General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

5, 'y -_-\ - e T et A o C
M{{W&‘k&%‘ﬁf:ﬁi‘ 3:‘ ¥ oo 1 RIS 2 - e R

k)

%

(HASA-CR~175705) RESFABCH IN TFR DESIGK CF NB85-2€1£23

HIGH=-PERECEEAECY EBCCNFIGURRELE SYSTEMS
Sewiannual Status Repcrt, 1 Cct. 1964 - 31 Incias

. 1985 (Illirecis vUriv.) E£3 p
ﬁgrm’vnr 1\‘01 c5cLl 09B G3/60 22309

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA, ILLINOIS 61801

TITLE
Research in the Design of High-Performance

Reconfigurable Systems

Third
Semiannual Statis Report
October 1, 1984 -- March 31, 1985

NASA Grant # NAG 5-377

Project Personnel
Graduate Research Assistant
Scott D. McEwan
Andrew J, Spry

Principal Investigator

b

D. L. Slotnick

L

ok

oL -

P

~g T

L ety e 1“&2

.)

?A
4L

Ry e U L

TRMR T aA T e T

Table of Contents

CHAPTER

1 INTRODUCTION wvvveirvimrirrirnesrissssermississersissesssssmssssssssnsssossmmssienmsssenessssssssssssrassssorsis]
1.1 Computational Time Constraintsunmmmnninisnimon, 1
1,2 Implementing a Parallel Machine with VLSi Componentsc.. 7

2 THE RECONFIGURABLE LINEAR ALGEBRA PROCESSING SYSTEM

(RELAPSE) ..o vvrirevsrvrensemrensesssssssionssisssusssonss oret b se RSO R e b RS0 bs 9

2.1 The Linear Algebra Problem DOmain ... 9
2.2 Organization of the RELAPSE System ..o, i1

3 THE BIT PROCESSOR, THE STAGE, AND ARITHMETIC UNITS i 17
3.1 THE Bt PrOCESSON wiriveemiessrisvssiminsmsssssessissssesessssasisssssosssssssorsssssrsnsssssan 17
3.1.1 Functional Description of the Bit Processor ... 18

3.2 ThE SE20E oo b st s R e bbb 000 24
3.2.1 Functional Description of the Stage ... 24

3.2.2 Single Precision Logic and ArithmetiC on the Stage ... 27

3.3 APTERMEtiC UNTES vt 31
3.3.1 Multiple Precision Data Formatsmmimenienns crevarrnsnens 31

3.3.2 Multiple Precision Arithmetic ..., 35

4 FUNCTIONAL UNITS COMPOSED OF BP'S AND STAGEScconvivervnnvsninsenns 46
4.1 The Inner Product Functional Unit ..., 46
4.2 Matrix Vector and Matrix Matrix Multiply Units ..., 48
4.3 REMAINTNAG WOTK wovnccrniminnsisssisssisimmssarsssessassssssmmsssssrnssesimssimsisisnssns S0

:
REFERENCES ..o sssensisssanismsisnimencsnsssss s assesserssirens 21

ey e iemen s -

Chapter |

INTRODUCTIGN.

Computer afdod design and computer aided manufacturing have the potential for greatly
reducing the cost and lead time in the developement of VLS| components., As this potential
becomes & reality the way is paved for the design end fabrication of a wide veriety of
economically feasible high-level functional units. It has been frequently observed, however,
that current computer systems have only 8 limited capacity to ebsorb new YLSI component types
other than memory, micro processors, and a reletively small number of other parts. The first
purpase of the proposed research is to explore a system design which is capable of effectively
incorporating a considerable number of YLSI part types and will both increase the speed of
computation and reduce the attendant programming effort. A second purpose of the research is tg
explore design techniques for YLSI parts which when incorporated by such a system wilil result
fn speeds and costs which are optimul according to the criterion described in the next section.

It is hoped that the work proposed here will lay the groundwork for future efforts in the
extensive simulation and measurements of the system’s cost-effectiveness and then, possibly,
lead to prototype developement. This proposed research is only the fundamental theoretical and
design underpinning for such an effort,

1.1 Computational Time Constraints.

The criterion for judging the hardware design deals with the time constraints placed on
the solution to & glven problem by different architectures and algorithms. A simple example
wil be used to introduce the fdea. The problem to be considered can be stated as follows: compute

the fixed-point sum of £ numbers of length /7 in a time not to exceed some given constant 7

That is, we want 1o perform ths operation:

intime ¢ 7.
On a uniprocessor system with & single accumulator the time required to perform this

calculation, denoted by £(ADD a,), is given by

t(ADD a ;) = 1 ¥ £(LOAD ACC) + (4~ 1) % £(ADD TO ACC)

It £(ADD @,) > 7 on the available uniprocessors an ettempt can be made to use e special
functional unit, such as an asynchronous adder,

The asynchronous adder if one were available) would take adventege of the fect that the
longest expested carry sequence In the addition of two binary numbers of length / 1s bounded by
10g,(7). Because the carry propogate time dominates £(ADD) such an adder should be faster
than a uniprocesor. With an asynchronous adder the first half adds and cerry saves are done in

parallel so the expected value of £(ADD @,), £(Z(ADD a,)), is estimate by

£(¢(ADD a,)) < t(LOAD) +(4-1) ¢(ADD two Numbers)

~ ¢(LOAD) + (#-1)Log (/) ¢(ADD a,)

If this value stil) exceeds 7, areasonable next step would be to use a ROM based adder.

In & ROM hased adder the summands are used to address a ROM which contains a table of
the sums of alt the numbers of 8 the word length / Such a ROM requires an oddress spece of
2/% 2/ words where each word contains the sum and carry of the summands that address that
Jocation. Therefore, the ROM hesastzeof 22/ x (/+1), For /= 8 thisisa 64K by 9 bit ROM,
This memory requirement is quite reasonable and yeilds an effective single cycle add. However,

because the memory reguirement grows exponentially with /7 it rapidly becomes unregiistic,

= el

mNE o N e

For example for /= 24 (e.g., the length of & small flualing point mantissa) the size of the ROM
would exceed 1015 bits, Such memories do not exist end if they did would be prohibitively
expensive for such & simple operation es addition,

This exemple {1lustrates that the problem should be resteted in a8 morse realistic manner
8s follows: compute the fixed~point sum of 4 numbers of word length / in atime not 1o exceed
some given constant 7 and at a cost not to exceed some glven number of doilars 2. To mest this
new problem, combination approaches of ROM-assisted sequential logic could be examined. In
such a system small ROM's would be used to add sub-words and the results would be combined
with more small ROM's and logic circutes to obtain the final result, |f these appriaches also fail
to solve the problem other special purpose functional units will have to be examined.

A method of increasing the computation speed is to use operations that have more than two
inputs. One possible system could use #~input adders. A simple serial approach devised by
R. K. Richards [1] is i1lustrated in Figure 1.1, Using this epprosch yeilds an estimated time of;

t(ADDa,;) = 2(#-1)¢(HALF ADD) + ¢/{(PROPOGATE CARRY)

< 2(#~ 1) ¢(HALF ADD) + Lﬁ;_'ﬂ._ t{HALF ADDS)

where the crude estimate is obtained by a worst case assumption (/7 carries have to be
propogated, one from each digit position) for each digit position and summing the arithmetic
progression. For & »/, however, it serves to establish that this approach could result in a
faster addition operation. {f not, then more costly 4’ input parallel adders with and without
ROM adkers for word lengths /7* where & * divides # and /’ divides /can be investigated,

Should none of these combinations obtain the desired cost and performance gosls array based

functional units can be considered.

4

Additionof 1111, G0C11, 00110 with ak =3 Input adder.

Half ADD firstpatr: 01111 Unprtgw:ggggg ;’;}‘,’3’ from

Half ADD carries:

Two carries cannot be in the
same digit position bacause
the result of the previous half
addition will

|eave at most 1

a O in that 0
position:

Half ADD next number:

Add Route Add

Figure 1.2: Array Add for k=16 and a PE Word Length of /.

ORIGINAL PAGE 15
OF POOR QUALITY,

L BN b i i et T e

Figure 1.2 shows a method devised by Cocke and $lotnick [2] of adding 72 numbers in
an 7 X #mesh connected array. For simplicity it is assumed thet the processing elements of the

array have aword length / The resulting eddition time is given by
¢(ADD a ;) = 2 Logy(n) ¢(ADD) + 2 (Logp(n7) = 1) /(ROUTE)

where ¢ (ROUTE) 1s teken to be the time for en average route. The actual route distances
increase from length 1 to length #7/2 during the course of the computation meking the average
routing distence directly proportionsl to » The execution time of these routes will, of course,
be a function of the connectivitly of the array. If a full #X#~ array is to sxpensive a smeiler

array can be used with more memory per PE,

Distribute the
summands

M
N per PE Memory

A,

Figure 1.3: Optimal Addition of £=/7-#2 Numbers
in an ¥X NArray.

W“-\.’/
N

Figure 1.3 1{llustrates the optimum wey to store #= 2 (~#2) numbers in an 7R 7

array for addition, where each ;irocessing element (PE) is assumed to have et least /7 words of

storage. Consider solving a problem of size #= 472 on such a system. This problem can be '

solved on an 717 array with 4 words of memory per PE in

t(ADD a ;) = £{(LOAD) + (3 + 2Logo(n)) /(ADD) + 2(Log,(/) - 1) #(ROUTE)*

N X

orona 27X 2. arrey with 1 word of memory per PE in

t(ADD a ;) = 2(1+ Logo(/7)) ¢(ADD) + 2 (L.ogy(7)) {(ROUTEY*

where ¢ (ROUTE)¥ is the mean routing time. The #%#~ erray uses one more add, saves one
route, and requires 4 times the memory of the 2/7% 27 array. The 2/2% 2. erray saves one
add, uses one edditional long route, and requires 4 times the number of processors as the 2% 7
array. If the reasonable assumptions (for large » and e nearest neighbor connection) that the
tong route will require more time than the eddition and that memory is less expensive than
processors are mede, the # X~ array will have the better cost-performance ratio. This
anslyvsis shows that increasing the PE memory size, or increesing the speed of the PE as
distussed in the case of the #X 7 array, would be more cost effective than inocreasing the array
size, The resulting array size will depend on ell of the time constraints of the individuel
algorithm involved and of course on the velus of 2.

One final parallel approsch that will permit a time solution for eny 7> 4 Log,(#)
cycles can be implemented by giving each PE a word length (/7 } ROM adder, end
cross-bar-connections. However, for quite reasaneble choices of 7, 4, and /7 this will exceed
sny reasonable 2.

For this problem, a reletively complete cost performance { 7 /2) trede off study is
possible with paper end pericil, For a floating point inner-product calculator which is the heart
of a fairly popular convolver box such an analysis il is st best difficult. For a mesh calculator,
which solves in a restricted 7 /2 subspacs by direct ar iterative methods only the Laplace
Equstion for severely circumscribed classes of boundary values and desired result sccuracies,
the problem is not paper and pencil solvable in any senss.

In summary the characteristics of the general problem ere as follows. There is some
computation ¢ to be performed in & time < 7. A machine (/7) is desired that can solve the
prablem intime 2(/, €) £ 7. In sddition the cost of the machine &/(/7) must ot exceed a

maximum 2. In the optimum sinse this problem {s stated as follows, Find a mechine /7 for
which

M e)er ond
J(/M) = Min

Obviously this problem is solvable so the existence of a solution is trivial. The solution is,
however, not unique. The optimization problem is an intractable, nonlinear, multi~dimensional

problem, so a more realistic statement of the problem is find any machine /7 for which

HMe)YL T end
aoM)yL D

where 2 may be a funiction of the processing time 2=2(7). No existence theorem can be
stated for this problem because of its cost condition. Even this problem is too general for any
practical solutien, The next section further restricts this optimization problem by chocsing a

problem and a design space that shows particular promise of meeting the optimization goals.

1.2 Implementing a Parallel Machine with VLSI Components.

it {s obviously an insurmountable task to consider all algorithms on sll classes of
machines in terms of the cost performance ratio optimization as developed above. To make the
problem more tractable a reasonable choice of problem domain and machine architecture must
be specified, it is the intent of this research to use YLSI lechnology as the basis in designing
components of a new class of machines. This machine would have an overall architecture suited
to solutions of a.particular problem domain. To make such a machine cost efiective & rich
problem domain, such as Yinesr algebra, must be chosan, As will be shown in the next chapter
the linear algebra problem domain is useful in a large number of physical end mathmatical

applications. This problem domain also hes the benifit of a large body of algorithms for solution

of {1s basic operations which can be used to guida the system lovel design,

To mest the two design criterion of making extensive use of YLS) components and having
the architecture reflect the prcblem domain a twe pronged design sirategy is necessary. First,
a reconfigurebls high level moduler design reflecting the problam domain (or a reasonable
subset of the domain) must be created, This design will consist of @ number of functional units,
controtlerrs, processors, communicstion switches, and memories operated in parallel. The
system level design must provide for extension to, or a change in, the subsst of the problem
domain that is implemenied, The design must also include the ability to incorporsie new
functional units and new technologies at the functional unit level without extensively disturbing
the system level design. To manfpulate the design task at this level wil) require the
establishment of & consistent set of accessaeble design rules based on a consistent family of
interconnection techniques. After the functional units of the system have been determined the
best means of implementing them using current and enticipated VLS| technology will be
determined. This proposal presents the design of 8 pumber of VLS| components that can be linked
into an {llustrative { Inner Product) functional unit that is consistent with the overall design of

the reconfigurable linear algebra processing system,

oy R A kR PR AR TR T TR e R e -

Chapter 2

THE RECONFIGURABLE LINEAR ALGEBRA PROCESSING SYSTEM.
(RELAPSE)

2pg.-lapse \ri~'laps\ SINK, SUBSIDE < ~ Into desp thought »

2.1 The Linear Algebra Problem Domain,

As stated in the introduction a reascnable problem domain must be chosen before a
coherent high level system design can be undertaken and before the cost performance ratfo
optimization can be eddressed. Two creteria were uied to determine which application ereas to
investigate for the problem domain. First, the set of application areas would have to be large
enough to adequately explore the system's application scope. Second, the application areas would
have to benefit from the higher computer performance likely to be provided by the proposed
system. The epplication areas described below show considereble promise of yeilding to the
design approach described abave,

The first application area included in the set is image processing. This area includes
geometric distortion determination and carrection, FFT, imsge histogramming, statisticel
clustering of the ISODATA type, and some rudimentary semantic imege classification techniques
such as templale msiching. Each of these individual calculations and severa) subsets of them are
candidates for execution by functional units. Study of this area will lkely provide a starting
basis for the study of radar and other signal processing applications.

Another related application area is the YLS! layout problem. In particular it deals with
jmages composed of a limited number of constituent types. The mein problems here are the
related ones of piecement and routing. Two approaches can be used; heuristic techniques which
attempt 1o reduce combinatorial complexity by sacrificing optimality and rigorous mathematical

programming approaches (both linear and quadratic) which are computetionally overwhalming.

10

Both approaches will be investigated as they offer distinct and interresting design opportunities;
the former for functional units posstbly useful in a variety of Al-type epplications and the
latter in a large class of optimization problems discussed below.

The linear programming application erea is of interest becauss, in addition to its
intrinsic importance, it offers the opportunity to study large, sparse metrix Landling including
fnversions. This application erea is perhaps the single most valued application currently
performed on medium and 1arge scale machines. An appropriate long word functional unit can, it
is expected, be of consicerable value. This area also stresses the relation between the functional
units and the systems rshared (secondary and {ertiary) memory resources,

The numerical weather prediction application area {s also of interest. The solution of
partial differential equations, tipified by numerical weathsr prediction, depends on handling
large sparse banded matrices, that is metrices where the non-zero elements are highly
structured into (diagonal) bands whosa location 1s determined by the choice of the differencing
scheme, Both iterative and direct methods will be explored fram the viewpoint of the subject of
this proposal. As with the linear programming application area, both computation end the
storage interaction in the system are stressed by this application,

The application area of input--output enalysis also shows promise of benefiting from the
functional design aepproach. Tkis technique, initiated by Wasily Leontieff, has been applied to a
large and growing number of other erees in addition to economic analysis, At ils heart is the
inversion of a large, dense metrix. For paramstric studies, many matirix inversions are usuelly
required. This area will focus attention on the most basic numerical problem; the inversion of
high order dense matrices, Attention will be paid to estimating conditioning, involving
eigenvalue calculstion, and etiendant sensitivity analysis, This is, perhaps, the area richest in
algarithmic history and should provide en instance where diffarent functional unit epprosches

can be systematically contrasted.

This group of applicetions constitutes a reasonable first set of epplication aress for
system design. It is expected thet others will be odded to the list or substituted as work
progresses, This sat is obviously teo ambitious for the 1imited scope of a doctore) ressarch
program. It is for this reason that the linear slgebra domain has been selectod as the first
praoblem domain for a system design. The linear elgebra problem domain is a subsat of many of
the more important application areas in the initial set. As will be seen in the next section, o
linear algebra hased mechine would also be capeble of processing any of the application areas
that contain the linear algebra problem domain as a subset. This is possible because of the
fnclusion of & powerful uniprocessor as & functional unit in the overall system design, This
uniprocessor is capable of performing the calculations of a perticular application that do not

have a dedicated functiona) unit in the system,

2.2 Orgaiization of the RELAPSE System.

Current systems may incorporate only a few reasonably high-level spectalized
functfonal units such as convolver hoxes, FFT calculators, or pipeleined high speed floating point
units, This may be viewed ss a point of departure for the proposed system level design. The
question that needs to be asked is what additional high-1level functions can be implemented in a
flexible framework designed to feci)itate cooperetion between them and how can thet framework
be specified in a compliant manner. The functional units of the system shauld be those whose
direct finplementation in YLSI will increase the computational effectiveness of the overall
system and make its programming easier, The mathmaticat description of the problem domain
should also serve as a guide in the choice of the functional units of the system.

As stated in the Introduction the overall organization of the system should meet the
following criterfon. The framework should reflect the organization of the problem domain which

in this case is the domein of linear elgebra. The framework should allow for easy extention to

12

acditional functional units that perform various computationsl tasks in the problem domain. The
framework should also support a high level (possibly multi-programmed) programming
environment for the probiem domain,

Figure 2.1 illustrates the overall system configuration. The data paths are shown by
heavy lines and the control paths are shown by light Yines, The figure shows the major
components of the system. A main control unit with the capability of a medium size general
purposs computer manages tha system through the three sub-controllers shown. At the top of
the figure special purpose functioral units are shown, These units communicate data through a
high order switch that connects each functional unit to many (or all) of the others vie a full
cross—-bar, Since each of th.: functional units implements a high level mathematical function it
is reasonable to assume that the relative preportion of date moveraent to processing is not large,
Because of this the switch network does not need to have & very high bandwidth,

Below the functional unils are a group of shared memory resources, These communicate
with both the input output units at the botiom of the figure and with the functional units, They
buffer results between processing by the functional units and provide input/output buffers, The
switching network connecting the functional units to the memoriss is, for the same reasan as
given ebove, one of high-~order connectivity but not necesarily wide bendwidth. However, a
number of special high bandwidth connections may be provided for such items as bulk image data
from an input/output peripheral unit.

At the bottom of the figure are a group of peripheral devices that provide the input and
output functions of the system. These peripheral devices mey include special devices that handle
bulk image data and other relatively low~precision (fixed point) sensor date, These devices are
connected to the memory units via a high-order high bandwidth switching network. The
connections needed for deta from some of the peripherals (such es the bulk image data) may
require same of the connections between the memory units and the functional units o also be

high bandwidth.

Al AN N e TN T "

13

Main Controller

Madium size general
purpose machine

}fT

I__. <> A high order (medium bandwidth)
Cantrol inter functianal unit switching network.
Big P || aﬂzw Unit Unit
Machine LWy Array and *4q pee * 31
Switch

Yy VvV ¥ Vv ¥

— Control t— A high order (wide bandwidth)
functional unit to memory switching network.
i A?‘ 3 t : t
Memory Memary Memory Memory
Unit | Unit Unit asn Unit
. .2 .3 * 16
L * & # &
i

v v

> o> A high order (wide bandwidth}
Control memory Lo peripheral switching network,
170 Unit * 1 - I/0 Unit * 8
3% X

Figure 2.1: Overall Organization of the RELAPSE System.

ORIGINAL PAGE 1§
QE..rOOR QUALITY,

14

An impression of the scope of the system design can be gained from noting that & large
conventional uniprocessor &nd & perallel array of processors ars shown on the level of
functiona! units, The large conventional uniprocessor is the “default” functional unit which
handles those parts of calculations that no specific functiona! unit exists for, The absence of a8
special functional unit may result from the lack of a sufficlently frequent need, a low place In
the design priority, or from the system being populated to capacity.

The parslle! array processor 1s similarly reguarded as a functional unit, (n the figure
the array processor is shown &s a set of three functional units (the LWU, BP Array, and BP
Memory and Switch). This unit can be used to clarify the design philosophy of the system, The
BP Array is an array of bit processing elements, The BP Memory and Switch provides the
inter-processor routing connections for BP Array, processor {0 processor-memory
connections, and the processor memory. The Long Word Unit (LWU) functional unit is an
up-to-now unimplemented functional unit. Its purpose is to handle long words composed of a
single status bit (mode or mask bit) from each BP, Since the number of BP's may be large (e.q.,
a 128 ¥ 128 arrey in the MPP) these words will be long. The type of processing to be done on
these words veries with the cantext, For BP array control they would be used mainly to test for
zero. 1t is also sometimes necessary to know the position of each one, the number of cnes in a
row (ar column) of en array, or some other more complex function of the mode words. The Long
word Unit could pravide these functions. The Long Word Unit will also be usef:l ‘when each BP
has loce! address modification, (The BP design presented in the next chapter provides this
capability.) In this context the local index sets become sequerces of long words end effective
address calculations may be viewed as long index word calzulations influenced by the values of

the iong mode words,

15

Were this the only class of applications for a Long Word Unit it could be incorporated in
either the BP Array or BP Memoary and Switch units. Preliminary analysis indicates that an
appropriately de~igned Long Word Unit may also be beneficial in the processing of large sparse
matrix celculations. For this resson the LWU is a separate unit that may be accessed by other
functional units independently of tﬁe busy state of the remainder of the array processor.

Figure 2.1 suggests a rigidly centralized contirol philosophy with the traditionel roles
played by function requests, completion signals, and queueing structures. Actually no explicit
control structure is intended by the disgram. A significant amount of data flow control is
expected to be used to mediate date transfer between the functional units.

A number of fundamental issues in the overall design of the system will be addressed
within the scope of the proposed rssearch. A determination will be made of which subsst of
linear algabra functiona! units should be implemanted to provide a consistent functional base for
estimation of system performance. A more precise characterization of these functional units,
the memory units, and the peripheral units will be made. The contro) sturcture of the system
will be further specified, This will include both the data communication protocols and the
functiona) unit control formats. The populations of the different system components and the
richness of their interconnections will also be determined,

At this point & few thoughts can be expressed in reguerd to programming the system.
One of the desired goals of the design is to reduce the epplication programming effort, It is likely
that the overall programming effort will be reduced by this system design approach. There is
nothing mystical about this claim. The reason for the programming simplificatfon is that a large
proportion of the programming disappears into the design of the VLSI functiona] units, When
programming to use these units only the appropriate input and output parameters (scatars,
vectors, and matrices) nead to be passed. The system level operating system, which can poessibly
be & multi-programming operating system, should provide the high level functichality needed

for this style of programming.

e, FIAANNVE T AL A e s

L]

16

Programming the system at the application level will be done in a high level functiona)
language for the problem domain. To acheive this goal the results of several centuries of
mathematics in identifying a problem's cleanly separable computational elements will be relied
upon. It is this mathmatical base that will be a primary input vlnto determining the functional
units to be implemented. With this approach it is beleived that evolutionary change of the
functional units should cause no reprogramming difficulty if the changes only reflect the manner

in which a functional unit performs its function rather than the function itself.

17

Chapter 3

THE BIT PROCESSOR, THE STAGE, AND ARITHMETIC UNITS.

The functional units of the RELAPSE consist of a hirrarchy of simpler components. At
the highest leve) of the hierarchy are the arithmetic units (AU's) which provide the bitwise
loglc operations and multiple precision arithmetic of the functional units, The AU’s are in turn
composed of 8-bit processors, called stages, which provide & high speed single precision
arithmetic for the erithmetic units, Eech stage 1s in turn composed of a set of eight 1-bit
processors (BP's), the hardware needed for high speed single precision arithmetic, and the
hardware that allows the steges to be coupled into atithmetic units. The bit processors are the
smallest computational unit of the herdware, They are single bit processors that cen be operated
in a bit sertal mode or in cooperation with other BP's s part of the stege and artihmetic units in
a hit parallel mode.

The hierarchical design of the arithmetic units has & number of advantages over a
monctithic design, At the lowest level the design consists of & small number of simple
components smenable to VLS| implementation. The small number of distinct components
decreases the complexity of the design. This in turn reduces the probability for design errars
and reduces the design cost. in addition the computetional power of the stage and bit processor,
which is far from negligible, cen be utilized in units that are not composed directly of

arithmetic units such as arrays of bit processors and special long word processors,

3.1 The Bit Processor.

The design of the bit processor represents e compromise between efficiency in low
precision (4 to 7 bit words) fixed point operation, and higher precision (8 bits or lenger

words)} fixed and floating point operation. The efficient use of memory and processing time in

the 4 to 7 bit word lengths of meny signal end image processing prohlems point toward a bit
serial, variable word length, mode of operation. Problems that require 1rich connectivity also
point toward the bit serial mode of operation since many low cost (single kit bus) connections
can be provided. The higher precision fixed and floating point ward lengths needed for sparse and
dense matrix inversions and espects of image processing problams such as FFT and convolutions
peint toward & bit parallel mode of operation, The bit parallel mode of operation will also be
more sffictent for probleins exhibiting a lower order of parallelism.

The BP hes the following general charscteristics. It has two modes of operation, a bit
serial and o bit parallel mode, refered to as the vertical mode end the horizontal moede. In the
horizontal mode eight BP's are used in conjunction with additional herdware to create & high
speed 8~bit processor. The BP’s have a dus) memory, two inpul buses, and one output bus. The
BP's are opersied synchronously from a ceniral control unit. The conirol units are
programmable in a two address assembly laniuage that produces encoded micro instructions,
The BP's routing logic is elso programmable to allow for rich connectivity in the vertical mode
and to provide data communication paths for the horizontal mode,

A large number of bit serial processors have been developed for array mechines
includino the Solomon, the DAP, and the MPP. The MPP’s processing element wes chosen as the
paint of departure for the BP because of its excellent bit serial processing capabﬂitieé. There
are, however, few remaining overall similarities between the BP and the MPP’s PE. The MPP’s
PE is not designed to be coupled into bit parallel procesors, is only a ang address pracessor, and

hes only a nearest neighbor connection for its routing logie,

3.1.1 Functional Description of the Bit Processor.

Figure 3.1 gives a block diagram of the design of the BP. Thea and b buses are used for
input to BP registers, The o bus s used for output from BP registers, Eech input bus can be

loaded from one memory module, the outpul bus, or the L buffer. The connection of the cutput

bus 1o the input buses allows register to register transfers in one cycle. The iwo sepsrate input

buses also allow the input of two operands from memory in one cycle provided they are stored in

separate memory modules.
= = CONONONONO
Memory |]| Hemary Mux Mux
o o
T 9
Mux
-
| P |
. L g
L ! obus.
I Y A t Masks
Mux iMux I T—— c |
— K
' Quaue Reg. 1 Bit S
ro Len.2to 14 |1 1F2 /:arr'y Agg::r\ r3 -
T t_ L I.OQICI
Mux Mux Mux Mux
I b bus Iiﬂf‘
. . - —
abus
C—D @ 10 11 X12)X13 X 14

Figure 3.1: The Bit Processor with Its Asscciated Memaory.

The two memory modules of the BP are composed of standard commercial memory chips

with on chip address decoding. Data is input to and output from the BP to the L buffer by stealing

a BP processing cycle. Data input from thel buffer can be stored either in the memory modules

or directly in a BP register. Data output to the L buffer can originate from either a memory

ORIGHNAL PAOR 1§
OF POOR QUALITY,

20

module or from the o bus. The input and output connections from the BP to the L buffer are
shown in Figure 3.1 by the circles Jebeled 1 and 0.

The L {buffer not shown in the figure) is used {n the vertical mode to reformat the data
from a bit perallel format of the host machine to the bit seriel format of the BP, The L buffer
also provides a speed matching buffer in both modes of operation of the BP. The implementation

details of the L buffer are one topic of the proposed research.

Source and Destination of Data for the BP Registers,

Register Sources of {nput Destinat{ons of Output
ro The a bus, the b bus, and one bit of The o bus, and one bit of the add
the sum from the add ROM, and multiply ROM eddress.
The abus, the b bus, the sum bit The o bus,the queue register input,
ri from the sum carry adder, and one bit | and one bit of the add end multiply

of the low ordar byte of a product, ROM address.

The abus, the b bus, one bit of the The 0 bus,the sum carry adder, and
re high order byte of a preduct, and the | one bit of the add and multiply ROM
output of the qusue registerq address.

The abus, the b bus, one bit of the The 0 bus the sum carry adder, the
the sum from the add ROM, and the routing logic, the zero detect logic,

r3 input from the routing logic. the equivalence function, and one bit
of the edd and multiply ROM eddress.
m The abus, theb bus, and the stage The bit processor meask lines, and
level mask control. the equivalence function,
c The carry bit from the 1 bit sum The @ bus, and the sum carry edder.

carry adder,

Table 3.i: The Inputs and Outputs of the BP Registers.

21

The inputs and outputs of the BP registers are given in Teble 3.1, The BP has four
genersl purpose registers, rO through r3, which form the primery pracessing registers of the
BP and in turn the stage, All the general purpose registers can be loaded from the input buses
and writlen 1o the output bus. The rO register, which has no special function in the vertical
mode, can be used as & storage location for date. The remaining general purposs registers have
special functions in the vertical mode,

Ther2 andr1 registers form the head and tall of the BP’s queue register (q). The g
register is a shift register of variable length that serves as & partial result qusue for bit serial
arithmatic (e.q., es a partial product register for multiplication), The length of the q register
can be sel to 2, 6, 10, and 14 bits. By cheosing the next length larger than the size of the word
being procesed bit serial algorithms can be customized to execute efficiently on the BP, For
word lengths larger then the g register the horizontal mode of aperation is more effictent than
vertical mode because partial results have to be stored in memory.

The r3 register is the logic engine of the BP. The logic hardware associated with it can
perfarm the 16 bit-level logic functions of two variables. The contents of the register and the
bit being loaded are used as the inputs to the logic hardware., Ther3 register is also the source
and destination register for the routing logic. In one operation the contents of r3 can be loaded
from and written to another BP using the routing logic. The routing logic provides a nearest
neighbor connectfon in two dimensions and an abbreviated power of 2 connectfon in one
dimension. The deteils of the routing logic will be discussed later. The bit level logic and
rot;i2:g functions of the BP 's r3 register are used by both 1he stage and arithmetic units.

Ther1,r2,r3, andc registers are used in conjunction with the q register anda 1--bit
sum carry adder to provide vertical mode arithmeitc. The sum carry adder tekes as its inputs
the values stored in the r2, r3, andc registers and produces a sum end carry output. The sum
bit is loeded into the rt register where it can be stored in the q register if desired. The carry
hit is loaded in the ¢ register where it can be cycled beck for the next bit of the sum.

22

The m register of the BP is used to hold a maesk bit, This bit is used to contro) the
execution of a masked instruction according to the velue of some local data, Only BP's that
contain @ 1 in the m register will participate in masked operations, The m register can be
Joaded from local deta via the input buses or from a stage level input in the horizontal mode. In
vertical mode the m register can be used to perform exception handling. For example the m
register can be cleared by en algerithm 1o indicate an overflow. Once the m register is cleared
fts BP will no longer participate in the masked instructions of the algorithm, The contents of the
m register can be loaded onto the output bus only through the r3 = m function, This function
can be used lo determine if the m reglster was set or cleared to determine if exceptions sccured
during a bit serial algorithm. The use of the stege level mask in multiple precision horizontal
mode arithmetic will be described later,

The {nput and output connections of the BR shown in Figure 3.1 by the labeled ovals are
listed in Table 3.2. Connections | and O provide the 1 bit input and autput paths between the L
buffer and the BP. Connection 3 provides access to any value on the @ bus, This connection can
be used for a zero detect hy teking the logicel OR of @ number of BP’s either at the stege level or
in a tree arrangment for a matrix of BP's, This connection can also be used o obtain the value of
thethe r3 = m function, Connections 12 and 6 provide the input and output paths from BP to
the routing logic, The remaining connections are extensions to the BP for use in the horizontal
mode and will be described later.

As stated before all BP's are operated synchronously under the commend of a micro
programmed control unit. The contro} unit structure will depend on the orgainzation of the
component the BP’s are used within. For example, the BP ’s arganized into the stages will have a
different cantrol unit than a set of BP's organized into an erray processor, All operations done
by the BP above the level of addition and 1-bit logic must be pregrammed. The horizontal and
vertical mades of operation will have separate sssembly languages to distinguish the functions

avetlable in the different modes, For example, the operation of multipiying two numbers would

require a call to a control unit which would execute a micro code subroutine to rewd two operends
from memory, add them one bit at a time using the carry sum adder, and form the partial
products in the g register, The subroutine for this operation would be written in the vertical
mode assembly language becuase it uses the carry sum adder which is unavaileble fn the
horizontal mode assembly languege. Tha operation of the BP's in horizantel mode wiil be

23

described in conjunction with the stage below.

BP input and Output Points.
input/Output Number, Bit is To or Fram,
0 To bit / of theLBuffer.
1 From bit / of the L Buffer,
2 One bit of the Sum from the add ROM (horizontal mode).
3 To sum-or tree, and zero detect logic,
4 One bit of the high order byte of the add or mulliply
' ROM address (horfzontal mode).
5 One bit of the low order byte of the add or multiply
ROM address (horizontal mode).
6 To the routing logic.
7,11 “One bit of the Sum from the add ROM (horizontal mods),
9 One bit of the low order byte of the product from the
multiply ROM (horizontal mode).
10 One bit of the high order byte of the product from the
multiply ROM (horizontal mode).
12 From the routing logic,
13,14 Stage and arithmetic unit level mask inputs,
8 Currently unused.

Table 3.2: Input/Output Points of the Bit Processor.

24

3.2 The Stage.

The stags is the atomic unit of {he horizontel mude of operation, In the horizontal mode
all arithmetic is based on the 8-bit single precision arithmetic of e stage, Each stege has
hardware that provides high speed 8 bit addition end multiptication, Eech stege also conteins
edditional herdware that allows it to operate with olher steges to form long word arithmetic
units. When grouped into long word units each siege con be considered a one digit procesor
wherae the digits have e base of 28,

Figure 3.2 shows the block structure of a stage. At the hesrt of esch stege is a set of
eight BP's. A 64K % 9 hit add ROM and a 64K X 16 bit mulliply ROM are used to perform the
high speed 2's complement single precision arithmetic of the slage. The stege also contains the
micro programmable routing logic used to transfer data to end from the r3 relgisters of its
internal BP's and the r3 reaisters of the neighboring stages, Because the BP was designed to be
coupled into the stage as well a bit serial arrays the stege uses much of the BP's hardware
directly. In addition to the compunents shown in the figure each stage contains edditional

hardware that allows it to be coupled into the multi stege arithmetic units.

3.2.1 Functional Description of the Stage.

The stage has three 8-bit data buses, referred to as the A, B, and O buses, which are
composed of the 1-bit BP buses operated in parallel (see Figure 3.1). The A and B buses cen be
loaded with 8 single byte from theL buffer, from the add ROM's sum byte, from the O bus, or
frem memory, The A memory can be read on the A bus, and the B memory can be resd on the B
bus. The O bus cen be sent to the A bus, the B bus, the A memary, or the B memory. In additien
the O bus can be used as an fnﬁut to zero detect logic at the stage and word level,

The four 8-bit genera) purpose registers of the stage (RO - R3)are composed of the

BP's 1-bit registers (r0 - rr3) operated in parallel, Any general purpase register can be used

25

os {he source of operands for the single precision arithmetic of the stage end eny register cen be
used as the destination of the suin of a single precision edd, The other stage level operatfons such
as multiplicetion can be performed only on subsets of the general purpose registers, TheR 1 and
R2 registers can be used as the destination for the 16 bit produst of the single precision

3y to as
T
To the !
L Buffer add s multiply 0 Bus
ROM ROM
. !
-8 8
~ o 8 16 vy E’ -
/
Carry -4

Quiput Low address Sum Product High Address 0 Bus
BP7 BP6 BPS E‘:P4 BP‘-_,> BP2 BPI BPO

Input R3out R3in Mask
F f Y
8 8
ﬁ @ 32 32 t
From East .‘7.4. A To Eas
and West Routing and West
Logic
From the 16 16 Stage
L Buffer Mask
From North To North
and South and South

Figure 3.2: Block Diagram of the Stage.

QRIGHNAL PAEIR 18
OF POOR QUALITY

26

multiply. The R1 end R2 registers also function as the tail and haad of the 8-bit wide Q
register, The Q register, which is composed of the g registers of the BP's operated in parallel,
2an be configured into lengths of 2, 6, 10, and 14 words. The R3 register {s used to perform all
bit wise logic functions using the load logic of the BP's r3 registers operated in perallel, The
R3 register is also connected to the micro progremmable routing logic.

The «lega-1evel mask register M consists of the BP’s m registers operated in parallel.
For a stage level mask {0 occur e single mask bit input to the stage is distributed to the m
registers of each BF, The stoage luve) imask bits are connected across the steges to form a word
level mask register, This word level mask register can be shifted one stage in each cycle. This
allows sections of long words, or entire wards, to be masked out of operations, This capebility is
useful in exception processing and floating peint erithmetic, in multipiication and broadeesting.

Micro programmable routing logic is pravided at the stage level, This logic is used in
both the vertical end horizontal modes 1o provide communicetion paths betwesn BP's. In the
vartical mode the routing logic provides nearest nsighbor connections in two dimensions. This
functionality allows the creation of two dimensional mesh connected arrays of bit processors. In
the horizontal mode of operation the routing legic provides two levels of function. The nearest
neighbor connection will ba provided in two dimensions and & nearest stage connection will be |
provided in ong dimension, The nearest neighbor cepability can be used {n the horizontal mode
for one bit shifts in either direction along arithmetic units and for long word shifts
perpendiculer to the arithmetic units. This capebility is simply the result of applying the
nearast neighbor cannectivily of the BP's in a perallal manner, More impartantly e second
routing capability is provided for operand shifts in stage fncrements, This capabiliy can be used
to normaiize flcating point man_tlssas more rapidly then single bit shifts. To provide multiple
precision arithmetic based on the single precison arithmetic (base 28) of the stage one cycle
shifts of 8 BP's is desirable. The trads offs between a simple nearest stage connestion {where

BP's ere connected at a distance of +2%), and an abbrevisted powsr of two network (where the

27

BP's are connected at distances +2', 22, and x23) will be investigated. The mejor advantege
of the power uf two network is that shifts of a distence 2 (e.g., in floating point normalization)
can be done in O(10g, (£)) time instead of O(2) time. The connections alang the arithmetic
units will elso allow logical and arithmetic shift operations, sign extension, and special guard
bit handiing in floating point operations. Thus, the complete function of the routing logic
depends on the range of connections needed to provide both veritcal mode BP commurdeations end
efficient horizontel mode stege end arithmsetic level communications. The best method of
providing the communication atong the stege end erithmetic units will be one topic of the

nroposed research.

3.2.2 5ingle Precision Logic and Arithmetic on the Stage.

As stated abave the stape provides single precision arithmetic for the arithmetic units,
This arithmetic can be considered base 2B arithmetic where each stege contains one digit, The
descriptions of the single precision arithmetic operations will be given in ferms of the micro
operations of the stege’s components. The timing estimates will be based on 8 RGM memory cycle
time of S0ns, Allhough there are other cycle times in the stage, the besic cycle time for
operations based on ROM lookups is one memory cycle time,

The simplest single precision oerations are the bit wise logic speratiois, All bit wise
logic operations con be performed in one machine cycle using the load logic of the R3 register.
With & two address assembly languege ery legic operation of twe variables can be specified es a

single statement of the form:

LOGICOP OP1,0P2

Such a logic uperatfon can be performed in et most 3 cycles. This maximum time arises if the

first operand is in any other location than the R3 register. In this case the following micro

28

operations would be used to produce the desired result:

R3 + MEMIOP1]
R3 « [R3] LOGICOP MEMI[OPZ]
MEMIOP1] « R3

As an optimization, statements where the first operand is the R3 register should be assembiled
into a one machine cycle operation.

The time required for 1ogical and arithmetic shift operations will depend on the power of
the routing logic. For a full power of two network (single cycle routes at distances £29, 2},
£22, ..) 8 shift of distance £ could be performed in OXL0g, (2)). With an ebbreviated
power of two netwaork, the times for & shift of 2 will of course be greater but will stil) be an
improvement over a distance one shift time of 2 High speed shift operations are by far more
important et the arithmetic unit level then at the single stege level. In all cases special
hardware will be edded at the ends of the words to provide for the cycling of bits i Jogic shifts
and for the introduction of the correct bits in erithmetic shifts. This additional hardwere will
be discussed later in relation to the arithmetic unit, The desired timing of the shift operations
will be used as an input in determining the final horizontal mode routing logic.

Single precision eddition is performed by a table lookup in a 64K X 9 bit add ROM that
contains the 2's complemant sum and carry of the operands used as ROM eddresses. Any generael
purpose register can be used as the source for the add ROM addresses. The cperands of the
addition are read out of the BP's by the connections 1abeled 4 and S in Figure 3.1. The sum from
the ROM can be placed on the 0 bus (connection 2 in Flgure 3.1), or loaded directy into the RO,
or R3 registers (connections 7 and 11 in Figure 3.1). The carry bit from the ROM is avallable
for output to the next stage and is stored in a stage carry register SC.

29

Consider the addition of iwo numbers stored in different memory banks, Since the add
ROM provides 2's complement addition in one machine cycie the operation can be perfarmed in

three cycies by the following micro operations,

R2 « MEM[OP1}; R3 « MEM{OPZ]
SC, R2 « ADDIR2, R3]
MEMIOPI] « R2

The SC register can be read to detect overflow. |f the operands are both in registers then the
addition will require only two cycles, Thus, single precision additions can require from 1 to 3
ROM cycles depending on the location of the cperands, With current ROM speeds thiis
corresponds to 50 to 150ns.

Next consider the subtraction of two numbers in 2's complement format that are stored
in different memory banks. This operation can be performed in four cycles by the following

micro operations.

R2 « MEM[OP1]} R3 « MEMIOPZ] SC « 1
SC, R3 + ADDI[R3,5C]

SC, R2 « ADDIR2,R3]

MEMIOP1] « R2

Hare sgain the actus) speed will depend on the locatien of the operands, For iwo operands already
irn registers the subtraction requires only two ROM cycles. Thus, single precision 2's
complement subtraction will require between 100 and 200 ns,

Single precision muitiplication is performed by table lookup in a 64K X 16 bit multiply
ROM that contains the 2's complement product of of the operands used as ROM addresses, Any
genersl purpose register can be used as the source of the operands for multiplication, Figure
3.3 shows how muttiplication would be dons if the operands are resd from the R1 and r2

registers. This operation takes one ROM cycle 1o obtain the 16 bit product of the cperands. The

30

product is always put onto the R1, and R2 registers with the low order byle of the product
being stored in the R1 register. The maximum time required for multiplication of two velues
from memory would be 3 ROM cycles. This includes the time needed to obtain both operands

from memaory module and the time needed to store tha result beck to memory.

L.oad

v Y " v v ll rf_
”7”6 ”! "'o r27r2 r2|r20
b —
— agtoa,. P70
ao tO .

P> to 50

a : 15
o\ 77 PERlY o7

¥ / (64K X 16 bits)P8

Figure 3.3: Single Precision Multiply.

A number of areas of the design of the stage ars still v be determined, The operation of
single precision division for the stage is not yet specified. The possibility and usefulness of
stmultaneous multiplication and sddition will be investigated. The amount of autonomous control
that each stage will have is also an open question. Under consideration is haw much of the
hardware neeeded for the floating point and multiple precision arithmetic should be built into
the stage &s opposed to being put into the arithmetic units and the control units. The stages by

their very nature will have o have their operation controlled by a micro programmable control

ORIGINAL PAGE 1§
OF POOR QUALITY,

31

unit, The details of the assembly lenguage for the stege are yet to be worked out. Finally, the
usefuiness of sub~stages will be investigated, A sub stege would be 8 processor that {s capable of
only one of the bacic operations such as multiplication or addition, Such a sub-stage would not
necessarily need the memory modules of the stage and would have a smaller set of registers. The
high speed multiple precision arithmetic described betow uses a set of sub-stages in conjunction
with steges to acheive ils processing speed by pipelining the multiplication and addition

operations,

3.3 Arithmetic Units.

For the purpose of the RELAPSE machine, arithmetic units are defined as any ruilection
of BP's, steges, end sub-sieges which perform the multiple precision arithmetic of the
functiona) units. This definition is intentionally general enough to allow many different
configurations of processors within the functional units, 1t will be seen below that although a
simple linear array of stages can perform a respectable muiti precision muitiplication
operation a special aritmetic unit can be constructed of stages and additionsl components to
obtain even faster multiplication speeds. These high speed long word multipliers can be used
profitebilily in functional units where the overall exscution time {s dominated by the

multiplication step (such as an inner product functional unit).

3.3.1 Muiltiple Precision Data Formats.

The multiple precision date formats of the RELAPSE machine are grestly infiuenced by
the design of the stege. The stege pruvides a 2's camplement single precision arithmetic that
can be considered as either binary arithmetic or base 28 arithmatic. The fact that all single
precision arithmetic of the stage is perforned by ROM table lookup, and the fact that the ROM’s

contain the 2's complement sum and product of the operands, imply that all arithmetic on the

e e e L A

S R T -

32

RELAPSE machine is done in 2’s complement. This has no great effect on the fixed point cardinai
and integer number formats since 2's complement {s a commaon choice for these deta types. It
does have an interesting effect on the flosting paint formats, however, since even the exponent of
a floating point number must be in Z2's complement. The design of the stage has two other effects
on the data formats, Because steges ere designed to be coupled into arithmetic units each stege
contains the hardware necessary to be the boundary of adata word. This implies that words in
the data formats described below can be of eny length up to the size of the arithmetic unit. For
example, 8 128 bit floating point processor built from stages can be reconfigured into two
64 bit processors operated in parsliel simply by designating one of the middie stages as a date
word boundary, The other effect on the data format is thet all multiple precision formets are a
multiple of stages in length. Since the stege is an 8-bit processor (the length of one byte on
most systams) this effect is minimal.

The format of 8 64 bit cardinal number is shown in Figure 3.4(a). A cardinal number

is farmed by connecting & set of stages in a linear array end operaling them in peratlel. The

= length of a cardinal number must be a multiple of the length of a stage. Therefore cardinais can

be used to represent numbers in the range from O to 28/)= where Ais the number of stages
in the arithmetic unit. The arithmetic parformed on cardinals is moduio 284 arithmatic with
optional averfiov detection provided by the carry out of the highast order stage.

The formst of a 64 bit integer number is shown in Flgure 3.4(b). The length of the
integer number must be a multiple of the length of the stage. An integer can be used to represent
numbers that renge fram -228#) tg AB¥)_1 The arithmetic performed on integers is 2's
compiement with overflow detection provided by the carry out of the highesl order stage.

An example of 4 64 bit floating point format is given in Figure 3.4 (c¢). As previously
mentioned the entire floating point number must be stored and manipulated in 2's complement,
If /£ is the number of stages in the mantissa and £ is 1he number of stages in the exponent,

then for binary floating point numbers (redix base 2) with fractional mantissas the values that

R BIERL e R L R B

33

stage 1 stage 2 stage 3 L - :| stage B8

2' complement

(a) 64 Bit Cardinals.

stage 1 stage 2 stage 3 l: ae] staga 68

implted sign bit

2' complement

(b) 64 Bit Integers.

16-bit exponant 48-bit mentissa

//"""_‘V\..f‘—"-\

stage 1 stage 2 stage 3 l: row] stage 8 I l , lstli)ti::y
guar

t/— implied sign bit. L/- implied sign bit bits

2’ complement

(c) 64 Bit Floating Point.

Figure 3.4: Multiple Precision Word Formats.

34

cen be represented in this formet are:
»(8F- 28£~ 1)) " (1_2(5;-1))2(2(85-1)_1)

and
o (1= BF=1p(2BE= Nty o 5 (BF-200E-1))

and
+0,
For the 64 bit floating point formet of Figure 3.4(c) where F= 6, and £ = 2 these correspond

to:

252720 g (1 - 247)2(2‘17 “Dand ~(1 - 247)2(247“”&: -2"52720 gnd +0.,

Each stoge has the hardware needed o function as the exponent mantissa boundary, Because of
this a floating point number with greater precision can be created simply by adding more stages
to the mantissa, The only restriction on the size of the mantissa and exponent is that each has to
be a multiple of a stage length. The impact, on the stage hardwaere, associated with s use in
handling exponents is described later in relation to floating point addition.

A block floating point format can also be supplied by stage base arithmetic units if the
functional unit’s controller has block exponent hardware. In a block floating point the mantissas
of the values are stored in the arithmetic units end processed there while the exponent {s stored
and manipulated in the control unit, The exponent herdware can be composed of stages if desired.
Such a format would provide faster floating point processing for problems that have a Vimited
dynsmic range of real (nan-1integral) values. The arithmetic of the block Noating point would be
faster than regular floating point because there would be only an infreguent need to perform
global normalizations and except for the global normalization a1 mantissa arithmetic is

essentially fixed point (integer) arithmetic,

35

3.3.2 Multiple Precision Arithmetic.

The multiple precision erithmetic of the funcionai units of 1he RELAPSE use the date
formats described above. These date formats allow words of different length to be created by
modularly adding stages to the hardware of the arithmetic units. In this section fixed point
addition, floating point eddition, and fixed point multiplicetion are described. Attention will be
paid to the construction of the arithmetic units that perform these calculations. In particular
the additional hardware of the stage, not described above, needed for multiple precision
operations will be discussed. As with the arithmetic of the stege a cycle time of ohe ROM
memory cycle will be used as the unit of measurement for the slgorithm times., It should be
noted that this is 1ikely to provide a pessimistic estimate because shift times in some algorithms
will be faster than the ROM memory accesses. For simplicity, however, end because the fina)
routing logic has not been specified this single cycle time will be used, In addition, 811 the
timing estimates will be given for register to register operations. This is the minimum time in
which the described operations can performed. Unless otherwise stated the maximum time
required for an algorithm will be 2 cycles longer than the minimum. This time differential
results from the dslay of reading the two operands from memory and writing the result back to
memaory.

The first operation to consider is fixed point addition, Two possible configurations
for an A stage (84 bit) edder are shown in Figure 3.5. In each configuration the stages
provide all the hardwere needed to perform the addition in 8 bit slices. In the first scheme the
carries are propagated across the stages es s ripple carry. Because of this there will be an A
stage delay in obtaining the sum of A end £ The stage, as shown in Figure 3.2, cen be coupled
into this adder scheme without eny edditions] hardware. In the second scheme & slightly more
complicated stege is required. Each stage must meke available & carry propagate (P;) and
carry gensrate (G,) signal for use in the carry look-sheed circuil. Since ‘each stage can be

considered a separate digit an A/~ 1 input carry look-ahead circuit will be sufficient for an &

CIVICR PR a, b, 2, by

v v v v v v

{‘ Cout G ‘_'—’E’":I"— Cout Ci,, /¢ Cout Cin "l
Overflow or Add or
Underflow Subtract

SN"" to So

(a) N Stage Ripple Carry Adder.

bN—l .
* * j + + + Subtract
c c C c c C
aut in 1 [h 7out in rouL Ij
' : ' °

Cy-ye==Cn Gy Py Cy 0Py Co B9 Po

Look-ahead carry generator

i —
Overflow ur\/—'—“\/’ -

Underflow Sy-1to Sy

(b) N Stage Carry Look-ahead Adder.

Figure 3.5: Multiple Precision Adder Configurations.

stage adder. The carry propegate signal can be produced by teking the logical AND of the sum

outputs of the add ROM. The carry generate signal is simply the carry output of the stage as

before,

The ripple carry addsr can add iwo A digit fixed point numbers in # cycles, One cycle
is needed to take the sum of the infitie) values and &/ -1 cycles are needed to propagate the carry,
For a 64 bit fixed point number eight cycles are required giving total time of 400ns. The carry

ORIGHNAL PAGE 18
OF POOR QUALITY

37

look~ahead adder's execution time depends on the size of the carry look=-ahead circuit, If eight
steges and their associeted logic are placed on a single board an 8 {nput carry look-ahead circuit
fs a reasonable choice, With an 8 input carry look~shead (note: only 7 inputs of the circuit ere
aclually used) the addition of {wo 64 bit fixed point numbers will require only 2 cycles, The
first cycle fs used {o creste the carry generate and propagate signals from the inputs and the
second cycle is used to correct the sums generated on the first cycle for the carries, For word
lengths of 128 bits the carry can simply be rippled from one 64 bit group to the next to
provide a 3 cycle 128 bit add time, If each 64 bit group also provided a carry generate and
propagate signal then ane additional level of carry look-ahead can provide a 3 cycle edd tims for
word lengths of up o 512 bits,

Fixed point subtraction can be performed by both of the adder schemes shown in Figure
3.5. To perform & subtraction the 2's cornplement of the subtrahend must be determined. Using
the ripple carry adder of Figure 3.5(a) subtraction will take 24+ 1 cycles. The first cycle is
used to load the R3 register with the 1's complement (logical NOT) of the subtrehend. The
carry in of the first slage is set tc one end en eddition is performed to generate the 2's
complement of the subtrahend in & cycles, An addition (requiring & more cycles) {is then
performed to obtain the fina! resull, For a 64 bit fixed point subtraction this requires 17
cycles. The carry look-ahead edder can improve on thie performance even more than it cquld
improve on the performance of the eddition operation. For the 64 bit addition only 7 input pairs
of an 8 input cerry look-ahesd circuit are used, If the carry in to the subtrection operation is
connected to the first carry generate as shown in the Figure 3.5(b) a subtrection can be done in
only one more cycle than addition. The carry in 1o the operation (lebeled Add or Subtract) isa 0
if the operation is eddition end & } if the aperstion is a subtraction. A subtrection is performed
by loading the R3 register with the 1's complement of the subtrahend and then acding. The
carry in results in the 2's complement operation being completed ss the addition is performad.

With this hardware a 64 bit subtraction requires only 3 cycles, which is a significant saving

38

over the 17 cycles of the ripple carry adder,

The multiple precision fixed point multiplicetion algorithm for en arithmeitic unit
composed of a Hnear arrey of Asteges demonsirates the usefulness of the stege’sQ register. To
provide a high speed multiplication the fastest possible eddition operetion is required so it is
assumed that the carry lonk-shead edder approach is implemented. In eddition to carry
look-shead it will be necessary to have a "shiftable” maesk register at the word level, This
shiftable mask should provide & one stage shift of the stege level maesk in a single cycle, The
shiftable mask is used to reformat the muitiplier from a byte parallel format to a byte seriel
format where each stege of the word contains the enitre multiplier in its Q register.

The muiltiplication algorithm works es follows, The multiplier and multiplicend are
read from memory and loaded inlo the RS and RO registers. Next the muitiplier is broadeast
and reformatted. The product is then determined by computing the partial products end
accumulating them with fast edditions. The Q register of the stage is used to store the product as
it is accumulated, Afler the mulliplication step is completed the low order A bytes of the
product, Tocated in the Q register of stege 0, are distributed across the steges of the word and the
result is stored.

The broadcast operation is done by A& circular routes right of the R3 register. Each
route has & distance of one stege, and on each route the contents of the R3 register is stored in
the Q register. A.reformatting step is needed after the broadcast because the Q register of each
stege /' contains the multiplier in a format that is “rotated” by a distance / (e.q., Q, contains
by by bz by instead of bx b, by by). The refermatting is done in & totel of A iiasked pop and
push operations on the Q register. The mask used is initially el !'s. On each step of the
reformatting the mask is shifted one stage left and the lefimost stege level mask receives a 0,
This results in each stage / containing byta by of the muRtiplier in its R2 register ready for the
first partial product.

39

The multiplication step is performed by alternating the generation of partial products
(using a single precision multiplication and & multiple precision addition), and eccumulting
these partial products into the product (held on the Q register), The final distribution step is
needed because the low order A bytes of the 24 byte product wil) end up stored on the Q
register of stage 0. At tha end of the algorithm the stages contain the multiplicand in register
RO, the high order kytes of the product in register R, and the low order bytes of the product in
the R3 register, The multiplier (originaly in R2) is destroyed during the multiplication,

The broadcsst, reformatting, and redistribution steps of the elgorithm each require #
cycles, The multiplication step includes two multiple precision additions, one single precision
multiplication, and a numbsr of shift and queue operations or, each iteration, A number of the
operations in each iteration of the multiplication step can be performed in perallel so each
iteration requires only 7 cycles, Thus, the tola]l multiplication stap requires 74 cycles, This
glves a total multiplication time of 104 cyoles. This estimate is quite pessimistic for an
srithmetic unit where stage length shifts can be psrformed in one step. in thls case the cycle
time for the routing and register transfer operations (which account for A cycles) is being
overestimeted. Afler the design of the stage and routing logic is finalized more exact estimetes of
the multiplication time will be possible.

Figure 3.6 shows a possible design for a high speed multiplication arithmetic unit, The
unit is constructed from A full stages (the boxes labeled *) linked into & linear array. These
stages compute the partial products using the single precision multiplication of the stege. The
multiplicand is stared in a register scross the stages 1 byte to a stage. The multiplier is stored
in a byte wide shift register that supplies each byte of the multiplier as it is needed for the
generation of the partial products., The eddition of the single precision partial products to
produce a multiple precision partial product, and the accumulation of the product is performed
by a set of sub-steges. These sub-stages ere connected to the multiplier stages vie their buses.

The output bus of a multiplier stage is connected to the adder sub-stege directly below it in the

Aty i bt AR S RTL Wem Gt

“11uq vorjeatidilny uelsidalyg aydiiny paadg yfiy to'¢ aunbly

1 & * |..M|| - I.C
% 'd “d £d d ety ey
‘ 1d y 1d . id id X 1d (g 1d _
-] ¢ + [+ &= @ + e +

Ha ﬁuaﬁl\ » I S Y N
]

yd| 1dj udl 1d

X
0

* ..

b
’

o
S
™
'
|~
AN
T
£
¢S
<
!

ORIGHINAL PAGR TN
OF POOR QUALITY

M

figure. As the unit is designed none of the stages would have any individual memory (other than
the edd and multiply ROM's). The multiplicand (A) would be input diractly onto the A bus of the
multplier stage and the muitiplier bytes (B|) would be broedeast directly to tha B bus of the
multiplier siage,

The connection between the muitiplier and adder steges is & single byte connection
batween the O bus of the multipler stege and one of the buses of the sdder stage. The positiona)
shift of the low order byte of the partial product (p} in the figure) is performed by
transmitting the low order byte to the R3 register of the edder stage and then doing & | byte
shift to the right while the high order byte is loaded to the adder stege. The remisning special
box in the figure is tha byte shifler. This shifter could be formed from & set of shift registers
simflar to the R3 register of the stage. The output of the shifter is used as the input to the
broadeast 1ines.

The multiglier shown {n Figure 3.6 can overlap the accumulation of the pertial products
with the generation of the next peirtial product, It also has no need for the broadcast,
reformatting, and dequeueing steps of the previous multiplier destgn. The limiting factors in
this design are the singie byte connection between the multiplier end edder units, and the speed
of the multiple precision eddition. The algorithm for multiplication on this design performs the
addition of the partial product in parsellel with the combination of the broadcast and
muitiplication operations. The output of the high and low bytes of the partial product to the
acders and the additicn to produce a partial product from them are done sequentially with the
first parallel step. Each iteration of the mulliplication step requires 7 cycles so the total
muitipiication speed for the design is 7 # where 2V of the eycles are register transfer and shift
operations,

Floating point multiplicetion is a simple extension of the fixed point operaticens of
tnultiplicaton and addition applied to the mantissa and exponsnt of the floating point number. The

operation of flacting point addition, however, requires additional hardware at the stege level.

s

42

M (] (g] 4]
btract |
subtract 4Rz « § R3 R | || | ra
(a) Exponent Comparison Step.
1 -j
+ + guard
M M H M bits
] — _
K K K N K ¥
R3 R3 R3 R3
I_‘ LN I__ l_,_[anw L— C] [— [N I]
|
shift
(b) Mantissa Alignment Step.
+ * * * overflay
(g} M M M
| Il — i
I—’ R3 I—bL R3 |[Rr3 R3

add

shift

(c) Renormatization Step.

sticky
hit

Figure 3.7: Configurations for 32 Bit Floating Point Addition.

ORIGINAL PAGE 15
OF POOR QUALITY,

43

Figure 3.7 shows the contral configurations for an arithmetic unit which is composed of a
linear array of steges during a fo:iing point addition operation. The general algorithm for
eddition of normalized floating point numbers {s to compare the exponents, align the mantissas,
add the mantissas, and renormalize the result,

Figure 3,7(a) shows the cantrol configuration of the arithmetic unit during the exponent
comparizon step, The exponents of the operands (from any register but R3) are subtracted and
the difference 8 is placed in the R3 register, The mantissa of the larger number is then pleced
in the R3 register for alignment. The control configuration for this operation would have the
inverse of the mask of the subtraction step.

Figure 3.7(b) shows how the mantisss alignment is performed, The set bits at position 7
in the 8 from the exponent comparison correspond to an allignment shift of a distance 2/ With e
full power of two network the the alignment shift can be asccomplished with the configuration
shown in the figure. The bits shifted off the exponent are used to mask the shifl of the mantissa.
The exponent is shifted right a distance of 1 bit on each cycle and the mantisse is shifted right a
distance of 2/ on eech cycle. The stage level zero detects can be used 1o stop the shift operation,
in any event the alignment operation can be stopped after the 6th bitl of the 8 (for a 64 bit
word) has been shifted off the exponent because all stanificant bits will be shifted off of the
mantissa at this point. {f a full power of two network is not available the control unit will have
1o determin how many stege length and 1 bit shifts are to be done. 1t is worthy to note that the
shift preserves the sign of the mantissa and that the floating point format provides & “sticky
bit" and querd bits.

The mantissa addition step is identical to the eddition of fixed point numbers, except that
the exponent stages are masked out of the operation. The result of the addition is placed back in
the R3 register so it can be shifted in the renormalization step. At most a single bit

renormalization shift will be needed. The words that require this step are those that produced a

o AL R Y AL 8 e A L R AT s g rhy Loy

]

14

carry out during the mantisss eddition. Thersfore, the overflow can be used to povide a mask for
this operation as shown in the figure,

The speed of the operation depends on the power of the shift network used in the atignment
step. A full power of two network is probably oo expensive for word lengths of greater than 8
bits, If such & network existed, however, the shift would take only [10g5(8)}1 time. For
mantissas between 32 and 64 bits the maximum shift would require only & cycles with this
network. With en abbreviated power of two network that has a maximum shift of 8 bits the time
required for the mantissa allignment would be [10g,(8)1for 8 <8 and 4 + [(8/8) -1] for
& > 8. For most aligments the abbreviated power of two netwark will be sufficient io do the
entire shift in O(log,(8)) time. Using an estimate of 3 cycles for the alignment the totel time
for the floating point add is 12 cycles. The inttial exponent comparison requires 3 cycles (for
all ressonable exponent lengths}, two tycles are required to move the mantissas into position for
the alignment, three cycles are needed to align the mantissas, and two more cycles are needed
for both the mantissa addition and the renormalization.

Table 3.3 summarizes the execution times of the operations discussed in this chapter.
From the table it can be seen that the addition and subtrection times of the stage based arithmetic
units are very good. The values given in the table for the floating point addition are average
times based on an assumption of a three cycle mentisse alignment, 1t should also be noted that
the velues in the teble are for register to register operations. If the operands ere {o be resd
from mermory and the resulls stored in memory an additional 2 cycles are required for esch
opersation.

As mentioned earlier in this chapter 8 number of areas in the design of the bit processor,
stage, and arithmetic units are topics of the proposed research. The implementation of the L
buffer will be determined. An optimization pass will be done on the hardware of the BP and stage
presented here inlcuding such areas as numbsr of registers, queue register length, and contro)

structures. The best form of affordable routing logic for processing multiple precision data'will

T\:‘k S \:‘“'? R e
t}:,.*}:.‘.f;-"

VTR Sl S S

&

15

be determined. Division and square root operations will be specified for both the single

precision stage end the multiple precison formets of the RELAPSE system,

Finally the

usefulness of & concurrent multipiication end eddition in the stege end a shiftable word level

mask will be invastigated.

Summary of Multiple Precisfon Execution Times.
Word Length Excecution time

Operation Hardwere (bits/stages) (oveles)
Fixed Point Rippie Carry 64/8 8
Addition Adder 128/16 16
Carry Look -ahead 64/8 2
Adder 128/16 3
Fixed Point Ripple Carry 64/8 17
Subtraction Adder 128/16 33
Carry Look ~ahead 64/8 3
Adder 128/16 4
Fixed Paint Stage Array 64/8 80
Multiplication 128/16 160
Stage and Sub-stage 64/8 56
Array with 128/16 112

Braodcast
Floating Point™ Stage Array 64/8 (2
Addition 126/16 13
¥ The execution time listed is for a 3 cycle alignment shift,

Table 3.3: Summary of Multiple Precision Execution Times.

416

CHAPTER 4

FUNCTIONAL UNITS COMPOSED OF BP'S AND STAGES

As stated in Chapter 2 the choice of the linear algebra prablem domain was made for
three reasons, First, problems from this domain are encountered in many physical and
mathmatical applications, Second, the solutions to prablems in this domain can be decomposed
into computation tasks that are related to each other in a functional menner. Third, there is an
extensive body of algorithmic design to draw upon in determining the functionai components of
the RELAPSE system, It is the intention of the proposed research to seiect a consisient set of
functiona! units for system evaluation. The initia) set of functional units will contain a subset of
functional units that provide the same function through different algorithms and & subset of

functions that will allow the system to choose the best aigorithm for the problem at hand,

4.1 The Inner Product Functional Unit.

The inner product unit was chosen as an inftial design study in building functional units
from the VLS| c_omponents introduced in the last chapter, The unit is a valuable sub-assembly of
many other functional units two of which are discussed below. The problem to be solved is stated
formally as follows, Compute Y = A*B whereA, B, and Y are vectors of dimension A, |t can
be shown that the soluticn to this problem requires at least O(logo(¥)) time with
computational units that have two inpuls,

Figure 4.1 shows & functional unit that acheives this optimel performance, The unit is
constructed of & linear array of multiplier units and a binary tree of adder units. The
multiplier and edder units can be any of the designs described in Chapter 3. The multiplication

of the pairs of vector elements is performed in parallel requiring one arithmetic unit cycle. The

4

ayb, &b, asbsy a4bg4 an-1bp-y @by,

+
e
@
®

+

ab,

—
i}
—

~
fl
™> «—i+

Figure 4.1: Inner Product Functional Unit.

ORIGINAL PAGE 1S
OF POOR QUALITY.

18

products are then summed using the edder tres. The adder tree hes a height of [log,(#)] and
requires | logo(¥)1 steps to form the sum. Therefara the inner product of two vectors of length
N can be calculated in [log,(#)1+ 1 multiplication cycles. The functionel unit requirss &
multiplier arithmetic units and A& adder arithmetic units. It is important to note thet the
funcitonal units could also be constructed out of sub-stages to reduce the hardwere costs. The
adder units do not require a multiply ROM and the mutiplier units do not require the add ROM.
Also the various arithmetic units in the figure do not require any RAM memory. This leaves the
input and output buses availble for use in connecting up the adder tres. The initisl input is

loaded directly onto the input buses of the mutliplication units.

4.2 Matrix Vector and Matrix Matrix Muitiply Units,

The tnner product tree unit can be used to form a pipeline of inner product calculations
where a new inner product problem can be started on esch multiplication step. This capability
can be used directly to create a Matrix Yector Multiplier functional unit. The # tnner product
calculations required for the multipication of an XA matrix and an A-vector ars simply run
through the inner product calculator in a pipelined manner. The first result will be available in
[logy(#) 1+ 1 multiply times end the remaining A-1 results will follow one per multiplication
cycle. Thus the total time to perform a matrix vector muitiply with a pipetined inner product
calculator is A + l'logg(A) 1 multiplication cycles. The tatal amount of hardware s abviously
the same 2/ arithmetic untts asbefore, - if & such inner product calculators are available the
multiplication of two A#X A matrices can also be done in the same amount of time.

It is interesting 1o contrast these results with the results acheived using the systolic
array design epproach. The systolic array designs for the matrix vector and matrix matrix
multiply calcutations are based on an inner product cell [4]. Each sner product cell performs a

multiplication and addition each time the array is cycled, 'hus, for & compareble word format

19

the inner product cells are of comparable complexity to the erithmetic units of the inner
product tres. The tolel number of cells needed in the systolic erray s dependant on the
bandwidth of the matrix they are processing. The inner product tres design above is primarily
for random martices fn that it contains no optimizations to operate on a banded matrix, In order
to provide a vaiid comparison the metrices to he processed will be assumed to be random. These
metrices, therefore, have the maximum bandwidth of 24, With this esumption the systolic
arrays and the inner product besed design bith have the same bandwidth to the outside world.

The systolic metrix vector calculator is tinear array of 24 inner product cells. I can
cen form the product of an A/X A matrix and A/-vectcr in 44 cycles, Becauss only half of the
cells are active on each cycle the array can be used in a pipelined manner to perform two
multiplications in the same 44 cycles. The inner product tres used as a matrix vector
calculator also contains 24/ arithmetic units. it can caiculate the matrix vector product in A/ +
ﬁogz(N)] cycles. This is esymtotically better then the systalic array’s performence, ever
when the systolic arrey is operated as a pipelined unit,

The systolic matrix matrix calculator is a hexegonally connected array of 442 inner
produdt cells. It can compute the product of two XA matrices in SA cycles, Liks the matrix
vector calculetor, it can be pipelined to calculate 3 matrix matrix products in the same S5A4
cycles. The inner product based matrix matrix multiplier uses & inner product trees for a
total of 2A/2 arithmetic units. It can compute the product of two A XA matrices in A +
[logz(# Yl cycles. This result is better than the pipelined systolic array. Perhaps the biggest
advantage is that it requires only roughly haif the hardware.

To make a fully valid comparison between the two types of processors a number of other
factors would have to be considered. The complexity of the two basic calculating units wouid
have to be compared. The usefulness of the units in other porblems would also be important,
The relative execution speeds would also heve to be compared. Without weighing these factors

in the comparison the simple comparison of number of execution cycles 4 samewhat suspect.

50
4.3 Remaining Work.

The tapics of research in the lower levels of the design have already heen deseribed in
their respective sections. In addition to those topics a consistent set of functional untts will be
chosen from the following list of linear algebra functions, For each functiona) unit the

performance will be estimated end a communication protocol will be established,

® Elimination step with both partial pivoting and full pivoting.

» lteration step using the Geuss Seidel, Jacobi, and SOR algorithms.

» L and °@ norm computation,

o Eigenvalues of matrices using the power method and inverse iteration,
» Deflation step unit,

® Units for storing and inverting tri~diagonal matrices.
e Units for storing and inverting random sparse matrices,

A RELAPSE machine wil) be designed that contains tha functional units selected, The system level
communication protecols end contro) sequencing of the various independent functional units lii
the machine will be specified. The initial system design will then be evaluated against the
background of general purpose and systolic array systems using the ASW simuletor, it is hoped

that the results wil! provide insight into the restricted optimization problem posed tn Section
1.1,

(1]

[2)

(3]

(4]

a1

REFERENCES

D. L, Slotnick, “Time-Constrained Computation,” Department of Computer Secience,
University of I11inols at Urbane=-Champaign, Report No, UIUCDCS~R~82~ 1090, May 1982,

R. K, Richards, "Arithmetic Operations in Digital Computers,” van Nostrad, 1955.

D. L. Slotnick and John Cacke, * The Use of Parallelism in Numerical Calculations,”
IBM Research Memorandum No, RC-55, 1958,

H. T. Kung and Charles E, Leiserson, “ Systolic Arrays For (YLSI),” Department of Computer
Sefence, Carnegie-Msilon University, Pittsburg, Pa. 15213,C 1978,

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf

