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ABSTI{ACT 

A problem which is encountered when dealing with analysis of spaceflight data 
is that of small sample sizes. Resource and cost considerations limit the 
number of experimental subjects available on each flight, thus greatly 
limiting the amount of data obtained and the power of the results derived. In 
the light of such a small amount of data available, careful analyses are 
essential in order to extract the maximum amount of information with 
acceptable accuracy. This report is concerned with statistical analysis of 
small samples. It begins with the background material necessary for 
understanding statistical hypothesis te~~ing and then explains with examples 
the various tests which can be done on small samples. Emphasis is on the 
underlying assumptions of each test and on considerations needed to choose the 

most appropriate test for a given type of analysis. 
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STATISTICAL ANALYSIS TECHNIQUES ;:OR SMALL SAMPLE SIZES 

1.0 INTRODUCTION 

When working with estimating population parameters based on only a 

sample of the population, it is logical to expect that better estimates will 

result from larger sample sizes; in fact, values of sample parameters approach 

those of the population as the sample size increases. For large samples 

(usually N ~ 30 is sufficient), a powerful statistical tool called the Central 

Limit Theorem provides the basis for obtaining acceptable results. In many 

situations, however, it is not possible to obtain samples of such large #ize. 

Space flight is a prime example where the limited available resour~es render 

large samples infeasible. This problem has been dealt with in the past by 

combining data from several flights. For example, in analysing some of the 

Skylab data, the data from three separate manned flights with three 

crewmembers each were pooled, thus producing a combined sample size of nine 

(1, 2). Care should be taken when comb~ning data frrm different sources, 

however. Experimental conditions will never b~ identical from one flight to 

the next, and these differences might undermine the underlying assumptions of 

the analyses and thereby falsify the results. When planning an experiment, 

careful consideration sHould be given to the effect of the sample size on the 

outcome of the experiment, and the type of analysis chosen should permit 

extra~tion of the maximum amount of information with desired accuracy from the 

available data. If data are combined from different sources, this fact should 

be incorporated into the analysis. Techniques that are particularly useful 

for analysing data from small samples taken from different types of situations 

are presented in this report. Emphasis is placed on the assumptions inherent 

in each test and on considerations needed in choosing the type of analysis. 
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2.0 BACKGROUND 

Thi s secti on gi ves the background i Ilformation necessary to understand 

the statistical tests described in the next section. It is very basic, 

beginning with the purpose of statistics, and then developing the basics at 

hypothesis. testing. Characteristics of tests such as the level of 

significance, the power, and the relative efficiency are defined, and the 

distinction is made between parametric and nonparametric tests and the various 

scales of measurement. Finally, there is a discussion of the central limit 

theorem. Anyone familiar with these topics m~y skip this section and go on to 

Section 3. Computation of simple sample parameters such as sample mean and 

standard deviation can be found in an earlier report (3). 

2.1 PURPOSE OF STATISTICS 

The purpose of statistics is to ascertain, within a specified degree 

of accuracy, the characteristics, or para~eters, of a population, using 

observations made only on a sample of the population. The values of these 

parameters could be determined exactly, of course, if obsp,rvations are 

available on ever'y individual member of the population in question, say, 

astronauts. No statistics would be necessary in such a case. Unfortunately, 

observations on the entire population are seldom (if ever) possible, and so we 

must resort to the next best thing: take a sample of the population, nake the 

observations l>n those few individuals, and from the data thus obtained, try to 

infer the characteristi\'5 of the entire population. 

Unfortunat~ly, sources of error inherent in any experiment will 

prevent the sample parameter values from being identical to the values of the 

population parameters. One of these sources is observation error; the 

accuracy of the results w'ill be influenced by the precision of the instruments 
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and methods used to obtain the observations. One should be able to obtain a 

good estimate of this error before the stdrt of the experiment, so that its 

effect on the results can be explained. 

The main source of statistical error, i.e., the deviation of sample 

parameter values frow 90pulation parameter values, however, will be due to the 

subjects themselves. This er~or is caused both by between-subjects variation 

and by within-subjects or day-to-day variation. The between-subjects vari­

ation arises from the fact that no two individuals are exactly thp. same and 

therefore observations on them will necessarily differ. Within-subjects 

variation arises from the fact that the characteristics of the same individual 

will change over a period of time and hence the observations taken on one day 

probably won't be the same as those taken on another day. 

Because or these various sources of error in the data, it is not 

possib1e to determine exactly the "true" values of the populat'ion parameters. 

This ;s where statistics can be of help. Statistical techniques have been 

developed to estimate the values of the parameters in question (both single 

pOint ~;timates and interval estimates) and to determine the probability that 

these estimates are correct. Building on this, it is also possible to test 

whether parameter values between populations are the same, or whether 

different factors (e.g., wei·ghtlessness) have any effect on parameter values. 

2.2 BASICS OF HYPOTHESIS TESTING 

The roots of these statistical inference techniques lie in the theory 

of probability and probability distributions. For example, take the simple 

experiment of flipping a coin. For a fair coin, there are two possible 

outcomes, heads and tails, each with its associated probability, 1/2. Now 

flip the coin 10 times and count the number of heads. How many will tllere be? 
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One can't say for sure, because there is a lot of 'within-subject variation' 

in the coin; roughly half the time it will be one value, half the time the 

other. So one would expect and guess that there would be five heads, which is 

half of ten. But what is the probability that there will, in fact, be exactly 

five? 

2.2.1 The Binomial Distribution 

Since we know that the probability of getting a head on a single to, s 

is 1/2, we can easily figure out the probability of getting any number of 

heads that we want; all that we need to do is figure out the probability of 

getting x heads and (10 - x) tails and then multiply it by the number of 

possible combi~~~ions of x heads and (10 - x) tails. This in fact follows 

what is cal'ed the binomial distribution with parameters n(sample size) = 1U 

and p(probability of a head) = 1/2. The probability density function (pdf) of 

the binomial distribution is given by 

Using the above formula, the distribution of heads in ten tosses of a 

coin is given by: 

x o 
1 
2 
3 
4 
!) 

6 
7 
8 
9 

10 

.0 0 

.0097 

.0440 

.1172 

.2051 

.2460 

.2051 

.1172 

.0440 
• U097 
.0010 

Looking at this table it can be seen that, while five is the number 

that is most probable, it actually occurs less than one quarter of the' time. 
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Now l e t ' s  t u r n  th ings  around. Instead o f  p red i c t i ng  i n  advance h021 

many hex:, w i l l  be obtained, l e t ' s  caunt the nc;nber o f  heads ir, ten  tosses and 

t r y  t o  determine whether o r  not t h e  p r o b a b i l i t y  of g e t t i n g  a  head a c t u a l l y  i s  

equal t o  1/2. To put t h i s  i n  s t a t i s t i c a l  terms, we want t o  t e s t  t h e  nu1 l 

hypothesis Ho t h a t  t he  p r o b a b i l i t y  o f  heads (denoted by  heads)) = 1/2. 

2.2.2 Level o f  S i  gni f i cance 

Comon sense d i c ta tes  t h a t  i f  t h e  p r o b a b i l i t y  o f  heads ;s 1/2, then 

the number o f  heads w i l l  be c lose  t o  f i v e ;  but the  question i s ,  how c lose i s  

"close." To determine t h i s ,  t h e  experimenter rrxlst f i r s t  decide haw c e r t a i n  he 

wants t o  be t h a t  h i s  r e s u l t s  sre correct ,  t ha t  i s ,  h i s  " leve l  o f  s i g n i f i -  

cance." He can never be abso lu te ly  sure t h a t  t he  n u l l  hypothesis i s  not  t rue ;  

even i f  he f l i p s  the  co in  ten t imes and doesn't get any heads, i t  doesn't  

necessar i l y  mean tha t  t h e  coin i s  not f a i r .  however, such an outcome i s  

u n l i k e l y  enough t h a t  i t s  occurrance wouid lead one t o  i n f e r  t h a t  t h e  co in  was 

not  f a i r .  Note t h a t  s ince p ( x )  = 0.Y01 f o r  x = lU, approximately one cu t  o f  

every thousand t r i a l s  w i t h  a f a i r  co in w i l l  r e s u i t  i n  no heads. This i s  t h e  

l e v e l  of s ign i f i cance,  denoted usua l l y  by a. I t  i s  t h e  p r o b a b i l i t y  o f  

ob ta in ing  by random chance a  value which the i nves t i ga to r  i s  w i l l i n g  t o  accept 

as d isprov ing  t h e  n u l l  hypothesis. I n  other  words, a i s  t h e  probab i l  i t y  o f  

r e j e c t i n g  the  n u l l  hypothesis when i t i s  true. The value o f  a should always 

be determined before t h e  s t a r t  of t h e  experiment; as the  value of a 

decreases, t h e  s i g n i f i c a n c e  increases. 

I f  t h e  experimenter would be s a t i s f i e d  w i t h  a  r e s u l t  tha: would occur 

by chance only  one i n  twenty tirnes, then he would set  t he  s i g n i f i c a n c e  l e v e l  

a t  1/20 or  0.05. Suppose he does t h i s ,  then f l i p s  t h e  coin and gets two 

heads. Should he accept o r  r e j e c t  t h e  nu11 hypothesis t h a t  p(heads) =. 1/2? 



Since he is only interested in whether the probability equals 1/2, and not in 

whether it is larger or smaller than 1/2, outcomes with both large numbers and 

small nUI.1bers of heads will If.ad to the rejection of the null hypothesis. 

Therefore, our observed vall'.:! of two should be matched with! ;') corresponding 

val ue on the other end, i.e., 10-2 • 8. Furthermore, the numbers even farther 

from our proposed value [equal to b for p(heads) • 1/2J than two and eight 

should also be considered; i.e., zero, one, n)ne, and ten. In other words, we 

are interested in the probability of getting a number as far or fartner from 

five than two and eight. Adding the probabilities of zero, one, two, eight, 

nine, and ten, one see5 that the probability of this occurring by chance is 

0.1094, more than twice the level of significance. The number U.1U94, denoted 

by G', 'IS the actua'j leve'j of significance of the experiment. It is the 

probability of ubtaining by random chance a number at least as extreme as the 

observed value if one assumes that the null hypothesis is true. Une will 

reject the null hypothesis only if ~ is less than or equal to a, the 

predetermined level of significance. In this case, s~nce ~ is over twice the 

value of a, the experimenter must accept the hypothesis that the probabi tity 

of heads is 1/2. 

Suppose the experi menter was interested in knowi ng if the cO'j n was 

biased in favor of tails. If thi~i were so, then the number of heads would be 

small. The null hypothesis in a case like this is "Ho: the number of heads 

is greater than or equal to five" versus the alternate hypothesis "Ha: the 

number of heads is less than five." Suppose he flips the coin and again 

obtains two heads. This time only small numbers will lead to the rejection of 

the null hypothesiso To determine if this is significant, one need only add 

up th~ probabilities of getting two heads or less; i.e., the probability of 

6 

~ • ____ ..... """ ........ _ ......... M ........... _ ..... ____ ..... __ • ____ ... ~!_. __ ... __ ,._. w ..... 

:'1 
i 



II 
!' . 

;, .. !l 
f 

"" ~." , f" 

i' 

obtaining a zero, one, or two. Doing this, we see that the probability is 

0.0547. This is still larg~r than the ~re-determined significance level of 

0.05, so the experimenter must still acce~t the null hypothesis; he does not 

have sufficient evidence to reject the hypothesis that the expected number of 

heads is greater than or equal to five. 

2.2.3 One and Two Tailed Tests 

It would, of course, be possible for the experimenter to determine in 

advance what kind of numbers he would have to gat in order to reject the null 

hypothesi s. For exampl e, take the test of "Ho: the \flean number of heads is 

five. 11 This is what is known as a "two-tailed" test because both large and 

small values will lead to the rejection of the hypothesis. In a two-tailed 

test, the level of significance i3 divided as evenly as possible between 

both ends. In a symmetric distribution, i.e., one in which the probabilities 

are di sUi buted evenly about the mean, thi s can be done exactly. If a = 

0.05, then we want a/2 = 0.025 to be at each end of the distribution. Thus, 

to determine which values will lead to the rejection of the null hypothesis we 

need only add up the probabilities, starting with zero, and keep going as long 

as the sum is less than or equal to a /2 = 0.025. In the coin tossing experi­

ment the probability of zero or one is 0.0107; but if two is added, it is 

greater than 0.05, much larger than 0.025. Therefore, zero and one, and their 

corresponding values of nine and ten at the other end, will constitute the 

rejection values or critical values for this experiment; i.e., if one flips a 

coin ten times and obtains zero, one, nine, or ten heads, he will reject the 

null hypothesis and conclude, at a = 0.05, that the coin is not fair. 

A null hypothesis which spec'ifies the mean to be greater than or 

equal to five (or less than or equal to five) is tested by a "orie-tailed test ll 
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because all of the critical values lie at one end ,;If the distribution. In 

this case we determine whether large or small values will lead to the 

rejection of the null hypothesis, then go to that end of the distribution and 

add up the probabilities, keeping the sum less than or equal to a. In the 

coin tossing experiment, the critical values for "Ho: the mean number of 

heads is greater than or equal to fi veil wi 11 consi st of the numbers, starti ng 

with zero, such that the sum of their probabilities is less than or equal to 
I" 

0.05. Adding these probabilities, we see that this region consists of zero 

and one, because the addition of the probability associated with two heads 

makes the sum larger than O.Ob. Therefor'e, we would rej ect the hypothesi s 

that the mean is greater than or equal to five only if we obtain a value of 

zero or one. 

2.2.4 Discrete and Continuous Distributions 

The coin-tossing experiment described above is somewhat unusual in 

that the one-tailed critical values are exactly the same as the two-tailed 

values at each end of the distribution. Generally the one-tailed critical 

values will be closer to the hypothesized mean than the two-tailed values. 

This was not thE case because the underlying distribution (binomial) was 

discrete, meaning it had a finite number of sample points, and the increase in 

probabilities from one to two was relatively large. Another inconvenience 

that arises when working with discrete distributions is that it is usually 

impossible to f'ind critical values with probabilities that sum exactly to a. 

Genera1ly the sum will be less, as in the above example; in the two-tailed 

test, a was actually O.021·~ and in the one-tailed test, it was U.UlU7. 

These problems don't arise when working with continuous (having an 

infinite number of sample points) distributions. Since there are an infinite 
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number of pOints, the probability associated with anyone point is zero; 

therefore, it is necessary to work with intervals. Everything is exactly the 

same as in the discrete case except that instead of having specific critical 

values, there are critical regions corresponding to the areas under the curve 

of the distribution functlon. For example, in a two-tailed test with at = 

U.05 there will be two critical or rejection regions) one in each tail of the 

distributiol1 (thus, the term "two-tailed" test) and each hailing an area of 

O.02b. @ will be twice the area under the tail of the curve starting at the 

observed val ue. 

\ 
• O~5 ~=-_--'-_-l __ .l---._~-r.u.ca/:.... O ..... ~_5 

In a one-tailed test, the critical region w)ll be under only one tail of the 

distribution and will have an area of U.Ub. 

5 

The null hypothesis will be rejected anytime the observed value lies in the 

critical region. ~ is simply the area under the tail of the curve beginning 

at the observed value. 
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2.2.5 Summary of Hypothesis Testin~ 

To summarize, the experimenter must decide on two things bt!fo,~e the 

start of the ~xperiment: the hypothesis that he wishes to test and the level 

of significance, a. The hypothesi5, either one-tailed or two-tailed, will be 

stated as a null hypothesis vs. an alternate hypothesis. Generally the 

experimenter states what he is trying to disprove as the null hypothesis, 

i.e., he assumes that it is true and tries to find sufficient evidence to say 

that it is not true. For example, if one is trying to show that a certain 

parameter M is greater than 50, then he will set up the one-tailed hypotheses 

as: 

Ho: M ~ 50 

H' M > 50 a' 

Failing to reject the null hypothesis does not give any statistical evidence 

to say that it is true; it only means there is not sufficient evidence to 

conclude that it is false. Rejecting Ho' on the other hand, does give 

statistical significance to the falsity of the null hypothesis and therefore 

the truth of the alternative. The l~vel of significance, a , gives the 

probability of rejecting Ho when it is in fact true. 

After the experiment is done, the observed value, or test statistic, 

is computed. This value is then compared to the distribution of all possible 

samples of that type. If the observed value is one that would occur less than 

or equal to a of the time by random chance, then the null hypotheSis is 

rejected in favor of the alternative. The actual level of significance of the 

experiment,1i' , can be computed. This is simply the probability of obtaining 

a value at least as extreme as the observed value if Ho is true. 

then HL will be rejected. 

10 
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2.3 POWER 

There is another measure of the validity of a test besides the the 

level of significance, a. The measure a itself is the probability of making 

an error, i.e., rejecting the null hypothesis when it is true. This is known 

as a Type I error, and is controlled in the experiment. There is also another 

type of error, specifically, accepting the null hypothesis when it is false. 

This is known as a Type II error and ;s denoted by ~ , and is not easily 

controlled because the true population parameter is not known prior to the 

experiment. The measure ~ is easily controlled, because it assumes that 

Ho is true; therefore the value of the parameter is assumed to be a specific 

value and probabilities are easily computed thereafter. The measure ~ , 

however, assumes that Ho is false, thus implying that the value of the 

parameter is something other than the specified value, but it is unknown. 

Instead of working with ~ , the probability of a Type II error, 

statisticians generally work with the quantity 1 - ~ , which is the 

probability of rejecting the null hypothesis. This quantity 1 - ~ is known 

as the pow~J: of the test. Power is a function of the sample size, the level 

of significance a , and the number of standard deviations of the true mean 

from tLe hypothesi zed mean. Generally power curves are shown as functi ons of a 

and the distance between the true ahd hypothesized means, with a different 

curve for each sample size. At zero distance, when the true and hypothesized 

means are the same, every curve will have a power of a , since it is the 

probability of rejecting the null hypothesis when true. As the distance from 

the mean increases, the curves change according to sample size. The smaller 

the sample size, the flatter the curve and thus the less the power; the larger 

the sample size, the greater the power. (Figure 1) 

11 
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FIGURE 1: Power curves for two-tailed tests from a normal distribution, a = .05. (Reference: Roscoe. 1969) 
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Power curves can be used to determine the sample sizes needed in an 

experiment, but to do so Jne would need an estimate of the var; ance (f 2 of the 

observations in the experiment. If s Ich an estimate is available, one can 

determine the size difference desired to be detected, and for various values 

of at and 1 - {3, the sampl e s; ze needed can be determined from the curves. 

For example, from Figure 1 it can be seen that to detect a difference of one 

standard deviation when at = O.Ob and {3 = 0.20, a sample of 10 is required. 

To get a very powerful, highly significant test for a small difference, a very 

large sample size will be required. If, by the nature of the experiment, only 

a small sample size is possible, some compromise 'is needed. Either the 

difference to be detected must be incrensed, or the power and/or significance 

must be lowered. In pl anni ng an experiment it is often desi rabl e to check 

these things in advance. It may be that with the available sample size, to 

detect the desired difference at a reasonable level of significance, the power 

would I)e so low that it might not justify the cost of the expel'iment. It win 

at least give the experimenter an estimate of his chances of detecting a 

difference. 

2.4 EFFICIENCY AND ASYMPTOTIC RELATIVE EFFICIENCY 

Another concept which is related to the two types of error and sample 

sizes, and one which can be used to compare different tests, is efficiency. 

The efficiency of one test relative to another is Simply the ratio of the 

sample sizes required to test the same Ho against the same Ha with the same 

val ues of at and f3. For exampl e, suppose we are testi n9 a hypothesi s, and we 

want at = O.Ob and {:3 = O.lU. Suppose there are two different tests that we 

can use; Test 1 would require a sample size of 30 to get the required 

accuracy, whereas Test 2 would require a sample size of only 2U. Then' the 
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efficiency of Test 2 relative to Test 1 is n1/n 2 z 30/20 = 1.5. Anytime there 

is a choice between two possible tests, the one with the highest relative 

efficiency will be the better one to use because it will require a smaller 

sample size to obtain the same results. 

The relative efficiency is not a very practical comparison to use, 

how~ver, because it depends on the hypotheses and a and fJ, and t.hus woul d 

have to be computed for every situation. A measure which is independent of a 

and fJ is the asymptotic relative efficiency (A.R.E.) of one test to another, 

which is computed by holding a and fJ constant and letting n1 approach 

infinity, then taking its ratio with the corresponding value of n2• If this 

ratio n2/n 1 approaches a constant for all sequence~ of tests with different 

a and fJ, which it frequently will, it is the A.R.E. of the first test 

relative to the second. Although the A.R.E. is computed for very large sample 

sizes, studies have shown tha~ it is often a good approximation to the 

relative efficiency of small sample sizes in many practical situations, and is 

thus a good measure of the relative efficiency of two tests. 

2.5 PARAMETRIC AND NONPARAMETRIC TESTS 

One may wonder why it is even of interest to compare two tests when, 

as in the case of the coin tossing experiment, we know the exact distribution 

of the possible outcomes, i.e., the sampling distribution. The answer is 

simple; if the exact distribution is known, t~en it should be used. Most 

experiments, however, are more complex than tossing a coin, and in many cases, 

it is impossible to know exactly how the sample is distributed. When this is 

the case, one must use some type of test that does not depend on the 

distribution of the sample. Tests of this type are known as nonparametric 
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tests, and in many cases there are many different tests that could be userl on 

a given set of data. In a situation such as this, the A.R.E. can be used as a 

guide to help determine which test should be used for maximum efficiency. 

Tests which do assume that the exact form of the sampling distri­

bution is known are called parametric tests. The coin-tossing experiment was 

an example of a parametric test, with the underlying distribution being the 

binomial. Anytime the exact distribution is known, the parametrlc tests will 

be more sensitive than any comparable nonparametric tests. However, it ~ny of 

the assumptions for the parametric tests are not met. then it is possible that 

the nonparametric tests will be more powerful. Although parametric tests are 

more sensitive, they are very limited in the situations in which they can be 

used • All parametri c tests presented in thi s paper wi 11 assume the normal 

distr'ibution. Nonparametric tests are appl icable to a much wider range of 

situations because they have fewer or less restrictive assumptions. 

2.6 RANDOMIZATION 

Cne very important assumption that is made by all tests, both 

parametric and nonparametric, is that the sample that is taken be random; that 

is, all elements in the population should have an eql1al chance of being 

included in the sample. If the sample ;s random, the sampling distribution 

can be estimated mathematically. If it is not random, the sampling 

distribution will be unknown, or at least the accuracy with which it is 

estimated will be unknown. A good approximation of the sampling distribution 

must be obtained in order to determine the precision of the inferences about 

the population which are made from the sample. 
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2.7 SCALES OF MEASUREMENT 

Another consideration important to any particular test is the scale 

of measurement used in obtaining the data. There are four possible scales of 

measurement: the nominal, ordinal, interval, and ratio scales. The nominal 

scale uses numbers merely as a name; for example, in flipping a coin, one 

could assign "heads" a '0' and "tailsll a '1'. These numbers are arbitrarily 

assigned and hav~ no numerical meaning. In the ordinal scale, numbers can be 

ordered as "less than," "greater than," or "equal to." For example, in a 

race, the winners are assigned first, second, and third place. No measure of 

the amount of differenc~ between these numbers is give~. In an interval 

scale, the size of the difference between numbers (thus, "interval") is 

meaningful. An interval scale must be based on a unit distance as compared to 

a zero point; the zero, however, is arbitrarily assigned. Temperature is 

something which is usually measured on an interval scale. The last scale of 

measurement, the ratio scale, has all of the characteristics of the interval 

scale except the zero point is meaningful, thereby giving meaning to ratios 

between two measurements. Height and weight are measured on a ratio scale. 

2.8 THE CENTRAL LIMIT THEOREM 

When determining the distribution of the sample, the size of the 

sample plays an important role. If the sample size is large, the analysis can 

often be simplified by using the central limit theorem. If Yn is some 

statistic based on a sample of size n from any distribution, and ~n is its 

mean and un
2 its variance, then the central limit theorem says that the 

distribution of (Yn - ~n)/ u n approaches the standard normal distribution 

(normal with mean zero and variance one) as n approaches infinity. In other 

words, if one takes any statistic from a large enough sample (usually n > 30 
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is adequate for a good approximation), and subtracts its ~ean and dividES by 

its sta~dard deviation, the result will have a normal distribution with mean 

zero and variance one, irrespective of the form of the original distribution. 

The number obtaineo by doing this transformation is simply the number of 

standard deviations that the value is away from the mean of the standard 

normal. Probabi 1 iti es for the standard normal have been extensi vely 

tabulated; one need only look up the required number in a normal table to 

determine the area under the curve up to that point; i.e., the probability of 

obtaining a value that extreme by random chance. 

Unfortunately, in many situations the sample size is not adequately 

large to ju!;tify invoking the central limit theorem. In these cases Otle must 

either use the exact distribution of the sample or, if the distribution of the 

sample is unknown or it the measurement scale is insufficiently powerful, use 

the appropri ate nonparametric tests. The most widely used tests for small 

sample sizes are given in the following sections. 
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3.0 ONE-SAMPLE TESTS FOR LOCATION 

Pprhaps the simplest type of test that one would wish to perform 

is t~ determine whether the mean or median of the population is equal to a 

specifi ed val ue. Depending on the assumpti ons that cal'l be nlade about the 

underlying distribution, several different types of tests can be used to test 

for lncation. 

3.1 PARAMETRIC: ONE-SAMPLE T-TE5T FOR A DIFFERENCE IN MEANS 

Assumpt ions 

(i) The observations X1, ••• ,Xn constitute an independent random 
sample from the population. 

(ii) The ~ample is taken fr~m a normally-distributed population. 

(iii) The measurement src~e is at least interva1. 

(iv) The rrlt.asurements are continuous. 

The test statistic used to test the hypothesiS "H: 11 = 11" is t = o 0 

(x - ~o)/(sAlfi), where x is the mean of the sample, s is tne standard 

deviation of the sample, ~o is the constant we are assuming is the vblue of 

the population mean (according to the null hypothesis) and n is the sample 

size. Notice that this statistic looks very much like the statistic in the 

central limit theorem; we are taking a number, subtracting the mean from it, 

and dividing thE~ result by the standard deviation. This is proper even though 

we have taken a small sample because the means of samples from normal 

distributions are normally distributed. However, this statistic does not 

follow a standard normal distribution because of the necessity to estimate the 

standard deviation. This is aCf'Junted for by comparing the computed t to the 

proper quantile of a t distribution with n - 1 degrees of freedom (OF). The 

larger the degrees of freedom, the closer the t-distribution comes to the 
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standard nonnal because the estimate of the variance gets better, Tabled 

values of the t-distribution are available in most books on applied statistics. 

As an example, suppose an experimenter wants to test the hypothesis 

that a certain population has a mean of six against the alternate that the 

mean is not equal to six, with a • O.Ob. He takes a random sample of size 

eight and obtains the.following numbers: 4.6,6.3, b.2, 3.7, 4.B, 6.U, 4.7, 

5.3. For this sample x· b.07b and s IE 0.8242. So the t-statistic is 

t IE (b.U7b-6)/(.B242~) IE -3.1743. 

Since this is a two-tailed test, we cC'mpare this number to the.! (1 - a /2 = 

(0.02b, 0.97b) quantile of a t distribution with (n - 1) = 7 degrees of 

freedom. This value is + 2.365. Since -3.1743 < -2.36b, we reject the 

hypothesis that p. = 6. TI, detE'rmine 11', we would need to interpolate between 

the 0.975 and 0.99b values of t 7, 2.365 and 3.499, respectively. From this we 

obtai n that 'ti:'/2 = O. U1073, so '8' =' O. U2146. In other words, in repeated 

trials from a population with a mean of 6, observations this extreme would 

occur by rhance only about 2 percent of the time. 

A confidence interval can '.1: so be obtai ned for our estimate of l.he 

true mean of the population. A 1UO(1 - a) percent confidence interval gives 

1 imits between which we are 100(1 - a) percent certain that the true mean of 

the population lies. For this test, 

n .. 1J s/.../n + x 

For our example, the 95 percent confidence interval is given by b.U7b .! 

2.365(O.8242/~) = (4.386, 5.764). Thus, we are 95 percent certain that the 
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true mean of the population lies somewhere between 4.386 and 5.764. Notice 

that this confidence interval does not contain the hy~'oth~sized value; this 

will be true if and vn1y if Ho was rejected. 

There i~ one more aspect of this test which should be noted. If the 

original hypothesis had been one-tailed, i.e., "Ho: f.L ~ 6" or "Ho: f.L ~ 6," 

then the test statistic would have been compared to the 1 - a = 0.95 quantile 

of the t7 distribution, which is 1.895. We would reject the hypothesis "Ho: 

f.L> 6
11 

if t < -1.895, and the hypothesis "Ho: f.L ~ 6" if t > 1.895. However, 

the confidence interval would be exactly the same for all three tests as long 

as a two-sided confidence interval is desired, as is usually the case. 

3.2 NONPARAMETRIC TESTS 

3.2.1 One-S~mple Sign Test 

Assumptions 

(i) The sample is a random sample from a population with unknown 
median. 

(ii) The mer Yrement scale is at least ordinal. 

(iii) The variable of interest is continuous. 

The Sign test is used for testing the hypothesis that the median M of 

the population is equal to a certain value; i.e., "Ho! M = M ". The o 
procedure is very simple. All that one needs to do is subtract Mo from each 

of the sample values and record the sign; in other words, count how many 

points are above and below Mo. If any point is exactly equal to M
o

' it is 

discarded. The test statistic is Simply the smaller of these numbers for "Ho! 

M = Mo"; it is the number of minuses, or the number d& values lower than the 

median for the hypothesis "H: M > M "; and it h the number of pluses., or o - 0 
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the number of values greater than the median for tile hypothesis "Ho: M ~ Mo". 

The test statistic is then compared with the probability values from the 

* binomial distribution with p a 1/2 and n a the number of points left after 

the zero aiff;;/~'ences are discarded. Thi sis done exactly as in the 

coin-tossing experiment. Binomial tables can be found in most applied, 

especiallY nonparametric, statistics books. 

Using this test on the data in the previous example, we see that 

* there are six minuses, one plus, and one 7ero. Therefore n = 7 and our test 

statistic T = 1 for the hypothesis "Ho: M = 6". Looking in the binomial 

tabl es for n = 7, P = 1/2, and a = O.Ob, we determine 'Chat the criti cal 

region, of actual S1ze 0.0156, contains the points (0, 7). Since T = 1, we 

have insufficient evidence to reject the hypothesis that the median of this 

population is six. ~/2 = P(x ~ 1) = 0.U625, so ~ = 0.125U. 

Confidence intervals for the median based on the sign test can also 

be obtained from the binomial tables. Let K be the largest value of x for the 

* binomial with parameters nand p ~ 1/2 such that P(x ~ K) ~ a /2. The 

(K+l)th smallest observation is the lower limit and the (K+l)th largest 

observation is the upper limit. 

In this example P(x ~ U) = U.Uu7B and P(x< 1) = U.Ob2b, so K=U and K 

+ 1 = 1; thus the smallest and largest values are themselves the endpoints for 

the confidence interval. Therefore we are 9B.44 percent certain that the true 

median of the population from which the sample was drawn is between 3.7 and 

6.3, Notice that this confidence interval contains the hypothesized value of 

six, and that the hypothesis was accepted, while the confidence interval 

formed using the t-test did not contain six and the hypothesis was rejected. 

In general, anytime the confidence interval does not contain the hypothesized 

value, the hypoth'esis will be rejected. 
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rt can be seen from this example that for a sample of this size, the 

power of the si gn test is not as great as that of the t-test for normal 

samples. For very small samples, the relative efficiency of the sign test 

compared to the t-test is approximately 0.95, but the effici ency decreases as 

the sample size increases. For a sample size of 13, the relative efficiency 

is only 0.75 and the A.R.E. is only 0.637. However, if the distribution 

begins to depart from normal ity, the power of the t-test becomes 1 ess and 

less, depending on how non-normal the distribution is. If it is too far 

removed, the sign test will be more powerful. Also, the sign test can be used 

on ordinal data while the t-test cannot. 

3.2.2 ~11soxon Signed-Ranks Test 

The sign test uses only the sign of the differences between the 

points and the assumed value for the median. Thus, a considerable a,illJUnt of 

information is not utilized. The Wilcoxon Signed-Ranks Test also makes use of 

the magnitude of the differences. This makes it a more powerful test but it 

also requires more limiting assumpti)ns. 

Assumptions 

(i) The data constitute an independent random sample with unknown 
medi an M. 

(ii) The variable of interest is continuous. 

(iii) The measurement scale is at least interval. 

(iv) The sampled population is symmetric. 

The procedure is as follows: first subtract the assumed value for 

the median Mo fro~ each of the data points. Then, disregarding the signs, 

rank these differences from smallest to largest, throwing out zero 

differences. If any of the absolute differences are the same, assign the 

average of the ranks that would have been assigned to all of them. For 
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example, if the two smallest values are identical, assign each the rank 1.b. 

Then assign to each of these ranks the sign of the original difference. Take 

the sum of all of the positive ranks and call it T+; likewise, sum the 

negative ranks and call this sum T-. 

,u 

For testing "Ho! M = M ", the test statistic is T = min(T+, r-); for o 

"Ho! M ~ Mo"' T+ is the test statistic; and for "Ho! M ~ MO"' T- is the test 

statistic. Each of these statistics should be compared to the table values in 

a table of d-factors for the Wilcoxon Signed-Ranks Test for the appropriate n 

and d, where d ~ T. If the corresponding table value of a" (the probability 

of obtaining that particular nand d when M = Mo} is less than or equal to a, 

the null hypothesis should be rejected. The table of values for this test can 

be found in many nonparametric statistics books. 

Using the same example as before, we obtain the following results! 

X. 
1 

X.-M 
1 0 Ri 

---
4.6 -1.4 -6 
6.3 .3 1 T+ = 1 

5.2 -.8 -3 T- = 27 

3.7 -2.3 -7 
4.8 -1.2 -4 T = 1 

6.U 0 

4.7 -1.3 -5 
5.3 -.7 -2 

The value of the test statistic T is 1 for "Ho! M = 6". The table value of 

all for n = 7 and d = 1 is 0.016; since this is less than O.Ob we reject Ho 

and conclude that the median of the population is not six. Because of the way 

the table is set up, a" = 1C = 0.016. 
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A confidence interval for the median can be constructed by finding 

the d value for the appropriate size :' which is closest to the desired 

confidence coefficient, thpn taking the dth smallest and dth largest averages 

Uij , where Uij = (xi + xj }/2, i ~ j. For our example, aU for d = 3 is U.U46; 

a II for d = 4 is 0.U78 which is larger than U.Ub; so we will form a 1UU(1 -

O.046) = 95.4 percent confidence interval by taking the third smallest and 

third largest averages. The third smallest Uij is given by (3.7 + 4.8}/l = 

4.25. and the third largest is given by (6.3 + 4.8}/2 = 5.b5. Thus, we are 

9,.4 percent certain that the true median (also, since the distributi~n was 

assumed to be symmetric, the mean) lies between 4.25 and 5.5b. 

The A.R.E. of the Wilcoxon Signed-Ranks Test relative to the t-test 

is 0.955 if the differences are normally distributed. In other words, not 

much is lost in using this test over the t-test if the assumptions for the t 

are met. Furthermore, since this test is good for any symmetric distribution, 

it will apply to more situations than will the t-test. If the distribution is 

badly skewed, the sign test will be the appropriate test. The A.R.E. of the 

sign test to the Wilcoxon Signed-Ranks Test is 2/3 for normally distributed 

differences, 1/3 for uniformly distributed differences, and exceeds one as the 

distribution of the differences becomes skewed. 
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4.0 DIFFERENCES IN LOCATION FOR TWO SAMPLES -, 
A situation which is encountered more often than merely testing to 

see if the mean or median of a population is a specified value is the need to 

compare the means of two populations to determine if they are the same. This 

can come about in two different ways: either the two samples which are being 

compared are correlated in some way or they are completely independent. 

4.1 TWO RELATED SAMPLES 

Anytime there is reason to believe the measurements in one sample are 

in some way correlated with those in the other, some kind of test for related 

samples should be used. Such a situation exists whenever both sets of 

measurements are taken on the same group of individuals before and after a 

treatment is applied; i.e., whenever individuals are used as their own 

controls. This is referred to as a repeated measures experiment. There are 

also instances where two individuals are paired on the basis of the variable 

in question before the beginning of the experiment; one in each pair receives 

the treatment a,d the other serves as the control. In either one of these 

situations, a test for related samples should be utilized to account for the 

correlation. 

In a test for related samples, the two samples need not be indepen­

dent (although observations within each sample should be independent) and, in 

the case of the parametric test, the variances of the two samples need not be 

the same. However, in a paired test, pairing reduces the degrees of freedom, 

thereby reducing the power of the test if the samples actually are indepen­

dent. Given two tests, one for paired data and one for independent samples, 

the paired test will require almost twice as many subjects to have the same 

power if there are no extraneous factors; i.e., if pairing criteria is· 
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independent of the variable of interest. These tests are described in the 

following sections and are merely extensions of the one-sample tests discussed 

prev; ous ly • 

4.1.1 Parametric: Paired t-test 

Assumptions 

(i) 

( .. ) 
11, 

The subjects for repeated measures or pairs for matched pairs 
constitute a rand,m sample. 

The distribution of the differences is normal in the 
populations specified by the null nypothesis Ho. 

(iii) There is no carry-over effect from treatment to treatment or 
from measure to measure. 

(iv) The measurement scale is at least interval. 

In order to test for any difference between the means of two samples, 

the null hypothesis is written as IIU . 
11

0
, f1. 1 

- II - all r2 - • Note that the 

difference can be a specified value do' in which case the null hypothesis 

becomes, IIHo: ILl - IL2 = doll. Also, the one-sided alternatives can be used 

to determine if the mean of one population is larger than the other, by any 

desired amount. For example, if one wants to see if the mean of one 

population is more than five units greater than that of the other, the null 

hypothes is can be stated as IIHo: "1 - IL 2 ~ 5". 

, . 

This test is very simple to perform; all that one needs to do is take 

the aifference 0i = XiI - Xi2 for each pair, then perform the one-sample 

t-test on the differences, 0i' as if they were the actual observations. Thus, 

the test statistic is t = (0 - do)/(SdAI"J, where 0 is the average of the 

differences, Sd is the standard deviation of the differences, n ;s the number 

of pairs, and do is the hypothesized difference. In most cases, when the 

investigator is interested only in determining if there is a difference, do 
• 
I 

will be equal to zero and the test statistic reduces to t = O/(Sdl{fi).· The 
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actual testing of the hypothesis and formation of confidence intervals are 

then accomplished in exactly the same manner as with the one-sample test, so 

those procedures will not be repeated here. The only thing to Keep in mind is 

that the inferences made and confidence intervals formed are on the differ-

~nces in the means, and not on the means themselves. 

4.1.2 Nonparametric Tests 

Anytime the measurement scale is only ordinal or if the normality 

assumption is not met, one will have to resort to the nonparametric tests. 

4.1. 2.1 The Si gn Test 

Assumptions 

(i) The data consist of pairs of measurements from a random sample. 

(ii) The pairs of measurements are mu\ually independent. 

(iii) The measurement scale is at least ordinal within each pair, 
i.e., each pair may be designated a plus, a minus, or a tie. 

(;v) The pairs are internally consistent, e.g., if P(+) > P(-) for 
one pair, the same is true for all pairs. 

The sign test is used to test for differences in the medians of the 

two samples. The relationship between the sign test and the one-sample sign 

test is the same as that between the one-sample and paired t-tests. The differ­

ences between the members of the pairs are determined, and the test statistic 

is the number of pluses or minuses, depending on the hypothesis. Differences 

of zero are once again disregarded. The hypothesis is tested and confidence 

intervals are formed in exactly the same manner as in the one-sample case, the 

only difference being that the procedures in this case pertain to differences 

between medians rather than to the medians themselves. Hence these procedures 

will not be repeated here. The efficiency of the sign test in relation to the 

paired t-test is also the same as in the one-sample case. 
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4.1.2.2 Wilcoxon Matched-Pairs Signed Ranks Test 

As was the case with the previous two tests, the Wilcoxon 

Matched-Pairs Signed Ranks Test is merely an extension of the one-sample case. 

Assurrptions 

(i) The sample of pairs (Xi' Vi) is random. 

(ii) The distribution of the Di's is symmetric. 

(iii) The differences are mutually independent and have the same 

medi an. 

(iv) The measurement scale of the differences is at least interval. 

The procedure is basically the same as in the one-sample case, except 

that all lnferences are made about the differences rather than about the means 

themselves. The differences between the members of each pair are obtained, 

their absolute values are ranked, then the Signs are returned. The test 

statistic, test of hypothesis, and formation of confidence intervals are the 

same as for the one-sample test, as is the discussion of power and relative 

efficiency. 

4.2 TWO INDEPENDENT SAMPLES 

Anytime there is no correlation between the two samples, a test for 

independent samples should be used. As indicated earlier, the use of a test 

for related samples on independent measurements will reduce the power of the 

test by lowering the degrees of freedom. Likewise, the use of a test for 

independent samples on correlated data will cause a loss of sensitivity. 

Therefore, it is essential to determine whether or not the samples are 

independent before deciding which design and analysis to use. 

Unlike the tests for related samples, the tests in this section are 

not mere extensions of the one-sample case because of added restrictions on 
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the samples. For the more powerful tests, it is required that the samp1as 

have the same variance. In such cases the tests on independent samples are 

generally more difficult to perform. 

4.2.1 Parametric: The t-test for independent samples 

Assumptions 

(i) The data represent a random sample. 

(ii) There is independence both within the two samples and between 
the two samples. 

(iii) The dependent variable is normally distributed in both 
populations. 

(iv) The two populations heve equal variances. 

(v) The measurement scale is at least interval. 

The i:,·test for independent samples differs from other versions of the 

t-test in th~~ i~ requires an estimate of the combined variance of the two 

samples. One of the assumptions of this test is that the variances of both 

populations be the same; however, we have two separate estimates for it, one 

from each sample. These two estimates can be combined to obtain the common 

estimate of variance of the population. This common estimate is given by: 

2 2 {n1 - 1)s1 + (n2 - 1)s2 
n1 + n2 - 2 

where n1 and n2 and s12 and s22 are the sample sizes and variances of the two 

samples. The sample sizes do not have to be the same as long as all of the 

assumptions are satisfied. The standard error, or standard deviation of the 

mean, becomes 
2 2 

SE = r_(.-;" 1=---_1_) s-=17--+_{ n~2 ..... -_1 )....;s2=.-
[ n1 + n2 - 2 

222 Note that if s1 = s2 = s , the formula reduces to: 
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This is the same form as the standard error for the one sample t-test, SE z 

(52/n)1/2. Thus the test statistic becomes 

where Xl and X2 are the sample means. 

This test statistic is then used exactly as before; it should be compared with 

the proper quantile of a t distribution with(n l + n2 - 2)DF. 

An example is now in order. Suppose an investigator makes 

measurements on two independent random samples and obtains the following 

results: 

sample 1: 8.3 7.9 6.2 9.4 5.2 9.7 7.2 8.S 

sample 2: 5.2 3.9 6.7 4.6 5.3 3,5 5.2 6.1 

He wants to determine whether or not the two samples have the same mean which, 

since they are assumed to be normal with equal variances, implies they come 

from the same distribution. Therefore the hypotheses would be set up as: 

Ho: ILl - 1'2 = 0; Ha: ILl - 1'2 'I o. 
Computing the means and variances of the samples, one obtains 

Xl = 7.8 
2 Sl = 2.3714 

nl = 8 

The common variance is 

X2 = 5.0625 
2 S2 = 1. 1227 

n2 = 8 

7(2.3714 + 1.1227)/14 = 1.7471, 

and the standard error is 

[1.7471(1/8 + 1/8)J1/ 2 = 0.66088. 
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Therefore, the test statistic is 

t =: (7.8 ~ 5.0625)/.66U88 =: 4.1422. 

Since this is a two~sided test, this should be compared with the U.U25 and 

0.975 quantiles of the i distribution with 8 + 8 - 2 & 14 OF. These values 

turn out to be +2.145. Since 4.1422 > 2.145, we reject the null hypothesis 

and conclude that the two samples are different. To determine ~, we look in 

the t table and see that t[0.0005, 14] =: 4.140, which is very close the value 

of our test statistic. Therefore /(;:-/2 :or: 0.OUU5, so 'Ci' :or: U.UUl. 

Confidence intervals for the difference can also be obtained in 

exactly the same manner as before; a 100(1 ~ a) percent confidence interval 

for the difference between the two means is given by 

(Xl - x2) .t t[l -a/2; n1+n2~2](SE). 
A 95 percent confidence interval for the difference between the means of the .. 
two populations in our example is given by 

(7.8 ~ 5.U625) .t 2.145(.66088) = (1.3199, 4.1551). 

It is of interest to examine the robustness of this test; that is, 

how well it holds ur under the breakdown of the assumptions. Departures from 

normality will not have too adverse an affect as long as the variable of 

interest has the same distribution in both populations. Lack of homoscedas­

ticity (equal variances) also is relatively unimportant as long as the sample 

sizes are the same. Violation of both assumptions will tend to increase the 

probability of rejecting a true hypothesis to as much as twice the level of 

significance. As the sample size increases, however, both departures from 

normal ity and heterogeneity of vari ances become 1 ess important. For salOp 1 e 

sizes of twenty-five or more, the test is basically insensitive even to 

drastic violations. 
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There are methods of testing the validity of the assumptions, but 

they are not very good for small samples. Tests for normality, such as the 

Chi-Square Goodness of Fit test, require a fairly large number of sample 

p 

poi nts to mai ntain accuracy, and the usual test for homogeneous vari ances is 

very sensitive to departures from normality when the sample sizes are unequal. 

This test, the F-test, is very easy to perform, however; it is simply the 

ratio of the variances, with the larger over the smaller. This statistic is 

then compared to the appropriate quantile of the F distribution with the 

appropriate number of UF associated with the two variances. The F-tables can 

be found in most applied statistics books. In the example just presented, for 

instance, 

F = 51
2
/52

2 = 2.3714/1.1227 = 2.112. 

This ;s compared with F[l_ a; nl-1J n2-1J (the F-test is always one-sided). 

This value turns out to be 3.79, so we accept the hypothesis of equal 

vari ances. 

If the variances are not the same, the t-test can be modified to take 

this into account and give fairly good results. When the variances are not 

equal, use the test statistic: 

and compare it to 

t = 
[
s 2 s 2] ~ 
_1_ +..L 
n1 n2 

t.= .. --......-------
s 2 s 2 
-L + _2_ 
n1 n2 

where ti is the a quanti 1 e of a t distri buti on with n
i 
-1 IJF. 
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4.2.2 Nonparametric Tests 

4.2.2.1 The Median Test 

The median test is the only nonparametric test available which will 

compare indeper.dent samples coming from dissimilar distributions. It is also 

the first test we will describe which will compare more than two samples at a 

time. However, it is not very good for small samples, so the discussion of it 

will be br'j ef • 

Assul!J)tions 

(i) Each sample is a ,'andom sample. 

(ii) The variable of interest is continuous. 

(iii) If all populations have the same median, then each population 
has the same probability p of an observation exceeding the 
grand median. 

To perform the median test, first obtain the grand median; that is, 

find the number which is exceeded by exactly half of the observations from all 

of the comtined samples. Then count the number of observations in each sample 

that exceed the grand median, forming a table as follows: 

SalllJ 1 e 1 2 ------- C Tota 1 s 
~Medi an 011 °12 ------- U1c a 
<Median °21 °22 ------- U2e b 

Total n1 n2 ------- nc N 

The null hypothesi s is "H . o' All c populations have the same median" versus 

the alternate "Ha: At least two populations have different medians." ThE:! 

test statistic is 

t1 ' ., .,··_== ___ to 

c 2 ' 
N
2 
""'" °1 i Na : T =-4-.1--0 ab 1=1 ni 
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This statistic should be compared with the 1 - a quantile of a Chi-Square 

distribution with (c - 1) OF. The Chi-Square tables can be found in most 

applied statistics books. 

As we mentioned previously, this test is not good for small sample 

sizes. In general, it is not good if more than 20 percent of the ni IS are 

less than 10 or if any ~f the nils are less than two. This disqualifies the 

set of data used in the Jlrevious example, and probably a lot of space flight 

data as well, so no example will be presented. The A.R.E. of the median test 

to the t-test for normal data is only 0.64, so by the time the sample sizes 

are big enough to use this test, the t-test would probably be more powerful 

unless the assumptions for the t-test are very drastically violated. 

4.2.2.2 Mann-Whitney U Test 

The Mann-Whitney Test invol ves a rank procedure, which makes it a 

more powerful test than the median test. It is also good for smaller sample 

si zes • 

Assurrptions 

(i) Both samples are random samples from their respective 
populations. 

(ii) There is independence both within each sample and betweer the 
two samples. 

{iii) The measurement scale is at least ordinal. 

(iv) If the two distribution functions differ, they differ in 
location only. 

To pe::rform the Mann-Whitney Test, the data from the c-omb)ned samples 

are first ranked from 1 to n1 + n2' As before, in the case of ties all tied 

points are assigned the average of the ranks that would have been assigned had 

there been no ties. This test can be used to test the hypothesi s IIH' II = 
0' .. r 1 

I' II V S II H • ,'" 2 • a' Jl 1 'f It 211
, or any one-ta 11 ed vari at ion. 
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If there are no or few ties, the test statistic for the Mann-Whitney 

Test is simply the SlJl1 of the ranks from popul~tion 1, i.e., T· LI{(Xli ). 

This value is then compared to the proper quantile of the Mann-Whitney test 

statistic, the tables of which can be found in many nonparametric statistics 

books. If there are many ties this statistic can be normalized, thus obtaining 

n
1 

(N+l) 
T -

2 

and then comparing this to the proper quantile of the standard normal 

distr'j bution. 

As an example, let us use the previous data set. 

Xl' -1 
R(Xli ) X,... 

c1 R(X2iL 
8.3 13 b.2 5 

7.9 12 3.9 2 
6.2 9 6.7 10 

9.4 15 4.6 3 
5.2 b b.3 7 
9.7 16 3.5 1 
7.2 11 b.2 5 
8.5 14 6.1 B 

9b 41 

Because of the three-way tie with 5.2, T1 would give the more precise 

distribution, but one three-way tie will not effect T significantly, so we 

will use T as our test statistic; i.e., T = I R(X1i ) = 95. From the table we 

find that the 0.025 and 0.97b quantiles of the Mann-Whitney test statistic are 

50 and 86. Since 95 is not in this interval, we reject Ho and conclude that 
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the means are oiff'erent. Looking at the other a values, we see that for a .. 

U. 001, the val ue is 9b; therefore 1i:-/2 .. U. UU1 and 'Cl' .. U. UU2. A 1 tllough thi s 

is twice the 1i:- for thp. t-test, it is still very highly significant and there 

is relatively little olTterence between them. 

To determine a 100(1 - a) percent confidence interval for the 

difference, determine the number K = w [a /2 ] - (n1 )(n1 +1) /2, where w [a /2] 

is the a/2 quantile of the Mann-Whitney Test Statistic. Then the lOU(1 - a) 

percent confidence interval will be bounded by the Kth largest and Kth 

smallest of the nln2 possible differences between the sample points. 

In our example, K = bU - 8(9)/2 = 14. Thus the 14th smallest and 

14th largest differences will be the lo~er and upper limits of the confidence 

interval. If the differences are computed, it can be seen that the 14th 

smallest is 1.2 and the 14th largest is 4.4. Therefore we are 9b percent 

certain that the true difference between the means of the twu samples lies 

between 1.2 and 4.4. This interval is a little wider than that I')f the t-test, 

but not much. 

The Mann-Whitney stands up to the t-test very well in terms of 

efficiency. For any case where the two distributions differ only in location, 

the A.R.E. is never lower than 0.864 and may be as high as infinity. For 

normal data it is 0.955; for uniform, it is 1.U. The A.R.E. of the 

Mann-Whitney test relative to the Median test is 1.5 for normal data and ~.U 

for uniform data. It can be seen from this tl,at the Mann-Whitney test is a 

hi ghly powerfu 1 nonparametri c test. 

4.3 HOLLANDER TEST OF EXTREME REACTIONS 

This test is different from others in that, rather than t~sting for a 

difference in the means of two groups, it tests to see if there are opposite 
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extreme reactions in the experimental group. In some situations, it is 

possible that not every subject in the experimental group will react the same 

way to a tre~tment; some may demonstrate increases while others may show 

decreases. In a case such as this, the distributions will be drastically 

different, but any of the tests discussed so far will show the means to be the 

same and thus one might conclude that the distributions are the same. This 

test will determine if the experimental group has extreme reactions in 

opposite directions. 

Assumptions 

(1) The data consist of two independent random samples (X,s ... 
X2, ••• ,Xn1 from the control group and VI' V2, ••• vn2 from the 
experimental group) 

(i i) The measurement scale is at least ordinal. 

The hypotheses tested are "Ho: The two distributions are the same" 

vS."Ha: One distribution has extreme reactions in both directions." To 

perform the test, first rank the combined samples from one to n1 + n2. The 

test statistic is 

G = t [R(X j ) - R(Xd 

i=1 

where R(Xi ) is the rank of the ith X value from the control gl'oup and K(X) is 

the average of the ranks of the XIS. If the reactions of the experimental 

group go to opposite extremes, then it should have the small and large rank 

and the control group will have the middle ones around the mean. Therefore ~ 

should be small if there were extreme reactions. The value of 6 should be 

compared with the table value of G for the Hollander test, which can be found 

in some nonparametric statistics books. If the observed value is less than or 

equal to the table value, Ho should be rejected at the specified- a level. 
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There i s  no need t o  consider one and two- ta i l ed  t e s t s  w i t h  t h i s  s t a t i s t i c ;  t h e  

nature o f  i t  makes i t  always one-sided. 

As an example, suppose an experimenter performs an experiment and 

obta ins  the f o l l o w i n g  r e s u l t s  : 

- 
Here, R ( X )  = 69/8 = 8.625; G = 2 (R(X1) - 8.625)' = 63.875. Looking up i n  t h e  

t a b l e  f o r  nl = 8, N = 16, we see t h a t  t he  value f o r  a = 0.01 i s  67.88; thus, 

t h i s  i s  s i g n i f i c a n t  a t  t h e  a = 0.01 l eve l ,  and we conclude t h a t  t he re  were 

extreme reac t ions  i n  t he  experimental  group; i.e,, t h e  subjects responded t o  

the  treatments i n  d i f f e r e n t  ways. It can e a s i l y  be seen by examining t h e  two 

sums o f  ranks (69 and 67) t h a t  no t e s t  f o r  l o c a t i o n  would have shown t h e  

d i f f e rence  t o  be s i g n i f i c a n t .  However, n e i t h e r  t h e  t - t e s t  nor Mann-Whitney 

Test would have been app l icab le  i n  t h i s  case because t h e  assumption t h a t  t h e  

d i s t r i b u t i o n s  d i f f e r  on ly  i n  l o c a t i o n  has been d r a s t i c a l l y  v io la ted .  This  i s  

a  goqd example f o r  showing how an i n v e s t i g a t o r  can get i n t o  t r o u b l e  by no t  

checking on t h e  v a l i d i t y  o f  h i s  assumptions. I f  he were not c a r e f u l ,  he would 

have concluded t h a t  t h e  t reatment  i n  t h i s  experiment had no e f fec t .  
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5.0 PROCEDURES FOR COMPARING MORE THAN TWO SAMPLES 

The procedures which have been examined thus far (with the exception 

of the median test) are useful with only two samples to compare and when there 

is only one treatment done on the samples. In many experimental situations, 

this is not the case. Often there are three or more different populations 

which need to be compared, with more than one treatment or levels of 

treatments to be examined for each one. It is possible to do a t-test or a 

corresponding nanparametric test between every possible pair of combinations, 

but this is not a good pract)ce because the tests are not independent. Also 

it increases a above the predetermined level. If twenty such comparisons are 

done at the a = 0.05 1 eve 1, the odds are that one of them wi 11 show s i gnifi -

cance just by chance, which implies that the a for the twenty comparisons is 

much larger than the level at which each comparison is done. 

Therefore, some techniques should be used which will allow the 

simultaneous comparis0n of all of the means at the desired level of 

significance. There ar~ several techniques which will allow for this, in many 

types of situations. The parametric tests employ a technique known as 

Analysis of Variance (ANOVA). 

5.1 PARAMETRIC: ANALYSIS OF VARIANCE 

The Analysis of Variance is exactly what it says it is: it compares 

the distributions of the various samples by analyzing the total variance 

broken down into its components. Suppose one has several experimental groups, 

drawn randomly from the same population, to which different treatments are 

applied. If the treatments had no effect, then all the groups would be 

identical. The total variance of the experiment can b2 computed in two ways: 

the squared deviation of each observation from the grand mean can be computed, 
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or the squared deviation of each observation from its group mean can be 

calculated, and added to the squared deviation of each group mean from the 

mean of the groups. 

The key to this procedure is that both of these estimates of the 

variance, that within the groups and that between the groups, are estimates of 

the population variance. If all of the groups are from the same population, 

these estimates should be nearly identical. The variance within the groups is 

the standard; if the variance between the groups is no bigger than that within 

the groups, then there is no reason to believe that the groups are different. 

If, however, the between-groups variation is larger, it means that the group 

means are spread more around the grand mean than the individual scores are 

distributed about their group means, thus indicating that the groups differ by 

more than random variation and are therefore different. Since this is a test 

of comparing variances, the F-test, which was presented in connection with the 

t-test for independent samples, is used. 

5.1.1 Assumptions 

Before going on to the procedure for the analysis of variance, let us 

first examine the assumptions inherent in it. These are very similar to what 

we have seen before. 

Assumptions 

(i) The samples are independent random samples. 
(ii) The populations from which they are drawn are normally 

d i stri buted. 

(iii) The variances of the populations are equal. 
(iv) The variable of interest is continuous. 

For designs which have two or more factors (treatments) being compared 

simultaneously, another assumption must be included: 
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5.1.2 

(v) The variances are additive; i.e., no interaction is present if 
one wishes to test the main effects. 

Violations of Assumption~ 

It is generally accepted that the F-test is fairly robust with 

respect to these assumptions. Correlated data can be incorporated into the 

model by a technique known as blocking. Violations of normality do not 

seriously affect the results unless the data are badly skewed. If the data 

are skewed, the F (and t) test will produce too many significant results. As 

the sample size gets larger, the importance of the normality assumption grows 

less because of the central limit theorem. For small samples, non-normal data 

can often be transformed in such a way that the normality assumption is 

satisfied. As with the t-test, the assumption of homogeneous variances is 

generally considered to be robust as long as the sample size for each group is 

the same and the difference is not too great, such as one variance being ten 

times the magnitude of another. Drastic violations of these assumptions 

affect the test in that it will tend to give too many significant results. As 

in the case of non-normality, heterogeneity of variances can often be reduced 

by performing a transformation of the data. 

5.1. 3 Transformations 

A transformation of scale of the data can be performed in cases where 

expressing the data in terms o~ another measurement scale will give more 

validity to the assumptions. Some of the more common transformations are the 

square root and logarithmic transformations. Both these are monotonic 

transformations s and thus will leave ordinal relationships the same. The 

square root transformation is good for count data from a Poisson process in 

which the mean is equal to the variance. If the mean is positively correlated 
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with the variance, then the logarithmic transformation will probably be good. 

This transformation is good for normalizing skewed distributions. 

h.l.4 Fixed vs. Random Effects 

There a~e two types of effects which can be studied by analysis of 

variance techniques: fixed and random effects. One of the assumptions 

underlying a fixed-effects design is that all levels of the factors about 

which any inferences are to be made are included in the experiment. In a 

random effects model, the factor levels (treatments) which are included in the 

experiment are a random sample from a larger population. In the case of 

replicating a fixed-effects experiment, the treatments WQuld be exactly the 

same. In the case of replicating a random-effects experiment, a different set 

of treatments would be chosen at random every time. Only in a random-effects 

model can inferences be drawn about the entire population. It is possible 

that anyone experiment can have both fixed and random effects. Such a model 

is known as a mixed model. One should always be careful in determining which 

factors in an experiment are fixed and which are random. The calculations are 

the same in all types of models, but the test of significance which is done at 

the end will vary with the nature of the model. This will be explained later 

in the discussions of the various designs. 

5.2 TYPES OF DESIGNS 

5.2.1 One-Factor ANOVA Design 

This is the simplest typ~ of design, and is merely an extension of 

the t-test for independent samples for testing three or more samples 

simultaneously. The experiment is performed by randomly assi g!ii ng the 
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subjects to groups, then giving a different treatment to each group. The data 

could be arranged, as follows: 

Treatments 

1 

2 

k y 1 
k 

Observatiol1s 

· . . 
• • • 

· . . 
The calculations, which are arranged into an analysis of variance, or 

ANOVA, table, are shown in Table 1. Notationally, the appearance of a dot as 

a subscript means that the subscript in whose position it appears has been 

summed over; thus "Y i." means the i th row summed over j, or merely the sum of 

all observations in the ith row. Likewise, "y II means both columns and rows 
• • 

have been summed, making y the grand total of all the observations • 
• • 

It is the Expected Mean Square (EMS) column which must be examined in 

order to determine which mean-squares should be compared for the F-test. The 

two that are divided should be the same except for the treatment effects (nIr 

/DF for fixed effects, (/2 for random effects). If the treatments have no 

effect, then the ratio should be one. In this particular design, the F-ratio 

is the same for both fixed and random effects; both are compared to error. 

This will not be the case in any designs comparin9 more than one factor. 

Designs which have all fixed effects always compare everything to the error 

term, but random and mixed models will not. In these cases, the EMS column 

becomes important because it is the one which will determine the F-ratio to 

test for different effects. 

An example is now in order. Suppose an experimenter wants to 

determine if there is any difference between four types of food for rats. 
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Source of df 
Variation 

. Between k - 1 

Treatments 

Error kn - k 
(Within Treatments) 

Total kn - 1 

I 

TABLE 1 

ANOVA for One Factor 

Sums of Squares Mean Squares Expected Mean Squares 

Fixed Random 

k 2 2 
= SSTr ? 

SS - L: y. Y MSTr 2 + n2.T-
cr 2 + n(f"r

2 T - 1. - •• r -- k----1 (j. ~1 1"=1 n kn 

t n k 2 t~S = S~;E I 
SSE = 'fu Y~j - I:Yi. 0-

2 cr2 
E ilk--

;=1 J= ;=1 n n - 1 

tt2 i SST = Y;j - .. 
;=1 j=l kn 

I 
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He takes 32 f'ats as subjects and randomly divides them into four groups, then 

assigns a food to each of the different groups. After a designated time, the 

weight gain of the rats is measured (in grams). The data obtained and the 

calculations performed are as follows: 

Weight Gain 

A 10 8 12 4 7 9 

Food type B 2 -3 0 1 0 -2 

C 7 4 5 2 8 

0 18 15 22 21 1b 

2562 

SS = 1/8 [752 + 462 + 1352J -~ = 1197.75 Tr 

2562 

SST = 3546 -:32 = 1498 

SSE = 1498 - 1197.70 = 300.20 

Source of 

9 

7 

Variation OF Sum~ of Squares Mean Square 
Between 
Foods 3 1197.7b 399.20 

Error 28 300.25 10.72 

Total 31 1498 

Y. 
1 • 

14 11 7b 
Y = 2!:>b 

-2 4 U •• 
2 . 

6 5 46 
I I YiJ =~b4b 

17 2U 13b 
2!:>b 

EMS F-ratio 

2 82; Ti 
2 

37.232 
(1 + 3 

2 
(1 

This is a fix~~-effects experiment because every food that the investigator 

was interested in was included in the experiment. The obtained F value should 

be compared to the table value of F with 3 and 28 OF. This value is 7.19 for 

a = 0.001, so this result is highly significant. Thus, we conclude that the 

means are not all identical. The F-test tells us that at least one of the 

means is different, but it does not tell us which ones differ from the others. 

To do this, some type of multiple comparison test must be applied. There are 
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many such test~ available; several of the more common tests will be presented 

here. 

5.2.1.1 Fisher's Least Significant Difference (LSD) Method 

This test is to be applied only if the F-test shows significance, and 

it consists basically of applying the ordinary StUdent's t-test to many pairs 

of means. If any two means differ by more than the LSD, where 

then those two means will be different. For our example, at a = U.tJl, 

LSD = teo.9gb, 2BJ~(lU.72)(l/B + l/B) = 2.7163(1.637) = 4.b24. 

In this example, the means are 

B c A D 

o 5.75 9.37516.87b 

The difference between C and A is only 3.62b, so we conclude that there is no 

difference between C and A. All of the others differ by more than 4.b24, so 

they are all different. This can be represented graphically as 

B CAD. 

5.2.1.2 Tukey's Honestly Significant Difference (HSD) Method 

The HSD method is identical to the LSD method, except that it 

requires equal sample sizes. The HSD is given by 

HSD = q e a; k; error DFJyMSE/n 
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where q is the table value of the studentised range and k is the number of 

means being compared. This table can be found in many design books. 

In our exampl e. for a a 0.01, 

HSD a 4. BljlU. 72/B a b.b92. 

Orce agai n C and A are the only ones whi ch differ by more than 0.092, so the 

same conclusion is reached with this method as with the Fisher's LSD Method. 

5.2.1.3 Duncan's Multiple Range Test 

The Duncan's Multiple Range Test differs from the Fisher and Tukey 

tests in that it gives a different range for different means. Instead of 

giving one number against which all differences in means are tested, this test 

gi ves 1 a:-ger interval s for mea""!; that have other means in between them. 

To perform thi s test, determine numbers r[ a, p, error UF] for p = 
2,3 ••• ,k from a table of Duncan's significant ranges, and multiply each of 

these numbers by ~ MSE/n. These win be the least significant ranges. Then 

rank the means. In comparing them, if they are next to each other, use the p 

= 2 range; if there is one other mean in between them, use p = J, and so on. 

For our example, we need val ues for p = 2, 3, and 4. At a = U.U1, 

these values are: 

p = 2: 3.93 

3: 4.19 

4: .~ ,9 

Means: B C 

(Ranked) o 

pJ>1SE/n: 2: 4.bbU 

3: 4. B51 

4: 4.967 

A D 

lb. B7b 
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Applying this method, the means BC, CA, and AD would have to differ 

by 4.550 to be significantl'y different; DA and CD would have to differ by 

4.851, and BD would have to differ by 4.967. As with the previous methods~ C 

and A are the same; all others are different. Thus, as the final results of 

the experiment, we conclude that Food B causes the least weight gain, Food 0 

causes the most, and types A anc C, while different from both Band D, are 

indistinguishable from each other. 

5.2.2 TWQ-F~ctor ANOVA Design 

This design is the simplest type of factorial design, that is, one in 

which two or more factors are being compared, and all combinations of the 

levels of these factors are run during the experiment. The principles behind 

this design are the same as those of the One-Factor Design, except now the 

variability is broken down into more pieces: that for Factor A, Factor B, the 

AB interaction, and the Error. 

The data layout for this design with more than one observation per 

cell can be presented as: 

1 

2 

factor A 

a 

1 

Y1l1' Y112' 
• • ., Y 11n 

Ya11'y Ya12 , 
• • • I' a In 

Factor B 

2 
Y121 ' Y122 ' 
• •• , Y12"" I, 

Ya21 ' Ya22 ' 
••• , Ya2n 

. . . b 

The calculations for the analysis of this type design are presented in Table 2. 
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SOUl'ce of df 
'!ariation 

Factor A a-I 

Treatments 

Factor B b - 1 
T ,'ea tmen ts 

interaction I (a - l)(b - 1) 

E,Tor ab(n - 1) 

Total abn - 1 

Sums of Squares 

il 2 2 

SSA = L: ~-~~-!. - ~l;-r;-:-
i=1 

b 2 l. 
'"' Y J' - Y ••• SSB = ~ -~-rt aDn 
J=l 

TABLE 2 

ANOVA for Two FactGrs 

Mean Squill'es 

SS/\ 
a-'--I 

SSIl 
b--'Y 

a b 2 2 

SSAB = LL ~i.h - :.:...!..=.. - SS/\ - SSB 
i=1 j=l n abn 

sSAO 
Ta':--lT(h' ----IT 

SSE = SST - SSA - SSB - SSM 
SSE 

abTn--·-n 

cI b n 2 2 

SS = ""~ Y"k Y ... T L.J L.JL...J lJ atill 
i=1 j=l k=l 

.. --~----____ M2 _____ - ____ ~ ____ ~ __ ~. 

Expected "lean Squares r -,'atin 

I Fixed Rand{)ll\ fIxed Pandur, 

~2 2 1. 2 ~ISA H"A 2 + hn r; u .-- cr + n rfJ + tlllTr 
" - 1 Ms[ MOAB 

) 1: 2 'I ., ~ M5B M"r, 
lT

ic 
• b11_ fL- U" .. n~fJ .. a (J 

~lSE H"~t; 

? + n>;~foJf a2 .. nd;fJ "'SAB /IISAB 
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As an example suppose a chemical process is being studied, where the 

factors are temperature and pres:ure, with three levels each. The experiments 

are performed in random oreler. The d?ta obta'jned and calculations performed 

are as follows: 

Pressure 
Low Medi um High y, , .. 

Low 90 B6 79 b1b 
B9 8B B3 

Medium 8f> 82 Bb bUb 

Temperature 81 87 85 

Source of 
Variation 
A 
B 
AB 
Error 
Total 

High b3 77 lU1 468 
60 84 93 

y . 
.J • 

4bB b04 b27 14B9 

SST = 125235 - (1489)2/18 ~ l061.b111 

SSA = [5152 + b062 + 46B2J/6 - (14B9)2/1B = 2U7.44 
SSB = [4582 + 5042 + 5272J/6 - (1489)2/1B = 414.44 
SSAB = (25U245)/2 - (14B9)2/1B - 2U7.44 - 414.44 = 1~3U.2222 
SSE ::: SST - SSA - SSAB - SSB = 112.5 

DF Sums of Sguares Mean S~uares 
l 2U7.444 103. 72 

F 

2 414.444 2Ub.722 
4 1330.222 332.b56 26.6U4 

9 112.5 12.5 
17 2061.611 

F[O.Ol; 4, 9J = 14.7 

Since 26.6U4 > 14.7, we conclude that the interaction between 

temperature a"d pressure in this experiment is highly significant. This means 
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that there is a synergistic effect between temperature and pressure; i.e., 

they do not function independently. This can be demonstrated graphically if 

the cell means for pressure are plotted as a function of temperature, as 

indicated in Figure 2. 

Fi gure 2 

Temp 
Cell Means 100 - High 
Pressure 90 - Med 
L M H 80 - Low 

L 89.5 87 81 70 -
Temp. M 83 84.5 85.5 60 -

H 56.5 80.5 97 50 -----------------------------------
L M 

Pressure 
H 

If there were no interaction between temperature and pressure, the 

three figures would mirror each other, with only a difference in location. As 

it is, they are drastically different, so the main effects, temperature and 

pressure, should not be considered separately. It would not be accurate to 

say that high temperature produces the highest yield, because it also produces 

the lowest, depending on the pressure. 

Because of the importance of the interaction term, it should always 

be tested first; if it is significant, it is often the last test to be done, 

because it is difficult to interpret the main effects when there is an 

interaction. In a K-Factor Design, the Kth order interaction should be tested 

first, then the lower order interactions, in the decreasing order of their 

complexity. The main effects should always be tested last and interpreted 

carefully if the interactions are significant. 
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In this example, the significance of the interaction makes testing 

the main effects lose its meaning. Obviously, both tests would be highly 

significant, implying there is a difference in yields between high, medium and 

low levels of temperature and of pressurp.. The exact nature of the~e 

differences, however, is uninterpretable without considering one variable in 

relation to the other. Depending on the purpose of the experiment, this may 

or may not be satisfactory. In this experiment, it probably does not matter 

to the investigator that there is an interaction because he is only interested 

in determining how he can get the greatest yield. He can easily determine 

this by doing multiple comparison tests; the only effect of the interdction is 

that each combination must be considered separately, rather than comparing the 

means of temperatures and then the means of pressure. 

For performing the Fisher's LSD test at a = 0.01, 

LSD = t[0.995, 9J"12.5(1/2+1/2) = (3.250)(3.535) = 11.490. 

Thus any means differing by more than 11.490 are significantly different. The 

resul ts are 

HL HM LH ML MM MH LM LL 

56. 5 ..;;,.8~0':;...;5_,---=8..:;;..1 __ 8:;...;3_---=8_4..:... 5:...-_8:;...;5~ • ..;..5_ ..;..8..;..7_~89...;;.._5 

HH 

97 

Therefore, to maximize the yield, one should use high temperature and h~gh 

pressure, low temperature and low pressure, or low temperature and medium 

pressure. Minimum yield is obtained with high temperature and low pressure. 

While this experiment worked out nicely, interactions can sometimes 

cause problems. For example, in working with space flight, an investigator 
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might be interested in determining whether or not weightlessness has an effect 

on some physiological parameter in man. He might have data from three flights 

(Sky1ab, for example), so he could analyze it as a two-way design, with the 

physiological parameter as one factor and the flight as another. A signifi­

cant interaction in such an experiment can be annoying, but does not always 

preclude testing and interpreting the main effects. If this occurs, it would 

be informative to graph the means similar to those in Figure 2. If all lines 

increase or decrease with one or more being steepter than the others, the 

interaction between the two factors, i.e., the physiological parameter and the 

flight, may be significant. Clearly, however, the main effect may also be 

significant, leading to the interpretati~:1 such as: lithe physiologic 

parameter, blood volume, decreased with exposure to weightlessness and this 

effect was significantly greater on the last flight." 

This space-flight example l2ads us to the next type of design to be 

di scussed. The di fferences in response on the vari ous f1 i ghts may have been 

caused by some extraneous factor not considered in the experiment, such as 

di etary changes. If the crew of the second f1 i ght, for instance, had 

different diets from the others, then the responses of those individuals will 

be correlated with each other, but not with the other crews. This not only 

introduces extra variability, but also defies the assumptions of independence 

and randomization. This can be taken care of by employing a technique known as 

blocking. 

5.2.3 Randomized Complete Blr~k Design 

Blocking designs are the ones which correspond to the two-sample 

tests for related measures, and are thus the methods used for handling 

repeated measures. Any time there is reason to believe that particular groups 
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of measurements will be correlated, these groups should be separated into 

blocks. When this is done, an additional assumption is made: the correlations 

within blocks are equal. The blocking techniques originated in agriculture, 

where different plots of land would be blocked, because the experimenters knew 

that different soil conditions would lead to different yields, and the yields 

from the same conditions would be correlated. In repeated measures 

experiments, where each subject serves as his own control, each individual 

subject is considered to be a block. The effect of this is that the 

variability due to differences in the average responses of the subject3 will 

be removed from the experimental error, thus making the test more sensitive. 

In performing a randomized block experiment, the order of the 

treatments within the blocks should be randomized, once the blocks are 

determined. When the blocks are subjects, care should be taken that there are 

no carry··over effects between the treatments. Each experiment on the 

individual should be independent of the others, and if they are not, then the 

results will be invalid. 10 be a complete block, every treatment should be 

performed in every block. 

The analysis of a blocked experiment is very similar to that of a 

multi-factor independent design. In the calculations, the blocks are treated 

as an additional factor except that no interactio~r are computed for blocks. 

(Some books do compute the block X factor interlction terms, but generally 

such interactions are assumed to be part of the error.) 

The data layout for a one-factor randomized complete block design 

looks exactly like that of the two-factor randomized complete design except 

that instead of Factor B, we have blocks. The calculations for this cesign 

are presented in Table 3. Notice that the calculations are exactly the same 

as those of the completely i'andomized design except for the lack of an 
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Sosrce of 
Variation 

Treatments 

Blocks 

Error 

Total 

df 

a-I 

b - 1 

abn - a - b + 1 

abn - 1 

..~ ... ~., ...... - , .. .,.'-......... 
.......... "'!'* .... Fce.aPJ .z'.'.4="" 4,. 2404--"., .au::u: ..... 1IJP. a;.~ .. 

\'- .H,.,-!" "',!:-1" '.v. 

TABLE 3 

ANOVA for One FactDr: Randomized Complete Block Design 

I 

Sums of Squares Mean Squan's Expected Mean Sq~ares F-ratfo 

Fix('d Random fixed Randoll! 

i -t y? l SSTr u-
2 ~-# (J'""2 + bn~ 

MS Tr HSTr 
I 

SSTr - ~ - _-~ -a--- 1 a - MS
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- MS
E 

- I 
;=1 lin al.m 

b 2 2 SSs 2 anU ~ + 8noJ SSg = L: ~ -Y .•• (} + l)" .... 
1>71 - 1 

'-1 an dbrl .1-

SSE • SST - SSTr - SSs 
SSE cr2 r? 

alin - a - b + 1 

ttt2 i SST'" Yijk - -~ 
;=1 j=1 k=l iilin 

------ -------- ----
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interaction term, and the error OF is adjusted accordingly. Also, there is 

only one F-test to be performed because we are only interested in whether or 

not the treatments had an effect. The blocks could, of course, be tested for 

significance. If they are not significant, it will mean that there was no 

need for the blocking in the first place. Because this is a one-factor 

design, the F-ratio is the same for both fixed and random models. 

As an example, suppose an experiment is being done to test the 

effects of five different drugs. Four individuals are used as subjects, so 

each individual will be treated as a block. The order that the treatments are 

given to each individual is randomized, and sufficient time is given between 

treatments to ensure that there are no carry-over effects. There will be only 

one observation per cell so that the corresponding nonparametric test can be 

run on the same data. The data obtained and calculations performed are as 

follows: 

Person 

1 2 3 4 Total 

A 12 14 12 13 51 

B 9 13 8 10 40 

Drug C 27 32 22 29 110 :E EVij 
2 6309 = 

0 8 22 9 11 50 

E 14 29 11 16 70 

70 110 62 79 321 

56 

E ... ___ ........... d-.." ......... · ...... ·_._II:IL· ... _ ... _ .. , ___ ....... =r ___ ~,~ __ .••..• ~". e. 

. 
• 



SSTr • [b12 + 402 + 1102 + 502 + 7U2J/4 - (321)2/20 • 773.2 

SSB • [702 + 1102 + 622 + 792J/b - (321)2/2U z 264.9b 
? 

SST z 63U9 - (321)-/2U z 1156.9b 

SSE • 1156.9b - 264.9b - 77j.2 • 118.8 

Source of Sums of Mean F -tabl e 
Variation OF Squares Square F-rati 0 a = .U1 

Treatments 4 773.2U 193.3 19.52 :'.41 
Blocks 3 264.95 88.316 
Error 12 118.8U 9.9 

lotal 19 115b. 95 

Since the F-ratio is significant, we conclude that there is a 

difference between the drugs. To determine whLh ones are different, we will 

use Fisher's LSD. If any two means differ b,II more than 

LSD = t[0.995, 12J~/4 + 1/4) = 3.Ub5(2.225) = 6.797 

then they will be significantly different at the a = U.01 level of 

significance. This gives the results 

B 

10 

D A E 

12.5 12.75 17.b 
----'----'--..;.. 

. C 

27.5 

Therefore we conclude that drugs B, D, and A are indistinguishable, as are 

drugs D, A, and E; the former set gives the lowest response. 

significantly higher response than any of the other drugs. 
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5.2.4 Latin Square Design 

The randomized block design is applicable to any number of factors, 

but only for one set of blocks. Sometimes situations arise in which it is 

necessary to block in two directions at the same time. A simple example of 

this is the case of comparing different brands of tires. Suppose there are 

four brands to test, and it is decided to use four tires of each. Kather than 

using sixteen cars, the cars can be blocked and only four cars will be needed, 

with one of each brand of tire on each car. If the tires are randomly 

assigned to positions on each car, this will be a randomized complete block 

design. However, it is also known that tires wear differently, depending on 

their positions on the car, and that like positions will be corre1at~d. 

Therefore, position can be blocked as well by putting four brands of tires in 

four different positions. This type of design, where two things are being 

blocked at the same time, is called a Latin Square design. 

An experiment for comparing p treatments, being blocked in two 

directions, can be arranged into a p x p Latin Square with the rows being one 

set of blocks and the columns being the other. The key is that each treatment 

must appear once in each row and once in each column so that every combination 

of levels of blocks is performed. Because of the restrictions on the place­

ments of the treatments, the randomization is lost in this type of design. 

However, there are different possible patterns for each size Latin Square, so 

one of these should be chosen at random. 

The fo 11 owi ng is an example of a b x b Latin Square, with treatments 

denoted by A, B, Cs 0, and E: 

A 0 B E C 

D A C B E 
C B E D A 
B E A C 0 

E C 0 A B 

5fj 
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The calculations for the Latin Square are given in Table 4. 

As an example, suppose an experiment is conducted comparing the 

reaction times of five different catalysts on a chemical process, where only 

five experiments can be run per day and each batch of materials will permit 

only five runs. An arrangement different from the one above was utilized. 

The results obtained and calculations performed are as follows: 

Batch 
1 2 3 4 b y. , .. 

1 A=10 8=9 0=3 C=9 E=b 36 A = b2 

2 C=13 E=4 A=Y D=5 B=lO 41 13 = 3~ 
Day 3 B=6 A=l1 C=12 E=3 0=7 39 C = b4 

4 O=B C:clO E",8 B=B A=12 46 [) ;; 27 

5 E=6 0=4 8=5 A=lO C=lU 3b E = 26 

Y . 43 3~ 37 35 44 197 
.J • 2 

l:Il: y. 'k = 17!l9 
lJ 

SST = [522 + 382 + b42 + 272 + 262J/5 - (197)2/2b = 141.44 
SSR

r 
= [362 + 412 + 392 + 462 + 3b2J/5 - (197)2/25 = 15.44 

S5 ows = [432 + 382 + 372 + 352 + 442t/5 _ (197)2/25 = 12.24 Columns 
SST = 1759 - (197)2/25 = 206.64 
SSE = 206.64 - 141.44 - 15.44 - 12.24 = 37.52 

Source of Variation DF SS MS F 
Treatments 4 141.44 35.36 11.3U92 

Rows 4 Ib.44 3. ~6 
Columns 4 12.24 3.06 

Error 12 30.52 3.1267 
Total 24 206.64 
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Source of 
Variation 

Treatments 

Rows 

Columns 

Error 

Total 

df 

, 

p - 1 

p - 1 

p - 1 

(p - Z)(p - 1) 

p2 _ 1 

TADLE 4 

ANOVA for fl X fl latin Square lIeSl!)" 

SURIS of Squares Mean Squan· 

'2 ;> 
SST = t y .• k - Y ..• SSTr 

r ----;;r r--"'-~1 

k~1 fl II 

~ 2 ., SSR SS - y. y R - L-t _1.:..:. - -!..=-~. 11--1 
1"1 P ,/ t 2 2 SSe - y. y 

SSe - ~- ~,;. p----l 
J"1 P p' 

SSe 
SSE • SST - SSTr - SSR - SSe "[p--:.-zTrp-· '1 r 

-ttt z l SS - y. - - •.. T lJk - -----
j=1 j=1 11.=1 p2 

[~~ected Mean Square r -ra til) 

fixed R.mdoM Fixed HandoJll 

2E~ MSTr (1"2 + Jl r r? + p2af HS'!"r 
" - 1 MS~ 'ir,~--

2L Z f"2 + p2~ cr2+~ 
II - 1 

(j2 ;. p2Ef 
JI -

~2 ;. p2(j§ 
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Comparing this F-va1ue to the table value F[u.U1; 4,12] • 0.41, we conclude 

that there is a difference between the means. Applying Fisher's LSU test to 

dl~t'.'rmine which means are different, we see that at the a • U.U1 level, 

LSD • t[U.Y9b,12]~3.1267 (l/b + l/b) • 3.Ubb(1.118} = 3.416b. 

Therefore, any two means differing by more than 3.4165 are significantly 

different. Calculating and ordering the means, we obtain the following 

resul ts: 

E U B A C 

5.2 0.4 7.6 10.4 lU.8 
~~-"---~-

Thus, catalysts E, 0, and B are indistinguishable, and catalysts S, A, and C 

are indistinguishable, with the latter set yielding the higher result~. 

The analysis of the Latin Square design, with two sets of blocking, 

is an extension of the analysis of the one-factor randomized blcck dL'~'. 

po 

This can be extended even further for blocking in more than two directions. A 

three-way blocking design) for example, is called a Graeco-Latin Square and is 

set up and analysed in exactly the same manner except that now each treatment 

appears once in each row, once in each column, an~ once paired with each Greek 

letter representing the third block. The calculations or the sums of squares 

for the third block follow the same pattern as that of the others. Notice 

that, since Latin Square designs are o~a-fartor designs, the F-ratio is the 

same for both f'i xed and random model s. 

5.2.5 Nested or Heirarchical Designs 

Another situation which can occur in experimentation is the case 

where the levels of one factor are similar but not identical for levels of 
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another factor. For example, suppose it is desired to measure the quality of 

a chemical made by two different suppliers. The samples from each supplier 

are from different batches made by different chemists, so these need to be 

factors in the experiment. However, the chemicals made by the second chemist 

for the first supplier cannot be grouped with those of the second chemist for 

the second supplier, for obvious reasons; they are not on the same level. 

Chemists are nested within suppliers. Furthermore, suppose that each chemi~t 

uses different sources for materials in each batch. Then the batches cannot 

be considered to be identical, and will be nested within chemists. This is an 

example of a three-stage nested design. The data layout for this type design 

can be represented by the diagram below. The calculations for the analysis 

are presented in Table 5. 

Factor A1_ Factor A2 Factor Aa 

*F B 1 2 ••• b 1 2 •• " b 1 2 ••• b 
*f G1 

v 
Y 1211"· Y 1bll Y 2111 Y 2211 ••• y 2b11 Ya111 y a21l" •• Yabll I J 111 

· · · . . " • . . 
YIlln Y121n Y1b1n Y 211n Y221n Y2b1n Yalln Y<:21n YabIn 

YI121 Y1221···YIb21 Y2I2I Y2221···Y2b21 Ya121 Ya221···Yab2I 
• 

*F C2 ••• 

· · . 
l'112n Y 122n··· Y 1b2n Y212n Y 222n ••• Y 2b2n Ya12n Y a22n' •• Yab2n 

....... _,_4O'I"'l.lIIl 

Y 11cl Y 12c1"" Y Ibc1 Y21c1 y 22c1 ... y 2bcl 
" · · *F C c 
• · • • . . . . . 

YUcn Y12cn···Ylbcn Y21cn Y22cn"'Y2bcn Ya1cn Ya2cn···Yabcn 

*F = Factor 
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df 

a - I 

alb - 1) 
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abcn - I 

lADLE 5 

AHOVII for Three-Slage IIcstl!d llt".IQn 
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As an example, suppose the experiment comparing chemical suppliers 

described above was performed. The data collected and calculations done are 

as follows: 

-

Supplier 1 'pplier 2 
Yijk. : Supplier 1 

Chemist 1 2 3 4 1 
Batch 1 17 18 23 2U 21 

19 19 24 18 23 
Batch 2 25 24 25 22 24 

22 23 27 20 23 
Batch 3 2U 19 22 21 22 

16 17 20 18 20 
Cherni st 
Totals V .. 

Supp 1 i er 1 J •• 
119 12U 141 119 133 

Totals Vi ••• 499 

\ 

v .... 2/abcn = (1012)2/48 = 21336.333 

SSA = 21340.417 - 21336.333 = 4.083334 

SSB(A) = 21412.333 - 21340.417 = 71.916666 

SSC(B) = 21580 - 21412.333 = 167.66667 

SSE = 21636 - 21580 = 56 

64 

2 3 4 Suee lier 2 
~2 23 19 36 37 47 3~ 
20 20 18 44 42 43 37 
2b 19 23 47 47 !>~ 42 
22 18 25 47 47 37 4~ 
21 19 23 36 36 42 39 
19 22 22 42 4U 41 4!> 

129 121 13U 1Uj,2 

!>13 
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Sourc£: of F -rati 0 F-table F -rat; f) F-table 
a a a 

Vari at ion DF SS MS ~fixed~ = .. U5 
a 

( random~ =.01 =.05 =.01 
A 1 4.0f333 4.Uf333 1.7500 4.26 7.82 .3406 b.99 lJ. 7~ 

B(A) 6 71.9167 11.9861 5.1369 2.51 3.67 1.1438 2.74 4.2U 
C(B) 16 167.6667 10.4792 4.4911 2.31 2.86 4.4911 2. l::l ~.f3b 

Error 24 56.0 2.3333 
Total 47 299.6667 

This ex:mple does a good job of showing the difference between fixed 

and random models. For a fixed model, there is a significant difference 

bE'tween both chemists and batches at the a = 0.01 1 evel. For the random 

model, however, only the batches are significantly different; chemists are not 

significantly different aven at the a = O.Ob level. The suppliers (Ire 

indistinguishable in either case. To determine whether the effects are fixed 

or random, one must determine how they were chosen. It seems reasonabl e to 

assume that the two suppliers are the only ones of interest. Thus, Factor A 

is fixed. If the chemists used are the only ones whose work we are interested 

in, then Factor B is also fixed. If they were chosen as a random sample of 

many chemists, then Factor B is random. The same is true of the batches. 

Since it is more likely that batches were chosen at random, Factor C is 

probab 1 y a "andom factor. Thus if A and Bare fi xed and C is random, this is 

a mixed model, and the EMS for it is not included in Tabl e 5. The EMS and 

corresponding F-ratios for a mixed model of this type are: 

Factor EMS F-ratio 

A ,..2 + na:2 + ~ ~nI1J 2 MS /MS U.3~97 
')' a-I 2 A C 

B 0"'2 + n 2 + cnI~¥i) MSB/MSC 1.1438 
C7",), a{b-) 

C c;-2 + n 2 
0",), 

MSC/MSE 4.4911 

Error 0"'2 
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In this particular case, the results of the mixed and random models 

do not differ in Significance, but it is possihle that they could in some 

instances. It is models like these, with many factors and combinations of 

fixed and random effects, which make evident the importance of the Expected 

Mean Squares. Without them, it would be impossible to know which mean squares 

to divide to test the effects of a particular factor. 

5.2.6 Summary of Analysis of Variance 

This presentation of five different types of experimental designs is 

by no means complete. Each of these designs can be extended to include more 

factors. In addition, there are variations which have not been discussed. 

For example, all of the designs presented have been assumed to have equal 

sample sizes in each cell; that is, they are balanced designs. This is not 

necessary as long as the assumptions of normality and homoscedasticity are 

met. In fact, the computational formulas are generally the same for both 

balanced and unbalanced designs. However, having unequal cell numbers 

increases the complexity of the calculations immensely as the designs become 

more complex because the sample size cannot be factored out, as has been done 

in all of the calcu;ations presented here. Many statistical packages are not 

set up to handle unequal samples sizes in complex designs. 

Another possibility that has not been discussed is that of incomplete 

designs. These are designs in which not all of the treatment combinations are 

performed. This is most likely to occur in blocking designs when the blocks 

are not large enough to hold all of the treatments. Needless to say, such an 

occurrence adds complexity to the calculations and since it is an uncommon 

situation, the analysis will not be presented here. Techniques for analyzing 

incomplete designs can be found in most intermediate level design books (see 

bi bl i ography). 
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Another concept which should be mentioned but will not be discussed 

is confounding and fractional replication. In factorial experiments where 

there are many factors, it is often desirable to run fewer experiments per 

block than there are treatment combinations. These experiments can be 

designed such that the effects of certain combinations are indistinguishable 

from others--that is, they are confounded--and therefore only one of these 

combinations needs to be performed to know about all of them. Fractional 

replication of a factorial design means running only a fraction of the total 

number of runs. Since one can determine in advance which combinations are to 

be confounded, the exper'imenter has a lot of control over such a situation and 

can obtain meaningful results with considerably fewer experiments. These 

techniques are not difficult, but they can be very involved and would require 

more explanation zhan can be given here. Once again, the reader is referred 

to the Libliography for further information. 

5.3 NONPARAMETRIC ALTERNATIVES 

As with the case of the two-sample tests, there are nonparametric 

tests available which will handle the one-factor experimental designs. These 

tests will be better than the parametric tests if the dat~ is badly non­

normal. They also can be used for ryrdinal data. 

5.3.1 One-Factor Design: The Kruskal-Wallis Test 

As sumpt ions 

(i) All samples are random samples. 

(ii) There is independence both within each sample and between the 
various samples. 

(iii) The measurement scale is at least ordinal. 

(iv) If the populations differ, they differ only in location. 
(Note: This is equivalent to the normal assumption of 
homogeneous variances.) 
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The Kruskal-Wallis test is another ranking method. The first step in 

the procedure is to rank the totality of the observations from all K samples 

from one to N, where N = 2: n·. In the case of ties, the average of the ranks , 
that would have been assigned to those values is assigned to all of them. 

Then the sum of the ranks for each sample, that is 

n; 

Ri = LR(Xij ), i = 1, ••• ,K, is computed. 

j=l 

The test statistic is: 

1 R. t 2 

T=:2 rt- N(N+l) 
4 

2 1 ~ 2 
where S = N-l L.J R(X;j) 

s i=1 ' all 
ranks 

If there are no ties, this simplifies to: 

t R.2 

12 -'-T = N(N+1} ni - 3(N+1) 
i=l 

_ N(N41)2 

This should be compared to the appropriate quantile of a Chi-Square 

distribution with (K - 1) DF. If the null hypothesis of no difference is 

rejected, then a multiple comparison test can be made. The most common, which 

is simply Fisher1s LSD method applied to ranks, tells that two populations; 

and j are significantly different if the following is true: 

I Ri _.!!J..I > t[l_a/'J., ( 2 N-l-T) 1/2 (l + l )1/2 ni nj , N-KJ S N-K ni nj 

The Kruskal-Wallis test will now be applied to the data analysed by 

the one-factor analysis of variance design. 
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A R(A) B R(8) C R(C) D R(D) 
10 22 2 7.5 7 16 18 29 
8 18.5 -3 1 4 10 If> 26.b 

12 24 0 4.5 5 12. b 22 32 
4 10 1 6 2 7.b 21 31 
7 16 0 4.5 8 18.5 1b 26.b 
9 20.5 -2 2.5 9 20.5 7 15 

14 2b -2 2.b 6 14 17 28 Il: /{(Xij )2=1l4J2. b 
11 23 4 10 5 12.b 20 3U 

159 38.5 111. b 219 

32P3~2 
52 = (11432.5 - 4 )/31 = 87.7b8U6b 

32(33)2 
T = (1/87.758) [(1592 

+ 38.52 + 111.52 + 2192)/8 - 4 J = 24.870221 

Since x
2

[0.OU1; 3J = 16.27, it is highly significant and we conclUde that the 

populations yield different values. 

To determine which means are different at a = 0.OU1, we determine 

the value 

LSD = 3.674{2.1916) ~ 8.0519. 

Thus any two means of ranks that differ by more than 8.0b19 will be different. 

The results thus are 

B 
4.8125 

C A 
13.9375 19.875 

D 
27.37b 

This test cannot distinguish between C and A nor between A and D. This is not 

as sensitive as the analysis of variance, which was able to detect a differ­

ence between food types A and D. 
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The A.R.E. of the Kruskal-Wallis test relative to the F-test in the 

analysis of varian~e is never less than 0.864, but it may be as high as 

infinity for extremely non-nor~a1 data. For normal populations, the A.R.E. is 

0.955, and for uniform data it is 1. Relative to the median test, the A.R.E. 

of the Kruskal-Wallis test is 1.5 for normal data and 3.0 for uniform data. 

5.3.2 Randomized Complete Block Design: The Quade Test 

~ssumptions 

(i ) The results within each block are independent of the results 
of other blocks. 

(ii) Observations may be ranked within b10Cks. 

(iii) The sample range may be determined withi~ ~ach block so that 
the blocks can be ranked. 

This test, which is an extension of the Wilcoxon Signed-Ranks test, 

requires that an equal sample size k be taken in all b blocks. To perform the 

test, first rank the observations within each block from 1 to k, using average 

ranks in case of ties. Then go back to the original observations and obtain 

the sample ranges within each block, that is, the difference between the 

smallest and largest values, and then rank the blocks from 1 to b by their 

ranges. Let Qi denote the rank of the the ith block. For each Xij , form its 

corresponding value Sij' where 

Finally, calculate the sum for each treatment, that is, 

S ..• 
lJ 
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The test statistic is 

where 

This statistic should be compared to the proper quantile of an F distribution 

with (K - 1) and (b - l)(k - 1) DF. 

If this test shows significance, multiple comparisons can be made. 

Two populations i and j will be considered significantly different if 

As an example, we will run the ~uade Test on the same set of data 

that was used for the randomized complete block design. The calculations 

are as follows: 

Persons (Blocks) 

Xil R (Xill_Xi 2 R (Xi 2) Xi 3 R( Xi 3) Xiii R(Xi~ 

A 12 3 14 2 12 4 13 3 

B 9 2 13 1 8 1 10 1 

Drug C 27 5 32 b 22 !> 29 !> 

[) 8 1 22 3 9 2 11 2 

E 14 4 29 4 11 3 16 4 

Range = 19 Range = 18 Range = 14 Range == 19 

Q1 = 3.5 Q2 = 2 Q3 = 1 Q4 = 3.5 
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Now compute the Sij's: 

SII • (3.5)(3 - (5 + 1)/2) B U 

S21 z (3.5)(2 - 3) z -3.5, etc. 

Persons 

1 2 

A 0 -2 

B -3.5 -4 

Drug C 7 4 

0 -7 0 

E 3.5 2 

(Blocks) 

3 4 

1 0 

-2 -7 

2 7 

-1 -3.5 

0 3.b 

Al = u2 + (_2)2 + 12 + ••• + 22 + u2 + 3.52 = 295 

S. 
~-

-1 

-16.b 

2U 

-11. b 

9 

B1 = (_1 2 + (-16.5)2 + 2U2 + (_11.5)2 + 92)/4 = 221.620 

3(221.625 ) 
T1 = 295-221.625 = 9.061 

F[O.OI; 4,12] = 5.41 

Since \ = 9.061 exceeds 5.41, we conclude that the means are 

different. To determine which ones are d~fferent, we need to determine which 

s. 's 
1 differ by more than 

2(4)(295-221.6251-
3.055 3(4) = 21.367 

The results obtained are 

B 0 A E C 
-16.5 -11.5 -1 9 20 
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It can be seen from these resijlts that the Quade test is not as 

sensitive as the ANOVA, because at the same level of significance, a • U.U1, 

this test cannot distinguish between Drugs A, E, and C. The A.R.E. of the 

Quade test to the t-test for the case of k • 2 is the same a~ that of the 

Wilcoxon signed-ranks test, i.e., U.9bb for normal nata. For k > 2, the 

A.R.E. of the Qu~de test to the F-test has never been found. 

5.3.3 Randomized Come1ete Block Design: The Freidman Test 

The Freidman test, which is easier to perform than the Quade test, 

appears to be more powerful than the Quade test if there are five or more 

treatments. It is an extension of the sign test. 

Assurrptions 

(i) The results within each block are independent of the results 
of other blocks. 

(i i) Observati ons may be ranked withi n blocks. 

To perform this test, first find the ranks within blocks as was done 

in the Quade test, then find the sum of the ranks for each treatment: 

Then calculate the terms A2 and B2, where 

The test statistic is 

(b - 1) B _ bk(k+1)2 
2 4 

T2 = ----------
A2 - B2 
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This should be compared to the proper quantile of an F-distribution with (k -

1) and (b - l)(k - 1) DF. If this results in the rejection of the null 

hypothesis, then multiple comparisons can be performed. Two treatments will 

be significantly different if their sum of ranks ~i differ by more than 

[ 
2b[A2 - 82] ] 1 

t[l_ ai2; (b-1}(k-I)] (b-I)(k-I)' ~ 

Running this test on the data used previously, we obtain the following results: 

Persons (Blocks) 

X'I --1 
I«Xn ) Xi 2 R( Xi21 Xi3 R( Xi 3) Xi4 R(Xi4 ) ~i 

A 12 3 14 2 12 4 13 3 12 

B 9 2 13 1 8 1 10 1 b 

Drug C 27 5 32 b 22 b 29 b 2U 

D 8 1 22 3 9 2 11 2 8 

E 14 4 2~ 4 11 3 16 4 1b 

A2 = 32 + 22 + ••• + 32 + 42 = 22U 

B2 = [122 + 52 + 202 + 82 + 152J/4 = 214.5 

T2 = [3[214.5 - (4)(5)(36)/4JJ/(220-214.5) = 18.818 

Since 18.818 > F[o.Ol; 4,12J = 5.41, we conclude that the treatment 

means are different. If any two Ri differ by more than 

2(4) [220 - 214.5J 
3.055 3(4) = 5.85U 

then they will be significantly different at the a = U.Ul level. The results 

of this test are 
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These results are different from those of both the F-test and the ~uade test; 

it cannot distinguish between Band 0, D and A, A and E, and E and C. 

The A.R.E. of the Freidman test with k • 2 relative to the t-test is 

the same as that of the sign test, that is, U.637. For k > 2, the A.K.E. of 

the Freidman test relative to the F-test depends on k, the number of samples. 

It is (O.955)k/(k + 1) for normal data and k/(k + 1) for uniform data. It 

never falls below (O.864)k/{k + 1). ~or this example, with k = b, the A.R.E. 

of this test relativ~ to the F-test (assuming normality) is U.796. 
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6.0 REGRESSION ANALYSIS 

Everything that has been discussed so far has been concernCJ with 

different types of experimental designs, that is, methods of detecting 

differences in population parameters. Another tjpe of analysis that can be 

done on data is to develop a mathematical model which describes the 

relationship existing between variables. Such a model can be used to predict 

values of the dependent variable Y by knowing the values of the independent 

variables Xi. The technique used to determine the model is known as linear 

regression, and will be presented using matrix notation. 

Assumptions 

(i) The relationship between the independent variables and the 
response is linear; i .E:., it can be expressed as 
Y = X{3 + t (it is linear in the (3's). 

(ii) The fils ar~ uncorrelated random variables with mean zero and 
a common varlance. 

To test hypotheses, a fUl'ther assumption of normal ity must be made: 

(iii) The fils are normally distribLlted. 

The regression model is determined by the method of least squares; 

that is, it is the figure (a line, if there is only one independent variable) 

which minimizes the sum of the squares 0f the er~ ~s. The errors, or 

reSiduals, are simply the differences between the observed values of Y and the 

predicted values from the model. Least squares estimators are nice in that 

they are unbiased, i.e., their expected value is exactly equal to the value of 

the parameter that they are estimati ng. They a1 so have the small est standard 

error of any linear estimators. This makes them the "best" linear estimators. 

The relationship Y :: X(3 + f, whera there are p independent varia .. ; •.•• 

Xi' can be written out as 
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----- - ~- ---- -~~-------,.. .... r.r 
'( 
1 1 Xu •• 0 Xp1 f30 (1 

Y2 1 X12 Xp2 131 (2 

= + 
0 0 

f3 p 

Multiplied out, this will yield the equations 

VI = f30 + {31 XU + f32X12 + •••• + f3 pXlp + (1 

V2 = f3u + ~IX21 + {32 X22 + 0$ •• + {3pX2p + (2 

To solve for the parameters {3i' one need only solve the eql'ation 

The calculation involves inverting a (p + 1) X (p + 1) matrix. As a simple 

example, we will consider only one independent variable X and determine the 

regression equation 

Suppose a scientist is studying the relationship between the yield in 

a chemical reaction and the temperature at which it was run. He runs an 
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experiment and makes the following observations: 

Temp. (X) 8U 9U IOU 11U 12U 13U 14U 

Yi el d (Y) 3.2 4.5 4.9 5.7 6.1 6.8 7.0 

["Xi 
xi ] ~7: 770J [87500 -77~ ] XIX = x.2 = (X'X)-l = 19900 - 770 7500 

1 

X'Y = [Yo ] 
X;Yi 

:; 

[ 38.2] 
4374.0 

[87500 
(X'X)-l X'Y = 19~00 -770 

-770] [ 38.2 ] 
7 4374.0 

[-25480 ] 
= 19~OO 1204 = 

[-1.3 ] 
0.0614 

Thus the relationship between temperature and yield can be expressed as 

Yield = (O.0614)(temperature) - 1.3 

and predictions of yield can be made for different temperat'Ares. Various 

tests of hypotheses can be made about these estimated parameters, but these 

will not be covered here. The interested reader is referred to the 

bibliography for further information. 

Several points should be made about regression before leaving the 

topic. First and foremost, a 900d relationship between variables does not 

imply a causal relationship. In this example, higher temperatures might very 

well cause high yiElds, but this is not necessarily the case in all 

situations. For example, it has been shown that there is a highly significant 

relationship between ministers' salaril~s and the sale of liquor in Havanan. 

This relationship is probably the result of an extraneous factor. namely, the 

economy. 
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Another big mistake made in regression, and one which is all too 

common, is the extrapolation of the model to predict Y values from X values 

beyond those used in the determination of the model. It is possible t.hat the 

same relationship will hold, but it is also possible th~t extrapolation will 

lead to ~rroneous, or even meaningless, results. For exrunple, suppose that 

one makes observations on children from ages 0 - 15 and forms the regression 

model for predicting height from age. It should be a fairly good relation­

ship. Then, if one substitutes the age of 70 in this relationship, the 

predicted height would be thirty feet! In this case, it is easy to see that 

no predictions should be made for any ages other than zero to fifteen. 

There is one more point to be made. A regression model is a linear 

model, in that it is linear in the coefficients f3 i • Polynomial models 

such as 

can also be fitted using regression analysis. As long as it is linear in the 

~i ·s, the regression techniques will be valid. 
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7.0 ANALYSIS OF COVARIANCE 

The analysis of covariance, which is a comuination of analysis of 

variance and regression analysis, is a meth:Y~ which can be used to remove the 

effects of a nuisance variable X which is linearly related to the observed 

variable Y. The effect of this nuisance variable, or covariate, is removed so 

that it will not inflate the error mean square. Examples of such situations 

occur when there ;s a possibility of a pre and post score. For example, in 

measuring blood volume after certain treatments are applied, it might be 

informative to kno't'/ the original blood vollJ11e so that the variance 

attributable to any linear relationship between blood Vti:limE: after treatment 

and the original volume can be removed. Or, suppose one is measuring the 

strength of a certain fiber. The thickness of the fiber might affect its 

strength, so the thickness can be treated as a covariate and the variance 

associated with the linear relationship between strength and thickness can be 

removed. An additional assumption for the analysis of covariance (in addition 

to those for the analysis of variance and regression analysis) is that the 

treatments can have no effect on the covariate, X. The computations for the 

analysis of covariance are given in Table 6. 

As an example, suppose that an experiment is being done to determine 

the amount of time it takes to analyze a certain type of chemical using three 

different types of instrum~nts. It is also known that the time it takes to 

analyze the chemica1 (Y) is related to the amount of chemical being analyzed 

(X). Observations ar'e made, and the results and calculations are as follows: 
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TA3lE 6 

Analysis of Covari.lllce for One Factor and One Covariate 

Source of df Sums of Squares Adjusted For Regression 
Variation and Products 

x xy yy Y !.If Mean Square F-ratio 

* 
Treat~nt!: a-I \1. Txy Tyy 

"" 55 
Exx EXY Eyy ':'E = Eyy- (Exy)2/Exx HS - E Error a(n - 1) a(n - 1) - 1 F - a(n - 1) - 1 

t 
',',' = 5 - (5 )2/5 \1. <: 5yy Total an - 1 J xy E yy xy xx an - 2 

Adjusted Treatments SST = SS' - SS MS = SSTr NSf,· r E E a - } Tr a--.:-r nS[-
~--- ----- ---- - ~-~~~- -~------ ~-L...-

E 5 T Xl'. xx xx 
n t 2 t s = ~ /. _ ~ 

xx ~" 1J an 
1'-'1 J=l 

" a 2 
T = '""' x. , 1.2 

xx L.J ---'-J. -
j=l n a~' 

"" 

a 
TXy=L:(x.j)(Y.j)-(x .. )(y) 

j=l an - .. ~ 
r S - T 
LXV xy xy 

n a 
\y = ~~ Xi,y .. - (x )(y ) L.JL..J J 1J ,. •• 

j=} j=l an 

a 
T -2: 2 ~ - y, yy __ 1. - Y" 

j=l n a-11 
Eyy - Syy - Tyy 

n a 
S c ~{:; 2 i yy £-! y ij - -'-' 

1=1 J= an 

~k~ ." " , -" .<~--
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Instrument T~/pe 
1 2 3 

Y X Y X Y "X 
3U 27 28 29 43 41 

47 43 38 35 25 29 
36 38 49 45 56 53 

44 43 29 28 21 23 

157 151 144 137 145 146 

S = 17862 - (446)2/12 = 1285.667 
yy 2 

Sxx = 166U6 - (434) /12 = 9U9.667 
S = 17189 - (434)(446)/12 = 1058.667 
T

XY 
= [1572 + 1442 + 1452]/4 _ (446)2/12 = 26.167 

T
YY 

= [151 2 + 1372 + 1462]/4 - (434)2/12 = 25.167 xx 

" --------._-

X = 434 .. 
Y = 446 

!IY .. 
lJ 

= 17862 

Il:X .. 
lJ 

= 166U6 
IIX .. Y .. 

lJ lJ 
= 17189 

Txy = [(157)(151) + (144)(137) + (145)(146)]/4 = 25.167 

Exy = 1285.667 - 26.167 = 1259.5 

Exx = 9U9.667 - 25.167 = 884.5 
Exy = 1058.667 - 20.9167 = 1037.75 

Sums of Squares 
And Cross Products Adjusted for Resression 

Source of 
Variation OF xx xy yy Y df MS F-ratio 

Treatments 2 25.167 20.9167 26.167 
Error 9 1037.75 1037.75 1259.5 41.947 8 5.243 
Total 11 1058.667 1058.667 1285.667 53.594 10 
Adjusted 

Treatments 11.647 2 5.823 1.111 

Since 1.111 < F(0.05; 2,8) = 4.46~ we conclude that there is no difference in 

the time requirnd to analyse the chemical using the different instruments. If 

there had been a difference, multiple comparisons could have been run to 

determine which means were different, but the tests already presented would 

have to be modified. Further information can be found in the referenc~s. 

82 

~-.. ~ ____ ....... ' ...... _' ..... ___ , ......... _ .. ..., ...... __ ._ .. __ • __ -.",.~. __ ..... jAt __ ._ ............. . 

- ;~~i 

),: 

. 
c 



.1 

" 

As with the analysis of variance and regression techniques, this 

desi gn can be extended to i ncl ude more than one factor and more than one 

covariate for the regression. It is not difficult to see that more complex 

designs will require tremendous amounts of calculation, necessitating the use 

of a computer. 

83 

........ _~"""""'rl"""""" ....... !C ..... """ .. ,, _____ v ____ ..-...-.....~ ..• , .. __ • __ • ~ ..... 

. 
I. 



---,---.--------~----~ --~- ----~ .. ~. -.-~~-----.,~ ..... ' 
• 

I 
~ 

8.0 SUMMARY 

A statistical problem which is encountered in analyzing space-flight 

data is the limited number of samples that can be obtained. Because of the 

small sample size available, the analysis of the data should be done in a 

manner which will glean the maximum amount of information from the experiments 

as accurately as possible. In order to determine the type of analysis to be 

used, one should carefully analyze the situation and determine what can be 

assumed about the nature of the samples. 

The procedures which have been presented here should give the basic 

background required to determine the type of design which is needed or is 

being used in an experiment. Also, the factors have been specified, which 

need to be checked in order to insure that the requirements for using a 

particular test have been met. 

In designing an experiment one of the major factors to remember is 

that the observations must be randomized; i.e., every member of the population 

about which inferences are to be made should have an equal chance of being 

observed. Randomization is the foundation of all of the statistical analyses 

presented here. It is an underlying assumption for every single test, and it 

is one which, when violated, leads to results of unknown significance when 

extending the characteristics of the sample to the population. If there are 

any restrictions on randomization, they should be considered in the analysis 

of the experiment (by the use of blocking, for example). 

In determining the kind of analysis to be used on the data, one 

should try to ensure the validity of the assumptions of the test employed, be 

it parametric or nonparametric. For instance, the scale of measurement must 

be adequate for the test. Also, the statistical test must be appropriate for 
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the underlying distribution -- a t-test should not be used on obviously non­

normal data, and so on. If the assumptions for the parametric test 

(normality, interval scale, homoscedasticity, etc.) ar'e valid, then the 

parametric tests will be the most powerful to analyse th~ data. As these 

assumptions break down, however, tne nonparametric tests become more powerful. 

The number of samples being compared is another major consideration 

in the choice of analyses. If there are more than two samples being compared, 

two-sample tests should not be applied to the different combinations. This 

drastically raises above the predetermined level. Some type of test, such 

as an Analysis of Variance procedure, should be applied for simultaneous 

comparisons. Likewise, if there is more than one factor to be tested for an 

effect, a design to test all factors simultaneously s~ould be used so that 

interactions can be detected. As the deSigns become more complex, there are 

no nonparametric alternatives to the analysis of variance and covariance 

procedures, so these wi 11 be the ones to employ. 

Another major point which must be stressed is the determination of 

whether the samples are indepen~~nt or correlated. Tests for independent 

samples should never be run on correlated data, because independence is one of 

the major assumptions in such tests; oth~rwlse sensitivity will be lost. 

Likewise~ running correlated tests on independent sampies leads to a reduction 

in power. Any time that the experiment contains repeated measures, that is, 

when subjects are used as their own controls, the data will be correlated. 

Two-factor tests should be paired, and multi-factor tests should be blocked. 

Much space fl i ght data ; s obtai ned by repeated mea.sures, so thi s must be taken 

into consideration in the analysis. 

Finally, when dealing with the analysis of variance, care should be 

taken in determining whether each factor is a fixed or random effect. Not 
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