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Abstract

This paper explores a possible technique for extending to multidimensional

flows some of the upwind-differencing methods that have proved highly

successful in the one-dimensional case. Attention here is concentrated on the

two-dimensional case, and the flow domain is supposed to be divided into

polygonal computational elements. Inside each element the flow is represented

by a local superposition of elementary solutions consisting of plane waves not

necessarily aligned with the element boundaries.
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I. Introduction

The recent survey of Woodward and Colella [16] shows that for one-

dimensional gas dynamics there is an order of magnitude difference in

effectiveness between sophisticated codes physically based on correct transfer

of information, and simpler codes combining central differences with

artificial viscosity. The sophisticated codes need much more computational

work to update the solution at each mesh point, but this is far outweighed by

their ability to capture discontinuities on a coarser mesh. For two-

dimensional problems the difference in efficiency is far less marked, and for

less violent flows than the ones they consider the advantage is likely to be

reversed.

The explanation is probably that the physics of one-dimensional flow is

especially simple and well understood, and easy to imitate by numerical

processes. Two-dimensional flows are more complex; in particular, acoustic

waves can propagate in infinitely many directions rather than just two, and

vorticity exists as a new phenomenon. Most extensions of upwind codes to two

or more dimensions ignore these issues and advance the solution by

"splitting', that is to say, through a sequence of one-dimensional

operators. For examples, see the survey by Woodward and Colella, also Sells

[13] and Chakravarthy and Osher [I]. There are also what may be called "one

and a half-dimensional" methods, in which the one-dlmenslonal operators are

interwoven, but the underlying physical model is still one involving wave

propagation along the coordinate directions. This approach seems to yield

some modest gains, as shown by Lytton [7] and Colella [2]. However, an

observation is made in Section 4 which casts doubt on its real value.
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If full advantage can be taken of upwinding techniques in two or more

dimensions it is probably necessary to devise methods which take account of

the actual directions in which information is propagated. The only results so

far available for a method of this kind are those of Davis [4]. He assumes

that the flow is locally dominated by a single shock wave whose unknown

orientation may be deduced from the velocity field, or, in a later version of

the code, from the pressure field (Davis, private communication). His method

works very well on test problems where the flow is divided by shock waves into

piecewise uniform regions. This is encouraging because it shows that a well

chosen model of the flow can be used to numerical advantage.

It has been conjectured that the way forward into two dimensions is

blocked by the complexity of a "two-dimensional Riemann solver', by which is

meant an algorithm for computing the breakdown of initial conditions which are

piecewise constant in two-dimensional cells. The solution of this problem

close to the edge of a cell is straightforward, but secondary interactions

near the corners are extremely difficult to compute. Even if a Riemann solver

of this kind were computationally feasible, however, it would not be a

satisfactory building block for two-dimenslonal calculations. It would, like

the operator-spllttlng methods mentioned above, force the principal wave

motions to take place normal to the cell boundaries.

In the present work we avoid this difficulty by thinking of the data as

piecewlse linear rather than piecewise constant, and in Section 2 we interpret

one-dimensional upwinding schemes in that light. The gradients in the data

are used to construct a "model flow" consisting of simple waves within each

mesh interval. In Section 3 the corresponding simple wave solutions,

propagating in arbitrary directions, are derived for the two-dimenslonal
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equations. In Section 4 we propose model flows which can be fitted to any

data which varies linearly in two dimensions, and in Section 5 we describe a

strategy for constructing conservative differencing schemes by fitting such

models to the data given at vertices of an irregular two-dimenslonal mesh.

Section 6 contains observations on the possibility of extending the work to

three-dlmenslonal flow, and Section 7 comments on the type of advection scheme

needed to complete the algorithm.

2. Upwlndlng in One Dimension

We begin by observing that one way to derive upwind schemes for the Euler

equations in one dimension is to suppose that the flow in each mesh interval

(i, i + I) is a locally linear superposition of simple waves having the form

_(x,t) = [ ak_k(X - %k t). (2.1)
k

Here, _ is the vector of unknowns, _k is an eigenvector showing how the

gradients due to the kth wave are distributed over the components of _, ak

is the amplitude of the kth wave, and _ its speed. Any independent set

of unknown variables w may be chosen, and the choice will not affect the

values of ek' %k' but _k will be different for each choice. The values of

%1,2,3 are

u - a, u, u + a (2.2)

and the values of al,2, 3 are
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1 lap - paAu], Ap - _ Ap, I lAP + paAu] (2.3)
2a2 a

where A(.) = (')i+l - (')i and any local average values of p, a, u are

valid. To achieve a conservative algorithm, two conditions are necessary.

The eignevectors _k must show the effects of the waves upon the conserved

variables (p, pu, pe). In these variables _I' _2' _3 are given by

111111r I = u - a _2 = u _3 = u + a (2.4)

h ua 1/2u2 h + ua

where h = a2/(y - I) +I/2u2 is the specific enthalpy. Also, the average

values of p, a, u must now be chosen so that

_k Xk_k = A_ (2.5)

where F is the vector of flux quantities. For details, see [9,12].

This may be thought of as constructing, within each interval (i, i + i)

a local model of the flow. The model consists of elementary solutions of the

Euler equations, linearized about a particular local average state. The model

matches the observed data with respect to the spatial derivatives (or to be

precise, with respect to the mesh differences). The time evolution of the

model flow is readily predicted, and provides the information which is used to

advance the global solution through one time step.
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3. Elementary Solutions in Two Dimensions

In this section, as a necessary preliminary to the construction of two-

dimensional models, we investigate the elementary solutions from which they

may be built. Consider the Euler equations in primitive variables

w = (p, u, v, p).
--p

Pt + UPx + + pa2(Ux + v ) = 0 NVpy Y

1

ut + uu + vu + -- Px 0x y p

(3.1)
1

+ vv + py 0vt + uvx y _ =

Pt + UPx + Vpy + p(ux + Vy) = 0.

Corresponding to Eq. (2.1) there are solutions to (3.1) of the form

= a(O)!(e)(x cos O + y sin O - /(O)t) (3.2)

where O is an arbitrary angle, and r(8) is an eigenvector. For acoustic

waves and primitive variables it can be shown that

2
pa

a cos e
r(8) : (3.3)

a sin 8

and that the wave speed is
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X(e) = u cos e + v sin e + a. (3.4)

Figure 1 shows that this speed corresponds to a wave front tangential to

the Mach cone. We repeat here an observation from Roe [I0]. Consider two

Cartesian points having the same value of y, in a flow given by (3.2)-

(3.4). An operator-spilt method will attempt to explain the difference in

states as due to waves passing in the x-directlon; it will compute

p pa2 pa2 0 pa2

u a cos 0 a 0 -a

A = =1/2(1+ cos e) + sin 8 +I/2(1- cos 8) (3.5)
v a sin e 0 a 0

p p p 0 p

where the RHS shows the elgenvectors of two one-dimenslonal acoustic waves,

and a slip llne. These spurious waves may not even travel in the proper

direction and their inclusion in a numerical method can hardly be realistic.

This criticism applies even to the "unspllt" algorithms of Colella [2] and

Lytton [7]. Our goal in the next section is to construct local models of the

flow by superposing simple waves whose orientation is not assumed in advance.

Such a model cannot, however, be constructed purely out of acoustic waves

since these are irrotational and the data may not be. There are two other

fundamental flows which can be incorporated neatly into the model. One is a

shear flow, which again has the general form of (3.2) but with

0

- sin 8
r(e) = (3.6)

cos O

0
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x(e) = u cos e + v sin e. (3.7)

Another is solid-body rotation, or vorticity

u=-i/2 y vI/2 x (3.8)

There still remains an effect which is missing from the model, for all the

flows above are isentroplc. An entropy wave, across which pressure and

velocity do not change, reveals itself in the primitive variables as a change

of density. The general form is again (3.2) with I(0) given by (3.7), but

with

0

0
r = (3.9)

0

P

independent of 8.

Another interesting fundamental solution (not directly used below) is

obtained by superposing acoustic waves of the same strength with all possible

propagation directions, i.e., by integrating (3.2) with respect to 8 from

0 to 2_ with _(8) = a0. The result is

Px = Py = 0

1,
U = V = _/9_^
X y

> (3.1o)
V = U = 0
X y

V =U = 0.
X y



-8-

This solution would appear in the data as a region of uniform (isotropic)

velocity divergence. However, the same data could be explained equally well

by the passage of four plane waves

w(0) + w(_/2) + w(_) + w(3_/2) (3.11)

where w(8) is given by (3.2). For numerical purposes the discrete

representation by four plane waves is more amenable than the representation by

one circular wave, and this is how a uniformly diverging flow would be dealt

with in the model we develop below. However, it may be worth noting that any

three equal waves separated by angles of 2_/3 would also produce (locally)

the same effect.

4. The Discrete Models

It is not obvious how the model flows of Section 2 should be generalized

from one dimension to two. The chief difficulty is that whereas in one

dimension there are just three types of elementary wave, in two dimensions

there are infinitely many if we count all the possible orientations as

distinct. In one dimension there is only one model that can be constructed,

and it has three parameters which are the unknown wave strengths. Matching

the model to the spatial gradients of the three data quantities p, u, p

gives three simple linear equations whose solution is (2.3). In two

dimensions the data will allow us to estimate gradients in two directions of

four quantities, yielding eight items of information. Whatever model we

choose must have eight free parameters, some of which may be wave amplitudes,
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and the remainder will be orientation angles. If all the orientations are

supposed to be known (aligned, for example, with the grid directions) we will

again find easily solved linear e_Luations for the amplitudes. However,

because of the observation made concerning Eq. (3.5), we reject this approach,

and require that at least some of the orientations be left unspecified.

However, the equations which must be solved for the parameters then become

nonlinear. If the free parameters are not judiciously chosen, no closed form

solution may be possible, or the solution may not always be real-valued, or

the solution may be computationally expensive. In such cases, the model will

be useless.

Two models, however, have been found whose parameters are given by simple

real-valued expressions for all data. Each has, as its representation of the

acoustic disturbances, a set of four orthogonal waves (Figure 2). One of the

four will have an orientation angle in the range [±_/4] and we take this as

reference. Its orientation is e, and its amplitude aI. The strength of the

wave which moves in the opposite direction will be a2, and the waves which

travel at right angles to these two have strengths =3' _4" To this model we

add an entropy wave with strength B and inclination _, so that the model

now contains seven unknown parameters.

To close the model we must introduce a fundamental solution incorporating

vorticity, and it is only in this respect that the two models differ. In

Model A we introduce a uniform vorticity m, and in Model B we introduce a

shear flow such that
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\

u = u0(l + k(v 0 x - u0 y)) (4.1)

v vo(l + k(v0 x u0 y)).

This is a special case of (3.6), (3.7) with tan e = -(u/v). We will

first show the algebra for Model A, which is slightly simpler.

To tidy up the equations we write dimensionless derivatives

Px = Px/pa2 Py = Py/pa2 _

U = u /a U = u /a
x x y y

(4.2)

= /a V = Vy/aVx vx y

Rx = px/p R =y Py/P"

By equating these to the sum of contributions produced by each component of

the model, we find

Px = _i cos e + _2 cos e - _3 sin e - =4 sin e (4.3a)

P = a. sin e + _ sin e + e_ cos 8 + e. cos e (4.3b)
Y 1 z o

Ux = =I c°s2 8 - _2 c°s2 8 + e3 sin2 8 - a4 sin 2 8 (4.3c)
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Uy = eI sin 8 cos 8 - e2 sin e cos 8 - e3 sin 8 cos 8

+ e4 sin O cos O -1/2m/a (4.3d)

Vx = eI sin 8 cos e - e2 sin 8 cos 8 - e3 sin 8 cos 8

+ e4 sin O cos O +l/2m/a (4.3e)

= 2 2
Vy eI sin2 e - e2 sin2 e + e3 cos e - e4 cos e (4.3f)

Rx = eI cos 8 + e2 cos e - e3 sin 8 - e4 sin e + 8 cos @ (4.3g)

R = eI sin e + a2 sin e + e3 cos 8 + e4 cos e + 8 sin _. (4.3h)Y

In these equations, the convention which distinguishes the contributions of

el, e2 is that the same angle 8 is used, but the sign of a is reversed.

The eight equations can be solved quite easily. From (4.3d) and (4.3e) we

obtain at once

= a(v - u )
x y

= (vx - u ). (4.4)Y

Also

R - P = 8 cos _
x x

(4.5)

m

Ry Py = g sin _
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whence B, _. Next add (4.3d) and (4.3e) to obtain

+ V = 2 sin 8 cos 8(_1 - e2 - a3 + a4) (4.6)Uy x

and subtract (4.3f) from (4.3c)

Ux - Vy = (cos 2 @ - sin 2 8)(e I - =2 - _3 + _4)" (4.7)

Dividing (4.6) by (4.7) yields

Uy + Vxtan 28 - N- (4.8)U - V D
x y

Since we have defined 181 _ _/4 this result defines a unique orientation

which is always real, coinciding, in fact, with the principal axis of the

strain tensor. With 8 known, the remaining equations are linear. We write

(4.3c) and (4.3f) as

Ux = (aI - a2)cos 2 8 + (_3 - a4 )sin2 8

Vy = (=i - a2)sin2 8 + (a3 - _4)cos2 8

and combine them to give

O cos 2 8 - V sln 2 e
x y

_I - a2 = 2 " (4.9)
cos e - sin 2 e
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This expression must be rewritten to avoid the possible singularity. Noting

that

2
cos 8 =I/2(1 + cos 28), sin 2 8 =1/2(i - cos 28)

and that

cos 28 = D/R (4.10)

where

R2 = N2 + D2 (4.11)

we find

- = + R) (4.12)
_i a2 i/2(Ux + Vy

which is clearly always finite. By the same process we find

- = - R). (4.13)
e3 _4 I/2(Ux + Vy

It can be shown that these expressions (4.12), (4.13) are proportional to the

greatest and least straining rates experienced by the fluid. In these

results, R must have the same sign as D, since 181 < 7/4 and so the RHS of

Eq. (4.10) must be positive. For locally one-dimensional flow in the

x(resp y) direction, R will equal Ux(res p -Vy) and Vy(resp Ux) will be

zero. Eqs. (4.12), (4.13) will give the correct one-dimensional results.

That is, el - e2 = Ux(resp 0), and _3 - _4 = 0(resp Vy). It is interesting

that

- - = + V . (4.14)
al _2 + _3 =4 Ux y

The LHS is the total strength of the acoustic waves (the minus signs appear

because of our conventions about a and e) and the RHS is the velocity

divergence. Compare the result in Eq. (3.10).
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The last step is to combine (4.3a), (4.3b) to give

_I + =2 = P cos e + P sin e (4.15)x y

a3 + a4 = P cos e - p sin fl (4.16)y x

and then the ='s follow from (4.12), (4.13).

A remarkable identity concerning the wave strengths is the following;

2 2 2 2
al + a2 + a3 + a4 + 1/4_2/a2°

2

= i/2(al + a2 )2 + 1/2(al - e2 )2 + I/2(e3 + =4)2 +1/2 (a3 - =4)2 + 4-_a

1 (Ux + V + R) 2=I/2(P x cos e + Py sin 8)2 + _ Y

2

+I/2(Py cos e - P sin 8)2 + 1x 8 (Ux + V - R)2 +--
Y 4a2

2

=I/2(P + P ) +I/4(Ux + Vy 4a2

=I/2 (p2x + p2) +1/4 (Ux + Vy)2 +1/4 (Ux _ Vy)2 +1/4 (Uy + Vx )2 +I/4 (Vx - Uy) 2

+ . . . v .y x y x

Both ends of this chain are expressions representing some overall strength

of the disturbance (excluding entropy effects which add another simple term).
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The analysis of Model B is almost identical. The equations are altered by

replacing the vortlclty terms with the shear terms from (4.1) thus

Px = eI cos 8 + e2 cos 8 - e3 sin 8 - e4 sin 8 (4.18a)

Py eI sin 8 + a2 sin 8 + e3 cos 8 + e4 cos 8 (4 18b)

Ux = eI cos2 fl- e2 cos2 8 + e3 sin2 8 - e4 sin2 8 --ku0 v0 (4.18c)

9

U = eI sin 8 cos 8 - e2 sin 8 cos 8 - e3 sin 8 cos 8 + e4 sin 8 cos 8 - kutY 0

(4.18d)

Vx = eI sin 8 cos 8 - e2 sin 8 cos 8 - e3 sin 8 cos 8 + e4 sin 8 cos 8 + kv_

(4.18e)

Vy = eI sin2 8 - e2 sin2 8 + e3 cos2 8 - e4 cos2 8 - ku0 v0 (4.18f)

Rx = eI cos 8 + e2 cos 8 - e3 sin 8 - e4 sin 8 + 8 cos @ (4.18g)

Ry = eI sin 8 + e2 sin 8 + e3 cos 8 + e4 cos 8 + 8 sin _. (4.18h)

The solution for B, _ is identical• Equations (4.18d), (4.18e) give

V - U
k - x y (4.19)2 2 "

u0 + v0

The expressionfor 8 in this case is
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tan 2e = Y x

Ux - Vy - 2ku0 v0 (4.20)

which can be rewritten, using (4.19), and setting v/u = tan 6, as

U + V + (Vx - U )cos 26
tan 2_ = Y x y N= -- (4.21)

U - V - (Vx - U )sin 26 D "x y y

Note that for irrotational flow, (4.21) agrees with (4.8). Again we

introduce R, such that R2 = N2 + D2, and having the same sign as D. In

terms of this new R, we still have

- = + R) (4.22)
aI a2 I/2(Ux + Vy

a3 - a4 =i/2(U x + Vy - R) (4.23)

and Eqs. (4.15), (4.16) are unaffected.

For Model B there seems to be no simple analogue of Eq. (4.17).

Otherwise, the difference between the two models is that Model B involves

computing slightly more expensive expressions for N and D, but may be able

to fit itself to a greater variety of flows. Both models have the property

that if the data is locally one-dimenslonal in any direction then waves will

be predicted which are exactly those predicted by a one-dlmensional linear

Riemann solver aligned in that direction (rather than with the coordinate

axis). However, Model B can simultaneously recognize a shear flow in some

other direction. Neither model, however, could correctly recognize both shock

waves of a colliding pair, unless these happened to be perpendicular. It

would appear that any model flow must be a compromise between simplicity and
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generality. Simple models will generally be invalid at isolated points, and

reliance must then be placed on conservation. It is to this aspect that the

next section is devoted.

5. _nservatlon Properties

To create an algorithm capable of capturing shock waves, we must ensure

that it is conservative. For present purposes, the most convenient definition

of a conservative algorithm is that when it operates for one time step, the

conserved quantities (mass, momentum, and energy) present within the

computational domain are only changed because of events occurring on the

boundaries of the domain. We will first set out a strategy which guarantees

this. Then we will relate the results of previous sections to that strategy.

Suppose that the computational domain is tessellated into arbitrary

polygons (see Figure 3). Usually these would be quadrilaterals or triangles,

and the formulae given below will then be very simple. However, we treat the

general case to show that exceptional meshes create no difficulty, at least

with regard to conservation. Consider, then, an arbitrary cell with vertices

VI, V2"''V n and note that the area of the cell may be written

4A = _ r i x (r_i+l-ri_l ) (5.1)

where _i is the position vector of the ith vertex, and the counting is

cyclic and anticlockwise. Eq. (5.1) is proved by observing that the terms in

the summation occur in equal pairs, and that every term _i x !i+l is twice

the area of a triangle Vi 0Vi+ 1 where 0 is an arbitrary origin.

Rearrangement of terms in (5.1) leads to two alternative expressions
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2A = I xi(Yi+ 1 - Yi_l ) (5.2)

= -I Yi(Xi+l - Xi_l)" (5.3)

Simple alterations of these formulae allow us to estimate the gradients

within a cell of any quantity q which is defined at the vertices. Thus

_q
2A-_= I qi(Yi+l - Yi_l) (5.4)

2A 8q___= -I qi(xi+ 1 - Xi_l) (5.5)

and it can be seen that these estimates are exact whenever q is a linear

function (q = mx + ny).

Now suppose that the quantities stored at the vertices are the variables

defining flow of an ideal gas according to the Euler equations, written in

conservation form as

+ F + G = 0. (5.6)--x --y

Then an estimate for _t' averaged over the cell, is

2A_ = -I [Fi(Yi+ I - Yi_l ) - Gi(xi+ I - Xi-l)]" (5.7)

An alternative way to obtain this formula is to integrate the passage of flux

across the cell boundary, using the trapezium rule. We have followed this

present derivation because the formulas (5.4), (5.5) are also useful for

estimating the gradients from which, in Section 4, the local flow model was

deduced.
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The quantity _t' multiplied by a finite time step At represents the

local accumulation of the conserved quantities. The solution can be advanced

one time step by adding this change to the quantities stored at the

vertices. The increments may be distributed equally or unequally to the

vertices concerned. An equal distribution would, if applied on a regular

rectangular mesh, reduce to a central-dlfferencing scheme of the kind that can

be allied with Runge-Kutta schemes [5]. An unequal distribution of

increments, where the weights are obtained from the Jacobian matrices _/_w_

and _G/_w, has been used by Ni [8] to obtain an integration which is

equivalent to Lax-Wendroff. The present work is intended for use with a

scheme in which the increments are distributed with more regard to the

"upwind" direction of each wave. Meanwhile, we prove that any distribution

will lead to a conservative algorithm.

The total change of conserved quantltles9 within the computational domain,

is obtained by summing (5.7) over all cells. A typical vertex Vj in the

interior of the domain, contributes to this sum through all the cells which

meet there. Its total contribution is, in fact

: [-FjI Ay+G_jI (5.8)

where the Ax, Ay are the adjacent chords of each cell meeting at Vj (see

Figure 3) But since the union of these chords is a closed polygon Aw. = 0.

Since this argument applies equally to all interior vertices, the sum of

conserved quantities changes only due to events on the boundary, and this is

what we require.
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Next we demonstrate how the estimated total increment (5.7) may be

decomposed into contributions due to each wave system. It has not been found

possible to do this by any direct extension of the analysis in Section 4.

When the spatial changes are large, there seems to be no simple choice of mean

values which allows a tidy analysis of the flux gradients. Instead, we

directly analyze the temporal changes inside each cell to produce a

decomposition which is conservative but not unique. Uniqueness is imposed by

incorporating results from Section 4.

First, observe that the time derivative of w due to the passage of a

plane wave is the product of the amplitude and wave speed multiplied by an

eigenvector which describes the effect of that wave on the conserved

variables. For an acoustic wave inclined at an angle 0, that eigenvector is

0

pu + 0a cos e
r = (5.9)
--a

pv + pa sin O

ph + pa(u cos e + v sin 8)

and for an entropy wave at any angle it is

P

pu
r -- (5 .I0)
--e

pv

I/2p(u 2 + v2)

For a shear wave it is
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0

-pa sin 8
r = . (5 Ii)--S

pa cos 8

pa(v cos @ - u sin 0)

However, the shear wave included in Model B has zero speed (i.e., it is a

steady solution of the Euler equations) so that the term involving r makes-s

no contribution to w . In this respect Model B is somewhat simpler than--t

Model A, because the uniform vorticity does contribute to _t' in a way which

is derived below. Introduce the notation

A1 = aI XI = _l(U cos 8 + v sin 8 + a) (5.12a)

A2 = e2 12 = e2(u cos 8 + v sin 8 - a) (5.12b)

A3 = _3 _3= =3(-u sin 8 + v cos 8 + a) (5.12c)

A4 = e4 14 = e4(-u sin 8 + v cos 8 - a) (5.12d)

A5 = 8_e = B(u cos _ + v sin i). (5.12e)

Our strategy is to compute the {Ai} within each cell in such a way that

the total effect of all the disturbances in that cell will produce the correct

conservative value of _t" First, though, it must be checked that the model

does contain all the effects contributing to _t" Therefore, we evaluate

•i=4

Ai rai + A5 -er. (5.13)
i=l
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As an example, the terms contributing to Pt are

p[A 1 + A2 + A3 + A4 + A5] = Oal(U cos O + v sin 8a + a)

+ pe2(u cos 8 + v sin 8 - a) + pa3(v cos 8 - u sin 8 + a)

+ p=4(v cos 8 - u sin 8 - a) + 08(u cos _ + v sin @)

= O(eI + e2)(u cos 8 + v sin 8) + p(aI - a2)a

+ O(e 3 + a4)(v cos 8 - u sin 8) + O(_ 3 - e4)a

+ pS(ucos + v sin

Substituting the results of Section 4 into this expression, we obtain

o[AI + A2 + A3 + A4 + A5] = P[Px cos 8 + Py sin 8](u cos 8 + v sin 8)

+ O[Py_Cos 8 - Px sin 8](v'-cos 8 - u sin 8)

+ R]a +I/20[U + V - R]a
+ 1/2o[Ux + Vy x y

+ ou[Rx - Px] + oV[Ry - Py] = oa[Ux + Vy] + ouRx + OVRy

or, in terms of the dimensional gradients
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+ Vy] + + = Pt (5.14)p[A1 + A2 + A3 + A4 + A5] = p[ux upx Vpy .

This calculation, which is valid for Models A or B, checks the algebra and

confirms the completeness of the model. Checking the other components of

is tedious, but necessary. It reveals that Model B supplies all the terms of

_t from the expression (5.13), but that when this expression is used to

calculate the effects of the acoustic and entropy waves in Model A, there is a

surplus in the expression for (pu)t amounting to I/2PV_, and a shortfall in

the expression for (pv)t of i/2PU_. These terms represent the effects of

convected vorticity. The expression for (pe) t turns out to be correct.

Therefore, we write

pt = o(A 1 + A2 + A3 + A4 + A5) (5.15a)

(pu) t = PAl(U + a cos e) + 0A2(u - a cos e) + PA3(u - a sin e)

+ PA4(u + a sin 0) + oA5 u -I/2pvm (5.15b)

(pv) t = PAl(V + a sin 6) + PA2(v - a sin e) + PA3(v + a cos e)

+ 0A4(v - a cos 0) + oA5 v +I/2Pum (5.15c)

(pe) t = OAl(h + au cos 6 + av sin e) + PA2(h - au cos e - av sin e)

+ 0A3(h - au sin e + av cos 0) + PA4(h + au sin 8 - av cos 0)

+I/2PA5(u2 + v2). (5.15d)
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where m = 0 for Model B.

These equations are the two-dimensional analogue of Eqs. (2.5). In each

case we try to ensure that the changes of conserved variables predicted by the

model are correct. Here, we assume that the LHS of each equation is obtained

from the conservative formula (5.7) for each cell. Then we treat (5.15) as a

set of conditions to be identically (not just approximately) satisfied by the

{Ai} and by e, _, m. Since there are only four conditions for eight

unknowns, the remaining information must be supplied from elsewhere. It seems

natural to take the values of e, _, m from Section 4. Conditions (5.15) are

then an incomplete set of linear equations for the {Ai} , which may be

partially analyzed as follows. We obtain at once

(pu)t - upt + pvm = pa cos 0(A I - A2) - pa sin e(A 3 - A4) (5.16a)

(pv)t - vp t - pum = pa sin 8(A I - A2) + pa cos 8(A 3 - A4) (5.16b)

and hence (A1 - A2) , (A3 - A4). Substituting these results into (5.15d)

yields
2

2 2

YPa- 1 A5 = (h - u - v )Pt + u(pu)t + v(pv)t - (pe)t. (5.17)

If the changes are small, so that (')t may be treated as a derivative,

these equations simplify considerably, offering more insight into the models.

(AI - A2) = ut cos e + vt sin 8 +i/2(v cos e - u sin e)m (5.18)

(A3 - A4) = vt cos e - ut sin 8 -I/2(u cos 8 + v sin 8)m (5.19)
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A5 = (a2 Pt- Pt )/pa2 (5.20)

AI + A2 + A3 + A4 = Pt" (5.21)

Non-conservative schemes could use these simpler conditions; a fully

conservative scheme would have to satisfy (5.15).

One more condition is needed on the {Ai}. In view of the symmetry of the

results so far, we would like an expression for AI + A2 - A3 - A4 (which

need not derive from the conservation form). By changing some signs in the

analysis leading to (5.14) we find

A I + A2 - A3 - A4 = Px(U cos 2e + v sin 2e)

+ P (u sin 2e - v cos 2e) + aR. (5.22)
Y

It may be shown that the RHS does not, in general, vanish when the data

are taken from a steady flow. One might suppose that it should, since then

the {Ai} would all be zero, and either the strength or the speed of every

wave would be zero. Instead of this, the models represent steady flow by a

state of equilibrium between finite waves, such that A1 = A2 = -A3 = -A4,

and A5 = 0.

We have now generated a conservative model of the flow, in which the

effects of the various components are given by (5.15). The parameters of this

decomposition I{Ai}, 8, +, _) are found from (4.4), (4.5), (4.8), or (4.21),

(5.16), (5.17), and (5.22). Any consistent choice of local average values for

p, u, v, a, h in these equations will be valid, and will not affect the
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conservation property. It may be asked, though, whether there are particular

average values, similar to those which appear in the one-dimensional theory

[9,12], bestowing special "shock-recognltion" properties. However, this

question raises unsolved problems about the sort of "captured shock structure"

that is possible in two-dimenslonal flow, and will not be discussed here.

6. Extension to Three Dimensions

No detailed formulae have been worked out for the three-dimensional

case. However, merely counting the degrees of freedom makes it plausible that

analogous models could be constructed. Data for the three-dlmensional

unsteady Euler equations would consist of five variables, so there would be

fifteen gradients to be accounted for by the model. If the acoustic

disturbances are again to be represented by a set of orthogonal plane waves

(llke an expanding cube) there will be six wave amplitudes and three angles

involved (two angles to orient one wave, one angle to orient its neighbors).

An entropy wave with one amplitude and two angles will bring the number of

parameters up to twelve. The remaining three are available to represent

rotational effects. The analogue of Model A would contain three independent

vorticity components. The analogue of Model B could contain a shear flow

q = q0[l + kl(V 0 x - u0 y) + k2(w 0 y - v0 z) + k3(u 0 z - w0 x)] (6.1)

which is, like (5.1), a steady solution to the Euler equations. However, the

three shear components which it contains are not all independent, since all

take place in a parallel flow, and one of the ki can be dropped with no loss



-27-

of generality. To complete the set of fifteen parameters one might add the

flow

u = u0 = m(w 0 y - v0 z)

v = v0 + m(u 0 z - w0 x) (6.2)

w = w0 + m(v 0 x - u0 y).

This is also a steady solution of the Euler equations and represents a

swirling flow in which the vorticity is parallel to the streamline (u0, v0_

w0). Again there is a computational advantage to Model B in that some of its

components are steady flows whose contribution to the time-marching process

are identically zero. In fact, an analogue of Model B can be worked out for

any number of space dimensions d, and the description of arbitrary data is

reduced to the description of (2d + i) non-linear scalar advection problems.

There are, however, geometrical difficulties which appear in three

dimensions, if the partition of space is made into volumes whose facets have

more than three sides. Most finite-volume schemes employ computational cells

which are hexahedral, with quadrilateral faces specified by four vertices not

normally lying in one plane. The boundary surfaces of the cells must be

unambiguously defined so that the cells fill the computational space without

overlaps or voids. This can be done by folding each surface into two

triangles [6], or by choosing a particular doubly-ruled surface to cover each

face [3]. Once this has been done, any consistent formula for the volume can

also be used to estimate the flux divergence, as in (5.7), but the consistent

formulae are disconcertingly lengthy [6,3]. The effect of simpler formulae on

the computational accuracy awaits investigation.
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7. Advectlon Schemes

The eventual goal of this work is to create an algorithm for

multidimensional gas dynamics which will enjoy the same degree of success

already obtained by upwind schemes in one dimension. In this paper we have

addressed (at most) half the problem, showing how arbitrary disturbances in

the data can be replaced by locally equivalent sets of plane waves and/or

vorticity. To march forward in time, we need to apply to each wave some

numerical advection scheme. We may hope that such schemes can be based on

schemes for scalar problems, as has happened in the one-dimensional case.

Also, we may anticipate that such schemes will show many of the typical

features of successful one-dimenslonal schemes, such as asymmetric support and

non-llnear llmiters [15]. However, the theory even of scalar advection

algorithms in many dimensions is only in its infancy. Roe and Baines [11]

present a criterion designed to avoid overshoots and describe a scheme which

meets it. Smolarkiewicz [14] describes another distinctive, but related,

approach. The next (rather large) step in the investigation reported here

will be to experiment with these and other algorithms in the present context.

8. Conclusions

We have pointed out that the extension of upwind differencing schemes to

more than one space dimension cannot be accomplished by operator splitting

methods without losing the desirable property of recognizing data due to a

simple wave. To construct "genuinely two-dimenslonal" schemes we propose

model flows, composed of elementary solutions to the two-dimensional

equations. These model flows are such that they can be matched to arbitrary
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data which varies linearly in some small region. The acoustic part of the

flow is modelled by four orthogonal plane waves whose orientation is matched

to the gradients in the data. Variation of entropy is represented by a single

plane wave, and rotational effects either by uniform vorticy or by a parallel

shearing motion. We show that the parameters of the model can be evaluated in

such a way that a time-marching algorithm can be made exactly conservative.
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Figure I. An acoustic wave front.
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Figure 2. The waves comprising the discrete models.
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Figure 3. Part of an irregular mesh.
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