
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

January 15, 1985

NASA
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL PUBLICATION 84-99

(NASA-CE-175641) FLCKHAATING WITH D-CHARTS	 N85-24806
(Jet Propulsion Lab.) 39 p EC A03/HF 101

CSCL 09B
Unclas

G3/61	 114797

Flowcharting With D-,lCharts

Donald D. Meyer

N

Gf

1

i

j

r ^!

04

JPL PUBLICATION 84-99

Flowcharting With D-Charts

Donald D. Meyer

e
II

a
U

January 15, 1985

NASA
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

i

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administralion

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology

ACKNOWLEDGEMENT

The basic constructs for D-Charts were made known to the author as pa':t

of a seminar series on Structured Programming conducted by Kim R. Harris at

the NASA Ames Research Center during September, 1976.

iii

ABSTRACT

A D-Chart is a style of flowchart using control symbols highly appropriate

S
to modern "structured" programming languages. The "D" comes from Mager Dijkstra

4	
who devised Lhe basic notation. The intent of a D-Chart is to provide a clear

A	
and concise one-for-one mapping of control symbols to high-level language con-

structs for purposes of design and documentation. The notation lends itself

to both high-level and code-level algorithmic description. The intent of this

paper is to address the various issues that may arise when representing, in

D-Chart style, algorithms expressed in the more popular high-level languages.

In particular, the peculiarities of mapping control constructs for Ada, Pascal,

Fortran 77, C, PL/I, Jovial J73, HAL/S, and Algol are discussed.

iv

__._

CONTENTS

1 THE PROBLEM WITH FLOWCHARTS o... 1-1

2 THE CASE FOR D-CHARTStoot..... 2-1

3 D—CHART SYMBOLOGY t..t..t........... to• 3-1

3.1 SEQUENTIAL .. 3-2

3.2 CONDITIONAL ... 3-6

3.2.1 If-Then-Else	 Symbol ... 3-6

3.2.2 Case	 Symbol ..to. 3-9

3.3 REPETITIVE .. 3-14

3.4 IRREGULAR	 FLOW ... 3-19

3.5 LINE CONTINUATION ... 3-21

4 DATA AND PROCEDURAL LINKAGES 4-1

S CONCLUSION .. 5-1

6 REFERENCES .. 6-1	
s r"

V	 L.,

SECTION 1

THE PROBLEM WITH FLOWCHARTS

Flowcharts are held to have two major functions as a means of system or

algorithmic description. The first is to assist in the creative process,

allowing the designer a graphical means of visualizing program constructs and

relationships. This is often expressed in introductory programming texts as:

"Coding begins with the drawing of a flowchart." The second function is expos-

itory, providing a vehicle for explaining to others the meaning of a high-level

design, or of detailed coding. Thus, flowcharts often represent a major por-

tion of the "documentation" of a program.

A standard for flowchart symbols was first proposed in 1963 1 and was

revised and extended several times, culminating with the ANSI Standard of
^ Y

19702 ' 3 . It has some utility in describing a data processing function thanks
Y3

to a large collection of symbols for input / output media and operations. How-

ever, the Standard is awkward for expressing certain basic structures which

arise in algorithms to be rendered in high -level languages. 	 y

The ANSI Standard provides constructs, e.g. diamonds and trapezoids, which

map to low-level "machine" processing. As such, they may remain appropriate

for describing algorithms written in assembly language. However, for expres-

sing high-level language programs of any significant size, the restriction to

ANSI symbols almost invariably produces awkward constructions which obscure

the intended meaning. In the process of representing a high-level design with

low-level symbology, excessive page space is often required which only further

1-1

confuses the representation due to tue requirement for off-page connections.

Also, the use of closed shapes is often irksome in practice, producing cramped

and cryptic prose or statements, particularly in the diamond.

To counter these objections, alternate flowchart mechanisms have been pro-

posed. In particular there is the Nassi-Shneiderman Chart 4 , and a variant

on the same theme, the Chapin Chart s . Both of these techniques define rec-

tangular control structures wnich are then nested at ever smaller sizes within

an overall rectangle representing a complete process. Due to the physical

limitations of page size, a designer is forced to produce relatl.vely modest

modular constructs "in keeping with good programming practice." In actual

practice this imposes a needlessly severe restriction which can lead to a chart

of such compactness and complexity that it may pose readability problems, if,

in fact, the algorithm represented can be contained at all. Also, this partic-

ularly inflexible flowchart style would appear to be of limited value as a

design aid. Any modifications will quite likely require that the entire chart

be redrawn.

One line of argument contends that a properly indented output listing in

i
a consistent format is adequate for illuminating program flow. This is form-

alized in a Program Design Language (PDL) 6 , in which indentation is used in

conjunction with "structured English" to represent a high-level design. How-

ever, indentation often fails for logically complicated modules which in the

real world can often span several listing pages. This is due to the difficulty

of matching a construct identifier, e.g. do or begin, to its respective end

identifier, if the span is long and/or the nesting deep. One would hope for a

1-2

representation in which the basic types and interrelationships of the flow

l
constructs present are apparent at a glance. In nearly all cases indentation

does not meet this objective.

These problems have led some to abandon flowcharting altogether, perhaps

producing them after the fact for "documentation" due to managerial fiat. This

process has in fact been automated in programs which can produce prodigious

pages of flowchart output of dubious value.

The continuing problem of software visibility still calls for some type of

clear, concise graphical representation. D-Charts are intended to meet this

need by very pragmatically mapping, one to one, a sett of clearly visible sym-

bols to the flow constructs encountered in high-level languages. The basic

flow control symbology to be presented is attributed to Dijkstra, having been

used by him in some correspondence. The extensions and refinements required to 	 ` `f

deal with issues that arise in a variety of languages are those of the author.

f

1-3	 f,_;

SECTION 2

THE CASE FOR D-CHARTS

Compared to flowcharts using ANSI Standard symbols, it is claimed that

D-Charts are.

•	 Simpler

0	 Easier to create, read, and learn

0	 More powerful and descriptive

•	 More compact

D-Charts are simpler because they form a notation which reflects the same

complexity as high-level programming languages. Traditional flowcharts are

more complex since they represent high-level constructs with low-level sym-

bology. D-Charts, with only a few powerfu:. symbols, may be learned quickly,

given that they map directly to constructs in "structured languages" such as

Pascal and Ada*. In particular, a repetitive loop-control symbol is provided

which dispenses with the clumsy, and often misleading, construction forced by

ANSI Standard symbols. Finally, D-Charts are more compact, frequently allowing

a reduction in the size of the chart, thereby reducing or eliminating lines

from one page to the next.

*Ada is a trademark of the U.S. Department of Defense.

2-1

SECTION 3

D-CHART SYMBOLOGY

It has been proven that only three basic control constructs are needed to

express any computable algorithm . These constructs are sequential, condi-

tional, and repetitive. Each high -level language expresses each of these by a

somewhat different syntax, and perhaps provides some additional flow constructs

for convenience. The D-Chart flow symbols provide a common representation,

regardless of these syntactic differences.

The only "lines" in a D-Chart are those used to show non-sequential con-

trol paths, e.g. loops and c^anditional branches, and for page -to-page flow con-

tinuation. In a proper D-Chart (reflecting a properly structured program) no

lines go up; all lines either go down or sideways. Any need for rearward con-

trol flow can and should be met with loop control symbols. A D-Chart always

starts at the top of a page and ends at the bottom, flowing sequentially from

page to page if need be, greatly enhancing readability.

In this paper reserved words (keywords) of particular languages will be

indicated in boldface. Keywords which can appear in the D-Chart in some

particular context, e.g. call, return, and cancel, will be indicated by under-

lined boldface. Also, built -in functions provided by a language, e.g. egrt,

xor, coo, and max, are underlined. Keywords such as if, else, for, begin, do,

case, and continue are embodied in the flow symbols presented in the following

sections, and as such should never appear in a D-Chart except as noted. Each

code -level statement should end with the statement terminator of the particular

language, typically a semicolon.

3-1

^x

j-r

3.1 SEQUENTIAL

At the top of the D-Chart the module name is underlined twice, forming an

entry symbol. The "module" being represented may be a program, procedure (sub-

routine), or function; it may even be a general algorithm divorced from any

particular programming language. If the module has any special attribute such

as reentrant or recursive, this should be included under the module name.

One of the basic tenants of "structured programming" is that the three

basic control constructs, as well as complete program modules, have but one

entry and one exit. This rule forces clarity and regularity on the program

structure, and aids greatly in verifying program correctness. Unhappily two

older languages, Fortran and PL/l, provide a mechanism to violate the one input

rule for modules by means of an entry statement. If for some reason this fea-

ture is needed, the entry name is also double underlined, and a line is drawn

to that point in the D-Chart where the alternate entry begins.

The final statement of a proper D-Chart should be that of the particular

language for the type of module being represented. That is, end, term , or

close for programs, and return for procedures and functions. For languages in

which the return point is implicit at the end of the coding, e.g. Jovial, an

explicit return should nonetheless be supplied. 	 The following are three

complete and proper D-Charts.

3-2

6

1	 .
l

i. Y

1	 -

PROGRATM-NAME

1
BODY OF PROGRAM;

END,

PROCEDURE-NAME

RECURSIVE

BODY OF PROCEDURE;

RETURN[;

PROCEDURE-NAME

PART OF PROCEDURE;

ANOTHER-ENTRY

ea

REST OF PROCEDURE;

RUM;

In appearance the most significant difference between u D-Chart and an

ANSI Standard flowchart is the elimination of closed shapes, e.g. rectangles,

diamonds, and circles. Sequential statements are written in free-form, one

below the other as follows:;<

statement;

next statement;

next statement;

These statements may be at whatever level of abstraction for which the

D-Chart is intended. For example:

3-3

i

VOL - (PI * R ** 2) * LENGTH;	 Exact coding
1

VOL + cylindrical volume;
High level descriptions

Compute cylindrical volume;

y
A high-level description may replace one or more code-level statements

o,	 with one or more declarative sentences or phrases, generally begun with a verb,

e.g. form, increment, determine, and set. For a somewhat lower-level descrip-

tion it is suggested that the arrow (t) of APL be used as the assignment

operator to generalize the description. In this case the names of actual vari-

ables might be mentioned, if appropriate.

For a code-level D-Chart it is recommended that the statements be pre-
1`-i

sentel exactly as they appear in the compiler output listing. This will be

different from the source in some instances, most particularly HAL/S which

outputs an exponent -main-subscript format. For example:

VALUE - (M * M1$(*,I)) - V; 	 Exact HAL/ S coding

VALUE - (M * M1 * ^ I) - V;	 HAL/ S listing

Overmarks indicating special types, e.g. vector, matrix, and boolean,

should be retained as indicated, if present in the listing. Character strings,

bit strings, pointer variables, and non-decimal constants are represented by

the syntax of the particular langiage.

Any labels should be placed adjacent to the statement or flow control

symbol to be labeled, preferably to the left. The recommended style is to

follow the label with a colon and enclose it with pointed brackets. For

example-

3-4

<aearch_phase:) reset search counter;
	

High-level description

0280 PTR - 1
	

Fortran coding

In some languages an arbitrary section of coding may be labeled for docu-

mentation or as an address reference. In this case the beginning of the block

should be labeled as indicated above, and the end of the block should be

labeled similarly, but with the colon omitted. In Fortran the statement label

(number) may be omitted if it serves only to implement a basic construct, e.g.

a "do loop."

Some languages permit string replacement for enhanced readability of ex-

pressions of choice. For example, this form is called a define-name in Jovial,

a symbolic constant in C, and a replace macro in HAL/S. The appearance of a

string replacement should be made apparent by dashed underlining. For example,	 a.n
3 -,

if PRINT is defined as "WRITE(6)", a using statement might be 	 p " A

PRINT X, Y, Z;

Any comments desired to annotate the D-Chart should be placed in a conven-

ient location near the section to be described, and denoted either by the syn-

tactic form of a particular language, or by braces {) as a more general form:

N1, N2, N3	 FIRST;	 /* initialize search pointers */

F M * (DELTAV/DELTAT);	 {get current force)
A

A high-level D-Chart will consist primarily, if not entirely, of "struc-

tured comments" which replace code segments. As such, these comments do not

require the special denotation of code-level D-Charts.

3-5

3.2 CONDITIONAL

Two D-Chart symbols are provided for conditional branching. The first

covers the bi-directional decision, if-then-else, while the more general form

is handled by the case construct.

3.2.1	 If-Then-Else Symbol	 j

The following symbol is used:

•	 CONDITION`

"ELSE" PATH	 "THEN' PATH
STATEMENTS EXECUTED IF 	 STATEMENTS EXECUTED IF	 i
"CONDITION' IS FALSE	 "CONDITION" IS TRUE	 I «'

STATEMENT EXECUTED. UNCONDITIONALLY; 1-1.

The "else path" may be null, in which case a line is drawn vertically ;t

joining the top and bottom portions of the symbol.

CONDITION

STATEMENTS;	 f'

3-6

Either, or both, of the then (true) or One (false) paths may be any con-

trol structure which ^,beys the general structured rule of "one input path, one

output path." EacP. if-then-else symbol should have an explicit join which

causes the input and output paths to be aligned on the page. This join is made

explicit in Fortran and Ada by end if, and replaces those keywords. Note also

that this symbology removes any ambiguity arising from a "dangling else."

The following is a Pascal example of a nested set of if-then-else symbols

which represents an "else if chain" (elsif in Ada, elif in Algol 68), with an

else terminator:

a>16

x< >q
- 9	

I
AID h>-11

I	 b:- x +
I :- MAX Is, U; C:- SORT Id•pl;
FIXUP;

This example also illustrates that it may be desirable to enclose the "condi-

tion" in parentheses in order to avoid confusion between a statement to be

executed and a condition to be tested, should statements and conditions be in

close proximity.

Algol, C, Pascal, and PL/I provide, in some form, a conditional assign-

ment statement. These statements may be long and complex as in the following

example from C in which the "condition" is to the left of the "?" and the

3-7

Y

W l iY3
.^.	

^^ r^.'^^aw..

"true" value for z is to the left of the colon and the "false" value to the

right:

z - ((q >- b) && (f 1- 5)) ? 19/(i+j) : 7 * x;

For the sake of generality and clarity, it is recommended that statements

of this sort should also be represented by the if-then-else symbol and not as

assignment statements.

Since the if-then-else is a two-way branch, the condition written on

either side of the symbol implies that the other aide, usually blank, is taken

when the logical inverse of the "condition" is true. Both sides may be labeled

if desired for clarity or documentation. For example:

TIMED OUT?	 TIME REMAINING?

.3l

TERMINATE	 COMPUTE NEW
GRACEFULLY;	 VALUES OF X AND TIME;

This example also illustrates the conditional form to be followed in a

high-level D-Chart. That is, the condition should be posed as a question

followed by a question mark. Also, while a code -level D-Chart should follow

the syntactic forms imposed by a particular language, a high-level D-Chart may

use more meaningful conditional and logical symbology, e.g. ">" instead of

".GT.". t

It is not necessary to strictly mimic the coding in a code -level D-Chart

as to which is to be considered the "true" path. That is, if the chart

3-8

^^---	
^; v	 ;^dam d5r?d^.. ..	 , .	 ° ^ ^ •ti-

arrangement works better by reversing the logical sense, then do so. This

particularly becomes an issue for the escape symbol to be discussed later. If

the logical sense is reversed, both the "then" and "else' conditions should be

Indicated. Note that in this case the "than path" might be null. For the

high-level example just given, the Fortran code might have been:

IF (TIME.GT .0) THEN

X ® Y + Z

TIME - TIME -1

ELSE

CALL WRAPUP

END IF

In this case the "reversed if-then-else" would be:

TIME.GT.O	 TI ME. LE. O

X • Y + Z	 CALL WRAPUP
TIME-TIME-1

	3.2.2	 Case Symbol

The case symbol provides a multiple path branch such as Ada's case state-

ment, C's switch, and Fortran's Computed go to or Arithmetic if. All of the

languages considered have a mechanism to provide this form, albeit clumsily for

some, e.g. in PL/I (go to subscripted-label-variable). The "one input path,

one output path" requirement is met by requiring that all branches of the case

return to a single point following the case symbol.

3-9

	

.,	
-

p

1

The "case-selector" which determines the path of the n-way branch will, in

general, be an expression which evaluates to an integral value. Successive

values then match to a statement or statement block that follows. For most

languages the case path ill labeled by the "integral value," or

values, while others allow for a range of values, e.g. Jovial ' s bound pairs.

Also, Ada, Jovial, and Pascal provide that the case selector can be an enumer-

ated ordinal type, e.g. COLOR, which has members, e.g. BLUE, RED, and YELLOW.

Due to these possibilities each branch line of the ease symbol should be

explicitly labeled as to its corresponding selector value or case label list.

Also, some languages provide a case path for an out -of-range selector

value. It should be labeled as such, and is specified by default in C and
i

Jovial, else in HAL/ S, and others in Ada. In the absence of an out -of-range
i

identifier, the action to be taken for an unspecified path will be assumed to

be that of the language in question, perhaps a branch to the statement follow- 	 IY.

ing the case symbol terminator..

The case symbol uses a rotary switch notation. The following example

illustrates the form to be followed if the number and complexity of the case

paths are small.

CASE-SELECTOR

DEFAULT
1	 2:5	 6

PATH WHEN	 PATH WHEN	 PATH WHEN	 PATH WHEN

SELECTOR <1 OR >6 SELECTOR • 1 SELECTOR • 2, 3, 4, 5 SELECTOR • 6

r

3-10

^fr	 ^^

ST

s._

An additional complication arises for those languages which allow execu-

^k,	 tLon to proceed to the next case path following the one specified by the case-

selector. This action is specified in Jovial by the fallthru statement, in C
4Y

by the absence of a break, and in Fortran and PL / I by the absence of a (go to

end-of-all -cases) at the end of a case path. This may be a continuing process

depending on the presence or absence of fallthru, break, or go to. In this

situation the case paths are arranged so that the statements in a path to be

"fallen to" are lower than those in a path to be "fallen from." A side arrow

is drawn to indicate the flow. These paths (to and from) will necessarily be

adjacent. Dashed lines should be supplied to indicate the full form of the

case symbol, with the understanding that a dashed line is an impossible lath.

A "fall through" may also arise from a conditional construct.

3-11

If the number and complexity of statements and control constructs in each

case path are manageable for a one column per path format, then the above forms

should be used. However, if the number of paths is large, or the statements

{	 and logic in each path are complicated, then the columnwise approach is imprac'-

n^	 tical. In this situation a better approach is to place each case path one

after another below the case symbol. Each path is labeled by underlining the

e'

selector value or values which will cause its execution. In this style any

fallthru or break statements will have to be indicated explicitly and under-

lined. However, for Fortran and PL/ I the go to at the end of a case path would

not be given, as a branch to the end of the case is implicit in the case

symbol, unless otherwise indicated. The case symbol, top and bottom, is formed

separately with a 3-way symbol regardless of the actual number of paths.
ii

CASE-SELECTOR

CA 	 STATEMENTS;

FALLTHBU;

END CASE 1;

CASE n STATEMENTS;

END CASE n;

CASE DEFAULT STATEMENTS;

END CASE DEFAULT;

NEXT STATEMENT;

i

3-12

STATE

U	 i

If the number of cases is very large, and/or the logic in the paths is

extensive, it may be necessary to consider each case path as an "internal

procedure" which stands alone following the entire D-Chart.	 This is

particularly true it the care construct is embedded in a complicated logical

nest. Each care symbol should be clearly commented ano cross-referenced to

its set of "internal procedures."

RETURN;

Case 1 of Mode Switch

statements;

end Case 1, Mode Switch;

Case n of Mode Switch

statements;

end Case n, Mode Switch;

3-13

As with the if-then-else, the elements of a case construct may be a high-
1

level free-form description.	 For example, the case-selector could be a

description of the selection criteria, and each case path could have the form

of declarative sentences describing the entire path. Or, prose could be used

in concert with D-Chart symbols to provide a high-level exposition of the path

algorithm.

3.3 REPETITIVE

The repetitive, or iterative, loop is the third of the basic constructs

required for devising computable algorithms. Loops come in two basic categor-

ies, enumerated and conditional. The discrete and incremented-by-step types

constitute the enumerated class, and while and until the conditional. Some

languages permit hybrid combinations of these four. All of the languages die- 	 Ix`
F,

cussed provide at least an incremented loop. 	 !"°
i^

	D-Charts use a clearly visible switch-dot notation to represent a loop. 	 1

The clumsy decision-diamond/back-arrow form found in ANSI Standard flowcharts

is eliminated. The general form is as follows:

LOOP-SPECIFICATION

_1
STATEMENTS EXECUTED UNDER
THE CONTROL OF THE
LOOP-SPECIFICATION

STATEMENT EXECUTED	 1

UNCONDITIONALLY;

3-14

To be explicit, the meaning of this construct is as follows. When the

switch (0) is encountered, the flow comes under the control of the loop-
specification for one of the four loop types or a hybrid. The dot (Al) is

the loop-end symbol and, when encountered, execution returns to the switch for

re-evaluetion of the loop-specification until satisfied. Once satisfied, con-

trol passes to the next statement following the switch. For notational consis-

tency the loop-specification sidebar should always extend to the right. Key-

words which terminate a loop, e.g. Ada's end loop, are replaced by the "dot."

The languages considered use a wide variety of syntactic forms and key-

words to perform the same task. For example, an enumerated loop is typically

indicated by do or for, while Ada uses for...loop. In all cases these differ-

ences are hidden by the loop symbol, being replaced by the same switch-dot

notation. For a code-level D-Chart the loop-specifications should follow the

same syntactic form as that of the languages rendered. Some examples follow:

FORTRAN

I;i< n;i ++ C

x L!MRSE mercury.. Pluto ADA

I:IODTHEM 1-5 WHILE I>0— --, JOVIAL

K-1, 3, 5.10 STEP 2 UNTIL 2Q 50 WHILE f leg 6 ALGOL

3-15

low

The last two examples illustrate hybrid loop-specifications. in fart, tha

Algol example uses all four loop forms! A basic Ada loop which requires some

loop-body construct for termination. might be represented as:

FOREVER

in a high-level D-Chart, the loop-specification would take a prose form.

For example:

STEP THRU TELEMETRY BUFFER, EVERY OTHER ITEM

The statements within the loop may be embodied in any of the control

structures which follow the general 'one input path, one output path" rule.

For example:

L LOOP-SPEC 1 FICAT ION

CONDITION

STATEMENTS:

STATEMENTS;

When the D-Chart involves nested loops in close proximity, some form of

labeling should be supplied to clearly relate the switch-dot pairs. If the

loop is labeled in the coding, the labeling convention previously discussed

should be used. Otherwise, the labeling should be done by comments, where the

"comment" need not be more than a single letter or number. Also as a matter

of style, the dot should be placed as near to its switch as possible.

3-16

<OUTER:> LOOP-SPECIFICATIONi^^
 LOOP-SPECIFICATION

<OUTER>	 `z}

STATEMENT	 STATEMENTS;	
STATEMENTS;

s.	 EXECUTED	 `1}1	 {2^•

UNCONDITIONALLY:
e

The HAL/S and C languages provide for more than one loop end, that is,

more than one dot per switch. In HAL/S this is accomplished by a repeat state-

ment, and in C by continue. The action at each dot is as before: revert to

 the switch for re-evaluation of the loop-specification. In this circumstance,

labeling should always be supplied to relate all loop ends to their switch.

{A}	 LOOP-SPECIFICATION

{B^ LOOP-SPECIFICATION

CONDITION

CONDITION	 CONDITION

STATE NTS;
CONDITION STATE ENTS:	 STATEMENTS;

STATEMENTS;	 •{o

STATEMENTS;	 I	
CONDITION

{A}

The conditional loop zlass requires further discussion. In the case of a

loop-specification consisting only of a while condition, it is necessary to

state only the logical expression, preceded optionally by the keyword while.

3-17

WHILE CONDITION

STATEMENTS EXECUTED AS LONG

STATEMENT	
AS "CONDITION' IS TRUE

EXECUTED
UNCONDITIONALLY;

The implication is that the "condition" is tested at the top of the loop

as the condition to continue loop execution. This is the case for all the

languages considered which have a while form. However, C has an additional

while form in which the test for loop continuation comes at the dot, or dots,

not the switch. In this case the prefix do while is mandatory.

The while form accounts for the great majority of exclusively conditional

loops. However, there is in addition an until form provided by several lang-

uages. In this case the test is made at the end of the loop as the condition 	 i

for loop execution to cease. The conditional expression is in fact placed at

the loop end in Pascal. For notational consistency, all loops of this type

should be represented by the same form. That is, the until keyword (repeat

until for Pascal) must be provided, with the implication that the test actually

occurs at the "dot."

!LN-T11 CONDITION

STATEMENTS EXECUTED AS
LONG AS "CONDITION" IS FALSE

STATEMENT	 j
EXECUTED
UNCONDITIONALLY;

3-18

3.4 IRREGULAR FLOW

In addition to the three basic control structures, each language provides

the means for constructing other flow paths, if nothing else, through use of

the infamous go to. Jovial, Ada, and HAL/S provide an exit statement for loop

escape, while C has break for transferring out of any of the control structures

previously discussed.

D-Charts provide an escape symbol which indicates the termination of a

loop at a point other than the evaluation of the loop-specification. The

escape symbol has the form of an open if-then-else symbol with a side arrow.

In the following example the upper escape symbol illustrates a conditional

exit statement, such as Ada's exit when. The lower escape symbol illustrates

an exit or break terminating a sequential series of statements:

LOOP-SPECIFICATION ,_;
EXIT-CONDITION

^loY

4

CONDITION

STATEMENTS:	 STATEMENTS;

STATEMENT
FOLLOWING	 j
LOOP;

In a proper D-Chart an unlabeled escape may lead only to the statement 	 4

r
following the loop in which it is contained, thereby satisfying the 'one in, 	

I.
one out" rule. The escape construct can be avoided at the cost of a spurious 	 j

3-19

F

boolean variable and two assignment statements in languages which permit hybrid

loop-specifications. In this case, the escape path is directed to the loop end

as follows:

done I FALSE;

• L 3,5# 7 — N[1E NOT done

^ONDITI ON

f
done t	

STATEMENTS;
TBUE^

Some languages, e.g. Ada and HAL/S, permit a labeled escape which causes

the exit of a nest. of constructs to a forward point. HAL/S generalizes this

to allow an exit from any labeled code block bracketed by do and end, thereby

producing a forward go to by another name.

Then too, each of the languages provides the traditional (go to label),

for which some may find a need for reasons of efficiency or perversity. Argu-

ments have been made against its need and desirabilityg.

When a go to, or an alias, is to be represented, it should be by a direc-

ted line to the next statement to be executed. The use of a rearward go to is

extremely bad form, and should be avoided at all cost. Every attempt should

be made to avoid crossing lines. For example, the sense of an if teat should

he reversed if that prevents the escape path from crossing other lines. If the

n-Chart is intended to reflect exactly the as-is coding, this reversal should

be made clear by indicating the condition and its logical inverse on both sides

3-20

_	 _._,	 --

-ti

t
of the if-then-else symbol. The recommended style for unavoidable crossing

lines is as follows:

;lyLOOP-SPECIFICATION

NTV	 12^	 LOOP-SPECIFICATION
VV IT.	 CONDITION

IT
I	 f {2}iLSTATEMENTS;

STATEMENTS; I

CONDITION +	 STATEMENTS;	 ,I
STATEMENTS;	 I	 L-, _^-

: J\!\\FI\ILLI YI

{2}
STATE EMS;

{I{

Z	 Despite the advisability of a single return to meet the "one in, one out"

rule, it is realized that returns have a way of appearing elsewhere as well,

thereby producing a flow break. Also, the loop repeat or continue discussed

earlier will cause a flow break. As illustrated by the above example, it is

often desirable to complete an if-then-else symbol with dashed lines to remove

.r

any possible confusion as to the intended construct. The dashed line implies

that the path is logically present, but impossible to traverse.

3.5 LINE CONTINUATION

In order to encapsulate processes at a level of "intellectual manage-

ability," attempts have been made to mandate small modules, perhaps limited to

two listing sheets. Nonetheless, it is realized that in the real world the

U-Chart for a module will often span several pages. This, of course, requires

some mechanism for line continuation to the following page. Line continuation

3-21

i
I

should never be permitted laterally, that is, it should occur only at the tops

and bottoms of pages and never at the sides. This forces a coherent, one-way

flow for the D-Chart. In the case of a construction with parallel nesting to

extreme depths where this may be a problem, consideration should be given to

replacing the logic of some paths with calls to fictitious "internal proced-

urea." These procedures should be clearly labeled as such, have a double

underlined invented name as for any procedure, and placed at the end of the

entire D-Chart.

The s-mbol for line continuation has the form of a "homeplate" (0). A

letter or number should be placed in each symbol to make explicit the line

continuation. The number/letter pair across the page boundary should be unique

and, if at all possible, the lines continued should be physically aligned on

the two sheets. If a given line spans an entire sheet without containing any
is

statements or constructs, then the same number/letter should be carried forward

until something occurs in that line. On both the "from" and "to" sheets the

continuation symbol should point downwards in the direction of the logical

flow.

PAGE BOUNDARY

T 4

3-22

a;.

SECTION 4

DATA AND PROCEDURAL LINKAGES

This final section deals with the techniques of handling the interface

between the module being D-Charted and the rest of the operating environment.

It should be recalled that any flowchart represents executable statements and

the flow constructs in which they exist. The side issue of data definition for

the module can be handled in several ways. The simplest is not to address the

matter at all in the D-Chart, on the basis that the data will be defined by

some other mechanism, e.g. a set of HIPO (Hierarchical Input Process Output)	 '

diagrams, data flow diagrams, and/or a data dictionary. This must include the

definition for all 'ordinary" variables, as well as enumerated types, replace

strings, the templates of structured types, and package names in the case of	 F

Ada. All of these would be prefaced to a self-contained D-Chart of a program

module, perhaps categorized according to type, along with other pertinent

attributes as desired.

A D-Chart for a procedure or function should, at a minimum, have at its

top a listing of all variables which are input and output by argument passing.

The data type returned by a function should also be specified as an output.

Those variables which are input and output through a compool, common or

external mechanism should be separately indicated as well. Variables not so

1	 listed could then be assumed to be internal to the module.

4-1

...	 a
f

	

MODE-PROCEDURE 	 INPUTS	 OUTPUTS

ARGUMENTS:	 x, y	 y, z, n

COMPOOL BASIC:	 a,b	 c

FIRST STATEMENT;

LIMIT—FUNCTION	 INPUTS	 OUTPUT

ARGUMENTS:	 x, y	 (SCALAR TYPE)

COMPOOL CONST:	 tot

FIRST STATEMENT;

Invocation of a function should be presented as it appears in the coding

since the inputs (values passed to the function) and single output (value

returned from the function) are explicit. For a procedure (subroutine), the

various languages provide a number of syntactic forms for distinguishing

between input and output arguments, or perhaps make no distinction at all. A

procedure call can be indicated as it appears in the coding, or, for more gen-

erality, with the input and output arguments clearly listed.

3 .:

For example:

i

a < - (5•y)

CALL INTEGRATE;

	

I f MAX_(a,b);	 Inputs: x, y, step
c f LI MIT (m, n);	 Output: z

4-2

Note that a "library" function name is underlined, while user-defined

function and procedure names are not. Of the languages considered, all but

Fortran, PL/I, and HAWS invoke both functions and procedures only by stating

their names. However, a call may be prefaced to the procedure invocation for

these as well, for the sake of clarity and to generalize the description.

An additional problem arises in that all the languages discussed, except

Fortran, permit the declaration of variables in a limited scope smaller than a

complete module. For example, in HAL/S variables can be declared temporary and

exist only in the enclosing block of their definition. If this is an important

issue due to duplicate names in nested blocks, then the scope of such variables

will have to be indicated by comments adjacent to these blocks.

Of the languages discussed, only Fortran, HAL/S, and PL/I provide input/

output statements as intrinsic operations. 	 The others typically provide

built-in functions for the purpose. In either rase, the operation keyword or

function name is underlined as always, e.g. writeln and read. Any ancillary

nonexecutabie statements, e.g. format, file, and namelist, may be included, if

desired, at an appropriate location in the D-Chart.

HAWS includas a repertoire of statements for real-time control, e.g.

schedule, cancel, and signal. Syntactically these take the form of pseudo-

function invocations in which a system action is performed, rather than a value

returned. They should appear in a D-Chart as they would in the coding.	
F

Ada, PL/I, and HAL/S provide for user-defined error recovery through

exception, on, and on error statements, respectively. Also, Ada and PL/I have

4-3

extensive facilities to deal with concurrent processing (tasking), e.g. select,

accept, and post. The flowcharting mechanisms that would be needed to deal

with the intricacies of these two topics is beyond the scope of this dis-

cussion.

H

.:?

4-4

SECTION 5

CONCLUSION

A symbolic notation has been presented for the graphical representation of

the basic flow constructs of a number of popular high-level languages. It has

been the author's experience in a number of organizations that programmers

faced with the daily task of writing and reading programs take very naturally

to the D-Chart style of representing algorithms. In one instance their usage

prevailed by popular demand even in the face of a managerial dictate to stay

with "standard" forms. It is hoped that the O-Chart style of structured flow-

charting will be found useful in alleviating the problem of software visibility.

v^

I

{
4

5-1

SECTION 6

REFERENCES

1. R. J. Rossheim, "Report on Proposed American Standard Flowchart

Symbols for Information Processing," Comm. ACM, Vol. 6, No. 10,

Oct. 1963, pp. 599-604.

2. "ANSI, Flowchart Symbols and Their Usage in Information Processing,

X3.5-1970," American National Standards Institute, New York, 1971,

17 pp.

3. N. Chapin, "Flowcharting with the ANSI Standards A Tutorial," Com-

puting Surveys, Vol. 2, No. 2, June 1970, pp. 119-146.

4. 1. Nassi and B. Shneiderman, "Flowcharting Techniques for Structured

Programming," SIGPLAN Notices (ACM), Vol. 8, No. 8, Aug. 1973,

pp. 12-26.

5. N. Chapin "New Format for Flowcharts," Software Practice and Exper-

ience, Vol. 4, No. 4, Oct.-Dec. 1974, pp. 341-357.

6. S. H. Caine and E. K. Gordon, "PDL - A Tool for Software Design,"

AFIPS Conf. Proc., 1975, pp. 271-276.

7. C. Bohm and G. Jacopini, "Flow Diagrams, Turing Machines and

Languages With Only Two Formation Rules," Comm. ACM, Vol. 9, No. 5,

May 1966, pp. 366-371.

6-1

80	 E. W. Dijketra, "GO TO Statement Considered Harmful," Comm. ACM,

Vol. 11, No. 3, Her. 1968, pp. 147-148.

i

S^1

If

6-2
	

ruse—PL--C4x,LA. cue.

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf

