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SUMMARY
Tre three-dimensicnal compressible Navier - Stokes equations are formulated
in a ~otating coordinate system, so as to include centrifugal and Corlelis
forces. The equations are parabolized by using a previously calculated invis-
cid static pressure field. The thin layer Navier-Stokes approximation, which
neglects streamwise diffusion, is used. A body-fitted courdinate system 1s
used. The streamwise momentum equation 1s uncoupled from the cross-stream
momentum equation by using contravariant momentum components, and then using
the contravariant velocity components as primary unknowns. To reduce problems
with small separated regions, the Reyhner and flugge-Lotz approximation is
used. The energy equation is included to allow for calculation of heat trans-
fer. The flow may be laminar, or a simple eddy-viscosity turbulence may be

used. A number of curved ducts and an axial stator have been analyzed,
including cases for which experimental data are avatlable.

NOMENCLATURE
e total internal energy
H total enthalpy
I rothalpy
J transformation Jacobian from Cartesian to {t,n,{) coordinates
J transformation Jacoblan from Cartesian to cylindrical coordinates
J transformation Jacobian from cylindrical to (E,n,) coordinates
k thermal conductivity
p pressure
r radius
t time
V  absolute velocity
W relative velocity

X cartesian coordinate



y cartesian coordinate

z cartesian coordinate

Y specific heat ratio

¢ hub-to-shroud grid coordinate
n blade-to-olade grid coerdinate
o angular coordinate, radians

H viscosity

3 streamwise grid coordinatle

p density

T stress

w angular velocity

Subscripts:

r r component

2 z component

8 @ component

Superscripts:

4 £ contravariant component

n n contravariant component

£ contravariant component

INTRODUCTION

Well-guided internal flow without separated regions behaves in a para-
bolic manner (ref. 1) so that the flow field can be predicted using a para-
bolic, streamwise marching method. Several computer codes have been written
for caleulating three-dimensional viscous flew through ducts of fairly complex
geometry (rc”~, 2 and 3). The same principles can be applted to calculate
flow through the blades of a turbomachine. Howaver, there are several distin-
guishing aspects of flow through a turbomachine blade row: (1) The blade row
may be rotating. (2) The hub and shroud are usually surfaces of revolution.
(3) The passage has four walls meeting at an angle. (4) The flow may be peri-
odic upstream and downstream of the blade. (5) The shroud is usually statton-
ary for a rotating blade row. The method and ccmputer code described here is
especialtly formulated to satisfy and take advantage of these particular
aspects of the flow.



The parabolic marching calculation s analagocus to calculation of a
three-dimensional boundary layer. An inviscid pressure field Ys used as an
initial pressure field; then a single-pass calculation through the length of
the bhlade passage is made. To simplify the appiication of boundary conditions
on complex blade surfaces, a body-fitted coordinate system 45 used. This
body-fitted coordinate system has one coordinate which generates circles about
the axis of rotatian. One of the coordinate surfaces coincides with the hub of
the blade row, and another coincides with the shroud. This type of coordinate
cystem eaces implementation of periodic boundary conditions upstream and down.
stream of the blade row; on the other hand, this type of coordinate system
cannat be orthogonal.

In the spirit of Patankar and Spalding (ref. 1) the streamwise momentum
calculation 3s uncoupled from the cross-stream momentum calculation. This
uncoupling s accomplished by using contravariant components of the momentum
equation, and using contravariant veloclity components as the rrimary unknowns.
The downstream contravariant velocity components are always calculated fmpli-
citly for stability. To calculate the streamwise contravariant velocity com-
ponents at the next downstream station, 1t is assumed that the static pressure
and cross-stream centravariant valociiy components are known at the previous
upstream station. The streamwise pressure gradient 15 varied by a constant
amount over the passage cross-section fo that glebal mass flow through the
entire passage is conserved. The cross-stream contravariant velocity compo-
nents are calculated at the next downstream station based on the inviscid
pressure field, and using the last calculated streamwise contravariant veloc-
‘ty components. Continuity is then checked for each mesh region, and the
cross-stream prrssure gradient is adjusted so that continutty 15 satisiied for
every mesh reglon. Iteration is required at each station so that both cross-
stream momentum and local continulty are satisfied. For turbulent flow, the
Baldwin-Lomax eddy-viscosity turbulence model is used (ref. 4).

PARABOI I£ SARCHING THROUGH A TURBOMACHINE PASSAGE

Contravariant “orm of the Navier-Stokes Equations for a Rotating
Non- orthogonal Courdinate System

The continulty equation in conservation form in cylindrical coordinates
is:

8 a_ a . a8
St (re) + 3¢ (rpwr) ' 38 (pM) + Py (TPWZ) = 0 (V)

In cylindrical {r,o,z) coordinates the Navier-Stokes equations may be written
in conservation form as follows:
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The change to 2 rotating coordinate system is accomplished by the change of
variables:
t' =t We =V
r' = r Ne = Ve - W
9' = 6 - Ut wz B VZ
z' =2
The partial derivatives with respect to t then become:
-
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The resulting Navier-Stokes equations for rotating cylindrical coordinates are
now {(the ' has been dropped):
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Finally, the energy equation in conservation form is:

g% + v.((e + p) V) = TekUT + V'(T V)

This is expanded in cylindrical coordinates, and transformed tc rotating
coordinates using
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Also, rothalpy I is introduced, using the relation

e +p = pl ¢ mrpvB

The enerqgy equation in conservation form, for rotating cylindrical coordinates
and in terms of rothalpy 1is:

%{ (r(pl - D)) + rP(pIR) = ru«k9T + rve(x W)
or
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Equations (1) to (5) can be written in compact form as
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Equation (6) can be transformed to an arbitrary nonorthoganal rotating
coordinate system (¥, n, {) using the chain rule. When this 1s done, consider-

able simplification occurs by combining terms properly (refs. 5 and 6), and by
using the contravariant velocity components as variables. Note that terms

such as
Iz J2 Jo
n

E ¢



are equal to zero (ref. 7}, so that factors like
The form of the equations s now:

the derivative.
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Equation 7 sti11) has cylindrical momenturm components. It is desired to
utilize momentum components aligned with the mesh, so that streamwise momentum
is easily uncoupled from the cross-stream momentum components. This 1s accom-
plished by taking the contravariant momentum components. for example, the
contravariant g-mementum component is g (r-momentum) plus ng/r{®-momentum)
plus {z(z-momentum). This results in:
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Derivation of the Navier. Stokes Equations for Parabolic Marching
Through a Turbomachinery Blade Row

Equation (B8) retains all terms from the original Wavier-Stokes, continu-
ity, and energy equations for a general non orthogonal rotating coordinate
system. Some terms will now be eliminated, or neglected. Qnly steady rela-

tive flow is considered so the time derivatives will be eliminated. Alsc, the

thin layer assumption 1s made so that all streamwise derivatives of viscous
terms will be neglected. Further, the mesh that is used 1s not completely
general, so that certain coordinate dertvatives will be eliminated.

The coordinate system used is shown in figure 1. The E-coordinate 1s in
the streamwise direction, n 1is the blade to blade direction, and ¢ 1is from
hub-to-shroud. Since the hub and shroud are both usually surfaces of revolu-
tion, and to make 1t easier to apply periodic boundary conditions, the
n-coordinate 1ines will be circular arcs coincident with the 6-coordinate
Tines. Hence, t and { are functions of r and z only, and ire indepen-

dent of o:

1
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n = n(rlelz)
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The required coordinate derivatives, €., €;, nr, are calculated from
the roordinate derivatives of the irverse trar;?orm., dn, rE, 85, etc., by the
equations:
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£, a0 a ¢, =0 (9)
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The Jacobian, J, is given by:

J = (10)

re (rEZC rCZE)

Since E 3¥s in the streanwise direction, all E-derivatives of the viscous
terms are neglected. Further, by using the continuity equation, for any
function ¢, we have:
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Excluding continuity, the equations become:
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Consistent with the thin boundary layer assumption, order of magnitude
arguments are used to simplify calculation of the stress tensor in terms of
the contravariant velocity components. Terms that are important involve the
second derivative of a velocity component parallel to a wall with respect to
the distance from the sam2 wall, whereas the derivative of a velocity compo-
nent normal to a wall with respect to the same wall is negiigible. Also,
coordinate derivatives (§,., np, etc.) are considered to vary slowly compared
to the velocity components themselves. Even with these simplifications, the
calculation of the stress tensor 1s rather complicated and messy for the non-
orthoganal grid used.

Numerical Solution Procedure

A FORTRAN program called PARAMAR has been written to solve equation (12)
by parabolic marching. Equation (12) 1s the thin layer Navier-Stokes equation
for a rotating, body fitted coordinate system. The ¥£-coordinate is in the
streamwise direction, n 1s blade-to-blade,and ¢ 1s hub-to-shroud, as
indicated in figure 1. The equations are paraboiized by using a previously
calculated drsiscid static pressure field, and neglecting streamwise diffusion
terms. The pressure field may be obtained by the MERIODL and TSONIC codes
(refs. ¢ and 9) or from the Denton code (ref. 10).

The form of the three momentum equations and the energy equation 1s

Wae . Woae af 20\ af 2\
£t P I am TP ac  am\an) s\l e}

where ¢ may be any coentravariant velocity component or rothalpy. S s

the remaining terms of the eguation. The coefficients a and b, and the
source term 5 are different for each equation. By using a finite-difference
“oproximation for the E-derivative, the equation may be appraximated as:

3
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It 15 assumed that the mesh lines are coordinate lines, and that g4,y - By = 1.
Similarly, for the other coordinates, 1t will be assumed that an = A¢ = 1.

This wquation is an implicit equation for e¢447. In finite difference form,

the equation may be solved for 447 directly by using the block tridtagonal
algorithm (ref. 11, p. 198)

Because of the importance of accurately calculating continuity for inter-
nal flow, a staggered mesh is used, much as suggested by Patankar and Spalding
(ref. 1). The mesh arrangement and numbering sheme is shown in figure 2.

Each of the momentum equations are uncoupled by using coefficients calculated
at the upstream station. Since an inviscid pressure field 1s used, correc-
tions must be made to account fFor viscous effects in the boundary layer,

The streamwise (£} momentum equation 1s used to calculate the stream-
wice contravariant veloctty components at the next streamwise station, using
. zero velocity boundary conditions. After calculating the downstream W%, the
mass flow at the downstream station will be low due to an increasing displace-
ment thickness of the boundary layer. ‘ience, the pressure must be reduced at
the downstream station, so that global continuity 1s satisfied. This is done
by reducing the stream-wise pressure gradient uniformly over the entire pas-

sage cross section.

The cross-stream momentum equations are used to calculate the cross-
stream contravariant velocity components at the next station. Zero velocity
boundary conditions are used. After calculating the cross-stream velocities,
continuity Vs checked for each mesh region. 1In general there will not be con-
servation of mass for each mesh region., An equation can be derived to calcu-
late a correction to the pressure gradient needed in the two cross-stream
momentum equations to give cross-stream velocity components that will satisfy
continuity for each mesh region. The resulting equation resembles a finite-
difference Poisson equation for pressure over the downstream cross section.
This correction to the pressure gradient 1s needed to develop the correct
cross flow within the boundary layer. Iteration i1s required at each station to
satisfy both the continuity equation and the momentum equations.

If heat transfer is neglible, constant rothalpy may be assumed. The
energy equation 1s used when heat transfer by convection and conduction s of
interest. Then the rothalpy at the downstream station is calculated implic-
1tly. Boundary condttions may specify adiabatic walls, specified wall temper-
ature, or specified heat flux through the walls.

Cases of practi:al interest will have a turbulent layer, of course. Feor
this purpose, the Baldwin-Lomax eddy-viscosity model is used (ref. 4). Pro-
vision 1s made for specifying a constant turbulent Prandtl number for the

energy equation.

14
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Numerical Examples

Several combinations of geometry, mesh, and flow conditions have been
calculated for verifying the PARAMAR code. Most of this has been done for
laminar flow to avoid the possibility of inaccuracy due to the turbulence
model. Most of the geometry has been for straight ducts of various cross-
sections, at varying angles, and for accelerating and decelerating flow. In
addition some curved ducts and turbomachine blades have been run, which are

given as examples below.

Laminar flow in a curved duct. - The duct 3s shown in figure 3. Laser
velocimeter measurements have been made by Taylor, Whitelaw, and Yianeskis
{(ref. 12). The measurements and calculations were made at a Reynolds number
of 790, based on the hydraulic diameter of the duct. The calculation was
started at 0.1 m upstream of the start of Lhe bend with uniform flow. The
mesh used for the calculation by PARAMAR is shown in figure 4. The inviscid
pressure field shown in figure 5 was obtained by using the Denton code
(ref. 10). Some difficutly was had with negative velocities on the pressure
surface near the start of the bend. There 3s a strong adverse pr:ssure gradi-
ent in this reglion, as shown in figure 5, which resulted in negative stream-
wise velocities being calculated. Thesz negative velocities are closer to the
wall than the experimental measurements shown in Ref. 12. When the streamwise
velocities become negative, the streamwise momentum s increased to a small
value (2 percent of the freestream value for this case). Thus a small amount
of momentum 1s being artificially added to the boundary layer. The added
energy i1s negligible, but allows calculation through the small reverse flow
region. This is a variation on the commonly used Reyhner and Flugge-Lotz
approximation (ref. 13).

Carpet plots of streamwise velocities and cross-section vector plots are
shown in flgures 6 and 7. The results agree qualitatively with the experi-
mental results. 1In order to make a detailed comparison with the experiment,
it s necessary to impose the proper flow field at the start of the bend,
which has not yet been done.

Flow through an axial stator. - The blade passage is shown in figure 8,
A cusp has been added to the very blunt leading edge. Flow for this geometry
nas been calculated for laminar flow at a Reynolds number of 197, based on the
upstream hydraulic diameter. An inviscid pressure fie'ld was obtained by the
MERIDL and TSONIC codes (refs. B and 9). Calculated velocity magnitudes and
cross-section vector plots are shown in figures 9 and 10. Although experi-
mental comparisons have not yet been made, the results are qualitatively cor-
rect. An effort is being made to obtain a turbulent flow solution at a much
higher Reynolds number,
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MERIDIONAL PLANE

Figure 1, - Mesh and coordinate system.
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