
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

r7,

t

(NASA-CH-175705) HES1111CH IN TFH DESIGN CE	 N85-26153

NIGH- pEHFCRKABcJ EECCEFIGUHAEIB SYSTEMS
Semiannual Status Hepert, 1 cct. 19e4 - 31
Mar. 1985 1111ir.cis Uriv.) _̀5 p	 Uncial

HC AG9/MF A01	
CSCI 09H G3/60 22309

DEPARTMENT Or COMPUTER SCIENCE

UNIVERSITY Or ILLINOIS AT URBANA-CHAMPAIGN

URBANA, ILLINOIS 01801

TITLE

Research in the Design of High-Performance

Reconfigurable Systems

Third

Semiannual Sta0,s Report

October 1, 108 .1 -- March 31, 1085

NASA Grant rY NAG 5-377 i

a

`Z '
^
0 LS

a

Project Personnel

Graduate Research Assistant

Scott D. h1cEwan

Andrew J. Spry

Principal Investigator

D. L. Slotnick

V

'A

M

1	 ^

Table of Contents

CHAPTER

1	 INTRODUCTION .. 	 1

	

1.1 Computational Time Constraints ..I......1 	 1
1,2 Implementing a Parallel Machine with VL51 Components 7

2 THE RECONFIGURABLE LINEAR ALGEBRA PROCESSING SYSTEM

	

(RELAPSE) .. 	 9	 r.

	

2.1 The Linear Algebra Problem Domain I...................... 	 9
2.2 Organization of the RELAPSE System ... 11

3	 THE BIT PROCESSOR, THE STAGE, AND ARITHMETIC UNITS 17
3.1 The	 Bit	 Processor	 ... 17

3. 1.1 	 Functional Description of the Bit Processor 18
3.2 The	 Stane	 .. 24

3.2.1	 Functional Description of the Stage ... 24
3.2.2 Single Precision Logic and Arithmetic on the Stage 27

3.3 Arithmetic	 Units	 ... 31
3.31	 Multiple Precision Data Formats .. 31
3.3.2 Multiple Precision Arithmetic ...35

4 FUNCTIONAL UNITS COMPOSED OF BP'S AND STAGES 46
4.1 The Inner Product Functional Unit ... 46
42 Matrix Vector and Matrix Matrix Multiply Units48
43 Remaining Work ..50

REFERENCES ... 51

MX

%

Chapter 1

INTRODUCTION.

Computer aided design and computer aided manufacturing have the potential for greatly

reducing the cost and load time in the developement of VLSI components. As this potential

becomes a reality the way is paved for the design and fabrication of a wide variety of

economically feasible high— level functional units. it has been frequently observed, however,

that current computer systems have only a limited capacity to absorb new VLSI component types

other than memory, micro processors, and a relatively small number of other parts. The first

purpose of the proposed research is to explore a system design which is capable of effectively

Incorporating a considerable number of VLSI part types and will both increase the speed of

computation and reduce the attendant programming effort. A second purpose of the research is to

explore design techniques for VLSI parts which when incorporated by such a system will result

in speeds and costs which are optimal according to the criterion described in the next section.

It is hoped thst the work proposed here will lay the groundwork for future efforts in the

extensive simulation and measurements of the system's cost —effectivoness and then, possibly,

lead to prototype devolopement, This proposed research is only the fundamental theoretical and

design underpinning for such an effort.

1.1 Computational Time Constraints.

The criterion for fudging the hardware design deals with the time constraints placed on

the solution to a given problem by different architectures and algorithms. A simple example

will be used to introduce the idea. The problem to be considered can be stated as follows: compute

the fixed—point sum of k numbers of length / in a time not to exceed some given constant T.

_ T^^

4

2

That is, we want to perform tho operation:

k
S =	 al

im1
in time < T

On a uniprocessor system with a single accumulator the time required to perform this

calrulation, denoted by t(ADD a /), is given try

t(ADD a /) = 1 X t(LOAD ACC) + (k - 1) X t(ADD TO ACC)

If t(ADD a /) > T on the available uniprocessors an attempt can be made to use a special

functional unit, such as an asynchronous adder.

The asynchronous adder (if one were available) would take advantage of the fact that the

longest expected carry sequence in the addition of two binary numbers of length / is bounded by

1092(/), Because the carry propogate time dominates t(ADD) such an adder should be faster

than a uniprocesor. With an asynchronous adder the first half adds and carry saves are done in

parallel so the expected value of t(ADD a /), E(t(ADD a /)), is estimate by

E(t(ADD a /)) :S t(LOAD) + (k-1) t(ADD two Numbers)

t (LOAD)+(k-1)Log 2(/) ODD al)

If this value still exceeds T, a reasonable next step would be to use a ROM based adder.

In a ROM based adder the summands are used to address a ROM which contains a table of

the sums of all the numbers of a the word length ! Such a ROM requires an address space of

2 1 X 2 1 words where each word contains the sum and carry of the summands that address that

location. Therefore, the ROM has a size of 2 21 K (/+ 1), for /= S this is a 64K by 9 bit ROM.

This memory requirement is quite reasonable and yeilds an effective single cycle add. However,

because the memory requirement grows exponentially with / it rapidly becomes unrealistic,

3

For example for /= 24 (e,g., the length of a small floating point mantissa) the size of the ROM

would exceed 10 15 bits. Such memories do not exist and if they did would be prohibitively

expensive for such a simple operation as addition.

This example illustrates that the problem should be restated in a more realistic manner

as follows: compute the fixed-point sum of A, numbers of word length / in a time not to exceed

some given constant T and at a cost not to exceed some given number of dollars A To meet this

new problem, combination approaches of ROM-essisted sequential logic could be examined. In

such a system small ROM's would be used to add sub-words and the results would be combined

with more small ROM's and logic circutes to obtain the final result. If these approaches also fail

to solve the problem other special purpose functional units will have to be examined.

(A method of increasing the computation speed is to use operations that have more than two

inputs. One possible system could use k-input adders. A simple serial approach devised by

R. K. Richards [1 l is illustrated in Figure 1.1. Using this approach yeilds an estimated time of:

t (ADD a j) = 2(k — 1) t (HALF ADD) + t(PROPOGATE CARRY)

2(k — 1) t (HALF ADD) + /(/— I) t (HALF ADDS)

where the crude estimate is obtained by a worst case assumption (/ carries have to be

propagated, one from each digit position) for each digit position and summing the arithmetic

progression. For k »/, however, it serves to establish that this approach could result in a

fester addition operation. If not, then more costly k' input parallel adders with and without

ROM adders for word lengths /' where k' divides k and 1' divides /can be investigated.

Should none of these combinations obtain the desired cost and performance goals array based

functional units can be considered.

Add Add

ii

iRoute

4

Addition of 01 1 1 1, 0001 1, 001 10 With a k = 3 Input adder.

Half ADD first pair:	 01 1 1 i	 Unpropagated Carry from
PrevlousADD.

00011

01100Half ADD carries; 	1 i
01010
00110

Half ADD next number; 01,00

11000

Figure 1.1: ADD Scheme for k Input Adder (R. K. Richards).

N

L

Two carries cannot be In the
same digit position because
the result of the previous half
addition will 	 1
leave at most	 1
e 0 In that	 0 —
position:	 i

.	 it

Add	 Route	 Add

Figure 1.2: Array Add for k = 16 and a PE Word Length of L

ORIGINAL PAGE IS
OF POOR QUALITIL

Distribute the
summands

r^
per PE MemoryN

N

,

S

Figure 1.2 shows a method devised by Cocke and Slotnick (21 of adding n2 numbers in

an n x amesh connected array. For simplicity it is assumed that the processing elements of the

array have a word length !, The resulting addition time is given by

t(ADD a j) = 2 L092(n) t(ADD) + 2 (1-092(n) - 1) t(ROUTE)

where t (ROUTE) is taken to be the time for an average route. The actual route distances

increase from length 1 to length n /2 during the course of the computation making the average

routing distance directly proportional to n The execution time of thew routes will, of course,

be a function of the connectivity of the array. If a full n it n array is to expensive a smeller

array can be used with more memory per PE,

Figure 1.3: Optimal Addition of k=M.N2 Numbers
In an Nx NArray.

Figure 1.3 illustrates the optimum way to store k = m (n 2) numbers in an n 8 n

array for addition, where each processing element (PE) is assumed to have at least mwords of

storage. Consider solving a problem of size k= 4a 2 on such a system. This problem can be

solved on an nxn array with 4 word, of memory per PE in

,;	 t(ADD a;) = t(LOAD) + (3 + 21-092(n)) t(ADD) + 2(Lo9 2(n) - 1) t(ROUTE)"

4
i

6

or on a 2 n X 2n array with 1 word of memory per PE in

t(ADD a /) = 2(1+ L09 2(n)) t(ADD) + 2 (1_09 2(n)) t(ROUTE)"

where t (ROUTE)* is the mean routing time. The n X n array uses one more add, saves one

route, and requires 4 times the memory of the 2nX 2n array. The 2nX 2n array saves one

add, uses one additional long route, and requires 4 times the number of processors as the nX n

array. If the reasonable assumptions (for large n and a nearest neighbor connection) that the

long route will require more time than the addition and that memory is less expensive then

processors are made, the n X n array will have the better cast-performance ratio. This

analysis shows that increasing the PE memory size, or increasing the speed of the PE as

dis ussed in the case of the nX n array, would be more cost effective then increasing the array

size. The resulting array size will depend on all of the time constraints of the individual

algorithm involved and of course on the value of O.

One final parallel approach that will permit a time solution for any T > 4 L09 2(n)

cycles can be implemented by giving each PE a word length (/) ROM adder, and

cross-bar-connections. However, for quite reasonable choices of T, k, and 1 this will exceed

any reasonable D.

For this problem, a relatively complete cost performance (T/D) trade off study is

possible with paper and pencil. For a floating point inner-product calculator which is the heart

of a fairly popular convolver box such an analysis it is at best difficult. For a mesh calculator,

which solves in a restricted TID subspace by direct or iterative methods only the Laplace

Equation for severely circumscribed classes of boundary values and desired result accuracies,

the problem is not paper and pencil solvable in any sense.

In summary the characteristics of the general problem are as follows. There is some

computation C to be performed in a time < T. A machine (M) is desired that can solve the

problem in time t(M, C) < T. In addition the cost of the machine d(M) must not exceed a

R.

7

maximum D. In the optimum s,.,nse this problem is stated as follmvs. Find a machine M for

which

t(M, C)_< T	 and

01(/Y) -Min
h

Obviously this problem is solvable so the existence of a solution is trivial. The solution is,
i

however, not unique. The optimization problem is an intractable, nonlinear, multi—dimensional
w

;.	 problem, so a more realistic statement of the problem is find any machine M for which

v	 t(M, C) j r	 and

d(M) <_ D`f.

fwhere P may be a fur'iction of the processing time 9=,O (r). No existence theorem can be

stated for this problem because of its cost condition. Even this problem is too general for any

practical solution. The next section further restricts this optimization problem by choosing a

problem and a design space that shows particular promise of meeting the optimization goals.

I

1.2 Implementing a Parallel Machine with VLSI Components.

it is obviously an insurmountable task to consider all algorithms on all classes of

machines in terms of the cost performance ratio optimization as developed above. To make the

problem more tractable a reasonable choice of problem domain and machine architecture must

be specified, It is the intent of this research to use VLSI technology as the basis in designing

components of a new class of machines. This machine would have an overall architecture suited

to solutions of a particular problem domain. To make such a machine cost ef fective a rich

problem domain, such as linear algebra, must be chosen. As will be shown in the next chapter

the linear algebra problem domain is useful In a large number of physical and mathmatical

> °	 applications. This problem domain also has the benifit of a large body of algorithms for solution

a

of its basic operations which can be used to guid3 the system love] design,

	

To meet the two design criterion of making extensive use of VLSI components and having 	 ',

the architecture reflect the prcblem domain a two pronW1 design strategy is necessary. first,

a reconfigurable high level modular design reflecting the problem domain (or a reasonable

i subset of the domain) must be created, This design will consist of a number of functional units,

controllers, processors, communication switches, and memories operated in parallel, The

system level design must provide for extension to, or a change in, the subset of the problem

domain that is implemented. The design must also include the ability to incorporate new

functional units and new technologies at the functional unit level without extensively disturbing

the system level design. To manipulate the design task at this level will require the

establishment of a consistent set of accessable design rules based on a consistent family of

interconnection techniques. After the functional units of the system have been determined the

best means of implementing them using current and anticipated VLSI technology will be

determined. This proposal presents the design of a number of VLSI components that can be linked

Into an illustrative (Inner Product) functional unit that is consistent with the overall design of

the reconfigurable linear algebra processing system,

V'

9

Chapter 2

THE RECONFIGURABLE LINEAR ALGEBRA PROCESSING SYSTEM.
(RELAPSE)

2re• lapse \ri-'laps\ SINK, SUBSIDE< — Into deepthought>

2.1 The Linear Algebra Problem Domain.

As stated in the introduction a reasonable problem domain must be chosen before a

wherent high level system design can be undertaken sand before the cost performance ratio

optimization can be addressed. Two creteria were o^ to determine which application areas to

investigate for the problem domain. First, the set of application areas would have to be large

enough to adequately explore the system's application scope. Second, the application areas would

have to benefit from the higher computer performance likely to be provided by the proposer)

system. The application areas described below show considerable promise of yeilding to the

design approach described above.

The first application area included in the set is image processing. This area includes

geometric distortion determination and correction, FFT, image histogramming, statistical

clustering of the ISODATA type, and some rudimentary semantic image classification techniques

such as template matching, Each of these individual calculations and several subsets of them are

candidates for execution by functional units. Study of this area will likely provide a starting

basis for the study of radar and other signal processing applications,

Another related application area is the VLSI layout problem. In particular it deals with

images composed of a limited number of constituent types. The mein problems here are the

related ones of placement and routing. Two approaches can be used; heuristic techniques which

attempt to reduce combinatorial complexity by sacrificing optimality and rigorous mathematical

programming approaches (both linear and quadratic) which are computationally overwhelming.

110

Both approaches will be investigated as they offer distinct and interresting design opportunities;

the former for functional units possibly useful In a variety of Ai-type applications and the

latter in a large class of optimization problems discussed below.

The linear programming application area is of interest because, in addition to its

Intrinsic importance, it errors the opportunity to study larga, sparse matrix handling Including

inversions, This application area is perhaps the single most valued application currently

performed on medium and large scale machines. An appropriate long word functional unit can, it

is expected, be of considerable value. This area also stresses the relation between the functional

units and the systems nhared (secondary and tertiary) memory resources.

The numerical weather prediction application area is also of interest. The solution of

partial differential equations, tipifted by numerical weather prediction, depends on handling

large sparse banded matrices, that is matrices where the non-zero elements are highly

structured into (diagonal) bands whose location is determined by the choice of the differencing

scheme. Both Iterative and direct methods will be explored from the viewpoint of the subject of

this proposal. As with the linear programming application area, both computation and the

storage interaction in the system are stressed by this application.

The application area of Input-output analysis also shows promise of benefiting from the

functional design approach. This technique, initiated by Wasily Leontieff, has been applied to a

large and growing number of other areas in addition to economic analysis. At its heart is the

Inversion of a large, dense matrix. For parametric studies, many matrix inversions are usually

required. This area will focus attention an the most basic numerical problem; the inversion of

high order dense matrices. Attention will be paid to estimating conditioning, involving

eigenvalue calculation, and attendant sensitivity analysis, This is, perhaps, the area richest in

algorithmic history and should provide an instance where different functional unit approaches

can be systematically contrasted.

I

I	 ,

111

This group of applications constitutes a reasonable first set of application areas for

system design, It is expected that others will be added to the list or substituted as work

progresses, This set Is obviously too ambitious for the limited scope of a doctoral research

program. It is for this reason that the linear algebra domain has been selected as the first

problem domain for a system design, The linear algebra problem domain Is a subset of many of

the more important application areas In the initial set. As will be seen in the next section, a

linear algebra based machine would also be capable of processing any of the application areas

that contain the linear algebra problem domain as a subset. This is possible because of the

Inclusion of a powerful uniprocessor as a functional unit in the overall system design. This 	 1

uniprocessor is capable of performing the calculations of a particular application that do not

have a dedicated functional unit in the system.	 F	 t
1

k

	
i

2.2 Orgal izatton of the RELAPSE System.
i

Current systems may incorporate only a few reasonably high-level specialized

functional units such as convolver boxes, FFT calculators, or pipeleined high speed floating point

units, This may be viewed as a point of departure for the proposed system level design. The

question that needs to be asked is what additional high-level functions can be implemented in e

flexible framework designed to facilitate cooperation between them and how can that framework

be specified in a compliant manner. The functional units of the system should be those whose

direct implementation in VLSI will increase the computational effectiveness of the overall 	 j

system and make its programming easier. The mathmatical description of the problem domain

should also serve as a guide in the choice of the functional units of the system. 	 r

As stated in the Introduction the overall organization of the system should meet the

following criterion. The framework should reflect the organization of the problem domain which 	 ,

In this case Is the domain of linear algebra. The framework should allow for easy extention to

I:%i	 u

12

additional functional units that perform various computational tasks in the problem domain. The

framework should also support a high level (possibly multi-programmed) programming

environment for the problem domain,

Figure 2.1 illustrates the overall system configuration. The data paths are shown by

heavy lines and the control paths are shown by light lines, The figure shows the major

components of the system. A main control unit with the capability of a medium size general

purpose computer manages the system through th3 three sub-controllers shown. At the top of

the figure special purpose functional units are shown. These units communicate date through a

high order switch that connects each functional unit to many (or all) of the others via a full

cross-bar. Since each of the functional units implements a high level mathematical function it

is reasonable to assume that the relative proportion of data movement to orocussing is not large.

Because of this the switch network does not need to have a very high bandwidth.

Below the functional units are a group of shared memory resources. These communicate

with both the input output units at the bottom of the figure and with the functional units. They

buffer results between processing by the functional units end provide input/output buffers. The

switching network connecting the functional units to the memories is, for the some reason as

given above, one of high-order connectivity but not necesarily wide bandwidth. However, a

number of special high bandwidth connections may be provided for such items as bulk image date

from an input/output peripheral unit.

At the bottom of the figure are a group of peripheral devices that provide the input and

output functions of the system. These peripheral devices may include special devices that handle

bulk image data and other relatively low-precision (fixed point) sensor date. These devices are

connected to the memory units via a high-order high bandwidth switching network. The

connections needed for date from some of the peripherals (such as the bulk image date) may

require some of the connections between the memory units and the functional units to also be

high bandwidth.

S p~

	

14'

13

Main Controller

Modium size general
purpose machine)

Control

	

	 A high order (medium bandwidth)
Inter functional unit switching network.

Big	 BP	 8P^ Unit	 UnitMemory
MachineFL-	 Array	 and	 • 4	 • • •	 • 31

Control	
A high order (wide bandwidth)

functinnal unit to memory switching n

Memory	 I Memory I I Me:	
U

Memory I	 I Me^nit
Unit	 Unit	 Unit	 • . •	 nit

r

	
A high order (wide bandwidth)

memory to peripheral switching network.

IF I/0 Unit 0 1	 1	 , , ,	 1 1/0 Unit • 8

Figure 2.1: Overall Organization of the RELAPSE System.

ORIGINAL PAGE i8
(29-,M0i1 QUALIT.Y

a

14

An impression of the scope of the system design can be gained from noting that a large

conventional uniprocessor and a parallel array of processors are shown on the level of

functional units. The large conventional uniprocessor Is the "default" functional unit which

handles those parts of calculations that no specific functional unit exists for, The absence of a

special functional unit may result from the lock of a sufficiently frequont need, a low place in

the design priority, or from the system being populated to capacity.

The parallel array processor is simiiarly reguarded as a functional unit. In the figure

the array processor Is shown as a set of three functional units (the LWU, BP Array, and BAP

Memory and Switch). This unit can be used to clarify the design philosophy of the system. The

BP Array is an array of bit processing elements. The BP Memory and Switch provides the

inter-processor routing connections for BP Array, processor to processor-memory

connections, and the processor memory. The Long Word Unit (LWU) functional unit is an

up-to-now unimplemented functional unit. Its purpose is to handle long words composed of a

single status bit (mode or mask bit) from each BP. Since the number of BP's may be large (e,g.,
l

a 128 x 128 array in the MPP) these words will be long. The type of processing to be done on

these words varies with the context. For BP array control they would be used mainly to test for

zero. It is also sometimes necessary to know the position of each one, the number of ones in o

row (or column) of an array, or some other more complex function of the mode words. The Long

Word Unit could provide these functions, The Long Word Unit will also be useful when each BP

has local address modification. (The BP design presented in the next chapter provides this

capability.) In this context the local index sets become sequences of long words and effective

address calculations may be viewed as long index word calculations influenced by the values of

`	 the iong mode words.

15

.'

Were this the only class of applications for a Long Word Unit it could be incorporated in

either the BP Array or BP Memory and Switch units. Preliminary analysis indicates that an

appropriately deigned Long Word Unit may also be beneficial in the processing of large sparse

matrix calculations. For this reason the LWU is a separate unit that may be accessed by other

functional units independently of the busy state of the remainder of the array processor.

Figure 2.1 suggests a rigidly centralized control philosophy with the traditional roles

played by function requests, completion signals, and queueing structures. Actually no explicit

control structure is intended by the diagram. A significant amount of data flow control is

expected to be used to mediate date transfer between the functional units.

A number of fundamental issues in the overall design of the system will be addressed

within the scope of the proposed research. A determination will be made of which subset of

linear algebra functional units should be implemented to provide a consistent functional base for

estimation of system performance. A more precise characterization of these functional units,

the memory units, and the peripheral units will be made. The control sturcture of the system

will be further specified, This will include both the data communication protocols and the

functional unit control formats. The populations of the different system components and the

richness of their interconnections will also be determined.

At this point a few thoughts can be expressed in reguard to programming the system.

One of the desired goals of the design is to reduce the application programming effort. It is likely

that the overall programming effort will be reduced by this system design approach. There is
i

nothing mystical about this claim. The reason for the programming simplification is that a large

i
	 proportion of the programming disappears into the design of the VLSI functional units. When

i programming to use these units only the appropriate input and output parameters (scalars,

vectors, and matrices) need to be passed, The system level operating system, which can possibly

be a multi-programming operating system, should provide the high level functionality needed

s	 for this style of programming.

15

4,

Programming the system at the application level will be done in a high level functional

language for the problem domain. To acheive this goal the results of several centuries of

mathematics In identifying a problem's cleanly separable computational elements will be relied

upon. It is this mathmatical base that will be a primary Input Into determining the functional

units to be Implemented. With this approach it is beleived that evolutionary change of the

functional units should cause no reprogramming difficulty if the changes only reflect the manner

In which a functional unit performs its function rather than the function itself.

17

Chapter 3

THE BIT PROCESSOR, THE STAGE, AND ARITHMETIC UNITS.

The functional units of the RELAPSE consist of a hierarchy of simpler components, At

the highest level of the hierarchy are the arithmetic units (AU's) which provide the bitwtse

logic operations and multiple precision arithmetic of the functional units, The AU's are in turn ,
composed of 8—bit processors, called stages, which provide a high speed single precision

arithmetic for the arithmetic units. Each stage is in turn composed of a set of eight 1—blt

processors (BP's), the hardware needed for high speed single precision arithmetic, and the

hardware that allows the stages to be coupled into atithmetic units. The bit processors are the

smallest computational unit of the hardware. They are single bit processors that can be operated

in a bit serial mode or in cooperation with other BP's as pert of the stage and arithmetic units in

a bit parallel mode.

The hierarchical design of the arithmetic units has a number of advantages over a

monolithic design. At the lowest level the design consists of a small number of simple

components amenable to VLSI implementation. The small number of distinct components

decreases the complexity of the design. This in turn reduces the probability for design errors

and reduces the design cost. in addition the computational power of the stage and bit processor,

which is far from negligible, can be utilized in units that are not composed directly of

arithmetic units such as arrays of bit processors and special long word processors,

3.1 The Bit Processor.

The design of the bit processor represents a compromise between efficiency in low

precision (4 to 7 bit words) fixed point operation, and higher precision (8 bits or longer

words) fixed and floating point operation. The efficient use of memory and processing time in

18
	 ,I

the 4 to 7 bit word lengths of many signal and image processing problems point toward a bit

serial, variable word length, mode of operation. Problems that require rich connectivity also

point toward the bit serial mode of operation since many low cost (single hit bus) connections

can be provided. The higher precision fixed and floating point word lengths needed for sparse and

dense matrix Inversions and aspects of image processing problems such as FFT and convolutions

point trnvard a bit parallel mode of operation. The bit parallel mode of operation will also be

more efficient for problems exhibiting a lower order of parallelism.

The BP has the following general characteristics. It has two modes of operation, a bit

serial and a bit parallel mode, refered to as the vertical mode and the horizontal mode. In the

horizontal mode eight BP's are used in conjunction with additional hardware to create a high

speed 8—bit processor. The BP's have a duel memory, two input buses, and one output bus. The

BP's are opereted synchronously from a central control unit. The control units are

programmable in a two address assembly language that produces encoded micro instructions.

The BP's routing logic is also programmable to allow for rich conmectivity in the vertical mode

and to provide date communication paths for the horizontal mode.

A large number of bit serial processors have been developed for array machines

including the Solomon, the DAP, and the MPP. The MPP's processing element was chosen as the

point of departure for the BP because of its excellent bit serial processing capabilities. There

are, however, few remaining overall similarities between the BP and the MPP's PE. The MPP's

PE is not designed to be coupled into bit parallel procesors, is only a one address processor, and

has only a nearest neighbor connection for its routing logic.

3. 1.1 Functional Description of the Bit Processor.

Figure 3.1 gives a block diagram of the design of the BP. The a and b buses are used for

input to BP registers, The o bus is used for output from BP registers. Each input bus can be

V

^Ca'r'r'y'ASdudTer 	—r2r3	 mr0 I r 1 ^ Lone 2 toe14

o

19

loaded from one memory module, the output bus, or the L buffer, The connection of the output

bus to the input buses allows register to register transfers in one cycle, The two separate input

buses also allow the input of two operands from memory in one cycle provided they are stored in

separate memory modules.

BP	 BP
	 0	 1 2	 u	 4	 5	 6

Memory	 11emory	 Mux	 Mux	 Mux
A	 B

Mux	 Mux	 I'

o bus

b bus

a bus
7) (B)(9	 11 11211311

i

Figure 3.1: The Bit Processor with Its Rssociated Memory.

The two memory modules of the BP are composed of standard commercial memory chips

with on chip address decoding. Data is input to and output from the BP to the L buffer by stealing

a BP processing cycle. Data input from the L buffer can be stored either in the memory modules

or directly in a BP register. Data output to the L buffer can originate from either a memory

ORIGMAL PAOR'10
OF POOR QUA'L"

20

module or from the o bus. The input and output connections from the BP to the I. buffer are

shown in Figure 3,1 by the circles labeled 1 and 0.

The L (buffer not shown in the figure) is used in the vertical mode to reformat the data

from a bit parallel format of the host machine to the bit serial format of the BP, The L buffer

also provides a speed matching buffer in both modes of operation of the BP. The implementation

details of the L buffer are one topic of the proposed research,

Source and Destination of Data for the BP Registers,

Register Sources oflnput Destinations of Output

r0 The a bus, the b bus, and one bit of The o bus, and one bit of the add
the sum from the add ROM. and multiply ROM address.

The a bus, the b bus, the sum bit The o bus,the queue register input,
r i from the sum carry adder, and one bit and one bit of the add and multiply

of the low order byte of a product. ROM address.

The a bus, the b bus, one bit of the The o bus,the sum carry adder, and
r2 high order byte of a product, and the one bit of the add and multiply ROM

output of the queue registerq address,

The a bus, the b bus, one bit of the The o bus,the sum carry adder, the
r3 the sum from the add ROM, and the routing logic, the zero detect logic,

Input from the routing logic. the equivalence function, and one bit
of the add and multiply ROM address.

The a bus, the b bus, and the stage The bit processor mask lines, andM level mask control. the equivalence function.

C The carry bit from the 1 bit sum The o bus, and the sum carry adder.
carry adder.

Table 3.1: The Inputs and Outputs of the BP Registers.

211

The inputs and outputs of the BP registers are given in Table 3,1, The BP has four

general purpose registers, r0 through r3, which form the primary processing registers of the

BP and in turn the stage, All the general purpose registers can be loaded from the input buses

and written to the output bus. The r0 register, which has no special function in the vertical

mode, can be used as a storage location for data. The remaining general purpose registers have

special functions in the vertical mode,

The r2 and r i registers form the head and tall of the BP's queue register (q), The q

register is a shift register of variable length that serves as a partial result queue for bit serial

arithmetic (e.g., as a partial product register for multiplication), The length of the q register

can he set to 2, 6, 10, and 14 bits, By choosing the next length larger than the size of the word

being procesed bit serial algorithms can be customized to execute efficiently on the BP. For

word lengths larger then the q register the horizontal mode of operation is more efficient than

vertical mode because partial results have to be stored in memory.

The r3 register is the logic engine of the BP. The logic hardware associated with it can 	 1

perform the 16 bit-level logic functions of two variables, The contents of the register and the	 k

bit being loaded are used as the inputs to the logic hardware. The r3 register is also the source

and destination register for the routing logic. In one operation the contents of r3 can be loaded

from and written to another BP using the routing logic. The routing logic provides a nearest

neighbor connection in two dimensions and an abbreviated power of 2 connection in one

dimension. The details of the routing logic will be discussed later. The bit level logic and

rot 	 functions of the BP's r3 register are used by both the stage and arithmetic units.

The r 1 , r2, r3 , and c registers are used in conjunction with the q register and a 1-.bit

sum carry adder to provide vertical mode arithmettc. The sum carry adder takes as its inputs

the values stored in the r2, r3, and c registers and produces a sum and carry output. The sum 	
!

bit is loaded into the r 1 register where it can be stored in the q register if desired. 1 he carry

bit is loaded in the c register where it can be cycled back for the next bit of the sum.

zz

The m register of the BP is used to hold a9 mask bit. This bit is used to control the

execution of a masked instruction according to the value of some local data, Only B p 's that

contain a 1 in the m register will participate in masked operations. The m register can be

loaded from local dote via the input buses or from a stage level input In the horizontal mode. In

vertical mode the m register can be used to perform exception handling, For example the m

register can be cleared by an algorithm to indicate an overflow. Once the m register is cleared

Its BP will no longer participate in the masked instructions of the algorithm. The contents of the

m register can be loaded onto the output bus only through the r3 E m function. This function

can be used to determine if the m register was set or cleared to determine if exceptions occured

during a bit serial algorithm. The use of the stage level mask in multiple precision horizontal

mode arithmetic will be described later.

The input and output connections of the BP shown in Figure 3.1 by the labeled ovals are

listed in Table 3.2. Connections I and 0 provide the 1 bit input and output paths between the L

buffer and the BP. Connection 3 provides access to any value an the o bus. This connection can

be used for a zero detect by taking the logical OR of a number of BP's either at the stage level or

in a tree errangment for a matrix of BP's. This connection can also be used to obtain the value of 	
I'

the the r3 a m function. Connections 12 and 6 provide the input and output paths from BP to

the routing logic. The remaining connections are extensions to the BP for use in the horizontal

mode and will be described later.

As stated before all BP's are operated synchronously under the command of a micro

programmed control unit. The control unit structure will depend on the orgainzation of the

component the BP's are used within. For example, the BP's organized into the stages will have a

different control unit than a set of BP's organized into an array processor. All operations done

by the BP above the level of addition and 1 = bit logic must be programmed. 'The horizontal and

vertical modes of operation will have separate assembly languages to distinguish the functions

available in the different modes. For example, the operation of multiplying two numbers would

23

require a call to a control unit which would execute a micro code subroutine to read two operands

from memory, odd them one bit at a time using the carry sum adder, and form the partial

products in the q register. The subroutine for this operation would be written in the vertical

mode assembly language becuase it uses the carry sum adder which is unavailable to thc-

horizontal mode assembly language. The operation of the BP's in horizontal mode will be

described in conjunction with the stage below.

BP Input and Output Points.

Input/Output Number. Bit is To or From.
0 To bit /of the LB offer.
1 From bit / of the 	 Buffer.
2 One bit of the Sum from the add ROM (horizontal mode).
3 To sum-or tree, and zero detect logic,

d
'

One bit of the high order byte of the add or multiply
ROM address (horizontal mode).

5 One bit of the low order byte of the add or multiply
ROM address (horizontal mode).

6 To the routing logic.
7,1 1 One bit of the Sum from the add ROM (horizontal mode).

9 One bit of the low order byte of the product from the
multiply ROM (horizontal mode).

10 One bit of the high order byte of the product from the
multiply ROM (horizontal mode).

12 From the routing logic.
13,14 Stage and arithmetic unit level mask inputs.

8 Currently unused.

C

i

Table 3.2: Input/Output Points of the Bit Processor.

J111

.:1.:.

?4

3.2 The Stage.

The stage is the atomic unit of the horizontal mode of operation, In the horizontal mode

all arithmetic is based an the 8-bit single precision arithmetic of tie stage, Each stage has

hardware that provides high speed 8 bit addition and multiplication. Each stage also contains

additional hardware that allows it to operate with other stages to form long word arithmetic

units, When grouped into long word units each stage can be considered a one digit procesor

where the digits have a base of 28.

Figure 3.2 shows the block structure of a stage. At the heart of each stage is a set of

eight BP's. A 64K X 9 bit add ROM and a 64K X 16 bit multiply ROM are used to perform the

high speed 2's complement single precision arithmetic of the stage. The stage also contains the

micro programmable routing logic used to transfer date to and from the r3 reigisters of its

Internal BP's and the r3 registers of the neighboring stages, Because the BP was designed to be 	 l

coupled into the stage as well a bit serial arrays the stage uses much of the BP's hardware

directly,	 In addition to the components shown in the figure each stage contains additional

hardware that allows it to be coupled into tho multi stage arithmetic units,

3.2.1 Functional Description of the Stage.

The stage has three 8-bit date buses, referred to as the A, B, and 0 buses, which are

composed of the 1-bit BP buses operated in parallel (see Figure 3.1), The A and B buses can be

loaded with a single byte from the buffer, from the add ROM's sum byte, from the 0 bus, or

from memory. The A memory can be read on the bus, and the B memory can be read on the B

bus. The 0 bus can be sent to the A bus, the B bus, the A memory, or the B memory. In addition

the 0 bus can be used as an input to zero detect logic at the stage and word level.

The four 8-bit general purposo registers of the stage (RO - 113) are composed of the

BP's 1-bit registers (r0 - r3) operated In parallel. Any general purpose register can be uried

J

25

as the source of operands for the single precision arithmetic of the stage and any register can be

used as the destination of the sum of a single precision add, The other stage level operations such

as multiplication can be performed only on subsets of the general purpose registers, The R I and

R2 registers can be used as the destination for the 16 bit product of the single precision

ao to als

To the
L Buffer	 ;	 multiply

	

ROM	 I	 ROM	 0 Bus

A	 A	 A

	

8	 16	 A
i

Carry i

Output Low address 	 Sum	 Product	 High Address o Bus	 I

BP7 I B96	BP5	BPS	BP.3
1

BP2	BPI I BPO I
1put
	

R3 out R3 in
	 Mas

r
	

T

	From East32	 7%32 	 To East
end West	 Routingand West

Logic
From the	 16 	 Stage
L Buffer	 Mask

	

From North	 To North
and South	 and South

I
i

Figure 3.2: Block Diagram of the Stage.

QRIG*NAE PA'V(V Ifii

of pooR QUALITY

i,

.I'i

26

multiply. The R 1 and R2 registers also function as the tail and head of the 8-bit wide Q

register, The Q register, which is composed of the q registers of the BP's operated in parallel,

,oan be configured into lengths of 2, 6, 10, and 14 words. The R3 register is used to perform ati

bit wise logic functions using the load logic of the BP's r3 registers operated in parallel. The

R3 register is also connected to the micro programmable routing logic.,

The .logo-level mask register M consists of the BP's m registers operated in parallel.

For a stage level mask to occur a !single mass; bit input to the stage is distributed to the m

registers of each BP. The stage luwel mask bits are connected across the stages to form a word

level mask register, This word larval mask register can be shifted one stage in each cycle. This

allows sections of long words, or entire words, to be masked out of operations. This capability is

useful in exception processing and floating point arithmetic, in multiplication and broadcasting.
f

Micro programmable routing logic is provided at the stage level, This logic is used in:
i

both the vertical and horizontal modes to provide communication paths between BP's. In the

vertical mode the routing logic provides nearest neighbor connections in two dimensions. This

functionality allows the creation of two dimensional mesh connected arrays of bit processors. In 	
j

the horizontal mode of operation the routing logic provides two levels of function. The nearest

neighbor connection will be provided in two dimensions and a nearest stage connection will be

provided in one dimension. The nearest neighbor capability can be used in the horizontal mode

for one bit shifts in either direction along arithmetic units and for long word shifts

perpendicular to the arithmetic units. This capability is simply the result of applying the

nearest neighbor connectivity of the BP's in a parallel manner. More importantly a second

routing capability is provided for operand shifts in stage increments. This capabiliy can be used

to normalize floating point mantissas more rapidly than single bit shifts. To provide multiple

precision arithmetic based on the single precison arithmetic (base 2 0) of the stage one cycle

shifts of 8 BP's is desirable. The trade offs between a simple nearest stage connection (where

BP's are connected at a distance of ±2 3), and an abbreviated power of two network (where the

27

BP's are connected at distances t2 1 , 122 , and t23) will be investigated. The major advantage

of the power of two network is that shifts of a distance D (e.g., in floating point normalization)

can be done in 0 (1092 (D)) time instead of O(D) time. The connections along the arithmetic

units will also allow logical and arithmetic shift operations, sign extension, and special guard

bit handling in floating point operations. Thus, the complete function of the routing logic

depends on the range of connections needed to provide both veritcal mode BP communications and

efficient horizontal mode stage and arithmetic level communications. The best method of

providing the communication along the stage and arithmetic units will be one topic of the

proposed research.	
j

w
a

j

3.2.2 Single Precision Logic and Arithmetic on the Stage.

As stated above the stage provides single precision arithmetic for the arithmetic units.

This arithmetic can be considered base 28 arithmetic where each stage contains one digit. The

descriptions of the single precision arithmetic operations will be given In terms of the micro

operations of the stage's components. The timing estimates will be based on a ROM memory cycle 	 1

time of SOns. Although there are other cycle times in the stage, the basic cycle time for 	 ?t
operations based on ROM lookups Is one memory cycle time.

The simplest single precision aerations are the bit wise logic operations. All bit wise

logic operations can be performed in one machine cycle using the load logic of the R3 register. 	 f
I	 '

With a two address assembly language any logic operation of two variables can be specified as a

single statement of the form;

LOGICOP OP1,OP2	
^l

Such a logic operation can be performed in at most 3 cycles. This maximum time arises if the

first operand is in any other location than the R3 register. In this case the following micro 	 i

i

29

operations would be used to produce the desired result:

R3	 f-- ME11 [OP11
R3	 *— [R31 LOGICOP MEM[OP21
MEM [OP I I *-- R3

As an optimization, statements where the first operand is the R3 register should be assembled

into a one machine cycle operation.

The time required for logical and arithmetic shift operations will depend on the power of

the routing logic, For a full power of two network (single cycle routes at distances 1-2 0 , ill,

±22 , ..,) a shift of distance O could be performed in O(LO9 2 (D)). With an abbreviated

power of two network, the times for a shift of O will of course be greater but will still be an

Improvement over a distance one shift time of O. High speed shift operations are by far more

impurtant at the arithmetic unit level than at the single stags level. In all cases special

hardware will be added at the ends of the words to provide for the cycling of bits in logic shifts

and for the introduction of the correct bits in arithmetic shifts. This additional hardware will

be discussed later in relation to the arithmetic unit. The desired timing of the shift operations

will be used as an input in determining the final horizontal mode routing logic.

Single precision addition is performed by a table lookup in a 64K X 9 bit add ROM that

contains the 2's complement sum and carry of the operands used as ROM addresses. Any general

purpose register can be used as the source for the add ROM addresses. The operands of the

addition are read out of the BP's by the connections labeled 4 and 5 in Figure 3.1. The sum from

the ROM can be placed on the 0 bus (connection 2 In Figure 3.1), or loaded directy into the RO ,

or R3 registers (connections 7 and 1 1 in Figure 3.1). The carry bit from the ROM is available

for output to the next stage and is stored in a stage carry register SC.

r ,

29

Consider the addition of two numbers stored in different memory banks, Since the add

ROM provides 2's complement addition in one machine cycle the operation can be performed in

three cycles by the following micro operations,

R2	 t- MEM[OP11; R3 t- MEM[0P21
SC, R2	 ADD[R2, R31
MEM[OP11 R2

The SC register can be read to detect overflow. If the operands are both in registers then the

addition will require only two cycles, Thus, single precision additions can require from 1 to 3

ROM cycles depending on the location of the operands, With current ROM speeds this

corresponds to 50 to I SOns,

Next consider the subtraction of two numbers In 2's complement format that are stored

in different memory banks. This operation can be performed to four cycles by the following

micro operations.

R2	 E- MEM[OP11; R3 <-- MEM[OP21; SC f- 1
SC, R3 4— ADD[R3,SC1
SC, R2 4— ADD[R2,19131
MEM[OP1I *- R2

Hare again the actual speed will depend on the location of the operands, For two operands already

in registers the subtraction requires only two ROM cycles, Thus, single precision 2's

complement subtraction will require between 100 and 200 ns.

Single precision multiplication is performed by table lookup in a 64K X 16 bit multiply

ROM that contains the 2's complement product of of the operands used as ROM addresses. Any

general purpose register can be used as the source of the operands for multiplication. Figure

3.3 shows how multiplication would be done if the operands are read from the R1 and r2

registers. This operation takes one ROM cycle to obtain the 16 bit product of the operands. The

a

30

product is always put onto the R t , and R2 registers with the low order byte of the product

being stored in the R 1 register. The maximum time required for multiplication of two values

from memory would be 3 ROM cycles. This includes the time needed to obtain both operands

from memory module and the time needed to store the result back to memory.

r171r161 ...	 Irl1Ir101	 Ir271r24 ... Ir21

v-j
a	

a.to a 15 Po

o	 }to	 Po

a 7 Multiply	 ^P 15 	 I

ROM
(64K X 16 bits)PB

i

Figure 3.3: Single Precision Multiply.

A number of areas of the design of the stage are still to be determined, The operation of

single precision division for the stage is not yet specified. The possibility and usefulness of

simultaneous multiplication and addition will be investigated. The amount of autonomous control

that each stage will have is also an open question. Under consideration is how much of the

hardware neeeded for the floating point and multiple precision arithmetic should be built into

the stage as opposed to being put into the arithmetic units and the control units. The stages by

their very nature will have to have their operation controlled by a micro programmable control

ORIGINAL PAGE IT
OF POOR QUALIU

4

311

unit. The details of the assembly language for the stage are yet to be worked out. Finally, the

usefulness of sub-stages will be investigated. A sub stage would be a processor that is capable of

only one of the basic operations such as multiplication or addition. Such a sub-stage would not

necessarily need the memory modules of the stage and would have a smaller set of registers. The

high speed multiple precision arithmetic described below uses a set of sub-stages in conjunction

with stages to achaive its processing speed by pipelining the multiplication and addition

operations.

3.3 Arithmetic Units.

For the purpose of the RELAPSE machine, arithmetic units are defined as any r ilection

of BP's, stages, and sub-sieges which perform the multiple precision arithmetic of the

functional units. This definition is intentionally general enough to allow many different

configurations of processors within the functional units. It will be seen below that although a 	 j

simple linear array of stages can perform a respectable multi precision multiplication 	 i

operation a special aritmetic unit can be constructed of stages and additional components to

obtain even faster multiplication speeds. These high speed long word multipliers can be used

profitability in functional units where the overall execution time is dominated by the

multiplication step (such as an inner product functional unit).

3.3.1 Multiple Precision Data Formats.

The multiple precision data formats of the RELAPSE machine are greatly influenced by

the design of the stage. The stage provides a 2's complement single precision arithmetic that

can be considered as either binary arithmetic or base 2 8 arithmetic. The fact that all single

precision arithmetic of the stage is perfomad by ROM table lookup, and the fact that the ROM's	 j

contain the 2's complement sum and product of the operands, imply that all arithmetic an the

it

. Ob
n Sl

32

RELAPSE machine is done in 2's complement. This has no great effect on the fixed point cardinal

and Integer number formats since 2's complement is a common choice for these date types. It

does have an interesting effect on the floating point formats, however, since even the exponent of

a floating point number must be in 2's complement. The design of the stage has two other effects

on the data formats. Because stages are designed to be coupled into arithmetic units each step

contains the hardware necessary to be the boundary of a date word. This Implies that words in

the data formats described below can be of any length up to the size of the arithmetic unit. For

example, a 128 bit floating point processor built from stages can be reconfigured into two

64 bit processors operated in parallel simply by designating one of the middle stages as a date

word boundary. The other effect on the data format is that all multiple precision formats are a

multiple of stages in length. Since the stage is an 8-bit processor (the length of one byte on

most systems) this effect is minimal.

The format of a 64 bit cardinal number is shown in Figure 3.4(a). A cardinal number

is formed by connecting a set of stages in a linear array and operating them in parallel. The

length of a cardinal number must be a multiple of the length of a stage. Therefore cardinals can

be used to represent numbers in the range from 0 to 2(8N)-1 where Nis the number of stages

In the arithmetic unit. The arithmetic performed on cardinals is modulo 2(e N) arithmetic with

optional overflow, detection provided by the carry out of the highest order stage.

The format of a 64 bit integer number is shown in Figure 3.4(b). The length of the

integer number must be a multiple of the length of the stage. An integer can be used to represent

numbers that range from 46N) to P N)- 1. The arithmetic performed on integers is 2's

complement with overflow detection provided by the carry out of the highest order stage.

An example of d 64 bit floating point format is given in Figure 3.4 (c). As previously

mentioned the entire floating point number must be stored and manipulated in 2's complement.

If F is the number of stages in the mantissa and f is the number of stages in the exponent,

then for binary floating point numbers (radix base 2) with fractional mantissas the values that

r

3

i

DW

33

stage 1	 stage 2 F stage 3	 L	 ...	 stage 8

2' complement

(a)64 Bit Cardinals.

stage 1	 stage 2	 stage 3	 L • • •	 stage e

Implied sign bit

2' complement

(b) 64 Bit Integers.

4

	

	
16-bit exponent	 48-bit mantissa

f stage 1	 stage 2 ^	 stage 3	 r •••	 sta e 8	 sticky
1

g
	 g L 0 bit

guar
Implied sign bit 	 Implied sign bit 	 bits

2' complement

(c) 64 Bit Floating Point.

Figure 3.4: Multiple Precision Word Formats.

ORIGMAV PAOR '
r)F POOR 2

VA

a,

e
can be represented in this format are:

2(8F- 2(0E- 0)

and

34

to (1-2(8F-1))2(2((3,f-1)-1)

—(I —2(8 F — i))2(2t8 E- 0-0 to -2(8 /'- 2(8 B- 0)

and
±0,

For the 64 bit floating point format of Figure 3,4(c) where F= 6, and F= 2 these correspond

to:

2-32720 to (1 - 247)2(247 -1) and -(1 - 247)2(247 -1) to -2- 32720 and ±0.

Each stage has the hardware needed to function as the exponent mantissa boundary, Because of

this a floating point number with greater precision can be created simply by adding more stages

to the mantissa, The only restriction on the size of the mantissa and exponent Is that each has to

be a multiple of a stage length. The impact, on the sta ge hardware, associated with its use in 	
i

handling exponents is described later in relation to floating point addition.

A block floating point format can also be supplied by stage base arithmetic units if the

functional unit's controller has block exponent hardware. Ina block floating point the mantissas

of the values are stored in the arithmetic units and processed there while the exponent is stored

and manipulated in the control unit. The exponent hardware can be composed of stages if desired,

Such a format would provide faster floating point processing for problems that have a limited

dynamic range of real (non-integral) values, The arithmetic of the block floating point would be

faster than regular floating point because there would be only an Infrequent need to perform

global normalizations and except for the global normalization all mantissa arithmetic is

essent+ally fixed point (integer) arithmetic.

1	 1	 ^ u

Ma.1:4?\ ^4 FRa :Y.5.1w a i.	 a	 c	 Y a	 _.	

4

1

1	 •	

1

35

3.3.2 Multiple Precision Arithmetic.

The multiple precision arithmetic of the funcionei units of the RELAPSE use the date

formats described above. These date formats allow words of different length to be created by

modularly adding stages to the hardware of the arithmetic units, in this section fixed point
Ij

addition, floating point addition, and fixed point multiplication are described. Attention will be

paid to the construction of the arithmetic units that perform these calculations. In particular

the additional hardware of the stage, not described above, needed for multiple precision

operations will be discussed. As with the arithmetic of the stage a cycle time of one ROM

memory cycle will be used as the unit of measurement for the algorithm times. It should be

noted that this is likely to provide a pessimistic estimate because shift times in some algorithms	 !

will be faster than the ROM memory accesses. For simplicity, however, and because the final
I

routing logic has not been specified this single cycle time will be used, In addition, all the 	 P i

timing estimates will be given for register to register operations, This is the minimum time in 	 j

which the described operations can performed. Unless otherwise stated the maximum time	 I
required for an algorithm will be 2 cycles longer than the minimum. This time differential

results from the delay of reading the two operands from memory and writing the result back to

memory.y
The first operation to consider is fixed point addition, Two possible configurations

for an Nstage (8N bit) adder are shown in Figure 3.5, In each configuration the stages

provide all the hardware needed to perform the addition in 8 bit slices, In the first scheme the

carries are propagated across the stages as a ripple carry. Because of this there will be an A

stage delay in obtaining the sum of A and A The stage, as shown in Figure 3.2, can be coupled	 i

Into this adder scheme without any additional hardware. In the second scheme a slightly more

complicated stage is required. Each stage must make available a carry propagate (P I) and

carry generate (01) signal for use in the carry look-ahead circuit. Since each stage can be

considered a separate digit an N-1 input carry look-ahead circuit will be sufficient for an N

36

a N-1	 bN-1	 al	 b1	 ao	 bo

Caut^	 O In	 •••	 Cout	 Cin	 Cout	 0In

Overflow or	 Add or
Underflow	 Subtract

SN-1 to So

(a) N Stage Ripple Carry Adder.

a N-1	 bN-1	 a1	 b1	 a0	 bo	 Add or
Subtract

C out	 Cin	 ["	 Cout	 Cfn	 Cout	 Cin	 ('

IO

C_ ••• C 2 	P 2 	0 - P 	 00 	 P
N 1	 2	 2 2	 1	 i i	 0	 0 0

Look-ahead carry generator

Overflow or
Underflow	 SN-1 to SO

(b) N Stage Carry Look-ahead Adder.

Figure 3.5: Multiple Precision Adder Configurations.

stage adder. The carry propagate signal can be produced by taking the logical AND of the sum

outputs of the add ROM. The carry generate signal is simply the carry output of the stage as

before.

The ripple carry adder can add two N digit fixed point numbers in N cycles, One cycle

is needed to take the sum of the initial values and N- I cycles are needed to propagate the carry,

For a 64 bit fixed point number eight cycles are required giving total time of 4OOns. The carry

ORiGENAL. PUPt1
"

 15OF, POOR O

37

look-ahead adder's execution time depends on the size of the carry look-ahead circuit, If eight

stages and their associated logic are placed on a single board an 8 input carry look-ahead circuit

is a reasonable choice, With an 8 input carry look-ahead (note; only 7 inputs of the circuit are

actually used) the addition of two 64 bit fixed point numbers will require only 2 cycles, The

first cycle is used to create the carry generate and propagate signals from the inputs and the

second cycle Is used to correct the sums generated on the first cycle for the carries, For word

lengths of 128 bits the carry can simply be rippled from one 64 bit group to the next to

provide a 3 cycle 128 bit add time, If each 64 bit group also provided a carry generate and

propagate signal then one additional level of carry look-ahead can provide a 3 cycle add time for

word lengths of up to 512 bits.

Fixed point subtraction can be performed by both of the adder schemes shown in Figure

3.5. To perform a subtraction the 2's complement of the subtrahend must be determined, Using

the ripple carry adder of Figure 3,5(a) subtraction will take 2N+ 1 cycles. The first cycle is

used to load the R3 register with the I's complement (logical NOT) of the subtrahend, The

carry in of the first stage is set to one and an addition is performed to generate the 2's

complement of the subtrahend in N cycles. An addition (requiring N more cycles) is then

performed to obtain the final result, For a 64 bit fixed point subtraction this requires 17

cycles. The carry look-ahead adder can improve on this performance even more than it could

Improve on the performance of the addition operation. For the 64 bit addition only 7 input pairs

of an 8 input carry look-ahead circuit are used. If the carry in to the subtraction operation is

connected to the first carry generate as shown in the Figure 3.5(b) a subtraction can be done in

only one more cycle than addition. The carry in to the operation (labeled Add or Subtract) is a 0

if the operation is addition and a i if the operation is a subtraction. A subtraction is performed

by loading the R3 register with the 1's complement of the subtrahend and then aeding, The

carry in results in the 2's complement operation being completed as the addition is perforrva<J.

With this hardware a 64 bit subtraction requires only 3 cycles, which is a significant saving

.00

38

over the 17 cycles of the ripple carry adder.

The multiple precision fixed point multiplication algorithm for an arithmeitic unit

composed of a linear arrey of Nstages demonstrates the usefulness of the stage'sQ register. To

provide a high speed multiplication the fastest possible addition operation is required so it is

assumed that the carry look—ahead adder approach is implemented. In addition to carry

look—ahead it will be necessary to have a "shiftable" mask register at the word level. This

shiftable mask should provide a one stage shift of the stage level mask in a single cycle, The

shiftable mask is used to reformat the multiplier from a byte parallel format to a byte serial

format where each stage of the word contains the enitre multiplier in its Q register.

The multiplication algorithm works as follows. The multiplier and multiplicand are

read from memory and loaded into the R3 and RO registers. Next the multiplier is broadcast

and reformatted. The product is thdn determined by computing the partial products and

accumulating them with fast additions. The Q register of the stage Is used to stare the product as

it is accumulated, After the multiplication step is completed the low order N bytes of the

product, located in the Q register of stage 0, are distributed across the stages of the word and the

result is stored.

The broadcast operation Is done by N circular routes right of the R3 register. Each

route has a distance of one stage, and on each route the contents of the R3 register is stored in

the Q register. A reformatting step is needed after the broadcast because the Q register of each

stage i contains the multiplier in a format that is "rotated" by a distance i (e.g., Q2 contains

b bo b3 b7 instead of b3 b2 b t bo). The reformatting is done in a total of N masked pop and

push operations on the Q register. The mask used is initially all 1's. On each step of the

reformatting the mask is shifted one stage left and the leftmost stage level mask receives a 0.

This results in each stage i containing byte bo of the multiplier in its R2 register ready for the

first partial product.

1

3
i

.i

i!

39

The multiplication step is performed by alternating the generation of partial products

(using a single precision multiplication and a multiple precision addition), and accumulting

these partial products Into the product (held on the register). The final distribution step is

needed because the low order N bytes of the 2N byte product will end up stored on the Q

register of stage 0. At the end of the algorithm the sieges contain the multiplicand in register

RO , the high order bytes of the product In register R i , and the low order bytes of the product in

the R3 register. The multiplier (originaly in R2) is destroyed during the multiplication.

The broadcast, reformatting, and redistribution steps of the algorithm each require Al

cycles. The multiplication step includes two multiple precision additions, one single precision

multiplication, and a number of shift and queue operations or, each iteration. A number of the

operations In each iteration of the multiplication stop can be performed in parallel so each
1

Iteration requires only 7 cycles, Thus, the total multiplication stop requires 7N cycles, This 	 #

gives a total multiplication time of iON cycles. This estimate is quite pessimistic for an
{{R

arithmetic unit where stage length shifts can be performed in one step, in this case the cycle 	 f

time for the routing and register transfer operations (which account for 5N cycles) is being

oyerestimated. After the design of the stage and routing logic is finalized more exact estimates of

the multiplication time will be possible.

Figure 3.6 shows a possible design for a high speed multiplication arithmetic unit, The

unit is constructed from N full stages (the boxes labeled *) linked into a linear array. These

stages compute the partial products using the single precision multiplication of the stage. The

multiplicand is stored in a register across the stages 1 byte to a stage. The multiplier is stored

in a byte wide shift register that supplies each byte of the multiplier as it is needed for the

generation of the partial products. The addition of the single precision partial products to

produce a multiple precision partial product, and the accumulation of the product is performed

by a set of sub-stages. These sub-stages are connected to the multiplier stages y ia their buses.

The output bus of a multiplier stage is connected to the adder sub-stage directly below it in the

r_
a

r.
0

v^
rs

7 (i

r
C ^
O

V
'L

a•

^^ l

d
ry
a

V7 !i	
a

C7^

S

M

a1
L

47

U. '

»3.

N
CL

1+}

-t

N
c

r,N

^N

0
C.

I	 f

40

ORIGINAL• PAeX iii•

OF POOR QUA'!.>IYTG

{

41

i,

figure. As the unit is designed none of the stages would have any individual memory (other then

the add and multiply ROM's). The multiplicand (A) would be input directly onto the A bus of the

multplier stage and the multiplier bytes (B I) would be broadcast directly to the B bus of the

multiplier stage.	 i

The connection between the multiplier and adder stagesages 1s a single byte connection

between the 0 bus of the multipler stage and one of the buses of the adder stage. The positional

shift of the low order byte of the partial product (p) in the figure) is performed by	 i

transmitting the low order byte to the R3 register of the adder stage and then doing a I byte 	 r
shift to the right while the high order byte is looded to the adder stage. The remianing special

box in the figure is tha We shifter. This shifter could be formed from a set of shift registers 	 II	 {

similar to the R3 register of the stage. The output of the shifter is used as the input to the

broadcast lines.

The multiplier shown in Figure 3.6 can overlap the accumulation of the partial products 	 j

with the generation of the next partial product. It also has no need for the broadcast,

reformatting, and dequeueing steps of the previous multiplier design. The limiting factors in 	 1

this design are the single byte connection between the multiplier end adder units, and the speed

of the multiple precision addition. The algorithm for multiplication on this design performs the 	
M..

addition of the partial product in parallel with the combination of the broadcast and

multiplication operations. The output of the high and low bytes of the partial product to the

adders and the addition to produce a partial product from them are done sequentially with the

first parallel step. Each iteration of the multiplication step requires 7 cycles so the total

multiplication speed for the design is 7N where 2N of the cycles are register transfer and shift

operations.

Floating point multiplication is a simple extension of the fixed point operations of

rnultiplicaton and addition applied to the mantissa and exponent of the floating point number. The

operation of flouting point addition, however, requires additional hardware at the stage level

R3	 I^ II R3 .	I^ R3	 R3

1 M̂
J -1

guard sticky

bits	 bit

e	 ^

i

42

	

t	 0

1n	 n	 n^

	

subtract	 Rae S	 R3	 R3	 7R3

(a) Exponent Comparison Step.

shift

(b) Mantissa Alignment Step.

overflow

r^ ^R3	 R3	 R3	 R3

add	 shift

(c) Renormalization Step.

Figure 3.7: Configurations for 32 Bit Floating Point Addition.

ORIGINAL PAGE IS
OF POOR QUALITY,

,

43

Figure 3.7 shows the control configurations for an arithmetic unit which is composed of a

linear array of stages during a foEting point addition operation. The general algorithm for

addition of normalized floating point numbers is to compare the exponents, align the mantisses,

add the mantissas, and renormalize the result.

Figure 33(a) shows the control configuration of the arithmetic unit during the exponent

comparison step. The exponents of the operands (from any register but 113) are subtracted and

the difference S is placed in the R3 register. The mantissa of the larger number is then placed

In the R3 register for alignment. The control configuration for this operation would have the

inverse of the mask of the subtraction step.

Figure 3.7(b) shows how the mantissa alignment is performed. The set bits at position i

in the S from the exponent comparison correspond to an allignment shift of a distance 2^ With a

full power of two network the the alignment shift can be accomplished with the configuration

shown in the figure. The bits shifted off the exponent are used to mask the shift of the mantissa.

The exponent is shifted right a distance of 1 bit on each cycle and the mantissa is shifted right a 	 i

distance of 2 / on each cycle. The stage level zero detects can be used to stop the shift operation.

In any event the alignment operation can be stopped after the 6th bit of the S (for a 64 bit

word) has been shifted off the exponent because all significant bits will be shifted off of the

mantissa at this point. If a full power of two network is not available the control unit will have

to determin how many stage length and 1 bit shifts are to be done. It is worthy to note that the

shift preserves the sign of the mantissa and that the floating point format provides a "sticky

bit" and guard bits.

The mantissa addition step is identical to the addition of fixed point numbers, except that

the exponent stages are masked out of the operation. The result of the addition is placed back in

the R3 register so it can be shifted in the renormalization step. At most a single bit

renormalization shift will be needed. The words that require this step are those that produced a

414

carry out during the mantissa addition. Therefore, the overflow can be used to povide a mask for

this operation as shown in the figure.

The speed of the operation depends on the power of the shift network used in the alignment

step. A full power of two network is probably too expensive for word lengths of greater than 8

bits. If such a network existed, however, the shift would take only r109 2(S)l time. For

mantissas between 32 and 64 bits the maximum shift would require only 6 cycles with this

network. With an abbreviated power of two network that has a maximum shift of 8 bits the time

required for the mantissa aliignment would be r109 2(S) Ifor S _< 8 and 4 + ((8/8) -1) for

S > 8. For most aligments the abbreviated power of two network will be sufficient to do the

entire shift in 0009 2 (6)) time. Using an estimate of 3 cycles for the alignment the total time

for the floating point add is 12 cycles. The initial exponent comparison requires 3 cycles (for

all reasonable exponent lengths), two cycles are required to move the mantissas into position for

the alignment, three cycles are needed to align the mantissas, and two more cycles are needed

for both the mantissa addition and the renormalization.

Table 3.3 summarizes the execution times of the operations discussed in this chapter.

From the table it can be seen that the addition and subtraction times of the stage based arithmetic

units are very good. The values given in the table for the floating point addition are average

times based on an assumption of a throe cycle mantissa alignment. It should also be noted that

the values in the table are for register to register operations. If the operands are to be read

from memory and the results stored in memory an additional 2 cycles are required for each

operation.

As mentioned earlier in this chapter a number of areas in the design of the bit processor,

stage, and arithmetic units are topics of the proposed research. The implementation of the L

buffer will be determined. An optimization pass will be done on the hardware of the BP and stage

presented here inlcuding such areas as number of registers, queue register length, and control

structures. The best form of affordable routing logic for processing multiple precision data will

45

be determined. Division and square root operations will be specified for both the single

precision stage and the multiple precison formats of the RELAPSE system, Finally the

usefulness of a concurrent multiplication and addition in the stage and a shiftable word level

mask will be investigated.

Summary of Multiple Precision Execution Times.

Operation Hardware Word Length Excecution time
trits/st (cycles

Fixed Point Ripple Carry 64/8 8
Addition Adder 128/16 16

Carry Look-ahead 64/8 2

Adder 128/16 3

Fixed Point Ripple Carry 64/8 17
Subtraction Adder 128/16 33

Carry Look-ahead 64/8 3
Adder 128/16 4

Fixed Point Stage Array 64/8 80
Multiplication 128/16 160

Stage and Sub-stage 64/8 56
Array with 128/16 112
Braodcast

Floating Point * Stage Array 64/8 12
Addition 128/16 13

* The execution time listed is for a 3 cycle alignment shift,

A

y^
y r

isx,

s'
a

Table 3.3: Summary of Multiple Precision Execution Times.

D

46

CHAPTER 4

FUNCTIONAL UNITS COMPOSED OF BP'S AND STAGES

As stated In Chapter 2 the choice of the linear algebra problem domain was made for

three reasons. First, problems from this domain are encountered in many physical and

mathmatical applications, Second, the solutions to problems in this domain can be decomposed

into computation tasks that are related to each other in a functional manner. Third, there is an

extensive body of algorithmic design to draw upon in determining the functional components of

the RELAPSE system. It is the Intention of the proposed research to select a consistent set of
i

functional units for system evaluation. The initial set of functional units will contain a subset of 	 c
functional units that provide the same function through different algorithms and a subset of hf

functions that will allow the system to choose the best algorithm for the problem at hand,
^a.1

4.1 The Inner Product Functional Unit. 	 f
4

The inner product unit was chosen as an initial design study in building functional units

from the VLSI components introduced in the last chapter. The unit is a valuable sub-assembly of

many other functional units two of which are discussed below. The problem to be solved is stated

formally as follows, Compute Y = A • B where A, B, and Y are vectors of dimension N. It can

be shown that the solution to this problem requires at least 0(109z(N)) time with 	 I
computational units that have two inputs.

Figure 4.1 shows a functional unit that acheives this optimal performance, The unit is

constructed of a linear array of multiplier units and a binary tree of adder units. The

multiplier and adder units can be any of the designs described in Chapter 3. The multiplication

of the pairs of vector elements is performed in parallel requiring one arithmetic unit cycle. The 	 ;

J	 1	 i

an- t bn-1 an bna, b, a2 b2 813 b3 a4 b4

47

o

n
y=^a,b,

Figure 4.1: Inner Product Functional Unit.

ORIGINAL PAGE IS
OF POOR QUALITY

I	 0

.4r

48

products are then summed using the adder tree. The adder tree has a height of n092(N) I and

requires f)092 (N) I steps to form the sum. Therefore the inner product of two vectors of length

N can be calculated in flog 2(N) I + t multiplication cycles. The functional unit requires N

multiplier arithmetic units and N adder arithmetic units. It is important to note that the

funcitonal units could also be constructed out of sub-stages to reduce the hardware costs. The

adder units do not require a multiply ROM and the mutiplier units do not require the add ROM.

Also the various arithmetic units in the figure do not require any RAM memory. This leaves the

Input and output buses availble for use in connecting up the adder tree, The initial input is

loaded directly onto the input buses of the mulliplication units.

4.2 Matrix Vector and Matrix Matrix Multiply Units.

The inner product tree unit can be used to forma pipeline of inner product calculations

where a new inner product problem can be started on each multiplication step. This capability

can be used directly to create a Matrix Vector Multiplier functional unit. The Al inner product

calculations required for the multipication of an NXN matrix and an N-vector are simply run

through the inner product calculator in a pipelined manner. The first result will be available in

f iog2(N) 1+ 1 multiply times and the remaining N-1 results will follow one per multiplication

cycle. Thus the total time to perform a matrix vector multiply with a pipeiined inner product

calculator is N + f1092(N) I multiplication cycles. The total amount of hardware is obviously

the some 2N arithmetic units as-before. if N such inner product calculators are available the

multiplication of two NXN matrices can also be done in the same amount of time.

It is interesting to contrast these results with the results acheived using the systolic

array design approach. The systolic array designs for the matrix vector and matrix matrix

multiply calculations are based on an Inner product cell (41. Each inner product cell performs a

multiplication and addition each time the array is cycled, ihue, for a comparable word format

i r

__	
, D

49

the inner product cells are of comparable complexity to the arithmetic units of the inner

product tree. The total number of cells needed in the systolic array is dependent on the

bandwidth of the matrix they are processing. The inner product tree design above is primarily

for random mortices in that it contains no optimizations to operate on a banded matrix. In order

to provide a valid comparison the matrices to be processed will be assumed to be random, These

matrices, therefore, have the maximum bandwidth of 2N. With this asumption the systolic

arrays and the inner product based design bith have the same bandwidth to the outside world.

The systolic matrix vector calculator is linear array of 2N inner product cells. It can

can form the product of an NXN matrix and N-vectcr in 4N cycles, Because only half of the

cells are active on each cycle the array can be used in a pipelined manner to perform two

multiplications in the same 4N cycles, The inner product tree used as a matrix vector

calculator also contains 2N arithmetic units. It can calculate the matrix vector product in N+

('1092(N)) cycles. This is asymtotically better then the systolic array's performance, eye.-,

when the systolic array is operated as a pipelined unit.	 i

The systolic matrix matrix calculator is a hexagonally connected array of 4N2 inner

product cells. It can compute the product of two NXN matrices in 5N cycles, Like the matrix

vector calculator, it can be pipelined to calculate 3 matrix matrix products in the same Sk	 I'
cycles. The inner product based matrix matrix multiplier uses N inner product trees for a

total of 2N2 arithmetic unAs. It can compute the product of two NXN matrices in N+

f'092(N)] cycles. This result is better than the pipelined systolic array. Perhaps the biggest

advantage is that it requires only roughly half the hardware.

To make a fully valid comparison between the two types of processors a number of other

factors would have to be considered. The complexity of the two basic calculating units would

have to be compared. The usefulness of the units in other porblems would also be important.

The relative execution speeds would also have to be compared. Without weighing those factors

in the comparison the simple comparison of number of execution cycles A,1samewhat suspect..

1	 L

so

4.3 Remaining Work.

The topics of research In the lower levels of the design have already been described in

their respective sections, In addition to those topics a consistent set of functional units will be

chosen from the following list of linear algebra functions, For each functional unit the

performance will be estimated end a communication protocol will be established,

• Elimination step with both partial pivoting and full pivoting.
• Iteration step using the Oauss Seidel, Jacobi, and SOR algorithms,
• L2 and oa norm computation.

• Eigenvalues of matrices using the power method and inverse iteration, 	 y
• Deflation step unit,
• Units for storing and inverting tri-diagonal matrices. 	 f
• Units for storing and inverting random sparse matrices.

A RELAPSE machine will be designed that contains the functional units selected, The system level

communication protocols and control sequencing of the various Independent functional units lip

the machine will be specified, The initial system design will then be evaluated against the

background of general purpose and systolic array systems using the ASW simulator. It Is hoped

that the results will provide Insight Into the restricted optimization problem posed in Section

1. 1.

^r

A • ^

51

REFERENCES

[11 D. L. Slotnlck I "Time-Constrained Coin putation," Department of Computer Seclence,
University of Illinois at Urbane-Champaign, Report No, UIUCDCS-R-82-1090, May 1982.

[21 R. K. Richards, "Arithmetic Operations in Digital Computers," van Nostrad, 1955.

[31 D. L. Slotnirk and John Cooke, "The Use of Parallelism in Numerical Calculations,"

18M Research Memorandum No. RC-55„1958.

[91 H. T. Kung and Charles E. Leiserson, "Systolic Arrays For (VLSI),” Department of Computer
Seience, Carnegie-Mellon University, Pittsburg, Pe. 15213, C 1978.

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf

