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ABSTRACT

A problem which is encountered when dealing with analysis of spaceflight data
is that of small sample sizes. Resource and cost considerations 1limit the
number of experimental subjects available on each flight, thus greatly
limiting the amount of data obtained and the power of the results derived. In
the 1ight of such a small amount of data available, careful analyses are
essential in order to extract the maximum amount of information with
acceptable accuracy. This report is concerned with statistical analysis of
small samples. It begins with the background material necessary for
understanding statistical hypothesis tesiing and then explains with examples
the various tests which can be done on small samples. Emphasis is on the
underlying assumptions of each test and on considerations needed to choose the
most appropriate test for a given type of analysis.
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STATISTICAL ANALYSIS TECHNIQUES FOR SMALL SAMPLE SIZES

1.0 INTRODUCTION

When working with estimating population parameters based on only a
sample of the population, it is logical to expect that better estimates will
result from larger sample sizes; in fact, values of sample parameters approach
those of the population as the sample size increases. For large samples
(usually N > 30 is sufficient), a powerful statistical tool calied the Central
Limit Theorem provides the basis for obtaining acceptable results. In many
situations, however, it is not possible to obtain samples of such large .ize.
Space flight is a prime example where the limited available resources render
large samples infeasible. This problem has been dealt with in the past by
combining data from several flights. For example, in analysing some of the
Skylab data, the data from three separate manned flights with three
crewmembers each were pooled, thus producing a combined sample size of nine
(1, 2). Care should be taken when combining data from different sources,
however. Experimental conditions will never be identical from one flight to
the next, and these differences might undermine the underlying assumptions of
the analyses and thereby falsify the results. W#hen planning an experiment,
careful consideration should be given to the effect of the sample size on the
outcome of the experiment, and the type of analysis chosen should permit
extraction of the maximum amount of information with desired accuracy from the
available data. If data are combined from different sources, this fact should
be incorporated into the analysis. Techniques that are particularly useful
for analysing data from small samples taken from different types of situations
are presented in this report. Emphasis is placed on the assumptions inherent

in each test and on considerations needed in Choosing the type of analysis.
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2.0 BACKGROUND

This section gives the background information necessary to understand
the statistical fests described in the next section. It is very basic,
beginning with the purpose of statistics, and then developing the basics of
hypothesis testing. Characteristics of tests such as the Tevel of
significance, the power, and the relative efficiency are defined, and the
distinction is made between parametric and nonparametric tests and the various
scales of measurement. Finally, there is a discussion of the central limit
theorem. Anyone familiar with these topics may skip this section and go on to
Section 3. Computation of simpie sample parameters such as sample mean and

standard deviation can be found in an earlier report {3).

2.1 PURPOSE OF STATISTICS

The purpose of statistics is to ascertain, within a specified degree
of accuracy, the characteristics, or parameters, of a population, using
observations made only on a sample of the population. The values of these
parameters could be determined exactly, of course, if observations are
available on every individual member of the population in question, say,
astronauts. No statistics would be necessary in such a case. Unfortunately,
observations on the entire population are seldom (if ever) possible, and so we
must resort to the next best thing: take a sample of the population, make the
observations on those few individuals, and from the data thus obtained, try to
infer the characteristics of the entire population.

Unfortunately, sources of error inherent in any experiment will
prevent the sample parameter values from being identical to the values of the
population parameters. One of these sources is observation error; the

accuracy of the results will be influenced by the precision of the instruments



and methods used to obtain the observations., One should be able to obiain a
good estimate of tihis error before the start of the experiment, so that its
effect on the results can be explained.

The main source of statistical error, i.e., the deviation of sample
parameter values from ::opulation parameter values, however, will be due to the
subjects themselves. This error is caused both by between-subjects variation
and by within-subjects or day-to-day variation. The between-subjects vari-
ation arises from the fact that no two individuals are exactly the same and
therefore observations on them will necessarily differ. Within-subjects
variation arises from the fact that the characteristics of the same individual
will change over a period of time and hence the observations taken on one day
probably won't be the same as those taken on another day.

Because of these various sources of error in the data, it is not
possible to determine exactly the "true" values of the population parameters.
This is where statistics can be of help., Statistical techniques have been
developed to estimate the values of the parameters in question (both single
point €.timates and interval estimates) and to determine the probability that
these estimates are correct. Building on this, it is also possible to test
whether parameter values between populations are the same, or whether

different factors (e.g., weightlessness) have any effect on parameter values.

2.2 BASICS OF HYPOTHESIS TESTING

The roots of these statistical inference techniques lie in the theory
of probability and prcbability distributions. For example, take the simple
experiment of flipping a coin. For a fair coin, there are two possible
outcomes, heads and tails, each with its associated probability, 1/2. Now

flip the coin 10 times and count the number of heads. How many will there be?



One can't say for sure, because there is a lot of 'within-subject variation'
in the coin; roughly half the time it will be one value, half the time the
other. So one would expect and guess that there would be five heads, which is
half of ten. But what is the probability that there will, in fact, be exactly

five?

2.2.1 The Binomial Distributien

Since we know that the probability of getting a head on a single to.s
is 1/2, we can easily figure out the probability of getting any number of
heads that we want; all that we need to do is figure out the probability of
getting x heads and (10 - x) tails and then multiply it by the number of
possible combinztions of x heads and (10 - x) tails. This in fact follows
what is called the binomial distribution with parameters n(sampie size) = 1U
and p(probability of a head) = 1/2. The probability density function (pdf) of
the binomial distribution is given by

p(X)=(2)px(1 - p)X,

Using the above formula, the distribution of heads in ten tosses of a

coin is given by:

i

.0097
. 0440
L1172
.2051
. 2460
.2051
.1172
.0440
. U097
.0010
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Looking at this table it can be seen that, while five is the number

that is most probable, it actually occurs less than one quarter of the' time.



Now let's turn things around. Instead of predicting in advance hov
many hees: will be obtained, let's count the number of heads ir ten tocses and
try to determine whether or not the probability of getting a head actually is
equal to 1/2. To put this in statistical terms, we want to test the null

hypothesis H0 that the probability of heads {denoted by p(heads)) = 1/2.

2.2,2 Level of Significance

Common sense dictates that if the probability of heads is 1/2, then
the number of heads will be close to five; but the question is, how ¢lose is
"close.” To determine this, the experimenter must first decide how certain he
wants to be that his results are correct, that is, his "level of signifi-
cance." He can never be absolutely sure that the null hypothesis is not true;
even if he flips the coin ten times and doesn't get any heads, it doesn't
necessarily mean that the coin is not fair. However, such an outcome is
unlikely enough that its occurrance wouid lead one to infer that the coin was
not fair. Note that since p(x) = 0.001 for x = 1U, approximately one out of
every thousand trials with a fair coin will resuit in no heads. This is the
level of significance, denoted usually by a. It is the probability of
obtaining by random chance a value which the investigator is willing to accept
as disproving the null hypothesis. In other words, @ is the probability of
rejecting the null hypothesis when it is true. The value of a should always
be determined before the start of the experiment; as the value of «
decreases, the significance increases.

If the experimenter would be satisfied with a result that would occur
by chance only one in twenty times, then he would set the significance level
at 1/20 or 0.05. Suppose he does this, then flips the coin and gets two

heads. Should he accept or reject the null hypothesis that p(heads) =1/27



Since he is only interested in whether the probability equals 1/2, and not in
whether it is larger or smaller than 1/2, outcomes with both large numbers and
small nuabers of heads will lead to the rejection of the null hvpothesis.
Therefore, our observed valva of two should be matched with t:i% corresponding
value on the other end, i.e., 10-2 = 8, Furthermore, the numbers even farther
from our proposed value [equal to b for p(heads) = 1/2] than two and eight
should also be considered; i.e., zero, one, nine, and ten. In other words, we
are interested in the probability of getting a number as far or fartner from
five than two and eight. Adding the probabilities of zero, one, two, eight,
nine, and ten, one sees that the probability of this occurring by chance is
0.1094, more than twice the level of significance. The number U.1UY4, denoted
by &, s the actual level of significance of the experiment. It is the
probability of ubtaining by random chance a number at least as extreme as the
observed value if one assumes that the null hypothesis is true. OUne will
reject the null hypotnesis only if @ is less than or equal to «a, the
predetermined level of significance. In this case, since @ is over twice the
value of a, the experimenter must accept the hypothesis that the probabiiity
of heads is 1/2,

Suppose the experimenter was interested in knowing if the coin was
biased in favor of tails. If this were so, then the number of heads would be
small. The null hypothesis in a case like this is "Ho: the number of heads
is greater than or equal to five" versus the alternate hypothesis “Ha: the
number of heads is less than five." Suppose he flips the coin and again
obtains two heads. This time only small numbers will lead to the rejection of
the nu!l hypothesis. To determine if this is significant, one need only add

up the probabilities of getting two heads or less; i.e., the probability of



obtaining a zero, one, or two. Doing this, we see that the probability is
0.0547. This is still larger than the pre-determined significance level of
0.05, so the experimenter must still accept the null hypothesis; he does not
have sufficient evidence to reject the hypothesis that the expected number of

heads 1s greater than or equal to five.

2.2.3 One and Two Tailed Tests

It would, of course, be possible for the experimenter to determine in
advance what kind of numbers he would have to get in order to reject the null
hypothesis. For example, take the test of “HO: the wean number of heads is
five." This is what is known as a "two-tailed" test because both large and
small values will Tead to the rejection of the hypothesis. In a two-tailed
test, the level of significance is divided as evenly as possible between
both ends. In a symmetric distribution, i.e., one in which the probabilities
are distributed evenly about the mean, this can be done exactly. If a =
0.05, then we want a/2 = 0,025 to be at each end of the distribution. Thus,
to determine which values will lead to the rejection of the null hypothesis we
need only add up the probabilities, starting with zero, and keep going as long
as the sum is less than or equal to @ /2 = 0.025. In the coin tossing experi-
ment the probability of zero or one is 0.0107; but if two is added, it is
greater than 0.05, much larger than 0.025. Therefore, zero and one, and their
corresponding values of nine and ten at the other end, will constitute the
rejection values or critical values for this experiment; i.e., if one flips a
coin ten times and obtains zero, one, nine, or ten heads, he wiil reject the
null hypothesis and conclude, at @ = 0.05, that the coin is not fair.

A null hypothesis which specifies the mean to be greater than or

equal to five (or less than or equal to five) is tested by a "one-tailed test"



because all of the critical values lie at one end »f the distribution. In
this case we determine whether large or small values will lead to the
rejection of the null hypothesis, then go to that end of the distribution and
add up the probabilities, keeping the sum less than or equal to «. In the
coin tossing experiment, the critical values for "HO: the mean number of
heads is greater than or equal to five" will consist of the numbers, starting
with zero, such that t@e sum of their probabilities is less than or equal to
0.05. Adding these probabilities, we see that this region consists of zero
and one, because the addition of the probability associated with two heads
makes the sum larger than 0,05, Therefore, we would reject the hypothesis
that the mean is greater than or equal to five only if we obtain a value of

Zerg or one.

2.2,4 Discrete and Continuous Distributions

The coin-tossing experiment described above is somewhat unusual in
that the one-tailed critical values are exactly the same as the two-tailed
values at each end of the distribution. Generally the one-tailed critical
values will be closer to the hypothesized mean than the two-tailed values.
This was not the case because the underlying distribution (binomial) was
discrete, meaning it had a finite number of sample points, and the increase in
probabilities from one to two was relatively large. Another inconvenience
that arises when working with discrete distributions is that it is usually
impossible to find critical values with probabilities that sum exactly to a.
Generally the sum will be less, as in the above example; in the two-tailed
test, a was actually 0.021¢ and in the one-tailed test, it was U.UlU7.

These problems don't arise when working with continuous (having an

infinite number of sample points) distributions. Since there are an infinite



number of points, the probability associated with any one point is zero;
therefore, it is necessary to work with intervals. Everything is exactly the
same as in the discrete case except that instead of having specific critical
values, there are critical regions corresponding to the areas under the curve
of the distribution function. For example, in a two-tailed test with « =
U.05 there will be two critical or rejection regions, one in each tail of the
distribution (thus, the term "two-tailed" test) and each hawing an area of

0.025. & will be twice the area under the tail of the curve starting at the

observed value.

.025 / | | .\i ;,025

In a one-tailed test, the critical region will be under only one tail of the

distribution and will have an area of U.Ub5.

The null hypothesis will be rejected anytime the observed value lies in the

critical region. 4 is simply the area under the tail of the curve beginning

at the observed value.



2.2.5 Summary of Hypothesis Testing

To summarize, the experimenter must decide on two things before the
start of the experiment: the hypothesis that he wishes to test and the level
of significance, a . The hypothesis, either one-tailed or two-tailed, will be
stated as a null hypothesis vs. an alternate hypothesis. Generally the
experimenter states what he is trying to disprove as the null hypothesis,
i.e., he assumes that it is true and tries to find sufficient evidence to say
that it is not true. For example, if one is trying to show that a certain
parameter M is greater than 50, then he will set up the one-tailed hypotheses
as:

H: M<50

0
H: M>50

a
Failing to reject the null hypothesis does not give any statistical evidence
to say that it is true; it only means there is not sufficient evidence to
conclude that it is false. Rejecting Ho’ on the other hand, does give
statistical significance to the falsity of the null hypothesis and therefore
the truth of the alternative. The level of significance, a , gives the
probability of rejecting H0 when it is in fact true.

After the experiment is done, the observed value, or test statistic,
is computed. This value is then compared to the distribution of all possible
samples of that type. If the observed value is one that would occur less than
or equal to a of the time by random chance, then the null hypothesis is
rejected in favor of the alternative. The actual level of significance of the
experiment, @ , can be computed. This is simply the probability of obtaining

a value at least as extreme as the observed value if H0 is true. If @ <a,

then Hc will be rejected.

10



2.3 POWER

There is another measure of the validity of a test besides the the
level of significance, a . The measure a itself is the probability of making
an error, i.e., rejecting the null hypothesis when it is true. This is known
as a Type I error, and is controlled in the experiment. There is also another
type of error, specifically, accepting the null hypothesis when it is false.
This is known as a Type II error and is denoted by B, and is not easily
controlled because the true population parameter is not known prior to the
experiment. The measure & is easily controlled, because it assumes that
H0 is true; therefore the value of the parameter is assumed to be a specific
value and probabilities are easily computed thereafter, The measure 8 ,
however, assumes that H0 is false, thus impiying that the value of the
parameter is something other than the specified value, but it is unknown.

Instead of working with B, the probability of a Type II error,
statisticians generally work with the quantity 1 - B, which is the
probability of rejecting the null hypothesis. This quantity 1 - 8 1is known
as the power of the test. Power is a function of the sample size, the level
of significance a , and the number of standard deviations of the true mean
from tl.e hypothesized mean. Generally power curves are shown as functions of a
and the distance between the true and hypothesized means, with a different
curve for each sample size. At zero distance, when the true and hypothesized
means are the same, every curve will have a power of @ , since it is the
probability of rejecting the null hypothesis when true. As the distance from
the mean increases, the curves change according to sample size. The smaller

the sample size, the flatter the curve and thus the less the power; the larger

the samplie size, the greater the power. (Figure 1)

11
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FIGURE 1:
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Power curves for two-tailed tests from a normal distribution, «= .05.

(Reference:

Roscoe, 1969)
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Power curves can be used to determine the sample sizes needed in an
experiment, but to do so one would need an estimate of the variance 0'2 of the
observations in the experiment. If s.ch an estimate is available, one can
determine the size difference desired to be detected, and for various values
of « and 1 - 3, the sample size needed can be determined from the curves.
For example, from Figure 1 it can be seen that to detect a difference of one
standard deviation when a = 0.05 and 8 = 0.20, a sample of 10 is required.
To get a very powerful, highly significant test for a small difference, a very
large sample size will be required. If, by the nature of the experiment, only
a small sample size is possible, some compromise is needed. Either the
difference to be detected must be increased, or the power and/or significance
must be lowered. In planning an experiment it is often desirable to check
these things in advance. It may be that with the available sample size, to
detect the desired difference at a reasonable level of significance, the power
would “e so low that it might not justify the cost of the experiment. 1t witl
at least give the experimenter an estimate of his chances of detecting a

difference.

2.4 EFFICIENCY AND ASYMPTUTIC RELATIVE EFFICIENCY

Another concept which is related to the two types of error and sample
sizes, and one which can be used to compare different tests, is efficiency.
The efficiency of one test relative to another is simply the ratio of the
sample sizes required to test the same H0 against the same Ha with the same
values of a« and B. For example, suppose we are testing a hypothesis, and we
want « = 0,05 and B8 = 0,1U. Suppose there are two different tests that we
can use; Test 1 would require a sample size of 30 to get the required

accuracy, whereas Test 2 would require a sample size of only 20. Then'the
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efficiency of Test 2 relative to Test 1 is n1/n2 = 30/20 = 1.5. Anytime there
is a choice between two possible tests, the one with the highest relative
efficiency will be the better one to use because it will require a smaller
sample size to obtain the same results.

The relative efficiency is not a very practical comparison to use,
howaver, because it depends on the hypotheses and a and 8, and thus would
have to be computed for every situation. A measure which is independent of a
and B 1is the asymptotic relative efficiency (A.R.E.) of one test to another,
which is computed by holding a and B constant and letting ny approach
infinity, then taking its ratio with the corresponding value of Noe If this
ratio n2/n1 approaches a constant for all sequences of tests with different
a and B, which it frequently will, it is the A.R.E. of the first test
relative to the second. Although the A.R.E. is computed for very large sample
sizes, studies have shown thay it is often a good approximation to the
relative efficiency of small sample sizes in many practical situations, and is

thus a good measure of the relative efficiency of two tests.

2.5 PARAMETRIC AND NONPARAMETRIC TESTS

One may wonder why it is even of interest to compare two tests when,
as in the case of the coin tossing experiment, we know the exact distribution
of the possible outcomes, i.e., the sampling distribution. The answer is
simple; if the exact distribution is known, then it should be used. Most
experiments, however, are more complex than tossing a coin, and in many cases,
it is impossible to know exactly how the sample is distributed. When this is
the case, one must use some type of test that does not depend on the

distribution of the sample. Tests of this type are known as nonparametric
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tests, and in many cases there are many different tests that could be used on
a given set of data. In a situation such as this, the A.R.E. can be used as a
guide to help determine which test should be used for maximum efficiency.
Tests which do assume that the exact form of the sampling distri-
bution is known are called parametric tests. The coin-tossing experiment was
an example of a parametric test, with the underlying distribution being the
binomial. Anytime the exact distribution is known, the parametric tests will
be more sensitive than any comparable nonparametric tests. However, if any of
the assumptions for the parametric tests are not met, then it is possible that
the nonparametric tests will be more powerful. Although parametric tests are
more sensitive, they are very limited in the situations in which they can be
used. All parametric tests presented in this paper will assume the normal
distribution. Nonparametric tests are applicable to a much wider range of

situations because they have fewer or less restrictive assumptions.

2.6 RANDOMIZATION

Cne very important assumption that is made by all tests, both
parametric and nonparametric, is that the sample that is taken be random; that
is, all elements in the population should have an equal chance of being
included in the sample. If the sample is random, the sampling distribution
can be estimated mathematically. If it is not random, the sampling
distribution will be unknown, or at least the accuracy with which it is
estimated will be unknown. A good approximation of the sampling distribution
must be obtained in order to determine the precision of the inferences about

the population which are made from the sample.
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2,7 SCALES OF MEASUREMENT

Another consideration important to any particular test is the scale
of measurement used in obtaining the data. There are four possible scales of
measurement: the nominal, ordinal, interval, and ratio scales. The nominal
scale uses numbers merely as a name; for example, in flipping a coin, one
could assign "heads" a '0O' and "tails" a 'l*. These numbers are arbitrarily
assigned and have no numerical meaning. In the ordinal scale, numbers can be
ordered as "less than," "greater than," or "equal to." For example, in a
race, the winners are assigned first, second, and third place. No measure of
the amount of difference between these numbers is given. In an interval
scale, the size of the difference between numbers (thus, "intervail") is
meaningful. An interval scale must be based on a unit distance as compared to
a zero point; the zero, however, is arbitrarily assigned. Temperature is
something which is usually measured on an interval scale. The last scale of
measurement, the ratio scale, has all of the characteristics of the interval
scale except the zero point is meaningful, thereby giving meaning to ratios

between two measurements. Height and weight are measured on a ratio scale.

2.8 THE CENTRAL LIMIT THEOREM

When determining the distribution of the sample, the size of the
sample plays an important role. If the sample size {s large, the analysis can
often be simplified by using the central limit theorem. If Yn is some
statistic based on a sample of size n from any distribution, and “n is its
mean and anz its variance, then the central 1imit theorem says that the

distribution of (Y #n)/an approaches the standard normal distribution

N "
(normal with mean zero and variance one) as n approaches infinity. In other

words, if one takes any statistic from a large enough sample (usually n > 30
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is adequate for a good approximation), and subtracts its mean and divides by
its standard deviation, the result will have a normal distribution with mean
zero and variance one, irrespective of the form of the original distributijon.
The number obtained by doing this transformation is simply the number of
standard deviations that the value is away from the mean of the standard
normal. Probabilities for the standard normal have been extensively
tabulated; one need only look up the required number in a normal table to
determine the area under the curve up to that point; i.e., the probability of
obtaining a value that extreme by random chance.

Unfortunately, in many situations the sample size is not adequately
large to justify invoking the central 1imit theorem. In these cases one must
gither use the exact distribution of the sample or, if the distribution of the
sample is unknown or if ihe measurement scale is insufficiently powerful, use
the appropriate nonparametric tests. The most widely used tests for small

sample sizes are given in the following sections.
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3.0 ONE-SAMPLE TESTS FOR LUCATION

Perhaps the simplest type of test that one would wish to perform
is to determine whether the mean or median of the population is equal to a
specified value. Depending on the assumptions that can be made about the
underlying distribution, several different types of tests can be used to test

for 1ncation.

3.1 PARAMETRIC: ONE-SAMPLE T-TEST FOR A DIFFERENCE IN MEANS

Assumptions

(i) The observations X,,...,X constitute an independent random
sample from the population.

(i1) The cample is taken from a normally-distributed population.

(111) The measurement scale is at least intervai.

(iv) The measurements are continuous.

The test statistic used to test the hypothesis "HO: p = ub“ ist=
(x - yo)/(SA/ﬁ7, where x is the mean of the sample, s is the standard
deviation of the sample, Mo 1s the constant we are assuming is the value of
the population mean (according to the null hypothesis) and n is the sample
size. Notice that this statistic looks very much like the statistic in the
central Timit theorem; we are taking a number, subtracting the mean from it,
and dividing the result by the standard deviation. This is proper even though
we have taken a small sample because the means of samplies from normal
distributions are normally disiributed. However, this statistic dces not
follow a standard normal distribution because of the necessity to estimate the
standard deviation. This is acrounted for by comparing the computed t to the
proper quantile of a t distribution with n - 1 degrees of freedom (DF). The

larger the degrees of freedom, the closer the t-distribution comes to the
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standard normal because the estimate of the variance gets better. Tabled
values of the t-distribution are available in most books on applied statistics.

As an example, suppose an experimenter wants to test the hypothesis
that a certain population has a mean of six against the alternate that the
mean is not equal to six, with a = 0,05, He takes a random sample of size
eight and obtains the following numbers: 4,6, 6.3, 5.2, 3.7, 4.8, 6,0, 4.7,
5.3. For this sample X = 5,075 and s = (.8242. So the t-statistic is

t = (b,U75-6)/(.8242A/8) = -3, 1743,

Since this is a two-tailed test, we compare this number to the + (1 - a/2 =
(0.025, 0.475) quantile of a t distribution with (n - 1) = 7 degrees of
freedom. This value is + 2,365, Since -3.1743 < -2.36b, we reject the

hypothesis that p = 6. Tio determine @, we would need to interpolate between

the 0,975 and 0.995 values of Ty, 2,365 and 3.499, respectively. From this we
obtain that @/2 = 0.01073, so @ = 0.02146, In other words, in repeated
trials from a population with a mean of 6, observations this extreme would
occur by chance only about 2 percent of the time.

A confidence interval can also be obtained for our estimate of ihe
true mean of the population. A 100(1 - a) percent confidence interval gives

Timits between which we are 100(1 - a) percent certain that the true mean of

the population lies. For this test,

* - t[a/2; n-1] S S p <t [1-a/2 ; n-1] SR+ X

For our example, the 95 percent confidence interval is given by 5,075 +

2.365(0.8242/v8) = (4.386, 5.764). Thus, we are 95 percent certain that the
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true mean of the population 1ies scmewhere between 4,386 and 5.764, Notice
that this confidence interval does not contain the hypothesized value; this
will be true if and unly if Ho was rejected.

There i. one more aspect of this test which should be noted. If the
original hypothesis had been one-tailed, i.e., “Ho: p < 6" or "Ho: K >6,"
then the test statistic would have been compared to the 1 - a = 0,95 quantile
of Lhe t7 distribution, which is 1.895, We would reject the hypothesis "Ho:

B2 6" if t < -1.895, and the hypothesis "Hyt # < 6" if t > 1.895. However,
the confidence interval would be exactly the same for all three tests as Tong

as a two-sided confidence interval is desired, as is usually the case.
3.2 NONPARAMETRIC TESTS

3.2.1 One-Sample Sign Test
Assumptions

(i)  The sample is a random sample from a population with unknown
median.

(1) The mer urement scale is at least ordinal.

(iii) The variable of interest is continuous.

The sign test is used for testing the hypothesis that the median M of
the populaticn is equal to a certain value; i.e., "Ho:
procedure is very simple. A1l thai one needs to do is subtract M0 from each

M= Mo". The

of the sample values and record the sign; in other words, count how many
points are above and below Mo' If any point is exactly equal to Mo’ it is
discarded. The test statistic is simply the smaller of these numbery for "Hy'
M= Mo"; it is the number of minuses, or the number 3¢ values lower than the

median for the hypothesis "Ho: M Z_Mo"; and it iz the number of pluses, or
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the number of values greater than the median for tlie hypothesis “Ho: M 5-“0“‘
The test statistic is then compared with the probability values from the
binomial distribution with p = 1/2 and n* = the number of points left after
the zero aiffurences are discarded. This is done exactly as in the
coin-tossing experiment. Binomial tables can be found in most applied,
especialiy nonparametric, statistics books.

Using this test on the data in the previous example, we see that
there are six minuses, one plus, and one 7zero. Therefore n* = 7 and our test
statistic T = 1 for the hypothesis “Ho: M = 6", Looking in the binomial
tables forn=17, p=1/2, and a = 0,05, we determine that the critical
region, of actual size 0.0156, contains the points (0, 7). Since T =1, we
have insufficient evidence to reject the hypothesis that the median of this
population is six. @/2 = P(x < 1) = 0,0625, so @ = 0.1250.

Confidence intervals for the median based on the sign test can also
be obtained from the binomijal tables. Let K be the largest value of x for the
binomial with parameters n* and p = 1/2 such that P(x < K) < a/2. The
(K+l)th smallest observation is the lower limit and the (K+1)th largest
observation is the upper limit.

In this example P(x < 0) = 0.0078 and P(x< 1) = 0.0b2b, so K=U and K
+ 1 = 1; thus the smallest and largest values are themselves the endpoints for
the confidence interval. Therefore we are 98.44 percent certain that the true
median of the population from which the sample was drawn is between 3.7 and
6.3. Notice that this confidence interval contains the hypothesized value of
six, and that the hypothesis was accepted, while the confidence interval
formed using the t-test did not contain six and the hypothesis was rejected.
In general, anytime the confidence interval does not contain the hypothesized

value, the hypothesis will be rejected.
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it can be seen from this example that for a sample of this size, the
power of the sign test is not as great as that of the t-test for normal
samples. For very small samples, the relative efficiency of the sign test
compared to the t-test is approximately 0.95, but the efficiency decreases as
the sample size increases. For a sample size of 13, the relative efficiency
is only 0.75 and the A.R.E. is only 0.637, However, if the distribution
begins to depart from normality, the power of the t-test becomes ]ess and
less, depending on how non-normal the distribution is. If it is too far
removed, the sign test will be more powerful. Also, the sign test can be used

on ordinal data while the t-test cannot.

3.2,2 Wilcoxon Signed-Ranks Test

The sign test uses only the sign of the differences between the
points and the assumed value for the median. Thus, a considerable aivunt of
information is not utilized. The Wilcoxon Signed-Ranks Test also makes use of
the magnitude of the differences. This makes it a more powerful test but it
also requires more limiting assumptions.

Assumptions

(i) The data constitute an independent random sample with unknown
median M.

(ii) The variable of interest is continuous.

(i11) The measurement scale is at ]east interval.

(iv) The sampled population is symmetric.

The procedure is as follows: first subtract the assumed value for
the median Mo from each of the data points. Then, disregarding the signs,
rank these differences from smallest to largest, throwing out zero
differences. If any of the absolute differences are the same, assign the

average of the ranks that would have been assigned to all of them. For
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example, if the two smallest values are identical, assign each the rank 1.5,
Then assign to each of these ranks the sign of the original difference. Take
the sum of all of the positive ranks and call it T+; likewise, sum the
negative ranks and call this sum T .

For testing "Ho: M= Mo", the test statistic is T = min(T+, T7); for
"Hye M2 MY, T" is the test statistic; and for "Hyr MMM, T" is the test
statistic. Each of these statistics should be compared to the table values in
a table of d-factors for the Wilcoxon Signed-Ranks Test for the appropriate n
and d, where d > T. If the corresponding table value of a" (the probability
of obtaining that particular n and d when M = Mo) is less than or equal to a,
the null hypothesis should be rejected. The table of values for this test can
be found in many nonparametric statistics books.

Using the same example as before, we obtain the following results:

X; X; M, R,
4.6 -1.4 -6
6.3 .3 1 I
5,2 -.8 -3 T" = 27
3.7 -2.3 -7
4,8 -1.2 -4 T =1
6.0 0 .
4,7 -1.3 -5
5.3 -7 -2

The value of the test statistic T is 1 for "HO: M= 6", The table value of
a” for n=7and d =1 is 0,016; since this is less than 0.0b we reject H0
and conclude that the median of the population is not six. Because of the way

the table is set up, a" = @ = 0.016.
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A confidence interval for the median can be constructed by finding
the d value for the appropriate size » which is closest to the desired
confidence coefficient, then taking the dth smallest and dth largest averages
U

s where Ui = (xi + xj)/2, i #J. For our example, a" for d = 3 is U.U46;

1J J
a" for d = 4 is 0.078 which is larger than 0.0b; so we will form a 10U(1 -
0.046) = 95.4 percent confidence interval by taking the third smallest and
third largest averages. The third smallest Uij is given by (3.7 + 4.8)/2 =
4.25, and the third largest is given by (6.3 + 4.8)/2 = 5,b5, Thus, we are
95.4 percent certain that the true median (also, since the distribution was
assumed to be symmetric, the mean) lies between 4.25 and 5.5b.

The A.R.E. of the Wilcoxon Signed-Ranks Test relative to the t-test
is 0.955 if the differences are normally distributed. In other words, not
much is Tost in using this test over the t-test if the assumptions for the t
are met. Furthermore, since this test is good for any symmetric distribution,
it will apply to more situations than will the t-test. If the distribution is
badly skewed, the sign test will be the appropriate test. The A.R.E. of the
sign test to the Wilcoxon Signed-Ranks Test is 2/3 for normally distributed

differences, 1/3 for uniformly distributed differences, and exceeds one as the

distribution of the differences becomes skewed.
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4.0 DIFFERENCES IN LOCATION FOR TWO SAMPLES

A situation which is encountered more often than merely testing to
see if the mean or median of a population is a specified value is the need to
compare the means of two populations to determine if they are the same. This
can come about in two different ways: either the two samples which are being

compared are correlated in some way or they are completely independent.

4,1 TWO RELATED SAMPLES

Anytime there is reason to believe the measurements in one sample are
in some way correlated with those in the other, some kind of test for related
samples should be used. Such a situation exists whenever both sets of
measurements are taken on the same group of individuals before and after a
treatment is applied; i.e., whenever individuals are used as their own
controls. This is referred to as a repeated measures experiment. There are
also instances where two individuals are paired on the basis of the variable
in question before the beginning of the experiment; one in each pair receives
the treatment and the other serves as the control. In either one of these
situations, a test for related samples should be utilized to account for the
correlation.

In a test for related samples, the two samples need not be indepen-
dent (although observations within each sample should be independent) and, in
the case of the parametric test, the variances of the two samples need not be
the same. However, in a paired test, pairing reduces the degrees of freedom,
thereby reducing the power of the test if the samples actually are indepen-
dent. Given two tests, one for paired data and one for independent samples,
the paired test will require almost twice as many subjects to have the same

power if there are no extraneous factors; i.e., if pairing criteria is’
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independent of the variable of interest. These tests are described in the
following sections and are merely extensions of the one-sample tests discussed

previously.

4.1.1 Parametric: Paired t-test

Assumpt ions

(i)  The subjects for repeated measures or pairs for matched pairs
constitute a random sample.

(ii) The distribution of the differences is normal in the
populations specified by the null nypothesis Ho‘

(i11) There is no carry-over effect from treatment to treatment or
from measure to measure.

(iv) The measurement scale is at least interval.

In order to test for any difference between the means of two samples,
the null hypothesis is written as "Ho: By - Hy, = 0". Note that the
difference can be a specified value do’ in which case the null hypothesis
becomes, "Ho: By = By = do". Also, the one-sided alternatives can be used
to determine if the mean of one popuiation is larger than the other, by any
desired amount. For example, if one wants to see if the mean of one
population is more than five units greater than that of the other, the null
hypothesis can be stated as "Ho: By- K, 2 5%

This test is very simple to perform; all that one needs to do is take
the aifference Di = X1.1 - )(1.2 for each pair, then perform the one-sample
t-test on the differences, Di’ as if they were the actual observations. Thus,
the test statistic is t = (D - do)/(Sd n), where D is the average of the
differences, Sd is the standard deviation of the differences, n is the number

of pairs, and d0 is the hypothesized difference. In most cases, when the

investigator is interested only in determining if there is a difference, d0

will be equal to zero and the test statistic reduces tot = D/(SdAjﬁ).' The
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actual testing of the hypothesis and formation of confidence intervals are
then accomplished in exactly the same manner as with the one-sample test, so
those procedures will not be repeated here. The only thing to keep in mind is
that the inferences made and confidence intervals formed are on the differ-

ences in the means, and not on the means themselves.

4,1.2 Nonparametric Tests

Anytime the measurement scale is only ordinal or if the normality

assumption is not met, one will have to resort to the nonparametric tests.

4,1.2.1 The Sign Test
Assumptions
(i) The data consist of pairs of measurements from a random sample.
(i1) The pairs of measurements are muiually independent.

(i11) The measurement scale is at least ordinal within each pair,
i.e., each pair may be designated a plus, & minus, or a tie.

(iv) The pairs are internally consistent, e.g., if P(+) > P(-) for
one pair, the same is true for all pairs.

The sign test is used to test for differences in the medians of the
two samples. The relationship between the sign test and the one-sample sign
test is the same as that between the one-sample and paired t-tests. The differ-
ences between the members of the pairs are determined, and the test statistic
is the number of pluses or minuses, depending on the hypothesis. Differences
of zero are once again disregarded. The hypothesis is tested and confidence
intervals are formed in exactly the same manner as in the one-sample case, the
only difference being that the procedures in this case pertain to differences
between medians rather than to the medians themselves. Hence these procedures
will not be repeated here. The efficiency of the sign test in relation to the

paired t-test is also the same as in the one-sample case.
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4.1.2.2 MWilcoxon Matched-Pairs Signed Ranks Test

As was the case with the previous two tests, the Wilcoxon
Matched-Pairs Signed Ranks Test is merely an extension of the one-sample case.

Assumptions

(i) The sample of pairs (Xi’ Yi) is random.

(i1) The distribution of the Di's is symmetric.

(iii) The differences are mutually independent and have the same

median.

(iv) The measurement scale of the differences is at least interval.

The procedure is basically the same as in the one-sample case, except
that all inferences are made about the differences rather than about the means
themselves. The differences between the members of each pair are obtained,
their absolute values are ranked, then the signs are returned. The test
statistic, test of hypothesis, and formation of confidence intervals are the
same as for the one-sample test, as is the discussion of power and relative

efficiency.

4,2 TWO INDEPENDENT SAMPLES

Anytime there is no correlation between the two samples, a test for
independent samples should be used. As indicated earlier, the use of a test
for related samples on independent measurements will reduce the power of the
test by lowering the degrees of freedom. Likewise, the use of a test for
independent samples on correlated data will cause a loss of sensitivity.
Therefore, it is essential to determine whether or not the samples are
independent before deciding which design and analysis to use.

Unlike the tests for related samples, the tests in this section are

not mere extensions of the one-sample case because of added restrictions on
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the samples. For the more powerful tests, it is required that the samples
have the same variance. In such cases the tests on independent samples are

generally more difficult to perform.

4,2.1 Parametric: The t-test for independent samples

Assumptions

(i) The data represent a random sample.

(ii) There is independence both within the two samples and between
the two samples.

(iii) The dependent variable is normally distributed in both
populations.

(iv) The two populations heve equal variances.

(v) The measurement scale is at least interval.

The t-test for independent samples differs from other versions of the
t-test in that i¢ requires an estimate of the combined variance of the two
samples. One of the assumptions of this test is that the variances of both
populations be the same; however, we have two separatz estimates for it, one
from each sample. These two estimates can be combined to obtain the common
estimate of variance of the population. This common estimate is given by:

2 2
2. (n; - 1)s;" + (ny - 1)s,

where N and N, and 512 and 522 are the sample sizes and variances of the two
samples. The sample sizes do not have to be the same as long as all of the
assumptions are satisfied. The standard error, or standard deviation of the

mean, becomes

- J’ (n1 - 1)512 + (n2 - 1)522 <l_ +_1..)]%
L 2

1
Note that if s12 ) S22 = 52, the formula reduces to: SE = [}2(1— + -l->].§
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This is the same form as the standard error for the one sample t-test, SE =

(Sz/n)l/z. Thus the test statistic becomes

X1 = %2

[ (ny - 1)5,% + (n, - 1)s,] (1 .1 i]'%

) + n, - 2 Ny Ny

where Yl and iz are the sample means.

This test statistic is then used exactly as before; it should be compared with
the proper quantile of a t distribution with(n; + n, - 2)DF.

An example is now in order. Suppose an investigator makes
measurements on two independent random samples and obtains the following
results:

sample 1: 8.3 7.9 6.2 9.4 5.2 8.7 7.2 8.5

sample 2: 5.2 3.9 6.7 4,6 5.3 3.,% 5.2 6.1
He wants to determine whether or not the two samples have the same mean which,
since they are assumed to be normal with equal variances, implies they come
from the same distribution. Therefore the hypotheses would be set up as:

H : #1- #2 =O;P%: Hy - #2# 0.

0
Computing the means and variances of the samples, one obtains

’§1 = 7.8 X, = 5.0625
512 = 2.3714 322 = 1.1227
ny = 8 n, = 8

The common variance is

7(2.3714 + 1,1227)/14 = 1.7471,

and the standard error is

[1.7471(1/8 + 1/8)1/2 = 0.66088.
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Therefore, the test statistic is

t = (7.8 ~ 5,002b)/.66U88 = 4,1422,
Since this is a two-sided test, this should be compared with the 0,025 and
0.975 quantiles of the L distribution with 8 + 8 - 2 = 14 DF. These values
turn out to be #2,145. Since 4.1422 > 2.145, we reject the null hypothesis
and conclude that the two samples are different. To determine @, we look in
the t table and see that t[0.000b, 14] = 4,140, which is very close the value
of our test statistic. Therefore @2 = U.0UU5, so @ = 0.0ul.

Confidence intervals for the difierence can also be obtained in
exactly the same manner as before; a 100(1 - a) percent confidence interval
for the difference between the two means is given by

(21 - EE) i-t[l -a/2; n1+n2-2](SE)‘
A 95 percent confidence interval for the difference between the means of the
two populations in our example is given by

(7.8 - 5,0625) + 2,145(.66088) = (1,3199, 4,1551),

It is of interest to examine the robustness of this test; that is,
how well it holds up under the breakdown of the assumptions. Departures from
normality will not have too adverse an affect as long as the variable of
interest has the same distfibution in both populations. Lack of homoscedas-
ticity (equal variances) also is relatively unimportant as long as the sample
sizes are the same. Violation of both assumptions will tend to increase the
probability of rejecting a true hypothesis to as much as twice the level of
significance. As the sample size increases, however, both departures from
normality and heterogeneity of variances become less important. For sample
sizes of twenty-five or more, the test is basically insensitive even to

drastic violations.
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There are methods of testing the validity of the assumptions, but
they are not very good for small samples. Tests for normality, such as the
Chi-Square Goodness of Fit test, require a fairly large number of sample
points to maintain accuracy, and the usual test for homogeneous variances is
very sensitive to departures from normality when the sample sizes are unequal.,
This test, the F-test, is very easy to perform, however; it is simply the
ratio of the variances, with the larger over the smaller, This statistic is
then compared to the appropriate quantile of the F distribution with the
appropriate number of DF associated with the two variances. The F-tables can
be found in most applied statistics books. In the example just presented, for
instance,

F= $,%/5,% = 2.3718/1,1227 = 2,112,

This is compared with Fri- a; nl-1, n2-1] (the F-test is always one-sided).
This value turns out to be 3.79, so we accept the hypothesis of equal
variances,

If the variances are not the same, the t-test can be modified to take
this into account and give fairly good results. When the variances are not

equal, use the test statistic:

7
fu—y
(7]
N
N -

and compare it to

where ti is the a quantile of a t distribution with ni-l DF .
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4,2,2 Nonparametric Tests

4.2.2.1 The Median Test

The median test is the only nonparametric test available which will
compare indeperdent samples coming from dissimilar distributions. It is also
the first test we will describe which will compare more than two samples at a
time. However, it is not very good for small samples, so the discussion of it

will be brief.

Assumptions

(i) Each sample is a .andom sample.

(i) The variable of interest is continuous.

(iii) If all populations have the same median, then each population
has the same probability p of an observation exceeding the
grand median.

To perform the median test, first obtain the grand median; that is,

find the number which is exceeded by exactly half of the observations from all

of the combined samples. Then count the number of observations in each sample

that exceed the grand median, forming a table as follows:

Sample 1 2 mowmmes C Totals
>Median 0y Ujp  ===mm-- Uy a
<Median 051 Uy =mmmem- Uy b

Total n Np ~  ===mme- n. N

The null hypothesis is "HO: A11 c populations have the same median" versus
the alternate "Ha: At Teast two populations have different medians." The

test statistic is

C0 2
') e L Y
s
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This statistic should be compared with the 1 - a quantile of a Chi-Square
distribution with (¢ - 1) DF., The Chi-Square tables can be found in most
applied statistics books.

As we mentioned previously, this test is not good for small sample
sizes. In general, it is not good if more than 20 percent of the ni's are
less than 10 or if any of the ni's are less than two. This disqualifies the
set of data used in the previous example, and probably a lot of space flight
data as well, so no example will be presented. The A.R.E., of the median test
to the t-test for normal data is only 0.64, so by the time the sample sizes
are big enough to use this test, the t-test would probably be more powerful

unless the assumptions for the t-test are very drastically violated.

4,2.2,2 Mann-Whitney U Test

The Mann-Whitney Test invoives a rank procedure, which makes it a
more powerful test than the median test. It is also good for smaller sample
sizes.

Assumptions

(i) Both samples are random samples from their respective
populations.

(i1) There is independence both within each sample and betweer the
two samples.

(ii1) The measurement scale is at least ordinal.

(iv) If the two distribution functions differ, they differ in
location only.

Te perform the Mann-Whitney Test, the data from the combined samples
are first ranked from 1 to ny + np. As before, in the case of ties all tied
points are assigned the average of the ranks that would have been assigned had
there been no ties. This test can be used to test the hypothesis "Ho:, By=

wo" vs. "H: wy ¥ My", or any one-tailed variation.
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If there are no or few ties, the test statistic for the Mann-Whitney
Test is simply th2 sum of the ranks from population 1, i.e., T = §:|<(x11).
This value is then compared to the proper quantile of the Mann-Whitney test
statistic, the tables of which can be found in many nonparametric statistics

books. If there are many ties this statistic can be normalized, thus obtaining

nl(N+1)
T -
2
nny }E:R 2 Mnp(W)
NIN-1) 2" N1
iz

and then comparing this to the proper quantile of the standard normal
distribution.

As an example, let us use the previous data set.

Xy R(X)) Xo4 R(X5;.)
8.3 13 b, 2 5
7.9 12 3.9 2
6.2 9 6.7 10
9.4 15 4.6 3
5,2 5 b3 7
9,7 16 3.5 1
7.2 11 .2 b
8.5 14 6.1 8
9% 41

Because of the three-way tie with 5.2, T1 would give the more precise
distribution, but one three-way tie will not effect T significantly, so we
will use T as our test statistic; i.e., T = ElR(Xli) = 95, From the table we
find that the 0.025 and 0.975 quantiles of the Mann-Whitney test statistic are

50 and 86. Since 95 is not in this interval, we reject Ho and conclude that
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the means are gifferent. Looking at the other a values, we see that for a =
0.001, the value is 95; therefore @/2 = 0,001 and @ = 0.0UZ. Although this
is twice the 4@ for the t-test, it is still very highly significant and there
is relatively little dirrerence between them.

To determine a 100(1 - a) percent confidence interval for the
difference, determine the number K = w (a2 ]" (nl)(nl+l)/2, where w [a/2]
is the a/2 quantile of the Mann-Whitney Test Statistic. Then the 100(1 - a)
percent confidence interval will be bounded by the KEh largest and Kth

smallest of the n;ny possible differences between the sample points.

th

In our example, K = 50 - 8(9)/2 = 14, Thus the 14~" smallest and

14th largest differences will be the lower and upper 1imits of the confidence
interval. If the differences are computed, it can be seen that the 14th
smallest is 1.2 and the 1480 largest is 4.4, Therefore we are 95 percent
certain that the true difference between the means of the two samples lies
between 1.2 and 4.4. This interval is a little wider than that »f the t-test,
but not much.

The Mann-Whitney stands up to the t-test very well in terms of
efficiency. For any case where the two distributions differ only in location,
the A.R.E. is never lower than 0.864 and may be as high as infinity. For
normal data it is 0.955; for uniform, it is 1.0. The A.R.E. of the
Mann-Whitney test relative to the Median test is 1.5 for normal data and 3.0

for uniform data. It can be seen from this that the Mann-Whitney test is a

highly powerful nonparametric test.

4.3 HOLLANDER TEST OF EXTREME REACTIONS
This test is different from others in that, rather than testing for a

difference in the means of two groups, it tests to see if there are opposite

36



extreme reactions in the experimental group. In some situations, it is
possible that not every subject in the experimental group will react the same
way to a treatment; some may demonstrate increases while others may show
decreases. In a case such as this, the distributions will be drastically
different, but any of the tests discussed so far will show the means to be the
same and thus one might conclude that the distributions are the same. This
test will determine if the experimental group has extreme reactions in
opposite directions.

Assumptions

(i) The data consist of two independent random samples (Xl’
Xz,...,xnl from the control group and Yl’ Y2,...Vn2 from the
experimental group)

(ii) The measurement scale is at least ordinal.

The hypotheses tested are “HO: The two distributions are the same"
vs. "H,: One distribution has extreme reactions in both directions." To
perform the test, first rank the combined samples from one to ny + ny. The
test statistic is n

6= Y [R(X,) - R(J°
i=1

where R(Xi) is the rank of the ith X value from the control group and §f¥3 is
the average of the ranks of the X's. If the reactions of the experimental
group go to opposite extremes, then it should have the small and large rank
and the control group will have the middle ones afound the mean. Therefore 4
should be small if there were extreme reactions. The value of G should be
compared with the table value of G for the Hollander test, which can be found
in some nonparametric statistics books. If the observed value is less than or

equal to the table value, Ho should be rejected at the specified  a level.
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There is no need to consider one and two-tailed tests with this statistic; the
nature of it makes it always one-sided.
As an example, suppose an experimenter performs an experiment and

obtains the following results:

X, R(X) Y, R(Y,).
10.3 10 8.3 5
9.9 8 7.1 2
10.6 12 13.2 14
8.2 4 10.4 11
9.3 6 6.2 1
11.4 13 14,7 16
9.7 7 13.9 15
10.0 9 7.5 3

69 67

Here, R(X) = 69/8 = 8.625; G = 3 (R(Xi) - 8.625)2 = 63.875. Looking up in the
table for ny =8, N =16, we see that the value for a = 0.01 is 67.88; thus,
this is significant at the a = 0.01 level, and we conclude that there were
extreme reactions in the experimental group; i.e., the subjects responded to
the treatments in different ways. It can easily be seen by examining the two
sums of ranks (69 and 67) that no test for Tocation would have shown the
difference to be significant. However, neither the t-test nor Mann-Whitney
Test would have been applicable in this case because the assumption that the
distributions dijffer only in location has been drastically violated. This is
a gogd example for showing how an investigator can get into trouble by not
checking on the validity of his assumptions. If he were not careful, he would

have concluded that the treatment in this experiment had no effect.
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5.0 PROCEDURES FOR COMPARING MORE THAN TWO SAMPLES

The procedures which have been examined thus far (with the exception
of the median tesf) are useful with only two samples to compare and when there
is only one treatment done on the samples. In many experimental situations,
this is not the case. Often there are three or more different populations
which need to be compared, with more than one treatment or levels of
treatments to be examined for each one. It is possible to do a t-test or a
corresponding nenparametric test between every possible pair of combinations,
but this is not a good practice because the tests are not independent. Also
it increases a above the predetermined level. If twenty such comparisons are
done at the a = 0.05 level, the odds are that one of them will show signifi-
cance just by chance, which implies that the a for the twenty comparisons is
much larger than the level at which each comparison is done.

Therefore, some techniques should be used which will allow the
simultaneous comparison of all of the means at the desired level of
significance. There are several techniques which will allow for this, in many
types of situations. The parametric tests employ a technique known as

Analysis of Variance (ANOVA).

5.1 PARAMETRIC: ANALYSIS OF VARIANCE

The Analysis of Variance is exactly what it says it is: it compares
the distributions of the various samples by analyzing the total variance
broken down into its components. Suppose one has several experimental groups,
drawn randomly from the same population, to which different treatments are
applied. If the treatments had no effect, then all the groups would be
identical. The total variance of the experiment can bz computed in two ways:

the squared deviation of each observation from the grand mean can be computed,
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or the squared deviation of each observation from its group mean can be
calculated, and added to the squared deviation of each group mean from the
mean of the groups.

The key to this procedure is that both of these estimates of the
variance, that within the groups and that between the groups, are estimates of
the population variance. If all of the groups are from the same population,
these estimates should be nearly identical. The variance within the groups is
the standard; if the variance between the groups is no bigger than that within
the groups, then there is no reason to believe that the groups are different.
If, however, the between-groups variation is larger, it means that the group
means are spread more around the grand mean than the individual scores are
distributed about their group means, thus indicating that the groups differ by
more than random variation and are therefore different. Since this is a test
of comparing variances, the F-test, which was presented in connection with the

t-test for independent samples, is used.

5.1.1 Assumptions

Before going on to the procedure for the analysis of variance, let us
first examine the assumptions inherent in it. These are very similar to what
we have seen before.

Assumptions

(i) The samples are independent random samples.

(ii) The populations from which they are drawn are normally
distributed.

(iii) The variances of the populations are equal.
(iv) The variable of interest is continuous.

For designs which have two or more factors (treatments) being compared

simuitaneously, another assumption must be included:
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(v) The variances are additive; i.e., no interaction is present if
one wishes to test the main effects.

5.1.2 Violations of Assumptions

It is generally accepted that the F-test is fairly robust with
respect to these assumptions. Correlated data can be incorporated into the
model by a technique known as blocking. Violations of normality do not
seriously affect the results unless the data are badly skewed. 1f the data
are skewed, the F (and t) test will produce too many significant results. As
the sample size gets larger, the importance of the normality assumption grows
less because of the central 1imit theorem. For small samples, non-normal data
can often be transformed in such a way that the normality assumption is
satisfied. As with the t-test, the assumption of homogeneous variances is
generally considered to be robust as long as the sample size for each group is
the same and the difference is not too great, such as one variance being ten
times the magnitude of another. Drastic violations of these assumptions
affect the test in that it will tend to give too many significant results. As
in the case of non-normality, heterogeneity of variances can often be reduced

by performing a transformation of the data.

5.1.3 Transformations

A transformation of scale of the data can be performed in cases where
expressing the data in terms of another measurement scale will give more
validity to the assumptions. Some of the more common transformations are the
square root and logarithmic transformations. Both these are monotonic
transformations, and thus will leave ordinal relationships the same. The
square root transformation is good for count data from a Poisson process in

which the mean is equal to the variance. If the mean is positively correlated
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with the variance, then the logarithmic transformation will probably be good.

This transformation is good for normalizing skewed distributions.

h.1.4 Fixed vs. Random Effects

There are two types of effects which can be studied by analysis of
variance techniques: fixed and random effects. One of the assumptions
underlying a fixed-effects design is that all levels of the factars about
which any inferences are to be made are included in the experiment. In a
random effects model, the factor levels (treatments) which are included in the
experiment are a random sample from a larger population. In the case of
replicating a fixed-effects experiment, the treatments would be exactly the
same. In the case of replicating a random-effects experiment, a different set
of treatments would be chosen at random every time. Only in a random-effects
model can inferences be drawn about the entire population. It is possible
that any one experiment can have both fixed and random effects. Such a model
is known as a mixed model. One should always be careful in determining which
factors in an experiment are fixed and which are random. The calculations are
the same in all types of models, but the test of significance which is done at
the end will vary with the nature of the model. This will be explained later

in the discussions of the various designs.

5.2 TYPES OF DESIGNS

5.2.1 One-Factor ANOVA Design

This is the simplest typ2 of design, and is merely an extension of
the t-test for independent samples for testing three or more samples

simultaneously. The experiment is performed by randomly assigning the
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subjects to groups, then giving a different treatment to each group. The data

could be arranged as follows:

Observations

Treatments 2 Y21 Y22 . s e an

The calculations, which are arranged into an analysis of variance, or
ANOVA, table, are shown in Table 1. Notationally, the appearance of a dot as
a subscript means that the subscript in whose position it appears has been

th

summed over; thus “Yi " means the i“" row summed over j, or merely the sum of

all observations in the ith row. Likewise, "y.." means both columns and rows
have been summed, making y.. the grand total of ail the observations.

It is the Expected Mean Square (EMS) column which must be examined in
order to determine which mean-squares should be compared for the F-test. The
two that are divided should be the same except for the treatment effects (nZr
/DF for fixed effects, a-2 for random effects). If the treatments have no
effect, then the ratio should be one. In this particular design, the F-ratio
is the same for both fixed and random effects; both are compared to error.
This will not be the case in any designs comparing more than one factor.
Designs which have all fixed effects always compare everything to the error
term, but random and mixed models will not. In these cases, the EMS column
becomes important because it is the one which will determine the F-ratio to
test for different effects.

An example is now in order. Suppose an experimenter wants to

determine if there is any difference between four types of food for rats.
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TABLE 1

ANOVA for One Factor

Source of df Sums of Squares Mean Squares Expected Mean Squares ~ F-ratio
Variation Fixed Random
k 2 2 .
_ - ' y =SS 2
. Between k-1 SSt Z AT MSy. - T . R EZ-T a2 s ne? MS <.
Treatments = " n MSe
n 2 .
Error kn - k SSE = ig ‘y'lz'i X_-i_’_ I3 £ - S~‘7E—- 0_2 0.2
k(with‘in Treatments) i=1 J= s nk -1
2
2 y
Total kn - 1 SS+ = iiy -
T LR




He takes 32 rats as subjects and randomly divides them into four groups, then
assigns a food to each of the different groups. After a designated time, the
weight gain of the rats is measured (in grams). The data obtained and the

calculations performed are as follows:

Weight Gain Yi
A 10 8 12 4 7 9 14 11 75
Y =25
Food type B 2 -3 0 1 0o -2 -2 4 V) e 2.
I3 y;; =3b46
C 7 4 5 2 8 9 6 5 46
D 18 15 22 21 1b 7 17 20 13
256
2 g2 iy 56
SSTr = 1/8 [75° + 46° + 135%] - 32 = 1197.75
256°
887 = 3546 - 32 = 1498
SSE = 1498 - 1197,7b = 300,25
Source of
Variation DF Sums of Squares Mean Square EMS F-ratio
Between 83 2
Foods 3 1197.75 399.25 02 + T 37.232
r 3
Error 28 300.25 10,72 ot
Total 31 1498

This is a fixud-effects experiment because every food that the investigator
was interested in was included in the experiment. The obtained F value should
be compared to the table value of F with 3 and 28 DF. This value is 7.1Y for
a = 0.001, so this result is highly significant. Thus, we conclude that the
means are not all ijdentical. The F-test tells us that at least one of the
means is different, but it does not tell us which ones differ from the others.

To do this, some type of multiple comparison test must be applied. There are
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many such tests available; several of the more common tests will be presented

here.

5.2.1.1 Fisher's Least Significant Difference (LSD) Method
This test is to be applied only if the F-test shows significance, and
it consists basically of applying the ordinary Student's t-test to many pairs

of means. If any two means differ by more than the LSD, where

LSD = t[1~¢z/2; error DF]\/MSE(l/nl + 1/n,)

then those two means will be different. For our example, at a = U.U1,

LSD = try g5 g7V(10-72)(1/8 + 1/8) = 2.7163(1.637) = 4,524,

In this example, the means are

B C A D

0 5.75 9.375 16.87b5
The difference between C and A is only 3.625, so we conclude that there is no
difference between C and A. A1l of the others differ by more than 4.524, so
they are all different. This can be represented graphically as

B C_A D.

5.2.1.2 Tukey's Honestly Significant Difference (HSD) Method
The HSD method is identical to the LSD method, except that it

requires equal sample sizes. The HSD is given by

~

HSD = Q4 [4; k; error DFTVYMSE/N
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where q is the table value of the studentised range and k is the number of
means being compared. This table can be found in many design books.

In our example, for a = (.01,

HSD = 4,83J10.72/8 = b,b92,
Once again C and A are the only ones which differ by more than b5.592, so the

same conclusion is reached with this method as with the Fisher's LSD Method.

5.2.1.3 Duncan's Multiple Range Test

The Duncan's Multiple Range Test differs from the Fisher and Tukey
tests in that it gives a different range for different means. Instead of
giving one number against which all differences in means are tested, this test
gives larger intervals for mears that have other means in between them.

To perform this test, determine numbers "l a for p =

s P» error DF]
2,3...,k from a table of Duncan's significant ranges, and muitiply each of
these numbers by v/ MSE/n. These will be the least significant ranges. Then
rank the means. In comparing them, if they are next to each other, use the p
= 2 range; if there is one other mean in between them, use p = 3, and so on.

For our example, we need values for p = 2, 3, and 4. At a = U.U],

these values are:

p=2: 3,93 pMSE/n:  2:  4,bb0
3: 4,19 3: 4,851
4: » 29 4: 4,967
Means: B C A D
(Ranked) 0 5.75 9,375 16,875
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Applying this method, the means BC, CA, and AD would have to differ
by 4.550 to be significantly different; DA and CD would have to differ by
4.851, and BD would have to differ by 4.967. As with the previous methods, C
and A are the same; all others are different. Thus, as the final results of
the experiment, we conclude that Food B causes the least weight gain, Food D
causes the most, and types A anc C, while different from both B and D, are

indistinguishable from each other.

5,2.2 Two-Factor ANOVA Design

This design is the simplest type of factorial design, that is, one in
which two or more factors are being compared, and all combinations of the
levels of these factors are run during the experiment. The principles behind
this design are the same as those of the One-Factor Design, except now the
variability is broken down into more pieces: that for Factor A, Factor B, the
AB interaction, and the Error.

The data layout for this design with more than one observation per

cell can be presented as:

Factor B
1 2 .. b
. Y111’YY112’ "1210, V1222 JETTEMTYE
..., 11” ...’ lzn ...’ lbn
) Y211’Y7212’ Y221’YY222’ YZbl’YYZbZ’
ss ey 21n ce ey 22n seeey an
factor A .,
, Yarrr Ya12e  Yaz1s, Yaze Yabl’YYabZ’
Y Taln *** Ta?n **** Tabn

The calculations for the analysis of this type design are presented in Table 2.
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TABLE 2

ANOVA for Two Factors

6Y

Expected Mean Squares F-ratin
Source of df Sums of Squares Mean Sgquares - _
variation Fixed Random Fixed Pandcm
e 55 2, oyl 2y i 2 | M, M5
Factor A a-1 S5y = Zﬁ.. -Yo. A L g + nog + booy s A
e “bn abn a-1 M5 Mg
Treatments i=1 t
by 2 2 85 2 anz:ﬂz ? 2 nab MS L
Factor B b-1 SSg =Z Y i, - _}l___ B"—'B'l‘ e g ¢ “‘fra + angg HSB i e
Treatments j=1 an abn £ *hi
a b 2 2 . 2 N
. S 2, nYXE(r8)% NS M
interaction | (a - 1)(b - 1) sS, = Z Yis. .Y L - __TA U A MgV 02+ —AB Ap
PSS S T [ ol G () 8 MS Mag
SS 2 2
- - = - - - E
Evror ab{n - 1) SSE S.sT S5, - SSg SSan P CR] o o
a b n 2 yz
Total abn - 1 S5¢ = Z Yijk ~ e
i=1J=1 k=1




As an example suppose a chemical process is being studied, where the
factors are temperature and prescure, with three levels each. The experiments
are performed in random orcer. The data obtained and calculations performed

are as follows:

Pressure
Low Medium High Yi..
Low 90 86 79 bib
89 88 83
Medium 86 82 86 bU6
Temperature 81 87 85
High 53 77 101 468
60 84 93
;. 458 504 b27 1489
$S7 = 125235 - (1489)2/18 = 2061,6111
55, = [o16% + 506% + 468°1/6 - (1489)°/18 = 207.44
ssg = [4582 + 5047 + 52771/6 - (1489)°/18 = 414.44
SSpg = (250245)/2 - (1489)2/18 - 207,44 - 414,44 = 1330, 2222

SSg = 557 - SSA - SSAB - SSB = 112,5

Source of

Variation DF Sums of Sguares Mean Squares F

A 2 207,444 103,722

B 2 414,444 205,722

AB 4 1330,222 332.556 26,604
Error 9 112.5 12.5

Total 17 2061,611

Fro.o1; 4, 97 = 147

Since 26,604 > 14,7, we conclude that the interaction between

temperature axd pressure in this experiment is highly significant. This means
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that there is a synergistic effect between temperature and pressure; i.e.,
they do not function independently. This can be demonstrated graphically if
the cell means for pressure are plotted as a function of temperature, as

indicated in Figure 2.

Figure 2
Temp
Cell Means 100 - High
Pressure 90 - ~—. Med
L M H 80 - Low
L 89.5 87 81 70 -
Temp. M 83 84.5 85.5 60 -
H 56.5 80.5 97 50 =memmmmmmm e cmeemee— e aeea
L M H
Pressure

If there were no interaction between temperature and pressure, the
three figures would mirror each other, with only a difference in location. As
it is, they are drastically different, so the main effects, temperature and
pressure, should not be considered separately. It would not be accurate to
say that high temperature produces the highest yield, because it also produces
the Towest, depending on the pressure.

Because of the importance of the interaction term, it should always
be tested first; if it is significant, it is often the last test to be done,
because it is difficult to interpret the main effects when there is an
interaction. In a K-Factor Design, the Kth order interaction should be tested
first, then the lower order interactions, in the decreasing order of their
complexity. The main effects should always be tested last and interpreted

carefully if the interactions are significant.
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In this example, the significance of the interaction makes testing
the main effects 1qse its meaning. Obviously, both tests would be highly
significant, implying there is a difference in yields between high, medium and
low levels of temperature and of pressure. The exact nature of these
differences, however, is uninterpretable without considering one variable in
relation to the other. Depending on the purpose of the experiment, this may
or may not be satisfactory. In this experiment, it probably does not matter
to the investigator that there is an interaction because he is only interested
in determining how he can get the greatest yield. He can easily determine
this by doing multiple comparison tests; the only effect of the interaction is
that each combination must be considered separately, rather than comparing the
means of temperatures and then the means of pressure.

For performing the Fisher's LSD test at a = 0.01,

LSD = trg 995, 9]\/12.5(1/2+1/2) = (3.250)(3.535) = 11.490.

Thus any means differing by more than 11.490 are significantly different. The

results are

HL HM LH ML MM MH LM LL HH
56.5 80.5 81 83 84.5 85.5 87 89.5 97

Therefore, to maximize the yield, one should use high temperature and high

pressure, low temperature and low pressure, or low temperature and medium

pressure. Minimum yield is obtained with high temperature and low pressure.
While this experiment worked out nicely, interactions can sometimes

cause problems. For example, in working with space flight, an investigater
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might be interested in determining whether or not weightlessness has an effect
on some physiological parameter in man. He might have data from three flights
(Skylab, for examp1e), so he could analyze it as a two-way design, with the
physiological parameter as one factor and the flight as another. A signifi-
cant interaction in such an experiment can be annoying, but does not always
preclude testing and interpreting the main effects. If this occurs, it would
be informative to graph the means similar to those in Figure 2. If all lines
increase or decrease with one or more being steepter than the others, the
interaction between the two factors, i.e., the physiological parameter and the
flight, may be significant. Clearly, however, the main effect may also be
significant, leading to the interpretatica such as: "the physiologic
parameter, blood volume, decreased with exposure to weightlessness and this
effect was significantly greater on the last flight."

This space-flight example 1=2ads us to the next type of design to be
discussed. The differences in response on the various flights may have been
caused by some extraneous factor not considered in the experiment, such as
dietary changes. If the crew of the second flight, for instance, had
different diets from the others, then the responses of those individuals will
be correlated with each other, but not with the other crews. This not only
introduces extra variability, but also defies the assumptions of independence
and randomization. This can be taken care of by employing a technique known as

blocking.

5.2.3 Randomized Complete Blr.-k Design

Blocking designs are the ones which correspond to the two-sample
tests for related measures, and are thus the methods used for handling

repeated measures. Any time there is reason to believe that particular groups
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of measurements will be correlated, these groups should be separated into
blocks. When this is done, an additional assumption is made: the correlations
within blocks are equal. The blocking techniques originated in agriculture,
where different plots of land would be blocked, because the experimenters knew
that different soil conditions would lead to different yields, and the yields
from the same conditions would be correlated. In repeated measures
experiments, where each subject serves as his own control, each individual
subject is considered to be a block. The effect of this is that the
variability due to differences in the average responses of the subjects will
be removed from the experimental error, thus making the test more sensitive.

In performing a randomized block experiment, the order of the
treatments within the blocks should be randomized, once the blocks are
determined. When the blocks are subjects, care should be taken that there are
no carry-over effects between the treatments. Each experiment on the
individual should be independent of the others, and if they are not, then the
results will be invalid. 1lo be a complete block, every treatment should be
performed in every block.

The analysis of a blocked experiment is very similar to that of a
multi-factor independent design. In the calculations, the blocks are treated
as an additional factor except that no interactio~: are computed for blocks.
(Some books do compute the block X factor interaction terms, but generally
such interactions are assumed to be part of the error.)

The data layout for a one-factor randomized complete block design
looks exactly 1ike that of the two-factor randomized complete design except
that instead of Factor B, we have blocks. The calculations for this design
are presented in Table 3. Notice that the calculations are exactly the same

as those of the completely iandomized design except for the lack of an,
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TABLE 3

ANOVA for One Factor: Randomized Complete Block Design

Sosrce of df Sums of Squares Mean Squares Expected Mean Squares F-ratio
Variation Fixed Random Fixed | Random
2 2 sS 2 MS Ms
Treatments a-1 SSy,. = Yi.. Y. r ol *—-%"1_215- a2 + bno? ﬁS’TL I
1 “bn abn a-1 £ MS¢
b 2 2 sS
Blocks b-1 s5g= 9 Yode - Y i 8 «r2+§“—pf‘2- o + anof
j=1 an aSn -1
SS 2
- a- - S5 . E ¢ o?
Error abn - a b+ 1 SS SST SST SSB P T s I
b ) 2
= _Yy
Total abn - 1 SST 222 ¥ijk EB'n—

i=1 j=1k=1




interaction term, and the error DF is adjusted accordingly. Also, there is
only one F-test to be performed because we are only interested in whether or
not the treatments had an effect. The blocks could, of course, be tested for
significance. If they are not significant, it will mean that there was no
need for the blocking in the first place. Because this is a one-factor
design, the F-ratio is the same for both fixed and random models.

As an example, suppose an experiment is being done to test the
effects of five different drugs. Four individuals are used as subjects, so
each individual will be treated as a block. The order that the treatments are
given to each individual is randomized, and sufficient time is given between
treatments to ensure that there are no carry-over effects. There will be only
one observation per cell so that the corresponding nonparametric test can be

run on the same data. The data obtained and calculations performed are as

follows:
Person
1 2 3 4 Total
A 12 14 12 13 51
B9 13 8 10 40
Drug  C 27 32 22 29 110 T Xv,° = 6309
D 8 22 9 11 50
£ 14 29 11 16 70
70 110 62 79 321
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ssp. = [912 + 0% + 1107 + 502 + 702174 - (321)%/20 = 7732
sS = [70% + 110% + 622 + 79%3/6 - (321)%/20 = 264,95

SS; = 6309 - (321)%/20 = 1156.95

SS; = 1156,95 - 264,95 - 773,2 = 118.8

Source of Sums of Mean F-table
Variation DF Squares Square F-ratio a = ,01
Treatments 4 773.20 193.3 19,52 5,41
Blocks 3 264.95 88,316
Error 12 118,80 Y. 9
Total 19 1156, 9 -

Since the F-ratio is significant, we conclude that there is a
difference between the drugs. To determine which ones are different, we will

use Fisher's LSD, If any two means differ by more than

LSD = trg ggs, 12]\/@.9(1/4 + 1/4) = 3.055(2.225) = 6.797

then they will be significantly different at the a = 0.0l level of

significance. This gives the results

B D A E + C
10 12.5 12,75 17.5 27,5

Therefore we conclude that drugs B, D, and A are indistinguishable, as are
drugs D, A, and E; the former set gives the lowest response. Drug C shows a

significantly higher response than any of the other drugs.
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5.2.4 Latin Square Design

The randomized block design is applicable to any number of factors,
but only for one set of blocks. Sometimes situations arise in which it is
necessary to block in two directions at the same time. A simple example of
this is the case of comparing different brands of tires. Suppose there are
four brands to test, and it is decided to use four tires of each. Rather than
using sixteen cars, the cars can be blocked and only four cars will be needed,
with one of each brand of tire on each car. If the tires are randomly
assigned to positions on each car, this will be a randomized complete block
design. However, it is also known that tires wear differently, depending on
their positions on the car, and that like positions will be correlated.
Therefore, position can be blocked as well by putting four brands of tires in
four different positions. This type of design, where two things are being
blocked at the same time, is called a Latin Square design.

An experiment for comparing p treatments, being blocked in two
directions, can be arranged into a p x p Latin Square with the rows being one
set of blocks and the columns being the other. The key is that each treatment
must appear once in each row and once in each column so that every combination
of levels of blocks is performed. Because of the restrictions on the place-
ments of the treatments, the randomization is lost in this type of design.
However, there are different possible patterns for each size Latin Square, so
one of these should be chosen at random.

Tha following is an example of a b x b Latin Square, with treatments

denoted by A, B, C, D, and E:

A D B E C
D A C B E
c B E D A
B E A C D
E c D A B
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The calculations for the Latin Square are given in Table 4.

As an example, suppose an experiment is conducted comparing the
reaction times of five different catalysts on a chemical process, where only
five experiments can be run per day and each batch of materials will permit
only five runs. An arrangement different from the one above was utilized.

The results obtained and calculations performed are as follows:

Batch
1 2 3 4 b L

1 A=10 B=Y D=3 (=9 E=b 36 A = b2

2 C=13 E=4 A=Y D=5 B=10 41 B = 38
Day 3 B=b A=11 C=12 E=3 D=7 39 C =54

4 D=8 C=10 E=8 B=8 A=lZ 46 b = 27

5 E=6 D=4 B=5 A=10 C=10 35 E =26
Y.j. 43 38 37 35 44 197 \

= 1759

TEEY,

55y = [522 + 387 + 647 + 272 + 267175 - (197)%/25 = 141.44

SSRows * [362 + 412 + 39% + 46% + 35%1/5 - (197)%/25 = 15,44

S5, = [43% + 382 + 372 + 352 + aaPy/5 - (197)2/25 = 12,24
olumns 2

SS; = 1759 - (197)%/25 = 206,64

SSE = 206.64 - 141,44 - 15,44 - 12,24 = 37.52

Source of Variation DF SS MS F
Treatments 4 141,44 35,36 11,3092
Rows 4 15,44 3.86

Columns 4 12,24 3.06

Error 12 30,52 3.1267

Total 24 206,64
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TABLE 4

ANGVA for p X p tatin Square lesign

Source of df Sums of Squares Mean Square Exnected Mean Square F-ratio
Variation
Tixed Random Fixed Random
‘2 0 ss 2y~ 2 Ms Ms
Treatments p-1 SSt. =§): -y >1r 0_2 + p_zdf,_ 0,2 + pza‘g i 13 Ste
r =k i p- HS, Mo
k=1 » t
o 2 $S 2, pirdt 2, 2.2
- = yi. . .Y R oo+ e +p
Rows p-1 SR Ly e T T p -1 p-1 “
=1 P p
Columns p-1 ssg=) Yg.-Y.. A, o+ })—_Z 72 + plaf
s p P’ P
SS 2 2
Errg -~ 2)(P - = - - - P .[_., - a g
rror {p - 2)(P -1) SSg = SSp - SSp,. - SSp - SSc G20 1)
2 DN WM ;-
pe -1 .
Total uk -_-__ J = colwmns
i=1 j=1 k=1 k = treatment (A, B, C, etc.)




Comparing this F-value to the table value F[O 01; 4,121 " 5.41, we conclude
L4 H ’
that there is a difference between the means. Applying Fisher's LSD test to

detormine which means are different, we see that at the a = U.Ul level,

LSD =t ggn 1p7V31267 (1/5 + 1/5) = 3.065(1.118) = 3.416b,

Therefore, any two means differing by more than 3.4165 are significantly
different. Calculating and ordering the means, we obtain the following
results:

E D B A c

5.2 5.4 7.6 10.4 10,8

Thus, catalysts E, D, and B are indistinguishable, and catalysts B, A, and C
are indistinguishable, with the latter set yielding the higher resulis.

The analysis of the Latin Square design, with two sets of blocking,
is an extension of the analysis of the one-factor randomized bleck div 1.
This can be extended even further for blocking in more than two directions. A
three-way blocking design, for example, is called a Graeco-Latin Square and is
set up and analysed in exactly the same manner except that now each treatment
appears once in each row, once in each column, an' once paired with each Greek
Tetter representing the third block. The calculations or the sums of squares
for the third block follow the same pattern as that of the others. Notice
that, since Latin Square designs are one-fartor designs, the F-ratio is the

same for both fixed and random models.

5.2.5 Nested or Heirarchical Designs

Another situation which can occur in experimentation is the case
where the levels of one factor are similar but not identical for levels of
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another factor. For example, suppose it is desired to measure the quality of
a chemical made by two different suppliers. The samples from each supplier
are from differeﬁt batches made by different chemists, so these need to be
factors in the experiment. However, the chemicals made by the second chemist
for the first supplier cannot be grouped with those of the second chemist for
the second supplier, for obvious reasons; they are not on the same level.
Chemists are nested within suppliers. Furthermore, suppose that each chemist
uses different sources for materials in each batch. Then the batches cannot
be considered to be identical, and will be nested within chemists. This is an
example of a three-stage nested design. The data layout for this type design
can be represented by the diagram below. The calculations for the analysis

are presented in Table 5.

Factor Al Factor A, Factor A,
*FB 1 2 ...b 1 2 .."b 1 2 ...b
) v
PO Y1 Y211+ Vipn Vo111 22117+ Y2p11 Ya111 Tazu1e e+ Vapll

Y1110 Y1210 Yibln Youin Y2210 Y2bin Yaiin Yezin Yabln
Y1121 Y1210+ Y1p21 Y2121 Y2201+ Yopaa Ya121 Yaze1+Yab2a

*F Cz E ] '] ” - [ » a s e [ [ ] .
Y1120 Y122n°*+Y1b2n Yo12n Yo22n°+Y2b2n Yaizn Ya2ene+Yaben
Y11¢1 Y12¢17°+ Y1ibel Y21c1 Y22¢1°** Tobel Yalel Tazel®** abel

*F CC » . [ [ . . [ ] . L
Yllcn Y12cn"'Y1bcn Y21cn Y22cn"‘Y2bcn Yalcn Ya2cn'“Yabcn

*F = Factor
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ANOVA  for Three-Stage Hested De-dan

Expected Mean -
Source of df Sums of Squares Mean Sauares Fratio
vartation Squdres fixed Random Fixed Random
2 2
A - " _i:y, Yo S5, bead™ 2 Hs #s
e e e S N D 1 B
B(within A) (b-1) Za:t " 5 5 " "
within a(b - SS, = Vo - 1 B 8426‘
8 O L + C ) 2 2 B B
it n ben m 7)) d’ j‘ 02 + nay ¢+ cmﬂ HSE HSC
b 42
Clwithin B) ablc - 1) ssg - Z Yilk, - Zi L. SS¢.. » BEL &+ nd? e Mg
=1 j=1 k=1 n =171 ab{c - 1) o? ab(c - l 0 RSE TE}'
a_ b 2 [y 2
¥ - = - y SS,
Error abe(n - 1) sS¢ Z t Tkt L iJk I 4 pr
=1 jal k=l 121 =1y 1kl " abe{n - 1)
a
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ARs an example, suppose the experiment comparing chemical suppliers
described above was performed. The data collected and calculations done are

as follows:

Supplier 1 - 'pplier 2 Yi'k . Supplier 1
Chemist 1 2 3 4 1 2 3 4 IR Supplier 2
Batch 1 17 18 23 20 21 22 23 19 36 3/ 47 38
19 19 24 18 23 20 20 18 44 42 43 37
Batch 2 26 28 25 22 26 2 19 23 47 47 52 42
22 23 27 20 23 22 18 25 47 47 37 48
Batch 3 20 19 22 21 22 21 19 23 36 36 42 39
16 17 20 18 20 19 22 22 42 40 41 4b
Chemist
Totals Yi" 119 120 141 119 133 129 121 13U 1012
Supplier Jee
Totals Y. 499 b13

10.0

SN, Zpen = (4992 + 51327724 = 21340.417

2 : ? it = (1192 4 1202 + ... + 130%3/6 = 21412.333

z :z :E :Yijk./n = 1/2(36% + 372 + ... + 812 + 45%) = 21580
2 e
Z z E z Vi = 21636

y

¥ 2/abcn = (1012)2/48 = 21336.333

SSA = 21340,417 - 21336.333 = 4,083334

SS 21412,333 - 21340.417 = 71,916666

B(A)

SSC( 21580 - 21412,333 = 167.66667

B)
SSp = 21636 - 21580 = 56
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Source of F-ratio F-table F-ratie F-table

Variation DF SS MS (fixed) =205 =201 (random) =.05 =401
A 14,0833 64,0833 1,7500 4.26 7.82 .3406 5,99 13,75
B(A) 6 71.9167 11,9861 5.1369 2,51 3,67 1.1438 2.74 4.20
c(8) 16 167.6667 10,4792 4.4911 2.31 2.86 4.4911 2.13 2.86
Error 24 56,0  2.3333

Total 47 299,6667

This example does a good job of showing the difference between fixed
and random models. For a fixed model, there is a significant difference
between both chemists and batches at the a = 0.0l level. For the random
model, however, only the batches are significantly different; chemists are not
significantly different even at the a = 0.05 level. The suppliers are
indistinguishable in either case. To determine whether the effects are fixed
or random, one must determine how they were chosen. It seems reascnable to
assume that the two suppliers are the only ones of interest. Thus, Factor A
is fixed. If the chemists used are the only ones whose work we are interested
in, then Factor B is also fixed. If they were chosen as a random sample of
many chemists, then Factor B is random. The same is true of the batches.
Since it is more likely that batches were chosen at random, Factor C is
probably a random factor. Thus if A and B are fixed and C is random, this is
a mixed model, and the EMS for it is not included in Table 5. The EMS and

corresponding F-ratios for a mixed model of this type are:

Factor EMS F-ratio
2
A 2 4 ,,05 + L:‘.% MS,/MS.  U.3897
. -
2
B o2 2 , cnXB . MS/MS 1,1438
+nay + I B/"C
c o2 + ng? MS/MSg 4.4911

Error ol
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In this particular case, the results of the mixed and random models
do not differ in significance, but it is possihle that they could in some
jnstances. It 15 models 1like these, with many factors and combinations of
fixed and random effects, which make evident the importance of the Expected
Mean Squares. Without them, it would be impossible to know which mean sguares

to divide to test the effects of a particular factor.

5.2,6 Summary of Analysis of Variance

This presentation of five different types of experimental designs is
by no means complete. Each of these designs can be extended to include more
factors. In addition, there are variations which have not been discussed.
For example, all of the designs presented have been assumed to have equal
sample sizes in each cell; that is, they are balanced designs. This is not

necessary as long as the assumptions of normality and homoscedasticity are

met. In fact, the computational formulas are generally the same for both
balanced and unbalanced designs. However, having unequal cell numbers
increases the complexity of the calculations immensely as the designs become
more complex because the sample size cannot be factored out, as has been done
in all of the calculations presented here. Many statistical packages are not
set up to handle unequal samples sizes in complex designs.

Another possibility that has not been discussed is that of incomplete
designs. These are designs in which not all of the treatment combinations are
performed. This is most likely to occur in blocking designs when the blocks
are not large enough to hold all of the treatments. Needless to say, such an
occurrence adds complexity to the calculations and since it is an uncommon
situation, the analysis will not be presented here. Techniques for analyzing
incomplete designs can be found in most intermediate Tevel design books (see
bib1iography).
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Another concept which should be mentioned but will not be discussed
is confounding and fractional replication. In factorial experiments where
there are many factbrs, it is often desirable to run fewer experiments per
block than there are treatment combinations. These experiments can be
designed such that the effects of certain combinations are indistinguishable
from others--that is, they are confounded--and therefore only one of these
combinations needs to be performed to know about all of them. Fractional
replication of a factorial design means running only a fraction of the total
number of runs. Since one can determine in advance which combinations are to
be confounded, the experimenter has a lot of control over such a situation and
can obtain meaningful results with considerably fewer experiments. These
techniques are not difficult, but they can be very involved and would require
more explanation than can be given here. Once again, the reader is referred

to the Libliography for further information.

5.3 NONPARAMETRIC ALTERNATIVES

As with the case of the two-sample tests, there are nonparametric
tests available which will handle the one-factor experimental designs. These
tests will be better than the parametric tests if the data is-bad1y non-

normal. They also can be used for ardinal data.

5.3.1 One-Factor Design: The Kruskal-Wallis Test

Assumpt ions

(i) A11 samples are random samples.

(ii) There is independence both within each sample and between the
various samples.

(i11) The measurement scale is at least ordinal.
(iv) If the populations differ, they differ only in location.

(Note: This is equivalent to the normal assumption of
homogeneous variances.)
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The Kruskal-Wallis test is another ranking method. The first step in
the procedure is to rank the totality of the observations from all K samples
from one to N, where N = Z:ni. In the case of ties, the average of the ranks
that would have been assigned to those values is assigned to all of them.

Then the sum of the ranks for each sample, that is

ny

Ry = E R(xij)’ i=1,...,K, is computed.
j=1

The test statistic is:

R. 2
i N(N+1) 2 _ 1 Z 2 N(N+1)

If there are no ties, this simplifies to:

R,2
T=_12 1
T NNy Lty - 3(MD)

i=1
This should be compared to the appropriate quantile of a Chi-Square
distribution with (K - 1) DF. If the null hypothesis of no difference is
rejected, then a multiple comparison test can be made. The most common, which
is simply Fisher's LSD method applied to ranks, tells that two populations i

and j are significantly different if the following is true:

¢ , »-1-T\1/2(1 + 1 \i/2
> “[1-a/2; N-K] \S™ "R-K~ n; n;

Ri_RJ
n.i nJ-

The Kruskal-Wallis test will now be applied to the data analysed by

the one-factor analysis of variance design.



A R(A) B  R(B) C R(C) D R(D)
10 22 2 7.5 7 16 18 29
8 18,56 -3 1 4 10 15 26,5
12 24 0 4,5 5 12,5 22 32
10 1 6 2 7.6 21 31
7 16 0 4,5 8 185 15  26.5
20,5 -2 25 9 20,5 7 1§
14 25 -2 2.5 6 14 17 28 S% R(Xij)2=11432.b
11 23 4 10 5 12,5 20 30
159 38,5 111.5 219
32(33)*
s? = (114325 = 4 )/31 = 87.75806b
32(33)°
T = (1/87.758) [(159% + 38,52 + 111.52 + 219%)/8 - 4 ] = 24.870221

Since IXZ[O.OUI; 3] ° 16.27, it is highly significant and we conclude that the
populations yield different values.

To determine which means are different at @ = 0,001, we determine
the value

LSD = 3.674(2.1916) = 8.0519,
Thus any two means of ranks that differ by more than 8.0519 will be different.

The results thus are

B c A D
4.8125 13.9375  19.875 27.375

This test cannot distinguish betwaen C and A nor between A and D. This is not
as sensitive as the analysis of variance, which was able to detect a differ-

ence between food types A and D.
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The A.R.E. of the Kruskal-Wallis test relative to the F-test in the
analysis of variance is never less than 0.864, but it may be as high as
infinity for extremely non-normal data. For normal populations, the A.R.E. is
0.955, and for uniform data it is 1. Relative to the median test, the A.R.E.

of the Kruskal-Wallis test is 1.5 for normal data and 3.0 for uniform data.

5.3.2 Randomized Complete Block Design: The Quade Test
Assumptions

(i) The results within each block are independent of the results
of other blocks.

(ii) Observations may be ranked within blocks.

(i11) The sample range may be determined within each block so that
the blocks can be ranked.

This test, which is an extension of the Wilcoxon Signed-Ranks test,
requires that an equal sample size k be taken in all b blocks. To perform the
test, first rank the observations within each block from 1 to k, using average
ranks in case of ties. Then go back to the original cbservations and obtain
the sample ranges within each block, that is, the difference between the
smallest and largest values, and then rank the blocks from 1 to b by their
ranges. Let Qi denote the rank of the the ith block. For each xij’ form its

corresponding value Sij’ where
S.. =Q. [R(X..) - +1)/2
ij = O REX5) = (¥ + 1)/2]

Finally, calculate the sum for each treatment, that is,
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The test statistic is

B, (b-1)
M= Al - B
where
K K
=§ : N 12 2
j=1 =1 i=1

This statistic should be compared to the proper quantile of an F distribution
with (K - 1) and (b - 1)(k - 1) DF.
If this test shows significance, multiple comparisons can be made.

Two populations i and j will be considered significantly different if

. [Zb(A -B;) |1
S 755 >t ayz; (b-1)(k-1)] | TB-TJTR-17 |°

As an example, we will run the Quade Test on the same set of data
that was used for the randomized complete block design. The calculations

are as follows:

Persons (Blocks)

Xji R(X50) Xip R(X;5) Xig R(Ki3) Xyp R(Xip)
A 12 3 14 2 12 4 13 3
B 9 2 13 1 8 1 10 1
Drug C 27 5 32 5 22 5 29 b
)] 8 1 22 3 9 2 11 2
E 14 4 29 4 11 3 16 4
Range = 19 Range = 18 Range = 14 Range = 19
Q; = 3.5 Q, =2 Q3 =1 Qp = 3.5
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Now compute the Sij's:
Sy = (3.5)(3 - (5 +1)/2) = U
521 = (305)(2 - 3) = "'3.5’ etC.

Persons (Blocks)

1 2 3 4 Si__
A0 -2 1 0 -1
B -3.5 -4 -2 -7 -16.5
Drug C 7 4 2 7 20
D -7 0 -1 -3,5  -lLb
E 3.5 2 0 3.5 g
Ay = 0%+ (22 12 s L w28 e 0%k 5s? = 2
By = (-1 + (-16.5)% + 20 + (-11.5)% + 9?)/4 = 221.620
3(221.625)
T, = 295-221.625 = 9,061

Fro.o1; 4,127 = 54

Since H_= 9.061 exceeds 5.41, we conclude that the means are

different. To determine which ones are d*fferent, we need to determine which
Si’s differ by more than

2(4)(295-221.625)
3,055 3(%) = 21,367

The results obtained are

B D A E C
"16.5 -11-5 "1 9 20
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It can be seen from these results that the Quade test is not as
sensitive as the ANOVA, because at the same level of significance, a = 0.U1,
this test cannot distinguish between Drugs A, E, and C. The A,R.E, of the
Quade test to the t-test for the case of k = 2 is the same a5 that of the
Wilcoxon signed-ranks test, i.e., 0.9556 for normal data. For k > 2, the

A.R.E. of the Quade test to the F-test has never been found.

5.3.3 Randomized Complete Block Design: The Freidman Test

The Freidman test, which is easier to perform than the Quade test,
appears to be more powerful than the (Quade test if there are five or more

treatments. It is an extension of the sign test.

Assumptions

(1) The results within each block are independent of the results
of other blocks.

(ii) Observations may be ranked within blocks.
To perform this test, first find the ranks within blocks as was done

in the Quade test, then find the sum of the ranks for each treatment:

b

b 3 hiny

5=1
Then calculate the terms A2 and Bz, where

b

K K
- 2 - 2
i=1

i=1l j=1

The test statistic is

2
bk (k+1
- 1) s, - Bl

- B

2 2
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This should be compared to the proper quantile of an F-distribution with (k -
1) and (b - 1)(k = 1) DF. If this results in the rejection of the null
hypothesis, then multiple cumparisons can be performed. Two treatments will

be significantly different if their sum of ranks R, differ by more than

2b[A, - B,]7 1
t[1-a/2; (b-l)(k-l)][(b_l)(k-l) ] E

Running this test on the data used previously, we obtain the following resujts:

Persons (Blocks)
X R(Xil) )(,.2 R X.Z), X. R(X.-

— A (Kip) Ayy R(Gg) Xip  R(Xjp) R
A 12 3 14 2 12 s 13 3 12
B9 2 13 18 1 w1 b
prug ¢ 27 5 32 b 22 529 b 20
b 8 1 22 3 9 2 u 2 8
e 42y s 11 3 16 4 15

Ay = 3%+ 22 4 ...+ 3% 4 4% = 220
B, = 122 + 52 + 202 + 82 + 15234 = 214.5
T, = [3[214.5 - (4)(5)(36)/411/(220-214.5) = 18.818

Since 18,818 > F[O.Ol; 4,12] = 5,41, we conclude that the treatment

means are different. If any two Ri differ by more than

2(4) [220 - 214.5]
3,055 374 = 5,850

then they will be significantly different at the a = U.U1 level. The results

of this test are
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These results are different from those of both the F-test and the Quade test;
it cannot distinguish between B and D, D and A, A and E, and E and C.

The A.R.E. of the Freidman test with k = 2 relative to the t-test is
the same as that of the sign test, that is, 0.637. for k > 2, the A,R.E. of
the Freidman test relative to the F-test depends on k, the number of samples.
It is (0.955)k/(k + 1) for normal data and k/(k + 1) for uniform data. It
never falls below (0.864)k/(k + 1). For this example, with k = b, the A.R.E.

of this test relative to the F-test (assuming normality) is U0.796.
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6.0 REGRESSION ANALYSIS

Everything that has been discussed so far has been concerncs with
different types 6f experimental designs, that is, methods of detecting
differences in population parameters. Another type of analysis that can be
done on data is to develop a mathematical model which describes the
relationship existing between variables. Such a model can be used to predict
values of the dependent variable Y by knowing the values of the independent
variables Xi' The technique used to determine the model is known as linear

regression, and will be presented using matrix notation.

Assumptions

(i) The relationship between the independent variables and the
response is linear; i.e., it can be expressed as
Y = XB + ¢ (it is linear in the B's).

(ii1) The e.'s are uncorrelated random variables with mean zero and
a comman variance.

To test hypotheses, a further assumption of normality must be made:

(ii1) The ei's are normally distributed.

The regression model is determined by the method of least sguares;
that is, it is the figure (a line, if there is only one indépendent variabie)
which minimizes the sum of the squares of the err *s. The errors, or
residuals, are simply the differences between the observed values of Y and the
predicted values from the model. Least squares estimators are nice in that
they are unbiased, i.e., their expected value is exactly equal to the value of
the parameter that they are estimating. They also have the smallest standard
error of any linear estimators. This makes them the "best" 1inear estimators.

The relationship ¥ = XB + €, whera there are p independent varic..:a:

Xi’ can be written out as
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- - o - - - p -1
Sl 1 Xy oo X1l 1B €
Y2 Lz %] A “
. = L] L L] . [ + L[]

1 X ' :
_Yn_l L* "1n %on] 1Bp “n

Multiplied out, this will yie]ddthe gquations

Yy = By + Bykyy *Bpkip teeen #B X, €
Vo = By * BiXyp * Bpkyy ¥ een # BXyn + €

Y =By + lenl + Bzxn2 v +Bpxnp te,

To solve for the parameters [31-, one need only solve the equation

B = (x'x) 'y

’

The calculation involves inverting a (p + 1) X (p + 1) matrix. As a simple
example, we will consider only one independent variable X and determine the

regression equation
Y = BO + leo

Suppose a scientist is studying the relationship between the yield in

a chemical reaction and the temperature at which it was run. He runs an
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experiment and makes the following observations:

Temp. (X) 80 90 10U 110 120 130 140
Yield (Y) 3.2 4.5 4,9 5,7 6.1 6.8 7.0

noox 7 770
X'X = X; x].2 = l770 7500
s [ 38.2
X'Y = =
XY 4374.0
[87500 -770 38.2
1 "1 - 1
(X'X)"X'Y = 15550 | -770 711 4378.0

Thus the relationship between temperature and yield can be expressed as

Yield = (0.0614)(temperature) - 1,3

and predictions of yield can be made for different temperatires.

(x'x)"! =

1

87500
1
19600 | - 770
-25480
“ 19600 | 1204

Various

-770
7

-1.3
0.0614

tests of hypotheses can be made about these estimated parameters, but these

will not be covered here. The interested reader is referred to the

bibliography for further information.

Several points should be made about regression before leaving the

topic. First and foremost, a good relationship between variables does not

imply a causal relationship. In this example, higher temperatures might very

well cause high yields, but this is not necessarily the case in all

situations. For example, it has been shown that there is a highly significant

relationship between ministers' salaries and the sale of liquor in Havanan.,

This relationship is probably the result of an extraneous factor, namely, the

economy.
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Another big mistake made in regression, and one which is all too
common, is the extrapolation of the model to predict Y values from X values
beyond those used in the determination of the model. It is possible that the
same relationship will hold, but it is also possible that extrapolation will
lead to erroneous, or even meaningless, results. For example, suppose that
one makes observations on children from ages G - 15 and forms the regression
model for predicting height from age. It should be a fairly good relation-
ship. Then, if one substitutes the age of 70 in this relationship, the
predicted height would be thirty feet! In this case, it is easy to see that
no predictions should be made for any ages other than zero to fifteen.

There is one more point to be made. A regression model is a Tinear
model, in that it is Tinear in the coefficients Bi" Polynomial models
such as

Y =BO +BlX1 +BZX12 +B3X1X2 +B4X32 +85 s1'n(X4) +,€36]nx4 + €

can also be fitted using regression analysis. As long as it is linear in the

ﬁ%'s, the regression techniques will be valid.
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7.0 ANALYSIS OF COVARIANCE

The analysis of covariance, which is a comuination of analysis of
variance and regfession analysis, is a metho which can be used to remove the
effects of a nuisance variable X which is linearly related to the observed
variable Y. The effect of this nuisance variable, or covariate, is removed so
that it will not inflate the error mean square. Examples of such situations
occur when there is a possibility of a pre and post score. For example, in
measuring blood volume after certain treatments are applied, it might be
informative to know the original blood volume so that the variance
attributabie to any linear relationship between blood vu.ume after treatment
and the original volume can be removed. Or, suppose one is measuring the
strength of a certain fiber. The thickness of the fiber might affect its
strength, so the thickness can be treated as a covariate and the variance
associated with the linear relationship between strength and thickness can be
removed. An additional assumption for the analysis of covariance (in addition
to those for the analysis of variance and regression analysis) is that the
treatments can have no effect on the covariate, X. The computations for the
analysis of covariance are given in Table 6.

As an example, suppose that an experiment is being done to determine
the amount of time it takes to analyze a certain type of chemical using three
different types of instruments. It is also known that the time it takes to
analyze the chemical (Y) is related to the amount of chemical being analyzed

(X). Observations are made, and the results and calculations are as follows:
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TABLE 6

Analysis of Covariance for One Factor and One Covariate

18

Source of df Sums of Squares Adjusted For Regression
Variation and Products
X Xy yy y af Mean Square F-ratio
»
Treatmants a-1 Txx Txy Tyy
»e 2 SSE
Error a(n - 1) Exx Exy Eyy DT Ey_y' (Exy) TExx a(n -~ 1) -1 WSe = sm- 1 -1
t 2
< c‘q’l = -
fotal an -1 Sxx “xy Syy 3 Syy (Sxy) /S¢x an - 2
. SS;. = SS! - S§ _SS M5
Adjusted Treatments r E E - MS, = "Tr _Ir
a-1 T , NSE
n
a 2 2 e t 2
- _ X5 X - _ = 2 _x
Tox = SN Yy Exr ™ Sxx ™ Txx Sxx lady 8§~ ==
1 oA i1 4=l an
a n a
G (x Y ) (x )(y ) I . - v, - x My )
Ty = UM Syl Exe = Sxy ™ Ty Sy X¥ig T
=1 " i=1 j=1
a 2 2 ) n & 2
- 2 vy
T = Y- f;;. E S T S, = yi. -7,
Yy n an Yy yy yy Yy 4= 1] an



Instrument Type

1 2 3
Y X Y X Y X
30 . 27 28 29 43 41 X = 434
47 43 38 35 25 29 Y = 446
36 38 49 45 56 53 EEYU = 17862
44 43 29 28 21 23 ZEX” = 166U6
157 151 144 137 145 146 },‘,Exinij = 1718Y
S,y = 17862 - (846)2/12 = 1285.667
S,y = 16606 - (438)2/12 = 909, 667
S.., = 17189 ~ (434)(446)/12 = 1058.667
Xy 2 2 2 2
T,y = [157° + 144° + 145 1/4 - (446)°/12 = 26,167
Ty = 1512 + 1372 + 146%/4 - (434)%/12 = 25,167
Txy = [(157)(151) + (144)(137) + (145)(146)1/4 = 25.167
Exy = 1285.667 - 26,167 = 1259,5
Exx = 909,667 - 25,167 = 884,5
Exy = 1058.667 ~ 20,9167 = 1037.75
Sums of Squares
And Cross Products Adjusted for Regression
Source of
Variation DF XX Xy yy y df MS F-ratio
Treatments 2 25,167 20,9167 26,167
Error 9 1037.75 1037.75 1259,5 41,947 8 5.243
Total 11 1058.667 1058.667 1285.667 53,594 10
Adjusted
Treatments 11.647 2 5,823 1.111

Since 1.111 < F(O.OS; 2,8) = 4,46, we conclude that there is no difference 1in
the time required to analyse the chemical using the different instruments. If
there had been a difference, multiple comparisons could have been run to
determine which means were different, but the tests already presented would

have to be modified. Further information can be found in the references.
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As with the analysis of variance and regression techniques, this
design can be extended to include more than one factor and more than one
covariate for thé regression. It is not difficult to see that more complex
designs will require tremendous amounts of calculation, necessitating the use

of a computer.
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8.0 SUMMARY

A statistical problem which is encountered in analyzing space-flight
data is the Timited number of samples that can be obtained. Because of the
small sample size available, the analysis of the data should be done in a
manner which will glean the maximum amount of information from the experiments
as accurately as possible, In order to determine the type of analysis to be
used, one should carefully analyze the situation and determine what can be
assumed about the nature of the samples.

The procedures which have been presented here should give the basic
background required to determine the type of design which is needed or is
being used in an experiment. Also, the factors have been specified, which
need to be checked in order to insure that the requirements for using a
particular test have been met.

In designing an experiment one of the major factors Lo remember is
that the observations must be randomized; i.e., every member of the population
about which inferences are to be made should have an equal chance of being
observed. Randomization is the foundation of all of the statistical analyses
presented here. It is an underlying assumption for every single test, and it
is one which, when violated, leads to results of unknown significance when
extending the characteristics of the samplie to the population. If there are
any restrictions on randomization, they should be considered in the analysis
of the experiment (by the use of blocking, for example).

In determining the kind of analysis to be used on the data, one
should try to ensure the validity of the assumpiions of the test employed, be
it parametric or nonparametric. For instance, the scale of measurement must

be adequate for the test. Also, the statistical test must be appropriate for
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the underlying distribution -- a t-test should not be used on obviously non-
normal data, and so on. If the assumptions for the parametric test
(normality, interval scale, homoscedasticity, etc.) are valid, then the
parametric tests will be the most powerful to analyse the data. As these
assumptions break down, however, tne nonparametric tests become more powerful.

The number of samples being compared is another major consideration
in the choice of analyses. If thera are more than two samples being compared,
two-sample tests should not be applied to the different combinations. This
drastically raises above the predetermined level. Some type of test, such
as an Analysis of Variance procedure, shnuld be applied for simultaneous
comparisons. Likewise, if there is more than one factor to be tested for an
effect, a design to test all factors simultaneously should be used so that
interactions can be detected. As the designs become more complex, there are
no nonparametric alternatives to the analysis of variance and covariance
procedures, so these will be the ones to employ.

Another major point which must be stressed is the determination of
whether the samples are independent or correlated. Tests for independent
samples should never be run on correlated data, because independence is one of
the major assumptions in such tests; otherwise sensitivity will be lost.
Likewise, running correlated tests on independent sampies leads to a reduction
in power. Any time that the experiment contains repeated measures, that is,
when subjects are used as their own controls, the data will be correlatad.
Two-factor tests should be paired, and multi-factor tests should be blocked.
Much space flight data is obtained by repeated measures, so this must be taken
into consideration in the analysis.

finally, when dealing with the analysis of variance, care should be

taken in determining whether each factor is a fixed or random effect. Not
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only are the actual tests of significance different for different types of
effects, but the conclusions that are drawn from the experiment will differ as
well. Any time the conclusions about a factor are to be extended to the
entire population from which the factor came, one must choose and analyze the
levels of that factor as a random effect.

These are the basic considerations when planning the execution and
analysis of experiments involving small sample sizes. The procedures
presented here are by no means all-inclusive. In many situations, an entirely
new design may have to be created in order to handle the data best. However,
the material presentea here should give the investigator a good idea of the
types of problems that must be considered in planning the experiment, and a

direction in which to go to carry out the analysis.
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