General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

WIND TUNNEL ACOUSTIC STUDY OF A PROPELLER INSTALLED BEHIND AN AIRPLANE EMPENNAGE: DATA REPORT
J. F. Wilby
E. G. Wilby
 OF A EROPELLEB INSTALIEL BEEIRT AN AIRELABE EBPBALIAGE: DATA EEFCET (Eclt, Eeranek, add Mewnan. inc.) 267 p EC AizfMFAD CSCI 20A

G3/71 $\begin{aligned} & \text { Onclas } \\ & 20172\end{aligned}$

CONTRACT NAS2-11085
January 1985

Mns

NASA CONTRACTOR REPORT 177335

WIND TUNNEL ACOUSTIC STUDY OF A PROPELLER INSTALLED BEHIND AN AIRPLANE EMPENNAGE: DATA REPORT

J.F. Wilby

E.G. Wilby

BBN Laboratories Incorporated
A Subsidiary of Bolt Beranek and Newman Inc. Canoga Park, CA 91303

Prepared for
Ames Research Center
Contract NAS2-11085
January 1985

National Aeronautics and
Space Administration
Ames Research Center
Moffett Field, California 94035

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1
1.1 Scope of Report 1
2. 2 Propeller Noise 1
1.3 Overview of Test Program 7
1.4 Outline of Report 8
3. TEST DESCRIPTION 9
2.1 Wind Tunnel Test Section 9
2.2 Model Configuration 12
2.2.1 General Configuration 12
2.2.2 Model Empennage 16
2.2.3 Model Propeller 22
2.3 Instrumentation 22
2.3.1 Data Acquisition 22
2.3.2 Data Reduction 29
2.4 Test Conditions 38
4. DATA ANALYSIS PROCEDURES 42
3.1 General Approach 42
3.2 Adjustment to Harmonic Sound Pressure Levels 42
3.3 Distance Normalization 44
3.4 Shear Layer Effect 44
3.5 Turbulence Scattering 50
5. EVALUATION OF TEST DATA 58
4.1 Introduction 58
4.2 Noise due to Test Hardware 58
4.3 Propeller Noise 62
4.4 Repeatability of Data 73
4.5 Summary 87

TABLE OF CONTENTS

(continued)
Section Page
5. HARMONIC SOUND PRESSURE LEVELS 88
5.1 General 88
5.2 Propeller Operating Alone 88
5.3 Influence of Empennage 89
5.4 Blade Angle 101
5.5 Propeller rpm 109
5.6 Flow Speed 110
5.7 Fuselage Orientation 110
5.8 Axial Separation 121
5.9 Vertical Sepaiation 133
5.10 E.tpennage Angle of Incidence 138
5.11 Directivity in Vertical Plane 138
5.12 Directivity in Horizontal Plane 142
5.13 "On-Axis" Sound Pressure Levels 162
6. DISCUSSION 173
6.1 Characteristics of the Radiated Sound Field 173
6.2 Prediction Procedures--Empirical 178
6.3 Prediction Procedures--Analytical 184
7. CONCLUSIONS 188
REFERENCES 191
APPENDIX A 199
APPENDIX B 249

LIST OF FIGURES

Figure Page

1. Comparison of Propeller Noise Spectra for Static and Forward Flight Conditions 3
2. Diagrammatic Representation of Propeller Inflow Turbulence 3
3. Effect of Rotor Spacing on Noise Radiation from an Axial-Flow Fan 5
4. Comparison of Propeller Noise Levels for Front and Rear Engines of Cessna Model 337 (Static Test, 50 Feet Radius, Plane of Rotation) 6
5 Plan of $7^{\prime} \mathbf{x} 10^{\prime}$ Wind Tunnel 10
5. Flow Collection in Open Test Section 11
6. Open Test Section with Sound-Absorbing Panels on South Side (Fuselage Orientation $\psi=0^{\circ}$) 13
7. Open Test Section with Sound-Absorbing Panels on North Side 14
8. Diagram of Test Model and Propeller Drive Mechanism in Test Section 15
9. Y-Tail Empennage from Below 17
10. Head-On View of Model with Y-Tail in Fuselage Orientation $\psi=90^{\circ}$ 18
11. Fuselage with I-Tail Empennage ($\psi=0^{\circ}$) 19
12. Test Model Showing Mounting for $\psi=90^{\circ}$ Orientation 20
13. Diagrams of Test Empennages 21
14. View of Model Propeller Installed in Test Rig Behind Y-Tail Empennage 24
15. Block Diagram for Data Acquisition System 26
16. Diagram of Micrephone Locations 27
17. Block Diagram for Data Reduction System 30

LIST OF FIGURES

(Continued)
Figure
19. Typical Setup State for HP 5420 Analyzer during Data Reduction 31
20. Sample Narrowband Sound Pressure Level Spectrum of Propeller Noise Measured during Test Program 43
21. Diagram of Sound Transmission Through Shear Layer of Zero Thickness 47
22. Narrowband Propeller Noise Spectra Measured with and without Airflow (Microphone 2) 54
23. Comparison of Narrowband Propeller Noise Spectra Measured In and Out of Flow 55
24. Comparison of Narrowband Propeller Noise Spectra Measured Forward and Aft of Plane of Rotation 56
25. Sound Pressure Level Spectra Measured Out of Flow (Microphone 2) When Propeller Not Operating (Fuselage without Empennage) 59
26. Sound Pressure Level Spectra Measured In Flow Microphone 7) When Propeller Not Operating (Fuselage without Empennage) 59
27. Comparison of Sound Pressure Level Spectra Measured In and Out of Flow When Propeller Not Operating (Fuselage without Empennage) 61
28. Influence of Empennage on Broadband Sound Pressure Levels When Propeller Not Operating (Y-Tail) 63
29. Influence of Fuselage Orientation on Broadband Sound Pressure Levels When Propeller Not Operating (Y-Tail) 64
30. Comparison of Sound Pressure Levels at Microphone 2 with and without Propeller Operating (Y-Tail, $\left.\psi=0^{\circ}, 4000 \mathrm{rpm}\right)$ 65
31. Comparison of Sound Pressure Levels at Microphone 6 with and without Propeller Operating (Y-Tail, $\left.\psi=0^{\circ}, 4000 \mathrm{rpm}\right)$ 66

LIST OF FIGURES (Continued)

Figure Page
32. Comparison of Sound Pressure Levels at Microphone 2 with and without Propeller Operating (Y-Tail, $\psi=0^{\circ}$, 8200 rpm) 67
33. Comparison of Sound Pressure Levels at Microphone 6 with and without Propeller Operating (Y-Tail, $\left.\psi=0^{\circ}, 8200 \mathrm{rpm}\right)$ 68
34. Comparison of Sound Pressure Levels at Microphone 2 with and without Propeller Operating (Y-Tail, $\psi=90^{\circ}, 8200 \mathrm{rpra}$) 69
35. Comparison of Sound Pressure Levels at Microphone 2 with and without Propeller Operating (I-Tail, $\left.\psi=90^{\circ}, 8200 \mathrm{rpm}\right)$ 70
36. Comparison of Propeller Sound Pressure Levels with and without Fuselage Upstream (No Empennage, $62.4 \mathrm{~m} / \mathrm{s}, 8200 \mathrm{rpm}$) 72
37. Influence of Empennage on Narrowband Sound Pressure Levels with Propeller Operating ($\psi=0^{\circ}$) 74
38. Influence of Empennage on Narrowband Sound Pressure Levels with Propeller Operating ($\psi=90^{\circ}$, 8200 rpm) 75
39. Influence of Empennage on Narrowband Sound Pressure Levels with Propeller Operating ($\psi=90^{\circ}, 6000 \mathrm{rpm}$) 76
40. Influence of Separation between Empennage and Propeller on Narrowband Sound Pressure Levels (Y-Tail) 77
41. Comparison of Narrowband Sound Pressure Levels for Repeated Runs (Y-Tail, $62.4 \mathrm{~m} / \mathrm{s}, 8200 \mathrm{rpm}$) 78
42. Comparison of Blade Passage Frequency Harmonic Levels for Repeat Runs (Y-Tail, $62.4 \mathrm{~m} / \mathrm{s}$, 8200 rpm) 81
43. Average Range of Harmonic Sound Pressure Levels for Repeat Runs as a Function of Angle of Radiation 86

LIST OF FIGURES
 (Continued)

Figure Page
44. Harmonic Levels for Propeller Operating Alone at Different rpm (Microphone 2) 90
45. Narrowband Sound Pressure Levels for Propeller Operating Alone (8200 rpm; Microphone 2) 91
46. Comparison of Harmonic Sound Pressure Levels Measured at Microphone 2 for Different Empennage Configurations ($\psi=0^{\circ}$) 92
47. Comparison of Harmonic Sound Pressure Levels Measured at Microphone 2 for Different Empennage Configurations ($\psi=90^{\circ}$) 93
48. Influence of Y-Tail on Harmonic Levels (8200 rpm , $62.4 \mathrm{~m} / \mathrm{s}, \mathrm{X}=23.8 \mathrm{~cm}, \psi=0^{\circ}$) 95
49. Influence of Y-Tail on Harmonic Levels (8200 rpm ,$62.4 \mathrm{~m} / \mathrm{s}, \mathrm{X}=23.8 \mathrm{~cm}, \psi=90^{\circ}$)97
50. Comparison of Harmonic Levels for Y-Tail and V-Tail Empennages ($8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}, \mathrm{X}-23.8, \psi=0^{\circ}$) 99
51. Influence of I-Tail on Harmonic Levels (8200 rpm , $62.4 \mathrm{~m} / \mathrm{s}, \mathrm{X}-30.8 \mathrm{~cm}, \psi=0^{\circ}$) 102
52. Influence of I-Tail on Harmonic Levels (8200 rpm, $62.4 \mathrm{~m} / \mathrm{s}, \mathrm{X}=30.5 \mathrm{~cm}, \psi=90^{\circ}$) 104
53. Effect of Blade Angle on Harmonic Sound Pressure Levels (Y-Tail, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}, \mathrm{X}=23.6 \mathrm{~cm}$) 106
54. Harmonic Sound Pressure Levels at Different
Propeiler rpm (Y-Tail, $V=45.7 \mathrm{~m} / \mathrm{s}, \psi=0^{\circ}$) 111
55. Harmonic Sound Pressure Levels at Different Propeller rpm (Y-Tail, $V=62.4 \mathrm{~m} / \mathrm{s}, \psi=0^{\circ}$) 112
56. Harmonic Sound Pressure Levels at Different Propeller rpm (Y-Tail, $V=62.4 \mathrm{~m} / \mathrm{s}, \psi=90^{\circ}$)113
57. Harmonic Sound Pressure Levels at DifferentPropeller rpm (I-Tail, $V=62.4 \mathrm{~m} / \mathrm{s}$,Microphone 2)115

LIST OF FIGURES

 (Continued)Pigure Page
58. Harmonic Sound Pressure Levels at Different Propeller rpm from 7300 to 8200 (Y -Tail, $\mathrm{V}=62.4 \mathrm{~m} / \mathrm{s}, \psi=0^{\circ}$) 116
59. Comparison of Harmonic Sound Pressure Levels at Different Flow Speeds (Microphone 2, 8200 rpm) 118
60. Comparison of Harmonic Sound Pressure Levels at Different Flow Speeds (Microphone 5, 8200 rpm) 119
61. Comparison of Harmonic Sound Pressure Levels at Different Flow Speeds (Microphones 8 and 9). 120
62. Comparison of Harmonic Sound Pressure Levels Measured for Different Fuselage Orientations ($8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 122
63. Influence of Axial Separation Distance between Empennage and Propeller on Harmonic Sound Pressure Levels (Microphone 1, Y-Tail, 8200 rpm, $62.4 \mathrm{~m} / \mathrm{s}$) 126
64. Influence of Axial Separation Distance between Empennage and Propeller on Harmonic Sound Pressure Levels (Microphone 3, Y-Tail, 8200 rpm, $62.4 \mathrm{~m} / \mathrm{s}$) 127
65. Influence of Axial Separation Distance between Empennage and Propeller on Harmonic Sound Pressure Levels (Microphone 6, Y-Tail, 8200 rpm , $62.4 \mathrm{~m} / \mathrm{s}$) 128
66. Influence of Axial Separation Distance between Empennage and Propeller on Harmonic Sound Pressure Levels (Microphone 1, I-Tail, 8200 rpm , $62.4 \mathrm{~m} / \mathrm{s}$) 129
67. Influence of Axial Separation Distance between Empennage and Propeller on Harmonic Sound Pressure Levels (Microphone 3, I-Tail, 8200 rpm , $62.4 \mathrm{~m} / \mathrm{s}$) 130
68. Influence of Axial Separation Distance between Empennage and Propeller on Harmonic Sound Pressure Levels (Microphone 6, I-Tail, 8200 rpm , $62.4 \mathrm{~m} / \mathrm{s}$) 131
69. Influence of Axial Separation Distance between Empennage and Propeller on Harmonic Sound
Pressure Levels, Empennage Incidence 5° 134
70. Influence of Vertical Separation Distance
Between Empennage and Propeller on Harmonic
Sound Pressure Levels (820 u rpm, $V-62.4 \mathrm{~m} / \mathrm{s}$ 136
71. Influence of Empennage Angle of Incidence on Harmonic Sound Pressure Levels (Mic:ophone 1, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 139
72. Influence of Empennage Angle of Incidence on Harmonic Sound Pressure Levels (Microphone 4, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 140
73. Influence of Empennage Angle of Incidence on Harmonic Sound Fressure Levels (Microphone 6, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 141
74. Vertical Plane Directivity of Harmonic Sound Pressure Levels (Fuselage without Empennage, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 143
75. Vertical Plane Directivity of Harmonic Sound Pressure Levels (Y-tail, $x=23.8 \mathrm{~cm}, 8200 \mathrm{rpm}$, $62.4 \mathrm{~m} / \mathrm{s}$) 144
76. Vertical Plane Directivity of Harmonic Scund Pressure Levels (I-tail, $x=38.4 \mathrm{~cm}, 8200 \mathrm{rpm}$, $62.4 \mathrm{~m} / \mathrm{s}$) 145
77. Horizontal Plane Directivity of Harmonic Sound Pressure Levels (Propeller alone, 8200 rpm, $62.4 \mathrm{~m} / \mathrm{s}$) 147
78. Horizontal Plane Directivity of Harmonic SoundPressure Levels (Fuselage without Empennage,$8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$)148
79. Horizontal Plane Directivity of Harmonic Sound Pressure Levels (Y-tail, $x=10.8 \mathrm{~cm}, 8200 \mathrm{rpm}$, $62.4 \mathrm{~m} / \mathrm{s}, \psi=0$) 150
80. Horizontal Plane Directivity of Harmonic Sound Pressure Levels (Y-tail, $x=23.8 \mathrm{~cm}, 8200 \mathrm{rpm}$, $62.4 \mathrm{~m} / \mathrm{s}, \psi=0$) 151

LIST OF FIGURES

81. Horizontal Plane Directivity of Harmonic Sound
Pressure Level.s (Y-tail, x=57.5 cm, 8200 rpm,
$62.4 \mathrm{~m} / \mathrm{s}, \psi=0$) 152
82. Influence of Empennage/Propeller Separatior: Distance on Horizontal Plane Directivity of Harmonic Sound Pressure Levels (Y-tail, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 153
83. Horizontal Plane Directivity of Harmonic Sound Pressure Levels (Y-teil, $x=23.8 \mathrm{~cm}, 8200 \mathrm{rpm}$ $62.4 \mathrm{~m} / \mathrm{s}, \psi=90^{\circ}$) 156
84. Horizontal Plane Directivity of Harmonic Sound Pressure Levels, Empennage/Propeller Vertical Separation +7.6 cm (Y-tail, $x=23.5 \mathrm{~cm}, 8200 \mathrm{rpm}$, $62.4 \mathrm{~m} / \mathrm{g}$) 157
85. Horizontal Plane Directivity of Harmonic SoundPressure Levels, Empennage/Propeller VerticalSeparation -7.6 cm (Y-tail, $x=24.1 \mathrm{~cm}, 8200 \mathrm{rpm}$,
$62.4 \mathrm{~m} / \mathrm{s}$) 158
86. Horizontal Plane Directivity of Harmonic Sound Pressure Levels, Empennage Angle of Incidence 5°
(Y-tail, $x=22.9 \mathrm{~cm}, 8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}) \cdot$. . . 159
87. Horizontal Plane Directivity of Harmonic Sound Pressure Levels (I-tail, $x=38.4 \mathrm{~cm}, 8200 \mathrm{rpm}$, $62.4 \mathrm{~m} / \mathrm{s}, \psi=0^{\circ}$)160
88. Horizontal Plane Directivity of Harmonic Sound Pressure Levels (I-tail, $x=36.8 \mathrm{~cm}, 8200 \mathrm{rpm}$, $62.4 \mathrm{~m} / \mathrm{s}, \psi=90^{\circ}$)161
89. Influence of Fuselage and Empennage on Harmonic Sound Pressure Levels ($8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 36490. Comparison of Blade Passage Frequency HarmonicLevels for Repeat Runs, Microphones 8 and 9(Y-tail, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$)166
90. Influence of Empennage/Propeller Axial SeparationDistance on Harmonic Suund Pressure Levels, Micro-phones 8 and 9 (Y-tail, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}, \psi=0^{\circ}$) .167
91. Influence of Empennage/Propeller Axial Separation Distance on Harmonic Sound Pressure Levels, Micro- phones 8 and 9 (Y-tail, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}, \psi=90^{\circ}$). 168

LIST OF FIGURES

Figure Page
93. Comparison of Harmonic Sound Pressure Levels Measured for Different Fuselage Orientations, Microphones 8 and 9 (Y-tail, 8200 rpm, $62.4 \mathrm{~m} / \mathrm{s}$) 170
94. Influence of Empennage Angle of Incidence on Harmonic Sound Pressure Levels, Microphones 8 and 9 (Y-tail, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 171
95. Influence of Empennage/Propeller Axial Separation Distance on Harmonic Sound Pressure Levels with Empennage Incidence 5°, Microphones 8 and 9 (Y-tail, $8200 \mathrm{rpm}, 62.4 \mathrm{~m} / \mathrm{s}$) 172
96. Schematic Spectrum Showing Frequency Regimes Associated with Different Components of Propeller Noise 176
97. Comparison of Measured and Predicted Solnd Pressure Levels for Propeller Operating Alone 183
98. Computer-Generated Three-Dimensional Display of SR-2 Blade [39] 186

LIST OF TABLES

TablePage
1 Test Propeller Characteristics 23
2 Microphone Locations 28
3 Acoustic Test Conditions 34
4 Propeller Operating Conditions 40
5 Distance Normalization 45
6 Adjustments due to Refraction at Shear Layer 49
7 Mean Separation Distances between Empennage Trailing Edge and Propeller Plane of Rotation 132

ACKNOWLEDGEMENT

This report presents acoustic data acquired during NASA Test 706 in the NASA Ames \#l 7×10-foot Wind Tunnel. Although the authors of the report participated in the planning and performance of the test, and in the subsequent data reduction, credit for the overall planning, performance and, finally, for the success of the program should go solely to Mr. Paul T. Soderman, the NASA Ames Technical Monitor. In addition, the authors wish to acknowledge the great help provided by Ms. Lisa Lee in the extensive data reduction effort which followed the completion of the tests.

1. INTRODUCTION

1.1 Scope of Report

Ar. acoustic test of a propeller mounted behind an airplane empennage was performed by NASA Ames on a model in the Ames Research Center No.l 7xl0-foot wind tunnel during March-April 1984. Teshnical assistance in the planning and performance of the test, and in the subsequent data reduction was provided by Bolt Beranek and Newman Inc. (BBN). This report presents the results of the work performed by BBN. It describes the model configurations and conditions investigated during the tests, discusses the data acquisition, reduction and analysis procedures, presents acoustic data acquired and provides data interpretation. The total test program included measurements of the wake behind the empennage. Results from these wake tests were analyzed separately by NASA and are not included in this report.

1.2 Propeller Noise

In recent years there has been a resurgence of interest in the generation and control of noise from airplane propellers. This renewed interest has included both interior and exterior noise of propeller-driven aircraft and has covered the range of propellers from conventional general aviation (GA) designs to advanced turboprops (ATP) for high-subsonic cruise. At the same time new aircraft designs have included configurations with propellers motnted on the rear of the airplane, acting in the pusher rather than the tractor role. Aircraft with aft-mounted propellers include the Lear Fan 2100 [1], Beech Starship 1 [2], Gates-Piaggio GP-180 [2] and certain configurations for the ATP airplane [3]. The propellers may be mounted on the centerline of the airplane [1], on the trailing edge of wings on aircraft with canards [2] or on the trailing edge of aft pylons or horizontal stabilizers [3]. However, in all cases the propellers operate in the wake of the
upstream control surfaces. It is this phenomenon of noise generation from propellers operating in the wakes of upstream surfaces that is the main impetus for the present study.

Removal of the propeller plane to a location well aft of the passenger cabin has the advantage of reducing the propeller-induced sound levels in the cabin and hence the weight requirements for soundproofing treatments. However, operation of the propeller in a non-uniform flow field, such as exists downsiream of control surfaces has the potential for increasing the far field radiated sound levels during take-off and approach. There is also the possibility that forward-radiated sound will enter the passenger cabin.

The influence of a non-uniform flow field on acoustic radiation from a rotating propeller has been observed in comparisons between static and forward flight data. A comparison of this type for z conventional twin-engined propeller-driven airplane [4] shows a marked reduction in the radiated sound pressure levels of higher order harmonics of the blade passage frequency (Figure 1). In this particular example the propeller tip rotational Mach number was 0.85 and the corresponding helical Mach number in flight was 0.87. The physical interpretation of the results is that, under static conditions, the turbulence eddies in the inflow are elongated and subjected to chopping by the propeller, as shown diagrammatically in Figure 2.

The wake from an upstream surface can be considered, to some extent, to be similar to the static conditions for a propeller operating in free space. There is a repetitious interaction between a propeller blade and an inhomogeneous flow field. There have Jeen several investigations of the effect as it pertains to acoustic radiation from fans and compressor rotors operating downstream of inlet guide vanes in turbofan and turbojet engines [5-12] but the corresponding literature for propellers is sparse [13,14].

FIGURE 1. COMPARISON OF PROPELLER NOISE SPECTRA FOR STATIC AND FORWARD FLIGHT CONDITIONS [4]

FIGURE 2. DIAGRAMMATIC REPRESENTATION OF PROPELLER INFLOW TURBULENCE

The fan noise studies resulted in several prediction curves for sound level as a function of stator/rotor separation distance. These curves are plotted in Figure 3 where the separation distance is non-dimensionalized with respect to stator chord. It is seen that there is a wide variation in slope for the curves in Figure 3, ranging from -6 dB per doubling of separation distance, as given by Smith and House [8], to approximately $-2 d B$ per doubling of separation. The empirical curve of Lowson differs from the others in that it shows two different relationships, one associated with separation distances which are less than one chord length and the other with separation distances greater than one chord. It is possible that the two regimes might be associated with potential field interaction and wake interaction respectively. Certainly the $-4 \mathrm{~dB} /$ separation doubling, as predicted by Lowson for small separations, is similar to the range of -3 dB to -5 dB shown in the data of Sharland [5] and Fincher [6]. However, other studies [12] imply that the potential field and viscous interference (wake) effects are equal at a stator/rotor separation of approximately about one-tenth of the chord length.

Published data for tractor and pusher propellers on the Cessna 02-T or Model 337 [13,14] are concerned mainly with static test conditions, although the authors state that similar effects were noted during flight tests. The Cessna Model 337, as shown in Figure 4, is a twin-boom airplane with two engines and propellers; the rear propeller is mounted on the aft of the passenger cabin and the forward propeller is at the front of the cabin. The two propellers are of similar design, and both have three blades and a diameter of 2.13 m (84 inches).

Figure 4 also contains narrowband acoustic spectra associated with static operation of the front and rear propellers separately. The spectrum for the forward propeller shows components at the first two harmonics of the blade passage frequency ($\mathrm{mB}=3,6$ where m is the harmonic order, $m=1$ being the fundamental, and B the number

FIGURE 3. EFFECT OF ROTOR SPACING ON NOISE RADIATION FROM AN AXIAL-FLOW FAN

FIGURE 4. COMPARISON OF PROPELLER NOISE LEVELS FOR FRONT AND REAR ENGINES OF CESSNA MODEL 337 [13] (STATIC TEST, 50 FEET RADIUS, PLANE OF ROTATION)

OF POOR QUALITY.
of blades), whereas the spectrum for the rear propeller contains contributions from the first six harmonics ($m B=3$ through 18). In the case of the Cessna 337, propeller in-flow conditions are influenced by the fiselage, the downwash from the wing and the exhaust from the turboprop engine.

The conclusion to be drawn from inlet guide vane studies and the measurements on propeller-driven aircraft is that propellers operating in the wake of upstream surfaces will probably generate higher sound levels than propellers operating in relatively undisturbed airflow such as is encountered by tractor propellers. The objective of the present experimental study is to extend the understanding of the phenomenon as it relates to both discrete frequency and broadband noise.

1.3 Overview of Test Program

The test program discussed in this report involved the operation of a model scale propeller in the open test section of the NASA Ames Research Center \#l $7 x 10$-foot wind tunnel. The propeller was located immediately downstream of a model airplane fuselage on which were mounted empennages of different configurations. Sound pressure levels were measured at ten locations outside the flow in the test section and at three locations in the flow. The acoustic data were reduced in terms of narrowband and one-third octave band spectra so that the different contributions to the acoustic field could be identified and analyzed.

The majority of the acoustic measurements were made at two flow speeds (45.7 and $62.5 \mathrm{~m} / \mathrm{s}$ or $M=0.13$ and 0.18) and three propeller rotational speeds (4000, 6000 and 8200 rpm). Three empennage configurations ($\mathrm{Y}-, \mathrm{V}-$, and $\mathrm{I}-\mathrm{tails}$) were tested and the airplane fuselage was oriented in two configurations ($\psi=0^{\circ}, 90^{\circ}$) to simulate sideline and overhead conditions. Consideration was given to the influence of the flow shear layer on the sound pressure levels
measured outside the tunnel flow, and appropriate adjustments made to the data. Finally, the effect of the empennage on the radiated sound field was analyzed for the various test conditions.

1.4 Outline of Report

A description of the acoustic test performed on the propeller and empenrage is given in Section 2. The description includes the wind tunnel test chamber and model configuration, data acquisition and reduction procedures, and the test conditions investigated. Data analysis procedures, including adjustments made to the measured sound levels to account for shear layer effects, distance normalization and broadband effects on discrete frequency sound levels, are given in Section 3. Then Section 4 presents an evaluation of the data, including the roles played by various hardware items in che tunnel test section. Section 5 provides an analysis of the harmonic components of the propeller noise field; a general discussion of the results is given in Section 6 .

2. TEST DESCRIPTION

2.1 Wind Tunnel Test Section

The acoustic tests were performed in the open test section of the NASA Ames Research Center \#l 7xi0-foot wind tunnel. In the open configuration the test section sidewalls and ceiling are removed but the floor is retained. Thus, the section is open on three sides. The floor of the test section is continuous with the surrounding wooden floor of the platform which contains the tunnel operator's stations and a work bench area.

The nozzle for the open test section is formed by the contraction downstream of the tunnel settling chamber, and a collector is installed at the entry to the first stage diffuser. A new collector with a convex contour was installed for the present tests, the collector being covered with sound-absorbing foam to minimize acoustic reflections. A plan of the tunnel is shown in Figure 5 and a photograph of the collector is given in Figure 6. The open test section is 2.1 m (7 feet) high and 3.0 m (10 feet) wire at the nozzle and has a length of about 4.3 m (14 feet) from nozzle lip to collector entry.

The test section is surrounded by a test chamber which has dimensions of approximately $13.7 \times 16.3 \times 9.1 \mathrm{~m}(45 \times 55 \times 30 \mathrm{ft})$. The chamber is of steel construction and has some acoustic treatment in the form of acoustic tiles bonded to the ceiling and wall panels. The average absorption coefficients for the chamber lie in the range from 0.47 to 0.66 in the frequency range from 250 to 8000 Hz [15]. However, these values of the absorption coefficient were not adequate for the propeller noise tests. Thus, additional sound-absorbing materials in the form of foam panels were placed on the platform, on either side of the test section, and inclined relative to the vertical so that any residual acoustic energy would be reflected upwards. In addition, sheets of foam 7.6 cm

FIGURE 5. PLAN OF $7 \times 10^{\circ}$ WIND TUNNEL

ORIGNAL PGB
OF POOR QUALITY

FIGURE 6. FLOW COLLECTOR IN OPEN TEST SECTION
(3 inches) thick were placed on the test section and platform floors, between the model propeller and the microphones used to measure the acoustic field. The foam panels and the floor treatmen in be seen in Figures 7 and 8 . The photograph in figure 8 als:. lows the permanent acouetic treatment on the chamber walls and ceiling.

Optimum positioning of the sound-absorbing panels was achieved by reviewing data associated with an impulsive noise source (pistol shots) at the location of the model propeller. However, the geometry of the test section, tunnel, and test chamber still influences conditions at some measurement locations.

2.2 Model Configuration

2.2.1 General Configuration

The general configuration of the test model can be seen in Figure 8. It consisted essentially of two items; a model fuselage with empennage attached and a propeller drive system consisting of a motor and shaft contained in an aerodynamic housing. Essentially the propeller was a tractor propeller mounted separately from the airframe structure. Approximate dimensions for the set-up aie given in Figure 9.

The model fuselage was mounted on two swept airfoil struts which could be moved parallel to the tunnel centerline in order to vary the separation distance between the empennage and the propeller. The propeller drive system was fixed in the longitudinal direction but could be moved vertically to vary the height above and below the selage centerline. The axial position of the propeller in the test section was chosen to optimize the angular range available for acoustic measurements.

OF POGR QUALITK

FIGURE 7. OPEN TEST SECTION WITH SOUND-ABSORBING PANELS ON SOUTH SIDE (FUSELAGE ORIENTATION $\psi=0^{\circ}$)

ORIF
OF POUR Qun..lt

FIGURE 8. OPEN TEST SECTION WITH SOUND-AESORBING PANELS ON NORTH SIDE

FIGURE 9. DIAGRAM OF TEST MODEL AND PROPELLER DRIVE MECHANISM IN

Inspection of Figure 8 will show that the dimensions of the model fuselage and empennage are not in correct proportions. This is because the fuselage was used simply as an aerodynamic fairing on which the empennage could be mounted. The dimensions of the empennage were determined on the basis of the model scale for the propeller rather than the fuselage. The model fuselage was installed without a wing.

2.2.2 Model Empennage

Three empennage configurations were selected for test. These configurations consisted essentially of a V-tail with and without a dorsal fin, and a vertical fin. For convenience the V-tail with dorsal fin is referred to in this report as the Y-tail and the vertical fin as the I-tail. The fuselage model with the Y-tail installed is shown in Figure 8. A view from beneath the Y-tail is shown in Figure 10 and a head-on view in Figure ll. The fuselage with I-tail installed is shown in Figure 12.

Tests were performed with the fuselage model oriented as shown in Figure 8 so that sound levels could be measured to the side. Then the fuselage was rotated through 90° and sound levels measured beneath the airplane. These configurations are identified by $\psi=0^{\circ}$ and $\psi=90^{\circ}$. In the $\psi=90^{\circ}$ arrangement the fuselage model was mounted on one side of the support struts, as shown in Figures 11 and 13 . The mounting was faired over to minimize the generation of aerodynamic noise.

Representative dimensions for the test empennages are shown in Figure 14.
O.

OF:

FIGURE 10. Y-TAIL EMPENNAGE FROM BELOW

```
Grightal
OF POOR QUHLI
```


FIGURE 11. HEAD-ON VIEW OF MODEL WITH Y-TAIL IN FUSELAGE ORIENTATION $\psi=90^{\circ}$

OF POOR QUALITV

NOI LVLNヨI 80 。06＝\＄YO』 ONILNOOW ONIMOHS 7ヨGOW LSヨ」
FIGURE 13.
(a) Y -Tail, Side View

(b) Y-Tail, Rear View

(c) I-Tail, Side View

FIGURE 14. DIAGRAMS OF TEST EMPENNAGES

2.2.3 Model Propeller

The model propeller used in the test had four blades having the designation SR-2. These blades have zero sweep, as is the case for the majority of general aviation (GA) propellers but, compare to conventional GA designs, the SR-2 blade has a long chord and a relatively low thickness-to-chord ratio of 2% at the tip. Typical dimensions for the test propeller are given in Table l, which also contains a plan of the blade shape.

A photograph of the model propeller mounted on the spinner and drive shaft is shown in Figure 15. The blade pitch angle was adjusted manually. Appropriate values of the angle were determined for the different airflow speeds and propeller rotational speeds, and the angle was adjusted prior to each test run.

The SR-2 propeller was selected initially by NASA as a baseline for comparison with swept blade designs under evaluation for the advanced turboprop (ATP) airplane. In the case of the ATP design the flight condition of primary interest is cruise at $M=0.80$ and a blade-tip rotational Mach number of about 0.80 , rather than take-off and approach, the conditions explored in the present tests. Wind tunnel acoustic measurements for the model SR-2 propeller (with 8 blades) under cruise conditions can be found in References 16 through 18. The propeller was used in the present tests because of its ready availability.

2.3 Instrumentation

2.3.1 Data Acquisition

Acoustic data from the tests were acquired using thirteen Bruel and Kjaer Type $4133,1.3 \mathrm{~cm}$ (0.5 inch) diameter microphones. Signals from the microphones were passed through Bruel and Kjaer Type 222-2 conditioners to a 14-channel Ampex FRI300 tape recorder. The data

Table 1

Test Propeller Characteristics

Propeller diameter	59.1 cm	$(23.3$ inches $)$
Hub diameter	9.8 cm	$(3.9$ inches $)$
Chord	9.2 cm	$(3.6$ inches $)$
Thickness	0.16 cm	$(0.06$ inch $)$
Tip Sweep Angle	0°	

FIGURE 15. VIEW OF MODEL PROPELLER INSTALLED IN TEST RIG BEHIND Y-TAIL EMPENNAGE
were recorded on magnetic tape for a minimum of 30 seconds per run. During di:ta recording the microphone signals were monitored on i Tektronix Model 475 oscilloscope. In addition sample on-line narrowband analysis was performed using a Hewlett Packard Type 5420B Digital Signal Analyzer. A block diagram of the data acquisition system is given in Figure 16.

Locations of the B\&K microphones are shown in Figure 17 and listed in Table 2. Microphones 1 through 6 were arranged in an arc of radius $4.27 \mathrm{~m}(14 \mathrm{ft})$ outside the tunnel flow with the microphones pointing towards the model propeller. Five of these microphones, mounted on $1.1 \mathrm{~m}(3.5 \mathrm{ft})$ high stands can be seen in Figure 7. Two other microphones (\#10 and \#13) were located in the same horizontal plane but on the opposite side of the test section. One of the microphone stands can be seen in Figure 8. These two microphones were out of the main flow of the tunnel but may have encountered some buffet from the edge of the free shear layer. The microphones could not be moved further from the flow because of constraints imposed by access to the tunnel control area.
Microphones \#11 and 12 were placed in the vertical plane above the test section, also in an arc of radius $4.27 \mathrm{~m}(14 \mathrm{ft})$ centered at the propeller axis. These microphones were not influenced by the tunnel flow.

Three microphones were located within the tunnel flow. In these cases the microphones were fitted with Bruel and Kjaer Type UAO386 nose cones and were oriented so that they pointed in the upstream direction. Two of the microphone installations ($\# 7$ and \#8) can be seen in Figure 8. The third in-flow microphone was located ahead of the model fuselage and close to the tunnel centerline.

The microphone array remained fixed throughout the acoustic test program. When the test model was oriented $\left(\psi=0^{\circ}\right)$ as shown in Figure 8 microphones 1 through 6 and microphones 10 and 13 represented measurements to the side of an airplane in flight;

FIGURE 16. BLOCK DIAGRAM FOR DATA ACQUISITION SYSTEM
(a) Plan View

(b) View Looking Downstream ($\theta=90 / 270^{\circ}$)

FIGURE 17. DIAGRAM OF MICROPHONE-LOCATIONS
TABLE 2. MICROPHUNE LOCATIONS

Mic.	M	Ft	$\begin{gathered} \theta^{*} \\ \text { deg. } \\ \hline \end{gathered}$	$\phi^{*}=0$	Deg. $\psi=90$	Nose Cone Fitted	$\begin{aligned} & \text { Mic. In. } \\ & \text { Flow } \end{aligned}$	Remarks
1	4.3	14.0	60	270	0	No	No	
2	4.3	14.0	70	270	0	No	No	
3	4.3	14.0	80	270	0	No	NO	
4	4.3	14.0	90	270	0	No	No	
5	4.3	14.0	105	270	0	No	No	
6	4.3	14.0	120	270	0	No	No	Possibly some buffet from flow
7	1.4	4.5	105	270	0	Yes	Yes	
8	1.4	4.5	140	270	0	Yes	Yes	
9	2.4	8.0	15	270	0	Yes	Yea	
10	2.4	7.9	290	90	180	No	NO	Posibly some buffet from flow
11	4.3	14.0	90	210	300	No	No	
12	4.3	14.0	90	240	330	No	No	
13	2.3	7.6	270	90	180	No	No	Possibly some buffet from flow

[^0]$\begin{aligned} & \text { viewed from above } \\ \phi= & 0^{\circ} \text { directly below }\end{aligned}$
$=0^{\circ}$ directly below airplane; positive θ in counterclockwise direction viewed in upstream direction
microphones 11 and 12 were above the airplane. Then, when the model was rotated throusn $90^{\circ}\left(\psi=90^{\circ}\right)$ the array of microphones 1 through 6 was located beneath the airplane and microphones 10 and 13 above the airplane.

2.3.2 Data Reduction

The data reduction instrumentation is shown in the block diagram in Figure 18. Signals from the Ampex FRl 300 tape recorder were reduced into narrowband or one-third octave band sound pressure level spectra. The narrowband data reduction was performed using a Hewlett-Packard system and the one-third octave band data reduction using a GenRad Model 1995 Integrating Real Time Analyzer. The data reduction process was controlled by means of a HewlettPackard 87XM Personal Computer.

One-third octave band spectra were reduced using the GenRad 1995 Real Time Analyzer with a flat response from 25 Hz to $20,000 \mathrm{~Hz}$ and a linear weighting function. The spectra were obtained by integrating over a l5-second sample length. The computer program GENRAD3 (see Appendix A) was used on the HP87 computer as controller, taking the integrated spectrum from the GenRad 1995, adjusting for microphone gains, adding shear layer corrections to the spectrum, normalizing the data to a distance of 4.3 m (14 ft), calculating the A-weighted level and plotting and listing the corrected or uncorrected spectrum levels. The spectrum levels could be stored on disc, using the HP-9121D Flexible Disc Memory, identified by run number, data point and microphone number for future reference.

Narrowband spectra were obtained using the HP5420 FFT Narrowband Analyzer. The set-up state used for the data reduction is shown in Figure 19 together with an example of the spectrum for a calibration signal. The data were reduced in the frequency range 0 to 6400 Hz , with 512 spectral lines (high resolution auto-spectrim),

Narrowband Data Reduction

FIGURE 18. BLOCK DIAGRAM FOR DATA REDUCTION SYSTEM

Narrowband Data Reduction

FIGURE 18. BLOCK DIAGRAM FOR DATA REDUCTION SYSTEM

setup state

MEASUREMENT, HI-RES AUTO SPECTRUM
aVERACE ,
1898

- stable

SIGMAL : SINUSOIDAL
TRIGGER: FREE RUN - CHNL 1

cent fren :	E. Hz		
BANOVIDTH:	6. 48388 CHz		
TIME LENCTH:	82. 8939 m		
ΔF^{\prime}	12.5030 HZ	$\Delta \mathrm{T}$:	30. 0025 - 5

ADC CAML RANEE AC/DC

- 1
2
$2.5 V \quad A C$ 18 V AC

DELAY
CAL (C1/C2)
$\begin{array}{ll}\text { Q. } 25 & 325802 E+8 \\ \text { Q } 85 & 1.8090\end{array}$

FIGURE 19. TYPICAL SETUP STATE FOR HP 5420 ANALYZER DURING dATA REDUCTION

SETUP STATE

MEASUREMENT : HI-RES AUTO SPECTRUM
AVERAGE : 1830 , STABLE

SIGNAL : SINUSOIDAL
TRIGGER : FREE RUN . CHNL 1

CENT FRE日: $\quad 0.0 \mathrm{HZ}$
BANDYIDTH : C. 48830 KHZ
TIME LENCTH : ec. 0 geron ms
ΔF :
12. 5988 HZ
$\Delta T:$
39. $2625 \mu \mathrm{~S}$

ADC CHNL RANGE AL/DC

- 1
2.5
$5 V \quad A C$
18 V AC

DELAY
Q. 15 3. $25880 \mathrm{E}+6$
Q. 051.00008

FIGURE 19. TYPICAL SETUP STATE FOR HP 5420 ANALYZER DURING DATA REDUCTION
giving a frequency resolution of 12.5 Hz . At least 30 averages were performed to produce the final spectrum.

The analysis mode selected for the HP5420 was that for sinusoidaltype signals. This mode has the property of giving the correct maximum spectrum level for narrowband peaks of bandwidtil less than the filter bandwidth. However it results in a relatively wide filter bandwidth; for the conditions given earlier the effective filter bandwidth was approximately $42 \mathrm{~Hz}(12.5 \times 3.4)$. Since the output of the analyzer in the sinusoidal mode is "power in the band", the broadband levels must be adjusted by the filter bandwidth (-16 dB) to give the power spectral density level.

Having obtained the average spectrum levels, the harmonics could be indicated on the HP 5420 by setting the cursor on the first harmonic (or fundamental) of the blade passage frequency and selecting the harmonic indicator for a maximum of 21 harmonics. This process stored the harmonic frequencies and associated sound levels in memory for later retrieval by the HP 87 controller.

The narrowband spectrum levels (512 lines maximum), bandwidth, harmonic frequencies and harmonic sound pressure levels could be transferred from the HP 5420 to the HP 87 by use of computer program CEDAR2 (see Appendix A). Adjustments were made for gain, shear layer corrections and normalization to a standard radial distance of 4.3 m (14 feet). The adjusted or unadjusted spectra could be plotted and stored on disc; the harmonic frequencies and levels could be listed and stored on disc. As for one-third octave band analysis, run number, data point and microphone number were used as identifiers for future retrieval of the data.
giving a frequency resolution of 12.5 Hz . At least 30 averages were performed to produce the final spectrum.

The analysis mode selected for the HP5420 was that for sinusoidaltype signals. This mode has the property of giving the correct maximum spectrum levei for narrowband peaks of bandwidtin less than the filter bandwidth. However it results in a relatively wide filter bandwidth; for the conditions given earlier the effective filter bandwidth was approximately $42 \mathrm{~Hz}(12.5 \times 3.4)$. Since the output of the analyzer in the sinusoidal mode is "power in the band", the broadband levels must be adjusted by the filter bandwidth $(-16 d B)$ to give the power spectral density level.

Having obtained the average spectrum levels, the harmonics could be indicated on the HP 5420 by setting the cursor on the first harmonic (or fundamental) of the blade passage frequency and selecting the harmonic indicator for a maximum of 21 harmonics. This process stored the harmonic frequencies and associated sound levels in memory for later retrieval by the HP 87 controller.

The narrowband spectrum levels (512 lines maximum), bandwidth, harmonic frequencies and harmonic sound pressure levels could be transferred from the HP 5420 to the HP 87 by use of computer program CEDAR2 (see Appendix A). Adjustments were made for gain, shear layer corrections and normalization to a standard radial distance of 4.3 m (14 feet). The adjusted or unadjusted spectra could be plotted and stored on disc; the harmonic frequencies and levels could be listed and stored on disc. As for one-third octave band analysis, run number, data point and microphone number were used as identifiers for future retrieval of the data.

2.4 Test Conditions

The test configurations and conditions are listed in Table 3. The first five test runs were performed with the test section empty and then with only the propeller system in the tunnel flow. Test runs 6 through 8 were then conducted with the model fuselage present without an empennage and at the $\psi=0^{\circ}$ orientation. Similar tests were performed later for $\psi=90^{\circ}$ (runs 60 through 64). These two values of ψ were selected so that the main microphone array represented sideline ($\psi=0^{\circ}$) or flyover ($\psi=90^{\circ}$) positions. Measurements for the Y-tail configuration were performed in runs 9 through 25 and runs 30 through 40 for $\psi=0^{\circ}$, and runs 65 through 73 for $\psi=90^{\circ}$. Four runs (26 through 29) were conducted with the dorsal fin off (V-tail) and $\psi=0^{\circ}$. Then the vertical fin configuration (I-tail) was tested in runs 41-49 for $\psi=0^{\circ}$ and runs $50-59$ for $\psi=90^{\circ}$.

The tests involved a number of limited parametric variations. Two flow speeds of $45.7 \mathrm{~m} / \mathrm{s}(150 \mathrm{ft} / \mathrm{sec})$ and $62.5 \mathrm{~m} / \mathrm{s}(205 \mathrm{ft} / \mathrm{sec})$ and three propeller rotational speeds (4000,6000 and 8200 rpm) were used for most of the runs. Appropriate values were selected for blade angle for each combination of flow speed and rpm.

The distance between the model fuselage and propeller was varied in both longitudinal (x-coordinate) and vertical (y-coordinate) directions with the main interest being directed to the Y-tail configuration. The origin for the (x, y) coordinates given in Table 3 was on the fuselage centerline at the rear-most point on the tail cone. For most tests the empennage angle of incidence was zero but this was adjusted to 5° for four runs ($30-33$) while the longitudinal separation distance was varied for the Y-tail.

2.4 Test Conditions

The test configurations and conditions are listed in Table 3. The first five test runs were performed with the test section empty and then with only the propeller system in the tunnel flow. Test runs 6 through 8 were then conducted with the model fuselage present without an empennage and at the $\psi=0^{\circ}$ orientation. Similar tests were performed later for $\psi=90^{\circ}$ (runs 60 through 64). These two values of ψ were selected so that the main microphone array represented sideline $\left(\psi=0^{\circ}\right)$ or flyover ($\psi=90^{\circ}$) positions. Measurements for the Y-tail configuration were performed in runs 9 through 25 and runs 30 through 40 for $\psi=0^{\circ}$, and runs 65 through 73 for $\psi=90^{\circ}$. Four runs (26 through 29) were conducted with the dorsal fin off (V-tail) and $\psi=0^{\circ}$. Then the vertical fin configuration (I-tail) was tested in runs 41 - 49 for $\psi=0^{\circ}$ and runs 50-59 for $\psi=90^{\circ}$.

The tests involved a number of limited parametric variations. Two flow speeds of $45.7 \mathrm{~m} / \mathrm{s}(150 \mathrm{ft} / \mathrm{sec})$ and $62.5 \mathrm{~m} / \mathrm{s}(205 \mathrm{ft} / \mathrm{sec})$ and three propeller rotational speeds (4000, 6000 and 8200 rpm) were used for most of the runs. Appropriate values were selected for blade angle for each combination of flow speed and rpm.

The distance between the model fuselage and propeller was varied in both longitudinal (x-coordinate) and vertical (y-coordinate) directions with the main interest being directed to the Y-tail configuration. The origin for the (x, y) coordinates given in Table 3 was on the fuselage centerline at the rear-most point on the tail cone. For most tests the empennage angle of incidence was zero but this was adjusted to 5° for four runs ($30-33$) while the longitudinal separation distance was varied for the Y-tail.

tabie 3. mơustic test cospigurations

RUN	$\begin{array}{r} \text { DATA } \\ \text { POINT } \\ \hline \end{array}$	V		q		$\stackrel{\psi}{\text { Deg. }}$	TAIL	$\stackrel{{ }^{i}}{\text { Deg. }} .$	$\begin{gathered} \mathrm{N} \\ \mathrm{gm} \\ \hline \end{gathered}$	$\begin{gathered} B \\ \text { Deg. } \end{gathered}$	X		Y		REMARKS
		m / s	ft / s	$\mathrm{N} / \mathrm{m}^{2}$	$1 \mathrm{~b} / \mathrm{ft}^{2}$						mm	inct	กm	inch	
9	1	45.7	150	1290	27	0	Y	0	-	-	-	-	-	-	Propeller off
9	2	62.5	205	2390	50	0	\mathbf{Y}	0	-	-	-	-	-	-	Propeller off
10	1	62.5	205	2390	50	0	Y	0	8200	21	146	5.8	0	0	
11	1	62.5	205	2390	50	0	\mathbf{Y}	0	8200	21	229	9.0	0	0	
12	1	62.5	205	2390	50	0	\mathbf{Y}	0	8200	21	305	12.0	0	0	
13	1	62.5	205	2390	50	0	\mathbf{Y}	0	8200	21	403	15.9	0	0	
14	:	62.5	205	2390	50	0	\mathbf{Y}	0	8200	21	575	22.6	0	0	
15	1	62.5	205	2390	50	0	\mathbf{Y}	0	8200	21	108	4.3	0	0	
16	1	62.5	205	2390	50	0	\mathbf{Y}	0	8200	21	238	9.4	0	0	
17	1	62.5	205	2390	50	0	\mathbf{Y}	0	6000	30	238	9.4	0	0	
18	1	62.5	205	2390	50	0	\mathbf{Y}	0	3800	45	238	9.4	0	0	
19	1	45.7	150	1290	27	0	\mathbf{Y}	0	4000	38	238	9.4	0	0	
20	1	45.7	150	1290	27	0	\mathbf{Y}	0	6000	25	238	9.4	0	0	
21	$\therefore 1$	45.7	150	1290	27	0	\mathbf{Y}	0	8200	16	238	9.4	0	0	
22	1	62.5	205	2390	50	0	\mathbf{Y}	0	7300	21	238	9.4	0	0	
22	2	62.5	205	2390	50	0	\mathbf{Y}	0	7400	21	238	9.4	0	0	
22	3	62.5	205	2390	50	0	\mathbf{Y}	0	7600	21	238	9.4	0	0	
22	4	62.5	205	2390	50	0	\mathbf{Y}	0	7800	21	238	9.4	0	0	
22	5	62.5	205	2390	50	0	\mathbf{Y}	0	8000	21	238	9.4	0	0	
22	6	62.5	205	2390	50	0	\mathbf{Y}	0	8200	21	238	9.4	0	0	

TNBEE 3. ACOUSTIC TEST COERIGURATIOES

thas 3. nCOUSTIC test conficuraticas

RUN	$\begin{aligned} & \text { DATA } \\ & \text { POINT } \\ & \hline \end{aligned}$	v			$\mathrm{l}_{\mathrm{lb} / \mathrm{ft}^{2}}^{\mathrm{q}}$	Deg.	TAIL	${ }^{1}{ }_{\text {ir }}^{\text {deg }}$	$\underset{\substack{\mathrm{N} \\ \hline}}{ }$	$\begin{gathered} B \\ \text { Deg. } \end{gathered}$	x		Y		REPARKS
		m/s	ft/8	$\mathrm{N} / \mathrm{m}^{2}$							mm	inch	nmm	inch	
43	1	62.5	205	2390	50	0	1	0	8200	21	222	8.8	0	0	
44	1	62.5	205	2390	50	0	1	0	8200	21	308	12.1	0	0	
45	1	62.5	205	2390	50	0	1	0	6000	30	308	12.1	0	0	
46	1	62.5	205	2390	50	0	1	0	3980	45	308	12.1	0	0	
47	1	45.7	150	1290	27	0	1	0	4000	38	308	12.1	0	0	
48	1	45.7	150	1290	27	0	1	0	6000	25	308	12.1	0	0	
49	1	45.7	150	1290	27	0	1	0	8200	16	308	12.1	0	\bigcirc	
50	1	45.7	150	1290	27	90	1	0	8200	16	305	12.0	0	0	
51	1	62.5	205	2390	50	90	1	0	8200	21	305	12.0	0	0	
52	1	62.5	205	2390	50	90	1	0	8200	21	368	14.5	0	0	
53	1	62.5	205	2390	50	90	1	0	8200	21	572	22.5	0	0	
54	1	62.5	205	2390	50	90	1	0	8200	21	219	8.6	0	0	
55	1	62.5	205	2390	50	90	1	0	6000	30	305	12.0	0	0	
56	1	62.5	205	2390	50	90	1	0	4000	45	305	12.0	0	0	
57	1	45.7	150	1290	27	90	1	0	8200	16	305	12.0	0	0	Repeat of Ren 50-1
58	1	45.7	150	1290	27	90	1	0	--	-	305	12.0	0	0	
59	1	62.5	205	2390	50	90	1	0	-	-	305	12.0	0	0	
60	1	45.7	150	1290	27	90	OFF	-	--	-	305	12.0	0	0	
61	1	62.5	205	2390	50	90	OFF	-	---	-	305	12.0	0	0	
62	1	62.5	205	2390	50	90	OFF	-	8200	21	305	12.0	0	0	

TNBIE 3. ACOUSTIC TEST CONTIGURATIONS

RLN	$\begin{aligned} & \text { DATA } \\ & \text { POINT } \\ & \hline \end{aligned}$					$\begin{gathered} \psi \\ \text { Deg. } \end{gathered}$	TAIL	$\begin{gathered} i_{r} \\ \text { Deg. } \end{gathered}$	$\underset{\substack{\mathrm{N} \\ \mathrm{ram}}}{ }$	$\begin{array}{r} B \\ \text { Deg. } \end{array}$	X		Y		REPARKS
		m / s	ft / B	$\mathrm{N} / \mathrm{m}^{2}$	$1 \mathrm{~b} / \mathrm{ft}^{2}$						mm	inch	mm	inch	
63	1	62.5	205	2390	50	90	OFF	-	6000	30	305	12.0	0	0	
64	1	62.5	205	2390	50	90	OFF	-	4000	45	305	12.0	0	0	
65	1	62.5	205	2390	30	90	Y	0	4000	45	229	9.0	0	0	
66	1	62.5	205	2390	50	90	Y	0	6000	30	229	9.0	0	0	
67	1	62.5	205	2390	50	90	\mathbf{Y}	0	8200	21	229	9.0	0	0	
68	1	62.5	205	2390	50	90	\mathbf{Y}	0	8200	21	308	12.1	0	0	
69	1	62.5	205	2390	50	90	Y	0	8200	21	403	15.9	0	0	
70	1	62.5	205	2390	50	90	Y	0	8200	21	572	22.5	0	0	
71	1	62.5	205	2390	50	90	Y	0	8200	21	124	4.9	0	0	
72	1	45.7	150	1290	27	90	Y	0	8200	16	229	9.0	0	0	
73	1	45.7	150	1290	27	90	\mathbf{Y}	0	-	-	-	-	-	-	
73	2	62.5	205	2390	50	90	\mathbf{Y}	0	-	-	-	-	-	-	

The origin of the x-coordinate was selected as the rear-most point on the fuselage as a matter of convenience. However, the separation distance with most relevance to the test data is probably that between the trailing edge of the empennage and the plane of rotation of the propeller. This distance can be determined from the x-coordinate if two other parameters are known -- the distance of the trailing edge of the root of the empennage from the x-origin and the sweep oi the trai. these parameters can be obtained from Figure 14. In the case of the Y-tail, the root of the trailing edge of the V-structure is 0.5 cm (0.25 in.) forward of the tail cone, and the trailing edge is swept forward so that at the tip of the propeller the trailing edge of the empennage is 5 cm (2 inches) forward of the tail cone. Thus if the separation between tail cone and propeller plane is 23 cm (9 inches) the propeller will be $25.5 \leqslant 028 \mathrm{~cm}$ aft of the V-trailing edge. Corresponding distances io: the dorsal fin are 27 to 23 cm , the trailing edge being swept back. The trailing edge of the I-tail is swept backwards at an angle of about 22° and the root tip of the trailing edge is 8 cm aft of the fuselage tail cone. Thus if x is 23 cm (9 inches) the separation between empennage trailing edge and propeller plane will vary from 15 cm at the empennage root to about 4 cm at the propeller tip.

The operating conditions for the propeller are given in Table 4. Propeller tip rotational Mach numbers were in the range 0.36 to 0.74 , and helical Mach numbers in the range 0.39 to 0.77 . The values can be compared with typical values for general aviation aircraft [19] where both Mach numbers lie in the range 0.65 to 0.90. In the case of the propeller advance ratio the test values were 0.59 to 1.59 which corresponds fairly closely to the flight range of 0.8 to 1.5. Looking at specific test rpm conditions it is found that the Mach numbers and advance ratio at 8200 rpm are similar to flight values but the test Mach numbers are lower than flight values at 6000 and 4000 rpm . Blade passage frequencies associated with 4000, 6000 and 8200 rpm are 266.7, 400.0 and 546.7 Hz respectively.

The test conditions can also be compared with design operating conditions for the SR-2 propeller. In this case the prop design conditions are associated with cruise at $M=0.80$, and a propeller t ip rotational Mach number of 0.80 . However the wind tunnel test conditions refer to take-off flight rather than cruise, in which case the 8200 rpm conditions are similar to the SR-2 flight conditions.

3. DATA ANALYSIS PROCEDURES

3.1 General Approach

The main emphasis of the data presentation in this report is directed towards the narrowband acoustic spectra. There are several reasons for this emphasis but the main reason is that discrete frequency components associated with harmonics of the blade passage frequency can be readily identified and separated from broadband contributions. While this is possible for low order harmonics using one-third octave band analysis it is not possible at higher frequencies because there may be more than one harmonic in a given frequency band or the integrated broadband level may mask the discrete frequency component.

The use of narrowband spectra also makes the task of identifying "facility" noise components possible. These components may be discrete or narrowband contributions from support struts and other items immersed in the tunnel flow or may be general broadband noise from the flow itself. One objective of the analysis process is to identify such interference sources so that they can be separated from the propeller noise data.

3.2 Adjustment to Harmonic Sound Pressure Levels

Visual inspection of narrowband acoustic spectra such as the example shown in Figure 20 readily identifies several harmonic components associated with the blade passage frequency when these components stand well above the general background level. However other harmonic components have associated sound pressure levels which are fairly close to the adjacent broadband values. Although these harmonics can be identified using the harmonic pattern identification capability of the narrowband analyzer, the measured sound pressure levels will contain significant contributions from the broadband components. Thus an adjustment was made to the

measured values in order to obtain estimates of the discrete frequency contribution at the harmonics of the propeller blade passage frequency.

The adjustment was performed under the assumption that the discrete frequency and broadband components were uncorrelated so that calculations could be made on an energy basis. Furthermore, it was assumed that the broadband contribution at the frequency of the harmonic of interest could be estimated by interpolation of the measured sound pressure levels on either side of the spectral peak at the harmonic frequency. The discrete frequency sound pressure level could then be estimated from the energy difference between the measured data and the interpolated broadband contribution. As an example, if the measured peak at harmonic $m=6$ in Figure 20 is 71.8 dB and the interpolated broadband component is 67.8 dB , then the estimated sound pressure level from the propeller harmonic component is 69.6 dB .

3.3 Distance Normalization

Since most of the microphones were located at a distance of 4.3 m (14 feet) from the propeller hub, the data were normalized to this reference distance. The normalization was performed according to the inverse square law. The resulting adjustments are given in Table 5.

3.4 Shear Layer Effect

The use of an open test section for the measurement of propeller noise has the advantage that the microphones can be placed outside the flow. Thus there is no problem of aerodynamic self-noise on the microphones. However there is a disadvantage in that the acoustic waves have to pass through the shear layer of the free jet from the tunnel nozzle. The effect of the shear layer on the far field sound pressure levels has been investigated by several

Table 5. Distance Normalization

Microphone	Adjustment to Sound Pressure Level (dB)
1	0
2	0
3	0
4	0
5	0
6	0
7	-9.9
8	-9.9
9	-4.9
10	-5.0
11	0
12	0
13	-5.3

authors [20-28]. Two phenomena have been considered -- refraction when crossing the shear layer and scattering by the turbulence in the shear layer. The influence of scattering on the present test data will be discussed in Section 3.5; refraction effects are considered here.

The scope of the present wind tunnel test did not permit any investigation of the shear layer effects. Thus, recourse is had to published results. Tests in the full-scale DNW tunnel [27] have shown that the analytical results of Amiet [20] are adequate up to a frequency of about $10,000 \mathrm{~Hz}$ for a tunnel flow speed of $40 \mathrm{~m} / \mathrm{s}$ and up to $5,000 \mathrm{~Hz}$ for a flow speed of $80 \mathrm{~m} / \mathrm{s}$. Deviations from the theoretical results were found at higher frequencies and flow speeds. Empirical relationships are given by Ross et al [27] but these are not required for the present test data where interest is centered on frequencies up to 6000 Hz and flow speeds to $62.5 \mathrm{~m} / \mathrm{s}$.

The analytical model of Amiet [20] represents the shear layer as a plane of zero tnickness and assumes that the observer is in the geometric and acoustic far-fields of the source. However, there is no restriction on the distance from the source to the shear layer. The geometry of the model is shown in Figure 21, where the source and observer are assumed to be in a plane normal to the shear layer and parallel to the flow. The line from the source to the observer makes an angle θ with the shear layer. The actual path of a sound ray is represented by the line SCO, and location O^{\prime} is the position at which the sound would be heard in the absence of a shear layer. Thus, in order to get the true directivity of the propeller noise in the absence of a shear layer, adjustments must be estimated for the observed directivity and sound pressure level. Using the notation of Figure 21, the appropriate equations for the directivity adjustment at constant

FIGURE 21. DIAGRAM OF SOUND TRANSMISSION THROUGH SHEAR LAYER OF ZERO THICKNESS
radius [20] are:-

$$
\begin{align*}
& \tan \theta^{\prime}=\zeta /\left(\beta^{2} \cos \theta^{\prime \prime}-M\right) \tag{1}\\
& Y_{o} \cot \theta=h \cot \theta^{\prime}+\left(Y_{o}-h\right) \cot \theta^{\prime \prime} \tag{2}
\end{align*}
$$

where

$$
\zeta=\left[(1+M \cos \theta ")^{2}-\cos ^{2} \theta \prime \prime\right]^{\frac{1}{2}}
$$

and

$$
B=\left(1-M^{2}\right)^{\frac{1}{2}}
$$

The adjustment to the measured sound pressure level is

$$
\begin{equation*}
\Delta S P L=20 \log \left(\frac{p_{0}{ }^{\prime}}{p_{o}}\right) \quad d B \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{p_{O}^{\prime}}{p_{O}}= & \left\{\frac{h \cos \theta^{\prime \prime}}{r \zeta^{2}}\left[\sin \theta^{\prime \prime}+\left(\frac{Y_{O}}{h} 1\right) \zeta\right]^{\frac{1}{2}}\left[\sin ^{3} \theta^{\prime \prime}+\left(\frac{Y_{O}}{h} 1\right) \zeta^{3}\right]^{\frac{1}{2}}\right\} \\
& \cdot \frac{1}{2 \sin \theta^{\prime \prime}}\left[M^{2}\left(1+M \cos \theta^{\prime \prime}\right)^{2}+\left(1-M^{2} \cos ^{2} \theta^{\prime \prime}\right)\right]^{\frac{1}{2}}\left[\zeta+\sin \theta^{\prime \prime}\left(1+M \cos \theta^{\prime \prime}\right)\right] \tag{4}
\end{align*}
$$

Adjustments to the angle and sound pressure level, calculated according to Eqs.(1) - (4) are listed in Table 6. It is seen that the adjustments to the sound level are small, being generally less than 1 dB ; adjustments to the directivity angle are less than 10°. Similar adjustments were estimated by Trebble et al [29] for tests on model scale propellers at flow speeds of $30 \mathrm{~m} / \mathrm{s}$. When computing the adjustments listed in Table 6 it was assumed that the distance h from the source to the shear layer was 1.5 m (5 ft) for all microphone locations except 11 and 12 (Microphones 7 through 9 were excluded, of course, since they were located within the flow). Microphones 11 and 12 were above the horizontal plane containing the source and the other microphones. Strictly speaking Microphones 11 and 12 do not satisfy the condition of Amiet's analytical model that the source and observer lie in a plane normal

Table 6. Adjustments Due to Refraction at Shear Layer

Microphone \#	$\begin{gathered} \theta \\ \text { degrees } \end{gathered}$	$\mathrm{V}=62.5 \mathrm{~m} / \mathrm{s}$		$\mathrm{V}=45.7 \mathrm{~m} / \mathrm{s}$	
		$\begin{gathered} \theta^{\prime} \\ \text { degrees } \end{gathered}$	$\begin{gathered} \triangle \mathrm{SPL} \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{gathered} \theta^{\prime} \\ \text { degrees } \end{gathered}$	$\begin{gathered} \triangle \mathbf{S P L} \\ \mathrm{dB} \\ \hline \end{gathered}$
1	60	68.5	1.2	65.9	0.8
2	70	77.8	0.9	75.5	0.6
3	80	87.2	0.6	85.2	0.4
4	90	96.8	0.2	95.0	0.1
5	105	111.2	-0.2	109.7	-0.2
6	120	126.1	-0.6	124.6	-0.5
10	290	285.6	0.7	286.9	0.5
11	90	97.5	0.2	95.5	0.1
12	90	96.3	0.2	94.6	0.1
13	270	266.3	0.2	267.3	0.1

to the shear layer. However, this violation is neglected for present purposes and values of h are computed as though the source/ observer plane was normal to the shear layer. Estimated values of h are $1.2 \mathrm{~m}(4.0 \mathrm{ft})$ for microphone 11 and $1.8 \mathrm{~m}(5.8 \mathrm{ft})$ for microphone 12.

3.5 Turbulence Scattering

It has been observed [22,26-28] that when a discrete frequency acoustic signal passes through the turbulence in a shear layer there is a broadening of the frequency peak. The broadening is associated with a reduction in the peak value of the sound level of the discrete frequency, the total energy in the spectral peak remaining roughly constant. This spectral broadening is of consequence in the present test only if there is an observable change in the sound pressure levels of the propeller harmonics. If the filter bandwidth used in the data reduction is sufficiently larger that the energy of the harmonic stays within the bandwidth, then there will be no observable variation in harmonic level. On the other hand if the filter bandwidth is less than the spectral peak the observed level of the harmonic will be lower than it should be, and an adjustment will be required.

First, it is appropriate to review the published experimental findings [26-28]. The data indicate that spectral broadening becomes increasingly important as frequency, shear layer thickness, and flow speed or Mach number increases. Ross [26] used measurements in the scale model of the DNW wind tunnel to develop an empirical relationship between the spectral broadening and reduction of peak level on one hand and the flow parameters on the other. The relationship between the peak bandwidth Δf_{10} (at the 10 dB down points) and the flow parameters was given as

$$
\begin{equation*}
\Delta f_{10}=380(M \delta / \lambda)^{0.67} \tag{5}
\end{equation*}
$$

where M is the flow Mach number, δ the shear layer thickness and λ the acoustic wavelength. Significant effects on the peak sound pressure level were observed when ($M \delta / \lambda$) exceeded 0.5 .

In later work Ross et al [27] determined somewhat different relationships based on measurements in the fullscale DNW tunnel.
Although they do not give a specific equation for the spectral bandwidth they note that it increases almost linearly with tone frequency, approximately as the third power of airflow speed, and somewhat weakly with shear layer thickness. From the small amount of information given [27] an empirical relationship can be developed for the bandwidth Δf_{3} of the 3 dB down points.

$$
\begin{equation*}
\frac{\Delta \mathrm{f}_{3}}{\mathrm{f}}=2.46 \times 10^{-6} \mathrm{v}^{2.1424} \tag{6}
\end{equation*}
$$

where flowspeed V is measured in m / s.

Suppose now that it is assumed that the dependence of Δf_{3} on δ is the same as that given in the earlier work [26].

$$
\text { i.e., } \Delta f_{3} \propto \delta^{0.67}
$$

Then the empirical relationship of Eq. (6) becomes

$$
\begin{equation*}
\frac{\Delta f_{3}}{f}=3.14 \times 10^{-6} \mathrm{v}^{2.1424} \delta_{\delta}^{0.67} \tag{7}
\end{equation*}
$$

In deriving Eq. (7) it was assumed, as in [26], that the shear layer thickness can be estimated from

$$
\begin{equation*}
\delta=0.16 \mathrm{x} \tag{8}
\end{equation*}
$$

where x is the distance downstream from the nozzle lip.

Eqs.(7) and (8) can now be applied to the current propeller/empennage test configuration. With $V=62.5 \mathrm{~m} / \mathrm{s}$ and δ estimated to be 0.26 m at the propeller plane, then

$$
\frac{\Delta f_{3}}{f}=0.89 \%
$$

Thus, at $f=500 \mathrm{~Hz}, \Delta f_{3}=4.4 \mathrm{~Hz}$ and at $f=6000 \mathrm{~Hz} f_{3}=53 \mathrm{~Hz}$. Here it is assumed that $\theta=90^{\circ}$. For propagation in the forward direction $\left(\theta<90^{\circ}\right)$ the shear layer will be thinner but the path through the shear layer will be increased because of the angle of incidence. The net change, relative to $\theta=90^{\circ}$, is probably small. In the aft direction $\left(\theta>90^{\circ}\right)$, the path through the shear layer will be longer than at $\theta=90^{\circ}$, with a consequential increase in the scattering effect. To estimate this effect consider microphone location 6 at $\theta=120^{\circ}$. Using Eq.(8) the predicted thickness of the shear layer is 0.40 m but the path traveled by the acoustic ray will be about 0.46 m because the ray will not be incident normally to the layer. The empirical prediction method now gives
and

$$
\begin{aligned}
& \Delta \mathrm{f}_{3}=6.6 \mathrm{~Hz} \text { at } 500 \mathrm{~Hz} \\
& \Delta \mathrm{f}_{3}=79 \mathrm{~Hz} \text { at } 6000 \mathrm{~Hz} .
\end{aligned}
$$

It is now possible to review the measured narrowband spectra. This can be done in several ways.
(a) by comparing the bandwidths of the spectral peaks at different frequencies to see if the bandwidth increases with frequency,
(b) by comparing the bandwidths of the spectral peaks at a given location outside the shear layer with and without turnel flow, or,
(c) by comparing spectra at locations in (\#7) and outside (\#5) the flow.

Figure 22 compares narrowband sound pressure level spectra meas－ ured at microphone location 2 without（Figure $22(a)$ ）and with （Figure 22（b））flow in the test section．Qualitatively，the band－ widths of the harmonic peaks appear to be independent of both fre－ quency and flow speed．In all cases the bandwidth of the peaks is that of the effective narrowband filter used in the data reduction process，i．e．， 42 Hz （see Section 2．3．2）．

In Figure 23＊spectra are compared for microphone locations 5 and 7 at the same test condition．The spectrum measured in the flow exhibits a peak bandwidth which is independent of frequency， whereas there is an indication that the bandwidth of the harmonic peaks increases slightly with frequency outside the flow．

Finally，spectra measured at microphone locations 2 and 6 are compared in Figure 24＊．It is apparent that the bandwidth of the peaks increases with frequency at location 6 but not at location 2．This result is consistent with the spectral broadening predic－ ted earlier．If the broadened peak has a bandwidth less than the data reduction filter bandwidth of 42 Hz then there will be no observable change in the apparent bandwidth of the harmonic peaks． However when the broadened peak bandwid＋h exceeds 42 Hz ，there will be an apparent increase in the bandwidth in the measured spectra．Using the simple empirical analysis presented earlier， the broadening of the harmonic peaks would start to become evident at location 6 at frequencies above about 3200 Hz ．At location 2 the corresponding bounding frequency would be approximately 6000 Hz ．Thus spectral broadening would be expected at location 6 but not at location 2 －－in agreement with observations．

Determination of the effect of this spectral broadening on the measured harmonic sound pressure levels is a more difficult propo－ sition．None of the references［22，26－28］develops an empirical relationship which specifically addresses the problem，and the shapes of the broadened peaks show different characteristics from

[^1](a) Flow Speed $=0 \mathrm{~m} / \mathrm{s}$

(b) Flow Speed $=62.4 \mathrm{~m} / \mathrm{s}$

FIGURE 22. NARROWBAND PROPELLER NOISE SPECTRA MEASURED WITH AND WITHOUT AIRFLOW (MICROPHONE 2)
(a) Microphone 7 (In Flow)

(b) Microphone 5 (Out of Flow)

FIGURE 23. COMPARISON OF NARROWBAND PROPELLER NOISE SPECTRA MEASURED IN AND OUT OF FLOW
(a) Microphone 2 (Forward of Plane of Rotation)

(b) Microphone 6 (Aft of Plane of Rotation)

FIGURE 24. COMPARISON OF NARROWBAND PROPELLER NOISE SPECTRA MEASURED FORWARD AND AFT OF PLANE OF ROTATION
test to test. Ross et al [27] develop an empirical equation to modify Amiet's analytical model at high frequencies and emission angles of 40° to 120°. They speculate that the modification includes the influence of shear layer turbulence because the corrections are greatest at the most forward and rearward angles. However the correction is positive in one case and negative in the other; it seems more reasonable to expect that spectral broadening due to turbulence would always cause corrections of the same sign (positive) for discrete frequency components.

In the absence of any well-defined approach, no corrections to sound pressure level have been made in this report to account for spectral broadening of the harmonic peaks. Corrections can be introduced at some future date when the evidence is more clear. At this time only a warning is made that measured sound levels of the high frequency harmonics may be low due to spectral broadening induced by shear layer turbulence. It is probable, however, that the general results of the study will be unaffected by the omission of this correction.

4. EVALUATION OF TEST DATA

4.1 Introduction

The main objective of the test program is to determine the noise generated by interaction between the propeller and the wake from the empennage. First, however, it is necessary to determine the background or baseline sound pressure levels associated with the presence of the test hardware in the test section. The hardware includes microphone stands, model fuselage with support struts and propeller drive system. Also it is necessary to determine the sound pressure levels generated by the propeller (with and without the fuselage present) before the empennage is introduced.

A review of the background sound pressure levels is presented in this section, before the propeller sound pressure levels are discussed in detail in subsequent sections of this report. It is not necessary in the review to present data for all the microphone locations since it is found that, at least for the broadband noise, the acoustic field is not highly directional. Thus conclusions drawn, for example, for microphone 2 locations are generally applicable to other microphones, except for the three microphones in the flow. Consequently the data presented in this section are usually associated with one microphone location, namely \#2.

4.2 Noise due to Test Hardware

Broadband sound pressure levels were measured in the test chamber when the propeller drive system (without propeller) and the fuselage (without empennage) were present in the test section. Figure 25 compares narrowband spectra measured at microphone location 2 for the two test flow speeds. Similar comparisons can be obtained for the other microphones located outside the flow. It is seen that, in general, there is an increase of 9 to 10 dB

FIGURE 25. SOUND PRESSURE LEVEL SPECTRA MEASURED OUT OF FLOW (MICROPHONE 2) WHEN PROPELLER NOT OPERATING (FUSELAGE WITHOUT EMPENNAGE)

FIGURE 26. SOUND PRESSURE LEVEL SPECTRA MEASURED IN FLOW (MICROPHONE 7) WHEN PROPELLER NOT OPERATING (FUSELAGE WITHOUT EMPENNAGE)
in sound pressure level when the flow speed is increased from 45.7 m / s to $62.4 \mathrm{~m} / \mathrm{s}$. This increase corresponds to a velocity law of

$$
\bar{p}^{2} \propto v^{6.6} \text { to } v^{7.4}
$$

where $\overline{\mathrm{p}}^{2}$ is the mean square acoustic pressure. This relationship is similar to the v^{6} power law generally associated with acoustic radiation from a dipole-type source.

Exceptions to the general velocity law occur ai peaks in the spectra which exhibit a trend of frequency increasing linearly with flow speed. At $45.7 \mathrm{~m} / \mathrm{s}$ the frequency of the prominent peak is 1780 Hz and at $62.4 \mathrm{~m} / \mathrm{s}$ the corresponding frequency is 2470 Hz . During the course of the test program it was determined that these components were generated by flow interaction with the support struts for microphones 7, 8 and 9 which were located in the tunnel flow. Following Run 46 boundary layer flow trips were placed on the leading edges of the support struts and the associated noise components were eliminated from the acoustic spectra for subsequent runs.

A comparison of narrowband spectra measured at microphone 7 in the flow is shown in Figure 26. In this case, however, the sound pressure level increases more slowly with flow speed than was the case for the data in Figure 25 . The law relating mean square pressure and flow speed is now

$$
\overline{\mathrm{p}}^{2} \propto \mathrm{v}^{4.0} \text { to } \mathrm{v}^{5.5}
$$

This law is similar to that predicted for aerodynamic self-noise on the microphone rather than radiated acoustic noise. This is physically reasonable, particularly when it is observed that the pressure levels recorded by microphone 7 are higher than those measured in the acoustic radiation field (see Figure 27). The difference in pressure levels is such that the peaks associated
(a) $V=45.7 \mathrm{~m} / \mathrm{s}$

FREDUENCY, Hz
(b) $V=62.4 \mathrm{~m} / \mathrm{s}$

FIGURE 27. COMPARISON OF SOUND PRESSURE LEVEL SPECTRA MEASURED IN AND OUT OF FLOW WHEN PROPELLER NOT OPERATING (FUSELAGE WITHOUT EMPENNAGE)
with radiation from the microphone support struts are masked by the aerodynamic self-noise of microphone 7.

The effect of the empennage on sound pressure levels in the test chamber was found to be negligible. This can be seen in Figure 28 which compares sound pressure levels measured at microphone location 2 when the fuselage was installed first without an empennage and then with the Y-tail. The data are associated with a flow speed of $62.4 \mathrm{~m} / \mathrm{s}$ and fuselage orientations of $\psi=0^{\circ}$ and 90°.

A direct comparison of sound pressure level spectra measured for the two orientations of the fuselage is provided by Figure 29. In this case the data were measured at microphones 2 and 13, located on different sides of the test section. The spectra show no significant effect of angle of orientation except for the elimination of broadband peaks associated with noise generated by flow over the microphone support struts. As stated earlier this acoustic component was eliminated following Run 46 by the attachment of flow trips to the strut leading edges. The strut noise is present for Run 9 but not for Run 73.

4.3 Propeller Noise

The propeller noise field generated by the test model can be considered from a number of viewpoints. However, since the purpose of the present test is to investigate the effect of the empennage the evaluation of the data will place emphasis on this aspect.

Narrowband sound pressure levels rieasured with and without the propeller operating are shown in Figures 30 through 35. The data in Figures 30 and 31 refer to propeller rotational speeds of 4000 rpm and Figures 32 through 35 are associated with 8200 rpm. In all cases the fuselage has an empennage attached at the rear. Results for the lower propeller rpm show that the broadband sound pressure levels are not much higher than the background levels,

(b) $\psi=90^{\circ}$

FIGURE 28. INFLUENCE OF EMPENNAGE ON BROADBAND SOUND PRESSURE LEVELS WHEN PROPELLER NOT OPERATING (Y-TAIL)

```
(a) Microphone Location 2
```


(b) Microphone Location 13

FIGURE 29. INFLUENCE OF FUSELAGE ORIENTATION ON BROADBAND SOUND PRESSURE LEVELS WHEN PROPELLER NOT OPERATING (Y-TAIL)

FIGURE 30. COMPARISON OF SOUND PRESSURE LEVELS AT MICROPHONE 2 WITH AND WITHOUT PROPELLER OPERATING (Y-TAIL, $\psi=0^{\circ}$, 4000 RPM)
(a) $V=45.7 \mathrm{~m} / \mathrm{s}$

(b) $V=62.4 \mathrm{~m} / \mathrm{s}$

FIGURE 31. COMPARISON OF SOUND PRESSURE LEVELS AT MICROPHONE 6 WITH AND WITHOUT PROPELLER OPERATING (Y-TAIL, $\psi=0^{\circ}, 4000$ RPM)
(a) $V=45.7 \mathrm{~m} / \mathrm{s}$

(b) $V=62.4 \mathrm{~m} / \mathrm{s}$

FIGURE 32. COMPARISON OF SOUND PRESSURE LEVELS AT MICROPHONE 2 WITH AND WITHOUT PROPELLER OPERATING (Y-TAIL, $\psi=0^{\circ}, 8200$ RPM)

(b) $V=62.4 \mathrm{~m} / \mathrm{s}$

FIGURE 33. COMPARISON OF SOUND PRESSURE LEVELS AT MICROPHONE 6 WITH AND WITHOUT PROPELLER OPERATING (Y-TAIL, $\psi=0^{\circ}, 8200$ RPM)

FIGURE 34. COMPARISON OF SOUND PRESSURE LEVELS AT MICROPHONE 2 WITH AND WITHOUT PROPELLER OPERATING (Y-TAIL, $\psi=90^{\circ}, 8200$ RPM)

FIGURE 35. COMPARISON OF SOUND PRESSURE LEVELS AT MICROPHONE 2 WITH AND WITHOUT PROPELLER OPERATING (I-TAIL, $\psi=90^{\circ}, 8200$ RPM)
particularly at the higher flow speed and frequencies below about 2500 Hz .

As propeller rpm increases the broadband and discrete frequency components generated by the propeller increase relative to the background, as can be seen by comparing Figures 30 and 32 or Figures 31 and 33. Even so the difference between propeller and background sound ievels is smaller at the higher flow speed than it is at the lower flow speed. For example, Figures 31 and 32 show that the propeller broadband noise at high frequencies is about 13 dB above the background at a flow speed of $45.7 \mathrm{~m} / \mathrm{s}$ and only 7 dB at a flow speed of $62.4 \mathrm{~m} / \mathrm{s}$.

Figures 34 and 35 show that the general relationships between propeller noise and background noise for a fuselage with empennage are also observed for a fuselage orientation of $\psi=90^{\circ}$ and for other empennage configurations (I-tail).

An alternative approach to evaluating the propeller noise is to compare sound levels generated by a propeller with and without a fuselage structure upstream. Such a comparison is shown in Figure 36 for two fuselage orientations (0° and 90°) and a flow speed of $62.4 \mathrm{~m} / \mathrm{s}$. In this case it is seen that the presence of the fuselage (without empennage) causes an increase in the propeller broadband sound pressure levels but it is usually small. For the test conditions shown in Figure 36 the increase is about 1 dB for $\psi=0^{\circ}$ and about 3 dB for $\psi=90^{\circ}$.

The discrete frequency components in Figure 36 show no identifiable trend, some harmonics increase in sound pressure level when the fuselage is introduced, others decrease in level and yet others remain unchanged. However, harmonic sound pressure levels will be discussed in greater detail in Section 5 of this report.
(a) $\psi=0^{\circ}$

(b) $\psi=90^{\circ}$

FIGURE 36. COMPARISON OF PROPELLER SOUND PRESSURE LEVELS WITH AND WITHOUT FUSELAGE UPSTREAM (NO EMPENNAGE, 62.4 M/S, 8200 RPN)

Perhaps a more important approach, from the standpoint of the present study, is to compare sound levels generated by the propeller when the fuselage is without, and then with, an empennage. Comparisons of this type are shown in Figures 37 through 39 where it is seen that there is only a very small (sometimes negligible) increase in broadband sound pressure level when the empennage is introduced. Separation distance between empennage and propeller also appears to have only a small influence (Figure 40) on the broadband sound pressure levels.

In summary, broadband sound pressure levels generated by the propeller downstream of an empennage are higher than those for the propeller alone, but it is difficult to determine the precise role played by the empennage because the changes in sound level are small relative to the case of a fuselage without empennage. The situation for discrete frequency components at harmonics of the blade passage frequency is different in that the empennage can cause a significant increase in the level of the higher order harmonics. This will be discussed further in Section 5.

4.4 Repeatability of Data

One question that often arises in propeller noise tests, particularly those which involve flight test studies, involves data repeatability. Time constraints did not allow much scope for repeat runs at identical conditions but it was possible to perform one condition on three different occasions (with small changes in the value of the separation distance x). The three runs are ll-1, 16-1, and 22-6, and they are associated with the Y-tail, flow speed of $62.4 \mathrm{~m} / \mathrm{s}$ and 8200 rpm . For run $11-1, X=229 \mathrm{~mm}$ and for runs $16-1$ and $22-6, X=238 \mathrm{~mm}$, a difference of less than 4%.

Figure 41 presents comparisons of the narrowband spectra for the three runs measured at three microphone locations. Several observations can be made:-
(a) Microphone 2

(b) Microphone 6

FREQENCY. HE

FIGURE 37. INFLUENCE OF EMPENNAGE ON NARROWBAND SOUND PRESSURE LEVELS WITH PROPELLEER OPERATING $\left(\psi=0^{\circ}\right)$
(a) Microphone 2

(b) Microphone 6

FREQUENCY. Hz

FIGURE 38. INFLUENCE OF EMPENNAGE ON NARROWBAND SOUND PRESSURE LEVELS WITH PROPELLER OPERATING ($\psi=90^{\circ}, 8200$ RPM)

(a) Microphone 2

(b) Microphone 6

FIGURE 39. INFLUENCE OF EMPENNAGF: ON NARROWBAND SOUND PRESSURE LEVELS WITH PROPELLER OPERATING ($\psi=90^{\circ}, 6000$ RPM)
(a) Microphone 2

FRESUENEY. Hz
(b) Microphone 6

friseuency. Hz

FIGURE 40. INFLUENCE OF SEPARATION BETWEEN EMPENNAGE AND PROPELLER ON NARROWBAND SOUND PRESSURE LEVELS (Y-TAIL)
(a) Microphone

(b) Microphone 5

FIGURE 41. COMPARISON OF NARROWBAND SOUND PRESSURE LEVELS FOR REPEATED RUNS (Y-TAIL, $62.4 \mathrm{M} / \mathrm{S}, 8200$ RPM)
(c) Microphone 6

FIGURE 41. CONTINUED
(a) Multiples of the propeller shaft rotational frequency are in more evidence in some spectra than in others
(b) Broadband noise levels show good repeatability at some locations but not at others, and
(c) There appears to be a fairly wide variation in harmonic sound pressure levels.

The appearance and disappearance of harmonic components at multiples of the propeller shaft rotational frequency were observed several times during the test program. While it was not possible to obtain definite evidence, it is believed that the phenomenon was associated with the changes in blade angle from run to run. These adjustments were made manually and it is possible that small misalignments could occur on one blade with a resulting generation of acoustic components at the shaft rotational frequency.

Omitting the shaft rotation components, the broadband spectral components generally show good repeatability from run to run at microphone locations 5 and 6 but rather poor repeatability at high frequencies at location 2. In this latter case the data band is 3 to 4 dB wide.

Evaluation of the repeatability of sound pressure levels at harmonics of the blade passage frequency is not practical from spectral plots such as those in Figure 41. A more informative presentation is in terms of harmonic level as shown in Figure 42. In some cases, such as microphone location 12 , the data show very little variation from run to run whereas in other cases (e.g. microphone 3) the sound pressure levels for a given harmonic show a range of 10 dB or more.
(a) Microphone 1

(b) Microphone 2

FIGURE 42. COMPARISON OF BLADE PASSAGE FREQUENCY HARMONIC LEVELS FOR REPEAT RUNS (Y-TAIL, $62.4 \mathrm{M} / \mathrm{S}, 8200$ RPM)
(c) Microphone 3

120 -	HARMONIC LEVEIS CORRECTED FOR SHEAR LAYER AND AEJLSTED FOR BRCADBAND CONTR:BUT:		D:STANCE
,	Symbol	Mic	Run-Deta pt-mic
	-	3	D130-1-3
110	-	3	Oe2-6-3
	5	3	O11-1-3

1001

(d) Microphone 4

FIGURE 42. CONTINUED
(e) Microphone 5

Pymel	Wic	Anr-Dote pt-mice
+--	5	Onde:-8
5	5	Oen-4-5
- 8-.	5	0:13-1-5

(f) Microphone 6

FIGURE 42. CONTINUED
(g) Microphone 11

(h) Microphone 12

FIGURE 42. CONTINUED

Visual inspection of Figure 42 doss not indicate any particular trend with harmonic order or microphone location. Thus, the range of sound pressure levels at each harmonic order was averaged over all eight locations and linear regression performed on the averages. The results indicated that the repe tability of harmonic sound pressure level was slightly better at higher harmonic order than at lower order. The linear regression equation for the average range of sound pressure level, $\overline{\triangle S P L}$ for a given harmonic order mas

$$
\overline{\triangle \mathrm{SPL}}=-0.14 \mathrm{~m}+4.63 \mathrm{~dB}
$$

with a regression coefficient of -0.59 . The equation indicates that the average range of data at a given microphone location will be 4.5 dB for harmonic $\mathrm{m}=1$ and 3.1 dB for harmonic of order 11

In an alternative analysis the range of sound pressure levels for each harmonic can be averaged for each microphone location. The averages can then be plotted as a function of radiation angle θ^{\prime} (defined as in Figure 17). The resulting relationship is shown in Figure 43, which suggests that data repeatability is worst near the plane of rotation of the propeller.

The large variability in the data for nominally identical test conditions is of concern because it can mask trends associated with parametric variations. A similar problem occurs during flight test. A better understanding of the phenomena involved would be a useful addition to propeller noise technology.

FIGURE 43. AVERAGE RANGE OF HARMONIC SOUND PRESSURE LEVELS FOR REPEAT RUNS AS A FUNCTION OF ANGLE OF RADIATION

4.5 Summary

This evaluation of the narrowband acoustic spectra has shown that the background noise generated by the test hardware without the propeller is usually lower than that generated by the propeller. The exception to this rule occurs for broadband noise at low frequencies. However, the presence of the empennage causes only a small change in broadband sound pressure level. Consequently a detailed analysis of broadband propeller noise does not appear to be worthwhile.

Visual inspection of the narrowband spectra indicates that the presence of the empennage has a significant effect on the sound pressure levels of the higher order harmonics. Thus further discussion of the harmonic levels is contained in Section 5. The data evaluation did show, however, that the repeatability of the harmonic sound pressure levels is not particularly good; this will impact the accuracy of parametric studies.

5. harmonic sound pressure levels

5.1 General

The wind tunnel test program described in this report generated an extensive data bank and it is possible to present here only a limited discussion of the measured sound pressure levels. The discussion in this section is restricted to the sound pressure levels at harmonics of the blade passage frequency and the intent is to point out some of the main features of the data.

Much of the data is associated with a propeller rotational speed of 8200 rpm and it is convenient to use harmonic order rather than actual frequency as a means of identifying the harmonics of interest. The same approach is followed when data are presented for lower rotational speeds, and data for different rpm are compared on the basis of harmonic order rather than actual frequency. This means, for example, that sound pressure levels at harmonic order 10 are compared directly for propeller speeds of 4000 and 8200 rpm even though the sound pressure levels occur at 2667 and 5467 Hz respectively.

Data are presented for harmonic orders 1 through 11. This range was selected as it contained most of the harmonic information for the test conditions investigated and, at a propeller speed of 8200 rpm , corresponded to the data reduction frequency range 0 6400 Hz .

5.2 Propeller Operating Alone

Measurements made when the propeller was operating in the absence of the model fuselage and empennage give some indication of the basic acoustic characteristics of the propeller. Harmonic sound pressure levels were measured when there was no flow in the tunnel and when the tunnel flow was 45.7 and $62.5 \mathrm{~m} / \mathrm{s}$. Sample harmonic
levels measured at microphone 2 are shown in Figure 44 for flow speeds of 0 and $45.7 \mathrm{~m} / \mathrm{s}$ and propeller rotational speeds of 4000 , 6000 and 8200 rpm . The data indicate that the harmonic levels decrease rapidly as harmonic order increases for the lower rotational speeds. The rate of decrease is less at 8200 rpm with the 5 th harmonic being about 20 dB below the first harmonic level.

When flow is introduced there is an increase in the broadband sound pressure levels which tends to mask the higher order harmonic components (see Figure 45). Thus it is not possible to determine whether or not the higher order harmonic levels are lower than for the zero flow case, as they are for the flight case shown in Figure l. At low orders, the harmonic components can be identified (Figure $44(\mathrm{~b})$) and the sound pressure levels are similar to those for zero flow speed. This is consistent with airplane test data such as that shown in Figure 1.

5.3 Influence of Empennage

The main interest is in the influence of the fuselage and empennage on the propeller sound field. This influence can be seen in the spectral comparisons presented in Figures 46 and 47 . The data were measured at microphone 2 for two flow speeds and two fuselage orientations, and for comparable separations between empennage and propeller plane.

The first observation is that, at low orders such as $m=1$ to 4, the harmonic sound pressure levels appear to be independent of empennage configuration. In fact the sound levels do not change significantly when the fuselage and empennage are introduced. The situation is different at higher mode orders. In this frequency regime the harmonic levels are too low to be identified when there is no fuselage present. When the fuselage is introduced there is a small increase in sound pressure level so that additional harmonic components can be identified in the mid-frequency range
(a) $V=0 \mathrm{~m} / \mathrm{s}$

(b) $V=45.7 \mathrm{~m} / \mathrm{s}$

FIGURE 44. HARMONIC LEVELS FOR PROPELLER OPERATING ALONE AT DIFFERENT RPM (MICROPHONE 2)

ORIGNAL PAOE IS OE POOR QUALITY

FIGURE 45. NARROWBAND SOUND PRESSURE LEVELS FOR PROPELLER OPERATING ALONE (8200 RPM; MICROPHONE 2)
(a) $V=45.7 \mathrm{~m} / \mathrm{s}$

(b) $V=62.4 \mathrm{~m} / \mathrm{s}$

FIGURE 46. COMPARISON OF HARMONIC SOUND PRESSURE LEVELS MEASURED AT MICROPHONE 2 FOR DIFFERENT EMPENNAGE CONFIGURATIONS ($\psi=0^{\circ}, 8200$ RPM)
(a) $V=45.7 \mathrm{~m} / \mathrm{s}$

(b) $V=62.4 \mathrm{~m} / \mathrm{s}$

FIGURE 47. COMPARISON OF HARMONIC SOUND PRESSURE LEVELS MEASURED AT MICROPHONE 2 FOR DIFFERENT EMPENNAGE CONFIGURATIONS ($\psi=90^{\circ}, 8200$ RPM)
($m=5$ to 7). Finally, when the empennage is added there is a significant increase in harmonic levels for harmonic orders greater than 4 or 5. The precise magnitude of the increase cannot be determined in the absence of data where the empennage is not installed, but in scme cases it is about 5 to 10 dB .

The general review given in Figures 46 and 47 for data measured at microphone location 2 can be considered in somewhat greater detail by considering each empennage separately. Figures 48 and 49 present representative harmonic spectra measured at several locations and two fuselage orientations for the Y-tail empennage. The spectra compare sound levels with and without the Y-tail installed. In Figure 46 data are included for microphone 9 which is in the flow, upstream of the propeller and fuselage. This spectrum is different from those at other locations in that the sound levels vary very slowly with harmonic order rather than decreasing rapidly. Even so, it is more difficult to determine the change in harmonic level induced by the empennage because the high selfnoise level due to flow over the microphone masks most of the harmonic components when there is no empennage installed.

The spectra presented in Figures 48 and 49 are consistent with the conclusions drawn from Figures 46 and 47. At mode order 1 to 4 the empennage has no significant effect on the sound levels but at higher mode orders the sound levels increase when the empennage is installed. The term "no significant" is used here in the sense that any changes in sound pressure level that do occur at lew values of harmonic order m are within the data variability range observed in Figure 42 for the repeated runs.

A comparison of harmonic sound pressure levels associated with the Y-tail and V-tail configurations indicates that there is no significant difference between the two empennage with respect to radiated noise. The representative data given in Figure 50 show sound pressure levels which are similar for the two configurations.
(a) Microphone 9

(b) Microphone 2

FIGURE 48. INFLUENCE OF Y-TAIL ON HARMONIC LEVELS (8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \mathrm{X}=23.8 \mathrm{CM}, \psi=0^{\circ}$)
(c) Micruphone 4

(d) Microphone 6

FIGURE 48. CONTINUED
(a) Microphone 2

(b) Microphone 4

FIGURE 49. INFLUENCE OF Y-TAIL ON HARMONIC LEVELS (8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \mathrm{X}=23.8 \mathrm{CM}, \psi=90^{\circ}$)
(c) Microphone 6

(d) Microphone 11

FIGURE 49. CONTINUED
(a) Microphone 9

(b) Microphone 2

FIGURE 50. COMPARISON OF HARMONIC LEVELS FOR Y-TAIL AND V-TAIL EMPENNAGES (8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \mathrm{X}=23.8 \mathrm{CM}, \psi=0^{\circ}$)
(c) Microphone 4

(d) Microphone 6

FIGURE 50. CONTINUED

Harmonic spectra for the I-tail empennage are presented in Figures 51 and 52. The data are quite similar to those in Figures 48 and 49 for the Y-tail. Thus the general conclusions remain the same. However, one additional comment can be made. The increase in harmonic level for large values of m appears to be most pronounced as the angular coordinate θ of the measurement location tends toward 0° or 180°. The smallest changes in sound pressure level occur at measurement locations closest to the plane of rotation of the propeller.

5.4 Blade Angle

For most of the tests the blade angle β was adjusted to the design value for the appropriate rotational and flow speeds. However, one test was performed during which β was given several offdesign values when the propeller rotational speed was 8200 rpm and the flow speed was $62.4 \mathrm{~m} / \mathrm{s}$ (Runs 22 through 25). The design angle for this test condition was 21°; measurements were also performed for blade angles of $19^{\circ}, 23^{\circ}$ and 24°. A comparison of the resulting harmonic sound pressure levels is given in Figure 53.

Inspection of the data indicates that the design angle of 21° is not always associated with the lowest sound pressure level at a given harmonic order and measurement location. There are some instances where the design angle is associated with the highest measured sound pressure levels. It is interesting to note, however, that the spectra contained in Figure 53 are quite similar to those in Figure 42 for corresponding measurement locations. The similarity occurs in both spectral shape and the range of measured sound pressure levels for a given harmonic order and microphone location. The data in Figure 42 are associated with nominally identical test conditions so that the variation in sound pressure level is an indication of data repeatability. It $w i s$ speculated in Section 4.4 that errors in blade angle setting could be one cause of the data scatter. The data in Figure 53 indicate that
(a) Microphone 9

(b) Microphone 2

FIGURE 51. INFLUENCE OF I-TAIL ON HARMONIC LEVELS (8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \mathrm{X}=30.8 \mathrm{CM}, \psi=\mathbf{0}^{\circ}$)

(d) Microphone 6

FIGURE 51. CONTINUED
(a) Microphone 2

(b) Microphone 4

FIGURE 52. INFLUENCE OF I-TAIL ON HARMONIC LEVELS (8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \mathrm{X}=\mathbf{3 0 . 5} \mathrm{CM}, \boldsymbol{\psi}=90^{\circ}$)
(c) Microphone 6

(d) Microphone 11

FIGURE 52. CONTINUED
(a) Microphone 2

(b) Microphone 3

FIGURE 53. EFFECT OF BLADE ANGLE ON HARMONIC SOUND PRESSURE LEVELS (Y-TAIL, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \mathrm{X}=23.8 \mathrm{CM}$)
(c) Microphone 4

(d) Microphone 6

FIGURE 53. CONTINUED
(e) Microphone 11

(f) Microphone 12

FIGURE 53. CONTINUED
the explanation could be true if the blade angle error was as high as $\pm 2^{\circ}$. It seems unlikely that the error would be so large. Furthermore, since the data variability is much larger at some measurement locations thatn at others, it is possible that the explanation lies in the propagation path rather than the source.

5.5 Propeller rpm

Harmonic sound pressure levels measured at different propeller rotational speeds are shown in Figures 54 through 58. It should be remembered in reviewing these data that a given harmonic occurs at different frequencies for different values of rpm.

Figures 54 through 57 present harmonic sound pressure levels measured at the three main test propeller speeds of 4000, 6000, and 8200 rpm. In general, the data now the highest sound pressure levels occurring at the highest rotational speed and the lowest levels at the lowest rpm. However, as harmonic order increases the sound pressure levels associated with different rotational speeds tend to merge to a common curve. This is particularly evident in Figures 54(a), 56(b), and 57(b).

The high rpm range is presented in more detail in Figure 58 where the rpm is increased up to 8200 in steps of 200 rpm . Although the data still show a general trend of harmonic sound level increasing with propeller rotational speed, the pattern is confused by the variability of the results. At one harmonic, such as $m=4$ in Figure $58(b)$, the highest sound pressure level is associated with the highest propeller speed; but for the next harmonic, $m=5$, the highest propeller speed is associated with the lowest sound pressure level. In the same figure harmonic $m=3$ shows an orderly progression of increasing sound pressure level with increasing rotational speed. The reasons for this apparent data variability require further investigation.

5.6 Flow Speed

Two non-zero flow speeds were used in the propeller noise tests, and representative data for these two speeds are compared in Figures 59 through 61. The harmonic levels in Figures 59 and 60 refer to two microphone locations outside the tunnel airflow, and Figure 61 presents data for two locations in the flow.

The general trend given by the data is that the harmonic sound pressure levels are slightly higher at the higher flow speeds. Exceptions to this trend are observed at soms microphone locations for tine $\psi=0^{\circ}$ orientation of the fuselage, when sound levels show little difference between the two flow speeds.

The changes in flow speed result in changes in flow Mach number, blade tip helical Mach number, and advance ratio J. In addition, blade angle B is changed for each combination of flow speed and propeller rpm. The change in helical Mach number is relatively small, being only 1.28, but flow Mach number and propeller advance ratio are directly proportional to flow speed and change by about 37\%. For propellers operating out of the influence of wakss, the important parameters for harmonic sound level are propeller rotational and helical Mach numbers. Other factors appear to be influencing the present results; presumably the strength of the wakes entering the propeller disc increases with flow speed and has an influence on the radiated sound pressure levels.

5.7 Fuselage orientation

The fuselage/empennage combination was tested at two orientations, identified as $\psi=0^{\circ}$ and 90°. For configuration $\psi=0^{\circ}$ the main microphone array was located to the side of the model airplane and for: $\psi=90^{\circ}$ the array was essentially beneath the airplane. Since the model empennages are not symmetric about the axie of the fuselage it is anticipated that there will be some spatial variation
(a) Microphone 2

(b) Microphone 6

FIGURE 54. HARMONIC SOUND PRESSURE LEVELS AT DIFFERENT PROPELLER RPM (Y -TAIL, $V=45.7 \mathrm{M} / \mathrm{S}, \psi=0^{\circ}$)
(a) Microphone 2

(b) Microphone 6

FIGURE 55. HARMONIC SOUND PRESSURE LEVELS AT DIFFERENT PROPELLER RPM (Y-TAIL, V $=62.4 \mathrm{M} / \mathrm{S}, \boldsymbol{\psi}=\mathbf{0}^{\circ}$)
(a) Microphone 1

(b) Microphone 2

FIGURE 56. HARMONIC SOUND PRESSURE LEVELS AT DIFFERENT PROPELLER RPM (Y-TAIL, V $=\mathbf{6 2 . 4} \mathbf{~ M} / \mathrm{S}, \boldsymbol{\psi}=9 \mathbf{0}^{\circ}$)

(d) Microphone 6

FIGURE 56. CONTINUED
(a) $\psi=0^{\circ}$

(b) $\psi=90^{\circ}$

FIGURE 57. HARMONIC SOUND PRESSURE LEVELS AT DIFFERENT PROPELLER RPM (I-TAIL, V = $62.4 \mathrm{M} / \mathrm{S}$, MICROPHONE 2)
(a) Microphone 2

(b) Microphone 4

FIGURE 58. HARMONIC SOUN \cup PRESSURE LEVELS AT DIFFERENT PROPELLER RPM FROM 7300 TO 8200 ($\mathrm{Y}-\mathrm{TAIL}, \mathrm{V}=\mathbf{6 2 . 4} \mathrm{M} / \mathrm{S}, \psi=\mathbf{0}^{\circ}$)
(c) Microphone 6

(d) Microphone 11

FIGURE 58. CONTINUED
(a) $\psi=0^{\circ}$

(b) $\psi=90^{\circ}$

FIGURE 59. COMPARISON OF HARMONIC SOUND PRESSURE LEVELS AT DIFFERENT FLOW SPEEDS (MICROPHONE 2, 8200 RPM)

FIGURE 60. COMPARISON OF HARMONIC SOUND PRESSURE LEVELS AT DIFFERENT FLOW SPEEDS (MICROPHONE 5, 8200 RPM)
(a) Microphone 8

(b) Microphone 9

FIGURE 61. COMPARISON OF HARMONIC SOUND PRESSURE LEVELS AT DIFFERENT FI. OW SPEEDS (MICROPHONES 8 AND 9)
in harmonic sound pressure level in the vertical plane. If this is true then the sound pressure levels at a given microphone location could depend on the fuselage orientation.

Figure 62 compares harmonic sound pressure levels measured at six microphone locations when the fuselage, with Y-tail, was oriented at $\psi=0^{\circ}$ and 90°. The propeller speed was 8200 rpm and the flow speed $62.4 \mathrm{~m} / \mathrm{s}$. The comparisons indicate that the sound pressure levels are generally higher for $\psi=90^{\circ}$ than fur $\psi=0^{\circ}$. This means that the sound levels are higher beneath the airplane than they are to the side. The difference seems to be greatest at microphones in the neighborhood of the plane of rotation of the propeller (i.e., at locations 3 and 4). The same trend is observed also at location 12, which is not directly beneath or to the side of the airplane but is 30° away from those locations. In the case of microphone 11, the location is either 30° from directly above the airplane (when $\psi=0^{\circ}$) or 30° below the sideline $\left(\psi=90^{\circ}\right)$. The data for this location do not show the trend of higher levels at $\psi=90^{\circ}$ than at 0°, presumably because the location does not fit the pattern of being beneath or to the side of the airplane.

5.8 Axial Separation

The effect of axial separation between the empennage and the plane of rotation of the propeller was of particular interest to the investigation, as can be seen from the test configurations listed in Table 3. This interest arose because of the previous work on fan noise in turbofan engines (see the discussion in Section 1.2) and because the strength of the wake from the empennage should decay as distance downstream of the empennage increases.

Before proceding to review the test data, attention should be drawn to the manner in which the separation between the empennage and propeller is expressed. In Table 3 the separation distance is

(a) Microphone 2

(b) Microphone 3

FIGURE 62. COMPARISON OF HARMONIC SOUND PRESSURE LEVELS MEASURED FOR DIFFERENT FUSELAGE ORIENTATIONS (8200 RPM, 62.4 M/S)

(c) Microphone 4

(d) Microphone 6

FIGURE 62. CONTINUED

(e) Microphone 11

(f) Microphone 12

FIGURE 62. CONTINUED
given in terms of the distance x between the most rearward posit ion on the fuselage tail cone and the plane of rotation. As discussed in Section 2.4 this distance does not give a correct indication of the distance between the trailing edge of the empennage and the propeller plane. To overcome this discrepancy mean separation distances have been estimated for several values of x referred to in Figures 63 through 68. In the case of the Y-tail separation distances have been estimated for both the V -tail and the dorsal fin.

The mean separation distances are given in Table 7 and represent the arithmetic average of the separation distances at the root of the empennage and the tip of the propeller. Also, the distances have been normalized with respect to the chord of the empennage surface, with the average value of the chord being determined in the same manner as for the separation distance. The results in Table 7 show that the separation distances for the I-tail are slightly lower than those for the Y-tail (a range of 8.5 cm to 43 cm compared to 13.5 cm to 60 cm). When normalized with respect to the appropriate chord dimension the separation distances associated with the I-tail are significantly smaller than those for the Y -tail. The range of values for s / c is 0.15 to 0.75 for the I-tail empennage and 0.47 to 2.06 for the Y-tail.

The influence of separation distance on harmonic sound pressure levels associated with the propeller operating downstream of the Y-tail is shown in Figures 63 through 65 . The separation distances identified in the legend of the figures refer to the distance between tail cone and propeller. Distances between empennage and propeller are given in Table 7. As in the other comparisons, the data scatter makes interpretation difficult. However, the smallest separation distance is usually associated with the highest sound pressure level. In most cases the range of sound levels measured for a given harmonic order is not large, being less than 10 dB for a mean separation distance varying by a
(a) $\psi=0^{\circ}$

(b) $\psi=90^{\circ}$

FIGURE 63. INFLUENCE OF AXIAL SEPARATION DISTANCE BETWEEN EMPENNAGE AND PROPELLER ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 1, Y-TAIL, 8200 RPM, 62.4 M/S)
(a) $\psi=0^{\circ}$

(b) $\boldsymbol{\psi}=90^{\circ}$

FIGURE 64. INFLUENCE OF AXIAL SEPARATION DISTANCE BETWEEN EMPENNAGE AND PROPELLER ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 3, Y-TAIL, 8200 RPM, 62.4 M/S)
-(a) $\psi=0^{\circ}$

(b) $\psi=90^{\circ}$

FIGURE 65. INFLUENCE OF AXIAL SEPARATION DISTANCE BETWEEN EMPENNAGE AND PROPELLER ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 6, Y-TAIL, 8200 RPM, 62.4 M/S)
(a) $\psi=0^{\circ}$

(b) $\psi=90^{\circ}$

FIGURE 66. INFLUENCE OF AXIAL SEPARATION DISTANCE BETWEEN EMPENNAGE AND PROPELLER ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 1, I-TAIL, 8200 RPM, 62.4 M/S)
(a) $\psi=0^{\circ}$

(b) $\psi=90^{\circ}$

FIGURE 67. INFLUENCE OF AXIAL SEPARATION DISTANCE BETWEEN EMPENNAGE AND PROPELLER ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 3, I-TAIL, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)
(a) $\psi=0^{\circ}$

(b) $\boldsymbol{\psi}=90^{\circ}$

FIGURE 68. INFLUENCE OF AXIAL SEPARATION DISTANCE BETWIEEN EMPENNAGE AND PROPELLER ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 6, I-TAIL, 8200 RPM, 62.4 M/S)

TABLE 7. MEAN SEPARATION DISTANCES BETWEEN EMPENNAGE TRAILING EDGE AND PROPELLER PLANE OF ROTATION

Run No.		```Separa- tion* X (cm)```	Mean Separation* S(cm)		Mean S/C	
$\psi=0^{\circ}$	$\psi=90^{\circ}$		V-Tail	$\begin{aligned} & \text { Dorsal } \\ & \text { Fin } \\ & \hline \end{aligned}$	V-Tail	$\begin{gathered} \text { Dorsal } \\ \text { Fin } \\ \hline \end{gathered}$
Y-Tail						
15-1	---	11	13.5	13	0.47	---
	71-1	12.5	15	14.5	0.52	0.55
10.1	---	14.5	17.5	16.5	0.60	-. 64
11-1	67-1	23	25.5	25	0.88	0.96
16-1	---	24	26.5	26	0.91	0.99
12-1	68-1	31	33.5	32.5	1.15	1.26
13-1	69-1	40.5	43	42.5	1.48	1.63
14-1	70-1	57.5	60	59.5	2.06	2.28
I-Tail						
43-1	54-1	22		. 5		. 15
44-1	51-1	30.5				. 30
42-1	52-1	37.5				. 42
41-1	53-1	56.5				. 75

*X is distance between fuselage tail cone and propeller plane
S is mean distance between empennage trailing edge and propeller plane
C is mean chord of empennage between hub and tip of propeller
factor of almost 5. Often the sound levels change by less than 7 dB as separation distance increases.

Corresponding data for the I-tail are contained in Figures 66 through 68. The trends of the data are similar to those observed in Figures 63 through 65 for the Y-tail but the pattern is more distinct. Although the separation distance again varies by a factor of 5 the normalized distances are much smaller than in the case of the Y-tail so, presumably, the influence of the wake from the empennage is much stronger. As for the Y-tail, the range of sound pressure levels for a given harmonic order is less than 10 dB ; in many cases it is less than 7 dB .

The influence of axial separation distance was measured also when the Y-tail empennage was at a 5° angle of incidence. Sample data for these configurations are presented in Figure 69. In one case, (Microphone 6, Figure 69(c)), the data are remarkably orderly considering the data scatter encountered throughout the test. The data in Figure 69(c) show a monotonic decrease in harmonic sound pressure level as separation distance increases. At other locations the pattern of the data is similar to that in Figures 63 through 68. The separation distances between empennage and propeller plane associated with the test runs for Figure 69 are not listed in Table 7, but the values from equivalent runs can be used.

5.9 Vertical Separation

Vertical separation between propeller axis and fuselage centerline was varied in only one increment (7.6 cm) upwards and downwards. The flow speed was $62.4 \mathrm{~m} / \mathrm{s}$, the propeller rotational speed was 8200 rpm , and the axial separation was either 24 cm or 57 cm . Typical harmonic spectra are shown in Figure 70 for the case of $x=24 \mathrm{~cm}$.
(a) Microphone 1

(b) Microphone 3

FIGURE 69. INFLUENCE OF AXIAL SEPARATION DISTANCE BETWEEN EMPENNAGE AND PROPELLER ON HARMONIC SOUND PRESSURE LEVELS; EMPENNAGE INCIDENCE 5°
(c) Microphone 6

FIGURE 69. CONTINUED
(a) Microphone 2

(b) Microphone 4

FIGURE 70. INFLUENCE OF VERTICAL SEPARATION DISTANCE BETVEEN EMPENNAGE AND PROPELLER ON HARMONIC SOUND PRESSURE LEVELS (8200 RPM, $V=62.4 \mathrm{M} / \mathrm{S}$)
(a) Microphone 6

(b) Microphone 12

FIGURE 70. CONTINUED

It is seen that the highest sound pressure levels at all measurement locations and for all harmonis orders occurred when the propeller axis was below the fuselage ($x=-7.6 \mathrm{~cm}$). The lowest sound pressure levels often occur when there is no vertical separation between the fuselage centerline and the propeller axis, but in many cases the sound levels associated with $x=+7.6 \mathrm{~cm}$ are similar to those for $x=0$.

5.10 Empennage Angle of Incidence

The next parameter considered here is the angle of incidence of the empennage. This angle was given a non-zero value ($+5^{\circ}$) for four test runs, 30-1 through 33-1, at four different axial separation distances. Data for two of the separation distances are presented in Figures 71 through 73 for three microphone locations. Baseline sound pressure levels for zero angle of incidence (run 12-1 or 15-1) are given in each case. The data suggest that at low harmonic orders, with m less than 4, the increase in angle of incidence causes a reduction in harmonic sound pressure level. For higher order harmonics the increase in angle of incidence increases the sound pressure level.

5.11 Directivity in Vertical plane

Directivity in the vertical plane can be measured in the plane of rotation of the propeller using data from microphones 4, 11, 12 and 13. Microphones 4, 11 , and 12 are at a radius of 4.3 m and microphone 13 at 2.3 m ; the data are adjusted to a common radius of 4.3 m . Since measurements were made at two orientations of the fuselage and empennage $\left(\psi=0^{\circ}\right.$ and 90°) the data can be combined to obtain sound pressure levels for eight values of angle ϕ. The appropriate values of ϕ are given in Table 2. It is seen that most of the data points lie in the two quadrants from 180° to 360^{*} (microphones 4, 11; and 12).
(a) $x=10.8 \mathrm{~cm}$

(b) $x=30.5 \mathrm{~cm}$

FIGURE 71. INFLUENCE OF EMPENNAGE ANGLE OF INCIDENCE ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 1, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)
(a) $x=10.8 \mathrm{~cm}$

(b) $x=30.5 \mathrm{~cm}$

FIGURE 72. INFLUENCE OF EMPENNAGE ANGLE OF INCIDENCE ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 4, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)
(a) $x=10.8 \mathrm{~cm}$

(b) $x=30.5 \mathrm{~cm}$

FIGURE 73. INFLUENCE OF EMPENNAGE ANGLE OF INCIDENCE ON HARMONIC SOUND PRESSURE LEVELS (MICROPHONE 6, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)

Three sample directivity plots are shown in Figures 74 through 76 for test conditions associated with a flow speed of $62.4 \mathrm{~m} / \mathrm{s}$ and a propeller speed of 8200 rpm . Figure 74 presents harmonic sound pressure levels measured when the propeller was operating downstream of the fuselage without an empennage. Then, Figures 75 and 76 show the directivity patterns measured when the Y and I tails, respectively, were installed. Angular locations of the empennage surfaces are identified in Figures 75 and 76.

Inspection of Figures 74 through 76 indicates that, at least for the plane of rotation of the propeller, the directivity pattern is fairly uniform. There is no indication of directivity peaks or troughs associated with the empennage surfaces. However, since such troughs may be fairly narrow in terms of angular domain it is possible that the number of measurement locations is too small to determine the detailed directivity pateern. Within the data variability the presence of the empennage appears to have little influence on the directivity pattern in the vertical plane.

5.12 Directivity in Horizontal Plane

Directivity in the horizontal plane can be measured using data from microphones 1 through 9. Six of these microphones (1-6) were located outside the tunnel shear layer and the other three microphones were in the tunnel flow (Figure 17). Microphones 1 through 6 were at a radial distance of 4.3 m from the propeller; data from microphones 7 through 9 were normalized to this radius using the adjustments listed in Table 5. Since microphones 7 through 9 were in the flow, no adjustments were necessary for refraction at the shear layer. Adjustments for shear layer effects were made to data for microphones 1-6 according to Table 6 so that the directivity could be plotted in terms of radiation angle rather than receiver angle. The microphones out of the flow are restricted

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN VERTICAL PLANE (MICS 4.11.128813) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER, 4. 3m DISTANCE AND BROADBAND

FIGURE 74. VERTICAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS (FUSELAGE WITHOUT EMPENNAGE, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)
(a) Harmonics 1 through 4

NOISE DIRECTIVITY IN VERTICAL PLANE (MICS 4.11.128 13) harmonic levels corrected for shear layer, 4. 3m distance and broadoand

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN VERTICAL PLANE (MICS 4.11. 128 13) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER, 4. 3m DISTANCE AND BROADBAND

FIGURE 75. VERTICAL PLANE DIRECTIVITY OF HARIMONIC SOUND PRESSURE LEVELS (Y-TAIL, X=23.8 CM, 8200 RPM, 62.4 M/S)

(b) Harmonics 5 through 8

FIGURE 76. VERTICAL PLANE DIRECTIVITY OF HARIVONIC SOUND PRESSURE LEVELS (I-TAIL, X=38.4 CM, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)
in radiation angle to the range 68.5° to $126.1^{\circ}\left(0^{\circ}\right.$ is directly upstream of the propeller). Consequently, it is of interest to include the microphones in the flow so that the range of angles can be increased to $15^{\circ}-140^{\circ}$. Microphone 7 which is in the flow was included in some of the directivity plots but, since the associated radiation angle lies between those for microphones 4 and 5, the data are not as important to the directivity as those from microphones 8 and 9.

In preparing the directivity plots, data points were joined by straight lines without any attempt to interpolate or smooth the data. Consequently, the plotted patterns do not necessarily represent the detailed directivity characteristics of the harmonic sound pressure levels.

Directivity patterns for the propeller alone are shown in Figure 77. The plots are complete for the harmonics of order $1-3$, but are incomplete or non-existent for higher order harmonics. In the latter case, the harmonic contributions could not be identified because of masking by the broadband components. The general pattern of the data indicates that the maximum sound pressure levels occur in the neighborhood of the plane of rotation of the propeller $\left(90^{\circ}\right)$ and the levels decrease as the propeller axis is approached. However, it is possible that the levels do not decrease as much as they would under free-field conditions, because of the influence of reflections from tunnel surfaces.

When the model fuselage (without empennage) is introduced, the higher order harmonics become evident at more locations. The data now suggest (Figure 78) that the region of maximum harmonic level occurs between 60° and 90°. Otherwise, the pattern is similar to that for the propeller alone in that the lowest sound pressure levels generally occur at locations near to the axis of the propeller (0° and 180°).
(a) Harmonics 1 through 4

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) harmonic levels cormected for shear layer, 4. 3m distance and broadbano

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZרNTAL PLANE (MICS 1 TO 9) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER. 4. 3m DISTANCE AND BROADBAND

FIGURE 77. HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS (PROPELLER ALONE, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S})$
(a) Harmonics 1 through 4

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO g) harmonic levels corrected for shenr layer. 4. 3m distance ano erondeano

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) harmonic levels corrected for shear layer. 4.3m distance and groadoand

FIGURE 78. HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS (FUSELAGE VITHOUT EMPENNAGE, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S})$

Figures 79 through 81 contain data measured when the propeller was operating behind the Y-tail empennage in the $\psi=0^{\circ}$ configuration. Harmonic levels can now be identified at all locations. A comparison with Figure 77 shows that the presence of the empennage Changes the directivity patterns of the harmonics. For harmonics of order 1 through 4 the sound pressure levels now remain fairly constant as angle is changed--the levels do not decrease as the propeller axis is approached. The change is more evident for harmonics of order 5 through 8 where now the harmonic sound pressur levels are highest at locations nearest to the propeller axis and lowest near to the propeller plane of rotation.

The data in Figures 79 through 81 show some irregularity in the variation of harmonic sound pressure levels with angle of radiation. There are several possible explanations for this irregularity and it is possible that more than one effect is playing a role. First, there is the influence of the general scatter in the data, as discussed in Section 4.4. Secondly, constructive and destructive interference effects associated with acoustic signals reflected from surfaces in the test chamber can have a strong influence on the observed sound pressure levels. These interference effects will occur at different frequencies for different locations. Thirdly, it is possible that directivity of the radiated acoustic free-field of the propeller behind an empennage has certain characteristics. It may not be possible to determine these characteristics because of the selected locations for the microphones. A larger array of more-closely spaced microphones might be required.

A comparison of Figures 79 throught 81 does not show any strong effect due to separation distance between the empennage and propeller. Even when the data for individual harmonics are compared directly, as in Figure 82, there is no readily
(a) Harmonics 1 through 4

NO: • DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) HARMONIC LEVELS CORRECTED FOF SHEAR LAYER, 4.3m DISTANCE AND BRDADBANO

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS ! TO 9) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER. 4. 3m DISTANCE AND BROADBAND

FICURE 79. HORIZONTAL PLANE DIRECTIVITY OF HARNONIC SOUND PRESSURE LEVELS (Y -TAIL, X=10.8 CM, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \psi=0$)
(a) Harmonics 1 through 4

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS I TO g) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER, 4. 3m DISTANCE AND BROADBAND

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER. 4.3 m DISTANCE AND BROADBAND

FIGURE 80. HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS (Y -TAIL, $X=23.8 \mathrm{CM}, 8200$ RPM, $62.4 \mathrm{M} / \mathrm{S}, \psi=0$)
(a) Harmonics 1 through 4

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS I TO 9) harmowic levels corrected for shear lavir, 4, 3m distance and broadoano

(b) Harmonics 5 through 8

NOISE DIRECIIVITY IN HORIZONTAL PLANE (MICS 1 TO 6.889) harmonic levels corpected for shear layer, 4. 3m distance and broadband

FIGURE 81. HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS (Y-TAIL, X=57.5CM, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \psi=0$)
(a) Harmonic i

NOISE DIRECTIVITY IN HDRIZONTAL PLANE (MICS 1 TO g) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER, 4. 30 DISTANCE AND BROADBAND

(b) Harmonic 3

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) harmonic levels corrected for ghear layer, 4. 3a distance and brcadband

FIGURE 82. INFLUENCE OF EMPENNAGE/PROPELLGR SEPARATION DISTANCE ON HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS (Y-TAIL, 8200 RPivi, $62.4 \mathrm{M} / \mathrm{S}$)
(c) Harmonic 5

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) harmonic levels corrected for shear layer. 4. 3m distance and broadband

(d) Harmonic 7

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER. 4.3m DISTANCE AND BRDADBAND

FIGURE 82. CONTINUED
discernible influence of empennage/propeller separation distance, within the range tested. This does not mean that there is no influence of separation distance. A comparison of Figures 81 and 78 shows that increasing the separation distance from 0.575 m to infinity (i.e., no empennage) has a significant effect on the radiated sound field. However, a more detailed analysis of the effect would require information regarding the strengths of the wakes behind the empennage surfaces.

When the airframe is rotated through $90^{\circ}\left(\psi=90^{\circ}\right)$ the directivity patterns show characteristics which are similar to those for $\psi=0^{\circ}$. Figure 83 shows data associated with $\psi=90^{\circ}$ and a separation distance of 0.124 m between the empennage and the propeller. However, there are larger differences between sound pressure levels for different harmonics ($m=1$ through 4) when $\psi=90^{\circ}$ than when $\psi=0^{\circ}$.

When the propeller axis is moved vertically relative to the centerline of the empennage, the directivity for the higher order harmonics appears to be more uniform than is the case when the axis and centerline are coincident. This can be seen when comparing Figures 84 and 85 with Figure 80. When the propeller axis is below the empennage centerline (Figure 85) the measured acoustic field is almost omnidirectional in the horizontal plane.

The preceding data have been associated with test conditions for zero angle of incidence of the empennage. Data for an angle of incidence of 5° as shown in Figure 86. The general directivity characteristics are similar to those for zero angle of incidence (Figure 80) with the highest sound levels for harmonics 5 through 8 being at 15° and 160°.

Directivity patterns for the I-tail are contained in Figures 87 and 88 for $\psi=0^{\circ}$ and 90°, respectively. The associated separation distance x between the propeller and the fuselage tail cone
(a) Harmonics 1 through

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 6. 8\&9) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER. 4. 3m DISTANCE AND BROADBAND

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 6. 889) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER. 4. 3m DISTANCE AND BROADBAND

FIGURE 83. HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS (Y-TAIL, X=12.4 CM, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \psi=90^{\circ}$)
（a）Harmonics 1 through 4
NOISE DIRECTIVITY IN HORIZONTAL PLANE（MICS 1 TO 6．889） harwonic levels corrected for shear layer．4．3m distance and erondeand

（b）Harmonics 5 through 8
NOISE DIRECTIVITY IN HORIZONTAL PLANE（MICS 1 TO 6．889） HARMONIC LEVELS CDRRECTED FOR SHEAR LAYER，4．3－DISTANCE AND BROADBAND

FIGURE 84．HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS，EMPENNAGE／PROPELLER VERTICAL SEPARATION＋7．6 CM （Y－TAIL，X＝23．5 CM，8200 RPM， $62.4 \mathrm{M} / \mathrm{S}$ ）
(a) Harmonics 1 through 4

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER, 4. 3m distance and broadeand

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 9) harmonic levels corrected for shear layer, 4. 3m distance and broadband

FIGURE 85. HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS, EMPENNAGE/PROPELLER VERTICAL SEPARATION -7.6 CM (Y-TAIL, X=24.1 CM, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)
(a) Harmonics 1 through 4

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 6.889) harmonic levels corrected for shear layer, 4. 3a distance and groadoand

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 6. 889) HARMONIC LEVELS CORRECTEC FOR SHEAR LAYER, 4.3m DISTANCE AND BROADBAND

FIGURE 86. HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS, EMPENNAGE ANGLE OF INCIDENCE 5° (Y-TAIL, X=22.9 CM, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S})$
(a) Harmonics 1 through 4

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 6. 889) harmonic levels corrected for shear layer, i. 3m distance and broadaand

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 6, 889) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER.4.3m DISTANCE AND BROADBAND

FIGURE 87. HORIZONTAL PLANE DIRECTIVITY OF HARMONIC SOUND PRESSURE LEVELS (I-TAIL, X=38.4 CM, 8200 RPMi. $62.4 \mathrm{M} / \mathrm{S}, \psi=0^{\circ}$)

(b) Harmonics 5 through 8

NOISE DIRECTIVITY IN HORIZONTAL PLANE (MICS 1 TO 6. 889) HARMONIC LEVELS CORRECTED FOR SHEAR LAYER. 4. 3m DISTANCE AND BROADBAND

FIGURE 88. HORIZONTAL PLANE DIRECTIVITY OF HARIMONIC SOUND PRESSURE LEVELS (I-TAIL, X=36.8 CM, 8200 RPNi, $62.4 \mathrm{M} / \mathrm{S}, \psi=90^{\circ}$)
is about 370 mm ; the corresponding mean distance between the propeller and the empennage trailing edge (see Table 7) is about 240 mm which is similar to that for the Y-tail data of Figures 80 and 83. Comparing the sound level distributions in Figure 87 with those in Figures 80 and 83 it is seen that the directivity patterns for the I-tail $\left(\psi=0^{\circ}\right)$ are similar to those for the Y-tail $\left(\psi=90^{\circ}\right)$. For harmonics 5 through 8 the sound pressure levels near to the axis of the propeller are slightly higher than those in the neighborhood of the plane of rotation of the propeller.

When data for the I-tail $\left(\psi=90^{\circ}\right)$ are considered the directivity patterns show a similarity with those in Figure 78 for the test configuration of a fuselage without an empennage. For harmonics 5 through 8, the highest sound pressure levels appear to be in the neighborhood of the plane of rotation of the propeller--harmonics could not be identified in the data from microphone 9 at angle of 15°.

5.13 "On-Axis" Sound Pressure Levels

The preceding discussion regarding the directivity of the acoustic field in the horizontal plane has emphasized the importance of noise radiated fore and aft along the axis (or near to the axis) of the propeller. Although these radiation angles may not be critical from the point of view of airplane flyover noise, they are important in understanding the physical characteristics of a propeller operating behind an empennage. Consequently, additional information is presented in this section for microphone locations 8 and 9. This information covers many of the topics which have been discussed earlier for microphones located outside the flow.

The strong influence of the empennage on the on-axis sound pressure levels is demonstrated in Figure 89. When the propeller operates alone, or behind the model fuselage without an empennage, the harmonic sound pressure levels at locations 8 and 9 are lower than those measured at larger angles to the propeller axis (Figures $89(a)$ and (b)). Upon introduction of the empennage, the measured sound pressure levels at locations 8 and 9 increase to be comparable to those elsewhere for harmonics of order 1 through 4, and markedly exceed those elsewhere for harmonics of order 5 through 11.

Repeatability of the harmonic sound pressure levels measured at locations 8 and 9 is demonstrated in Figure 90 where results for three repeated runs (11-1, 16-1 and 22-6) are compared. Figure 90 can be compared with Figure 42 which contains similar data for microphones outside the flow. In the case of microphones 8 and 9, the data repeatability looks quite good and is comparable with the measurements at locations 11 and 12. The average range of harmonic sound pressure levels is 2.1 dB at microphone 8 and 2.9 dB at microphone 9 (see Figure 43 for other locations).

The influence of separation distance between propeller and the Y-tail empennage can be seen in Figure 91 for $\psi=0^{\circ}$ and Figure 92 for $\psi=90^{\circ}$. These figures can be compared with Figures 63 through 65 which contain data for microphones 1,3 and 6 outside the flow. As before, the separation distances given in Figures 91 and 92 refer to the distance between the tail cone and propeller; Table 7 gives the corresponding distances between empennage trailing edge and propeller. On the average, the data in Figures 91 and 92 show harmonic sound levels changing by about 7 dB as the separation distance varies. Although there is some scatter in the data, the general trend is that of increasing sound pressure level as separation discance decreases. The trend seems to be defined more clearly than was the case in Figures 63 through 65.
(a) Propeller Alone

(b) Propeller behind Fuselage without Empennage

FIGURE 89. INFLUENCE OF FUSELAGE AND EMPENNAGE ON HARMONIC SOUND PRESSURE LEVELS (8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)
(c) Propeller behind Y-Tail ($\psi=0^{\circ}, X=10.8 \mathrm{~cm}$)

(d) Propeller behind \mathbf{Y}-Tail ($\Psi=\mathbf{0}^{\circ}, X=23.8 \mathrm{~cm}$)

FIGURE 89. CONTINUED
(a) Microphone 8

(b) Microphone 9

FIGURE 90. COMPARISON OF BLADE PASSAGE FREQUENCY HARMONIC LEVELS FOR REPEAT RUNS, MICROPHONES 8 AND 9 (Y-TAIL, 8200 RPNi, $62.4 \mathrm{M} / \mathrm{S}$)
(a) Microphone 8

(b) Microphone 9

FIGURE 91. INFLUENCE OF EMPENNAGE/PROPELLER AXIAL SEPARATION DISTANCE ON HARMONIC SOUND PRESSURE LEVELS, MICROPHONES 8 AND 9 (Y -TAIL, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}, \psi=0^{\circ}$)
(a) Microphone 8

(b) Microphone 9

FIGURE 92. INFLUENCE OF EMPENNAGE/PROPELLER AXIAL SEPARATION DISTANCE ON HARMONIC SOUND PRESSURE LEVELS, MICROPHONES 8 AND 9 (Y-TAIL, 8200 RPM, $62.4 \mathrm{Ni} / \mathrm{S}, \psi=90^{\circ}$)

When the fuselage with Y-tail empennage is rotated through 90° from $\psi=0^{\circ}$ to $\psi=90^{\circ}$, the harmonic sound pressure levels decrease for most harmonics, as can be seen in Figure 93. This is in contrast to the results for microphones closer to the plane of rotation of the propeller where the sound pressure levels are higher for $\psi=90^{\circ}$ than for $\psi=0^{\circ}$ (Figure 62).

Increasing the angle of incidence of the Y-tail empennage significantly increases the harmonic sound pressure levels at microphone 9 and causes a smaller increase at microphone 8, as is shown in Figure 94. The change at microphone 9 is more distinct than at any other location (see Figures 71 through 73, for example).

The most well-defined demonstration of the effect of empennage/ propeller separation on radiated sound pressure level is obtained when the separation is varied while the empennage angle of incidence is maintained at 5°. Figure 95 shows the resulting harmonic sound pressure levels measured at microphones 8 and 9. Here it is very clearly shown that the highest sound pressure levels are associated with the smallest separation distances. The average range of measured harmonic sound pressure levels is about 10 dB for microphone 8 and 8 dB for microphone 9.
(a) Microphone 8

(b) Microphone 9

FISURE 93. COMPARISON OF HARMONIC SOUND PRESSURE LEVELS MEASURED FOR DIFFERENT FUSELAGE ORIENTATIONS, MICROPHONES 8 AND 9 (Y-TAIL, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S})$
(a) Microphone 8

(b) Microphone 9

FIGURE 94. INFLUENCE OF EMPENNAGE ANGLE OF INCIDENCE ON HARMONIC SOUND PRESSURE LEVELS, MICROPHONES 8 AND 9 (Y-TAIL, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)
(a) Microphone 8

(b) Microphone 9

FIGURE 95. INFLUENCE OF EMPENNAGE/PROPELLER AXIAL SEPARATION DISTANCE ON HARMONIC SOUND PRESSURE LEVELS WITH EMPENNAGE INCIDENCE 5°, MICROPHONES 8 AND 9 (Y-TAIL, 8200 RPM, $62.4 \mathrm{M} / \mathrm{S}$)

6. DISCUSSION

Section 5 has presented a large amount of acoustic data from the wind tunnel tests. These results have to be analyzed further in order to relate the radiated sound pressure levels to the characteristics of the flow field entering the propeller disc. It is not the goal of this report to conduct such an analysis since the evaluation of the aerodynamic field is performed elsewhere. However, the present section will discuss the acoustic test data in terms of results from other investigations and identify some of the problems associated with the prediction of noise from pusher propellers.

6.1 Characteristics of the Radiated Sound Field

The general results of the acoustic measurements can be summarized as follows:
(a) The test data measured at several of the microphone locations show a data variability that is higher than expected. This variability tends to mask some of the data trends, particularly when the parametric changes cause only small changes in sound pressure level at the measurement location.
(b) The presence of the empennage increases the sound pressure levels associated with the harmonics of the blade passage frequencies. The effect is small for harmonics of order 1 to 4 and increases at higher order harmonics.
(c) The influence of the empennage on radiated harmonic sound pressure levels is greatest at locations nearest to the propeller exis and least near to the plane of rotation of the propeller.
(d) The harmonic sound pressure leveis generally increase as separation distance between the empennage and propeller decreases. Also, the harmonic sound pressure levels increase when the angle of incidence of the empennage is increased.

The tests reported herein are associated with the operation of a propeller behind a model empennage. A survey of published literature has not identified any other test program that is directly associated with an empennage installation, but there are other investigations which have related application [29-41]. All these investigations are associated with the generation of noise by propeller or rotor interaction with in-flows which are not axisymmetric. They include installation effects for tractor propellers [29-31], rotor-vortex interaction [32,33], response of propellers to gusts [34], propellers in a wake [35-37], effect of propeller angle of attack [38] and counter-rotating propellers [39-41].

The installation effects for tractor propellers and the effect of propeller angle of attack are similar phenomena in that there are no disturbing bodies upstream of the propeller; the general direction of the airflow is inclined to the plane of rotation of the propeller. Studies of a propeller in a wake [35-37] and rotor-vortex interaction [33] are perhaps closest to the present tests in that the flow disturbances were created by an airfoil upstream of the propeller. In the wake experiment [35-37] the airfoil was placed across the entire flow region entering the propeller, and in the rotor-vortex \perp nteraction tests the vortex was the tip vortex generated by an airfoil partially inserted into the flow. In the empennage tests reported herein, the spans of the empennage surfaces are greater than the radius of the test propeller. Consequently, any tip vortex would probably miss the propeller disc, except for runs 34-38 when the propeller axis was 76 mm below the empennage centerline. It is possible that the presence of a tip vortex from the dorsal fin of the Y-tail may account for the relatively high sound pressure levels associated with this test configuration, as shown in Figure 70. However, since the dorsal fin was nominally at zero angle of attack, the
presence of a vortex will uave to be verified by the aerodynamic measurements.

Qualitatively, the results from all the referenced investigations are similar to those of the present study. In terms of spectral components, the situation can be described by the schematic spectrum shown in Figure 96; this figure is based on results of Wright [32]. The low frequency noise associated with steady loading and thickness contributions consists of discrete frequency harmonic components superimposed on a broadband background. Unsteady loads generate harmonic components which are most evident in the mid-frequency range and broadband vortex noise is the contributor to the high frequency range. The magnitude of the unsteady loading noise levels depends on the characteristics of the flow entering the propeller disc and on the measurement location. Results of Trebile, et al [29], indicate that, for their particular test configuration, steady loading noise dominated at harmonic orders $m=1$ and 2, thickness noise at $m=3$ and 4, and unsteady loading noise at harmonics $m \geq 5$. In this particular test the inflow disturbances were not particularly large. Schlinker and Amiet [33] showed that, for their rotor-vortex interaction test, the unsteady loading noise dominated for harmonics of order $m \geq 4$.

The actual frequency range in which unsteady loading noise dominates will depend to some extent on the location of the observer. Unsteady loading noise has a dipole directivity pattern with a minimum in the plane of the propeller blade (which is different from the plane of rotation of the propeller because of the pitch of the blade). In contrast, thickness noise has a maximum in the plane of rotation of the propeller and steady loading noise has a maximum near to the plane of rotation.

These general directivity characteristics in the axial direction can be observed in the present test data plotted in Figures 77

FIGURE 96. SCHEMATIC SPECTRUM SHOWING FREQUENCY REGIMES ASSOCIATED WITH DIFFERENT COMPONENTS OF PROPELLER NOISE
through 88. When there is no fuselage or empennage upstream of the propeller, the neasured harmonic sound pressure levels have maximum values in the neighborhood of the propeller plane of rotation (Figure 77). In the case of higher order harmonics, the harmonic sound pressure levels are so low that they cannot be detected above the broadband noise except in the neighborhood of the plane of rotation (Figure 77(b)). When the empennage is introduced the directivity patterns for harmonics of order $m=1$ through 4 show small changes due to increases in the sound pressure levels at locations near to the propeller axis. Much larger changes in the directivity patterns occur at higher order harmonics where, because of the dipole directivity with a maximum on the propeller axis, the harmonic sound pressure levels near to the propeller axis show large increases. Figure 80 is a good example of this effect.

The present test data do not show any identifiable directivity pattern in the circumferential direction. Block [37] measured sound pressure levels at three angles relative to the plane of the airfoil, but the three locations were at different angles relative to the plane of rotation of the propeller. Consequently, it is not easy to construct a circurferential directivity pattern in that case.

The magnitude of the unsteady loading noise will depend on the strength of the inflow disturbances. For example, Schlinker and Amiet [33] placed the airfoil generating the vortex at angles of incidence of $0^{\circ}, 6^{\circ}$, and 12°. At an indicence of 0°, the airfoil caused an axial velocity defect, but there was a zero component for the vortex azimuthal velocity. The data of Schlinker and Amiet show that the sound levels increased when the vortex strength was increased, resulting in a 5 to 10 dB increase in harmonic sound level when the angle of incidence of the airfoil was
was increased from 0° to 12°. Block [32.37] also varied the strength of the inflow disturbance by varying the angle of attack of the essentialy two-dimensional airfoil upstream of the propeller. In that case, the angle of attack of the wake-producing airfoil was either 15° or 20.4° in order to generate a wake which had a thickness of either one or three propeller chords. Only small changes in harmonic sound pressure level wera observed when increasing the angle of attack from 15° to 20.4°, although the thicker wake did introduce more lower frequency content into the spectrum. Since the 15° angle was larger than the maximum angle used by Schlinker and Amiet it is possible that it had reached a stage of "diminishing returns".

In the present test the empennage surfaces were at a nominal angle of incidence of zero with the exception of runs 30 through 33 when the fuselige with a Y-tail was inclined at 5° to the tunnel flow. The effect of the change in angle of attack on harmonic sound pressure levels is shown in Figures 71-73 and 94. The most distinct change in harmonic sound pressure level is observed at microphone 9 (Figure $94(\mathrm{~b})$) where the average increase is 4.8 dB for harmonics of order $m \geq 4$ when the separation distance between empennage and propeller is approximately 11 gm , and 3.2 dB when the separation distance is 30 cm . At other locations, particularly in the neighborhood of the plane of rotation of the propeller, the harmonic sound pressure levels show much smaller increases with angle of incidence. This is to be expected, because of the directivity of the radiated noise due to unsteady loads on the propeller.

6.2 Prediction Procedures--Epirical

Prediction procedures for propeller noise can be divided into near and far-field regimes and, within each regime, into empirical and
analytical methods. Most of the procedures are applicable to tractor rather than pusher p:opellers, because most of past interest has been directed towards the design and operation of aircraft with tractor propellers. As a consequence there is little test data from pusher propellers and little experience in the validity of prediction procedures for pusher propellers.

Consider first, the empirical prediction procedures. Since these are totally dependent on test data from tractor propellers they are applicable to radiation directions close to the plane of rotation of the propellers, since it is in these directions that the maximum sound pressure levels occur. Far-field sound pressure levels are estimated in terms of unweighted or A-weighted sound levels, or Perceived Noise Level. Thus, SAE Aerospace Information Report AIR 1407 [42] calculates first the overall sound pressure level and then converts the result to Perceived Noise Level and A-weighted sound level. (This AIR is currently under revision by SAE). The procedure is in graphical form, but the equivalent equation for the overall sound pressure level is

$$
\begin{equation*}
O A S P L=86.0+15.4 \log P-10 \log \left(\frac{B^{2} D^{2} r^{2}}{N}\right)+38.1 M_{r} \tag{9}
\end{equation*}
$$

where P is the shaft power (kW), N the number of propellers, D the prouciler diameter (m), B the number of blades on each propeller, M_{r} the propeller tip rotational Mach number and r the distance (m) of the observer from the propeller. The equation represents the maximum sideline sound level, irrespective of the angle of radiation.

Other empirical prediction procedures in terms of the A-weighted sound level or A-weighted harmonic sound levels are discussed by Galloway and Wilby [43] and Galloway [44]. For light general aviation aircraft, Galloway initially developed a simple linear
regression line whose equation gave the maximum sideline A-weighted sound level $L_{a m}$

$$
\begin{equation*}
L_{a m}=146+240 \log M_{h}-20 \log r \tag{10}
\end{equation*}
$$

where M_{h} is the helical Mach number of the blade tip. In later work, this was revised to

$$
\begin{equation*}
L_{a m}=129.6+10 \log P+175 \log M_{h}-24 \log r \tag{11}
\end{equation*}
$$

For larger multi-engined aircraft, Galloway and Wilby [43] obtained a relationship

$$
\begin{equation*}
L_{a m}=103.2+10 \log (N P)+66 \log M_{h}-19.1 \log r \tag{12}
\end{equation*}
$$

Heller, et al, [45] derived an empirical prediction procedure for maximum unweighted sound levels for each harmonic of the blade passage frequency. The procedure can be written in the form

$$
\begin{equation*}
L_{m}(m)=C_{m}+10 \log \left[M_{h}^{n} P^{1.5}\right]-20 \log r \tag{13}
\end{equation*}
$$

where $n=1.57 m B-1.3$ and C_{m} is a constant dependent on harmonic order m. Equation (13) is applicable to small, single-engined general aviation aircraft. Galloway and Wilby [43] developed a somewhat similar calculation procedure for the maximum unweighted harmonic sound pressure leveis of larger aircraft

$$
\begin{equation*}
S P L(m)=C_{m}+10 \log (N P)+70 \log M_{h}-20 \log r \tag{14}
\end{equation*}
$$

Empirical prediction procedures for near field propeller noise [42.46] calculate the unweighted overall and harmonic sound pressure levels. The overall sound pressure level is given as a function of the rotational Mach number of the propeller tip,, but
the helical Mach number is used when estimating the relative values of the harmonic sound pressure levels. Comparisons of tie two methods [47] suggests that the SAE method [42] is the more accurate procedure for static operation of the propeller, but the method given by Ungar, et al [46], is the more accurate when there is forward motion of the airplane. The SAE method predicts higher sound levels for the higher order harmonics than does the other method and, to that extent, estimates spectral shapes which are more similar to those measured in the empennage tests.

Although the emphasis of the present test is placed on noise radiation from the propeller operating behind an empennage, it is of interest to compared test data for the propeller alone with predicted sound levels. The prediction procedure which is most appropriate is that given in Equation (13). In order to apply this procedure it is necessary to determine values for the tip helical Mach number and power of the propeller. For a propeller rpm of 8200 and a flow speed of $62.5 \mathrm{~m} / \mathrm{s}$ the tip helical Mach number is 0.77 . Measurements of the propeller thrust show a fairly wide variation in values for nominally identical conditions. From the test data an average value of 84.1 N (18.9 lb) has been used for present purposes.

The relationship between thrust T and power P is given by

$$
\zeta=T V / P
$$

where ζ is the propeller efficiency and V the forward speed of the airplane. Thus, it is necessary to estimate the efficiency. Assuming that the efficiency lies between 0.4 and 0.8 , a geometric mean value of 0.57 has been assumed. The resulting estimate for the average power of the propeller is 9.2 kW . This value of the

power is obviously much lower than the range of values associated with the development of Equation (13).

Finally, it is necessary to determine the appropriate values for C_{m} in Equation (13). Data of Heller, et al, show C_{m} varying with harmonic order m and number of blades B, with B having values of 2 or 3 ; in the present test $B=4$. In the absence of other evidence an average value of 105 was assumed for C_{m} for all m.

The resulting estimated values for the harmonic sound pressure levels associated with $8200 \mathrm{rpm}, 62.5 \mathrm{~m} / \mathrm{s}$ test conditions are plotted in Figure 97 where they are compared with test data for four measurement locations. The agreement is very good considering the uncertainties in the analysis. The largest discrepancy occurs at the fundamental ($m=1$) where the measured levels are lower than the predicted value. The reasons for this discrepancy have not been determined, but, since the acoustic treatment in the test chamber will be least effective at the lowest frequency, it is possible that there may be effects due to destructive interference between direct and reflected acoustic signals.

When A-weighted sound levels are computed from the model test data it is necessary to perform frequency scaling prior to the weighting so that equivalent full-scale levels can be obtained. This could be accomplished either from analysis of narrowband (harmonic sound levels) or one-third octave band spectra. In order to maintain the blade tip rotational or helical Mach number constant, frequency scaling should be performed on the basis of propeller diameter.

Use of the harmonic sound pressure levels in the calculation of A-weighted sound levels has the advantage that any concern that the broadband sound levels are not associated with the propeller

FIGURE 97. COMPARISON OF MEASURED AND PREDICTED SOUND PRESSURE LEVELS FOR PROPELLER OPERATING ALONE
can be overcome. Furthermore, it is often found that flyover noise levels of general aviation aircraft are dominated by propeller tones. Broadband noise can be included separately so that the relative contributions can be identified.

Since the empirical methods are all based on tractor propeller data they are of little use for a propeller in the wake of an empennage. It is possible that ad hoc adjustments could be incorporated, but it is not an appropriate approach for the present investigation. The alternative is to consider available analytical methods which have been developed in recent years.

6.3 Prediction Procedures--Analytical

Early analytical studies of propeller noise were restricted to uniform inflow conditions, but, more recently, attention has been directed towards effects such as inflow turbulence, wakes and counter-rotating propellers. It is this later work which is of specific interest to the present study. In this section atzention will be drawn to some of the published analytical studies. However, it is not possible to use the results of the studies to predict radiated sound levels for the test propeller without having information about the wakes behind the empennage.

Current analytical models are based on the acoustic analogy developed by Lighthill and Ffowcs Williams. The models can be divided into two groups, one of which utilizes the time domain and the other the frequency domain. The time domain approach is the more common method and has the advantage that it does not involve transcendental functions, but it does require the use of highspeed computers to perform the required numerical differentiation and integration. Also it has the disadvantage that it is difficult to establish the relative importance of different parameters
without performing extensive calculations involving parametric variations. Frequency domain analysis with its closed-form representations allows direct evaluation of the role played by different parameters. However, it has the disadvantage that the functions involved in the representations can become extremely complicated when the inflow is distorted. The time domain approach has been used by Farassat [48-51], Succi [50-51], and Woan and Gregorek [53]. The frequency approach used by Hanson [41,54,55] presents closed form results which demonstrate the roles of blade geometry and operating conditions. The frequency domain approach gives the harmonic sound pressure levels directly; the time domain approach gives harmonic sound levels after Fourier transformation.

The particular condition applicable to the present tests of a propeller operating in the wake of an empennage is that of a fixed distortion of the inflow (in contrast to a rotating distortion associated, for example, with counter-rotating propellers). Treatment of the fixed distortion case can be found in textbooks [56,57] as well as in published papers. A recent paper by Hanson [41] treats the fixed distortion problem as a special case of the counter-rotating propeller, but it can be addressed directly without considering counter-rotation $[55,58]$.

Depending on the analytical model selected, calculation of the radiated sound pressure levels will require detailed inputs for the aerodynamic inflow and the blade geometry. The procedure for NASA Aircraft Noise Prediction Program (ANOPP), which is based on the work of Farassat, is described by Zorumski [59]. This procedure was used by Block [39]; a computer-generated threedimensional display of the SR-2 blade used by Block [39] is shown in Figure 98. This is the blade used in the present study.

FIGURE 98. COMPUTER-GENERATED THREE-DIMENSIONAL DISPLAY OF SR-2 BLADE [39]

The model for the flow field used by Hanson $[41,55]$ is in the form of a compesite source function $g(\gamma, \xi, r)$ where, modifying Hanson's notation slightly [55],

$$
\begin{aligned}
g(\gamma, \xi, r)= & {\left[\rho_{0} U \frac{\partial^{2}}{\partial \gamma^{2}} h(\gamma, r)+\frac{\partial}{\partial \gamma} D(\gamma, r)+\frac{\partial}{\partial r} F_{r}(\gamma, r)\right] \delta(\xi+F A) } \\
& +\Delta P(\gamma, r) \delta^{\prime}(\xi+F A)+\frac{\partial^{2}}{\partial y_{i} \partial y_{j}} T_{i j}(\gamma, \xi, r)
\end{aligned}
$$

Here $U=$ relative velocity at source point
$\mathrm{h}=$ blade thickness
D = drag force per unit area
$F_{r}=$ radial force per unit area
$\Delta P=$ lift force per unit area
$T_{i j}=$ Lighthill's stress tensor
and (y, ξ, r) are the helicoidal source point coordinates. If this model is to be used for the present test configuration the measured flow field will have to be decomposed into terms of this type. A similar approach would be required for the time domain approach.

7. CONCLUSIONS

The data presented in this report have been subjected to only a brief evaluation and analysis, but several conclusions can be drawn. Obviously a fairly extensive analysis is required if full benefit is to be obtained from results. This analysis would incorporate aerodynamic data for the flow field entering the propeller disc and would make use of available analytical prediction procedures (either time or frequency domain) in order to compare the test data with theory.

The conclusions drawn from the present evaluation and analysis can be summarized as follows:
(a) Test data measured at several of the microphone locations show a fairly high variability which masks some of the trends associated with parametric changes. The reasons for their variability have not been determined, but may be caused, in part, by propagation through the turbulent shear flow and reflections in the test chamber. It may be possible, by judicious use of averaging techniques, to overcome some of the problems created by the data variability.
(b) Measured sound pressure levels at harmonics of the blade passage frequency are consistent with values predicted on the basis of existing empirical procedures, when the propeller is operated alone in the test section.
(c) The presence of the fuselage and its supports upstream of the propeller caused an increase in the harmonic sound pressure levels generated by the propellers, but the main increase occurred when the empennage was installed.
(d) The influence of the empennage on radiated harmonic sound pressure levels is greatest at locations nearest the
propeller axis and least near to the plane of rotation of the propeller.
(e) The presence of the empennage effects the sound levels of higher order harmonics (m greater than or equal to 4, approximately) more than it does the lower order harmonics.
(f) The harmonic pressure levels generally increase as axial separation distance between the empennage and propeller decreases. Also the harmonic levels increase with angle of incidence of the empennage. An increase in harmonic sound pressure level was observed when the propeller axis was moved below the Y-tail empennage centerline. This may be associated with flow effects from the tip of the ventral fin, but this explanation is only conjectural at this stage. Increases in propeller rpm resulted in increases in harmonic sound pressure level. The effect was more pronounced when the propeller was operating alone than when it was operating downstream of an empennage.
(h) When the propeller was operated at 8200 rpm , the broadband sound pressure levels at frequencies above about 1000 Hz were generally higher than the tunnel background noise levels. However, there was little or no further increase when the fuselage, with or without an empennage, was introduced upstream of the propeller. Thus, the empennage has only a negligible effect on the measured broadband sound pressure levels.

The present study has concentrated on far-field sound pressure levels with application to airplane flyover noise. However, the data indicate that the main changes in sound pressure level occur at locations close to the propeller axis. Thus, the effect on flyover sound pressure levels should be evaluated in terms of sideline as well as constant radius locations in order to adjust for the greater propagation distances from propeller to ground
associated with acoustic radiation angles closer to the propeller axis.

A second factor should also be considered. Since high sound levels radiated by a propeller behind an empennage can propagate forward along the fuselage sidewall, the influence of these sound levels on cabin interior noise should be evaluated.

REFERENCES

1. R. R. Tracy, "The Lear Fan: A Significant Step Toward Fuel Efficient Airplanes," AIAA paper 80-1860 (August 1980).
2. Anon., "Starship 1 and GP-180 Push to the Future," Flight International No. 3886, Vol.124, 1150-1151 (29 October 1983).
3. I. M. Goldsmith, "A Study to Define the Research and Technology Requirements for Advanced Turbo/Propfan Transport Aircraft," NASA CR-166138 (February 1981).
4. R. J. Pegg, B. Magliozzi, F. Farassat, "Some Measured and Calculated Effects of Forward Velocity on Propeller Noise," ASME Paper 77-GT-70 (December 1976).
5. I. J. Sharland, "Sources of Noise in Axial Fans," J. Sound and Vibration 1, 3, 302-322 (July 1964).
6. H. M. Fincher "Fan Noise--The effects of a Single Upstream Stator," J. Sound and Vibration 3, 1, 100-110 (January 1966).
7. C. L. Morfey, "A Review of the Sound Generating Mechanisms in Aircraft-Engine Fans and Compressors," Aerodynamic Noise, H. S. Ribner Editor, pp. 299-329, University of Toronto Press (1969).
8. M. J. T. Smith, M. E. House, "Internally Generated Noise from Gas Turbine Engines: Measurement and Prediction," J. Eng. Power: Trans. ASME (Series A) 89, 177-190 (April 1970).
9. M.V. Lowson, "Reduction of Compressor Noise Radiation," J. Acous. Soc. Amer. 43, 1, 37-50 (January 1968).
10. J. B. Large, J. F. Wilby, E. Grande, A. O. Andersson, "The Development of Engineering Practices in Jet, Compressor and Boundary Layer Noise," Aerodynamic Noise, H. S. Ribner, Editor, University of Toronto Press (1969).
11. R. E. Gorton, discussion following paper by M. J. T. Smith and M. E. House, Ref. 8., J. Eng. Power: Trans ASME (Series A), 89, 185-186 (April 1970).
12. M. V. Lowson, "Theoretical Studies of Compressor Noise," NASA CR-1287 (March 1969).
13. D. A. Hilton, H. R. Henderson, B. W. Lawton, "Ground Noise Measurements during Static and Flyby Operations of the Cessna 02-T Turbine Powered Airplane," NASA Working Paper LWP-760 (June 1969).
14. D. J. Maglieri, H. H. Hubbard, "Factors Affecting the Noise from Small Propeller Driven Aircraft," SAE Paper 750516 (April 1975).
15. J. F. Wilby, T. D. Scharton, "Evaluation of the NASA Ames \#l 7x10-Foot Wind Tunnel as an Acoustic Test Facility," NASA CR-137712 (June 1975).
16. J. H. Dittmar, B. J. Blaha, R. J. Jeracki, "Tone Noise of Three Supersonic Helical Tip Speed Propellers in a Wind Tunnel at 0.8 Mach Number," NASA TM-79046 (December 1978).
17. J. H. Dittmar, R. J. Jeracki, B. J. Blaha, "Tone Noise of Three Supersonic Tip Speed Propellers in a Winc. Tunnel," NASA TM-79167 (June 1979).
18. J. H. Dittmar, "A Comparison between an Existing Propeller Noise Theory and Wind Tunnel Data," NASA TM-81519 (May 1980).
19. J. F. Wilby, E. G. Wilby, "A Comparison of Measured Takenoff and Flyover Sound Levels for Several General Aviation Propeller Driven Aircraft," BBN Report 5450 (November 1983).
20. R. K. Amiet, "Correction of Open Jet Wind Tunnel Measurements for Shear Layer Refraction," AIAA Paper 75-532 (March 1975).
21. R. K. Amiet, "Refraction of Sound by a Shear Layer," AIAA Paper 77-54 (January 1977).
22. R. H. Schlinker, R. K. Amiet, "Refraction of Sound by a Shear Layer--Experimental Assessment.," AIAA Paper 79-0628 (March 1979).
23. J-F de Bellaval, M. Perulli, S. M. Caudel, A. Julienne, "Analysis of Problems Posed by Simulation of Flight Effects in Anechoic Open Wind Tunnels," AIAA Paper 76-533 (July 1976).
24.

C. L. Morfey, B. J. Tester, "Noise Measurement in a Free-Jet, Flight Simulation Facility: Shear Layer Refraction and Facility-to-Flight Corrections," AIAA Paper 76-531 (July 1976).
25. W. M. Herkes, F. G. Strout, R. Ross, "Acoustic Evaluation of DNW Free Jet Shear Layer Correction using a Model Jet," AIAA Paper 83-0757 (April 1983).
26. R. Ross, "Spectral Broadening Effects in Open Wind Tunnels in Relation to Noise Assessment," AIAA Journal 19, 5, 567-572 (May 1981).
27. R. Ross, K. J. Young, R. M. Allen, J. C. A. van Ditshuizen, "Acoustic Wave Propagation through the Shear Layer of the DNW Large Open Jet Wind Tunnel," AIAA Paper 83-0699 (April 1983).
28. A. Guedel, "Scattering of an Acoustic Field by a Free-Jet Shear Layer," AIAA Paper 83-0698 (April 1983).
29. W. J. G. Trebble, J. Williams, R. P. Donnelly, "Comparative Acoustic Wind-Tunnel Measurements and Theoretical Correlations on Subsonic Aircraft Propellers at Full-Scale and Model Scale," Royal Aircraft Establishment (UK) Tech. Memo. Aero 1909 (July 1981). Also AIAA Paper 81-200 (October 1981).
30. H. K. Tanna, R. H. Burrin, H. E. Plumblee, Jr., "Installation Effects on Propeller Noise," J. Aircraft 18, 4, 305 (April 1981).
31. R. H. Burrin, M. Salikuddin, "Sources of Installed Turboprop Noise," AIAA Paper 83-0744 (April 1983).
32. S. E. Wright, "Spectral Trends in Rotor Noise Generation," AIAA Fapei 73-1033 (October 1973).
33. R. H. Schlinker, R. K. Amiet, "Rotor-Vortex Interaction Noise," AIAA Paper 83-0720 (April 1983).
34. G. J. Jonkouski, W. C. Horne, P. T. Soderman, "The Acoustic Response of a Propeller Subjected to Gusts Incident from Various Inflow Angles," AIAA Paper 83-0692 (April 1983).
35. P. J. W. Block, R. M. Martin, "Results from Performance and Noise Tests of Model Scale Propellers," SAE Paper 830730 (April 1983).
36. P. J. W. Block, "Noise Generated by a Propeller in a Wake," NASA Technical Memorandum 85794 (May 1984).
37. P. J. W. Block, "Analysis of Noise Measured from a Propeller in a Wake," NASA Technical Paper 2358 (November 1984).
38. S. L. Padula, P. J. W. Block, "Predicted Changes in Advance of Turboprop Noise with Shaft Angle of Attack," AIAA Paper 84-2347 (October 1984).
39. P. J. W. Block, "The Effects of Installation on Single- and Counter-Rotation Propeiler Noise," AIAA Paper 84-2263 (October 1984).
40. K. D. Korkan, C. C. Cornell, J. Camba III, "Experimental Study of Noise Generated by Counter-Rotating Propeller Systems," AIAA Paper 84-2264 (October 1985).
41. D. B. Hanson, "Noise of Counter Rotation Propellers," AIAA Paper 84-2305 (October 1985).
42. Anon., "Prediction Procedure for Near Field and Far Field Propeller Noise," SAE Aerospace Information Report AIR 1407 (May 1977, currently under revision).
43. W. J. Galloway, J. F. Wilby, "Noise Abatement Technology Options for Conventional Turboprop Airplanes," FAA-EE-80-19 (1980).
44. W. J. Galloway, "Review of Empirical Procedures for Predicting Sound Levels Produced on the Ground by Propeller-Driven Small Airplanes in Flight," BBN Report 5055 (August 1982).
45. H. H. Heller, M. Kallergis, M. Alswede, W. M. Dobrzynski, "Rotational- and Vortex-Noise of Propellers in the 100-150 kW Class," AIAA Paper 79-0611 (March 1979).
46. E. E. Ungar, J. F. Wilby, D. B. Bliss, "A Guide for Estimation of Aeroacoustic Loads on Flight Vehicle Structures," AFFDL-TR-76-91 Vol 1. (Feburary 1977).
47. C. K. Barton, J. S. Mixson, "Characteristics of Propeller Noise on an Aircraft Fuselage," J. Aircraft 18, 3, 200-205 (March 1981).
48. F. Farassat, T. J. Brown, "A New Capability for Predicting Helicopter Rotor and Propeller Noise including the Effect of Forward Motion," NASA TM X-74037 (June 1977).
49. F. Farassat, "Advanced Theoretical Treatment of Propeller Noise," Von Karman Institute for Fluid Dynamics Lecture Series 1982-08, Propeller Performance and Noise, Belgium (May 1982).
50. F. Farassat, G. P. Succi, "A Review of Propeller Noise Prediction Technology with Emphasis on Two Current Methods for Time Domain Calculations," Journal Sound and Vibration, 71, 3, 399-419 (August 1980).
51. F. Farassat, "Linear Acoustic Formulas for Calculation of Rotating Blade Noise," AIAA Journal, 19, 9, 1122-1130 (September 1981).
52. G. P. Succi, "Design of Quiet Efficient Propellers," SAE Paper 790584 (April 1979).
53. C. J. Woan, G. M. Gregorek, "The Exact Numerical Calculation of Propeller Noise," AIAA Paper 78-1122 (July 1978).
54. D. B. Hanson, "Influence of Propeller Design Parameters on Far-Field Harmonic Noise in Forward Flight," AIAA Journal, 18, 11, 1313-1319 (November 1980). See also AIAA Paper 79-0609 (March 1979).
55. D. B. Hanson, "Compressible Helicoidal Surface Theory for Propeller Aerodynamics and Noise," AIAA Journal 21, 6, 881-889 (June 1983).
56. P. M. Morse, K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York (1968).
57. M. E. Goldstein, Aeroacoustics, McGraw-Hill, New York (1976). See also NASA SP-346 (1974).
58. J. B. H. M. Schulten, "Aeroacoustics of Wide-Chord Propellers in Non-Axisymmetric Flow," AIAA Paper 84-2304 (October 1984).
59. W. E. Zorumski, "Propeller Noise Prediction," NASA Technical Memorandum 85636 (May 1983).

APPENDIX A

HP87 Computer Programs

This appendix presents listings, sample outputs and brief discussion of computer programs used during reduction of the test data.
Page
A. 1 SHEARSCALE 201
A. 2 GENRAD3 204
A. 3 CEDAR2. 212
A. 4 HARMPLOT2 222
A. 5 NBSPECTRA2 230
A. 6 PINEVERT. 234
A. 7 PINEHOR 242

A. 1 Program SHEARSCNLE

The corrected pressures and angles due to the presence of a shear layer are calculated using Amiet's method [20]. These corrections are independent of frequency.

Input required:

Microphone Number
Angle (degrees)
Radial distance (feet) from source to microphone Distance (Feet) from source to shear layer

The convention for microphone angles is

$$
\begin{aligned}
0^{\circ} & =\text { upstream } \\
90^{\circ} & =\text { port side }
\end{aligned}
$$

Output:

> Corrected angle (in degrees)
> Shear Layer Correction (dB), to be added to measured pressure spectrum levels

The corrected pressures and angles are entered and stored in the programs GENRAD3 and CEDAR2, for the two Mach numbers used in the current test.


```
600 P1=(SIN(TH) +2ETA*(Y1/H-1))^O.5*H/(R*2ETA*2*SIN(TH))
610 F2=(SIN(TH)^3+(Y1/H-1)*2ETA`3)^0.5
620 P3=(M^2*(1-M*COS(TH))2+(1-M`2*(COS(TH))^2))^.5/(2.0*SIN(TH))
630 P4=2ETA+SIN(TH)*(1-M*COS(TH))^2
640 PBPM=P1*P2*P3*P4
650 DELDE=20*LOG (PBPM)/LDG (10)
660 IF THETA<180 THEN THETAP=180-THETAP/DEG
670 IF THETA>180 THEN THETAP=180+THETAP/DEG
680 REM
690 PRINT#2 USING E$;MC.R.H.THETA,THETAP,DELDE
700 INPUT" ANY MORE MICS? (Y/N) ":G.s
710 IF A$="Y" THEN GOTO 370
712 INPUT" ANY MDRE MACH NUMBERS ? (Y/N)":C$
714 IF C$= "Y" THEN GOTO 230
720 PRINT" END OF PROGRAM"
730 STOF
ORIGHAL PACE PS OF. POOR QUALITY
```

SHEAR LAYER CORRECTIONS USING AMIET'S METHOD

MIC No	RADIAL DISTANCE	SHEAR LAYER DISTANCE	UNCORRECTED ANGLE	CORRECTED AiNGL.E	SHEAR LAYER CORFECTIDN (dE)
1	14.00	5.00	$+60.00$	+65.93	$+0.81$
2	14.00	5.00	$+70.00$	+ 75.53	$+0.59$
3	14.00	5.00	$+80.00$	+ 85. 21	$+0.37$
4	14.00	5.00	$+90.00$	$+94.97$	$+0.13$
5	14.00	5.00	$+105.00$	$+199.70$	-0.22
6	14.00	5.00	+120.00	+124.61	-0.52
10	7.92	5.00	$+290.00$	+286.91	$+0.46$
11	14.00	4.04	$+90.00$	$+95.52$	$+0.12$
12	14.00	5.77	$+90.00$	$+94.60$	$+0.13$
13	7.58	5.00	+270.00	+207.33	$+0.13$

SHEAR LAYER CORRECTIONS USING AMIET'S METHOD
MACH NUMEER $=.183$

MIC. No	RADIAL DISTANCE	SHEAR LAYER DISTANCE	UNCORRECTED ANGLE	CORRECTED ANGLE	SHEAR LAYER CORRECTICIN (dE)
1	14.00	5.00	$+60.00$	+68.48	$+1.19$
2	14.00	5.00	$+70.00$	$+77.79$	$+0.89$
3	14.00	5.00	+ 80.00	$+87.23$	$+0.57$
4	14.00	5.00	$+90.00$	$+96.80$	$+0.25$
5	14.00	5.00	+105.00	+111.21	-0.24
6	14.00	5.00	$+120.00$	+126.06	-0.64
10	7.92	5.00	+290.00	+285.62	$+0.71$
11	14.00	4.04	$+90.00$	+ 97.53	$+0.23$
12	14.00	5.77	+ 90.00	$+96.30$	$+0.25$
13	7.58	5.00	+270.00	+266.33	$+0.25$

A. 2 Progran GHIRAD3

A flow chart for program GENRAD3 is given in Figure A.l. The one-third octave band average pressure spectrum is formed on the GR1995 and transferred to the HP87 by the program. There is an option for the spectrum levels to be corrected for shear layer and normalized to a distance of 4.3 m (14 feet). The correction data is stored for Mach numbers 0, 0.13 and 0.18 only. The spectra may be stored on disc, either in uncorrected or corrected form, for future retrieval.

Since the model is not full scale, an A-weighted spectrum level calculated directly from the model measurements will have no meaning full scale. Thus, a scale factor is input, representing the fullscale/model size ratio, which must be in the range 1 to 10. This is used to shift the spectrum down in frequency for the calculation of the scaled A-level. For example, a scale factor of 2 shifts the spectrum down by 3 one-third octave bands.

Input required:
Scale factor (in the range 1 to 10)
Run Number
Data Point
Microphone Number
Microphone Gain, relative to calibration signal
Wind speed (ft/sec)

Outputs (as selected):
Plot of spectrum
Listing of spectrum, overall SPL, A-level and scaled
A-level
Spectra stored on disk using the file names Uncorrected: RT Run No - Data Pt - Mic. No. Corrected: CT Run No - Data Pt - Mic No.

FIGURE A. 1 FLOW CHART FOR PROGRAM GENDRAD 3
-205-


```
570 FOF I=: T0 is
CO
byo
60
6:0
620
63! FOR I=1 TO !!
632
633
534 FDR I=1 TO i!
35 READ Factor(1)
636 NEXT
37 FOR I=1 TC 23
E38 READ Awelgint (I)
59 NEX? I
640 RESTORE
6 5 0
6 6 0
670
630
685
0}3
69
693
694
6 9 5
696
6 9 7
6 9 8
699
    READ Corr(I.j)
```



```
OE POOR QUALITY
    NEX:
        I
    FOR I=: TC 30
    READ Freq(!)
    NEX: :
NEXT I
    NENT i TC 23
        UUSER INPUTS
        EAR.
        LINPU: "INPUT DATE", jour5
    SP
#NED =DR SCALED A-LEVEL"
DIS: "Factor shoulo de ir. the Range i tc 'C"
INPUT ScaleF
Tobsh1fr=0
IF ScaleF)Factor(I) THEN GOTO 700
Tobshift=Shift(i)
GOTO 7:O
NEXT I
    IF ScajeF)Factor(:1) THEN Tobsrif:=10
    PRINT "SET UP ANL INTEGRATE SIGNAL INTC THE GENRAD"
    DISP " "
    DISP "."
    DISF "INPUT RUN NUMBER"
    INPUT RI:
    DISP "INPUT DATA POINT"
    INPU DO
    DISP " "
    DISP "TNPUT MIC NUMBER"
    INDUT MIC
    DISP "*
    DISP "INPUT MIC GAIN RELATI'VE TO CALIERATION"
    INPUT Gasn
    DISp "."
    OISP "INPUT WIND SPEED (f/s)"
    INPHT :'..
    DISP "
    Flog=i
    DIS\tilde{ "TRANSFERE IS STARTING"}
    RESET ?
        ! THIS COMMAND TELLS THE GR TO SFID THE BINARY DATA
        OUTPUT 720 USING "#.K" : "L5"
        SEND }7\mathrm{ : MTA MLA UNT TALK 2%
    THIS COMMAND ENTERS THE DAIA INTO THE T ARRAY AS DECIMAL NUMBERS
        FTR I=: TO 33
        ENTEF 7 USING "o.*&" : T(!)
        NEXT:
```



```
.590
+595
.500
600
1610
.12
1614
1616
-620
1621
1530
1640
\(1 \in 50\)
1660
\(!570\)
157!
1680
:690
1700
1710
172C
1730
1740
\(: 750\)
1760
1770
1780
.790
1900
1810
' 820
1840
1850
1860
1870
1371
\(188:\)
! 882
1890
1900
96
920
92 !
1930
-940
1950
1560
1970
1989
GAIt.
```

1830 Thetac=ianoie(IM.IU)

```
1830 Thetac=ianoie(IM.IU)
2100 MPBE: USIVG "K,X,K,X" : "RUN ":RN:" DATA POINT ":DD:" MIC":MIC:"
2100 MPBE: USIVG "K,X,K,X" : "RUN ":RN:" DATA POINT ":DD:" MIC":MIC:"
```

 IF Flog=: THEY GOTO !920
    ```
        IF Flog=: THEY GOTO !920
        G0TC 9 670
        G0TC 9 670
        PRIN` "RAN DATA RRE BEING SAVED IN F?!E RT-RUN-POINT-MIC"
        PRIN` "RAN DATA RRE BEING SAVED IN F?!E RT-RUN-POINT-MIC"
        DISF *"*
        DISF *"*
    Fides="RT"aVALS (Rn)a"-"aVALS (Do)&"-"aVALS (MIC)
    Fides="RT"aVALS (Rn)a"-"aVALS (Do)&"-"aVALS (MIC)
MASS STORAGE IS ":D701"
MASS STORAGE IS ":D701"
CREATE ELIes.3
CREATE ELIes.3
ASSIGNE TS FileS
ASSIGNE TS FileS
    PRINT: 1 : OverailaS,0a.OverallfS.0f.0
    PRINT: 1 : OverailaS,0a.OverallfS.0f.0
    ievel(1)=Ascaled
    ievel(1)=Ascaled
        FOR :=: TO 33
        FOR :=: TO 33
        PRINT: : : Band(I).Level(I)
        PRINT: : : Band(I).Level(I)
        NEXT I
        NEXT I
        ASSIGRA i TO -
        ASSIGRA i TO -
    LINPUT "DO YOU WANT TO CORRECT THE DATA FOR SHEAR LAYER EFFECTS ?",A1S
    LINPUT "DO YOU WANT TO CORRECT THE DATA FOR SHEAR LAYER EFFECTS ?",A1S
    IF AIS= "N" THEN GOTO 1026
    IF AIS= "N" THEN GOTO 1026
    IM=0
    IM=0
    FDR I=1 T0 13
    FDR I=1 T0 13
    IF Mic<> MicNo(I) THEN GOTO 1740
    IF Mic<> MicNo(I) THEN GOTO 1740
    IN-I
    IN-I
    G070,750
    G070,750
    NEX: I
    NEX: I
        Theta-Cangie(IM.!)
        Theta-Cangie(IM.!)
    Therac=ineta
    Therac=ineta
        Flog=:
        Flog=:
    IVI=C
    IVI=C
    OOR =-2 i0 4
    OOR =-2 i0 4
    IF U《> Speed(I) THEN GOTD 1820
    IF U《> Speed(I) THEN GOTD 1820
    IN=I
    IN=I
    NEX I
    NEX I
    FOR J=: T0 SS
    FOR J=: T0 SS
    C(:)=Corr(IM.IU)
    C(:)=Corr(IM.IU)
    Level(I)=_evel(I)+C(1)
    Level(I)=_evel(I)+C(1)
    NEXT I
    NEXT I
    Ascaled-Asca!ed+C(1)
    Ascaled-Asca!ed+C(1)
    Oa=0a+C(1)
    Oa=0a+C(1)
    0f-0f+i(1)
    0f-0f+i(1)
        G070 127%
        G070 127%
    ,GOTO \2つ
    ,GOTO \2つ
        DLO-TEN
        DLO-TEN
    PLOTTER IS 705
    PLOTTER IS 705
    GRAPH:ICS
    GRAPH:ICS
    LIMIT 20.200.20.185
    LIMIT 20.200.20.185
    LCCATE 20.100.20.87
    LCCATE 20.100.20.87
        LABEL THE DLDT
        LABEL THE DLDT
    CSIZE 2.7
    CSIZE 2.7
    LDPG5
    LDPG5
    MOVE 70.99
    MOVE 70.99
    LABEL USING "K" : "PUSHER PROP חATA TEST 706 ",jourS
    LABEL USING "K" : "PUSHER PROP חATA TEST 706 ",jourS
    MOVE 64.94
    MOVE 64.94
    IF FiOg:i THEN GITO 208O
    IF FiOg:i THEN GITO 208O
    LABEL USING "K" : "RAW 1/3-GCTAVE BAND SPECTRUM FROM 'GENRAD'"
    LABEL USING "K" : "RAW 1/3-GCTAVE BAND SPECTRUM FROM 'GENRAD'"
    MOVE 6.4.94
    MOVE 6.4.94
    6070 2090
    6070 2090
    LABEL USING "K" : "CORRECTED 1/3-OCTAVE BAND SPECTRUM FROM GENRAD* "
    LABEL USING "K" : "CORRECTED 1/3-OCTAVE BAND SPECTRUM FROM GENRAD* "
    HOVE 5E.89
    HOVE 5E.89
    :Ga!T
    :Ga!T
    OKG%!
    OKG%!
    CSIZE 2.4
    CSIZE 2.4
    SCALE 0.30.60.120
    SCALE 0.30.60.120
    AXESO.i0.6.65.0.1
```

 AXESO.i0.6.65.0.1
    ```
```

$2: 50$
$2!60$
$2: 70$
LABEL THE AXES OF THE P! GT
Y AXIS
FOK I-60 TO 120 STEP 10
MDVE -2.I-?
LABEL USING "K.X": I
NEXT
MOVE -5.8.85
LABEL USING " 1 " : "LD. dB"
X AXIS
CSILE 3.2
MOUE 4.57
FOR I=3 TC 30 STEP 3
MOUE I-1.57
$\triangle A D E L$ LSING " K, X " : Frea(I)
NEXT
CSIZE 2.4
MOUE $10.5^{\text {. }}$
LABEL USING "K" : "i/3 D.B. FREQUENCY. HZ"
GRAPH THE SPL'S
FOR $I=1$ TO 30
IF :evel $(I+3)<60$ THEN GOTS 2450
CLIF I-1.I.60.Level(I+3)
FRAME
NEX -
UNCLIP
MOVE 2.5.60
DRAW 2.5.50.5
FOR $I=1$ TO 9 ! PIJT TICKS ON X AXIS
MOVE 2.5+I*3.60
DKAW 2.5+I*3.EO.5
NEXT I
PEN !
ALPHA
PRINTER IS :
${ }^{\text {DTS }}$ TSP.
IF Fiog=0 THEN GOTO 2700
INPL'T "DO YOU WANT TÖ SAVE THE CORRECTED DATA IN A FILE $7(Y / N) "$. A2S
IF A2S" "N" THEN GOTO 2700
MASS STORAGE IS ":D701"
Oftles="Cr"dVALE (Rn)s"-"dVALS (DF)e"-"dVALS (M1C)
CREATE Of:ies. 3
ASSIGNE 3 TO Of les
DISF"" ""
PRINT "(A-WEIGHT AND DUERAEING SAVED IN D70 AS": Of
PRINT "."
PRINT: 3 : Overallas.Oa.Overallfs. Of. Li
Level(1)=Ascaled
FOR $I=1-732$
PRINT: 3 : Band (I). Levei(I)
HEXT I
ASSIGN $=3$ TO
LINPUT "ANY MORE MICS ?". $31 \$$
DISP
IF Q!S="Y" THEN GOTC 710
MASS STORAGE IS ":D/OO"
REMDTE 720
RESE: 7
PRINT "PROGRAM END"
ENS.

```



\section*{A. 3 Progran crdar2}

A flow chart for program CEDAR2 is given in Figure A.2. The averaged narrowband spectrum is formed on the HP4520, with the harmonics indicated by the cursor, and is tranferred to the HP87 by the program. There is an option for the spectrum levels to be corrected for shear layer and normalized to a distance of 4.3 m (14 feet). The correction data is stored in the program for Mach numbers \(0,0.13\) and 0.18 only. The spectra and harmonic levels may be stored on disk, either in uncorrected or corrected form, for future retrieval.

Input required:
Run Number
Data Point
Microphone Number
Microphone Gain, relative to calibration signal
Wind Speed (ft/sec)
Propeller rpm
Propeller angle, \(\beta\) (degrees)
Separation distance, \(X(i n c h e s)\), between propeller and empennage

Output (as selected):
Plot of spectrum
Listing of harmonic frequencies and levels
Spectra and harmonics stored on disk using the file names
Uncorrected: RH Run No - Data Pt - Mic No
Corrected: CH Run No - Data Pt - Mic No


FIGURE A. 2 FLOW CHART FOR PROGRAM CEDAR 2
```

! FRQGRAM CEDAR2 PLOTS FROP/EMPENNAGF INTERAC.TION NOISE SPECTRA
THE HP87 IS THE CONTROLLER AND THE 5420B IS THE SIGNAL ANALYZER
! THE RAW DATA ARE SAVED IN DATA FILES ON: DISC D701
THE DATA ARE CORRECTED FOR SHEAR LAYER MODIFICATION OF LEVEL AND ANGLE
FROM DATA FILES ON DISC D700 GENERATED FROM `SPRUCE
ROUNDS OFF U TO 2 DECIMAL PL.ACES
PAUL SODERMAN-LISA LEE 4/17/84 HP87
THIS PROGRAM USES INTERRUPTS
!
OFTION BASE I
CLEAR
DIM C(30),H(9),D(1024),Hfreq(50), Harm(50), Arr(5,2), Brr(16,2), Crr(32)
DIM Micno(13),0(4).Speed(4),Refdist(4), Cangle(13,4). Corr(13,4),Dist(13)
COM A(1050),B(530), Freq(530)
IMAGE D.8DE
SHEAR LAYER AND DISTANCE CORRECTIONS
! FOR MICROPHONE NUMBERS
DATA 1,2,3,4,5,6,7,8,9,10,11,12,13
! AT MICROPHONE RADIAL DISTANCES
DATA 14,14,14.14.14,14,4.5,4.5,8,7.92,14,14.7.58
! CDRRECTIONS FOR O=0,U=0,NO DISTANCE CORRECTION
UNCORRECTED ANGLES AND ZERO CORRECTIONS
DATA 0.0.0
DATA 60.70.80.90.105.120.105.i40.95.290,90,90.270
DATA 0.0.0.0.0,0,0,0,0.0.0.0.0
! CORRECTIONS FOR Q=0.U=0.REF DISTANCE=14 feet
! UNCORRECTED ANGLES AND DISTANCE CORRECTIONS ONLY
DATA 0.0.14
DATA 60,70.80.90.105,120.105,140.15.290.90,90.270
DATA 0,0,0,0,0.0.-9.9,-9.9,-4.9.-4.9.0.0.-5.3
! CORRECTIONS FOR Q=27.U=150.REF DISTANCE=14 feet
! CORRECTED ANGLES AND SHEAR/DISTANCE CORRECTIONS
DATA 27.150.14
DATA 65.9,75.5.85.2,95.109.7.124.6,105.140,15,286.9.95.5,94.6,267.3
DATA .8,.6,.4,.1,-.2,-.5,-9.9,-9.9,-4.9.-4.4..1..1.-5.2
! CORRECTIONS FOR 0=50.U=205.REF DISTANCE=14 feet
CORRECTED ANGLES AND SHEAR/DISTANCE CORRECTIONS
DATA 50.205,14
DATA 68.5.77.8.87.2.96.8.111.2.126.1 105,140.15.285.6.97.5,96.3,266.3
DATA 1.2,.9,.6,.2.-.2,-.6.-9.9,-9.9.-4.9.-4.2..2..2.-5.1
! THESE CORRECTIONS MUST BE ADDED TO THE SPECTRUM LEVELS
!
DISP " SETTING UP CORRECTION MATRICES "
FOR I=1 TO 13
READ Micno(I)
NEXT I
FOR I=1 TO 13
READ Dist(I)
NEXT I
FOR J=1 TD 4
READ Q(J),Speed(J),Refdist(J)
FOR I=1 TO 13
READ Cangle(I.J)
NEXT I
FOR I=1 TO 13
READ Corr(I.J)
NEXT I
NEXT {
RESTORE
FDR I=1 TO 2
FOR J=1 TO 5
Arr(J.I)=0
NEXT J
FOR J=1 TO 16

```
0
```

 Brr(J,I)=0
 NEXT J
 NEXT I
 FOR I=1 TO 32
 Crr(I)=0
 NEXT I
 FOR I=1 TO 21
 Hfrea(I)=0
 Harm(I)=0
 NEXT I
 DISP * ..
 PRINT "THIS PROGRAM DESIGNED FOR HIGH RESOLUTION AUTO-SPECTRUM ANALYSIS O
 20 USING LOG MAG FORMAT. HITH SINUSOIDAI. HINDOW"
 OISP.
 !
 Maxs=120
 PRINT " MAXIMUM SPECTRUM LEVEL PLOTTED IS " "axs:"dB"
 LINPUT "DD YOU WISH TO CHANGE THIS?".ASS
 IF A9S= "N" THEN GOTO }87
 DISP "INPUT MAXIMUM SPECTRUM LEVEL FOR PLOT IN dB"
 INPUT Maxs
 Mins=Maxs-70
 DISP
 PRINT "THIS PROGRAM WILL SAVE RAW AND/OR CORRECTED DATA ON DISC"
 LINPUT "DO YOU WANT TO SAUE AND PLCT ONLY CDRRECTED DATA ?",P2S
 IF P2S="Y" THEN A1S="N"
 IF P2S="Y" THEN A2S="Y"
 DISP " "
 RESET }
 REMOTE 704
 OUTPUT 704 :"1FM" ! SINGLE SCREEN FIRMAT FOR 5420
 OUTPUT 704 :"1TC" ! TRACE A IS ACTIVE
 !
 DISP " "
 DISP "INPUT RUN NUMBER" ! USER INPUTS
 INPUT Rn
 DISP "INPUT DATA POINT"
 INPUT Dp
 DISP "INPUT MIC NUMBER"
 INPUT Mc
 DISP "INPUT MIC GAIN RELATIVE TD CALIBRATION"
 INPUT Ga!n
 DISP "INPUT WIND SPEED (f/s)"
 INPUT U
 !
 PRINT "THE FOLLOWING PARAMETERS ARF ONLY REOUIRED FOR TITLES"
 DISP "INPUT PROP RPM"
 INPUT Rpm
 DISP "INPUT BETA IN Degrees"
 INPUT Beta
 DISP "INPUT SEPARATION X IN Inches"
 INPUT Sepx
 !
 DISP "" ."
 PRINT " CAPTURE PROPER DATA RECDRD JN 5420" ! SET UP 5420 CH i
 PRINT " AFTER CAPTURE HIT 'CONTINUF' ON HP87 (Ch I IS ACTIVE)"
 DISP " "
 PAUSE
 !
 REMOTE }70
 ON INTR 7 GOSUB Srq ! INTERRIJPT FROM 5420
 ENABLE INTR 7:8
 S=0
 OUTPUT 704 :"401SA" ! REQUEST ASCII SAVE OF Ch I DATA TRACE TO HP87
 IF S<> 96 THEN 1300 ! WAIT FOR SAVE TO START AND COMPLETE
 ! OUTPUT }704\mathrm{ CAUSES INTERRUPT #7
    ```

1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460 Range \(=\) Delf*(Nlines-1)
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
- 765

1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
E \({ }^{\prime \prime}\).
1870
1880
1890
1900
1910
1920
1930
1940
1950
    \(K=0\)
    FOR I=17 TO Fin
    \(K=K+1\)
    \(B(K)=10\) LGT (A(I))-Gain
    NEXT I
    Nlines=K
    \(!\)
    Delf=A(13)
    Range=Delf*(N1 1 nes-1)
    DISP " "
    PAUSE
    ENABLE INTR 7:8
    \(\mathrm{S}=0\)
    IF S<> 100 THEN 1520
    Nharm=T/2
    IF Nharm>25 THEN Nharm-25
    FOR I=1 TO Nharm
    Hfreq(I) \(=D(2-I-1)\)
    \(\operatorname{Harm}(I)=D(2=I)-G a 1 n\)
    NEXT I
    IM=O
    FOR I=1 TC 13
    IF Mc<> Macno(I) THEN GOTO 1660
    \(I M=I\)
    GOTO 1670
    NEXT I
    Theta=Cangle(IM.1)
    Thetac=Theta
    !
    DISP " "
    CS="N"
    Nharmc \(=0\)
    Flog=1
    IF P2\$ \(=\) " \({ }^{\prime \prime}\) " THEN GOTO 1840
        IF A1 \(\$=\) " \(N\) " THEN GOTO. 1860
    A4Se"N"
    DISP " "
    DISP " "
    !
    DISP " "
    IF P2\$" "Y" THEN GOTO 1980
    IF A2\$="N" THEN GOTO 2200
    GOTD 1980
    DISP " "
\(!\) CONVERT FROM WATTS TO DB, AND AD JUST FOR GAIN
    PRINT "TRANSFER COMPLETE. ADJUSTING FOR GAIN"
    PRINT " SET UP CURSOR AND HARMONICS ON 5420"
    SETIING UP FREQUENCY INFORMATION
    PRINT "AFTER HARMONICS ARE SET UP. HIT 'CONTINUE' ON HP87"
    OUTPUT 704 :"'0.1PRPR" ! REQUEST ASCII DATA TRANSFER
    PRINT "SETTING UP HARMONIC MATRICES"
    PRINT "NUMBER DF HARMONICS ": Nharm
        LINPUT "DO YOU WANT TO SAVE THE RAW DATA IN A DATA FILE ?", AIS
    PRINT "SPECTRUM IS BEING SAVED ON D701 AS RAWS='RH'-RUN-POINT-MIC"
    GOSUB Spectra ! SAVE RAW DATA ON DJSC D701
    ! CAT ":D701" !LISTS FILES WITH NEW ONE ADDED
    LINPUT "DO YOU WANT TO CORRECT THE DATA FOR SHEAR LAYER EFFECTS \& DISTANC \(]\)
    ! OUTPUT 794 : "2FM" ! SPLIT SCREEN
    ! DUTPUT 704 :"2TCLM" : MAKE LOWER TRACE ACTIVE
    DISP "CORRECTION FACTORS ARE STORED FOR WIND SPEEDS 0.150 AND 205 ONLY"
    DISP "AND FOR A DISTANCE OF 14 FEE
    DISP "INPUT NIND SPEED (f/s)"
INPUT U
DISP "CORRECTION FOR SHEAR LAYER AND DISTANCE IS SELECTED"
IU=0
FOR I=2 TO 4
IF U<> Speed(I) THEN GOTO 2040
IU-I
GOTO 2050
NEXT I 
PRINT "CORRECTION FILE PARAMETERS ARE: MIC "":MIcno(IM);"U=";Speed(IU)
LINPUT "IS THIS CDRRECT?".A7S
    IF A7S-"N" THEN GOTO 1930
    Thetac=Cangle(IM, IU)
    Dbcorr=Corr(IM,IU)
    FOR I=1 TO Nlines
    B(I)=B(I)+Dbcorr
    NEXT I
    FOR I=1 TO Nharm
    Harm(I)=Harm(I )+Dbcorr
    NEXT I
    !
    ! OUTPUT 704 :"40IRA" ! SEND CORRECTED DATA BACK TO THE 5420 LOWER TRACE
    ! IF S<> 112 THEN 1340
    DISP "*
    LINPUT "DO YOU WANT TO PLOT THE RESULTS?"',A3S
    IF A3S="N" THEN GOTO 2250
    !
    GOSUB Plotting ! PLOT RESULTS
    !
    LINPUT " DO YOU WANT TO LIST THE HARMONICS ON THE PRINTER?".A8S
    IF A8S="N" THEN GOTD 2300
    GOSUB Printing ! PRINT HARMONICS
    LINPUT " DO YOU WANT TO SRVE THE CORRECTED DATA IN A FILE ? (Y/N)".A4S
    IF A4S="N" THEN GDTD 2390
    PRINT " CORRECTED FILE IS BEING SAVE!) ON D701 AS 'CH'-RUN-POINT-MIC"
    Flog=2
    !
    GOSUB Spectra
    ! CAT ":D701" ! LISTS FILES WITH NEW ONE ADDED
        DISP ." "
    LINPUT "MEFSUREMENT COMPLETED. UG YIL HAVE ANOTHENT"..A5S
    IF A5$= "Y" THEN GOTO 950
    PRINT "PROGRAM END"
        DISP " "
    MASS STORAGE IS ":D700"
    STOP ! END PROGRAM
    !
    !
    Srq: S=SPOLL (704)
    STATUS 7.1 ; B ! DETERMINES STATUS OF 5420
    PRINT "SRQ =":S
    IF S=96 THEN GOSUB Asave_trace ! ON INTERUPT *7
    IF S=100 THEN GOSUB APrint ! ON INTERRUPT *7
    IF S=102 THEN GOSUB Aprint ! DN INTERRUPT &7
    IF S=104 THEN SEND 7 : CMD "7D%"
    IF S=112 THEN GOSUB Arecall_trace
    IF S=120 THEN SEND 7 ; CMD "7ES"
    IF S=98 THEN PRINT "END OF PLOT"
    PRINT "SRQ=";S
    RESUME }
    ENABLE INTR 7:8
    RETURN
```

Spectra: CREATE DATA FILE ON DISC D:O1
Spectra: CREATE DATA FILE ON DISC D:O1 3190 : RAW DATA FILE NAME IS RHRn-Dp-Mc (RH RUN-POINT-MIC)3210 MASS STORAGE IS ":D701"
IF A1s="Y" THEN Rawse"RH"aVALS (Rn)\&"-"aVALS (Do)a"-"aVALS (Mc)
: THIS ROUTINE IS NOT BEING USED
Freqplot: PRINT "PLDTTING SPECTRUH" : PLOTS ON 7470 USING HP5420A
S-0
IF A2S""N" THEN GOTO 2700
OUTPUT 704 ;"-1 TX RAW AND CORRECTED DATA (TOP/BOTTOM);" ! TEXT EDIT
WAIT 1000
GOTO 2720
OUTPUT 704 :"-1 TX RAN DATA:" ! TEXT EDIT
WAIT 1000
PRINT "AT LINE 963*
OUTPUT 704 ;"0.523,656PL1.7206.6300PL. 1 PLPL"
! PLOT FORMAT: ORIGIN, X,Y PL UPPER RIGHT X,Y PL GO PLOT
IF S《> 98 THEN 2750
RETURN
!
Asave_trace: PRINT "ASCII SAVE TRACE FROM 5420"
FOR $\bar{I}=1$ TO 16 ! READ HEADER VARIABLES FROM 5420
ENTER 704 : A(I)
NEXT I
$T=A(3) / 2$
$F i n=16+T$
PRINT "READING DATA STAND BY"
FDR I=17 TO Fin ! READ DATA FROM 5420
ENTER 704 : $\mathrm{A}(\mathrm{I})$
NEXT I
RETURN
!
! THIS ROUTINE IS NOT BEING USED
Arecal1_trace: PRINT "ASCII RECALL TRACE FROM 9845"
FOR I= $\overline{1}$ TO 16 ! HRITE HEADER VARIABLES TO 5420
OUTPUT 704 ; A(I)
NEXT I
$T=A(3) / 2$
$F_{1}=16+i$
PRINT "SENDING DATA STAND BY"
FOR $I=17$ TO Fin! WRITE DATA TD 5420
OUTPUT 704 : A(I)
NEXT I
RETURN
!
Aprint: PRINT "ASCII DATA TRANSFER"
IF $S=100$ THEN GOTD 3090
FOR I=1 TO 9
ENTER 704 ; H(I) ! READS 9 HEADERS
NEXT I
ENTER 704 ; T ! READS NO OF VARIABLES
FOR I=1 TO T
ENTER 704 : D(I) ! READS DATA VARIABLES
NEXT I
PRINT " DATA TRANSFER ENDED*
RETURN
$!$


```
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3830 GOTO 3850
3840 LABEL USING "K" : "RAN NARROW BAND SPECTRUM"
3850 CSIZE 3.2
3860 LORG 1
3870 MOVE 50.Maxs-2.5
3880 LABEL USING "K"
3890 MOVE 21.Maxs-5
3900 V=110. 3048
3910 v=v+.005
```

3920
3930
3940 3950

iV:"

$$
v=v=10
$$

$V=I P(V)$
$V=v / 10$
IF A2S-"N" THEN GOTO 3980
LABEL USING "K" : "MIC ":Mc:" THETA - ";Thetac:" deg (corrected) ":"U ""
$\mathrm{m} / \mathrm{sec}^{\prime \prime} \mathrm{i}^{\prime \prime}$ GAIN ${ }^{* \prime \prime}$; Gain
GOTO 3990
3980 LABEL USING "K" : "MIC ":Mc:" THETA - "; Theta:" deg (uncorrected) U " ": $\mathrm{V} ; \mathrm{m} \mathrm{m} / \mathrm{sec}$ ";" GAIN="; Gaın

3990

4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
MOVE 120.MIns-7
4170
4180
4190 CSI2E 2.4
4200
4210
4220
4230
4240
4250 Freq(J)-Value JJ
4260 MOVE JK. Mıns-2.7
4270 LABEL USING "K" ; Frea(J)
4280 NEXT J
4290 !
4300 ALPHA
4310 DISP " "
4320 DISP " "
4330 ALPHA
4340 PRINTER IS 1
4350 RETURN
4360
4370
!
Printang: ! PRINTS ON 708
4380 PRINTER IS 708
4390 PRINT"."
4400 PRINT ..
4410 PRINT ".
4420 PRINT ".
4430 PRINT ".
4440 PRINT ." ."
4450 PRINT "."
V.isiP (V)

4460 IF A25" "N" THEN GOTO 4540
4470 PRINT "" NARROWBAND SPECTRUM"
4480 PRINT " CORRECTED FOR SHEAR LAYER AND 4.3 m DISTANCE*
4490 PRINT " TEST 706 RUN":Rn:" DATR POINT";DP:" GAIN =":
4500 PRINT" MIC":Mc:" THETA=":Thetac:"deg (corrected) $U=": V: " m / s$
4510 PRINT ". ."

ORIGINAL PAGE IS
OF, POOR QUALITY

| manmowic | FREOUENCY. Hz_{2} | LEVEL.dB |
| :---: | :---: | :---: |
| 1 | 550.0 | 99.8 |
| 2 | 1087.5 | 96.7 |
| 3 | 1637.5 | 93.5 |
| 5 | 2.87 .5 2737 | 83.7 79.5 |
| 6 | 3275.0 | 71.8 |
| 7 | $3825 . \mathrm{C}$ | 72.1 |
| A | 4375.1 | 70.2 |
| 9 | 4912.5 | 56.1 |
| 11 | 5462.5 5012.5 | 64.5 |

A. 4 Progran EABRPLOF2

The program plote harmonic level versus harmonic order for up to 7 cases on each graph. The harmonic levels, stored on disk by program CEDAR2, must be adjusted to allow for broadband contributions before plotting. These adjustments (always negative) to the harmonic levels must be estimated manually from the nairrowband plots output by CEDAR2, and entered as input to program HARMPLOT2 rior each harmonic in turn. The adjusted harmonic leveis are plotted for the cases selected, and stored on disk.

The program checks whether the harmonic levels have already been adjusted when reading from disk, so that the adjustments are performed only once for each case.

It is necessary to select the appropriate storage disk for each case to be plotted. If the file associated with that case cannot be found on the disk currently being read, the program will expect another disk to be input.

Input required:
Parameter to be used for the key to the graph
(Mic No, Mic Angle θ, Wind Speed U, RPM, Propeller Angle B or Separation X)

For each plot:
Run Number
Data Point
Microphone Number

For adjustments to harmonic levels:
Number of valid harmonics
$\left\{\begin{array}{l}\text { Harmonic number } \\ \text { Correction (dB) to be added to the harmonic level }\end{array}\right.$ These are entered for each harmonic to be adjusted.

Disks containing files, either with or without shear layer and distance corrections created by CEDAR2
Uncorrected: RH Run No - Data Pt - Mic No
Corrected: CH Run No - Data Pt - Mí No

Output:
Listing of adjusted harmonic levels
Graph of harmonic level vs order for 7 cases maximum Adjusted harmonic levels, stored on disk, overwriting the unadjusted levels, with an indicator to show that adjustments have been made to that file.

```
100
110
120
140
150
160 OPTION BASE I
10 CLEAR
180 MASS STORAGE IS ":D701"
90 DIM Title$(6),Key(7),Nharm(7),Rpm(7),1J(7),Beta(7),Sepx(7),F1le1S(7)
200 DIM Thetac(7),Nharmc(7),CodeS(7), Harm(7,21), Arr(5.2).Brr(16.2)
210 DIM Change(21), Harmx(7,21).Hfreq(7,21),Symbol(7)
220!
230 DATA " M1c ","Theta","U(m/s)"," Rpm "." Reta"." X(m)"
240 FOR I=1 TO 6
250 READ Titles(I)
260 NEXT I
270 RESTORE
280 PRINT "SETTING UP MATRICES"
290 FOR I=1 TO 2
300 FOR J=1 TO 5
310 Arr(J,I)=0
320 NEXT J
330 FOR J=1 TO 16
340 Brr(J.I)=0
350 NEXT J
360 FOR I=: TO 21
370 Change(I)=0
380 NEXT I
390
400 PRINT "CASES WILL BE SELECTED FROM THE CORRECTED FILES ONLY. WHICH"
410 PRINT "ARE STORED AS CH Run-Point-Mic . UNLESS THE OFTION FOR "
420 PRINT "RAW DATA IS SPECIFIED"
430 LINPUT "WILL ANY RAN DATA BE PLOTTED? (Y/N) ".A1s
440! A1 $ = "N" ONLY CORRECTED MAY BE SELECTED
450 ! A1s="Y" RAW OR CORRECTED DATA MAY BE SELECTED
460 IF A1S="N" THEN A5S="N"
4?0
4 8 0 \text { ! SET UP SCALE}
490 Maxs=120
500 PRINT "MAXIMUM SPECTRUM LEVEL PLOTTED IS ":Maxs:" dB"
510 LINPUT "DO YOU WISH TO CHANGE THIS?".P'S
520 IF P1$="N" THEN GOTO 550
530 DISP "INPUT MAXIMUM SPECTRUM LEVEL FOR PLDT IN DB"
540 INPUT Maxs
550 Mıns=Maxs-70
560 !
570
580
50 Nplot=0
590 PRINT "Maximum Number of Plots on this Graph = 6"
600 Npiot=Nplot+i
610 PRINT "Plot Number ":Nplot:" on Graph"
6 2 0
6 3 0
6 4 0 ~ D I S P ~ " I N P U T ~ R U N ~ N U ' 4 B E R " ~
6 5 0 ~ I N P U T ~ R n ~
6 6 0 \text { DISP "INPUT DATA POINT"}
670 INPUT DP
SOO DISP "INPUT MIC NUMBER"
6 9 0 \text { INPUT Mc}
700 Symbol(Nplot)=Nplot
710 ! PRINT "INPUT SYMBOL FOR PLQT":Nplot:" (NUMBERS 0 TO 9)"
720 ! INPUT Symbol(Nolot)
730 IF A1S="N" THEN GOTO }75
740 LINPUT "DD YOU WANT THE RAW DATA FILE?".A5§
750 DISF " "
760 IF Nplot<> 1 IHEN GOTO }85
```

```
7 7 0 \text { DISP "THE KEY FOR THE GRAPH WII! DISPLAY Run-Poınt-Mıc FOR EACH CURVE"}
7 8 0 ~ D I S P ~ " W H A T ~ A D D I T I O N A L ~ P A R A M E T E R ~ D O ~ Y O U ~ W A N T ~ O N ~ T H E ~ K E Y ? " ~
790 DISP "POSSIBLE PARAMETERS ARE :"
800 DISP "M1c=1, Theta=2, U=3. Rpm=4, Beta=5, X=6 "
810 DISP "INPUT THE PARAMETER NUMBER YOU REQUIRE "
820 INPUT KK
830 IF KK <1 THEN KK=1
840 IF KK>6 THEN KK=1
850 K=Nplot
860 Ntimes=0
870 YS="Y"
880 IF A5S="Y" THEN F1le1S(K)="RH"aVALS (Rn)d"-"aVALS (DD)&"-"aVALS (Mc)
890 IF A5$="N" THEN File1s(K)="CH"&VALS (Rn)s"-"&VALS (DP)s""-"aVALS (Mc)
900 ON ERROR GOTO }322
910 ASSIGNE K TO Filels(K)
920 DFF ERROR
930 PRINT "File Requested from D701 is ":FilelS(K)
940 PRINT "READING DATA"
950 READ: K,1 ; Nl&nes,Delf,Nharm(K),Rpm(K).U(K),Beta(K),Sepx(K),Thetac(K),Nharm
c(K),Codes(K),Arr(,)
960 V=(U(K)*.3048+.005)=10
970 V=IP (V)/10
980 X=(Sepx(K)/12*.3048+.001)*1000
990 X=IP (X)/1000
1000 FOR I=1 TO 5
1010 Harm(K.I)=Arr(I.2)
1020 Hfreq(K.I)=Arr(I.1)
1 0 3 0 ~ N E X T ~ I ~
1040 IF Nharm(K)<= 5 THEN GOTO 1110
1050 READ K. K ; Brr(.)
1060 FOR I =6 TO Nharm(K)
1070 Harm(K,I)=Brr(I-5.2)
1080 Hfreq(K,I)=Brr(I-5.i)
1090 NEXT I
1100 OFF ERROR
1110 PRINT "DATA TRANSFER ENDED"
1120 IF KK=1 THEN Key(K)=Mc
1130 IF KK=2 THEN Key(K)=Thetac(K)
1140 IF KK=3 THEN Key (K)=V
1150 IF KK=4 THEN Key(K)=Rpm(K)
1160 IF KK=5 THEN Key(K)=Beta(K)
1170 IF KK=6 THEN Key(K)=X
1180 DISP ***
1190 IF Codes(K) <> "Y" THEN GOTO 1230
1200 PRINT "THIS FILE HAS ALREADY BEEN ADJIUSTED FOR BROADBAND CONTRIBUTIUNS"
1210 PRINT "THE MAXIMUM NO OF HARMONICS TO BE USED IS ".Nharmc(K)
1220 GOTO 1700
i230 PRINT "THIS FILE HAS NOT BEEN ADJUSTED FOR BROADBAND CONTRIBUTIONS"
1240 DISP ." ."
1250 PRINT "NO OF HARMONICS STORED = ":Nhäm(K)
1260 PRINT "INPUT NC OF VALID HARMONICS:"
1270 INPUT Nharme(K)
1280 Nharm(K)=Nharmc(K)
1290 FOR I=1 T0 Nharmc(K)
1300 Harmx(K.I)=Harm(K.I)
1310 NEXT I
1320 LINPUT "ARE THERE ANY CORRECTIONS TO BE MADE TO THE HARMONIC LEVELS7".A2S
1330 IF A2S="N" THEN GOTO 1530
:340 FOR I=1 TD 21
1350 Change (I)=0
1360 NEXTI I
1370 DISP .. ."
1380 PRINT " INPUT THE HARMONIC ORDER TO BE CORRECTED (Max=21)"
1390 INPUT J
1400 IF Change(J)=0 THEN GOTO 1460
1410 PRINT "THIS HARMONIC HAS ALREADY BEEN CHANGED BY ";Change(J):" dB"
1420 LINPUT "DO YOU WISH TO MAKE ADDITIONA! CHANGES TO THIS HARMDNIC?".A3S
1430 IF A3S="N" THEN GOTO 1500
1440 PRINT "INPUT THE ADDITIONAL CHANGE IN OB FOR HARMONIC ":J
```

```
1450 GOTO }147
1460 PRINT "INPUT THE CHANGE IN dB FOR HARMONIC":'
1 4 7 0 \text { INPUT Ch}
1480 Change(J)=Change(J)+Ch
1490 Harm(K,J)=Harm(K.J)+Ch
1500 LINPUT "ANY MORE CORRECTIONS 7".A4S
1510 IF A4S <> "N" THEN GOTO 1380
1520 PRINT "THE FILE HAS BEEN ADJUSTED FOR BROADBAND CONTRIBUTIONS"
1530 PRINT "PRINT ADJUSTED HARMONIC LEVELS"
1540 GOSUB Printang
1550 !
1560 LINPUT "ARE THE ADJUSTED HARMONICS OK TO STORE ON DISC701 7",A9S
1570 IF A9s="N" THEN GOTO 1700
1580 CodeS(K)="Y"
1590 DISP "."
1600 FOR I=1 TO 5
1610 Arr(I,2)-Harm(K.I)
1620 NEXT I
1630 PRINT* K,1 : Nlines,Delf.Nharm(K).Rpm(K),U(K),Beta(K),Sepx(K),Thetac(K),Nha
rmc(K),CodeS(K),Arr(,)
1640 IF Nharm(K)<= 5 THEN GOTO 1690
1650 FOR I=6 TO Nharm(K)
1560 Brr(I-5.2)=Harm(K.I)
1670 NEXT I
1680 PRINT* K.2 ; Brr(.)
1690 PRINT "DATA TRANSFER ENDED"
1700 ASSIGNs K TO *
1710 !
1720 GOSUB Plotting
1730 !
1740 PRINT "YOU HAUE JUST FINISHED PLOT ":Nolot
1750 PRINT "THIS GRAPH IS FINISHED"
1760 DISP " -
1770 IF Nplot=7 THEN GOTO 1800
1780 LINPUT "ANY MORE PLOTS ON THIS GRAPH 7".A7S
1790 IF A7S <> "N" THEN GOTO 600
1800 LINPUT "ANY MORE GRAPHS ? ".A8S
1810 IF ABS <> "N" THEN GOTO 1850
1820 MASS STDRAGE IS ":D700"
1830 DISP "PROGRAM END"
1840 STOP
1850 PRINT "STARTING A NEW GRAPH. WITH MAX LEVEL = ";Maxs:" dB"
1860 IF A1S="N" THEN PRINT "ONLY CORRECTED DATA WILL BE PLOTTED"
1870 IF AIS << "N" THEN PRINT "RAW OR CORRECTED DATA MAY BE PLOTTED"
1880 LINPUT "ANY CHANGES ? (Y/N) ".A6S
1890 IF A6S="N" THEN GOTO 570
1900 IF A6S <> "N" THEN GOTO 400
1910
1920
1930
|}94
Plotting: ! Plots Harmonic Level versus Order
1950 : For a Maximum of 7 Plots on 1 Graph
1960 ! Maximum No of Harmonics = 11
1970 !
1980 PRINT "START PLOT"
1990 PLOTTER IS 1 ! Sets Default Size
2000 PLOTTER IS 705
2010 GRAFHICS
2020 LIMIT 10.210.15.170
2030 LOCATE 20.120.16.98
2040 SCALE O,12.Mins.Maxs
2050 IF Nplot<> 1 THEN GOTO 2530
2060 AXES 1.10,0,Mins
2070 !
2080 ! LABEL Y-AXIS
2090 CSIZE 2.8
2100 LORG }
2110 FOR Y-Mins TO Maxs STEP 10
```

```
2120 MOVE -.1.Y
2130 LABEL USING "K" : Y
2140 NEXT Y
2150 CSIZE 3.2
2160 MOVE -.3.Maxs-32.5
2170 LABEL USING "K" : "Harmonic"
2180 MOVE - .3,Maxs-35
2190 LABEL USING "K,2X" : "Level"
2200 MOVE -.3.Maxs-38
2210 LABEL USING "K,3X" ; "dB"
2 2 2 0
2230 ! LABEL X-AXIS
2240 LORG }
2250 MOVE 6.M_ns-3
2260 LABEL USING "K" ; "Harmonic Order"
2270 CSIZE 2.8
2280 FOR I= 1 TO 11
2290 MOVE I,M1ns-.5
2300 LABEL USING "K" : I
2310 NEXT I
2320 !
2330 ! LABEL PLOTS
2340 CSIZE 3.5
2350 LORG 
2360 MDVE 1.Maxs
2370 IF A5S="Y" THEN LABEL USING "K" : "HARMOH'IC LEVELS ADJUSTED FOR BROADBAND C
ONTRIBUTIDNS'
2380 IF ASS="N" THEN LABEL USING "K" : "HARMIJNIC LEVELS CORRECTED FOR SHEAR LAYE
R AND 4.3m DISTANCE"
2390 MOVE 2,Maxs-2.5
2400 IF A5$="N" THEN LABEL USING "K" ; "AND ADJUSTED FOR BROADBAND CONTRIBUTIONS
2410
2420 ! LABEL Key
2430 ! KKK is the Key Number
2440 LORG 4
2450 Y=Maxs-6
2460 MOVE 8.3.Y
2470 CSIZE 2.8
2480 LABEL USING "K" : "Symbol"
2490 MOVE 9.6.Y
2500 LABEL USING "K" : Title$(KK)
2510 MOVE 11.5.Y
2520 LABEL USING "K" : "Run-Data pt-M1c"
2530
2540
! Plot Spectrunm Level versus Order
2550 YK=Maxs-6
2560 J=Nplot
2570 IF Y$="N" THEN GOTO 2770
2580 KT=Nplot+2
2590 IF Nplot=1 THEN KT=1
2600 LINE TYPE KTT
2610 MDVE 7.8.YK-2.5*J
2620 DRAW 8.8.YK-2.5*J
2630 PEN UP
2640 MOVE O.M1ns
2650 LORG 5
2660 CSIZE 2.6
2670 Nh=Nharm(J)
2680 IF Nharm(J)>11 THEN Nh=1!
2690 FOR I=1 TO Nh
2700 IF Harm(J,I)=0 THEN GOTO 2750
2710 PLOT I.Harm(J.I). }
2720 LABEL Symbol(j)
2730 PLOT I.Harm(J,I).I
2740 GOTO 2760
2750 MOVE I.Mins
2760 NEXT I
2770 LINE TYPE 1
```

2780
2790 ! Key
2800 LORG 5
2810 Y-Maxs-6
2820 YJ=Y-2.50Nplot
2830 MOVE 8.3.YJ
2840 CSIZE 2.6
2850 IF YS 《> "N" THEN LABEL Symbol (Nplot)
2860 CSIZE 2.6
2870 MOVE 9.6.YJ
2880 IF Y\$ 〈> "N" THEN LABEL Key(Nplot)
2890 MOVE 10.9, YJ
2900 LORG 2
2910 LABEL USING "K" : F1le1s(J)
2920 PLOTTER IS 1
2930 RETURN
2940
2950
2960
2970 Printing: ! Prints Adjusted and Unadjısted Harmonic Levels
2980 !
2990 PRINTER IS 708
3000 FOR $I=1$ T0 6
3010 PRINT **
3020 NEXT I
3030 PRINT "
3040 IF A5S = "N" THEN PRINT "
E"
3050 PRINT ."
3060 PRINT ". TEST 706 \quad RUN":Rn:" DATA POINT":Dp
3070 PRINT ". MIC":Mc:" THETA=":Thetac(K):"deg (corrected) U =":V;"
m/sec ${ }^{\circ}$
3080 PRINT " \cdot
3090 PRINT *"
3100 PRINT " ADJ ADJUSTED"
3110 PRINT " HARMONIC FREQUENCY.Hz LEVEL.dB dB LEVEL.dB".
3120 PRINT "
3130 PRINT **
3140 IMAGE 12X.DD.7X.DDDDD.D.7X.DDD.D.2X.DDD.D.3X.DDD.D
3150 FOR $I=1$ TO Nharm(k.)
3160 PRINT USING 3140 : I.Hfreq(K.I). Harmx(K,I).Change(I).Harm(K,I)
3170 NEXT I
3180 PRINT CHRS (12)
3190 PRINTER IS 1
3200 RETURN
3210
3220 : ERROR RECDVERY
3230 Ntimes $=$ Ntimes +1
3240 IF Ntimes = 1 THEN GOTO 3400
3250 PRINT "DOES THE FILE ":Fileis(K):" EXIST ?"
3260 DISP "IF THE FILE DOES EXIST. TRY ANOTHFR DISC AND TYPE 'Y'"
3270 DISP "IF THE FILE DDES NOT EXIST. TYPE 'N'"
3280 LINPUT "IF THE FILE NUMBER IS IN ERROR. TYPE 'E'",Y\$
3290 IF YS="Y" THEN GDTO 900
3300 OFF ERROR
3310 IF YS="E" THEN GOTO 610
3320 PRINT "THE PROGRAM WILL ASSUME THE [ILE ";F1le1s(K):" DOES NOT EXIST"
$3330 \operatorname{Key}(k)=0$
$3340 \operatorname{Nharm}(K)=1$
3350 Codes(K)="Y"
3360 FOR I=1 TO 21
$3370 \operatorname{Harm}(K . I)=0$
3380 NEXT I
3390 GOTO 1710
3400 DISP " TRY ANOTHER DISC "
3410 DISP " WHEN READY, PRESS ANY LETTER, THEN 'END LINE""
3420 INPUT XS
3430 GOTO 900
3440 ! END OF PROGRAM

VARFOWBANII HARIAONIC LENE:S
CORRECTED FOF SHEAR LAYEF AND 4.3ni DISTANGE

HARMONIC FREQUENCY.Hz LEVEL.dE AB LEVEL.dE

| 9 | 550.0 | 99.9 | 0.0 | 99.1 |
| ---: | ---: | ---: | ---: | ---: |
| 2 | 1087.5 | 99.4 | 0.0 | 99.4 |
| 3 | 1627.5 | 90.2 | 0.0 | 90.2 |
| 4 | 2187.5 | 8.2 .2 | -.6 | 0.6 |
| 5 | 2737.5 | 80.0 | -.7 | 79.9 |
| 6 | 3275.0 | 76.2 | -1.5 | 74.7 |
| 7 | 3825.0 | 73.9 | -1.2 | 72.7 |
| 0 | 4375.0 | 77.5 | -.5 | 77.0 |
| 9 | 4912.5 | 74.3 | -2.0 | 69.3 |
| 10 | 5462.5 | 73.0 | -1.1 | 71.9 |
| 11 | 6012.5 | 69.5 | -2.5 | 67.0 |

A. 5 Program NBSPECTRA2

The program plots the narrowband spectra, which were stored on disk by program CEDAR2. Either one or two spectra may be plotted on each graph.

The program is useful if the plots obtained from CEDAR2 need to be replotted on a different scale. It is also used to compare two narrowband spectra.

Input required:
For each plot:- Run Number Data Point Microphone Number

Disks containing files, with shear layer and distance corrections, created by CEDAR2

CH Run No - Data Pt - Mic No

Output:
Plot of narrowband spectra
! PROGRAM NBSPECTRA2 PLDTS PROP/E.MPENNAGE INTERACTION NOISE SPECTRA
! FROM FILES DF DATA CREATED BY CEDAR AND STORED OIN D70!
THD CURVES CAN BE PLOTTED ON ONE GRAPH
TYPICAL FILE NAMES ARE C-RUN-POINT-MIC
PAUL SODERMAN-LISA LEE 4/4/84 HP87
OPTION BASE 1
PRINTER IS 1
DIM A(540),Lp1(540).Lp2(540).Domain(540).C(540) ORICKNAL PAG: IS
DIM Theta(2).Crr(32)
DISP "*
PRINT "THIS IS DISC D701"
MASS STDRAGE IS ":D701"
CAT ":D70:"
PRINT "CORRECTED FILES ARE LISTED CH RUN-POINT-MIC"
DISP " "
DISP " INPUT TODAYS DATE"
INPUT Jour\$
DISP
Maxs=120
PRINT "MAXIMUM SPECTRUM LEVEL PIOTTED IS ":Maxs:" dB"
LINPUT "DO YOU WISH TO CHANGE THIS?",P IS
IF PIs="N" THEN GOTO 280
DISP "INPUT MAXIMUM SPECTRUM LEVEL FOR PLOT IN dB"
INPUT Maxs
Mins=Maxs-70
Flog=1
K=0
F1n=274
!
INPUTS FOR ONE SPECTRA
DISP "" "
DISP " WHAT RUN DO YOU WANT ?"
INPUT Rn
DISP " WHAT DATA POINT ?"
INPUT Dp
DISP " WHAT MICROPHONE ?"
INFUT Mc
IF Flog=2 THEN GOTO 470
DISP "*
IF Flog=1 THEN RnI=Rn
IF Flog=1 THEN Dpl=Dp
IF Fiog=1 THEN McI=Mc
K=K+1
READ THE DATA FILE ON DISC }70
Filels="CH"\&VALS (Rn)\&"-"\&VALS (Dp)\&"-"\&VALS (Mc)
PRINT "FILE NAME CALLED IS",File1s
ASSIGN* K TO Filels
READ: K.l : Nlimes.Delf,Nharm.Rpm,U,Beta,Sepx,Theta(Flog)
IF Flog=1 THEN Delfi=Delf
IF Flog=1 THEN GOTO 600
IF Delf1-Delf THEN GOTD 600
PRINT "BANDWIDTHS DIFFER. RETURN TO INPUT FIRST SPECTRUM AGAIN"
GOTO 290
Number=INT ((Nlines-4)/32)+1
IF Number>16 THEN Number=16
FOR I=3 TO Number+2
READ* K.I : Crr()
rOK J=: IU 3L
IF Flog=1 THEN Lpl((I-3)* 32+J)=Crr(J)
IF Flog=2 THEN Lp2((I-3)*32+J)=Crr(\)
NEXT J
NEXT I
IF Nlines>512 THEN Nlines=512
IF Flog=1 THEN Thetal=Theta(Flog)
DISP "*
! SECOND CURVE OPTIONAL.

```

760 770
780
790
800
810
820
830
840
850
850
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
```

IF Flog.2 THEN GOTO 830
Flog:2
DISP " .
LINPUT "DO YOU WANT A SECOND CURVE ON THE SAME GRAPH 7",02s
DISP
IF O2S="Y" THEN DISP "MUST USE THE SAME Bu"
IF Q2S="Y" THEN GOTO 300
Fin=260
Steps=13
Nstep-Nis ines/13
IF Nstep 321 THEN Nstep 40
IF Nstep <21 THEN Nstep=20
NL-Nstep/20
DISP " "
DISP ". CDMPUTING FREQUENCIES TO BE PLOTTED STAND BY"
FOR $I=1$ TO F $1 n$ STEP 20
Domain(I)-Delf*(I-1)~NL
IF Domain(I)<50 THEN Domain(I)=50

```

\section*{NEXT I}
```

PLOT RESULTS
PLOTTER IS 705
GRAPHICS
LIMIT 10.200.15.170
LOCATE 20.120.16.98
SCALE 0.256.Mins.Maxs
AXES O.10.0.Mins

```
```

!

```
```

CSIZE 3.6
LORG 2
MOVE 31 . Maxs
LABEL USING "K" : "POWER SPECTRAL DENSITY ":Jours:" (NBSPECTRA2)"
MOVE 68.Maxs-3
LABEL USING "K" : "RUN ":Rn1:" PT ":DPI:" MIC ":Mc1:" Theta" ":Theta:
PEN 1
MOUE 208.Maxs-3
DRAW 228.Maxs-3
PEN UP
IF Q2S="N" THEN GOTO 1320
PEN 1
LINE TYPE 1
MOVE 68. Maxe-6
LABEL USING "K" : "RUN ":Rn:" PT ":Dr:" MIC ":Mc:" ihera= ":Theta(Flog
PEN 2
LINE TYPE 6
MOUE 208, Maxs-6
DRAW 228.Maxs-6
PEN UP
PEN 1 LABEL Y-AXIS
!
LORG 8
FOR Y-Mins TO Maxs STEP 10
MOVE -. $1, y$
LINE TYPE 1
LABEL USING "K.X" : Y
NEXT Y
hove -11,Maxs-34
LABEL USING "K" : "Lp(f)"

```

```

 LABEL X-AXIS
    ```
                                    LABEL X-AXIS
LORG }
LORG }
MOVE 120,M_ns-7
```

MOVE 120,M_ns-7

```

ORIGINAL PAGE IS
OE POOR QUALITY

1470 LABEL USING "K" : "FREQUENCY. Hz "

1480 CSIZE
1490 FDR J=1 TO Fin STEP 20
1500 MOVE J.Mins-2
1510 LABEL USING "K" : Domaan(J)
1520 NEXT J
1530
1540 FOR I=1 TO Fin STEP 20 : PUT TICKS ON X-AXIS
1550 MOVE I.MIns
1560 DRAW I.MAns+. 6
1570
1580
MOVE 256.MIns
1590 DRAW 256,Mans4. 6
1600 PEN UP
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
!
\(!\)
FOR I=
\(K=I / N L\)
\(P L O T K, L\)
NEXT I
PLOTTING FIRST DIRECTIUITY PLOT
FOR I-1 TO Nlines
PLOT K,Lpi(I). 1 : PLOTS WITH LEFT PEN 1

PLOTTING SECOND DIRECTIVITY PLOT
IF \(025=\) "N" THEN GOTO 1839
PEN 2 : PLOT NITH RIGHT PEN 2
LINE TYPE 6
MOVE 1.LP2(1)
FOR \(K=1\) TO N1ines
J=K/NL
PLOT J,LP2(K). 1
NEXI K
LINE TYPE 1
PEN 1
! ! PHA
ALPHA
PRINT *" ."
DISP "DO YOU HAVE ANOTHER GRAFH TO MAKE ?"
INPUT Q3S
IF 03\$="Y" THEN GOTD 150
DISP " "
MASS STORAGE IS ":D700"
PRINT "PROGRAM END"
END


\section*{A. 6 Progran PTHIVER}

The program plots the noise directivity in the vertical plane, only for test conditions with runs made with both fuselage test orientations ( \(\psi=0\) and \(90^{\circ}\) ). The adjusted harmonic levels are plotted versus angle relative to the vertical. The angles and associated microphones are:
\begin{tabular}{ccr}
\begin{tabular}{c} 
Vertical Angle \\
(degrees)
\end{tabular} & Mic. No. & \(\psi\) \\
\hline & & \\
0 & 4 & 90 \\
90 & 13 & 0 \\
180 & 13 & 90 \\
210 & 11 & 0 \\
240 & 12 & 0 \\
270 & 4 & 0 \\
300 & 11 & 90 \\
330 & 12 & 90 \\
360 & 4 & 90
\end{tabular}

A maximum of 6 plots can appear on each graph and two options are available.
(1) The SAME harmonic order will be used for all curves on the graph.
(2) Each curve will refer to a DIFFERENT harmonic order of the same data set.

Input required:
For \(\psi=0\), Run Number
Data point

For \(\psi=90\), Run Number
Data point

Disks containing files for Microphones 4, 11, 12 and 13, with shear layer and distance corrections, created by CEDAR2 and adjusted by HARMPLOT2.

\section*{Output:}

Listing of harmonic levels plotted plot of noise directivity in vertical plane.
```

10
Level(1,2)=0
280 Level(I.3)=0
290 NEXT I
300 FOR I=1 TO 9
310 Nharm(i)=1
320 Flies(I)="CH - "
330 Fjleis(I)="CH - -13"
340 NEXT I
350 MASS STDRAGE IS ":D701"
360 DISP "."
370 PRINT "A DATA SET COMPRISED OF DJFFERENT DIRECTIVITY ANGLES"
380 PRINT "FOR THE SAME OPERATING CONDITIONS WILL EE COMFILED AND PLOTTED **
390 DISP "**
400 PRINT "CASES HILL BE SELECTED FROM CORRECTED FILES OF HARMONIC LEVELS *
410 PRINT "WHICH ARE STORED AS FILES CH Run-Data Pt-M\&c"
420". PRINT "FILES FOR MICROFHONES 4.1;.12.AND (EVENTUALLY) 13 ARE REQUIRED IN T
430 DISP ***
440 ! SET UP SCALE
450 Maxs=120
460 PRINT "MAXIMUM SPECTRUM LEVEL PLOTTED IS":Maxs:"dB"
470 LINPUT "DO YOU HISH TO CHANGE THIS ?",P1S
480 IF P1S="N" THEN GOTO 510
490 DISP "INPUT MAXIMUM SPECTRUM LEVEL FOR PLDT IN dB"
500 INPUT Maxs
510 Hiams-riavg-70
520 Nmics-9
530 Nmisin=4
540 Nolot=0
550 DISP "*
560 DISP "A MAXIMUH OF 6 CURVES CAN APPEAR ON THIS GRAPH"
570 DISP "THERE ARE 2 OPTIONS FOR PLDTTING"
580 DISP "Optıon 1 :*
590 DISP" The SAME Harmonic Order wall be used for all Curves on thi
s Graph"
600 DISP " Optson 2 :*
610 DISP ." DIFFERENT Harmonics of the same Data set uill be used for
each Curve"
620 DISP

```
```

 DISP" Which Option do you wish 71 or 2 7"
    ```
    DISP" Which Option do you wish 71 or 2 7"
    INPUT Option
    INPUT Option
    DISP " "
    DISP " "
PRINT "CURVE NUMBER";Nplot+1:"ON GRAPH"
PRINT "CURVE NUMBER";Nplot+1:"ON GRAPH"
DISP " "
DISP " "
DISP "THE FIRST DATA SET IS FOR VERTICAL TAIL. PSI=0"
DISP "THE FIRST DATA SET IS FOR VERTICAL TAIL. PSI=0"
DISP " "
DISP " "
Nset=1
Nset=1
DISP " WHAT RUN DO YOU WANT ?"
DISP " WHAT RUN DO YOU WANT ?"
INPUT Rn
INPUT Rn
DISP " WHAT DATA POINT ?"
DISP " WHAT DATA POINT ?"
INPUT Dp
INPUT Dp
Nplot =Nplot +1
Nplot =Nplot +1
IF Opt \(10 n=1\) THEN GOTO 810
IF Opt \(10 n=1\) THEN GOTO 810
PRINT "INPUT HARMONIC ORDER FOR PLOT"•Nplot
PRINT "INPUT HARMONIC ORDER FOR PLOT"•Nplot
INPUT Harm
INPUT Harm
IF Nplot=1 THEN GOTO 840
IF Nplot=1 THEN GOTO 840
IF Nplot<> 1 THEN GOTO 1320
IF Nplot<> 1 THEN GOTO 1320
    IF Nplot<s 1 THEN GOTO 840
    IF Nplot<s 1 THEN GOTO 840
    IF Option=1 THEN PRINT "INPUT HARMONTC ORDER, TO BE USED FOR ALL CURVES ON
    IF Option=1 THEN PRINT "INPUT HARMONTC ORDER, TO BE USED FOR ALL CURVES ON
GRAPH"
GRAPH"
INPUT Harm
INPUT Harm
    Symbol-Nplot
    Symbol-Nplot
    !
    !
    ON ERROR GOTO 2670
    ON ERROR GOTO 2670
    FOR JK=1 TO Nmicin
    FOR JK=1 TO Nmicin
    \(K=O r d e r(J K+(N s e t-1)=A)\)
    \(K=O r d e r(J K+(N s e t-1)=A)\)
    ( READ THE DATA FILE ON DISC 1, FOR MICS 1 TO 6
    ( READ THE DATA FILE ON DISC 1, FOR MICS 1 TO 6
    Mc-Mic(JK)
    Mc-Mic(JK)
    Nt :mes- O
    Nt :mes- O
    Filels(K) ="CH"aVALS (Rn)d"-"aVALS (Dr)a"-"aVALS (Mc)
    Filels(K) ="CH"aVALS (Rn)d"-"aVALS (Dr)a"-"aVALS (Mc)
    Files \((K)=" C H " a V A L S\) (Rn)\&"-"aVALS (Dp)
    Files \((K)=" C H " a V A L S\) (Rn)\&"-"aVALS (Dp)
    ON ERROR GOTO 2670
    ON ERROR GOTO 2670
    ASSIGN= K TO Fileis(K)
    ASSIGN= K TO Fileis(K)
    OFF ERROR
    OFF ERROR
    IMAGE AAAAAAAAAA," HARM = ".DD."
    IMAGE AAAAAAAAAA," HARM = ".DD."
    PRINT USING 970 : \(F_{1}\) lels \((K)\). Harf
    PRINT USING 970 : \(F_{1}\) lels \((K)\). Harf
    READ" K, 1 : N1ines, Delf.Nharm(K), Rpm, II, Beta.Sepx, Thetac, Nharmc, CodeS(K), Ar
    READ" K, 1 : N1ines, Delf.Nharm(K), Rpm, II, Beta.Sepx, Thetac, Nharmc, CodeS(K), Ar
    READ" K. 2 : Brr(.)
    READ" K. 2 : Brr(.)
    IF Codes(K)="Y" THEN Nharm(K)=Nharmc
    IF Codes(K)="Y" THEN Nharm(K)=Nharmc
    IF Codes(K) " "Y" THEN GOTD 1050
    IF Codes(K) " "Y" THEN GOTD 1050
    IF Codes(K) 《> "Y" THEN LINPUT "UNADJUSTED DATA. DO YOU WISH TO PLOT IT ?
    IF Codes(K) 《> "Y" THEN LINPUT "UNADJUSTED DATA. DO YOU WISH TO PLOT IT ?
    IF X15-"N" THEN PRINT " START A NEH GRAPH"
    IF X15-"N" THEN PRINT " START A NEH GRAPH"
    IF XISe"N" THEN GOTO 540
    IF XISe"N" THEN GOTO 540
    FOR J=1 TO 5
    FOR J=1 TO 5
    Level(J.K)-Arr(J.2)
    Level(J.K)-Arr(J.2)
    NEXT J
    NEXT J
    IF Nharm(K)<6 THEN GOTO 1140
    IF Nharm(K)<6 THEN GOTO 1140
    FOR J-6 TO Nharm ( \(k\).
    FOR J-6 TO Nharm ( \(k\).
    Level \(J, K\) ) \(=\operatorname{Brr}(J-5,2)\)
    Level \(J, K\) ) \(=\operatorname{Brr}(J-5,2)\)
    NEXT J
    NEXT J
    ASSIGN K TO -
    ASSIGN K TO -
    NEXT JK.
    NEXT JK.
    Nset - Nset +1
    Nset - Nset +1
    IF Nset〈〉 2 THEN GOTO 1240
    IF Nset〈〉 2 THEN GOTO 1240
    DISF " "
    DISF " "
    DISP "THE SECOND DATA SET IS FDR HORIZONTAL TAIL. PSI=90"
    DISP "THE SECOND DATA SET IS FDR HORIZONTAL TAIL. PSI=90"
    DISP "WHAT RUN DO YOU WANT ?"
    DISP "WHAT RUN DO YOU WANT ?"
    INPUT Rn
    INPUT Rn
    DISP "WHAT DATA POINT ?"
    DISP "WHAT DATA POINT ?"
    INPUT DD
    INPUT DD
    GOTO 870
    GOTO 870
    FOR J-1 TO Nharm(1)
    FOR J-1 TO Nharm(1)
    Level \((J, g)=\) Level(J.1)
    Level \((J, g)=\) Level(J.1)
    NEXT J
```

 NEXT J
    ```

Nharm(9)-Nharm(1)
Files(9) \(\mathrm{F}_{1}\) ies(1)
File1\$(9)=File1\$(1)
PLOT RESULTS
PLOTTER IS 705

GRAPHICS
! FRAME
LIMIT \(10,210,15,170\)
LOCATE 20.120.10.92
SCALE 0.18 , Mins, Maxs
IF Nplot<> 1 THEN GOTO 1980
AXES .5,10.0.Mins
\(!\)
M1xs \(=\) Maxs +4.8
CSIZE 3.5
LDRG 4
MOVE 9.7.Mıxs

CSIZE 3.2
MOVE 9.7.M1×5-2.5 BRDADBAND"

LABEL KEY
LORG 4
LORG 4
\(Y=M_{1} \times s-6\)

MOUE 14.3.Y
LABEL USING "K" : "Harmonıc"
MOVE 16.1.Y
LABEL USING "K" : "Run-Dp"
MOVE 17.8,Y
LABEL USING "K" : "Run-Dp"

LABEL Y-AXIS
CSIZE 2.8
LORG 8
FOR \(Y=M_{1} n s\) TO Maxs STEP 10
MOVE -. 15,Y
LABEL USING "K" : \(Y\)
NEXT Y
CSIZE 3.2
MOUE - 45. Maxs -32.5
LABEL USING "K" : "Harmonıc"
MDVE -.45. Maxs-35
LABEL USING "K.2X" ; "Level"
MOUE -.45,Maxs-38
IABEL USING "K.3X" ; "dB"
LABEL X-AXIS
CSIZE 3.2
LORG 6
MOVE G.M1ns-3

LABEL USING "K" : "NOISE DIRECTIVITY IN VERTICAL PLANE (MICS 4.11,12 \& :3

LABEL USING "K" ; "HARMONIC LEVELS CORRECTED FOR SHEAR LAYER,4.3m DISTANC

LABEL USING "K" : "Angle Relative to Vertıcal. Degrees"
```

1910 MABEL USING "K" ; "(Zero is Below the Fuselage C/L)"
1920 CSIZE 2.8
1930 FOR J=0 TO 36 STEP 3
1940 MOVE J/2.M1ns-.5
1950 LABEL USINNG "K"": 10mJ
1960 NEXT J
1970
1980
1990
2000
2010
2020
2 0 3 0
2040
2050
2060
2070
2090
2100
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
22.0
2230
2240
2250
2260
2270
2280
2 2 9 0
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440 PRINT USING "10X,AAAAAAAAAA,2X.DDD.D.2X.DDD.D" : Filel$(I).Angle(I),Level(
Harm. I)
2450 NEXT I
2460 DISP ...
2470 IF Optıon=1 IHEN DISP "YOUJ HAVE JUIST FINISHED CURVE":Nplot
2480 IF Option=2 THEN DISP "YOU HAVE JUST FINISHED THE CURVE FOR HARMONIC":Harm
2490
2500
IF Nplot=8 THEN GOTO }256
2510 LINPUT "ANY MORE CURVES DN THIS GRAPH?",A7s
2520 IF A7$= "N" THEN GOTO 2560

```
```

2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
IF Ntimes=1 THEN GOTO 2810
2690 PRINT "DOES THE FILE ":File1S(K):" EXIST ?"
2700 DISP "IF THE FILE DOES EXIST. TRY ANOTHER DISC AND TYPE 'Y'*
2710 LINPUT "IF THE FILE DOES NDT EXIST. TYPE'N'",YS
2720 IF YS <> "N" THEN GOTO 940
2730 DISP "THE PROGRAM WILL ASSUME THE FILE DOES NOT EXIST"
2740 DFF ERROR
2750 Code\$(K)="Y"
2760 Nharm(K)=1
2770 FOR I=1 TO 21
2780 Level(I.K)=0
2790 NEXT I
2800 GOTO 1140
2810 DISP " "
2820 PRINT "LOOKING FOR FILE ":Fileis(K)
2830 DISP .."
2840 PRINT "REMAINING FILES ARE ON A DIFFERENT DISC."
2850 PRINT "LOAD THE CORRECT DISC AND PRESS ANY LETTER AND (END LINE)"
2860 INPUT GOS
2870 GOTO }94
2880 MASS STORAGE IS ":D700"
2890 DISP "PROGRAM END"
2900 STOF

```

\title{
ORIGHAL PAGE Ts \\ OF POOR QUALITY
}
mOISE DIRECTIVITY IN VERTICAL PLAME OICS \(4,11.128\) 13)


TABLLATED OUPIJT. Harmonac
FILE ANGLE LEUEL.dE
\begin{tabular}{|c|c|c|}
\hline CH67-!-4 & 0.0 & 95 \\
\hline CH:6-1-13 & 90.0 & \\
\hline CH57-i-13 & 180.0 & 103.? \\
\hline CH?6-1-1; & 210.0 & 96.9 \\
\hline CHi6-:-12 & 2400 & :0. 8 \\
\hline CH16-1-4 & 270.0 & 86. 7 \\
\hline CH67-i-11 & 300.6 & 102.0 \\
\hline CHE7-1-12 & 330.0 & 92.2 \\
\hline CHE7-1-4 & 360.0 & 96.2 \\
\hline
\end{tabular}

TABULATED CUPUT, Harnonac 2
FiLE ANGLE LEVEL.dk
\begin{tabular}{|c|c|c|}
\hline CH67-1-4 & 0.0 & 97.2 \\
\hline CH:6-1-13 & 90.0 & 99.3 \\
\hline CH67-1-13 & 180.0 & 95.8 \\
\hline C+16-1-1! & 2:0.0 & 92.1 \\
\hline CH16-1-12 & 240.0 & 94.5 \\
\hline CH?6-1-4 & 276.0 & 95.7 \\
\hline CH67-1-? & 300.0 & 90.6 \\
\hline CHE7-1-12 & 335.0 & 95. \\
\hline CH67-i-4 & 366.0 & 97.2 \\
\hline
\end{tabular}

TABULALED CUFUT. Harmonic 3
FILE ANGLE LEVEL.dE
\begin{tabular}{lrr} 
CH67-1-4 & 0.0 & \(91 . i\) \\
CH1E-1-i3 & 90.0 & 94.4 \\
CH67-i-13 & 180.0 & 93.3 \\
CH16-1-11 & 2166 & 92.5 \\
CH:6-1-12 & 240.0 & 89.9 \\
CH16-i-4 & 270.0 & 88.5 \\
CH67-1-11 & 300.0 & 93.6 \\
CH67-i-12 & 330.0 & 95.0 \\
CH67-1-4 & 360.0 & 91.1
\end{tabular}

\section*{A. 7 Program PIEEBOR}

The program plots the noise directivity in the horizontal plane, for microphones 1 through 9. The adjusted harmonic levels are plotted versus angle relative to the flight direction, using the angles corrected for shear layer effects.

A maximum of 6 curves may appear on each graph and two options are available.
(1) The SAME harmonic order will be used for all curves on this graph.
(2) Each curve will refer to a DIFFERENT harmonic order of the same data set.

Input required:
Run Number
Data Point

Disks containing files for Microphones 1-9, with shear layer and distance corrections, created by CEDAR2 and adjusted by HARMPLOT2. If Microphone 7 data is not available, the directivity plot will be made without it.

Output:
Listing of harmonic levels plotted Plot of noise directivity in horizontal plane.

\section*{ORIGHNAL PAGE IS OF POOR QUALITY}

```

 PRINT "INPUT HARMONIC ORDER FOR PLDT":Nplot
 INPUT Harm
 IF Nplot=1 THEN GOTO }71
 IF Nplot<> 1 THEN GOTO 1040
 IF Nplot<> ! THEN GOTO }71
 IF OptIION=1 THEN PRINT "INPUT HARMONIC ORDER, TO BE USED FOR ALL CURVES ON
 GRAPH"
 INPUT Harm
 Symbol=Nplot
 !
 FOR K=1 TO Nmics
 ! READ THE DATA FILE ON DISC 1. FOR MICS I TO 6
 IF K=7 AND P7S="N" THEN GOTO ;000
 Mc=K
 Ntimes=0
 FilelS(K)="CH""&VALS (Rn)&"-"aVALS (Dp)&"-"dVALS (Mc)
 Files="CH"&VALS (Rn)&"-"aVALS (Dp)&"-"
 ON ERROR GOTO 2380
 ASSIGNa K TO Fileis(K)
 OFF ERROR
 IMAGE AAAAAAAAAA." HARM = ".DD."
 PRINT USING 830 ; File1s(K).Harm
 READ= K.1 ; Nlınes,Delf.Nharm(K).Rpm.U.Beta,Sepx.Thetac(K).Nharmc.CodeS(K)
 .)
 READ* K.2 : Brr(.)
 IF Code$(K)="Y"" THEN Nharm(K)=Nharmc
 IF CodeS(k)="Y" THEN GOTD 920
 IF Codes(K) <> "Y" THEN LINPUT "UNADJUSTED DATA. DO YOU WISH TO PLOT IT ?"
 IF X/$="N" THEN PRINT " START A NEW GRAPH"
 IF X1S="N" THEN GOTO 400
 FOR }j=1\mathrm{ TO 5
 Level(J,K)=Arr(J,2)
 NEXT J
 IF Nharm(K)<6 THEN GOTO 990
 FOR J=6 TO Nharm(K)
 Level(J.K)=Brr(J-5.2)
 NEXT J
 ASSIGN: K TO *
 NEXT K
 OFF ERROR
 !
 020,
1030
PLOT RESULTS
1040
O50
1060
1070
1080
1090 LIMIT 10.210.15.170
1100 LOCATE 20.120.10.92
1110 SCALE O,18.Mins.Maxs
120 IF Nplot<> I THEN GOTO 1680
1130 AXES 1,10,0,M1nS
1140
1150
1160
1170
1180
1190
1200
1210 CSIZE 3.2
1220 MOVE 9.7.M1xs-2.5
1230 LABEL USING "K" : "HARMONIC LEVELS CORRECTED FOR SHEAR LAYER,4.3m DISTANC
E AND BRDADBAND"

```
LABEL KEY
LORG 4
\(Y=M 1 \times s-6\)
MOVE 12.2. Y
CSIZE 2.8
LABEL USING "K" : "Symbol"
MOVE 14.3.Y
LABEL USING "K" ; "Harmonıc"
MOVE 17,Y
LABEL USING "K" : "Run-Data Pt"
!
\(!\)
CSIZE 2.8
LORG 8
FOR Y-Mins TO Maxs STEP 10
MOVE -. \(15 . Y\)
LABEL USING "K" : Y
NEXT Y
CSIZE 3.2
MOVE -. 45.Maxs-32.5
LABEL USING "K": "Harmonıc"
MOVE -.45. Maxs-35
LABEL IJSING "K, 2X" : "Level"
MOVE -.45.Maxs-38
LABEL JSING "K.3X" : "dB"
\(!\)
```

```
                                    LABEL X-AXIS
```

 LABEL X-AXIS
 CSIZE 3.2
LORG }
MOVE 9.M1ns-3
LABEL USING "K" ; "Angle Felative to Flıght Dırection, Degrees"
! MOUE 9.Mins-5.5
! LABEL USING "K" ; "(90 is Starboard Side)"
CSIZE 2.8
FOR J=0 TO 18 STEP 3
MOVE J.M1ns-. 5
LABEL USING "K" : 10*J
NEXT J
!
PLOT HARMONIC LEVEL VERSUS ANGLE
YK=Mixs-6
k'T=Nplot+2
IF Nplot=1 THEN KT=1
LINE TYPE KT
MOVE 11.5.YK-2.5*Nplot
DRAW 13,YK-2.5*Nplot
PEN UP
MOVE O.Mıns
LORG 5
CSIZE 2.6
FOR J=1 TO Nmics
IF J=6 AND P7\$="N" THEN GOTO 1910
I=Order(J)
IF Harm>Nharm(I) THEN Level(Harm. I) =0
IF Level(Harm,I)=0 THEN GOTO 1900
PLOT Thetac(I)/:0.Level(Harm. I), 2
IF Option=1 THEN LABEL Symbol
IF Optton=2 THEN LABEL Harm
PLOT Thetac(I)/10,Level(Harm.I).1
GOTO 1910
MOVE Thetac(I)/10,Mins
NEXT J
LINE TYPE 1
LORG 5

```
```

1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
21130
2150
2160 PRINT USING "10X,AAAAAAAAAA,2X.DDD.D.2X.DDD.D" : Filels(I),Thetac(I),Level
(Harm. I)
2170 NEXT J.
2180
2190
2210
2220
2230
2240
2250
2270
2280
2290
2300
2310 LINPUT "ANY MORE GRAPHS7".A8S
2320 IF A8S="N" THEN GOTO 2600
2330 PRINT "STARTING A NEW GRAPH WITH MAX LEVEL =":Maxs:"dB"
2340 LINPUT "ANY CHANGES?",AGS
2350 IF A6S."N" THEN GOTO 400
2360 IF AGS <> "N" THEN GOTO 320
2370 !
N80 Ntımes=Ntımes+1
2390 IF Ntımes=1 THEN GOTO 2540
2400 PRINT "DOES THE FILE ":Filels(K):" EXTST ?
2410 DISP "IF THE FILE DOES EXIST,TRY ANOTHER DISC AND TYPE 'Y'"

```

```

2440 IF YS="E" THEN GOTO 530
2450 IT YS <> "N" THEN GOTO SUO
2460 DISP "THE PROGRAM WTLL ASSUME THE FILE DOES NET EXIST"
2470 OFF ERROR
2480 CodeS(K)="Y"
2490 Nharn(K)=1
2500 FOR I=1 TO 21
2510 Level(I,K)=0
2520 NEXT I
2530 GOTO 1000
2540 PRINT ."LOOKING FOR FILE ":Filels(K)
2550 DISP ."."
2560 PRINT "REMAINING FILES ARE ON A DIFFERENT DISC."
2570 PRINT "LOAD THE CORRECT DISC AND PRESS ANY LETTER AND (END LINE)"
2580 INPUT GOS
2590 GOTO 800
2600 MASS STORAGE IS ":D700"
2610 DISP "PROGRAM END"
2620 STOP

```

\begin{tabular}{|c|c|c|c|}
\hline TABULATED OUPUT. FILE & \begin{tabular}{l}
Run 67 \\
THETA
\end{tabular} & Data Pa!nt . Lp(f) & Harmonic : \\
\hline \begin{tabular}{l}
CH67-1-9 \\
CH67-1-1 \\
CH67-1-2 \\
CH67-1-3 \\
CH67-1-4 \\
CH67-1-7 \\
CH67-1-5 \\
CH67-1-6 \\
CH67-1-8
\end{tabular} & \[
\begin{array}{r}
15.0 \\
68.5 \\
77.8 \\
87.2 \\
96.8 \\
105.0 \\
111.2 \\
126.1 \\
140.0
\end{array}
\] & \[
\begin{array}{r}
102.0 \\
99.1 \\
99.8 \\
97.8 \\
96.3 \\
102.4 \\
91.10 \\
87.7 \\
85.8
\end{array}
\] & \\
\hline tabulated juput. file & \begin{tabular}{l}
Run 67 \\
THE TA
\end{tabular} & Data Point 1 Lp(f) & Marmonic 2 \\
\hline \begin{tabular}{l}
CH67-1-9 \\
CH67-1-1 \\
CH67-1-2 \\
CH67-1-3 \\
CH67-1-4 \\
CH57-1-7 \\
CH67-1-5 \\
CH67-1-E \\
CH67-1-8
\end{tabular} & \[
\begin{array}{r}
15.0 \\
68.5 \\
77.8 \\
87.2 \\
96.8 \\
105.0 \\
111.2 \\
126.1 \\
140.0
\end{array}
\] & \begin{tabular}{l}
95.1 \\
99.4 \\
94.2 \\
98.2 \\
97.2 \\
94.5 \\
94.1 \\
91.9 \\
93.2
\end{tabular} & \\
\hline TABULATED OUPUT. FILE & Run 67 THETA & Data Point , Lp(f) & Harmonic 3 \\
\hline \begin{tabular}{l}
CH67-1-9 \\
CH67-1-1 \\
CH67-1-2 \\
CH57-1-3 \\
CH67-1-4 \\
CH67-1-7 \\
CH67-1-5 \\
CH67-1-6 \\
CHET-i-8
\end{tabular} & \[
\begin{array}{r}
15.0 \\
68.5 \\
77.8 \\
87.2 \\
96.8 \\
105.0 \\
111.2 \\
126.1 \\
140.0
\end{array}
\] & \[
\begin{aligned}
& 33.6 \\
& 90.2 \\
& 84.3 \\
& 91.5 \\
& 91.1 \\
& 80.0 \\
& 79.3 \\
& 88.0 \\
& 91.5
\end{aligned}
\] & \\
\hline tabulated ouput. FILE & Run 67 THETA & Data Poant 1 Lp(f) & Harmonic a \\
\hline \begin{tabular}{l}
CH67-1-9 \\
CH67-1-1 \\
CH67-1-2 \\
CH67-1-3 \\
CH67-1-4 \\
CH67-1-7 \\
CH67-1-5 \\
CH67-1-6 \\
CH67-1-8
\end{tabular} & \[
\begin{array}{r}
15.0 \\
68.5 \\
77.8 \\
87.2 \\
96.8 \\
105.0 \\
111.2 \\
126.1 \\
140.0
\end{array}
\] & \begin{tabular}{l}
90.9 \\
81.6 \\
87.0 \\
83.2 \\
83.0 \\
78.0 \\
03.1 \\
78.0 \\
83.0
\end{tabular} & \\
\hline
\end{tabular}

\section*{APPEADIX B}

\section*{ADDITIONAL COMMENTS ON SPECTRAL BROADENING}

The influence of turbulence scattering on the acoustic signal propagating through the shear layer is discussed in Section 3.5 and example spectra are presented in Figures 23 and 24 to demonstrate the resulting spectral broadening. The spectra were obtained using the sinusoidal, high resolution spectrum mode of the HP 5420B analyzer (see Section 2.3.2). The effective filter bandwidth was approximately 42 Hz . An alternative data reduction procedure available in the analyzer is the random, high resolution spectrum mode, in which case the effective filter bandwidth is about 18.75 Hz for the frequency range of interest. In the random mode the spectra are presented in terms of power spectral density instead of power-in-the-band (as is the case for the sinusoidal mode), but the difference is of no consequence when interest is directed to the spectral broadening phenomenon.

Data reduction of the acoustic signals analyzed in Figures 23 and 24 was repeated using the random, high resolution spectrum mode; the resulting spectra are plotted in Figures B.l and B.2. Because of the smaller bandwidth, the effect of spectral broadening can be seen more clearly in Figures B. 1 and B. 2 than in Figures 23 and 24.

Figures B.l compares spectra measured at locations 5 and 7, which are on either side of the shear layer and at approximately the same angle of radiation. Spectral broadening can be observed at the higher frequencies.

Figure B. 2 compares spectra measured outside the shear layer at locations 2 and 6. Following the simple empirical analysis developed in Section 3.5 it is predicted that spectral broadening
(a) Microphone 7 (In Flow)

(b) Microphone 5 (Out of Flow)


FIGURE B-1. COMPARISON OF NARROWBAND PROPELLER NOISE SPECTRA MEASURED IN AND OUT OF FLOW, RANDOIW SIGNAL ANALYSIS MODE

\section*{(a) Microphone 2 (Forward of Plane of Rotation)}

(b) Microphone 6 (Aft of Plane of Rotation)


FIGURE B-2. COMPARISON OF NARROVBAND PROPELLER NOISE SPECTRA MEASURED FORWARD AND AFT OF PLANE OF ROTATION, RANDOM SIGNAL ANALYSIS MODE
would become evident at location 2 at frequencies above about 2700 Hz and at location 6 above about 1450 Hz . Inspection of Figure B. 2 suggests that the simple prediction procedure is a reasonably good guide to the onset of spectral broadening. In the case of microphone 6, the width of the spectral peak at 5500 Hz , measured at the lodB-down point, is about three times larger than the width at 1000 Hz .```


[^0]:    $\theta=0^{\circ}$ along tunnel centerline in upstream direction; positive $\theta$ in counterclockwise direction

[^1]:    ＊See Appendix B ror further discussion．

