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CALCULATION Of THREE DIMENSIONAL, VISCOUS FLOW THROUGH TURBOMACHINERY

BLADE PASSAGES BY PARABOLIC MARCHING

Theodore Katsanis
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Tt.e three-0imensicnal compressible Navier Stokes equations are formulated
in a e atating coordinate system, so as to include centrifugal and Coriolis
forces. The equations are parabolized by using a previously calculated invis-

cid static pressure field. The thin layer Naviar-Stokes approximation, which

neglects streamwise diffusion, is used. A body41 tted coordinate system is
used. The streamwise momentum equation is uncoupled from the cross-stream
momentum equation by using contravariant momentum components, and then using

the contravariant velocity components as primary unknowns. To reduce problems

8	
with small separated regions, the Reyhner and Flugge-Lotz approximation is
used. The energy equation is included to allow for calculation of heat trans-

Ter.The flow may be laminar, or a simple eddy-viscosity turbulence may be

f	 used. A number of curved ducts and an axial stator have been analyzed,
including cases for which experimental data are available.

+	 NOMENCLATURE

e	 total internal energy

H	 total enthalpy

I	 rothalpy	 1
i'

J	 transformation Jacobian from Cartesian to (E,n,{) coordinates

J i	transformation Jacobian from Cartesian to cylindrical coordinates 	 I

1  transformation Jacobian from cylindrical to (E,n,C) coordinates
k	 thermal conductivity

i
i

p	 pressure

r	 radius

t	 time

V	 absolute velocity

W	 relative velocity	 I

x	 Cartesian coordinate



y	 cartesian coordinate

z	 cartesian coordinate

Y	 specific heat ratio

C	 hub-to-shroud grid coordinate

n	 blade-to-blade grid coordinate

e	 angular coordinate, radians

V	 viSCOSity

E	 streamwise grid coordinate

P	 density

T	 stress

w	 angular velocity

Subscripts:

e
r	 r component

z	 z component

e	 e component

SUer scrj[jts:

S	 C contravariant component

Y1	 n contravariant component

E	 E contravariant component

INTRODUCTION

Well-guided internal flow without separated regions behaves in a para-
bolic manner (ref. 1) so that the flow field can be predicted using a para-
bolic, streamwise marching method. Several computer codes have been written
for calculating three-dimensional viscous flow through ducts of fairly complex
geometry (rc`	 2 and 3). The same principles can be applied to calculate
flow through the blades of a turbomachine. How-2v2r, there are several distin-
guishing aspects of flow through a turbomachine blade row: (1) The blade row
may be rotating. (2) The hub and shroad are usually surfaces of revolution.
(3) The passage has four walls meeting at an angle. (4) The flow may be peri-
odic upstream and downstream of the blade. (5) The shroud is usually station-

N,,, 	 ary for a rotating blade row. The method and computer code described here is
especially formulated to satisfy and take advantage of these particular
aspects of the flow.
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The parabolic marching calculation is analagcus to calculation of a
three-dimensional boundary layer. An inviscld pressure field is used as an

initial pressure field; then a single-pass calculation through the length of
the blade passage is made. To simplify the application of boundary conditions

on complex blade surfaces, a body-fitted coordinate system is used. This

body-fitted coordinate system has one coordinate which generates circles about
the axis of rotation. One of the coordinate surfaces coincides with the hub of

the blade row, and another coincides with the shroud. This type of coordinate
system eases implementation of periodic boundary conditions upstream and down•

stream of the blade row; on the other hand, this type of coordinate system
cannot be orthogonal.

In the spirit of Patankar and Spalding (ref. )) the streatwise momentum
calculation is uncoupled from the cross-stream momentum calculation. This
um:oupling is accomplished by using contravariant romponents of the momentum

equation, and using contravariant velocity components as the primary unknowns.
The downstream contravariant velocity components are always calculated impli-

citly for stability. To calculate the streamwise contravariant velocity com-
ponents at the text downstream station, it is assumed that the static pressure

and cross-stream contravariant velocity components are known at the previous
upstream station. The streamwise pressure gradient is varied by a constant

amount over the passage cross-secti)n fo that global mass flow through the
entire passage is conserved. The cross-stream contravariant velocity compo-

nents are calculated at the next downstream station based on the inviscid
pressure field, and using the last calculated streamwise contravariant veloc-

ity components. Continuity is then checked for each mesh region, and the
cross-stream pressure gradient is adjusted so that continuity is satisfied for
every mesh region. Iteration is required at each station so that both cross-

stream momentum and local continuity are satisfied. For turbulent flow, the
Baldwin-Lomax eddy-viscosity turbulen:e model is used (ref. 4).

PARABOIIC iMI ARCHING THROUGH A iURBOMACHINE PASSAGE

Contravariant : orm of the Navier-Stokes Equations for a Rotating
Non-orthogonal Coordinate System

The continuity equation in conservation form in cylindrical coordinates

is:

T (rP) + ar (rPWr) + ae 
( Pwr ) + az (rpW z )	 o	 (1}

In cylindrical (r,e,z) coordinates the Navier-Stokes equations may be written

in conse r vation form as follows:

at (rPY + Ar (rPv r ) + 
ae  (PV r^a) * az (rP^r^z)

2	 a	 a	 a
PV_
e - ar 

(rr
rr - rp) + ae (r 

re ) 
+ az 

(rr
rz ) - r ee + P

3
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A.

at (rpVO) + ar (rpyrV0 * ae ( pvo) + a7 (rpVeVz)

	

-PV
r V8 	 ar (rT re ) « ae (T ee - P) + az {rt

es ) + ire

	

at (rpV Z ) + ar (rpVrvz + ae (PVe V z )	 az (rpVz)

= ar 
(rT rz

) + ae (Tre) + a
z (r1 zZ - P)

The change to a rotating coordinate system is accomplished by the change of
variables:

t' - t	 Wr - VT

r' = r	 We ° VO - Wr

0' = 0 - Wt	 Wz > Vz

Z , - z

The partial derivatives with respect to t then become:

a	 a	 a
at ° at' - `a ae

The resulting Navier-Stokes equations for rotating cylindrical coordinates are
now (the ' has been dropped):

at (rpW r ) + ar (rpW r ) + a0 (PWrW0 + az (rpWrWz)

= pV0	r a	Tee + ar (rT
rr ) + ae 

(T re) + az (rT
rz )	 (2)

at (rpWO ) + ar 
(roW

eW r ) + ao (pW0) + az ( r PW0 z)

pWr (We + 2Wr) - a© + T re + ar (rTre)

+ ae ( 1 00 ) + az (rTrO)	 (3)

at (rpwz) + ar (rpW zW r ) ' as (pwzwe) + az (rpWz)

r a + ar (rT
rz ) + ae 

(Tez) + az (rTzZ)	 (4)
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Finally, the energy equation in conservation form is:

at  + V•((e + p) V) - V • kVT + V•(T 0)

This is expanded in cylindrical coordinates, and transformed tc rotating
coordinates using

a	 a	 a
at ° at, - 

W 
a 

Also, rothalpy I is introduced, using the relation

e + p = pI + wrpV6

The energy equation in conservation form, for rotating cylindrical coordinates
and in terms of rothalpy is:

T (r(pl - p)) + rV•(pIW) = rV•kVT + rV • (T W)

or

at ( r (P I - D)) + ar (rpIWr) + ae (P1We) + az (rpIWz)

r ( rk ar ) + ae ( r K AT ae ) ` az (rk az )

+ a (r(W T	 « W T	 + W T )) + a (W T	 + W T
ar	 r rr	 a rs	 z rz	 ae	 r re	 a 09

+W,	 ) + a (r(W T 
rz 

+W 
Tez 

+W 
z zz
t ))	 (5)

z ez	 az	 r	 a 

Equations (1) to (5) can be written in compact form as

	

a t q + a r E + aeF + azG = K + a r R + aes + a z T	 (6)

where

P	 PWr	 PWe

Pwr	 PWr	 PWeWr

q = r pWe	 2
E	 r PWrwe	 F	 pwe

pWZ

pI - p
PWrWz	 PWeWZ

PW r I	 PWel

5



0
I

WP Z	
o

2 - r---e - t
PWzWr	

pV 
a ar	 ea

G - r PW ZWe	 K ° T re _ ae - PWr(We , 2mr)

PW2-r apz	 az

PWzl	 LO

O

T
rr

R	 r Tre

T
rz

WrTrr
kaT

F W0 T re * W z T rz	 Br

0

Tre

S ' Tee

Tez
aT_

WrTrO 
a W

0 T 00	 W z T ez	 k rae

0

T
r 

T	 r Tez

t
z 

aT

W ` rz	 WO T ez + W z ` zz	 k az

Equation (6) can be transformed to an arbitrary nonorthogonal rotating
coordinate system (^, n, C) using the chain rule. When this is done, consider-

able simplification occurs by combining terms properly (refs. 5 and 6), and by
using the contravariant velocity components as variables. Note that terms

such as

/2^ « (

T'r) + (

a 2n)C

6
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are equal to zero (ref. 7), so that factors like Er/J2 can be moved inside
the derivative. The form of the equations is now:

a tq + a 	 + a n F + a CG	 K + a tR + a 
n 
S + a 

C 
T	 (7)

where

P

PWr

q	 J-1 PW 

PWz

P I -

P
Wn

POW 

F = J-1 pWnWe

POW 

PW^I

pWt

POW 
E = J -1 PWtWe

PWtWz

POI

pWC

PWCWr

6 = J -IIPWKWe

PWCWr

IPWCI

0	 0

T t	 T^

	

r	 r

t

	

R = J -1 T e	 S + J -1 Te

	

t	 n
T 
	

T 

t eGe 	 ^eG6
t r 6 r + r	 + t z a z	 I^rar +	 r + ^zpz
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K	 J-^

n

T`
r

r

T = J-1 

T r

T 
z

K* ear «
K r o r	 r	 Czpz

'rear	 (We * 2Wr^

r - rae - PW r 	 r

ap
az

0

0

Pi e
2
	 8,^	 teo

r	 8 	 r

W	
^rWr * ko 

W

re * tzWz

W

Wn ' 
rl w * ne re * nzWz

r	 We
W ' K rW r * re r / + czWz

E	 c	 c T ro	 {
Tr
	 S r T rr * ye( T	 « yzTrz

* to (	
rTe ' 

^r T re	 to r	 ^z T ez

(Tez

	

T z - 
^rT rz 

*fie\ r	 * ^zTzz

T
r,	 e r	 *

	

Tr - 
n r T rr * ne r	 nzTrz

Te8 \JI

Te - 
n r T re * no r / * nZTez

n	 Tez
Tz = 

nrT rz * ne r + n2TZ2

{	 y (Trel
T r

	KrT rr * re \ r / } CzTrz

r	 Tee

Te = ^r T re * ce	 r	 * {zTez

(Tezl
T 
C
z = 

CrT 
rz * Ce \\\ r / * SZTT-z

8



t	 ,

pr ° W r r rr + W0T re + Wzrrz + karT

aeT
pe 	

WrTre 
r 
Wa7ee + WzTez + k r

a z ° W r 7 rz 
+ Warez + WzIzz + 

kazT

Equation 1 still has cylindrical momentum components.	 It is desired to

utilize momentum components aligned with the mesh, so that streamwise momentum
is easily uncoupled from the cross-stream momentum components. This is accom-

plished by taking the contravariant momentum components. For example, the
contravariant E-momentum component is Er(r-momentum) plus ne/r(e-momentum)

plus Cz(z-momentum). This results in:

A	 A	 2	 A	 A	 A	 2 A
	a tq + a kE r a n F + a CG = a E R + a nS + a C T + K	 (8)

where

P PWE
PWn

PWE
PWEWE PWV

q= j	 PWn E	 j	 PW EW n F° j	 PWnWn

PWC PWEWC PWnWC

PI	 -	 p PA PWnI

PWC

0

PWCWE
Er T9	

+ T
0 e +	

EzTz

G - 1	 PWCW n E

'e T ePWCWC
R	

-	 J	 n r T r	 + +	 n z T z

PWC I J E	 +
C r T r

CeTeE
+	 E

CzTzr

zepe
E r a r	 + r + Ezaz

,
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0

	

n	 {e'e	 n

	

E r T +r	 r	 + Ez`z

n
A	 n + ^g	 n

S	

eT 1

	

J °r'r	 r	 ^zTz	
T o J

n

C Tn + 
CA) 

i C in

	

r r	 r	 z z

^ele
nrOr + r	 + nzOz

0

C + EOTCe +
	 C

E 'rr	 r	 E 'zz

C
n T

n rTr + 
r ee 

* nzTz

C CeT e
C	

C
C r'r + r	 + CzTz

,Ole
C r a r	 r	 + CzOz

0

pG - 9 EEP - S { ^P - 9 ECP - 
{ r t ee + {etre

E p	E	 n	 C	 r	 r2

K	 pG - 9^ EP - 9^ n P 	 9 ^CP - 
^r T 6e + ne2re

° J	 np	 E	 n	 C	 r	 r2

pG	 - 9C{ P	 9CnP	 9CCP - 
C r Tee Cure

Cp	{	 n	 C	

r — + r2

0

E

GEp a W{((Er)E 
W r + (re)

E 

We * (Ez)E Wz

	

//	 r Ee
+W^I(E r ) n W r +1 r)nWe+(Ez)nWz

	

r\\	

\ Ee
+ WC (({ r ) C W r +( r )CW0 + ( E z ) C Wz

	

{ V

\\ 

2	
E

	

+ r r e	 2 Wr (We 
+ 2wr)

r
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i

n

GnP	
W^((n r ) t W r * ( re) We	( E z ) E Wz )

\	 E

n
♦ W n (n r ) n W  

+ (re)n We * (t z ) n Wz)

W	 "	 1r WC ( n r )C r + (re)C 
We 

r 
(tz)C 

Wz/

n ^ 2
	

n
s rre - 2 W r ( We r 2wr)

r

GCP a WC (C r )^ Wr ' 
`Cre)^ 

W9 " (Cz)F Wz/
l

r
r wn `(C r ) n Wr	

re ) We + (Cz)n 
Wz^n

C
* WC (K r ) C Wr ` ( rr	 e ` (zz) C Wz^

C
r
yr	 C

+ re - 2 Wr (We 	r 2wr)

r

Derivation of the Navier-Stokes Equations for Parabolic Marching
Through a Turbomachinery Blade Row

Equation (D) retains all' terms from the original Wavier-Stokes, continu-
ity, and energy equations for a general non ortho gonal rotating coordinate

system. Some terms will now be eliminated, or neglected. Only steady rela-
tive flow is considered so the time derivatives will be eliminated. Alsc, the

thin layer assumption is made so that all streamwise derivatives of viscous
terms will be neglected. Further, the mesh that is used is not completely

general, so t'iat certain coordinate derivatives will be eliminated.

The coordinate system used is shown in figure 1. The t-coordinate is in
the streamwise direction, n is the blade to blade direction, and C is from

hub-to-shroud. Since the hub and shroud are both usually surfaces of revolu-
tion, and to make It easier to apply periodic boundary conditions, the

n-coordinate lines will be circular arcs coincident with the e-coordinate
lines. Hence,	 and C are functions of r and z only, and sre indepen-

dent of e:

11



P'

E ^ E(r,z),	 to • 0

n e n(r,e,z)

C = C rr , z )	 Co	 0

The required coordinate derivatives, Er, Ez, nr, ^tc. are calculated from
the roordinate derivatives of the irverse trae;i^orr,.'or, r E , e E , etc., by the

equations:

-rC

Ez	
(rEzC
	 rCzE)

Ee=0

zC

Er • (rEzC _ rCzE)

The Jacobian, J, is given by:

(rC0E - r 
E 
0 
C )

n z
 = en(rtzC _ 

r 
C 

z 
E )

1
no = e

n

(eC z E - eEzC)

nr	

en(rt7C	

rCzE)

r&^._rz	

(r E 7 K - rCzE)

Ce • 0	 (9)

_z E

C r • (rEzC - rCzE)

Since E is in the streamwise
terms are neglected. Further,

function	 p, we have:

// W E	 // Wn 1\1a t (p J w + 
an (

pJ ,p1 +

Excludin g continuity, ,̀ the a//qua

re n (r E z C - rCzE)
	

(10)

direction, all	 E-derivatives of the viscous
by using the continuity equation, for any

C 
WC	 WE	 Wn	 WK

aC a J w	 P	 wE + P J wn + P J wC	 ( 11 )

Lions become:

W E	 Wn	 WK

a J a E H + a J a nH + P^ aCH	 a ns + aC'T + K	 (12)

where

WE	 ErTr + EzTz

= W n	S 
s	

1 
n T 

r + ne T0/r + nH	 J_	
r	 z 

C
W	

n	 C Tn
C rT +r	 z z

1	 nr0r + neGa
/r 

+ nzpz
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C	 C
^r T r ` EzTz

11J « ne 
TB/r	

nz IZ

7 ^ J-1
	

TC +	 C
Cr r	 CzTz

C r 0 r 
* C 

z 
0 
z

9^Cp - 9tnp - 9^Cp
E	 n	 C

9 nEp	 9nnDn - 9nCP
E	 C

9 C9p - 9 Cn P
n 

- 9Ctp
^	 C

PG EP

K = J-1IPGnP

PGCP

0

Consistent with the thin boundary layer assumption, order of magnitude
arguments are used to simplify calculation of the stress tensor in terms of

the contravariant velocity components. Terms that are important involve the
second derivative of a velocity component parallel to a wall with respect to

the distance from the samz wall, whereas the derivative of a velocity compo-
nent normal to a wall with respect to the same wall is negligible. Also,
coordinate derivatives (tr, nr, etc.) are considered to vary slowly compared

to the velocity components themselves. Even with these simplifications, the

calculation of the stress tensor is rather complicated and messy for the non-
orthogonal grid used.

Numerical Solution Procedure

A FORIRAN program called PARAMAR has been written to solve equation (12)
by parabolic marching.	 Equation (12) is the thin layer Navier-Stokes equation
for a rotatin g , body fitted coordinate system. The g-coordinate is in the

streamwise direction, n is blade-to-blade,and C is hub-to-shroud, as
indicated in figure 1. 	 The equations are parabolized by using a previously

calculated iriiscid static pressure field, and neglecting streamwise diffusion

terms. The pressure field may be obtained by the MERIOL and TSONIC codes
(refs. j and 9) or from the Denton code (ref. 10).

The form of the three momentum equations and the energy equation is

w^ a-T+ wn ^ + W
C P

2 a I/ ate\ a	
a2P	 a{	 P J an	 P J ac	 an \

a an/ - ac
	 ac

aC ^ = S

where w may be any contravariant velocity component or rothalpy. S is
the remaining terms of the equation. The coefficients a and b, and the
source term S are different for each equation. By using a finite-difference
l oproximation for the g-derivative, the equation may be approximated as:

13
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(
az
ai)	 a

i«1	
a

coordinate

it will be

for wi«1•

iirectly by

-(a -82)) I+l - (TaC-(b —a%,

lines, and that Ei«1
assumed that an = aC
In finite difference

using the block tridii

S,
))i+1

- E 1	 1 .

= 1.

form,
igonal

Wn 	 WC
P 

We
d (wi«1	 m i ) ° P J (an )i«1 « P3

It Is assumed that the mesh lines are
Similarly, for the other coordinates,
This equation is an implicit equation

the equation may be solved for wt«1
algorithm (ref. 11, p. 196)

Because of the importance of accurately calculating continuity for inter-
nal flow, a staggered mesh is used, much as suggested by Patankar and Spalding

(ref. 1). The mesh arrangement and numbering sheme is shown in figure 2,
Each of the momentum equations are uncoupled by using coefficients calculated

at the upstream station. Since an inviscid pressure field is used, correc-
tions must be made to account for viscous effects in the boundary layer.

The streamwise (F) momentum equation is used to calculate the stream-
wise contravariant velocity components at the next streamwise station, using

zero velocity boundary conditions. After calculating the downstream W^, the

mass flow at the downstream station will be low due to an increasing displace-
ment thickness of the boundary layer. Hence, the pressure must be reduced at

the downstream station, so that global continuity is satisfied. This is done
by reducing the stream-wise pressure gradient uniformly over the entire pas-

sage cross section.

the cross-stream momentum equations are used to calculate the cross-
stream contravariant velocity components at the next station. Zero velocity

boundary conditions are used. After calculating the cross-stream velocities,
continuity is checked for each mesh region. 	 In general there will not be con-
servation of mass for each mesh region. An equation can be derived to calcu-

late a correction to the pressure gradient needed in the two cross-stream

momentum equations to give cross-stream velocity components that will satisfy
continuity for each mesh region. The resulting equation resembles a finite-

differenr.e Poisson equation for pressure over the downstream cross section.
This correction to the pressure gradient is needed to develop the correct
cross flow within the boundary layer. Iteration is required at each station to
satisfy both the continuity equation and the momentum equations.

If heat transfer is neglible, constant rothalpy may be assumed. The

energy equation is used when heat transfer by convection and conduction is of

interest. Then the rothalpy at the downstream station is calculated implic-
itly. Boundary conditions may specify adiabatic walls, specified wall temper-
ature, or specified heat flux through the walls.

Cases of practt„al interest will have a turbulent layer, of course. for

this purpose, the Baldwin-Lomax eddy-viscosity model is used (ref. 4). 	 Pro-
vision is made for specifying a constant turbulent Prandtl number for the
energy equation.

14
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Numerical Examples

Several combinations of geometry, mesh, and flow conditions have been
calculated for verifying the PARAMAR code. Most of this has been done for

laminar flow to avoid the possibility of inaccuracy due to the tdrbulence
model. Most of the geometry has been for straight ducts of various cross-

sections, at varying angles, and for accelerating and decelerating flow.	 In
addition some curved ducts and turbomachine blades have been run, which are
given as examples below.

Laminar flow to a curved duct. - The duct is shown in figure 3. 	 Laser
velocimeter measurements have been made by Taylor, Whitelaw, and Yianeskis

(ref. 12). The measurements and calculations were made at a Reynolds number
of 790, based on the hydraulic diameter of the duct. The calculation was
started at 0.1 m upstream of the start of Lhe bend with uniform flow. The
mesh used for the calculation by PARAMAR is shown in figure 4. The inviscid

pressure field shown in figure 5 was obtained by using the Denton code
(ref. 10).	 Some difftrutly was had with negative velocities on the pressure
surface near the start of the bend. There is a strong adverse pressure gradi-

ent in this region, as shown in figure 5, which resulted in negative stream-
wise velocities being calculated. These negative velocities are closer to the
wall than the experimental measurements shown in Ref. 12. When the streamwise

velocities become negative, the streamwise momentum is increased to a small
value (2 percent of the freestream value for this case). Thus a small amount
of momentum is being artificially added to the boundary layer. The added

energy is negligible, but allows calculation through the small reverse flow

region. This is a variation on the commonly used Reyhner and Flugge-Lotz
approximation (ref. 13).

Carpet plots of streamwise velocities and cross-section vector plots are
shown in figures 6 and 7. The results agree qualitatively with the experi-
mental results.	 iii order to make a detailed comparison with the experiment,
It is necessary to impose the proper flow field at the start of the bend,
which has not yet been done.

Flow through an axial stator. - The blade passage 1s shown in figure B.
A cusp has been added to the very blunt leading edge. Flow for this geometry

has been calculated for laminar flow at a Reynolds number of '197, based on the

upstream hydraulic diameter. An inviscid pressure fie'ld was obtained by the
MERIDL and TSONIC codes (refs. 8 and 9). 	 Calculated velocity magnitudes and
cross-section vector plots are shown In figures 9 and 10. Although experi-

mental comparisons have not yet been made, the results are qualitatively cor-
rect. An effort is being made to obtain a turbulent flow solution at a much
higher Reynolds number.
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