PRECISION SPACE STRUCTURES

Keto Soosaar Cambridge Research Associates Cambridge, Massachusetts

Large Space Antenna Systems Technology - 1984 December 4-6, 1984 ISSUES

- NASA LARGE SPACE STRUCTURES EFFORTS TO DATE AIMED TOWARDS
 - LARGE, FLEXIBLE ANTENNA-LIKE STRUCTURES (30-100M)
 - RELATIVELY LONG WAVELENGTHS (1-30cm)
 - MODERATE DISTURBANCES LEADING TO SOME STRUCTURE-CONTROL INTERACTION
- NASA ALSO HAS POTENTIAL MISSIONS IN "OPTICS" REGIME
 - SMALLER REFLECTORS/MIRRORS
 - SHORT WAVELENGTHS (VISIBLE TO 100µ)
 - VERY TIGHT TOLERANCES IN SURFACE, ALIGNMENT, POINTING STABILITY
 - POTENTIAL OF CONSIDERABLE ON-BOARD DISTURBANCES
- NEED TO EXAMINE TRANSFERABILITY OF TECHNOLOGY, NEW PROBLEMS

REVIEW OF REQUIREMENTS

- BASED ON NASA SPACE SYSTEMS TECHNOLOGY MODEL (JAN, 84)
- REVIEW INCLUDED BOTH
 - "MISSION SYSTEMS AND PROGRAMS"
 - APPROVED, PLANNED AND CANDIDATE CONCEPTS
 - "OPPORTUNITY SYSTEMS AND PROGRAMS"
 - GENERALLY POST-1995 SYSTEMS
- "PRECISION SYSTEMS" < 100µ OPERATIONAL WAVELENGTH
- REVIEW TO IDENTIFY STRUCTURE-CONTROL INTERACTION POTENTIAL
 - FIGURE (SURFACE) CONTROL
 - VIBRATION (ALIGNMENT) CONTROL
 - ATTITUDE CONTROL

LARGE DEPLOYABLE REFLECTOR

INFRARED INTERFEROMETER

MOLECULAR LINE SURVEY

PINHOLE OCCULTER FACILITY

100M THINNED APERTURE

VERY LARGE SPACE TELESCOPE

NASA-PLANNED PRECISION SPACE STRUCTURES

NASA_NO.	NAME	<u>SIZE</u>	WAVELENGTH	POINTING STABILITY
A-20	LARGE DEPLOYABLE REFLECTOR	20M	30µ+	,15µr
A-24	INFRARED INTERFEROMETER	3M X 100M	300µ+	(5µr)
A-26	COSMIC	1.8M X 34M	VIS	2nr
A-27	100M THINNED APERTURE	100M	VIS	.5nr
A-28	VERY LARGE SPACE TELESCOPE	8M	VIS	10nr
A-36	MOLECULAR LINE SURVEY	3.5M	100µ	(8µr)
A-18	PINHOLE OCCULTER FACILITY	50M	XRAY, UV, VIS	1µr

NASA-PLANNED PRECISION SPACE STRUCTURES

NASA_NO.	D/RMS	<u>fn(EST.)</u>	<u>D/fnኣ</u>	POSSIBLE DISTURBANCES	<u>C</u>	ONTROL NEED	<u>S</u>
					<u>FIGURE</u>	<u>STRUCTURE</u>	<u>ATTITUDE</u>
A-20	10 ⁷	5	10 ⁵	CHOP, SLEW, CMG, CRYO	Х	Х	Х
A-24	6 X 10 ⁶	2	10 ⁵	CMG, APPEND	Х	Х	Х
A-26	10 ⁸	10	10 ⁶	CMG, APPEND	х	Х	Х
A-27	1.6 X 10 ⁹	1	10 ⁸	CHOP, CMG, APPEND	Х	Х	Х
A-28	2.5 X 10 ⁸	5	2 X 10 ⁵	CMG, APPEND	Х	Х	Х
A-36	7 X 10 ⁵	10	3,5 X 10 ³	CHOP, CMG	х	NO	X
A-18	NA	NA	NA	SHUTTLE		(X)	Х
<u>THRESHOLD</u>	<u>10⁵</u>	THRESHOLD	<u>10⁴</u>				

DIAMETER AND WAVELENGTH ESTIMATION

VIBRATION CONTROL

FIGURE CONTROL

- EARLIEST RECOGNIZED INSTANCE OF STRUCTURE-CONTROL INTERACTION
- GENERALLY A QUASI-STATIC CONTROLS APPROACH THERMAL DRIVERS
 - RIGID SEGMENT ALIGNMENT TO DESIRED FIGURE
 - BACK-UP STRUCTURE MAY NEED TO BE CONTROLLED AS WELL
 - DISPLACEMENT ACTUATORS
 - CONTINUOUS MIRROR ACTUATORS ELASTICALLY COUPLED
 - FORCE ACTUATORS HIGH DEGREE OF COUPLING
 - DISPLACEMENT ACTUATORS EFFECT MORE LOCALIZED
 - REAL ACTUATORS INTERMEDIATE EFFECT MUST MODEL
 - HYBRID VERSIONS OF SEGMENTED/CONTINUOUS BEING CONSIDERED
- NOT DIFFICULT TO DO STRUCTURE ANALYSIS OR CONTROLS DESIGN
 - UNLESS MIRRORS EXHIBIT STRUCTURAL DYNAMICS RESPONSE
 - MAY BE POSSIBLE TO STIFFEN MIRRORS SOMEWHAT > 30 HZ
 - OTHERWISE CONTROLS APPROACHES FROM ANTENNAS HIGH BW
- SENSORS/ACTUATORS RESOLUTION TO .01[→] OPERATING WAVELENGTH
 - TRANSFER FROM ANTENNAS LESS LIKELY

- THE LASER FIGURE SENSOR MONITORS EACH SEGMENT SURFACE
- THE EDGE SENSOR TESTS ALIGNMENT BETWEEN PAIRS OF SEGMENTS
 - FIGURE/SURFACE CONTROL

- DISTRIBUTED PARAMETER CONTROL FLEXIBLY COUPLED
- TECHNOLOGY DEVELOPED IN EARLY 1970'S FOR STATIC CORRECTION - NASA/DOD
- HIGH-BANDWIDTH OPTICS DEVELOPED
- CORRECTION FOR MIRROR DYNAMICS LARGELY UNEXPLORED

VIBRATION (ALIGNMENT) CONTROL (1)

- SOME BUT NOT MUCH SIMILARITY TO ANTENNA CONTROL PROBLEM
- \bullet CONTROL BW \sim 50 HZ; 100 MODES IN BW; 30 MODES CONTROLLED
- RESPONSE REDUCTION GOALS NEAR 104
- SPACECRAFT DESIGN OPTIONS PERMIT SOME ATTENUATION
 - ISOLATION (ACTIVE OR PASSIVE) OF OPTICAL TRAIN
 - DISTURBANCE LEAKAGE STILL CAN OCCUR
 - INERTIALLY DISTRIBUTED FORCES NOT AFFECTED BY ISOLATION (SLEW, CHOP)
 - SENSOR-ACTUATOR DYNAMICS AND NOISE CAN BE TROUBLESOME
 - HENCE REDUCTION OF VIBRATIONS IS NEEDED

OVERALL SPACECRAFT DESIGN APPROACH

VIBRATION (ALIGNMENT) CONTROL (2)

• OPTIONS:

- NATURAL DAMPING CLOSER TO ,1% OF CRITICAL
- DAMPING MATERIALS MAY BE LIMITED BY
 - BROAD BANDWIDTH OF RESPONSE
 - CRYO TEMPERATURES OF SYSTEMS
 - BROAD TEMPERATURE SWINGS OF SYSTEM
 - OUTGASSING AND CONDENSATION ON COLD OPTICS
- MULTI-INPUT MULTI-OUTPUT CONTROL
 - THEORETICAL BASIS SAME AS IN ANTENNA PROBLEMS
 - MORE DETAILED STRUCTURAL MODELS NEEDED MORE MODES IN BW
 - STRUCTURAL LINEARITY AT MICRO-STRAINS QUESTIONABLE
 - DEPLOYMENT HINGES AND LATCHES MUST FULLY FREEZE
 - SENSOR-ACTUATOR DYNAMICS CLOSER IN BW TO EXCITED MODES
 - ACTUATOR NOISE CAN BE LARGE DISTURBANCE SOURCE
 - ACTUATOR AND SENSOR RESOLUTION
 - .01×/D ANGULAR
 - .01λ LINEAR
 - TRANSFER FROM ANTENNAS UNLIKELY
 - SYSTEM ID MAY BE CONFUSED BY ISOLATORS
 - AVIONICS MAY NEED TO PROCESS MUCH LARGER SYSTEM

ATTITUDE CONTROL

- ISOLATORS MAY MAKE LOW BW SYSTEM POSSIBLE
 - COARSE POINTING AND SLEW BY MOUNTING PLATFORM
 - FINE POINTING BY OPTICAL TRAIN USING ISOLATORS
- COARSE SENSORS AND ACTUATORS TRANSFERABLE FROM ANTENNAS
- FINE SENSORS AND ACTUATORS UNIQUE TO PRECISION MISSIONS

NET NASA MISSIONS - ACTIVE STRUCTURES GOALS

	SHORT λ – OPTICAL	LONG λ – RADAR	
D	15	100	
λ	1µ	3 cm	
TOLERANCES			
SURFACE	0.03µ	0.4 mm	
DEFOCUS	0.2 λ	0.2 λ	
POINTING	10 nrad	10 mrad	
DISTURBANCES	PERIODIC, RANDOM, SLEW	SCAN, SLEW, PERIODIC	
CONTROLS GOALS			
LOS	$10^2 - 10^4$	$10 - 10^2$	
WAVEFRONT	0 - 10	$10 - 10^2$	
MODES IN BW	100	50	
CONTROLLED MODES	30	30	
CONTROL BW	50	5	

TEST AND VERIFICATION - PRECISION SYSTEMS

- SMALLER, STIFFER THAN ANTENNAS
 - LESS OF 1G EFFECTS ON GROUND LINEARITY MAINTAINED
 - ATMOSPHERIC MASS DURING TEST INSIGNIFICANT
 - ATMOSPHERIC DAMPING MAY BE IMPORTANT SINCE NATURAL DAMPING LOW
 - TESTING IN VACUUM FOR OPTICAL PATH INTEGRITY
- UNLIKE ANTENNAS SIGNIFICANT LEVELS OF SYSTEM INTEGRATION CAN BE TESTED IN A VACUUM TANK

"CRITICAL PATH" CHART

TIME, INCREASING COST, FEASIBILITY

SUMMARY

- A NUMBER OF NASA PRECISION SPACE STRUCTURES ARE IDENTIFIABLE
- NEARLY ALL EXHIBIT SOME POTENTIAL FOR STRUCTURE-CONTROL INTERACTION
- DIFFERENCES FROM ANTENNA SYSTEMS CAN BE NOTED
 - FIGURE/SURFACE CONTROL CAN BE QUASI-STATIC
 - ACTIVE/PASSIVE ISOLATION SCHEMES ARE POSSIBLE
 - VIBRATION CONTROL IS NECESSARY
 - THEORETICAL FOUNDATION TRANSFERABLE
 - STRUCTURAL LINEARITY AT SMALL STRAINS OF CONCERN
 - ON-BOARD DISTURBANCES CAN BE SIGNIFICANT
 - HIGHER BW, LARGER NUMBER OF MODES
 - ACTUATOR/SENSOR RESOLUTION MUCH HIGHER
 - ATTITUDE CONTROL SYSTEM CAN BE LOW BW
 - GROUND TESTING MORE FEASIBLE THAN WITH ANTENNAS