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ISSUES 

0 SA LARGE SPACE STRUCTURES EFFORTS TO DATE AIMED TOWARDS 

LARGE, FLEXIBLE ANTENNA-LI KE STRUCTURES (30-100M) 

RELATIVELY LONG WAVELENGTHS (1-30crn) 

0 MODERATE DISTURBANCES LEAD I NG TO SOME STRUCTURE-CONTROL INTERACT I O N  

NASA ALSO HAS POTENTIAL MISSIONS I N  "OPTICS" REGIME 

SMALLER REFLECTORWMI RRORS 

SHORT WAVELENGTHS (VISIBLE TO 100~) 
VERY TIGHT TOLERANCES I N  SURFACE, ALIGNMENT, POINTING STABILITY 

POTENTIAL OF CONSIDERABLE ON-BOARD DISTURBANCES 

NEED TO EXAMINE TRANSFERABILITY OF TECHNOLOGY, NEW PROBLEMS 

REV I EW OF REQU I REMENTS 

BASED ON NASA SPACE SYSTEMS TECHNOLOGY MODEL (JAN, 84) 

REVIEW INCLUDED BOTH 

"MISSION SYSTEMS AND PROGRAMS" 

APPROVED, PLANNED AND CANDIDATE CONCEPTS 

"OPPORTUNITY SYSTEMS AND PROGRAMS" 

GENERALLY POST-1995 SYSTEMS 

"PRECISION SYSTEMS" < lOOU OPERATIONAL WAVELENGTH 

REVIEW TO IDENTIFY STRUCTURE-CONTROL INTERACTION POTENTIAL 

FIGURE (SURFACE) CONTROL 

VIBRATION (ALIGNMENT) CONTROL 

ATTITUDE CONTROL 
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INFRARED INTERFEROMETER 

LARGE DEPLOYABLE REFLECTOR 

lOOM THINNED APERTURE MOLECULAR L I N E  SURVEY 

VERY U R G E  SPACE TELESCOPE P I  NHOLE OCCULTER 'FACIL ITY 
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NASA-PLANNED PRECIS ION SPACE STRUCTURES 

NASA NO. 

A - 2 0  

A - 2 4  

A - 2 6  

A - 2 7  

A-28  

A - 3 6  

A-18  

NASA NO, D/RMS 

- NAME SIZE WAVELENGTH 

A-20 l o 7  

A-26  1 0 8  

A-27 1 , 6  x 109 

A-36  7 x l o 5  

A - 2 4  6 X l o 6  

A-28 2 . 5  X l o 8  

A-18 NA 

LARGE DEPLOYABLE REFLECTOR 20M 30u+ 
INFRARED INTERFEROMETER 3M X l O O M  300u+ 

COSMIC 1 , 8 M  X 34M V I S  
l O O M  THINNED APERTURE lOOM V I S  

VERY LARGE SPACE TELESCOPE 8 M  V I S  

MOLECULAR L I N E  SURVEY 3 . 5 M  l0OLl 
PINHOLE OCCULTER F A C I L I T Y  50M XRAY, UV, V I S  

NASA-PLANNED PRECISION SPACE STRUCTURES 

f n ( E S T , )  POSSIBLE DISTURBANCES 

5 105 CHOP, SLEW, CMG, CRY0 

2 105 CMG, APPEND 

10 106 CMG, APPEND 

1 108 CHOP, CMG, APPEND 

5 2 x 105 CRG, APPEND 

10 3 , 5  x lo3 CHOP, CMG 

NA NA SHUTTLE 

THRESHOLD THRESHOLD 

POINTING S T A B I L I T Y  

CONTROL NEEDS 

FIGURE STRUCTURE ATTITUDE 

X X X 

X X X 
X X X 

X X X 

X X X 

X NO X 

( X )  X 

DIAMETER AND WAVELENGTH ESTIMATION 

I m l  
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VIBRATION CON T R 0 L 

i o - '  10-8 10-5 lo-' 10-3 10-2 l o - '  1 
cm m 

x- r m  

FIGURE CONTROL 

EARLIEST RECOGNIZED INSTANCE OF STRUCTURE-CONTROL INTERACTION 

GENERALLY A QUASI -STATIC  CONTROLS APPROACH - THERMAL DRIVERS 
R I G I D  SEGMENT ALIGNMENT TO DESIRED FIGURE 

BACK-UP STRUCTURE MAY NEED TO B E  CONTROLLED AS WELL 

DISPLACEMENT ACTUATORS 

CONTINUOUS MIRROR - ACTUATORS ELASTICALLY COUPLED 

FORCE ACTUATORS - HIGH DEGREE OF COUPLING 

DISPLACEMENT ACTUATORS - EFFECT MORE LOCALIZED 

REAL ACTUATORS - INTERMEDIATE EFFECT - MUST MODEL 

HYBRID VERSIONS OF SEGMENTEDICONTINUOUS BEING CONSIDERED 

NOT D I F F I C U L T  TO DO STRUCTURE ANALYSIS  OR CONTROLS DESIGN 

UNLESS MIRRORS E X H I B I T  STRUCTURAL DYNAMICS RESPONSE 

MAY B E  POSSIBLE TO S T I F F E N  MIRRORS SOMEWHAT > 30 HZ 

OTHERWISE - CONTROLS APPROACHES FROM ANTENNAS - HIGH BW 

SENSORS/ACTUATORS - RESOLUTION TO I 01X OPERATING WAVELENGTH 

TRANSFER FROM ANTENNAS LESS L I K E L Y  
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... . 
EDGE 

COMPUTER 

-.... . . ., 
FIGURE 

EDGE 
SENSORS 

i 
I 
I 

SEGMENTED ." uj------ PRIMARY MIRROR 

CO NTR 0 L -\- 

-4 ELECTRONICS --\ -\ 

0 THE LASER FIGURE SENSOR MONITORS EACH SEGMENT SURFACE 
0 THE EDGE SENSOR TESTS ALIGNMENT BETWEEN PAIRS OF SEGMENTS 

FIGURE/SURFACE CONTROL 

/pRI-y 

DISTRIBUTED PARAMETER 
CONTROL FLEXIBLY COUPLED 

TECHNOLOGY DEVELOPED I N  
EARLY 1970's FOR STATIC 
CORRECTION - NASA/DOD 

HIGH-BANDWIDTH OPTICS 
DEVELOP ED 

CORRECT I ON FOR MI RROR 
DYNAMICS LARGELY UNEXPLORED 
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VIBRATION (ALIGNMENT) CONTROL (1) 

SOME BUT NOT MUCH S I M I L A R I T Y  TO ANTENNA CONTROL PROBLEM 

CONTROL BW % 50 HZ; 100 MODES I N  BW; 30 MODES CONTROLLED 

RESPONSE REDUCTION GOALS NEAR 104 

SPACECRAFT DESIGN OPTIONS PERMIT SOME ATTENUATION 

ISOLATION (ACTIVE OR PASSIVE) OF OPTICAL TRAIN 

DISTURBANCE LEAKAGE S T I L L  CAN OCCUR 

INERTIALLY DISTRIBUTED FORCES NOT AFFECTED BY ISOLATION (SLEW, CHOP) 

SENSOR-ACTUATOR DYNAMICS AND NOISE CAN BE TROUBLESOME 

HENCE REDUCTION OF VIBRATIONS IS  NEEDED 

OVERALL SPACECRAFT DESIGN APPROACH 

- TWO MAJOR COMPONENTS 

1)  O P T I C A L  T R A I N  

2 )  M O U N T I N G  P L A T F O R M  

- O P T I C A L  T R A I N :  " I S O L A T E D "  
FROM M A J O R  D I S T U R B A N C E S  

- M O U N T I N G  P L A T F O R M :  A W N -  
P R E C I S I O N  STRUCTURE C O N -  
T A I N I N G  MOST OF T H E  S O U R C E S  
OF D I S T U R B A N C E S  AND APPENDAGES 

SHADE 
SUCH A S  SOLAR P A N E L  A N D  SUN-  

- O P T I C A L  T R A I N  AND P L A T F O R M  A R E  
A T T A C H E D  THROUGH K I N E M A T I C  
MOUNTS. MOUNT D E S I G N  IS SUCH 

M O U N T I N G  T H A T  I T  F I L T E R S  U N D E S I R A B L E  L O U  
L~~~~~~~~ F R E Q U E N C I E S  
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\'M /- METERING STRUCTURE A!SY 

SECONDARY MIRROR SUPPORT 
TRUSS (REF) 

' MOUNTING PLATFORM 
TRUSS STRUCTURE 

\ \  

\' 

VIBRATION (ALIGNMENT) CONTROL (2) 

OPTIONS: 

NATURAL DAMPING - CLOSER TO ,1% OF CRITICAL 

DAMPING MATERIALS - MAY BE LIMITED BY 

BROAD BANDWIDTH OF RESPONSE 

CRY0 TEMPERATURES OF SYSTEMS 

BROAD TEMPERATURE SWINGS OF SYSTEM 

OUTGASSING AND CONDENSATION ON COLD OPTICS 

MULTI-INPUT MULTI-OUTPUT CONTROL 

THEORETICAL BASIS SAME AS I N  ANTENNA PROBLEMS 

MORE DETAILED STRUCTURAL MODELS NEEDED - MORE MODES I N  BW 

STRUCTURAL LINEARITY AT MICRO-STRAINS QUESTIONABLE 

DEPLOYMENT HINGES AND LATCHES MUST FULLY FREEZE 

SENSOR-ACTUATOR DYNAMICS CLOSER I N  BW TO EXCITED MODES 

ACTUATOR NOISE CAN BE LARGE DISTURBANCE SOURCE 

ACTUATOR AND SENSOR RESOLUTION 

.01X/D ANGULAR 

, O l h  LINEAR 

TRANSFER FROM ANTENNAS UNLIKELY 

SYSTEM I D  MAY BE CONFUSED BY ISOLATORS 

AVIONICS - MAY NEED TO PROCESS MUCH LARGER SYSTEM 
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ATTITUDE CONTROL 

ISOLATORS MAY MAKE LOW BW SYSTEM POSSIBLE 

COARSE POINTING AND SLEW BY MOUNTING PLATFORM 

FINE POINTING BY OPTICAL TRAIN USING ISOLATORS 

COARSE SENSORS AND ACTUATORS - TRANSFERABLE FROM ANTENNAS 

FINE SENSORS AND ACTUATORS - UNIQUE TO PRECISION MISSIONS 

D 
x 
TOLERANCES 

SURFACE 

DEFOCUS 

PO I N T I  NG 

DISTURBANCES 

CONTROLS GOALS 

LOS 

W AVEF RO NT 

MODES I N  BW 

NET NASA MISSIONS - ACTIVE STRUCTURES GOALS 

SHORT - OPTICAL LONG - RADAR 

15 

1U 

OIO3u 
om2 

10 nrad 
PERIODIC, RANDOM, SLEW 

l o2  - 104 
0 - 10 
100 

CONTROLLED MODES 30 
CONTROL BW 50 

100 
3 cm 

0 , 4  mm 
0,2 

10 mrad 
SCAN, SLEW, PERIODIC 

10 - l o 2  
10 - lo2  
50 

30 
5 
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TEST AND VERI  F I CAT I ON - PREC I S I ON SYSTEMS 

SMALLER, STIFFER THAN ANTENNAS 

LESS OF 1 G  EFFECTS ON GROUND - L I N E A R I T Y  MAINTAINED 

ATMOSPHERIC MASS DURING TEST I N S I G N I F I C A N T  

ATMOSPHERIC DAMPING MAY BE IMPORTANT SINCE NATURAL DAMPING LOW . TESTING Ird VACUUM FOR OPTICAL PATH INTEGRITY 

UNLIKE ANTENNAS S I G N I F I C A N T  LEVELS OF SYSTEM INTEGRATION CAN BE 

TESTED I N  A VACUUM TANK 

"CRITICAL PATH" CHART 

HARD WARE 
TECHN. 

GROUND TESTS I SPACE TESTS I 
OPERATIONAL 71 SYSTEM 

L o n g  
-,- Wavel e n g t  h 

Short Lt I b h o r t  I 
Wavel e n g t  h 1- 

TIME, INCREASING COST, FEASIBILITY ____p_ 
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SUMMARY I 

A NUMBER OF NASA PRECISION SPACE STRUCTURES ARE IDENTIFIABLE 

I NEARLY ALL EXHIBIT  SOME POTENTIAL FOR STRUCTURE-CONTROL INTERACTION 

DIFFERENCES FROM ANTENNA SYSTEMS CAN BE NOTED 

FIGURE/SURFACE CONTROL CAN BE QUASI-STATIC 

ACTIVE/PASSIVE ISOLATION SCHEMES ARE POSSIBLE 

VIBRATION CONTROL I S  NECESSARY 

THEORETICAL FOUNDATION TRANSFERABLE 

I 
1 

STRUCTURAL LINEARITY AT SMALL STRAINS OF CONCERN 

ON-BOARD D I STURBANCES CAN BE S I GN I F I CANT 

HIGHER BW, LARGER NUMBER OF MODES 

ACTUATOR/SENSOR RESOLUTION MUCH HIGHER 

ATTITUDE CONTROL SYSTEM CAN BE LOW BW 
GROUND TESTING MORE FEASIBLE THAN WITH ANTENNAS 
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