIG that is useful if you merely want to reserve space for
subsequent cut-and-paste. That form is:

.FIG n

where n is the number of lines of blank space desired (independent
of spacing). In this case no explicit figure definition is needed.

If you do not like RNF's placement of a figure, you can
via the .FIGHERE command. It has the same syntax
difference is that .FIGHERE causes the figure to
immediately if there is space on the page and no other
queued. If other figures are queued or you are
end-of-page, .FIGHERE converts to .FIG .

override it
as .FIG; the

be printed
figures are
too near

Outside figures, you can access the page number by referring to the
predefined variable $$PAGE. This trick will not work for figures,
however, because it will get the page number current at the time the
figure is defined, not the page number on which the figure is
eventually printed. To circumvent this problem, there is a special
.ASSIGNPN command, which has the syntax:

.ASSIGNPN $var

The variable $var must have been previously declared. When
.ASSIGNPN is used outside a figure definition, it is equivalent to

1. The whole text of a figure is guaranteed to appear on one
page. This restricts the maximum size of a figure to
somewhat less than the page size.

2. The surrounding document text "flows" around the figure,
eliminating excessive white space that would result from
just doing a page eject before the figure.

Figure ~ Features of Figures

84

•

NASA Langley Research Center
Software Development Lab

Example 12 (continued)

RNF
MARCH 1985

1. Any lasting environment
definition will affect
after the call.

changes made during the
text after the definition, not

•

2. References to the page number of a figure must be made
with the .ASSIGNPN command.

3. When the figure definition starts, the output line number
(variable $$OLNO) is set to 1, so that any line number
reference will be relative to the start of the figure,
not the start of the page on which it is printed.

Figure 1. Aspects of Figure Definition/Call

"$var=$$PAGE;", but when used inside a figure definition, the
assignment is deferred until the figure is actually printed.

There are two other special commands for use with figures:

.FIGLINES figurename $var
and .FLUSHFIGS

.FIGLINES will assign to $var the number of lines in the indicated
figure. It can be used to determine how many blank lines are needed
to center a figure on a page, for example. .FLUSHFIGS is used at
the end of a section to guarantee that any figures called within
that section have been printed. (Otherwise, figures from chapter 3
can migrate into chapter 4, which looks terrible.> There is an
implied .FLUSHFIGS command at the end of the document.

1. You can have a maximum of 200 figures and footnotes
defined at anyone time. It is common to define all
figures at the start of the document and then just call
them where they are needed. A figure becomes undefined
when it is printed, so any number of figures can be
handled by judicious interspersing of definitions and
calls.

2. The maximum number of "outstanding" figures is 20. An
outstanding figure is one that has been called but has
not yet been printed.

Figure ~ Restrictions on Figures

85

NASA Langley Research Center
Software Development Lab

Example 13: Footnotes

RNF
MARCH 1985

.PP
To get a footnote, merely bracket the text of the footnote with
the _.FOOTNOTE and _.ENDNOTE commands. These commands cause
everything in between to be formatted as new lines and queued
to be printed at the bottom of the page. There is no need to
count lines--RNF does that for you. You are responsible for
linking the text with the note. There are several common ways,
depending mostly on the capabilities of the output device you are
using. On devices with the capability, printing superscripts is
usually the most attractive approach. On line printers, usually
the best you can do is to follow the referenced sentence with
the footnote number in brackets.[ll# .FOOTNOTE .LM +4 .I -4
[11#For example, this footnote references the previous sentence.
Note that the footnote can contain formatting commands in addition
to text •• LM -4 .ENDNOTE Notice that _.FOOTNOTE does not cause
a break or any other immediate effect on the output, so it can be
used in the middle of a paragraph with impunity.

******************* RNF OUTPUT STARTS ON NEXT PAGE

86

NASA Langley Research Center
Software Development Lab

Example 13 (continued)

RNF
MARCH 1985

•

•

•

To get a footnote, merely bracket the text of the footnote with the
.FOOTNOTE and .ENDNOTE commands. These commands cause everything in
between to be formatted as new lines and queued to be printed at the
bottom of the page. There is no need to count lines--RNF does that
for you. You are responsible for linking the text with the note.
There are several common ways, depending mostly on the capabilities
of the output device you are using. On devices with the capability,
printing superscripts is usually the most attractive approach. On
line printers, usually the best you can do is to follow the
referenced sentence with the footnote number in brackets.[ll Notice
that .FOOTNOTE does not cause a break or any other immediate effect
on the output, so it can be used in the middle of a paragraph with
impunity.

[1] For example, this footnote
Note that the footnote can
addition to text.

references the previous sentence.
contain formatting commands in

87

NASA Langley Research Center
Software Development Lab

Example 14: Cross-References

RNF
MARCH 1985

.FLAGHYPH

.PP
This brief example illustrates how to use _.REF and _.DEF to
implement cross-/references. Because this is a one-/page example,
cross-/references by page number would be a little trite, so
we will use cross-/references by line number to make it
more interesting. References by page number would
be exactly the same except that they would use _SSPAGE instead
of _$$OLNO# .
• PP .DEF EX15A 2 .X
Consider line .REF REX15?? Notice how it uses a .DEF call
to define the symbol REX15, which is used in the previous
sentence .U before .NOU it is defined .
. PP
Line S$OLNO .X :# This, obviously, .DEF REX15 $$OLNO is the line that
is being referenced by the preceeding paragraph •
. PP
When using _.DEF and _.REF, you must keep in mind that they do produce
RNF output, even though it is invisible. As a result, an additional
command is sometimes required to get the right appearance. With
_.DEF, you should add a _.X if the _.DEF comes at the beginning of
a paragraph (as in paragraph .REF EX15A ? .NOX above>, but not if
it comes in the middle of a paragraph. With _.REF, you should add
a _.NOX if the reference is followed by another word, but not if it
is followed by punctuation.

******************* RNF OUTPUT STARTS ON NEXT PAGE

88

.

NASA Langley Research Center
Software Development Lab

Example 14 (continued)

RNF
MARCH 1985

•

•

This brief example illustrates how to use .REF and .DEF to implement
cross-references. Because this is a one-page example, cross
references by page number would be a little trite, so we will use
cross-references by line number to make it more interesting.
References by page number would be exactly the same except that they
would use SSPAGE instead of S$OLNO .

Consider line 18. Notice how it uses a .DEF call to define the
symbol REX15, which is used in the previous sentence before it is
defined.

Line 18: This, obviously, is the line that is being referenced by
the preceeding paragraph.

When using .DEF and .REF, you must keep in mind that they do produce
RNF output, even though it is invisible. As a result, an additional
command is sometimes required to get the right appearance. With
.DEF, you should add a .X if the .DEF comes at the beginning of a
paragraph (as in paragraph 2 above), but not if it comes in the
middle of a paragraph. With .REF, you should add a .NOX if the
reference is followed by another word, but not if it is followed by
punctuation .

89

NASA Langley Research Center
Software Development Lab

Example 15: Change Bars

• BAR
.AP .LM 1 .RM 65
.B 3
.C Using Change Bars
.B

RNF
MARCH 1985

Change bars are used to flag text that has been altered since the
last version of a document, and are commonly found only in technical
writing, .BB where the reader must be alerted to new features .. EB

The _.BAR command enables change bars, and has the immediate
effect of shifting all output text right
.BB three .EB
spaces.
The .NOBAR command disables change bars. Usually, the _.BAR command
appears before any text in a document, so the left margin in the output
is uniform.

The _.BB (Begin Bar) command turns on change bars. That is,
_.BB causes each subsequent line to be flagged by a _1 character at the
meft margin. The _.EB (End Bar) command turns off change bars,
signifying the end of the changed section .

. BB Spaces caused by the _.RIGHT command appear to the left of
the three extra columns used by the _.BAR feature.

Blank lines which appear as a part of changed text are
also flagged by a bar •. EB

******************* RNF OUTPUT STARTS ON NEXT PAGE

90

•

•

NASA Langley Research Center
Software Development Lab

Example 15 (continued)

Using Change Bars

RNF
MARCH 1985

has the immediate
three spaces. The
the .BAR command
left margin in the

•

•

Change bars are used to flag text that has been altered since the
last version of a document, and are commonly found only in
technical writing, where the reader must be alerted to new
features.

The .BAR command enables change bars, and
effect of shifting all output text right
.NOBAR command disables change bars. Usually,
appears before any text in a document, so the
output is uniform.

The .BB (Begin Bar) command turns on change bars. That is, .BB
causes each subsequent line to be flagged by a ! character at the
left margin. The .EB (End Bar) command turns off change bars,
signifying the end of the changed section.

Spaces caused by the .RIGHT command appear to the left of the
three extra columns used by the .BAR feature.

Blank lines which appear as a part of changed text are also
flagged by a bar.

91

NASA Langley Research Center
Software Development Lab

Example 16: Include Blank Lines

.IBL
.PP
The .IBL command includes blank lines

as they are found in the input text.

RNF
MARCH 1985

Note that blank lines are considered to be seperate paragraphs

by the _.AP command, autoparagraphing .

• NOIBL
The _.NOIBL command deletes all blank lines

found in the text except those found in an _.ASIS

region .

•ASIS

This 'asis' paragraph includes two blank lines(following),

but they are not deleted by the _.NOIBL command because
they occur within an _.ASIS .

. !

******************* RNF OUTPUT STARTS ON NEXT PAGE

92

•

•

NASA Langley Research Center
Software Development Lab

Example 16 (continued)

The .IBL command includes blank lines

as they are found in the input text.

RNF
MARCH 1985

Note that blank lines are considered to be seperate paragraphs

by the .AP command, autoparagraphing .

The .NOIBL command deletes all blank lines found in the text except
those found in an .ASIS region.

This 'asis' paragraph includes two blank lines(following),

but they are not deleted by the _.NOIBL command because
they occur within an _.ASIS .

93

NASA Langley Research Center
Software Development Lab

(This page is intentionally blank.>

94

RNF
MARCH 1985

"

•

NASA Langley Research Center
Software Development Lab

===
Control Statements, Error Messages, and Utilities

RNF
MARCH 1985

•
--

How to Run RNF

Text processing on the Software Development Lab ROS computers at
Langley typically involves three steps:

Step One

The input to RNF should be prepared on an M68000 machine using
the ROS system and full screen editor.

Step Two

Once you have entered your
you are ready to run the
program. RNF resides as a
name, RNF. It may be
statements

ASSIGN RNF
PREF RNF

or

AP RNF

text and RNF commands onto a file,
text through the RNF text formatting
permanent file under the ROS volume
obtained by the following control

RNF is executed by the command

R MAIN

RNF prompts the user for instructions:

ENTER RNF INPUT FILE NAME= carol:sampin
ENTER RNF OUTPUT FILE NAME= ctemo:documnt
TEXT OUTPUT TO TERMINAL FOR DEBUG? <Y> <N> y

95

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

where:
INPUT file - the file containing the text and RNF commands.
OUTPUT file - the file containing the final formatted

document.
Text output - n = no output at terminal

- y = RNF output(final document) is routed
directlyto the terminal as it is
generated and is interspersed with
error messages for debug. Note that
this can be directed to the printer
or to another file (for later editing)
by using:

R MAIN> PRINTER:
or

R MAIN> filename. TEXT

Step Three

The final step involves sending the formatted document to the
printer. A line printer is available at the multi-bus site as
well as a letter quality printer at the Q-bus site. See below
for details on how to specify each printer.

Error Messages

Error messages produced by RNF are embedded in the document as
separate lines having the form

..

*** ERROR: (explanation) ON INPUT LINE nnnnn

If "TERMINAL OUTPUT FOR DEBUG" mode is
itself contains no error messages.
made of your input.

selected, the output file
It just reflects whatever RNF

If a macro file is used, then "LINE 1" would refer to the first line
of the macro file. Otherwise, it refers to the first line of the
input file. Illegal commands, parameters, and expressions will
always be listed in the explanation in upper case. For example, the
input ".ppp" will yield the explanation that ".PPP" is
unrecognized.

Errors in cross-referencing, detected by DOREFS, are also embedded
in the document. They have the form

*** ERROR - (explanation)

96

•

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

All errors that are diagnosed by RNF and DOREFS are also flagged
with one or both of the following dayfile messages:

***** ERRORS IN RNF INPUT *****
*** REFERENCE ERRORS ***

• RNF will abort if it runs out of time or memory.
are diagnosed with dayfile messages that say

* TIME LIMIT
or * RUNTIME STACK OVERFLOW

These conditions

•

•

along with a lot of other messages that you can ignore. You will
receive the output that was produced before the abort. To give RNF
more memory, use the RFL parameter on the RNF control card. To give
RNF more time, increase your job card T parameter (for a batch job)
or use the SETTL command. RNF can process even the most complicated
formats in under 3 seconds per page (.5 second is typical).

Most of the errors that are diagnosed by RNF are self-explanatory,
having to do with missing names, missing numbers, illegal values,
etc. There is one message, however, that can be a little subtle:

*** ERROR: COMMAND ILLEGAL INSIDE 'BLOCK' OF TEXT: command

A "block" of text is a figure (.DEFFIG through .ENDFIG), a footnote
(.FOOTNOTE through .ENDNOTE), or a keep block (.KEEP through
.ENDKEEP). These blocks cannot be nested--you cannot have a
footnote inside a keep block, for example. Also, any command that
could cause a page eject (except .PAGE) is illegal inside a block.
In total, the commands that are not allowed inside a text block are
.DEFFIG, .FIG, .FIGHERE, .FLUSHFIGS, • FOOTNOTE, .KEEP, .TP, .BOT,
.TOP, and .MID •

This error is most frequently caused by forgetting to end a block,
such as having a .KEEP without a matching .ENDKEEP .

For error messages embedded in the document, the "line number"
listed is just the value of the predefined variable $$ILNO (see page
25). This variable is incremented every time. a new line
is read, but you can also set its value at any time with the RNF
command $$ILNO=n;. If your document is broken into chapters, you
may find it convenient to reset $$ILNO at the beginning of each
chapter, so that chapter 1 will start with line number 1001, chapter
2 with 2001, and so on. That way, an error on "LINE 3027" clearly
points to the 27-th line of chapter 3.

97

NASA Langley Research Center
Software Development Lab

Printing RNF Output Files

RNF
MARCH 1985

Your
the
used
only

RNF ASCII output may be printed on the ASCII line printer or on
letter quality printer. Normally, the line printer should be
for rough drafts and the letter quality printer should be used
for final documents.

To route a file to the letter quality printer, the file must first
be transfered from the multi-bus (multi-user) computer to the Q-bus
(single- user) machine. This is done by typing the following
commands on the Q-bus and then the multibus machines:

98

Multi-bus
ASSIGN <volume name>
ET

(sending)

Q-bus
ASSIGN HUGE
ET

(receiving)

•

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

• --------------------
Appendices

•

A: Details of Parameter Substitution

of macro parameters given
98% of the cases. In the

some subtle aspects of
up or can make the macros
purpose of this appendix
you can be either wary or

This appendix supplements the discussion
on page 19. That discussion covers
remaining 2t of macro uses, there are
parameter substitution that can trip you
much easier to use and more powerful. The
is to describe those subtleties so that
tricky, as appropriate.

First, note that the parameters of a macro are macros themselves, so
they can be used by other macros and do not have to be "passed down"
from one level of macro to another. They can even be referenced
outside of a call to their owner macro. The parameter macros are
initially defined to be null at the same time their owner is
defined. The values of the parameter macros are redefined when the
owner macro is called, and the parameter macros retain their new
value until the owner is called again (if ever). For example, the
sequence

.MACRO TITLE * =

.TITLE RNF Subtleties

causes the parameter macro TITLEl to be assigned the value "RNF
Subtleties". TITLEl can then be called independently of TITLE and,
whenever it is called, the most recently assigned value is used, as
in:

.C Chapter 13: .TITLEl

which centers "Chapter 13: RNF Subtleties".
to be used many times.

This allows a parameter

•

•

Second, note that the parameter macros are defined at the
owner macro is called, not after any expansion is done.
the sequence:

.MACRO GARBAGE 2 = .GARBAGE1 or .GARBAGE2

.GARBAGE .U A .NOU B

time the
Consider

In this sequence, GARBAGEl will have the value ".U" and GARBAGE2
will have the value "A". The overall expansion will therefore be

99

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

".U or A .NOU Bit and the output will be ".2!: A B", not "A or B" as
you possibly might have expected. This illustrates a case in which
the direct word by word parameter substitution is not what you want.
All is not lost, how~ver--the situation can be handled with an
intermediate macro, as follows:

.MACRO UANOU = .U A .NOU

.GARBAGE .UANOU B

Now GARBAGE1 will have the value ".UANOU", which in turn has the
value ".U A .NOU" and the expansion is as desired. If this
situation comes up frequently, you might want to define a general
purpose macro to "bind" words together under a macro name. This is
just what the TITLE macro shown on page 99 does. So, we can define
a new macro, say "BIND", to act like TITLE, and use it as follows:

.MACRO BIND * =
and then

.BIND .U A .NOU

.GARBAGE .BIND1 B

Finally, note that it is possible to substitute "nothing" for a
macro parameter. If a macro is called without enough words after it
to match all the parameters, then the extra parameters are defined
to be null and will expand to nothing at all when they are called.
For example, the sequence:

.MACRO Q 5 = .Q1 and .Q2 and .Q3 and .Q4 and .Q5

.Q One two three
(the end)

will produce "One and two and three and and (the end)". This
process of assigning null parameter values is rather subtle if
macros are nested. For the purpose of parameter substitution, macro
expansions are not considered to be on the same line as the
outermost macro call. (This is one of the exceptions mentioned
earlier.) Consider, for example:

.Q One two three
versus

.MACRO OUTER = .Q One two

.OUTER three

The first case has been discussed previously--parameters Q4 and Q5
are null and the output is "One and two and three and and". In the
second case, the "three" is not a candidate for substitution into Q
because it does not appear in the macro that calls Q. Thus,
parameter Q3 will be null in addition to Q4 and Q5, and the output
will be "One and two and and and three".

100

•

•

NASA Langley Research Center
Software Development Lab

B: Standard Macros

RNF
MARCH 1985

i

•

•

A few of the "built-in" RNF functions are in fact implemented with
standard predefined macros, including .TITLE, .ST, and .CH
(chaptering). You should never need to know what the standard
macros are, but they are included here in case you sometime have a
question about their operation. They also provide an example
showing just how tricky it is possible to be. The standard macros
are not easy to follow-- they make extensive use of expressions and
rely on the details of parameter substitution.

At present, the standard macros are:

.MACRO TITLE * - .

. MACRO ST * =

.MACRO FRCPAGE = .BOT .TOP .. HEAD .MID

.MACRO .HEAD = .SAV .RESPAG .B 3 .TITLEl .. PNO .BR .STl .B 2 .RES

.MACRO .PNO = SSPAGE=SSPAGE+l; .IF SSNMP .TAB SSRM .RT SSPAGE

.MACRO CH * = .• CHFIRST SSCH=SSCH+l $$HL=O; .B 2 .C .CH1 .B 3 .. SETT

.MACRO .CHFIRST = .. CLRT .. CLRST .PAGE .FIG 12 .C CHAPTER

.MACRO .SETT = .IF $$ATITLE .TITLE .CHl

.MACRO .CLRT = .TITLE

.MACRO .CLRST = .ST

Notice that there are many macros in this standard set having names
that start with a period. These "hidden" macros are not supposed to
be called directly by the user, and the function of the period is to
reduce the likelihood that a standard hidden macro will conflict
with a user-defined macro. As far as RNF is concerned, they would
work just as well with more conventional names .

101

NASA Langley Research Center
Software Development Lab

C: Formal Expression Syntax

RNF
MARCH 1985

Generally speaking, if you 'just follow your intuition and use lots
of parentheses you will not have any trouble using expressions.
However, you may at some time need more detail about what is and
what is not allowed. The following is a formal description of
expression syntax that you can use at that time:

expr : : = term {relop term}

term : := item {<+I-> item}

item : : = <+I-I#lnull> element {<*I/> element}

element : : = (expr) I var integer

var : : = $id <[termllnull> {=term}

relop : : = • EQ. .NE • . LT. .LE . . GT. .GE .

In this description, braces {} are used to enclose optional parts
that may be repeated any number of times, angle brackets <> enclose
parts where you have a choice, the vertical bar I means "or", and
spaces serve only to increase the readability. For example, the
line:

"
•

term : := item {<+I-> item}

should be read as "a term is an item, optionally followed by any
number of repetitions of either a plus or a minus and another item".

102

•

NASA Langley Research Center
Software Development Lab

RNF
MARCH 1985

D: Restrictions

•

For the most part, RNF does a very thorough job of checking for
violations of its restrictions. However, certain errors, such as
exceeding the maximum input line length, are not checked and will
simply produce incorrectly formatted output. A few of the restric
tions are somewhat "soft", in that they can be exceeded at times
without causing trouble--the values given below are lower bounds
that are always safe.

The following limitations are imposed by fixed table sizes inside
RNF:

Feature Maximum number

User-defined variables """ ..
Tab stops ..
Environment levels (.SAV/.RES)
Header 1eve 1s ..
List levels ..
Characters in a name (figure, variable, macro) .•.•...
Figures and footnotes defined at one time •.••........
Figures outstanding (called but not yet printed)
Footnotes outstanding (defined but not printed) .••.•.
Named envi ronmen t s ..
Length of input 1 ine (characters) ••••.•..••....•.•...
Length of output line (characters) ..•.............•..
Characters overstruck at a single. print position ...•.

200
30
20

5
10
10

200
20
20
10

150
300

4

The following restrictions are mostly imposed by the size of a line
printer page. The spacing limitations are arbitrary and are used to
detect commands that are almost certainly mistakes.

Parameter Minimum Maximum Default

1
72
57
o

left margin
o
3
1
o

136
136

(none)
(none)

column 136
5

(none)
5

136

1
1
7
o

column 1
o
o
1
o

Left margin (.LM)
Right margin (.RM)
Logical page size (.PS)
Physical page size (.LINES)
Paragraph format (.P)

indent
spacing
testpage

Spacing (.SP)
Right shift (.RIGHT)

..

•

103

NASA Langley Research Center
Software Development Lab

E: Command Summary

RNF
MARCH 1985

This very brief command, summary is intended only for quick
reference. More details are given in the text on the indicated page
and in the command list starting on page 41.

-B = command not legal inside figures, footnotes, or keep blocks

Function
Implied

.BR or .CR Command Default -B Page

reprocess current line or macro
set automatic paragraphing
declare array
start "as is" text CBR>
assign page number to variable

. AGAIN

.AP (off)

.ARRAY $name size

.ASIS

.ASSIGNPN variable

30
61
26
57
84

chapter titles are page titles
blank lines independent of .SP
enable change bars
begin change bars
prepare for page footer

break (independent of spacing)
center next output line
start new chapter
carriage return
center word at next tab stop

.ATITLE

 .B number

. BAR

.BB

.BOT

.BR
<CR> .C
<CR> .CH text

.CR

.CT

(off)

(off)

-B

-B

42
11
91
91
21

10
9

39
10
64

start control sequence
define name for reference
start figure definition
fill tabbed space with periods
end change bars

end current list
end figure definition
end "keep block"
end footnote
finish current page

insert escape character (HEX1B)
turn on filling
call a figure
call a figure immediately
assign figure length to variable

104

.CTLSEQ

.DEF name value
<CR> .DEFFIG name

.DOT (off)

.EB

<CR> .ELIST
.ENDFIG
.ENDKEEP
• ENDNOTE

<CR> .ENDPAGE

.ESC

.F (on)

.FIG type

.FIGHERE name

.FIGLINES name $var

-B

-B

-B
-8
-8

34
36
31
64
91

39
31
11
32
24

37
10
31
84
85

NASA Langley Research Center
Software Development Lab

Command Summary (continued)

RNF
MARCH 1985

-B = command not legal inside figures, footnotes, or keep blocks

•
Function

Implied
.BR or .CR Command Default -B Page

enable as escape character
enable / as phantom hyphen
enable \ as overstrike character
set # as significant blank
guarantee all figures printed <CR>

. FLAGESC

.FLAGHYPH

.FLAGOVER

.FLAGSIG

.FLUSHFIGS

(on)
(off)

(on)
(on)

-B

15
15
15
15
85

print a Roman numeral or
start a footnote
start a new header level
indent the next line
include blank lines from

letter

<CR>
<CR>

inpt fl

.FMT n1 n2

. FOOTNOTE

.HL n heading

.I n

.IBL (true)

-B
-B

40
32
39

9
93

test expression for nonzero
includes another file as input
turn on justification
keep text together
start a new list element

.IF expression

.INCLUDE filename

. J (on)

 .KEEP
<CR> .LE

-B

29
47
10
11
39

Set physical page size
start a new list or list level
set the left margin
define a macro
resume text after page header

turn on page numbering
set paragraph format
start a new page
sentence ends with ?, !, or .
set page number

.LINES n
<CR> .LIST sp [in]

.LM value

. MACRO

 .MID

.NMP

.P in sp tst
<CR> .PAGE

.PERIOD

.PNO n

(0)
[4]
(1)

(on)
(+0 1 3)

(on)

-B

13
39

9
18
21

13
12
12
15
13

start new paragraph
set logical page size
reference by name
remark, skip rest of line
restore stacked environment

<CR> .PP
.PS ln col (57 72)
.REF name placeholder
.REM
.RES

12
12
36
40
14

restore named environment
restore page environment
shift document to right on page
set right margin
right-justify at next tab stop

.RESENV name

.RESPAG

.RIGHT n

.RM value

.RT

(0)
(72)

14
14

9
9

64

105

NASA Langley Research Center
Software Development Lab

Command Summary (continued)

RNF
MARCH 1985

-B = command not legal inside figures, footnotes, or keep blocks

Function
Implied

.BR or .CR Command Default -B Page

blank lines dependent on .SP <CR> .S number 11
save environment on stack .SAV 14
save (set) named environment .SAVENV name 14
save (set) page environment. .SAVPAG 14
all blanks are significant .SIG (off) 8

set spacing between lines .SP number (1) 10
set page subtitle .ST text 13
sets default options . STANDARD 51
discard current output line .SUP 52
start next word at next tab stop .T 64

set tab stops . TAB cl ... c30 (no tabs) 64
same as . TAB .TABS ... 64
set page title .TITLE text 13
prepare for page header
 .TOP -B 21
test page for n lines remaining .TP n -B 11

set underscore .U 69
underline significant blanks .USB (on) 69
declare numeric variable .VAR $name 26
vertical tab to line n <CR> .VT n 53
extend (or concat.) output word .X 8

106

1. Report No.

NASA TM-86327
2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

M68000 RNF Text Formatter User's Manual

7. Author(s)

Ralph W. Will and Carolyn Grantham

5. Report Date
March 1985

6. Performing Organization Code

505-37-03-01
8. Performing Organization Report No.

)

1-----------------------------1 10. Work Unit No.
9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546·

15. Supplementary Notes

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

16. Abstract

RNF is a powerful, flexible text formatting program. It is designed to automate
many of the tedious elements of typing, including breaking a document into pages with
titles and page numbers, formatting chapter and section headings, keeping track of
page numbers for use in a table of contents, "justifying" lines by inserting blanks
to give an even right margin, and inserting figures and footnotes at appropriate
places on the page. RNF greatly facilitates both preparing and modifying a document
because it allows you to concentrate your efforts on the content of the document
instead of its appearance and because it removes the necessity of retyping text that
has not changed.

17. Key Words (Suggested by Author(s))

Text Formatter
Document Processor

18. Distribution Statement

Unclassified - Unlimited
Subject Category 61

&

19. Security C1assif. (of this reportl

Unclassified
20. Security Classif. (of this pagel

Unclassified
21. No. of Pages

109
22. Price

A06

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

