NASA TM-86421

NASA Technical Memorandum 86421

NASA-TM-86421 19850017134

Optimization of the Catalytic Oxidation of CO for Closed-Cycle \mbox{CO}_2 Laser Applications

I. M. MILLER, G. M. WOOD, JR., D. R. SCHRYER, R. V. HESS, B. T. UPCHURCH, AND K. G. BROWN

April 1985

LIBRARY COPY

LANGLEY RESEARCH CONTER LIBRARY, HASA HAMPTON, VIRGINIA

් ු කර්ට

Space Administration Langley Research Center Hampton, Virginia 23665

NF00601

INTRODUCTION

High-energy pulsed CO_2 lasers have a potential for measuring many different features of the earth's atmosphere (refs. 1 and 2). For this purpose they are particularly useful on an airborne or space platform. In this application, the laser must be operated closed-cycle to conserve gas, especially if rare chemical isotopes of carbon and oxygen are used. However, the laser discharge decomposes a fraction of the CO_2 to CO and O_2 , which causes a rapid loss in power and leads to erratic behavior. To maintain operation, the CO and O_2 must be recombined to form CO_2 . This conversion can be done by passing the gas mixture over a heated, solid catalyst.

Although many catalysts can oxidize CO to CO_2 , not all are suitable for laser operation because they need an oxidizing atmosphere of about 20% oxygen. This is a large excess of oxygen. However, in the CO_2 laser, the O_2 concentration must be kept below a few tenths of a percent to maintain laser power.

A recent study in this laboratory (ref. 3) has shown that a 1% Pt on SnO_2 (1% Pt/SnO₂) catalyst tested with a surrogate laser gas mixture of 1% CO and 1/2% O₂ showed considerable removal of CO and O₂. At 120°C all the CO and 70% of the O₂ were removed. Complete removal of both was observed at 175°C. Subsequently, a closed-cycle CO₂ laser was operated with this catalyst between 120 and 200°C, and laser power was maintained for 6 hours at 93% of full power.

The current study has these goals:

1. To develop a basis for the design of a 1% $\rm Pt/SnO_2$ catalyst bed for a closed-cycle $\rm CO_2$ laser

2. To determine the reaction mechanism of CO and $\rm O_2$ on the $\rm Pt/SnO_2$ catalyst surface

3. To determine whether or not there is isotopic exchange between a rare isotope of oxygen in the gas and bound oxygen in the Pt/SnO_2 catalyst

4. To optimize the Pt/SnO₂ catalyst with respect to % Pt.

This report is concerned with progress made in the first and second goals. Succeeding reports will deal with all four goals.

N85-25445 #

Design Basis for the Catalyst Bed

The purpose of this section is to discuss briefly the design basis for an amount of catalyst that will completely convert CO and O_2 to CO_2 in a closed-cycle CO_2 laser system. The key design parameter is τ , the residence or contact time required for complete conversion of CO to CO_2 . This can be defined as

$$\tau = \frac{V_{o}}{F}$$
(1)

۰.

where $\rm V_O$ is the void volume of the catalyst and F is the volumetric flow rate of the test gas flowing through the catalyst. $\rm V_O$ can be defined as

$$V_{o} = V_{o}'w$$
⁽²⁾

where V' is the specific void volume, or the void volume per unit weight of the catalyst, and w is the weight of catalyst in the bed. V' is defined as

$$V'_{o} = \frac{1}{\rho_{b}} - \frac{1}{\rho_{SnO_{2}}}$$
(3)

where ρ_b is the bulk density of catalyst and ρ_{SnO_2} is the literature value for the density of SnO_2 . The volume of the 1% Pt relative to the SnO_2 is very small and was neglected.

Equations (1) and (2) can be combined to form a design equation:

$$w = \frac{F\tau}{V'_{O}}$$
(4)

This equation will calculate the weight of catalyst needed for the complete conversion of CO and O_2 for a τ and temperature necessary for this conversion. The specific void volume of the catalyst was determined to be $0.374 \text{ cm}^3/\text{g}$, therefore,

$$w = \frac{F\tau}{0.374}$$
(5)

Experimental

Figure 1 shows a schematic diagram of one of the experimental systems used in our study. This system was used to obtain kinetic data for the reaction of a stoichiometric mixture of CO and O_2 on a 1% Pt/SnO₂ catalyst. The gas mixture, or test gas, was sampled at either the test gas cylinder (the reactor bypass) or at the reactor outlet, as shown in figure 1, and analyzed by a gas chromatograph. The test gas was a mixture of 1% CO and $1/2\% O_2$ in ultrapure helium, 99.999%. About

0.2% neon was added to this mixture as an internal standard. Moisture in the helium was removed by a silica gel-molecular sieve dryer, while that in the test gas was removed by a magnesium perchlorate dryer.

The chromatographic column was a commercial dual concentric tube column where the outer column, 1.83 m x 0.64 cm, was packed with activated molecular sieve, and the inner column, 1.83 m x 0.32 cm, was packed with a Porapak mixture. The outer column separated the O_2 , N_2 , and CO from the mixture while the inner column separated the O_2 . A small N_2 peak probably resulted from a small air inleakage. The area of the N_2 peak was used to make a small correction to the area of the O_2 peak. The GC oven temperature was 80° C and helium carrier flow was 43 sccm.

The reactor consisted of a high purity, clear quartz tube 7 mm i.d. by 46 cm long; a 25 cm section of this tube passed through a uniform temperature zone that was controlled at 25° , 55° , 75° , and $100 \pm 1^{\circ}$ C. The catalyst bed in the reactor weighed 0.925 g and was 1 cm long. It was located in the center of the controlled temperature zone and was confined by a quartz wool plug at each face of the bed.

The catalyst used in the present study was prepared by first oxidizing $SnCl_2$ (in a solution adjusted to a pH of 7 with Na_2CO_3) with 35% H_2O_2 solution to $Sn(OH)_4$. The product was filtered, air-dried for 6 to 8 hours at $110^{\circ}C$ and pulverized. This powder was impregnated with a concentrated solution of $Pt(NH_3)_4(OH)_2$. The product was filtered, air-dried for 2 hours at $110^{\circ}C$, then calcined for 5 hours at $450^{\circ}C$ in air, followed by grinding to a powder.

At the beginning of a typical run the catalyst bed was purged with helium gas for a minimum of 1 hour at 225° C to remove any adsorbed gases, such as 0_2 ,CO, and CO₂. Then the reactor was cooled with flowing helium gas to one of the four temperatures indicated above. Test gas flow was then initiated through the reactor and adjusted to one of three flows: 5, 10, or 20 sccm. These mass flows were converted to volumetric flows using the temperature and average pressure in the reactor. The neon internal standard in the test gas mixture made it possible to relate the analyses of CO, 0_2 , and CO₂ to one another independently of the flow rate, pressure or temperature of the sample loop in the GC. At the end of the run, the reactor inlet stream was analyzed.

RESULTS AND DISCUSSION

Figure 2 shows a typical run in which molar ratios of CO_2/Ne , O_2/Ne , and CO/Ne are plotted against elapsed run time in minutes. Initially, the CO_2 concentration decreased while the O_2 and CO concentrations increased. Sometime after 300 minutes, the concentration of these three molecules leveled off, as indicated by the relatively constant value of 4 or more replicates. After this, four replicate analyses of the reactor inlet stream were taken. The conversion of CO and O_2 is based on the average value of each of the two sets of replicates. We define conversion, C, as

$$C = \frac{\begin{bmatrix} B_i \end{bmatrix} - \begin{bmatrix} B_o \end{bmatrix}}{\begin{bmatrix} B_i \end{bmatrix}} \times 100$$

where B_i is the concentration of the reactant at the reactor inlet and B_o is the concentration of the reactant at the reactor outlet.

At a reactor temperature of 100° C, and at a flow rates of 5 and 10 sccm, 100% conversion of both CO and 0_2 was observed on a 1% Pt/Sn 0_2 catalyst weighing 0.925 g. Complete conversion of CO and 0_2 was not obtained at 20 sccm. From equation (1), the residence time, τ , for a flow rate of 10 sccm, was calculated to be 1.5 sec. The residence time for 20 sccm was calculated to be 0.75 sec. Thus, the minimum τ for complete conversion is 1.5 > τ > 0.75 sec. To be conservative, it will be assumed that $\tau = 1.5$ sec. Based on this value of τ , equation (5) was then used to calculate the weight of catalyst needed for a closed-cycle laser system with a reactor temperature of 100°C and a flow rate of 10,000 sccm.

$$w = \frac{(10,000)(1.5)}{(0.374)(60)}$$
$$= 668 \text{ g.}$$

This quantity of 1% Pt/SnO₂ catalyst, having a Brunauer, Emmett, and Teller (BET)^a surface area of 6.7 m²/g, is the amount of catalyst that should result in an indefinite operation of a closed-cycle CO_2 TEA pulsed laser.

The general rate equation for the reaction of CO and 0_2 to form CO_2 , is

$$\frac{d[CO_2]}{dt} = -\frac{2d[O_2]}{dt} = -\frac{d[CO]}{dt} = k [CO]^{\alpha} [O_2]^{\beta}$$
(6)

where [CO] and $\begin{bmatrix} 0_2 \end{bmatrix}$ are the concentrations of carbon monoxide and oxygen, k is the rate constant, and α and β are the orders of reactant CO and 0_2 , respectively. An attempt was made to determine the order of the reactant concentrations using a steady state approximation for the oxygen atom concentration.

Let us assume that an oxygen molecule dissociates on the catalyst surface to form two oxygen atoms, 0_c , or

$$0_2 = 20_8$$
 (7)

Then an adsorbed or gas phase CO reacts with one of these oxygen atoms to form $\mathrm{CO}_2,$ or

 $0_{s} + C0 = C0_{2}$ (8)

Adding these two reactions we get

 $C0 + 0_2 - 0_8 = C0_2$

which is equivalent to the overall reaction

$$CO + 1/2 O_2 = CO_2$$
.

^aThis refers to a method of measuring the real surface area of a solid by nitrogen adsorption (ref. 4)

It follows from (7) that oxygen dissociation is proportional to 0_2 concentration:

$$-\frac{d[0_2]}{dt} = k_7[0_2]$$
(9)

and from (8) the conversion of CO is proportional to the concentration of O_s and CO.

$$-\frac{d[co]}{dt} = k_8[0_s][co]$$
(10)

where we assume that the reverse rates for reactions (7) and (8) are negligible. The rate equation for the oxygen atom concentration on the surface may be similarly expressed as

$$\frac{d[0_s]}{dt} = 2k_7[0_2] - k_8[0_s][C0]$$
(11)

If we assume a steady state approximation for the oxygen atom concentration, then

$$\frac{\mathrm{d}[0_{\mathrm{s}}]}{\mathrm{d}t} = 0 \tag{12}$$

Substituting (12) into (11) and solving (11) for $[0_s]$, yields

$$\begin{bmatrix} 0_{s} \end{bmatrix} = \frac{2k_{7} \begin{bmatrix} 0_{2} \end{bmatrix}}{k_{8} \begin{bmatrix} CO \end{bmatrix}}.$$
 (13)

Substituting (13) into (10) yields

$$-\frac{d[CO]}{dt} = k_8 \left(\frac{2k_7[O_2]}{k_8[CO]}\right) [CO]$$

which subsequently reduces to

$$-\frac{d[CO]}{dt} = 2k_7 [O_2]$$
(14)

In our stoichiometric mixture,

$$[0_2] = \frac{1}{2}[CO]$$
 (15)

Substitution of (15) into (14) yields

$$\frac{d[CO]}{dt} = -k_7[CO].$$
(16)

We see that the reaction rate constant, $-k_7$ is the same for 0_2 and for [CO] in the rate equations (9) and (16); the integrated forms of these equations also show this:

$$\ln[0_2] = -k_7 t + \ln[0_2]$$
(17)

and

$$\ln[C0] = -k_7 t + \ln[C0]_0$$
(18)

where $[0_2]_0$ and $[C0]_0$ are the initial concentrations of 0_2 and C0.

In figure 3, plotted data of $\ln[0_2]$ versus τ and $\ln[C0]$ versus τ also show very nearly the same slope, or k_7 , for each temperature of 25°C, 55°C, and 75°C. However, since we have used a stoichiometric gas mixture of CO and 0_2 throughout these experiments, the overall order of the reaction is unity (i. e., $\alpha + \beta = 1$), for we could have obtained the same results by assuming zero order in one of the reactants and first order in the other or half order in each. Therefore, other experiments must be run with nonstoichiometric mixtures of CO and 0_2 to determine unambigously the order of each reactant. Once the order is determined the rate law can be established.

CONCLUDING REMARKS

In a surrogate laser system using 0.925 g of a 1% Pt/SnO₂ catalyst (BET surface area of 6.7 m²/g) complete conversion of a stoichiometric gas mixture (1% CO, 1/2% O₂, and the balance He) occurred at 100°C and a flow rate of 10 sccm. From these data, it was determined that a reactor in a closed-cycle CO₂ laser system using 668 g of catalyst at 100°C should operate indefinitely with a circulating gas flow of 10,000 sccm.

An analysis of the kinetic data suggested a rate law for a reaction that is overall first order. However, because a stoichiometric mixture of CO and O_2 was used, it is possible for the reaction to be zero order in either constituent and first order in the other or to be half order in each. Further tests are planned to resolve this problem.

REFERENCES

- 1. Gage, K. S. and Balsey, B. B.: "Advances in Remote Sensing of the Atmosphere," Reviews of Geophysics and Space Physics, Vol. 21, No. 5, pp. 958-959, June 1983.
- 2. Anon., Space-born Lidar Systems Aim to Improve Weather Forecasting," Research and Development, January 1985, pp. 50-51.

3. Rogowski, R. S. et. al: "Evaluation of Catalyst for Closed-Cycle Operation of High Energy Pulsed CO₂ Lasers. SPIE/EAST '83 Symposium, April 4-8, 1983, Arlington, VA.

4. The Encyclopedia of Chemistry, Third Edition, Edited by Clifford A. Hampel and Gessner G. Hawley, Van Nostrand Reinhold Company, New York, 1973.

Figure 1. - Schematic diagram of a surrogate laser system for studying the reaction of a stoichiometric gas mixture of 1% CO and 0.5% O₂ in He on a 1% Pt/SnO₂ catalyst. [T - test gas cylinder; He - helium cylinder; D - dryer; S - switching valve; C - control valve; F - flow meter; R - reactor; V - vent; GC - gas chromatograph.]

÷ -

Figure 2. - Time variation of gas/neon concentrations for a reactor temperature of 24^oC and a flow rate of 10 sccm. Open symbols are for the reactor outlet; closed symbols are for reactor inlet.

ţ

1. Report No. NASA TM-86421	2. Government Access	ion No.	3. Reci	ipient's Catalog No.	
4. Title and Subtitle Optimization of the Catalytic Oxidation of Closed-Cycle CO ₂ Laser Applications			5. Rep Apri	ort Date 1 1985	
			6. Perf 506-	6. Performing Organization Code 506-54-23-12	
7. Author(s) I. M. Miller, G. M. Wood, Jr., D. R. Schryer			8. Perf	8. Performing Organization Report No.	
R. V. Hess, B. T. Upchurch, and K. G. Brown			10. Wor	10. Work Unit No.	
5. renorming Organization Name and Address			11.00		
NASA Langley Research Center Hampton, VA 23665			TI. Con	tract of Grant No.	
			13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address			Tech	Technical Memorandum	
National Aeronautics and Space Administrati Washington, DC 20546			14. Spo	14. Sponsoring Agency Code	
15. Supplementary Notes			. <u></u>	<u> </u>	
I. M. Miller, G. M. Wood, Jr., D. R. Schryer, and R. V. Hess: NASA Langley Research Center, Hampton, Virginia.					
B. T. Upchurch and K. G. Brown: Old Dominion University, Norfolk, Virginia.					
design conditions are: a carate of $10\ell/\text{min}$. Under these prolonged laser operation is mixture of 1% CO + $1/2\%$ O ₂ in however, additional experiment needed to determine the order concentration in the rate laterate of the second secon	calyst bed temper e conditions, the 668g. The rate n helium was dete nts with non-stol r of the CO conce w.	ature or e require law for ermined t chiometr entration	d quantity of the reaction o o be overall a ic gas mixturo and the orde	catalyst for of a stoichiometric first order; es of CO and O ₂ are r of the O ₂	
17. Key Words (Suggested by Author(s))		18. Distribution Statement			
CO_laser, 1% Pt/SnO ₂ catalyst, CO ² oxidation		Unclassified - Unlimited			
		Subject Category 25			
19. Security Classif. (of this report)2UnclassifiedU	0. Security Classif. (of this inclassified	page)	21. No. of Pages 11	22. Price A02	
Epi sale by the National Technical Information Service Springfield Virginia 22161					

For sale by the National Technical Information Service, Springfield, Virginia 22161

÷

End of Document

.<u>.'</u> •