General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

(/’/ CSC/SD-84/6055

FLIGHT EXPERIMENT DEMONSTRATION SYSTEM
(FEDS)
FUNCTIONAL DESCRIPTION AND INTERFACE
DOCUMENT

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Goddard Space Flight Center
Greenbelt, Mauryland

CONTRACT NAS 5-27888
Task Assignment 420

DECEMBER 1984

| (WASA-C3-175290) FLIGHT EXPERI4ENT N85-26763
‘ JEBO STRATION SYSTIEM (FEDS) FUMTIONAL

DBESCRIPTICH AND _NIEREZCE DCCUMENT (uonputer
Sciences Corp.) 273 p HC &12/MF AU

Unclas
CSCL 22A G312 22638

e

i CSC

COMPUTER SCIENCES CORPORATION

/WSA» Cé J75250.... .0

FLIGHT EXPERIMENT DEMONSTRATION SYSTEM (FEDS)
FUNCTIONAL DESCRIPTION AND

INTERFACE DOCUMENT

Prepared for

GODDARD SPACE FLIGHT CENTER

By
COMPUTER SCIENCES CCRPORATION

Under

Contract NAS 5-27888
Task Assignment 420

Prepared by: Approved by:

/?y' . et /38,
Date . Waligora dte

Date
Functional Area anager

Technical Supervisor
C_;z%y/ 1 2/18/8% |
Shiank Date M} mﬂ/ﬂ'!f-l‘?’
Page

o RS L

C

il

ABSTRACT

This document presents a functional description of the
Flight Experiment Demonstration System (FEDS) and of inter-
faces between FEDS and external hardware and software.
FEDS, developed at the Goddard Space Flight Center (GSFC)
System Technology Laboratory (STL), Code 550, is g modifi-
cation of the Automated Orbit Determination System (AQDS)
developed at the STL during 1981 and 1982. FEDS has been
developed to support a ground demonstration of
microprocesscr-based onboard orbit determination.

This document provides an overview of the structure and
logic of FEDS and details the various operational procedures
to build and execute FEDS. It also documents a microproces-
sor interface between FEDS and a TDRSS user transponder and
describes a software simulator of the interface used in the
development and system testing of FEDS.

PRECEDING PAGE BLANK NOT FILMED

iii

9808

T

T2 R

W M

TABLE OF CONTENTS

Section 1 - Introduction and System Overview.

1.1 OVerVIew o o o« « o o s ¢ s o s s s o 2 @

l.1.1 Hardware Configuration. . . .
1.1.2 Software Corifiguration.
1.1.3 Data Flow . & 4 ¢ & « s o & =+ =
1.1.4 Time Systems in FEDS,
1.1.5 Data Collection . « +« &+ « & « &

1.2 Description of This Document

Section 2 - FEDS Executive (EXEC) Task. « ..

2.1 Basic Executive Control Techniques . . .

- L] L] » -

2.1.1 Use of RSX-11IM(S) System Priorities

TimESlicing » L] L . - - - » [] -

2.1.2
2.1.3 Use of Globhal System Event Flags.

2.2 Functional Flow of the Executive

2.2,1 FEDS Initialization . . . « . &
2.2.,2 Control Command Processing. . .
2.2.3 Task Scheduling . . « « « « « o
2.2.4 End-of-Task Processing.
2.2.5 Activity Log Generation

2.3 Error Handling . . ¢ ¢« ¢ o« & = =« « &« & =
2-4 FaSt-Timinq Featurea » . . . » - - . . .

Section 3 - Information Processing Tasks. . .

3.1 Data Capture (DATCAP) Task . « « ¢« « . .
3.2 Input Processor {INPPRO) Task. « - . . .
3.3 Data Preprocessor (PREPRO) TasK., + « . .
3.3.1 TDRS Orbit File Generation. ., .
3.3.2 TDRS Orbit File Update.
3.3.3 TDRS Maneuver ReCOVEILIY., + « »
3.3.4 Observation Data Preprocessing.

3.4 Data Manager (DATMGR) TaskK « + « o « « «

4.1 TDORS Orbit File Management. . .
4.2 Observations File Management, .

3.5 Output Procegser (OUTPRO) Task . . « .+ .

v
9808

PRECEDING PAGE BLANE NOT FILMED

H
| 1
-

™o S I N ol ol ol ol o -

i ; 3 1

b H O NN
N N

3% rY RN
] L B |
~1 ~] wnw

1

CENTCRNEN
i
N
~1 B

h8]
[}
[S I 54
O @

L
[}
[

W) w
1 4
[VLI
(3%

B ey i tmtd bW e A e e wea oo T - Ll

TABLE QF CONTENTS (Cont'd)

Section 4 - Computational TaSkS - - . . L) . . . - - - .

Orbit Propagator (ORBIT) Task. . . « ¢ ¢ & o « + &
State Predictor (STAI’'®E) Task. . .
Doppler Predictor (DOPPkI) Task. .
Estimator (ESTIM) Task . . .

Observation Mopdeling (OBSMDL) Task

[N
U W N

a s = a
-
L]
.
w
.
-

Section 5 - Communications BOX. . . « o =« o« ¢ « s s =

Communications Box Hardware. . .« + ¢ o & = o o + o
Communications Box Interface Functions . . « « . -
Communications Box Operation . . « « &+ « « & « « &
Communications Box Simulator . « « « « ¢ &+ « =« +

»
.

tnin nln
W o

Section 6 - System Construction and Operation Guidelines

P N N
'

N W =

Moo W

v
S

(SIS Y S

6.1 Operational Configurations . . . -« = « « & « « o« &
6.2 System ConsStructiOn. . « « + & « o o o & &+ & o &
6.3 System Operation « . + ¢« « &« « s o & o & o « o o o

Appendix A - External Interface

Appendix B - Qutput Message Formats

Appendix C - Data Packet Descriptions

Appendix D - FEDS Update Procedures and Command Files

Appendix E - Summary of FEDS Requirements

References

vi

9808

Oy
(6 Y-S o

.

F
—
o
™y
1

| SN S T N S N B |
|l =]

i1

A LTU U B b Bl b bl e B W W W W W W W W o
1
NEBWNNFFFRFOO SR WM HERP OO E WD DD -

o ¢33
1 1
[, - w

I h A A
1
FHFHP O

S ol e

9808

* ADSLSI.CMD .

LIST OF ILLUSTRATIONS

Hierarchy of FEDS Tasks.

FEDS Data Flow .
Baseline Diagram
EXEC Data Flow .
Baseline Diagram
DATCAP Data Flow
Baseline Diagram
INPPRO Data Flow
Baseline Diagram
PREPRO Data Flow
Baseline Diagram
DATMGR Data Flow
BRaseline Diagram
OUTPRO Data Flow
Baseline Diagram
Functional Block
ORBIT Data Flow.
Baseline Diagram
STAPRE Data Flow
Baseline Diagram
DOPPRE Data Flow
ESTIM Data Flow.
Baselirne Diagram
Baseli = Diagram
OBSMDL Data Flow

+f Exec .
of DATCAP
of INPPRO
of PREPRO
of DATMGR
of OUTPRO

of ORBIT.

Diagram of O

of STAPRE
of DOPPRE

of ESTIM.
of OBSMDL

" Communications Box Block Di

Transponder Interface Menu

SIMCB Data Flow.

L] . L] L] & [] - [- - . = » [-

e o e 2 » & e s

Baseline Diagram for SIMCB .
FEDS Demonstration Configuration . . + + «
FEDS {on LSI) Ceommunications

ration,

Communications Box

FEDS (on LS5I) Communications

ration,

Communications Box

Command File To Install FEBS
FEDS (on PDP) Communications

ration, Communications

ADSINS.CMD .

REMOVE.CMD . .
ABOFEDS.CMD. .
ADSABO.CMD . .
REMFEDS.CMD. .
ADSABO.CMD . .

vii

Box

L] . L] - L] [] -

T

L]
a & & = = @ " = = e 9+ @ " a = . e

1]

L N o B T I I -+ I N I e N L I N R
-« ao " e« 4 & B T e E. " 4 ® B B ® & & 8 a&a 5 B ® 9
" & & & 3 ®» 4 8 & & & & " W & B & w & 8 8 e B " v e 3
® 4 & & 8 ¥ & 8 ® 8 & & 8 B & 8 & 8 B * 3 & & s = B ¥
* & & & F 8 B 83 B = % & & ® e+ 8 & 8w 4 & & 3 3 = 6 ¥ e

e » = & 3 & & »
2 * ® = P 8 = @ =

Line Confiqu-
USEd L) . - - » .
Line Configu-
Simulator Used.
on the PDP. . .
Line Confiqu-
Simulator Used.

L] - L] L] L] [] L]
L] L] L] L] L]] L]
L] « = a [] . @
L] L] L . - » a
[] e 2 = [

- - L] L] L] . -
[] . = a [] .
* = & [] [] L]

5 % 2 & & &% ¢ 8 w =8 3 8B 8 & = @ " & e

| | L I N T T T
HHEIAURNDONDEEONWN DN W

}

[N T I A |
0o,

B e s LD LD L L DO L DD WD L N B
H

6-11
6-12
6-13
6-15
6-15
6-15
6-16

6-16 -

T

g

& TR T

Table

LI |
WM

Crpab N
1

- 9808

LIST OF TABLES

System Priorities of FEDS Tasks., . .
AODS System Event Flags. « . « « «
Service Control Commands and Results
Transponder Interface Commands . . .

viii

e =

oo
1

RS e =N
b

SECTION 1 - INTRODUCTION AND SYSTEM OVERVIEW

This document is a functional design and interface descrip-
tion of the prototype version of the Flight Expériment Dem-
onstration System (FEDS) developed at Goddard Space Flight
Center's (GSFC's) Systems Technology Laboratory (STL),

Code 550, The prototype FEDS demonstrates, in a laboratory
environment, the feasibility of using microprocessors to
perform onboard orbit determination in an avtomated mannher
with limited ground support. FEDS is supported in the labo-
ratory environment by the FEDS Environment Simulator for
Prototype Testing (ADEPT), which provides all external in-
formation required for FEDS operation and monitors FEDS per-

fermance.
1.1 OQVERVIEW

FEDS fulfills the requirements specified in Appendix E,
which is an updated version of those given in Reference 1.
FEDS captures all data and control commands uplinked by the
simulator. Based on the required time schedule, it proc-
esses the uplinked data, predicts one-way Doppler data, pre-
dicts state vector tables, and estimates and corrects the
user spacecraft state using simulated observations data.
Least-squares estimation is performed by a sliding batch
process that uses real-time accumulated Tracking and Data

- Relay Satellite System (TDRSS) observations data provided by

the transponder. The Communications Box serves as an inter-
face between the transponder and FEDS. Predicted cne-way
Doppler data are output from FEDS through the Communications
Box to the transponder. Predicted state vector tables and
estimator reports are downlinked to ADEPT after they are
generated. FEDS also records all status messages and error
messages in an activity log that is downlinked to ADEPT
either at regular time intervals or when the log is full.

1-1
9808

.

Critical error messages are immediately downlinked to ADEPT
to inform the user.

1.1.1 HARDWARE CONFIGURATION

FEDS is implemented on both the STL PDP-11/70 minicomputer
under the RSX-11M operating system and the STL PDP-11/23
microcomputer under the RSX~-11l5 operating system. The
PDP-11/23, which is the target computer, has 256K bytes of
random access memory (RAM) and no peripherals. FEDS commu-
nicates with ADEPT, which resides on the PDP-11/7¢, through
communications lines (EIA RS-232C asynchronous interface)
that are connected to terminal ports on the PDP-11/70. Two
communications lines are used to communicate with ADEPT:

one incoming line for receiving uplinked messages from ADEPT
and one outgoing line for downlinking messages to ADEPT.

The LSI version of FEDS communicates with the transponder
through the Communications Box. One communications line
(EIA RS~-232C asynchronous interface) is used in the communi-
cation between the Communications Box and the LSI version of
FEDS. Many communjcations lines (detailed in Appendix A, 3)
are used in the communication between the transponder and
the Communications Box.

l.1.2 SOPTWARE CONFIGURATION

Since no peripherals are available on the PDP-11/23, all
data must be stored in RAM. In addition, overlaying df
tasks is impossible. Because of these factors, FEDS is com-
posed of 1l separate tasks and 4 global COMMON areas that
are installed and fixed in memory during execution. The
FEDS software configuration is shown in Figure 1-1. One
executive task contrcecls the execution of the other FEDS
tasks, which are divided into primary and secondary tasks.

The executive task controls the execution of FEDS. It acts

as a minioperating system that allocates time slices to the

primary tasks based on the data received, uplinked schedules,
. 1-2

9808 |

-l .

syse] sadd Jo AudiriaTH

Bl L R MO WL F) 17 4 e

*T-T @anbig

2 WSV.L AUYANODZS,

z L

35 HOLVYDVJONHd HIDYNVIN HOLVOVdOHd HIDYNVIN ASVL AHVIIHG,

= 11860 viva 11840 v1va

. i z11BY0 ZHONLYa ZUISHO ZHONIva
' aNNIA0OW
NOILYAYISBO HOLYWi1S3
| IOWSE0 | WILS3
HIDVYNYW HOLVOVJOMd YIDVYNVIN
vivQ 11840 vivda
Z49W1va 711840 ZHONLY
HOLVOVdOUd HOLNO3Hd HOSS3J0HdIdd
840 ¥3addog viva
211850 \JHddoa {OHdbd
¥O121a34d HGSSIDOHY HOSSIO0Md IYNLIVD
ETCHGS 1nd1no indni viva
\3BdVLS ,OH4LNO L OHddNI 1dvoLva
IALNDIXT
g03d
- .nin...

o gy -

the current status of the FEDS tasks, and a predetermined
set of priorities. The executive task also generates an
activity log based or. system status messages for the other
FEDS tasks. All error messageé received by the executive
are loaded in the activity log. When the error is con-
sidered severe, the message is also scheduled for immediate
downlink to ground control. ' In addition, the executive task
processes all control commands received from ground control.

1,1.2.1 Primary Tasks

Primary tasks perform specific functions scheduled by the
executive. Esch primary task is completely controlled by
the executive: the executive decides when a primary task is
to be executed and determines which function the task is to
perform. All conmunication between the executive and the
primary tasks and all communication among the primary tasks
are performed through global COMMON blocks. FEDS contains
the following eight primary tasks:

1. Data Capture (DATCAP). This task captures all in-
coming messages, identifies uplinked control commands and
notifies the executive, performs limited message validation,
loads data and command messages into the input queue for
later processing by the input processor, and loads observa-

tion messages into the observation buffer.

2. Input Processor (INPPRO). This task checks input
messages for validity and stores input data in the appropri-
ate global COMMON blocks.

3. Data Preprocessor (PREPRO)}. This task validates
raw observation data and converts ohkservation da.a to inter-
nal units, generates the Tracking and Data Relay Satellite
(TDRS) orbit files, updates the TDRS orbit files based on
uplinked new TDRS vectors, and performs TDRS maneuver recov-
ery.

9408

4. Doppler Predictor (DOPPRE)j. This task predicts
{simuilatms) one-way Doppler data for a specified time inter-
val.

5. State Predictor (STAPRE). This task generates a
predicted state vector table over a specified time interval
based on the current best estimate of the user spacecraft
state.

6. Estimator (ESTIM). This task performs least-
squares estimation by means of a sliding batch process to
estimate the six components of the user spacecraft state
vector and, optionally, one atmospheric drag coefficient and
three coefficients of the frequency model for the one-way
Doppler data.

7. Observation Modeling (OBSMDL). This task computes
one-way, averaged TDRSS Doppler observations and partial
derivatives as requested by the estimator. OBSMDL is an
extension of the estimator because of memory restrictions
and is, therefore, mainly controlled by the estimator,

8. Qutput Processor (OUTPRO). This task prepares ihe
messages to be downlinked, performs the actual downlinking

of the messages to ADEPT, and outputs messages. to tne Commu~

nications Box.

1.1.2.2 Secondary Tasks

Secondary tasks perform functions that several of the pri-
mary tasks require to perform their duties. Because of this
arrangement, a secondary task is controlled by the primary
task that is currently using it. Communication between a
secondary task and the primary task using it is performed by
SEND and RECEEV system directives. A secondary task will,
however, access global COMMON blocks for uplinked constants

9808

£ oo

and control parameters. The two FEDS secondary tasks are as
follows:

1. Data Manager (DATMGR). This task contains the ob-
servations file and two TDRS orbit files and performs all
storage (writing) and retrieval {reading) of observation
data and TDRS state vectors. It is used by the PREPRO,
ESTIM, OBSMDL, and DOPPRE primary tasks.

2. Orbit Propagator (ORBIT). This task propagates the
TDRS and user spacecraft state vectors using multistep inte-
gration and interpolation methods. It is used by the
PREPRO, ESTIM, OBSMDL, and STAPRE tasks.

1.1.3 DATA FLOW

The 11 tasks that compose FEDS communicate with each other
through the use of global COMMON blocks that are grouped by
usage into four major global COMMON areas:

L. GLBl. This area contains all control information,
the activity log and all information required to generate
it, all global consﬁants, the initialization table, and es-
timation control parameters.

2, GLBZ2., This area contains the observations queus,
the new TDRS vectors, and the tracking and marauver sched-
ules,

3. GLB3. This area contains the predicted state vec-~
tors table, predicted one-way Doppler data, the differential
correction (DC) summary and statistics report, and the DC
residuals report to be downlinked. It also contains the
global COMMON blocks that allow communication between the
estimator and the observation model.

4. GLB4. This area contains the input queue.

All communication apd data flow among primary tasks are per- —~

. . ol

formed using these global COMMON areas, and the executive -
1-6

9808

communicates with the FEDS tasks through the global COMMON

only. Figure 1-2 shows the interfaces of the FEDS tasks
with the global COMMON areas and with each other.

The following information is input to FEDS (see Appendix A):
o Input data uplinked by ADEPT

- New TDRS vectors

- Maneuver schedule

- Traciing schedule

- Initialization table

- Miscellaneous constants

- Estimation control parameters
- Station parameters

- Geopotential tablds

- Atmospheric density table

- Timing coefficients
- Experiment parameters

® Input data transmitted by the Communications Box
- Time-tagged Doppler Observation

- External clock time
® Control commands from ADEPT

- START

- STOP

- REBOOT

- ABORT

- SUSPEND

- CONTINUE

- MARK TIME

- RESUME

- BEGIN FAST TIMING
- STOP FAST TIMING
- SET CLOCK _
- STATUS REQUEST

1-7
8808

T&\

| ORIGRNAL PATIS #T
OF POOR QUALITY

-|
!
|
|
|
I
!
i
|
l
|
!
|
I
|
!
|
i
l
I
!
|
!
!
!
f
!
!

d

GLBd
HNHPBUFS

ca ADEPT

- DATCAP 1 INPPRO

GLB2

INEWTDR/
{TSCHED/
IMECHED/

f0B5Q/

PREPRO

DATMGA

GL83

/CONTRAL/
{OPTAB/
1TSKCOM/
/ACTLOG!
TACTVAR/
rERAMSG/
ISYSEVN/
IPHYCON/
/INITAB/
JESTPRAM/
TEXPARM/

Ao
uSMOL

ORRIT

GLBI
/OCSTAT/

LEGEND:

——— — — o — e e e S b e ey . — —— A e e e i — T i m—r . ——

o = SHARED GLOBAL AREA

g
(- sk i

Figure 1-2. FEDS Data Flow

e e o

9808

[] Control Flags from the Communications Box

- Carrier lock signal
- Communications established signal

The following information is output from FEDS (see Appen-
dix A)

[] Output data downlinked to ADEFT
- Activity log

- Priority messages (critical error messages and
idle time messages)

- Predicted state yector tables

- Predicted one-way Doppler frequency shift

- DC residuals report from the estimator
- DC summary and statistics report from the es-
timator
' Predicted one-way Doppler frequency shift data mes-

sage output to the Communications Box

'3 Control messages output to the Communications Box
- Communication initialization
- Time request

- Reset Doppler accumulator
- Doppler measurement request

The flq& of data through the FEDS tasks is as follows:

. FEDS Executive., EXEC uses task status information,
tracking and maneuver schedules, and the system time along
with knowledge of recently received uplinked data and con-
trol commands to assign functions to and schedule FEDS tasks
for execution. It also maintains an activity log that is
periodically downlinked to ground control. In additien, it
generates critical error messages'fet downlink when necec-
sary. '

1-9

T e e e e

a0 AT e -

N

L e e

cek e b
3’

e

e Data Capture. DATCAP captures all uplinked mes-
sages on dzmand and loads them in the input queue for later
processing. It also extracts all contrcl commands and
passes them to the FEDS executive for immediate processing.
For messages from the transponder, DATCAP sets flags for the
FEDS executive and loads observations into the sbservation
buffer in /OBSQ/.

® Input Processor. INPPRO identifies all data in the
input queue and loads all valid data into the appropriate
global COMMON blocks where it will be used by the other
tasks.

® Data Preprocessor, PREPRO preprocesses the obser-

vations data in the observations buffer in /OBSQ/, and sends

it to the data manager in chronological order to be written

.in the observations file, PREPRO also generates and updates

the TDRS orbit files based on uplinked TDRS vectors in
/NEWTDR/ .

[Data Manager. DATMGR reads or writes data in the
observations file or in the TDRS orbit files as requested by
the primary tasks. These fileé are stored internally in
DATMGR memory.

® Estimator and Observation Modeling. ESTIM esti-
mates the user spacecraft state and other solve-for parame-
ters as specified in the initialization table in /INITAB/.
The sliding batch estimation process is controlled by the
estimation control parameters in /ESTPRM/. During estima-
tion, ESTIM requests OBSMDL to compute observations, based
on the current best estimate of the state (propagated by

ORBIT), that correspond to the observations retrieved from

the observations file by DATMGR. A state update is then
computed and applied based on a comparison of the observed
and computed values of the observations data. This process
produces two output reporté: a bC summary and statistics

1-10

—

report, /DCSTAT/, and a DC residuals report, /RESRPT/, both
of which are later downlinked to ground control.

) State Predictor. Using ORBIT, STAPRE generates the
predicted state vector tables based on the current best es-
timate of the user spacecraft state. This information is
stored in /OQUTVEC/ for use by DOPPRE and for downlink to
ground control.

® Doppler Predictor., DOPPRE predicts one-way Doppler
data based on the user spacecraft vectors in the predicted
state vector table in /OUTVEC/ and on the TDRS vectors re-
trieved from the TDRS orbit file through DATMGR. The pre-
dicted Doppler data is stored in /QUTDPL/ for downlink to
ground control and output teo the Communications Box.

. Output Processor, OUTPRO downlinks the output in-
formation te ground control and the Communications Box.

] Orbit Propagator. ORBIT propagates a given state
vector; optionally computes the associated partial deriva-
tives using a multistep integrator and interpolator; and
sends the results to the requesting primary task.

1.1.4 TIME SYSTEMS IN FEDS

It is important to understand the time systems used in

FEDS. To reduce the number of time conversions required in
FEDS, all data time tags are converted on input to an inter-
nal time system in which most computatiohs will be per-
formed. Time tags on data to be output are then converted
back to the external time system before downlink.

All incoming data is time tagged with a Universal Time Coor-
dinated (UTC) time in one form or another. Observation data
times are in Parallel Grouped Binary time code 5 (PB5) for-
mat consisting of the last four digits of the Julian day,
seconds, and milliseconds. All time tags of state vectors

9808

and the times in uplinked schedules are input in
YYMMDDHHMMSS.SS format. During input processing, all these
times are converted to seconds from reference in atomic
(A.l) time using the timing coefficients tahle. Before in-
formation is downlinked, it is returned to UTC time in
YYMMDDHHMMSS.SS format.

The advantaqge of A.,l1 time is that time advances at a con-
stant rate: that is, no discontinuities occur periodically
as in the UTC time system. The advarntage of keeping all
times in seconds from reference is that the system (com-
puter's) clock can be uged to measure real time or simula-
tion time as well as execution time.

Two reference times are used throughout FEDS. The simula-
tion reference time is the time that is uplinked in the
START command in YYMMDDHHMMSS.SS format, synchronized to
within several seconds of the PB5 generator. The system
reference time is the systém clock time (YYMMDDHHMMSS,SS)
when the START command is received by FEDS. These two
times, which actually represent the same time in two differ-
ent ways, are used to synchronize the system clock time and
the simulation time. After the simulation reference time
and the system reference time have been established, an off-
set is computed to bring the simulation time into agreement
with the PBS generator. During FEDS demonstration, the PB5S
generator will be an external clock synchronized to within

1l millisecond of current UTC obtained from the Ground Space-
flight Tracking and Data Network (GSTDN). 1In this manner,
FEDS can schedule simulation events based on the system
clock.

At certain places in FEDS, times must be converted to a mod-
ified Julian date (modified by 2430000). This is made

. simple by cbmputing and ‘saving the modified Julian date of
the simulation reference time. A time in seconds from

1-12

9808

{

)

reference can be converted to a modified Julian date by

simply converting it to days and adding it to the reference
Julian da;e.

Ephemeris time (ET) is also used in the orbit propagator to
compute the position of the Sun and the Moon. When neces-
sary, the orbit propagator performs this conversion.

'1.1.5 DATA COLLECTION

FEDS collects observation data to perform orbit estimation
so that more observation data can be collected, For a
flight system, a tracking signal would be transmitted at a
constant frequency from a ground station and collected on
board. The onboard system would then use the Doppler-
shifted frequency record to estimate location. For a demon-
stration system, since the receiving transponder is
stationary, the frequency transmitted will be shifted to
simulate data that would be received by a satellite in a
given orbit., These data come in nominal'lo-minute passes.
The transponder will form an observation by adding the re-~
ceived frequency to a constant bias and accumulating data in
a nondestruct mode in a 40-bit accumulator.

The flow of control of FEDS begins with the extension of the
file of predicted Doppler frequency shift 5 minutes before
the beginning of é pass. Twenty seconds before the begin-
ning of a pass the transponder accumulator is reset to

zero. To accomplish this, FEDS sends a message to the Com-
munications Box to reset the accumulator, the Communications
Box sends a message to the transponder to reset the accumu-
lator, and the transponder resets the accumulator to zero.
FEDS then reguests a time message and uses the subsequent
reply to update the current simulation time. The Communica-
tions Box accesses the PESAqenerator and sends the current
time to FEDS. FEDS then begins to output predicted Doppler
frequency offset. When FEDS sends a predicted Doppler

1-13

9808

. e B ;R g s, Bl Ay - = AT e e hd e R

message, containing the predicted offset in the form of a
frequency control word, the Communications Box passes the
frequency control word to the transponder for use in signal
acquisition. FEDS outputs a predicted Doppler message at a
user-specified frequency.

When signal lock occurs, the Communications Box sends a sig-
nal lock message indicating that FEDS should stop transmit-
ting predicted Doppler messages and that observation data is
being collected. FEDS responds to the signal lock message
with a request for a Doppler observation. When the Communi-
cations Box has received a Doppler observation request from
FEDS and an accumulator reading from the transponder, it
accesses the PB5 generator to obtain the current time and
transmits an observation message., FEDS again responds by
transmitting a request for a Doppler obsérvation. This
process will continue until the tracking signal is lost.
FEDS will try to reacquire siénal lock by resuming output of
predicted Doppler messages until the end of the scheduled
tracking pass. FEDS will then perform end-of-pass process-
ing to prepare for the next tfacking pass.

Tne Doppler file is initially generated by the first execu-
tion for each tracking pass of the Doppler predictor wherein
60 records of data are written to the file. The Doppler
file is extended throughout the pass in a wraparound manner
so that at least half of the file (30 records) is in the
future. This procedure maintains the immediate availability
of the predicted frequency shift for output when the track-
ing signal is lost.

1.2 DESCRIPTION OF TEIS DOCUMENT

Sections 2, 3, and 4 of this document describe the FEDS ex-
ecutive, the FEDS information prbcessing tasks, and the FEDS
computational tasks, respectively. These sections also con-
“tain an overview, baseline diagrams, and data flow diagrams

1-14

9808

S,

et

W)

grouped by function for each of the FEDS tasks. Section 5
describes the Communications Box used in FEDS. Section 6
discusses the construction and operaticn of FEDS.

There are five appendixes: Appendix A contains descriptions
of external interfaces in FED53. Appendix B contains output
message descriptions. Appendix C contains detailed descrip-
tions of the data packets used to send information to and
receive information from secondary tasks. Appendix D con-
tains the command files that are used for updating the sys-
tem. Appendix E contains a summary of the FEDS regquirements.

9808

L By

R

SECTION 2 - FEDS EXECUTIVE (EXEC) TASK

The FEDS executive task (EXEC) controls FEDS execution using
the RSX-11M(S) system services. The exzcutive controls what
each FEDS primary task is doing and when each task is exe-
cuting. Since FEDS is a real-time system, the FEDS execu-
tive must ensure that all schedules are met and that all
time-critical functions are performed, The executive must
monitor &ll FEDS queues, anticipate problems, and take ac-
tion to avoid backlogs. The executive must also ensure that
all incoming data are processed as quickly as possible by
the time-consuming coniputational tasks. 1In addition, the
execution must service uplinked control commands soon as
they are received.)

Processing priorities can change rapidly in FEDS because of
changing system status and uplinked schedules and data.

This rapid changing of priorities requires that the execu-
tive be able to switch quickly from one primary task to
another to ensure that the highest priority function is
being performed at any given time. To accomplish this, the
executive uses a timeslicing technique that allows a task to
execute for only a specified length of time befcre the exec-
utive resumes control, reevaluates priorities, and allows
the same or another task to execute during the next time
slice, and so on. '

Because the executive is executed at the end of each time
slice, it is important that it be time efficient; for this
reason, all sequential executive functions are included in
one large routine called EXEC., Only time conversion rou-
tines and certain activity log generation subroutines that
are used repeatedly throughout the executive are called by
EXEC. A baseline diagram of the FEDS executive task is
shown in Figure 2-1.

2-1

9808

Te/tzsy

‘., I et it K T I S

OHXHd 30 wexbeTq surTeseq *T-Z 2anbrg
Jivar

awalL 43ui NO3JL
atvar Jivar awvar WiLLNO ’ ...m._
™~

33IHL NOJL anAL EELTR NOOL d3H1 NOJL D5ALM . ’ QWAL

— | L | _ll_ll_]
NOJWIL . aWAL ' wWiLino Jlvar WiLHND . N3ADIDY AN043as '
I3x3

=

2.1 BASIC EXECUTIVE CONTROL TECHNIQUES

Because many FEDS functions must be performed simultane-~
ously, the executive uses a combination of RSX-11M(S) system
priorities, a basic timeslicing technique, and global system
event flags to control the execution of FEDS primary tasks.
Use of these techniques and the system services available
under the RSX-11M(S) operating system enables the FEDS exec-
utive to give the central processing unit (CPU) to the pri-
mary task performing the highest priority function at any
given time. These control techniques are described in the
following subsections.

4.1.1 USE OF RSX-11M(S) SYSTEM PRIORITIES

The FEDS tasks are assigned different RSX-11M(S) system pri-
orities as shown in Table 2-1. With the knowledge of each
task's priority and the relative priorities among the tasks,
the executive can change the task that is executing rather

‘easily. Based on the priorities given in Table 2-1 and on a

fundamental understanding of the RSX-11M(S) operating sys-
tem, FEDS will perform in the following ways:

7 The data capture (DATCAP) task, which has the high-
est system priority, will interrupt any other task that is
exssuting, including the executive, when it receives an mes-
sage (one that satisfies a queue input/output directive
(QI0) issued by DATCAP). This assures the executive that
data will be captured on demand and without any direct su-
pervision by the executive. After receiving the message,
DATCAP issues another QIO and goes into a wait to the mes-
sage source state, thereby removing itself from contention
for the CPU until the next message is received.

° The executive, which has the second highest system
priority (70), will gain control any time one of its wait
conditions (WAITFR and WFLOR directives) is satisfied as
long as DATCAP is not executing at the time. If DATCAP is
2-3 _
9808 - ?

Table 2-1. System Priorities of FEDS Tasks

HIGH- LOW-
TASK NAME PRIORITY PRIOAITY
LEVEL LEVEL
EXECUTIVE — EXEC 70 70
PRIMARY TASKS _
DATA CAPTURE — DATCAP 80 80
INPT PROCESSOR — INPPRO 50 1
DATA PREPROCESSOR — PREPRO 50 1
ESTIMATOR — ESTIM 50 1
OBSERVATION MODELING — OBSMDL 55 1
DOPPLER PREDICTOR — DOPPRE 50 1
STATE PREDICTOR — STAPRE 50 1
OUTPUT PROCESSOR — OUTPUT 50 1
{ADEPT)
65
(C8)
SECONDARY TASKS '
DATA MANAGER — DATMGR &0 60
ORBIT PROPAGATOR — ORBIT 80 60

THE HIGH PRIORITY IS ASSIGNED TO THE TASKS DURING TASK BUILDING.

9808-{83)-84

executing, EXEC will gain control after DATCAP goes into a
wait state.

. Secondary tasks (DATMGR and ORBIT) have a priority
(60) between the primary tasks and the executive, They will
be executed immediately whenever they are requested by a
primary task and can be interrupted by either DATCAP or EXEC.

. Primary tasks other than DATCAP will execute only
when other active FEDS tasks with higher priority are wait-
ing or are suspended. 1If one primary task has a system pri-
ority of 50 and the other:s have a priority of 1, the task
with priority 50 will be executed. Unlike the priorities
assigned to other primary tasks, the high system priority
&Ssigned to OBSMDL is 55 rather than 50, which allows the
operating system to complete housekeeping functions when
OBSMDL exits before allowing the ESTIM task to continue,

Due to the time~critical nature of the information trans-
mitted from FEDS to the Communications Box, OUTPRO will have
a higher priority (65) than that of the secondary tasks when
outputting to the Communications Box.

2.1.2 TIMESLICING

The FEDS time-slicing scheme is based on the rules just
cited. The tasks that are time sliced are the primary tasks
other than DATCAP. After thoese tasks are initialized, their
system priority is set to 1, Then, whenever one of these
tasks is to be executed, its system priority is raised to
the high-p:iority level, allowing it to be the primary task
that will execute when the higher priority tasks give up the
CPU. Thus, when the executive selects a primary task to
execute during che next time slice, it simply raises the
system priority of that task. It then issues a system mark
time (MARK TIME) directive and waits either for the primary
task to complete or until the end of the time slice, which-
ever comes first. This allows the selected primary task to
2-5

9808

execute. When control returns to the executive, the system
priocity of that primary task is lowered to 1. It should be
noted that the priority of OBSMDL is raised and lowered
based on the priority of ESTIM when the estimator is
scheduled.

This scheme is somewhat complizated when a primary task has
requested {(called) a secondary task that has not yet com-
pleted when the time slice ends. For example, primary
task A at priority 50 is waiting for an event flag to be set
by the secondary task running at priority 60. In this situ-
ation, the same procedure is followed when the executive
takes control from the secondary task. Primary task A's
priority is lowered to 1. When a new primary task, B (other
than QUTPRO sending data to the Communications Box), is se-
lected for the next time slice, its priority is raised to
50, and the executive gives up control by performing a MARK
TIME. This time, however, the secondary task continues exe-
cuting since its priority (60) is higher tham that of the
selected primary task B. When the secondary task completes
- and sets the event flag for which primary task A was wait-
ing, task A does not gain control because its priority is
1. The system then selects task B, which has the highest
priority (50) of the tasks contending for the CPU. This
procedure ensures that execution of primary tasks will not
be blocked by a request for a secondary task that is already
in use by another primary task. When the primary task B is
OUTPRO sending data to the Communications Box, the executive
will raise OUTPRO's priority to 65. OUTPRO will then gain
control of the CPU and executé the completion. Upon comple-
tion of OUTPRO, the executive will regain control to sched-
ule the next primary task.
The length of the time slice is an EXEC parameter that may
be set before compilation and task building are performed.
This allows the executive to be tuned to use the optimum

| 2-6
9808

time slice. However, the time slice may not be changed dur-
ing FEDS execution,

2.1.3 USE OF GLOBAL SYSTEM EVENT FLAGS

The RSX-11M(S) operating system has a set of global event
flags available to all active tasks. A global event flag
signals the occurrence of a specific event during execu-~
tion. Each event flag is identified by a unique number.
Global event flags allow one task to detect and control, if
necessary, events occurring in other active tasks. They may
be set and/or cleared by either active tasks or system serv-
ices.

The FEDS executive uses these global event fiags to monitor
events occurring in other FEDS tasks. A list of the global
event flags used by the FEDS executive and their functions
is given in Table 2-2, 1In most cases, the executive uses
these event flags as a means of regaining control after it
gives up the CPU to a lower priority task.

2.2 FUNCTIONAL FLOW OF THE EXECUTIVE

The communication and the data flow between EXEC and the
other FEDS tasks are shown in Pigure 2-2, FEDS execution
begins when the FEDS executive is started. The executive
first performs an initialization procedure that includes
initializing local variables that will be used to perform
task scheduling and the startup and initialization of all
other FEDS tasks except DATCAP (see Section 2.2.1). After
each primary task is initialized, its system priority is
lowered. The executive then starts DATCAP and directs it to
perform initialization and to accept only the START command
from ground control and Communications Box messages. The

exegutive then directs QUTPRO to send the Communications Box

an initialization message and waits for DATCAP to set event
flag IFLAG7,; indicating that communication with the Communi-

cations Box has been established. The executive will again

2-7
9808

)

By — —————

%
B
|
j
]

18/1258

t

SAILLOY S HOLVOVYJOHd
LIGHO FHL LYH1L SALVYIIONI 11 '"HY3TI NIHM ‘SAILOY LON

11840 LIBHO SI HOLYOVYdOHd L1850 IHL LYHL $3LYIam] LI “135 NIHM Ly LD
"JAILOY S HIDVNVYIN
VAVQ 3HL LYHL S21LVOHING 11 ‘Y310 NIHM (JALLOY
HOWiva HOWLVQ 1ON SI HIOVNYW YLVJ 3HL LYHL S3LVIIONE L1138 NIHM gt 0L
"QIAIZ023H NI38 SYH X089 SNOLLYIINNWWOD 3HL WOou4d
03%3 dV2Lva | 39VSSIW HO ONYWWOD 10HANDD V 1YHL STYNDIS L1 'L3S NIHM St LOYV14)
03X3 {SiNLL-xXsY ‘GAHIIXT SYH I0TS INIL 3HL LVHL STYNDIS L "L35 NIHM t 99v4l
‘NOILLONND AINDISSY SLi 3131403 SYH
23X3 NSY1 AHYHIHD ASVL AHVYIHG ONILNDIXA IHL LYHL STYNDIS Li “13S NIHM et SOvdl
HIgWNN INVYN
A8l U35731D AB 138 NOILONNA ovY74 LN3AT o190
AYNLOY

sbeT1d Jusad walsds SAId -z-Z 2I9el

L

-, W

/1250

MOTd e3ed JIXH °*Z~¢ 2Inbra

WYHDVIO NI 3INO NYHL FHOW SUYIddY

I¥ ANV £ SNOLLJ3S 335) S3SYL AHVANDDIS
WOUd ¥.1¥0 In303H 4O OL viva ON3S OL Q35N 13%0Vd viva

U
¥2078 HOWWOD Va0 =<
-

ASYL ADIrANS HlA
FLVYIANNANWOD LYHL SHSYL S03+ HIHLO

1 WYHOVIT 40 103rans S AvHL ¥SVL .Hw

R _

aN3HIAN
THYALOV/ <4

>
» INAIBAS/

Oddibd

-/8vido/

/WODNS L <

{ dvoIwa winoyr ¢

i
i

IWHvdXa!
JNDDAHA!
- CELTE S
JHOLMAN/
044IND 190142v/ +«——] 33 OHddNI
103HDS L/
L /8v1d0/ PEC
FQ3HISW/

i Gl SRSDINEIN. & S RO S ST B

wait until DATCAP sets IFLAG7, indicating that a control
command (in this case, the START COMMAND) has been received.

At this point, if a command has been receivesi, the executive
performs the functions dictated by the contrel command (see
Section 2.2.2). After control command processing has been
completed, the executive calls ACTGEN to enter a message in
the activity log (see Section 2,2,.5) about the control com-
mand procéssed. From this point on, DATCAP will execute
asynchronously, &£iking control when a message is received,

storing it in the input gueue, and then waiting for another
uplinked message.

Next, EXEC calls CURTIM to obtain thé current time in sec-
onds from reference. It then schedules tasks based on the
current time, the uplinked tracking and maneuver schedules,
FEDS control flags and parameters, and the FEDS output
table. When the primary task that is to execute during the
next time slice and the function it will perform have been
determined (see Section 2.2Z2.3), EXEC checks to see whether a
command has been received. If so, EXEC goes back to command
processing, responds to the command, and performs task
scheduling as described above.

If no control command is present and if a primary task has
been selected, the executive proceeds to tfansfer control to
the primary task. EXEC does this by raising the system pri-
6rity of the selected primary task as described in Sec-

tion 2.1.2, EXEC then clears event flag IFLAG5 and issues a
MARK TIME system directive. This effectively sets a timer
for the time slice, whose length is selected from whichever
is the larger: the default time slice or the time until
output to the Communications Box is scheduled. Next, EXEC
gives up the CPU by waiting until one of three event flags
is set., IFLAGS will be set by the primary task if it com-
pletes 'its function before the time slice is over; IFLAG6

2-10

9808

v

will be set by the RSx-llM(S) system whenever the time slice
has exbired; and IFLAG7 will be set by DATCAP if a control
command or Communications Box message is received. The ex-
ecutive will regain control when at least one of these event
fiags is set.

When EXEC regains control, it tests all three event flags to
see which condition(s) caused it to regain control. If the

time slice has not expired, it is canceled. At this point,

EXEC checks to see whether the primary task that was execut-
ing was the input processor (INPPRO). 1If so, EXEC checks

whether INPPRO was interrupted in the middle of processing a

block of data (BLKFLG is true). If this is the case, EXEC
directs INPPRO to complete processing that block of datz and
waits for it to return control to EXEC (IFLAGS is set).

This prevents a mixing of old and new data in global COMMON
blocks. At this point, the system priority of the primary
task is lowered. Next, EXEC calls ACTGEN to record status
and error messages from the primary task in the activity
log. At this time, any severe error messages that are to be
entered in the activity log (see Section 2,2.5) are also
downlinked to ground control.

EXEC then continues to determine why it regained control.

If a control command or Communications Box message reception
occurred (IFLAG7 is set) and if the primary task d4id not
complete its function (IFLAG5 is clear), EXEC transfers con-
trol to the command processing section (after clearing
IFLAG7) and proceeds as described above.

if, however, the primary task completed its assigned func?
tion or if an error occurred in the primary task (IFLAGS is
set), EXEC performs end-of-task processing (see Sec-

tion 2.2.4). This includes performing FEDS housekeeping
functions, dlearing the'primafy task's directive (IDIR(I))

2-11

3808

ag

R TR SR W B = W U VITT, U A PR SN T e o mt R e E A : RN

if the primary task has removed itself from the task sched-
uling list (IACT(I)=0), and setting the primary task's re-
turn flag (IRET(I)) to zero. EXEC then goes to the command
processing section and begins the cycle again.

If no primary task is selected for execution during the next
time slice, EXEC checks for idle time or a stop condition.
If a STOP command has been received and if there is no more
data to process, EXEC directs the output processor (OUTPRO)
to downlink the activity log and then to downlink the end- -
of-simulation message. EXEC then waits until DATCAP re-
ceives a START command at which time proceésing will resume
with command processing., However, if a STOP command has not
been received, EXEC finds the time of its next scheduled
event and computes the amount of idle time until that

event. When the fast-timing option is on and an idle time
message has not already been sent, EXEC creates an idle time
message, directs OUTPRO to downlink it immediately, and
waits until it has been completed. EXEC then transfers con-
trol to the command processing section and the cycle begins
again.

2.2.1 FEDS INITIALIZATION

On initiation, EXEC performs an initialization procedure,
which initializes all local variables used in the execu-
tive., Event flags IFLG1l0 and IFLGll are set to indicate
that the data manager task, DATMGR, and the orbit propagator
task, ORBIT, are not executing. Each primary task (except
DATCAP) is then started up and'directed to pérform initiali-
zation. To doAthis, the executive clears event flag IFLAGS,
requests the primary task by name (REQUEST directive), and
waits for IFLAG5 to be set by the primary task to indicate
that it has finished initialization. This effectively sus-
pends the executive and allows the primary task to execute.

2-12

9808

RN

-y

SR W, bk B el bl ey o SRL IR L STERERL ce e A T -— e kel

When control returns to EXEC, the primary task's system
priority is lowered. This is repeated for each primary task.

Ncxt, ORBIT is requested and directed to perform initializa-
tion in the same manner as primary tasks. Since ORBIT is a
secondary task, its unigue event flag, IFLG10, is used to
indicate that ORBIT has finished initialization. Unlike the
primary tasks, ORBIT will exit after performing initializa-
tion. This is the only direct interface that the executive
has with a seconéary task.

At this point, DATCAP is requested and directed to perform
initialiiation and to accept only a START command from
ground control. The executive then directs establishment of
communication with the Communications Box and waits for
DATCAP to set event flag IFLAG7 to indicate that a START
command has been received.

2,2.2 CONTROL COMMAND PROCESSING

When a control commarnd is received by DATCAP, the executive
immediately gains control through IFLAG7. The control com-
mands are processed according to the FEDS requirements given
in Reference 1. The function of each control command is
gshown in Table 2-3, The executive reéponds to each specific
control command as follows:

1. START command

a. Sets the data capture directive to accept all
valid uplinked messages

b. Clears local flag ISTOP to allow FEDS process-
ing to begin

C. Sets the simulation reference times from the

uplinked simulation reference time in the com-
mand

9808

*)

11zee

W)
IOvd WL
Q3193:49v LON 0319343v 10N 03i0344Y 1ON 0319344V 1ON Q319343Y LON “1v3H SH LY 'NAY TIIM SA0Y ONIWIL LSV dOLS
LNO-Q3ISSIHINOD
03LD34Y LON 031D33J4Y 10N 0312344V 10N 0349344V LON Q319343Y 10N 38 VUM 3NLL 3101 1Y - DNIWIL 1SY2-NID38
G252V
143N 1439 a3nNsSay 03nnsay S$IJAL Lava IV J3WNS3IY ONISSITIOHL 1TV INNsad
' Q3L4TDIY ONYWNDD
143% 143 03dd0LS a3ddoLs INNSIY ATNO 034d0OLS ON{SSIDOHd 1Y INLL HHv
FINYHD IWLL, ONINIL
0310344V 10N 0319334V LON IDNVHO IWIL HO4 a31SNFaY HOJ Q31SNrav 0310334V 1ON 1S4 O Q3LSNraY 0D 2070 138
OINNITNMOT
T3LD344Y 10N 0312334V 10N Q319334Y 10N 907 ALIAILOY 0312344V 10N O3NIV180'907 ALIAILDY 153INDIYSNLYLS
1NdNI AB Q319344 .
4t QILHVLSAH "LNdNI AS SINNILNDD 0314300V GIWNSIY $355ID0Ud
L 143N Q310344 1ON 41 3Nrsay ANJLND QUYENYLS 53dAL VIVE TV TWNOIUYANdWOD GITNIISNS INNILROD
SANNILNOD 0314300V OIANI4SNS SISSITOUA
143 143X J3AQNI4SNS LNAAINO QUYANYLS $3dALVIVYG TV TYNOLLYENdNOD ANIHEND anNIdsns
AILVILING O3LYILING : 0314300v
Q31D344V 10N a31931100 ONISSII0HL BY1NDIY LNdLND QHYONYLS SA4AL ViVA Y QILVILINI DNISSIOOMS Vivg LHYLS
ATIVNHON a344300v 03LYNIWLAL
1d43n 1501 ATTYWHON Q31774000 €1313714W0D LALN0 ANYWIWOD LHY1S ATNO ONISSII0Hd VY1va dois
GINNIINMOC 0314320V
1dan isov AT4dNsEaY QId40LS D07 ALIALLDY ONYWINDD LUYLS ATNO G31408Y sgov 1808v
INILNOY
1501 1509 150 1807 1507 1008 OL NJAID 10HLNGD 10083y
ONVARNOD
3002 vivg SASVL TYNOLLYANIWOD 1ndLno Lindni NOLLOY 1IVHAAD

NOLLOY

SITNSIY puR SPUEUMIO) TOIFIUOD VOTAIDS

"£-C ITqeL

2=14

d. Establishes the FEDS system reference time by
accessing the system clock

e. Synchronizes the simulation time with the PB5
generator

£. Computes and stores the Julian date of thz
simulation reference time

g. Gets the current time (from reference) and
defaults the first activity log downlink time

h. Begins task scheduling
STOP command

a. Sets the data capture directive to accept only
a START command

b. Sets local flag ISTOP that will cause FEDS
processing to stop (to wait for START command)
after all available data is processed ang cur-
rently scheduled activities have been completed

REBOOT command (useful in flight system only)

a. Aborts all active PEDS tasks (primary and sec-
ondary)

b. Aborts EXEC

C. Requests the system boot routine (only a dummy
boot routine is available at this time)

ABORT command

a. Directs OUTPRO to downlink the activity log
and waits until QUTPRO has completed

b. - Aborts all active FEDS tasks

C. Sets local flag INITLZ to cause the executive
to reinitialize and to start over the next
cycle

2-15

o e e vt Bty e

9808

SUSPEND command. Suspends computational tasks to

aliow uplink of constants, tables, and/or control
parameters that may affect them

de

b.

Temporarily suspends the Doppler predictor,
state predictor, and estimator (unless the
estimator is performing maneuver recovery
bookkeeping) by removing the appropriate tasks
frem the scheduling list

Sets local flag SUSPEN to keep the DOPPRE,
STAPRE, and ESTIM tasks from being scheduled

CONTINUE command

a.

Directs INPPRO to process all input in the
input queue up to the CONTINUE command and
waits until INPPRO is finished.

If an initialization table, the estimation

L
. .

control parameters, a geopotential table, an
atmospheric density table, and/or the station
parameters have been received since suspen-
sion, EXEC aborts the estimator, sets the ap-
propriate restart flag, and requests ESTIM.
This causes ESTIM to restart the function it
was performing when the SUSPEND control com-
mand was received; otherwise, EXEC allows
ESTIM to continue by putting it back in the
scheduling list.

If geopotential tables or atmospheric density

tables have been received since suspension,

EXEC aborts both DOPPRE and STAPRE, sets the

appropriate restart flags, and requests these

tasks. This allows them te restart the func-

tions they were performing the next time they 'f) -
are scheduled for execution; otherwise, EXEC -

2-16

.7

9808

10.

allows them to continue as before by inserting
them in the scheduling list.

Clears local flag SUSPEN to indicate that sus-
pension is over.

TIME command
Directs DATCAP to accept only a RESUME command

Stores the time that the FEDS mark time began
{current time from reference)

Sets local flag MRKTIM to indicate that FEDS
is marking time

waits for event flag IFLAG7 to be set to indi-
cate that a RESUME command was received

RESUME command

a.

b.

If the system is not marking time, EXEC re-
jects the command.

Computes the time pad necessary to make the
timespan of the mark time transparent to FEDS
tasks.

Clears local flag MRKTIM to indicate that the
mark time is over.

BEGIN FAST TIMING command

da

b-

Sets local flag FAST to indicate that the
fast-timing option is on

Sets the minimum idle time allowed in FEDS

from the time in the command

STOP FAST TIMING command: Clears local flag FAST

to indicate that the fast-timing option is off

2-17

ll. SET CLOCK command (used only when fast timing is on)

a. Increments the system time pad by the number
of seconds in the command, which effectively
compresses out the specified amount of idle
time ‘

b. Gets the new current time

c. Adjusts the activity log output time by the
number of seconds in the command

12, STATUS REQUEST command: Directs OUTPRO to downlink
the activity log and wait until it has completed

2.2.3 TASK SCHEDULING

The executive schedules FEDS primary tasks for execution
based on a series of logical tests performed by the execu-
tive. These tests were derived from the FEDS functional
requirements included in Appendix E. Although each task can
perform more than one function, only one function may be
scheduled for one task at one time, However, all tasks may
be scheduled simultaneously.

To reduce the execution time of the executive, the schedul-
ing logi¢ for each task is coded so that the smallest number
of logical tests is executed to determine the highest prior-
ity function that the task is to perform. In most cases,
this means scheduling the lowest priority function first so
that it can be overridden by a higher priority function
later, when necessary.

Tasks are scheduled by setting task directive IDIR(I) (where
I is the task number or ID) to the proper function number.
When no function is scheduled to be performed by task I,
then IDIR(I) = 0. When a task is currently being executed,
only a limited set of tests will be performed to see whether
the schedule should be altered for that task.

9808

After the highest priority function for each task has been
identified and the directives have been set accordingly, the
corresponding IACT(I) flag is set to 1 for each task to be
scheduled. The task scheduled to perform the highest prior-
ity function is then identified by using a preset table of
priorities in EXEC called IPRIOR. This table contains a
FEDS priority tone that has nothing to do with

RSX-11M(S) system priorities) for each function that can be
performed by each task. When there is more than one task
with the highest priority, a round-robin scheduling tech-
nigue is used by which each task is given a time slice in
turn.

Once the task is identified, the task's RSX-11M(S) system
priority is raised (set to the primary tasKk execution prior-
ity). A MARK TIME system directive is then set up for the
length of a time slice, and the priwuwary task is allowed to
begin or to continue executing until it finishes its as-
signed function {(IFLAGS is set), until the time slice has
expired (IFLAG6 is set), or until a control command or Com-
munications Box message 1s received (IFLAG? is set).

The task scheduling tests performed by the executive for
each primary task are described in the following para-
graphs. The tests are performed in the order given. Each
successive positive decision overrides the previous one for
a specific task. The executive sets the system directive
for the primary tasks based on the following conditions:

1. DATCAP is not scheduled by the executive in this
fashion because of its asynchronous I/0 function,

2. INPPRO

a. If there is data in the input queue, EXEC di-

rects INPPRO to process input data (IDIR(2)=1).

9808

~

e ey o ERETR

9808

If the input queue is almost full, EXEC di-
rects INPPRO to process input data at a higher
priority (IDIR(2)=2).

If there is no more data in the input queue

and if the directive was set otherwise, EXEC

does not direct INPPRC to process input data
(IDIR(2)=0)., ‘

PREPRO

a.

If the estimator is not running and if the

preprocessor is not already scheduled, the

executive does the following:

(1)

(2)

(3)

(4)

If an observation buffer is full, it d4di-
rects PREPRO to preprocess a buffer of
observation data (IDIR(3)=1).

If new observations have recently been P
added to the observations file, it d4di-

rects PREPRO to extend the TDRS orbit

files to cover the next scheduled track-
ing pass (IDIR(3)=6).

If a new TDRS vector has been received
and if the corresponding TDRS file has
been created and is not currently busy,
it directs PREPRO to update the entire
corresponding TDRS orbit file (IDIR(3)=3).

If a new TDRS maneuver update vector has
been received and if the corresponding
TDRS orbit file has been created and is

not currently busy, it directs PREPRO to

update the portion of the cerresponding
TDRS orbit file since tne last maneuver
(IDIR(3)=5). _ . | {

ot

2=20

9808

(35)

(6)

If a new TDRS vector has been received
and the corresponding TDRS orbit file has
nct been created and if a tracking sched-
ule for Doppler prediction has been re-
ceived, it directs PREPRO to generate the
corresponding TDRS orbit f£ile over a cur-
rent timespan (IDIR(3)=7).

If the transponder is not currently
locked onto the tracking signal and the
current time is more than 30 seconds past
the scheduled end of the tracking pas.,
it directs PREPRO to preprocess all ob-
servations data in the buffer and to per-
form end-of-pass processing (IDIR({3)=2).

b. If the preprocessor has not already been

scheduled and if it is time for a TDRS maneu-

ver and the corresponding TDRS orbit file has

been created and is not currently busy, EXEC

directs PREPRO to perform the maneuver for the
specified TDRS (IDIR(3)=4 and ITDRSS = IDMAN}.

DOPPRE:

If DOPPRE is not already scheduled, the

executive does the folloewing:

a. If the current time is past the scheduled

Doppler prediction time and an initialization
table has been received, EXEC directs DOPPRE
to extend the current table of predicted one-
way Doppler data (IDIR(6)=2).

" b. If the awove tests have been passed and DOPPRE

has not been requested to predict data for the

current pass, EXEC directs DOPPRE to generate
a table of predicted Doppler data (IDIR(6)=1).

. NI

9808

STAPRE: If STAPRE is not already scheduled, the
executive does the following:

a.

If it is time to generate a state predict
table (done at regular scheduled intervals)
and if an initialization table is present,
EXEC directs STAPRE to extend the current
state vector table (IDIR(8)=1).

If a new state solution nas been obtained (by
the estimator), EXEC directs STAPRE to gener-
ate a new state predict table based on the new
state solution (IDIR(8)=2).

If a new initialization table has recently

been received, EXEC directs STAPRE to generate

a new state predict table based on the new

a priori state vector given in the initializa- B
tion table (IDIR(8)=3). i)

If it is time for a user spacecraft maneuver,
EXEC directs STAPRE to generate a new state
predict table baséd on the estimated state
after the maneuver and to perform maneuver
racovery housekeeping functions (IDIR(8)=4).

ESTIM

If the estimator is not currently scheduled,
the executive does the following:

(1) If this is the first batch and the obser-

' vation timespan is equal to or larger
than the regquested batch timespan, EXEC
directs ESTIM to perform a complete esti-
mation (IDIR(5)=1).

(2) When there is new data in the observa-
tions file, when the timespan of the ob- ¢)
r servations file is adequate for a batch,
' 2-22

and when estimation precomputation has
been performed, EXEC directs ESTIM to
finish the estimagion process using the
new data (IDIR(5)=3).

(3) If the estimator has not been directed to
do anything else in tests 1 and 2 above
and if this is not the first batch, EXEC
directs ESTIM to perform estimation pre-
computation (IDIR(S5)=2).

b. If a user spacecraft maneuver has been identi-
fied by the preprocessor during observation
preprocessing and the estimator is not cur- i
rently executing, EXEC directs ESTIM to per- !
form maneuver recovery (IDIR(5)=4).

C. When the estimator is currently scheduled to
perform estimation precomputation but has not

started yet, if new data has been added to the
observations file, and if the observation
timespan is adequate, EXEC directs ESTIM to
perform complete estimation (IDIR({5)=1).

7. OUTPRO

a. If any of the following tests are passed, EXEC
directs OUTPRO to output the specified func-
tion code (ICODE) to the Communications Box
(IDIR(7)=10).

(1) If the current time is less than 20 but

' more than 10 seconds before the scheduled
start time of the current pass and the
accumulator in the transponder has not
been reset since the last pass, EXEC di-
rects QUTPUT to send a reset accumulator
message (ICODE = 1}. '

2-23

9808 -

'm‘:l""‘""—”‘"—“"‘"“_" S

(2) If the current time is less than 10 sec-
onds before the scheduled start time of
the current pass and the PB5 generator
has not been accessed to obtain an accu-
rate estimate of the current time, EXEC
directs QUTPRO to request a clock time
message from the Communications Box
(ICODE = 2).

(3) If the current time is later than the
scheduled time to output a predicted
Doppler frequency shift, EXEC directs
QUTPRO to form and transmit a frequency
control word (ICODE = 3).

(4) If the transponder is locked onto the
tracking signal and all requests for ob~-
servation messages have been filled, EXEC
directs OUTPRO to request an observation

message.

EXEC sets the lock flag in the output table to
indicate that it is time for regular activity
log downlink.

EXEC loops through the output table, /OPTAB/,
to locate the highest priority output re-
quested by other tasks through the table; if
any ace found, EXEC directs QUTPRO to downlink
output tables starting with the highest prior-
ity entry {(IDIR = 1, 2, 3, 4, 5, or &). '

2.2.4 END-OF-TASK PROCESSING

After a task returns control to the executive by setting
IFLAGS to indicate that it has completed its assigned task,
EXEC performs end-of-task processing. This consists of a
series of housekeéping functions based on the particular

9808

2-24

primary task that executed during the time slice. The end-

of -task housekeeping functions performed for each primary
task are as follows:

1. DATCAP: i3 housekeeping is required

2. INPPRO: No housekeeping is required
3. PREPRO

a. If PREPRO has completed énd—of-pass processing

4, ESTIM

A

9808

. span {(IDIR(3).EQ.6), EXEC sets local schedul-

(IDIR(3)=2), EXEC searches through the re-
mainder of the tracking schedule for the next
scheduled tracking interval and sets the cor-
responding executive scheduling parameters.

If PREPRO performed TDRS Maneuver recovery
(IDIR(3)=4), EXEC searches through the re-
mainder of the maneuver schedule until it
finds the next scheduled TDRS maneuver; it
then updates the corresponding executive
scheduling parameters.

If PREPRO has just f£inished extending the TDRS
orbit files to cover the new observation time-

T T A ———

ing flags to indicate that all observation
preprocessing has been completed and that es-

et e G e R TR -

timation may be performed (NEWOBS = false and i
NEWDAT = true).

I1f ESTIM has not yet finished (IACT(5).GT.0)
but has returned only to record an error mes-
sage in the activity log, no housekeeping is
performed.

N
]
[N]
w

)

9808

b. If ESTIM has just finished a complete estima-
tion cycle (IDIR(5).EQ.l), EXEC sets the
first-time estimation flag (FIRST)} to false.

c. If ESTIM has just finished estimation
(IDIR{5}).EQ.3 or 1), EXEC sets the acata ready
for estimation flag (NEWDAT) to false.

d. If ESTIM has just finished processing a user
spacecraft maneuver (IDIR(5).EQ.4), EXEC sets
the time of the last maneuver processed by
PREPRO past the end time of the simulation.

DOPPRE; If DOPPRE has just finished generating the
first 60 predicted frequency shift records, EXEC
sets the time to transmit a predicted Doppler shift
to the transponder to the time of the first record
in the file

OUTPRO: If OUTPRO has just sent a message to the
transponder, EXEC does one of the following:

a, If OUTPRO sent a requegt for clock time, EXEC
sets a flag to indicate that the clock has
been accessed for this pass.

b, If OUTPRO sent a command to reset the acwuumu-
lator in the transponder, EXEC sets flags in-
dicating that the accumulator has been reset
before the upcoming pass and that the trans-
ponder is not currently locked onto the track-
ing signal. |

C. If QUTPRO has just transmitted a predicted
Doppler shift to the transponder, EXEC sched-
ules the next time to transmit a predicted
Doppler shift and sets the time slice to
whichever is iarger: time until output of the

[

next predicted Doppler shift or the default
time slice.

d. If OUTPRO has sent a request for an observa-
tion, EXEC sets a flag indicating that a re-
gquest for data is pending and sets the time to
output the next predicted frequency shift to
the current time.

7. STAPRE: If STAPRE has just performed user space-
craft maneuver recovery (IDIR(8).EQ.4), EXEC
searches through the remainder of the maneuver
schedule to locate the next scheduled user space-
craft maneuver and sets the corresponding executive
scheduling parameters

After task-specific, end-of-task processing has been per-
formed. EXEC clears the task directive (IDIR(I)=0) for the
primary task that was executing if the task has removed it~
self from the scheduling list (IJACT(I).EQ.0). In all cases,
EXEC also clears the return status (error) flag (IRET(I)=0)
for the primary task.

2.2.5 ACTIVITY LOG GENERATION

Activity log generation is performed by subroutine ACTGEN.
Each time messages are to be inserted in the activity log,
EXEC calls ACTGEN specifying the task that has recently exe-
cuted. ACTGEN then checks the status flags and return status
flags for the specified task in global COMMONs /SYSEVN/ and
/TSKCOM/, respectively, to identify those messages that are
to be entered in the activity log.

For each message to be generated, ACTGEN stores the meésage
number and contents that it retrieves from global COMMONs
/ACTVAR/ and /CONTROL/ in local COMMON /ALMESG,. For mes-
sages that contain times as part of their contents, ACTGEN
converts the times to YYMMDDHHMMSS,.SS format when necessary.

2-27

9808

B A s

Once each message has been created, ACTGEN calls WTMSG to
enter the message in the activity log. WTMSG first time
tags the activity log message; then the message is inserted
in the next available location in the activity log,
/ACTLOG/. 1f the activity log is full, WTMSG directs QUTPRO
to downlink it immediately and waits until OUTPRC has com-
pleted the downlink.

If the critical error flag is set by ACTGEN, the message is
also downlinked as a critical error message. To do this,
WIMSG loads the message into global COMMON /ERRMSG/ and di-
rects OUTPRO to downlink it immediately. WTMSG waits until
OUTPRO has completed the downlink and then automatically
loads another message in the activity log stating that a

. critical error message was downlinked.

When all indicated messages for the specified task have been
generated and entered in the activity log, ACTGEN returns
control to EXEC.

2.3 ERROR HANDLING

Error handling is a combined effort between the executive
and the primary task where the error occurred. Errors oc-
curring in secondary tasks are reported through the primary
task that called them.

When an error occurs in a primary task, the primary task
evaluates the seriousness of the error. 1If the task can
continue but the error should be recorded, return status
flag IRET(I) is set. When the executive regains control,
the error message will be entered in the activity log. If
the task can continue but the error should be recorded imme-
diately cr, optionally, a critical error message should be
downlinked to ground control, the return status flag is set,
and the primary task immediately gives up control by setting
IFLAGS5. However, since the primary task can continue, it

2-28
9808

LEETEE SRGT

does not remove itself from the scheduling list. This guar-
antees that it will get another time slice to continue proc-
essing.

When the primary task cannot continue processing due to a
critical error, the primary task sets the return status flag
appropriately, removes itself from the scheduling list
(IACT(I)=0), performs other housekeeping functions necessi-
tated by the error, and gives up control by setting IFLAGS.
When the executive regains control, it enters the error mes-
sage in the activity log and, optionally, based on preset
indicators, downlinks the critical error message to ground
control.

2.4 FAST-TIMING FEATURE

The fast-timing feature allows a simulation case using the
Communications Box simulator to run faster than real time by
compressing idle time out of the simula“ion. when a BEGIN
FAST TIMING control command is received by FEDS, the fast-
timing option is turned on.

From this point until a STOP FAST TIMING control command is
received by FEDS, the following procedure is performed.
Whenever FEDS has nothing scheduled immediately, it f£inds
the time of its next scheduled event. ' When the amount of
idle time (i.e., the time between the current time and the
time of the next scheduled event) in FEDS is greater than
the maximum amount of idle time permitted during fast timing
(uplinked in the BEGIN FAST TIMING command), FEDS downlinks
the time of the next scheduled event in an idle time message
to ADEPT. '

Wkzn the simulator receives this message, it checks its list

of scheduled events. When an urgent command or data re-

transmission is required, the simulator ignores the idle

time message. Otherwise, if the amount of idle time (i.e.,

the time between the current time and the next scheduled
2-29

9808

rvian Hhd s e

uplink time) in the simulator is greater than the maximum
amount of idle time permitted during fast timing, the simu-
lator sets the amount of idle time to be compressed out (At)
to the smaller of the FEDS jidle time and the simulator idle
time. The simulator then moves its current time ahead to
compress out the idle time and uplinks to FEDS the amount of
idle time to be compressed out (At) in a SET CLOCK control
command. When FEDS receives the SET CLOCK control command,
it adjusts the onboard current time by the uplinked At.

At this point, the idle time has been compressed out of both
systems. This process is repeated each time idle time is
discovered in FEDS.

- 2-30

QRAOG

Al tup B o, . - A S - : - R .

vl

SECTION 3 - INFORMATION PROCESSING TASKS

Five FEDS tasks are mainly responsible for data movement,
manipulation, and/or conversion:

. Data Capture (DATCAP)
Input Processor (INPPRO)
Data Preprocessor (PREPRO)
Data Manager (DATMGR)
QCutput Processor (OUTPRO)

The following subsections provide a functional description
of each task, including baseline diagrams and data flow dia-
grams.

3.1 DATA CAPTURE (DATCAP) TASK

The primary responsibility of DATCAP is to receive uplinked
data from ADEPT and observations data from the Communica-
tions Box and to dispatch them from the uplink buffer to the
input message queue in the FEDS system. It also screens the
uplinked message for high-priority data types. If the up-
linked message is a high-priority type, DATCAP dispatches it
to the executive for immediate use. DATCAP has the highest
system priority of all the tasks in FEDS to allow it to cap-
ture data immediately after they are uplinked. Figure 3-1
is a baseline diagram of DATCAP; Figure 3-2 shows the commu-
nication and data flow among DATCAP and other FEDS tasks.

During initialization (INIT(1)=1), the input message gueue
pointers and counters are initialized. DATCAP clears all

global system'flaqs to indicate that it has not vet received

a command message, a sentinel regcord, or a data message.
DATCAF also clears the input message queue flag to indicate
that no messages have been received.

DATCAP issues a "ready" message to ground control by using

WTQIO to signal that it is ready to receive the next uplinked

3-1

9808

=y

d¥olvd 30 weibeTtq QuTrTIsed

b ¥
Vi

e

QEICEL PR L TREL

N

i

*I-£ sxunbta

" aw
Alvor 31vadg ivar
4381 NO2L wiHny 12594 NOD2L 434L
$80Q01 nwILHND 1nadol OWDONS WHi139
NHINI KINVDS
d¥2iva

3-2

EXEC < — INPFPRO PREPRO
l , 4 T
/SYSEVN/ JTSKEOM/ /CONTRL/ NNPBUE/ 0BSQ
T 7 ¥ 'y Y
DATCAP M
rlc)
o
2
54
COMMUNICATION -
BOX £
P

LEGEND:

TASK THAT IS SUBJECT OF DIAGRAM

OTHER FEDS TASKS THAT COMMUNICATE
WITH SUBJECT TASK

77 GLOBAL COMMON BLOCK

Figure 3-2.

DATCAP Data Flow

Lt

message. It then issues QIOs to read the line to receive
data from ADEPT and the line connecting FEDS to the Communi-
cations Box. At this point, DATCAP goes into a "wait" state
and surrenders the CPU to allow other tasks to execute while
it is waiting for a message. When a message arrives, 'DATCAP
immediately takes control and receives the message because
of its status as the highest priority task. '

DATCAP first identifies the source of the message. If the
message is from the Communications Box, DATCAP performs all
processing and data storage before informing the FEDS execu-
tive that a message has been received from the Communica-
tions Box. If the message is from ADEPT, DATCAP performs
preliminary validity checks on the uplinked message and sets
the appropriate return status flag to inform the FEDS execu-
tive of the status of the QIOC. DATCAP then proceeds to scan
the uplinked message. ;

There are three types of messages uplinked from ADEPT: in-
put data messages, nigh-priority control command méssages,
and %he sentinel (end-of-transmission) record (see Appen-~

dix D of Reference 2)., If the message is a sentinel record,
subroutine SCANIN sets the global status flags to inform the
FEDS executive and subroutine LODBUF loads it into the

global COMMON /INPBUF/. If the synchronization characters

in the uplinked message record header are bad, LODBUF loads

the entire corrupted message into the input queue to keep
the pointers consistent. The input processor will handle

. the cerrupted message later. SCANIN next checks to s=ze

whether the message is acceptable.

If DATCAP has been directed by the executive to accept all
incoming messages (IDIR{1l)=1), it checks the type of mes-
sage. If it is a control command, SCANIN first calls GETFRM

Eg,fm_uxn

to extract the command frame and then calls SNDCMD to trans- t‘\
fer the command to the executive by means of global COMMON h
3-4 ﬂ
: i
98908 ‘ _ Eﬁ
L __ o ¥

/CONTRL/ and to set global event flag IFLAG7 to notify the
executive that a control command was received. SCANIN next
calls LODBUF to store the uplinked message {(data or command)
in the input gqueue.

If DATCAP has been directed by the executive to accept only
a specific control command (e.g., a START command
(IDIR(1)=2), a RESUME command (IDIR(1)=3), or a CONTINUE
command {IDIR(1l)=4)) and if the message contains the speci-
fied command, SCANIN calls SNDCMD to transfer the command to
the executive by means of global COMMON /CONTRL/ and to set
IFLAG? to inform the executive that the command for which it
is waiting has been received and is feady for processing. i
SCANIN then calls LODBUF tc load the command in the input

queue. If the message 4id not contain the specified com-

mand, the message is ignored, except when DATCAP is looking

for a CONTINUE conmand, when all data messages are to be

accepted. '

After the message process, if the message was from ground i
control, DATCAP issues another "ready" message to the ground
to indicate that 1% is ready t¢ receive the next message.
After issuing the QIO to cead to the source of the previous

o e

message, DATCAP waits for the next message and the process
begins again with the reception of that message. This proc-

‘'ess continues until DATCAP is aborted by the FEDS executive.

3.2 INPUT PROCESSOR (iINPPRO) TASK

INPPRO is a primary task in FEDS. Its main function is to

-empty the input queue, /INPBUF/, and to store the input data

in the appropriate global COMMON blocks. Figure 3-3 is a
baseline diagram of INPPRO; Figure 3-4 shows the communica-
tion and data flow among INPPRO and other FEDS tasks.

During initialization (INIT(2)=1l), INPPRO calls subroutine
IPINIT to initialize all local flags and the observations
gqueue 'link-list pointers. INPPRO then sets global event
o 3-5 ' |
9808 ‘ ' | L

(€ 30 T) O¥adNI Fo weabetq suresed -g-¢ sinbig
4
3 3Lvar atvar
1
NOOL " 43ML 43u) NOOL
2IAOW NOJWIL WILEND WHLdNI
avaHLo WHHdNI aHYO1 J3A0W WY AN J3INOW WH4dNI WHdNI
_ JNILLS ISINLS ' LINILS 15318 $HALs
L
@
OUddNI

(€ JO 7) OWAdNT IO uexbetg 2utTaseqd

“£-¢ 2anbtdg

]

HYlsS

B J3A0N QY3HLO WY4dNI QHVNOT
aLvar auvar
NODL 4381 4341 NOJL
av3HLD NODWEL WHdN QHYNON avaHLO WH3dN) NOIWIL AUV
 D3INOW

(€ IO £) O¥AdNI JO weibetq surTeseq

*€-€ 2InbTg

g WeddN) QvaHLo QHVO
-3
atvar
NODL 4341
3o av3HLD WH3dN] aHYOT avaHio WHdN) NOSWIL aHYNE"
Wiv1s LINtdt NVLS1S SHLLS

3-8

wd

—

181758

/NHYdX3/

MOTd B3ed OdddNI

‘p-¢ mns@wm

¥2078 NOWWO?D TVEO1S 77

ASVYL 123rans HLIM . .
ALVIANNWIWDGD LVYHL SHSYL SA34 HIKHLO / !

WVHOYIA 40 1D3FENS SI LVHL NSVL D

‘aN393T

s

10580/

OHddNI

INOJARSS

h

/Q3IHISL/

4

JQ3IHISN/

e

/NYdL1S3/

|

/BYLINI/

¥

k. 4

2NgdNL/
.

dvaiva

JWODNSL/

INAJSAS/ HHYALDY/

TR

o T R A P - L W T S e =

flag IFLAGS to return control to the executive. When INPPRO
is given control again by the executive, it calls subroutine
GTHEAD to extract the record header of the first record in
the block and to perform a set of quick validity checks on
the record header, including data corruption, end of trans-
mission, validity of input type and input data indicators,
transmission number, and block ID number. If an error is
found by GTHEAD, INPPRO calls STERR to perform error recov-
ery and sets IFLAGS to give up control. Otherwise, INPPRO
wajlcs until the input queue has a complete block of data and
then c¢alls the appropriate subroutine to process the input
message block. A list of the subroutines and the type of
data they process follows.

Subroutine Item Processed
STINIT Initialization table
STEST Estimation control parameters
STTDRS New TDRSS vectors
STMANS Maneuver schedule
STTRKS Tracking schedule
STMISC Miscellansous constants
STSTAN Station parameters
STGEO Geopotential tables
STATM "~ Atmospheric density tables
STTIMF Timing coefficients or constants
STEX¥ Experiment parameters

~The input data is stored in the proper global COMMON block
where it will be used later by other FEDS tasks.

The subroutiine that processes and stores the particular type
of input message also validates each block of data before
storing any part of it in the global COMMON block. The data
block is checked for completeness and for corrupted mes-
sages, If the message block is valid, it is then checked to
see whether it is acceptable input at this time, based on

3-10

9808

()

"

"y

the data previously received. For instance, miscellaneous
constants can never be accepted after the first initializa-
tion table has been received. Geopotential tables, station
parameters, and atmospheric density tables may be accepted
only between a SUSPEND command and a CONTINUE command once
data processing has begqun. Estimation control parameters
may be accepted only when the estimator/observation model is
not executing or between SUSPEND and CONTINUE commands.

Once input processing has bequn for a particular block of

data, the processing subroutine sets BLXFLG to true to indi- 3
cate that the INPPRO task is in the middle of processing a E
contiguous block of input messages. This is a safeqguard to 5
guarantee that an entire block of input data will be stcred
in a COMMON block at the same time. If an INPPRO time slice
ends and if BLKFLG is true, theé executive will allow INPPRO
to finish processing the 6u:nent hlock of messages before
resuming control. Each time input processing of a message !
block is completed, BLKFLG is set to false. |

If an error or an unacceptable message block is discovered
during input processing of a specific message block, INPPRO
calls subroutine STERR to store the information in global : g
COMMON /ACTVAR/; this information will be used by the execu- :
tive to record the error in the activity log and, op-

tionally, to downlink a critical error message. When data

corruption or an incomplete message block is detected, the

raecord header information is supplied for the critical error

message to allow qround control to identify and retransmit

the erroneous message block. After STERR hasg sﬁored this

information, INPPRO sets IFLAG5 to return control to the

executive so that it may report the error.

If no errors were found during input processing of the par-
ticular message block, INPPRO updates the input queue :

3-11

9808

TR e L o a

pointers and counters. It then continues to the next mes-
sage block and begins processing it with the call to GTHEADL
described earlier.

The means by which the input processor task voluntarily
gives up control depends on the input processor directive
{IDIR(2)) set by the executive. If INPPRO has been directed
to process all messages available in the input queue
(IDIR(2)=1 or 2), INPPRO will continue processing message
blocks until the input queue is empty or until an end~of-
transmission record is detected. At this point, INPPRO will
reinitialize the input queue pointers and counters and will
report to the executive, through global parameters, on the
condition that caused it to stop. It then removes itself.
from the scheduling list (IACT(2)=0) and sets IFLAGS5 to re-
turn control to the executive.

If INPPRO has been directed to process all messages up to
the CONTINUE command (IDIR(2)=3), it will continue process-
ing until it detects the CONTINUE command., At this point,
it sets the appropriate return status flag, removes itself
from the scheduling list, and sets IFLAGS to return control
to the executive.

If INPPRO has been directed to finish processing the current
message block only (IDIR{2)=4), INPPRO stops when it has
completed the current block. INPPRO is directed to do this
when it has not completed processing a message block when
the time slice expires. At this point, INPPRO removes it-
self from the scheduling list and sets IFLAGS to return con-
trol to the executive.

3.3 DATA PREPROCESSOR (PREPRO) TASK

PREPRO is an independent primary task in FEDS. Each time it

is given control, it is directed by the executive to perform

a specified function.

3-12

9808

()

B -

| &

9808

During initialization (INIT(3)=1), PREPRO calls PPINIT to
clear the local variables and to request the (secoadary)
DATMGR task and directs it to purge the observations file
and the TDRS orbit files. PREPRO then sets IFLAGS to return
control to the executive.

When PREPRC regains control, it examines task directive
IDIR(3) set by the executive to determine which of the fol-
lowing functions it is to perform:

] Preprocess the observation data, buffer full of
data (IDIR(3)=1)

] Preprocess the observation data until end of data
encountered, set end-of-processing flags, pass has
ended (IDIR({3)=2)

] G :rate new TDRS orbit Eiles (IDIR(3)=7)
® Extend the TDRS orbit files (IDIR(3)=6)

] Update orbit file (IDIR(3)=3 or 5)

° Perform TDRS maneuver recovery (IDIR(3)=4)

To perform these functions, PREPRO uses the DATMGR and/or
ORBIT secondary tasks. The communication between PREPRO and
these secondary tasks is performed using the global task
directive, return flag'and global variables, utility subrou-
tines VSEND and VRCEVE, and global event f£lags. Detailed
descripticns of the methods for requesting DATMGR and ORBIT
are given in Sections 3.4 and 4.1, respectively.

When PREPRO finishes its assigned function,‘it reports its
activities to the executive by setting the global flags and
by updating the global variables that will be used to gener-
ate activity log messagms. PREPRO then removes itself from
the scheduling list (IACT(3)=0) and sets IFLAGS to return
control to the executive. '

3-13

rareco T AL T s

Descriptions of the four major functions performed by PREPRO
are given in the following subsections. Figure 3-5 is a
baseline diagram of PREPRO; Figure 3-6 shows the communica-
tion and data flow among PREPRO and other FEDS tasks. An
accompanying description of the send/receive data packets is
given in Appendix C.

3.3.1 TDRS ORBIT FILE GENERATION

Two separate directives cause PREPRO to generate TDRS orbit
files. These directives cause the same basic function to be
performed; however, the method for computing the start and
end times of the orbit files is different.

When PREPRO is directed to create the TDRS orbit files
(IDIR(3)=7), the start time of the file is set to the simu~
lation reference time and the end time is set to 10 minutes
past the end of the first scheduled tracking pass. This
directive is used only at the beginning of the simulation.

When PREPRO is directed to extend the TDRS orbit files

(IDIR(3)=6), PREPRO sets th: end time of the orbit files to
10 minutes after the end time of the next scheduled tracking
pass. This directive is used after a tracking pass has !
ended or, possibly, when a new tracking schedule is‘uplinkeﬁ.

When PREPRO is directed to perform either of these func-
tions, new TDRS vectors for the requested timespan are added
to all existing TDRS orbit files. If the orbit files are

- being created for the first time, one file is created for
each unique new TDRS vector received (up to two TDRSs).
Thus, all TDRS orbit files will have the same start and end

times when PREPRO has completed its assigned function.

After PREPRO has determined ihe start and end times of the
orbit files, it calls subroutine TDRORB to generate the spec-
ified TDRS orbit file., PREPRO provides the start time, end é”)

) —

3-14

9808

=

0ddddd IO uweabetq surTaseq

*G-¢ aanbrg

F ilvoa 3ivaa
4341 NOIL 102584 XNIL3S
" (4oniva) {LIBHO) {LigH0}
aN3sA IAITHA AaNISA WILAND HOLAND S809vL AHONYY MNIUNd aN3ISA
84oHaL 3JH4S80 ANtdd

L

_

Old3aHd

3-15

MOTd B3eq Oddddd

*9-¢ 2aunbtg

WYHDWIO NI JONQ NVHL 3HOW SHYIddY

{r ONY € SNOMDIS 33S) SNSYL AHVONDIIS
WOHS ¥L¥0 3413034 HO 04 ¥AYC ONIS OL 03SN 13N3VE YivD

%3078 NOWWOD TYED1D

ASYL 133rans Hilm
FLYINMNWGOD LYML SHSVYL 5033 UIHIO

+ WYHDVIG J0 123rens St LvHL NSyl

iaN3DaN
w
8 /33uays i3naseor
H
HOWiVD .
9 i 1 4
AOVL ATOvd 1330%d A3WDvd
~HINOD/ aNasA 2AITMA aN3IsA ONISA
[3 b L
L
OHd3kd
4 ﬁ IXIN ﬁ
.
Inyvaxar INODAMA! 1HaLMIN: /WHd1S3/ JDs80! INAISASI STHINDDY MvALYY) IwooNsLy
L] ! _ .

]

Dbddnt

dvIiva

|

a3

3-16

time, and initial vector for the specified TDRS (specified
by the internal TDRS ID). The initial vectors for generat-
ing new TDRS files are taken from global COMMON /NEWTDR/:
the initial vectors for extending the TDKS orbit files are
the vectors associated with the last entry in the current
files, Subroutine TDRORB simply requests ORBIT to propagate
the vector one step size at a time and then requests DATMGR
to store the new TDRS vector in the next location in the
orbit f£ile. TDRORB also sets the start f£lag (ISTART) in the
input parameters that are sent to the ORBIT task to indicate
whether ORBIT should restart based on the input vector or
whether to use its local table of backpoints 0 generate the
requested vector.

While a TDRS orbit file is being generated, TDRORB blocks
all other tasks from using the TDRS orbit file by setting
global control £lag TDRBSY(I) to indicate that the orbit
file for TDRS I is busy and then clears the flag when ths
process is completed. TDRRDY(I) is set when a new orbit
file has been generated for TDRS I. TDRORB returns control
to PREPRO when the specified TDRS orbit file has been
created or extended to the specified end time. PREPRO then
calls TDRORB to create or extend the orbit file for the
other TDRS. After this, PREPRO removes itself from the
scheduling list and sets IFLAGS5 to return control to .the
executive.

3.3.2 TDRS ORBIT FILE UPDATE

Each time new TDRS vectors are received, the executive will
direct the data preprocessor to update an entire TDRS orbit
file or the portion of the specified orbit file that was
affected by the most recent maneuver. If it is a simple
update request (IDIR(3)=3), PREPRO sets the timespan of the
update from the start time to the end time of the file. It
then calls subroutine TDRCRB to perform the update and

3-17

9808

et

provides it with the start time, end time, and new TDRS
vector taken from global COMMON /NEWTDR/ for the specifieq
TDRS. TDRORB performs the update by requesting ORBIT and
DATMGR as it does during TDRS orbit file generation (see
Section 3.3.1), except that DATMGR is directed to replace
the corresponding old vector in the TDRS orbit file with
each new vector. '

IF PREPRO is directed to update only the portion of the or-
bit file following the last maneuver (IDIR(3)=5), it sets
the timespan of the update from the time of the last maneu-
ver to the end time of the orbit file. PREPRO then proceeds
as described above for a standard update.

When PREPRO has completed the assigned update for the speci-
fied TDRS, PREPRQO removes itself from the scheduling list
znd sets IFLAGS5 to return control to the executive.

3.3,3 TDRS MANEUVER RECOVERY)

When ihe current time matches the scheduled time of a TDRS
maneuver, the executive schedules PREPRO to perform the TDRS
orbit file maneuver recevery /IDIR(3)=4). Basically, PREPRO
obtains the predicted vector after the maneuver from global
" COMMON /CONTRL/ and sets the timespan of the update from the
maneuver time to the end time of the file. TDRORB is then
called to update the file as described in Section 3.3.2.

The current maneuver vector is saved for later use in local
storage. PREPRO then sets the global flags, updates activ-
ity log variables, and surrenders control to the executive
by removing itself from the scheduling list and setting
IFLAGS.

3.3.4 OBSERVATION DATA PREPROCESSING

The last major function of PREPRO is to preprocess cbhserva-
tion data (IDIR(3)=1 eor 2). Subroutine OBSPRE is called to 6‘)
preprocass the observation data. If a user spacecraft

3-18

9808

N S R -

manage one observations file and up to two TDRS orbit

T

maneuver has occurred recently, OBSPRE checks the observa-
tion to check whethér or not it is the first observaticn
following the maneuver by comparing the observation time tag
with the maneuver time. If it is the first observation fol-
lowing the maneuver, OBSPRE calls the DATMGR task to purge
the observations file and the TDRS orbit files before the
user spacecraft maneuver time. OBSPRE then proceeds by
checking the validity or accaptability of the observation
record based on the observation data time tag and validity
flags for the observation data. If the data record is
acceptable, OBSPRE converts the time (input in PB5 format)
to the FEDS internal time format (A.l seconds from refer- :
ence) ; associztes the current pass station ID, TDRS 1D, and i

access method with the data record; and converts the Doppler
observations to the proper engineering units. ©No smoothing

of the observation data is done by PREPRO; however, observa-

tions are selected at the requested sample frequency. The

preprocessed observation data record is then sent to DATMFR .
to be added toc the observations file. This process is re- i
peated for each observation record until the observations]
hutfer is empty. At this point, the observation pass sta-
tistics and global flags are updated or set according to the
directive and OBSPRE returns to PREPRO. PREPRO then removes
itself from the scheduling list and sets IFLAGS to return
control to the executive. | '

3.4 DATA MANAGER (DATMGR) TASK

As a secondary task in FEDS, DATMGR's main functions are to

files. These files are stored in DATMGR's local memory
since no peripherals are available on the PDP-11/23. All
access to these files by any FEDE task is controlled by the
data manager that locates, reads, writes, and purges data
when directed., Figure 3-7 is a baseline diagram of DATMGR;

3-19
9808

B, vieda LA _ N o L

DATMGR

PURTDR

PUROBS

LOCTDH‘J VSEND'

VRCEVE

Figure 3-7.

Baseline Diagram of DATMGR

B e

B2

N -

‘all local pointers and counters are cleared. When initiali-

Figure 3-8 gshows the communication and data flow among
DATMGR and other FEDS tasks. Appendix C describes the data
packets,

Because DATMGR is a secondary task, it is controlled com-
pletely by the primary tasks PREPRO, ESTIM, OBSMDL, and
DOPPRE. As shown in Figure 3-8, communication among. DATMGR
and the primary tasks is performed by means of task direc-
tive IDIR(4) and return status flag IRET(4) in global COMMON
/TSKCOM/ and data packets that are sent to and from DATMGR.
Global event flag IFLG10 is used to ensure that only one
primary task at a time may use DATMGR. While the data mana-
ger is busy, IFLGL10 is clear and when DATMGR is idle, IFLGL0 |
is set. This allows a primary task to check whether DATMGR '

is busy before requesting it.

The procedure used by a primary task to request DATMGR is as
follows. If the furiction performed by DATMGR requires input
data from the primary task, the primary task sends the
proper data packet to DATMGR via VSEND. The primary task
then waits until DATMGR is free (IFLGlQ is set). When
DATMGR is free, the primary task sets task directive IDIR(4)
to indicate which function DATMGR is to perform, requests ‘
DATMGR, and waits fof IFLGl0 to be reset by DATHMGR to indi- P
cate that it has finished. 1If the function performed by

DATMGR caused data to be output to the primary task, the

primary task then receives the appropriate data packets
using VRCEVE and checks whether an error occurred in

DATMGR. The primary task must perform error recovery for
any errors that occur in DATMGR. ' ‘ -

During initialization (INIT(4)=1), DATMGR is called by
PREPRO and is directed to purge all files. At this time,

zation is completed, DATMGR sets IFLGl0 to ndtify PREPRO
that it is finished and then exits.

3~21

9808

r— -SRI Y Y

<
EXEC DOPPRE PREPRQ
ITSKCOM/* JCONTRL/ VRCEVE VSEND VRCEVE VACEVE
T RACKET PACKET PACKET PAGKET
3 5 1 2
r v v
DATMGR
) L
y -
VACEVE VSEND VSEND VACEVE }
PACKET PACKET PACKET PACKET
3 4 10R 4 4
/OBSFLE/ I TORFLE/ ITSKCOM/*
0BSMDL ESTIM '
1 :

LEGEND:

D TASK THAT IS SUBJECT OF DIAGRAM

QTHER FEDS TASKS THAT COMMUNICATE
WITH SUBJECT TASK

sl GLOBAL COMMON BLOCK

DATA PACKET USED TO SEND DATA TG OR RECEIVE DATA FROM

SECONDARY TASKS
. APPEARS MORE THAN ONCE IN DIAGRAM

: Figure 3-8. DATMGR Data Flow

g

Other functions that DATMGR performs relato specifically to
TDRS orbit file management and observations file management,
both of which are discussed in the following subsections.

3.4.1 TDRS ORBIT FILE MANAGEMENT

TDRS orbit files are stored in a wraparound fashion within a
fixed-length storage area in local COMMON /TDRFLE/. The
files are extended in a sequential record order starting in
the first physical record. When all physical records in the
orbit file are full, the next record is written in the first
physical record of the file, thereby destroying the data
previously stored there. The start pointer (first logical
record) of the file is then.moved to the second physical
record. This prdcess continues as new records are added to
the file. The data manager uses the start and end pointers

_for each TDRS orbit file to find the location to write the

next record. The time tags of the first and last logical
records in each orbit file are also maintained. These times
are used to locate a TDRS vector by time tag in the orbit
files. When the TDRS orbit files are purged,; these pointers
and times are cleared, effectively emptying the files.

When DATMGR is directed to add a new TDRS vestor to an orbit
file (IDIR(4)=6), DATMGR receives the data packet containing
the TDRS vector, its time tag, and the associated TDRS ID.
DATMGR then stores the vector in the next logical record in
the orbit file for the specified TDRS, and the start and end
times and pointers for that orbit file are updated. DATHMGR
then sets IFLGl0 and exits.

When DATMGR is directed to update a TDRS record according to
its time tag. (IDIR(4)=7), DATMGR receives the data packet
containing the updated TDRS vector, its time tag, and the
associated TDRS ID. DATMGR then calls LOCTDR to locate the
current record in the specified orbit file that contains the

TDRS vector with the same time tag. DATMGR replaces the old

3-23

9808

e Pt U

Y

vector in that record with the new (input) TDRS vector, sets
IFLG10, and exits.

When DATMGR is directed to return a set of TDR3 vectors sur-
rounding a specified time to OBSMDL (IDIR(4)=8) or to DOPPRE
(IDIR(4)=9), ‘it receives the data packet containing the
specified time tag and TDRS ID. DATMGR then calls LOCTDR to
locate the record containing a time tag closest to the input
time tag. Next, DATMGR loads intc¢ the output data packet 10
vectors that surround the input time tag anrd are retrieved
from the specified orbit file. When possible, the vectors
are chosen so that the input time falls in the middle of the
timespan of the 10 TDRS vectors., If the input time tag is
too close to the start time of the orbit file, the first

10 vectors in the file will be lcaded into the output data
packet; if the time tag is too close to the end time of the
orbit file, the last 10 vectors will be loaded. The output
data packet is than sent to the appropriate task and DATMGR
sets IFLGL0 and exits. '

When DATMGR is directed to purge the portion of an orbit
file before the time of a maneuver (IDIR({(4)=10), it receives
the data packet containing the input time tag and TDRS ID.
Then, DATMGR resets the start pointer to point to the first
record in the orbit file with a time tag equal te or greater
than the input timez tag and sets the start time of the orbit
file accordingly. DATMGR sets IFLGl0 and exits. |

3.4.2 CBSERVATIONS FILE MANAGEMENT

The observations file is also a wraparound file that is
~stored in a fixed-length storage area in local COMMON
/OBSFLE/. A set of start and end times is maintained for
‘each observation pass in the observations file. These times
are updated each time a new record is added to the file. As
the file wraps around itself, the earliest pass in the file

9808

FET AL, TR A LS. W R

gets shorter as the start time moves closer to the end time
until £he pass is eventually eliminated from the file, The
observations file holds up to 125 observation records.

When DATMGR is directed to write a new observation record in
thre observations file (IDIR(4)=1), it receives the data
packet containing the observation record. DATMGR writes the
observation in the next record in the observations file and
updates the pointers and pass timespans accordingly. DATMGR
then sets IFLGLD to notify the calling task that it has fin-
ished and exits.

When DATMGR is directed to retrieve an observation record
and send it to requesting task ESTIM (IDIR(4)=2), DATMGR
retrieves the previous record and loads it in the output
data packet. It then sends the data packet to the primary
task, sets IFLGl0, and exits.

When DATMGR is directed to reset the observation read
pointer (IDIR{(4)=3), it sets the observation read pointer to
point to the last observation (the observation with the lat-
est time tag) in the observations file. It then sets IFLGl0
and exits. '

When DATMGR is directed to update the end-of-pass indicator
in the last observation written in the file (IDIR(4)=4),
DATMGR changes the end-of-pass indicator in the last record
in the file to 1, sets IFLGl0, and exits.

When DATMGR is directed to update the last record that was
read from the observations file (IDIR{(4)=5), it receives the
data packet containing the updated observation values. The
information is then written into the record to which the
observation read pointer is pointing. DATMGR sets IFLGLO
and exits.

325

9808

3.5 OUTPUT PROCESSOR (OUTPRO) TASK

OUTPRO is an independent primary task in FEDS that is re-
sponsible for downlinking output messages to ground control
and for sending messages to the Communications Box. Six
types of messages are downlinked from FEDS: predicted state
vector tables, predicted one-way Doppler data, priority mes-
sages (critical errors and idle time messages), activity
logs, DC summary and statistics reports, ana DC residuals
reports. In addition, OUTPRC downlinks a sg=2cial end-of-
simulation message when directed by the executive. Four
types of messages are output to the Communications Box:
current time request meésages, reset accumulator command
messages, predicted frequency shift messages, and Doppler
measurement request messages. In addition, an initializa-
tion message is sent 2! the beginning of a simulation to
verify communication between FEDS and the Communications Box. -

Figure 3-9 is a baseline diagram of OUTPRO; Figure 3-10
shows the communication and data flow among OUTPRO and other
FEDS tasks.

Like other primary tasks, OQUTPRO is controlled by the FEDS

exec’ :ive. Most of this control is performed by the output |
control table; /OPTAB/. Each task that generates FEDS out- |
put information for downlink toe ground control requests out-

put of this information through the output table in the

following manner. When the responsible task has completed

generating the information and has stored it in the appro-

priate global COMMON block, it sets a lock flag (LCKFLG(I),

where I indicates the type of data) that prevents any task

from writing over and thus destroying the information before

it is downlinked. The output control table also contains an

output priority and the number of frames to be output

(NFRAME (I)) for each type of output. Each time the execu- O
tive gains control, it checks the output table for output -

xtr
e

3-26

9808

- W

0ddLA0 Fo wexbetq autIased

[HTEN

*6—-f =2anbtg

IIAOW

-

J3nac

2
g arvar
JINOW QWAL awAL 4341 NOJL
1<aao 230K wiLLno Oldd¥2 LINO
MOAND OWAL J3A0W amAL IIA0N 370N a3r0W aWAL
N#LLND N35001 LT | 520001 ioveon H¥3001 aNSNMO
oudING
R

3-27

ve/9086

MOTJ Be3ed CMJALNO “0T-€ oanbig

b ONY £ SNOILD3S 335} SHSVYL AHYANODIAS
WOHd Y.L¥ad 3ARI3Y HO 0L Y1vad ON3S OL O03SN 13XV viva .

H2078 NOWWSD TvE0oT1D

ASVL LO3rans HLIM
ILYIINNWWOD LYHL SNSVL S034 HIHLO

WYHDYIAO 40 L23rans Si LYHL NSl

O

|
~

s

-an3937

x08
I4dd0Q SNOILY2INAWWOD
. ¥
. 11v1s20/ /1dHS3H/ /darno/ 193AL00/
3 0H41N0
4 b b —
/8Y140/ 19SWVHI/ 1901LIY/ INODAS L/ INAISAS/ 1HINOD/
y 3 4 7'y ¥
93x3
\

3-28

aiadd s

s RETA e

requests (lock flag is on). It then finds the highest pri-
ority output request in the output table., Directive IDIR(7)
is set to the highest priority type of output to be down-
linked, and QUTPRO is then scheduled as described in Sec-
tion 2. When OUTPRO gains control it performs standard
output. OUTPRO can also be directed to perform priority
output; that is, it will downlink the specified information
immediately and return control to the executive, Standard
and priority nutput functions are described in the following
paragraphs.

DPuring initialization (INIT(7)=1), OUTPRC calls OPINIT to
initialize local variables and pointers. OUTPRO then sets
IFLAGS to return control to the executive. When OUTPRO re-

gains control, it examines task directive IDIR(7) to deter-
mine whether it is to perform standard or priority output.

If OQUTPRO has been directed to perform standard output

(IDIR(7) = 1, 2, 3, 4, 5, or 6}, OUTPRO calls CKPRIO to scan |
through the output control table, /OPTAB/, to search for the %
highest priority information to be output., OUTPRO then ;
calls one of the following subroutines to 1lcid the informa- E
tion into the output buffer:

LODVEC {load next message of the state vector table) §
LODDPL (load one-way Doppler data) "
LODERR (load priority messages) j
LODACT (load activity log) !
LODDCS (load DC summary and statistics report) !
® LODRES (load DC residuals report)

If OUTPRO has been directed to perform priority output
({IDIR(7)=7 or 8), it calls either LODACT to load the next
activity log message (IDIR(7)=7) or LODERR to load the pri-
ority message (IDIR(7)=8) in the output buffer. If OUTPRO
has been directed to downlink an end-of-simulation message

g

9808

¥ OSRUA TS P L AR P Lo . . ‘tﬂ,‘

(IDIR(7)=9), it calls LODSEN to load the sentinel record
into the output buffer.

Each time a message is loaded into the output buffer, the

number of frames is decremented by the number of frames

loaded in the message. After the message has been loaded,

OUTPRO calls OUTTIM to obtain the current simulation time in
YYMMDDHHMMSS .SS format and inserts it into the record header

of the downlinked message. OUTPﬁO then calls DWNSND to

downlink the message to ground control. To do this, DWNSND

issues a QIO directive to read the ready message sent by

ground control. When a message is received, DWNSND checks

whether it is a ready message or a retransmission request.

If it is a retransmission request, DWNSND issues a QIO to

downlink the previously downlinked message that was saved,

issues a QIO for a ready message, and the output process

described in the preceding paragraphs is performed. When a i)
ready message is received, DWNSND issues a QIO to downlink o
the current output message in the output buffer. The mes-

sage is then transferred to the save buffer and DWNSND re-

turns to OUTPRO. '

If there are more frames of this type, processing returns to
the point at which OQUTPRO calls the appropriate subroutine
to load the message and processing continues as before.

If all frames of this type have been output (NFRAME (I)=0),
output processing of this type of data has been completed.
At this time, the output information storage area is un-
locked (LCKFLG(I) is turned off). If standard ouvtput has
been requested, OUTPRC searches the output control table by
priority for the next type of output to be downlinked. 1If
one is found, standard processing of that type of data is
performed as deécribed above. When no more types of re-
quested output are left in the output qontrol table, OUTPRO {)

3-30

9808 | D

i AR NS T L L

removes itself from the scheduling list and sets IFLAGS to
return control to the executive.

If all frames of the specified type of priority output have
been output, OUTPRO simply removes itself from the schedul-
ing list and sets IFLAG5 to return control to the executive.

If OUTPRO has been directed to perform cutput to the Commu-
nications Box (IDIR(7)=10), it calls OUTTRN to form and
transmit the requested message. OUTTRN examines ICODE in
/OPTAB/ to determine which message is to be transmitted,
forms the ll-byte message and immediately issues a QIO to
transmit the message. After OUTTRN has returned, QUTPRO
unconditionally removes itself from the scheduling list and
sets IFLAGS to return control to the executive.

9808

SECTION 4 - COMPUTATIONAL TASKS

Five FEDS tasks are primarily responsible for performing
computations in FPEDS. These tasks generate data to be down-
linked to ground control or produce intermediate quantities
thct must be used by other FEDS computational tasks to gen-
erate the output data. They are as follows:

° Orbit Propagator (ORBIT) propagates a given space-
craft state (and, optionally, its partial derivatives) and
sends it to a specified task for output or for use in 5
another computational model. ' ;

° State Predictor (STAPRE) generates tables of pre-
Jicted user spacecraft state vector data for downlink to
ground control and use in the Doppler predictor.

] Doppler Predictor (DOPPRE) generates predicted
one-way Doppler data for downlink to ground control and out-
put to the Communications Box.

° Estimator (ESTIM) estimates and corrects the cur-
rent user spacecraft state based on the differences in ob- j
served and computed TDRSS observations. The output state
vector is used for both state prediction and Doppler predic-
tion.

) Observation Modeling (OBSMDL) computes TDRSS
Doppler observations and partial derivatives that correspond
to the data in the observations file based on the current
best estimate of the user spacecraft state aﬁd the given
TDRS position at each observation time.

The following subksections provide a functional description

of each of these tasks including baseline diagrams and data
flow diagrams. The mathematics for the com@utational models
used in these tasks is given in the FEDS mathematical speci-

fication (Reference 2). Appendix C containy detailed

4-1

S

9808

9808

W b Aerii e, A e DT AR AT w, A AR e s e - - Rt

descriptions of the data packets, shown in the data flow

" diagrams, that are used for intertask communications.

4.1 ORBIT PROPAGATOR (ORBIT)} TASK

ORBIT is a secondary task in FEDS. It is used by four of
the FEDS primary tasks that require orbit propagation:
PREPRO, STAPRE, ESTIM, and OBSMDL. Because of the FEDS
time-slicing control scheme, the orbit propagator must pe
able to service a wide variety of back-to-back requests from
the primary tasks. 1In addition, the application demands
that ORBIT must have sufficient force-modeling capabilities
to propagate both che high-altitude geosynchronous TDRS or-

- bits and the low-altitude drag-perturbed user spacecraft

orbit.

To fulfill the needs of other FEDS tasks, ORBIT has the ca-
pability of propagating fodr-separate orbits simultane-
ously. This means that it can switch from propagating one
orbit to propagating another without starting the integrator
each time., Fach time ORBIT is requested (called) by a pri-
mary task, it proupagates the requested orbit only. It must
finish executing one request before it can be called to do
ancther; it is not reentrant.

The four orbits are identified by two FEDS spacecraft IDs.
ISCID, included in the ORBIT input data packets (see Appen-
dix C), is used by the primary task to indicate which crbit
is to be propagated, and IDSC is used internally as an index
in the ORBIT task. The four orbits are as follows:

1SCID IDSC gZpacecraft Orbit
1 1 Orbit for TDRS 1; used hy PREPRO
2 2 Orbit for TDRS 2; use oy PREPRO
4 3 Past-time orbit for user spacecraft that

includes associated variaticnal equa-
tions; used by ESTIM and OBSMDL

4-2

1SCID IDSC Spacecraft Orbit
5 4 Real-time orbit for user spacecraft; used
by STAPRE

ORBIT uses the multistep method of numerical integration
when possible. Two pairs of predictor-cocrector integrators
from the Adams and Cowell groups of integrators are used.
These methods are derived by integrating polynomials that
interpolate (or, for the predictors, extrapolate) based on a
table of backpoints. A set of previously computed accelera-
tions forms the table of backpoints for a satellite state,
and the partial derivatives of acc¢elerations with respect to
the initial (epoch) state form the backpoints for the varia-
tional equations., Bach of the four spacecraft states has
its own table of backpoints independent of the other space-
craft trajectories, and the past-time user spacecraft state
(ISCID=4) has the variational equations table of backpoints
associated with it.

Because the predictor-corrector methods have inherent limi-
tations in startup capability, a separate procedure for ini-

“tially filling the table of backpoints is required. In

ORBIT, integration startup is persformed by a Runge-Kutta-
Fehlberg (RKF) integrator. However, this proczdure iz per-

- formed only when necessary for the following reasons: the

RKF integrator is slow since it performs five derivative
evaluations per step and is of low order (six RKF steps must
be performed to approximate one step of the multistep inte-~
grator in accuracy). '

These types of numerical integration alone are not entirsly
satisfactory for meeting the requirements placed on the ¢r-
bit propagator. ORBIT must be able to frequently produce g
satellite state and state transition matrix for the gizarva-
tion model ard the esfimator; The request times fo: ihbsse
quantities will almost always be off-grid compared to a

9808

R Y

),

LR TR IR R b TR, A R . T T e e Cee s At d

fixed step-size ephemeris prediction. Single~step integra-
tion (using RKF integration) would enable ORBIT to produce
results at the requested times; however, the extreme slow-
ness of the single-step intagration compared to multistep
integration makes this method unacceptable here, especially
for integrating the variational equations (a 6-by-6 or a
6-by~-7 matrix).

The solution to this problem is the multistep method of in-
terpolation, which is a generalization of the predictor-

corrector methods. This interpuvlaticon method takes

advantage of the existence of the tables of backpoints al-

ready present for multistep integration. Thus, multistep
interpolation is the primary method used by ORBIT to produce

the state and, optionally, the state transition matrix at

thé time requested by the calling task. Multistep integra-

tion is usedlonly to extend the table(s) of backpoints (for- ,‘)
ward ~r backward) in time, and single-step integration is
used only teo f£ill %he table(s) of backpoints initially.

Figures 4-1 and 4-2 present baseline diagrams of ORBIT.
Fiqure 4-1 shows the hisrarchy of the subroutines in ORBIT,
whereas Figure 4~2 shows the subroutines grouped by func-
tion. The external communication and data flow among ORBIT
and other FEDS tasks and the internal data flow in ORBIT are
shown in Figure 4-3. Appendix C contains descriptions of A
the data packets. Further description of orbit integration
and interpolation can be found in Reference 2. Following is
a description of the data flow in ORBIT.

During initialization (INIORB=1), ORBIT calls ORBINI to ini-
tialize local pointers and flags. OKBIT then sets IFLGLl1 to
indicate that it has finishgd and exits, '

Each time ORBIT is requested and initialization is not to be
done, the following procedure is performed. ORBIT first £
checks array ORCALL to determine which primary task has | .

4-4

é
9868 ' _ - S - s

ILIEHO jo wexbetg sutriased " 1-b aanbTa

18/1259

390034 20Na@3Y.

LHVES J0s IR YN 108

ALUYdS SOWLY NMTT10S NATI0S SOWLY 1HYdS ALUVAS
[Tg]

1
A—
ZANY ADHO4 1320V AJHO4d 1300V
SWNs wvav LINMNY
anasa diNI J3ILSW d318S QdNYHD IAIDUA INIGHO
11840

——

18/1zse

LIg¥0 JO wexberty yoorg TeuoTIOUNG -z-p aanbtg

TAHIYYHIH JHL SILYDIaN) IWYN INLLNOYENS 3HL ONIOIOIHD HIaWAN IHL *340N

3oNa3ay
YNNY
08
NOTT0S
SOy
ALYYdS
1Hvds
CAN)
ADHOY
1332V
AdNYHD T

TTTULLLBYOO~

1300W 33HO4

SWNS ¢

ON3ISA Z

1ndino

Wvay ¢
1i0%NH £ .
diNl £ dILSW 2 JA3IOHA T INIBHD Z

d31ss 2 .

NOLLYTNdHII.Nt NOLLYHDII N LNdNY NOILLYZITVILIN

11840 |

CERTE[¢]

g

EXTERNAL DATA FLOW ORBIT TASK INTERNAL DATA FLOW
. =

R N
e A Y Y)

. | 5 1
- ¥

PN
i T ' GRIVER .
{PHYCON/ _'a }_
- : 1
j [: IOCNTRL/*
JINITAB/ J-
INFPRD ORBINI
ISTATES/*
(TVACEVE] VSEND B
PREPRO - 3STEP 2 ; i
PACKET PA?:(ET _ QST(EPTT IPARTLY '
§ ABAM !
B SUMS |
-3] HNNTEG/ :
TACEVE [VseND g
- ESTIM -~ PACKET :
) P: 85' 11 0R 12
_l THARMY
‘ GHAUPD '
I F ACCEL
VACEYE VSEND fpdaind 1
. QBSMDL ‘ gyl _ t
M‘ﬂ)‘ o ”‘;‘fﬁ ATMOS JOCNTALS® |
i sotLUN v ——— 1 N
LUNA —
= _) . REDUCE e [PHYCON/* o
VAGEVE [VSEND]
STAPRE ! PARTLS
PACKET l PAGKET
7 11
i l__._.-._§ f .
y INTP | .
"L ISTATES/® 3 ,
[CONTRL/®] :
LEGEND: |
|
] [TASK THAT IS SUBJECT OF DIAGRAM
OTHER FEDS TASKS THAT COMMUNICATE
) WITH SUBJECT TASK
L 6LOBAL COMMON BLOCK
D DATA PACKET USED TO SEND CATA TO OR RECEIVE DATA FROM
SECONDAHY TASKS (SEE SECTIONS 3 AND 41
+ APPEARS MORE THAN ONGE IN DIAGRAM
) ' FPigure 4-3, ORBIT Data Flow

4-7

L A vde B A il hoia e L 3 R e e L T o ——— - a 0 . S

requested it. The input data packet (see Appendix C) is
then receivs. from the specified primary task. ORBIT con-
verts the input start and end times of inteqration from sec-
onds from reference to modified Julian dates.

If partial derivatives are requested (IPART=1l or 2), the
number of variational equations {NEQ)} is set based on the
solve for drag coefficient indicator in the input data
packet. Next, ORBIT checks the input value of ISTART to
determine whether integration startup is required (ISTART=1)
or whether an output vector is to be produced based on the
current backpoints table.

If integration startup is requested, ORBIT verifies that a
reagsonable starting vector was input. If not, an error flag

is set, IFLGll is set, and ORBIT exits. ORBIT also verifies

that if partial derivatives are requested, the spacecraft ID)
(ISCID) is 4 (the only orbit for which partial derivatives)
can be computed). ORBIT then sets the integration step size @
based on the ISCID and the step sizes given in global COMMON 1
/PHYCON/., 1If integration startup is requested, tne direc-

tion pointer is set to indicate forward (IFWD(IDSC)=1l) or

backward (IFWD(IDSC)= -l1) propagation, and the input vector

is moved into the internal start vector array. For all

input start time, and the spacecraft area and mass and the
Sun and the Moon force model indicators are set, based on

I
!
cases, -the Greenwich Hour Angle (GHA) is computed at the i
|
the IDSC and the values given in global COMMON /PHYCON/. |

If startup is requested, ORBIT proceeds to call SSTEP for
each of 10 steps required to f£ill the table of backpoints
for the specified IDSC. MSTEP is then called to compute and :
insert the llth set of accelerations in the table of back- :
' pdints and to compute the second sums required for multistep |
integration and interpolation. Having filled the backpoints {“)
table, ORBIT then proceeds as if ISTART were zZero.

9808

F S o 2

When the table of backpoints is already full (ISTART::},
ORBIT checks the requested propagztion end time (the ‘e~
quested time tag of the output vector). If the end time is
within the Eimespan of the current table of backpoints,
ORBIT simply calls INTP to obtain the output vector at tu=a
end time through multistep interpolation. Otherwise, ORBIT
calls MSTEP to extend the table one step at-'a time in the
direction indicated by IFWD (IDSC). This is done until the
requested end time is within the timespan of the table, at
which time INTP is called to produce the output state vector
at the requested end time. The partial derivatives, if re-
quested, are computed in conjunction with the state during
the calls to SSTEP, MSTEP, and INTP.

The output state vector and, optionally, the partial deriva-
tives (state transition matrix) are loaded into the output
data packet along with flags that indicate which operations

. were performed. ORBIT then sends the data packet to the

primary task that requested it, IFLGll is set, and ORBIT
exits.

4.2 STATE PREDICTOR (STAPRE)} TASK

STAPRE is a primary task responsible for generating or ex-
tending the predicted state vector table for the user space-
craft. Figure 4~4 is a baseline diagram of STAPRE;

Figure 4-5 shows the communication and data flow among
STAPRE and other FEDS tasks. Appendix C describes the data
packets.

There are two constants, SPINT and SPFREQ, in global COMMON
/PHYCON/ that determine the size of the state predict table
and how often it is generated. Since this table contains

H
¥
!

"predicted" vectors, it always contains a future timespan.

The requirement for the state predict table is that the
table must contain data that covers at least a specified
amount of time in the future. To satisfy this requirement,

9808

ey A———— - e ——

B i s SR S S LT P, S

2 e,

B

STAPRE

VSEND
{ORBIT)

Figure 4-4,

VRCEVE
(ORBIT)

8521781

Baseline Diagram of

4-10

STAPRE

ESTIM INPPRO

jln 4

aA521/81

A Y
IACTVAR/ ISYSEVN/ ITSKCOM/ JCONTALY HNITAB/ PHYCON/
STAPRE >
=
e
r;_r
3 !
0OPTAB/ louTvEes!
VBEND VACEVE
PACKET PACKET
7 "] __.1
h
ORBIT QUTPRO DOPPRE
LEGEND:

D TASK THAT IS5 SUBJECT OF DIAGRAM

OTHER FEDS TASKS THAT COMMUMICATE
WITH SUBJECT TASK

T GLOBAL COMMON BLOCK

DATA PACKET USEL TO SEND DATA TO OR RECEIVE DATA FROM N
SECONDARY TASKS

Figure 4-5. STAPRE Data Flow

4-11

a state vector table twice the specified size (in time
units) is generated from the current time forward each time
a new table is to be generated. Then, when half of the
state vectors are out of date, the table is extended into
the future by the table size. For instance, if the state
predict table must contain at least 30 minutes of future
data at l-minute intervals, the table is generated to cover
the next 60 minutes. Then, after 30 minutes when only

30 minutes of future data remain in the table, it is ex-
tended by 30 minutes, replacing the out-of-date data with
the new data. After this extension, the last vsctor in the
table should be time tagged 60 minutes after the current
time.

Each time a new best estimate of the user spacecraft state
is obtained from a new initialization table, from a new

state solution from the estimator, or from a user spacecraft

maneuver, a new state predict table is generated. The exec-
utive determines when the state predict table needs to be
extended or generated based on a new vector and directs

STAPRE to perform the appropriate function.

During initialization (INIT(8)=1), STAPRE initializes all
local variables and flags and sets IFLAGS to return control
to the executive.

When STAYRE regains control, it examines task directive
IDIR(8) to determine the function it is to perform. If
STAPRE has been directed to generate a new predicted state
vector table based on a new state solution (IDIR(8)=2), a
new initialization table (IDIR(8)=3), or a user spacecraft
maneuver (IDIR(8)=4), it retrieves the initial state vector
from the specified source, saves it in /OUTVEC/ as the offi-
cial FEDS reference state (for use by the Doppler predic-
tor), sends the new vector to ORBIT, and requests ORBIT to
restart orbit number 5 (ISCID=5) with the new vector and to

4-12

9608

9808 | _ - - _D

=

propagate it to the current time. STAPRE waits for ORBIT to
complete and receives the output state-vector at the current
time. STAPRE then sets the start time of the table to the
current time, sets the end time to the current time plus
twice the specified size of the table (SPINT), and reini-
tializes the pointers. For each time interval, STAPRE then
requests ORBIT to obtain the state vector and to store it in
the next location of the state predict table.

When the table has been completed, STAPRE sets lock flag
LCKFLG(l) in the output control table, /OPTAB/, to indicate
that the state predict table is ready to be downlinked. It
then saves the last vector in the table as the start vector
for the next extension and sets IFLAGS fo return control to
the executive.

When STAPRE is called Lo extesnd the state predict table

(IDIR(8)=1), STAPRE sets the new end time of the table to

the previous end time plus the specified size of the table.

For each time interval to be added to the table, STAPRE re- ;
quests ORBIT to obtain the state vector and to store it in :

the next location of the state predict table in a wraparound i
fashion. When the table has been extended, the start time f
is updated, and output pointers are updated to point only to E

the part of the table that contains the extension. The
table is then locked as described earlier to indicate that
the extension of the table is ready to be downlinked. ‘The
last vector in the table is saved as the start vector for
the next extension, and STAPRE sets IFLAGS to return control

to the executive.

4.3 DOPPLER PREDICTOR (DOPPRE) TASK

DOPPRE is a primary task in FEDS that predicts one-way TDRSS
Doppler observations over a specified tracking interval.

The tracking intervals for one-way Doppler prediction are
contained in the uplinked tracking schedule. Each tracking

4-13

LRIV R S PP
LA R

interval is defined by a start time and an end time, which
are specified in global COMMON /CONTRL/, and an observation
frequency, which is specified in global and the COMMON
/EXPARM/ TDRS ID tc be used, which is specified in global
COMMON * /TSCHED/ .

The requirement for the Doppler predict table is that the
table must contain data covering at least a specified amount
of time in the future. To satisfy this requirement, a
Doppler frequency shift predict table, twice the specified
size (in time units), is generated from the current time
forward each time a new table is to be generated. Then,
when half of the Doppler shift records are out of date, the
table is extended into the future by the table size., For
instance, if the Doppler :redict table must contain at
least 5 minutes of future data at l0-second intervals, the
table is generated to cover the next 10 minutes., Then,
after 5 minutes, when only 5 minutes <[future data remain
in the table, it is extended by 5 minutrs, replacing the
cut~of~-date data with the new data. After this extension,
the last predicted frequency shift record in the table
should be time tagged nearly 10 minutes after the current
time.

The executiVve requests DOPPRE during task initialization and
each time Doppler prediction is scheduled based on the
tracking schedule. To ensure that the predicted Doppler
data will pe downlinked close to the start time of the
tracking interval, DOPPRE is sicheduled with a specified
amount of pad time (TPAD) before the start time of each in-
terval. This gives DOPPRE ample time to generate the data.
DOPPRE uses both TDRS vectors retrieved by DATMGR for the

. specified TDRS and the predicted state vector table for the
user spacecraft to perform the one-way Doppler prediction.
DOPPRE does not interface with ORBIT., The mathematics for

4-14
9808

L

the one-way TDRSS Doppler cbservation model is given in Ref-
erence 2,

Figure 4-6 is a baseline diagram ©of DOPPRE; Figure 4-7 shows
the communication and data flow among DOPPRE and other FEDS
tasks. Appendix C contains descriptions of the data packets.

During initialization (INIT(6)=1), DOPPRE calls DPINIT to
initialize the local variables used in the Doppler predic-
tion. wWhen initialization is complete, DOPPRE sets IFLAGS
to return control to the executive.

When the executive directs DOPPRE to generate a Doppler pre-
dict table (IDIR(6)=1), the requested tracking inte:zval is
passed through global COMMON /CONTRL/. DOPPRE then predicts
one-way Doppler data over this tracking interval in the fol-
lowing manner. DQOPPRE locates the specific ground station
associated with the specified TDRS ID. DOPPRE calls GHAUPN
to compute the GHA update for the ground station at the
start time of the tracking interval. After the GHA update
is completed, DOPPRE calls DOPMDL to compute the tracking
range at the starting time. This is done because a Doppler
observation cannot be computed without the initial range at
the start time of the tracking interval. DOPFRE then adds
the zvecified observation fregquency to the start time to
obtain the first observation time tag. DOPPRE then calls
DOPMDL to compute a Doppler observation at the observation
time and loads the observation into global COMMON /OUTDPL/.
The next oiservation time tag is computed, and DOPMDL is
called to compute the associated observation as described
above until the table is full or the pass end time 1is past.

When the executive directs DOPPRE to extend the Doppler pre-
dict table (I[IR(6)=2), DOPPRE computes the number of rec-
ords to produce based on the time of the last entry in the
table and the scheduled pass end time. DOPPRE then contin-
nes filling the Doppler predict table in wraparound fashion
until the proper number of records has been computed.

4~15 C:.' \2J

9806

Cm - i Al o e

18/12s58

QM ddoag Jo weabeTrqg outiadseq

TNNLYW

*g-p 2anbTg

- tyowsal 8owLYa) Non a7 m oy —_
1INILDL ANIHQL AdLS — ONYATI NMH3g X14408
Jrvar 9371400 -
. EEL1N Wwi40a
_PIH\JQIQ 20Wd00a 1INIdC

JHdd00

4-16

Tl

-

MOTJd '3ed JFYAJ0oad “L-P aanbta

SUSYL AHYONDDIS .
WOH4 YLva JAD3Y KO OL ViAvA ON3S O1 G350 L3AIvd Y1vD
. ¥I0T8 NOWWOD WHOY™ Z-7T

ASYL LIArENS HLIM
JLYENNWWOD LYHL SHSYL S034 HIHLO

WYHDYIO 40 ADIFANS S1 LYHL NSYL D

. 1ON3937
=
b+
u .
= OH4LND OHddNI Howiva
-] £
ndamno’ faERY L)) INGDAHI NELT] J3Nav4
Jn?.l]
IADTHA ANISA
»
b
- » 344400
—
-)
‘rl —] [
JnoDNSL/ IMATSASS IHENOY! HYALIYY
J b

RETEe

4-17

When all the requeéted Doppler observations have been com-
puted and placed in COMMON /OUTDPL/, DOPPRE locks the
Doppler predict table by setting LCKFLG(2) to .TRUE. in the
output control table, which indicates that Doppler data is
ready to be downlinked. DOPPRE then removes itself from the
active task list (IACT(6)=0) and sets IFLAGS to return con-
trol to the executive.

4.4 ESTIMATOR (ESTIM) TASK

ESTIM is a primary task that performs one of the major com-
putatiornal functions in FEDS. 1Its purpose is to estimate
the user spacecraft (target) state using the most recent
batch of observation data. A batch least-squares estimator
is used to perform differential correction on the target's

- state parameters in a sliding batch mode in which the previ-
ous DC epoch is moved forward to encompass a fixed-length
span of observation data. The state parameter set consiists
of a minimal set of six Cartesian state (position and veloc-
ity) components to which four optional parameters can be
added--a drag term and three user spacecraft clock terms.

To limit the computational load, the estimation algorithm
uses an editing scheme and a measurement partial derivatives
computation that are nominally done only once per DC slide.
The algorithm also allows a partial precomputation of the
next DC slide before all the observations data for that
slide are available,

ESTIM was originally designed to include both estimation
logic and observation modeling. However, due to task memory
limitations, the observation modeling has been separated
into another task, OBSMDL. OBSMDL is completely controlled
by ESTIM. Communication between the two tasks is accom-
plished through global COMMON blocks, and an event flag is
used for task synchronization.

9808

X

. eie

Figure 4-8 shows the data fiow between ESTIM and the other
FEDS tasks. Figure 4-9 provides a baseline diagram of
ESTIM. Appendix C contains descriptions of the cata packets.

Four FEDS executive function directives are processed under
the control of ESTIM:_

1. Perform full esvimation (slide forward) over the
latest fixed-length batch of observation data
{IDIR{S})=1).

2, Partially precompute the next slide using the pre-
vious observation span (IDIR(5)=2).

3. Complete estimation (slide forward) after precompu-
tation is finished (IDIR(5)=3}.

4, Update a priori state parameters wiih the predicted
user state after a maneuver (IDIR(5)= 4).

When ESTIM is first requested by the executive, the internal
COMMON blocks used by ESTIM and OBSMDL are initialized to
their default values in'ESINIT; a global event flag is set,
and ESTIM suspends itself. Upon resumption by the execu-
tive, ESTIM transfers ¢ontrol to either ESLIDE or ESMNVR,
depending on the function directive to be performed. The
first three function directives listed previously are per-
formed by ESLIDE, and the last function is performed by
ESMNVR. ESLIDE éontrols the slide advance and estimation
process that consists of initialization (SLINIT), a state
correction loop (SLITER), and status return and slide
termination (SLEND).

The estimation algorithm consists of one or more iterations
of corrections to the solve-for state based upon the most
reciunt batch of multipass data: SLITER controls each itera-
tion andé returns updated state and estimation status (con-
vergence/divergence) to ESLIDE. This sequence is performed

4-19
92808
T T -

Te/T2ZSH

MOTA ®3ed WILSH ~8-F 2Inbrg

WYHOYIO NEIDND NYHL IHOW SHYIddY . ' o b

{¥ ONY £ SNOILD3S 335 SHSV.L AHYONDDIAS -
WOYd ¥1¥d SAITIH HO 01 ¥ivd AONIS 0L 0350 13aX0vd viva

2078 NOWWOD TVaoNs 77

) ‘WSWl LJITENS - HUM
FLVIINAWINDD LVHL SNSVL SO3d - HIHLO

NYHOYIO 40 1037805 51 LYHL NSYL D

taNanay "

I .]

_ «NOINSL!
114us3 : . H
IP MUSED ¢ w ﬁ
*HO L ¥
. . 13NIVY 1340vd HOWLYO
i t _ =

|_ -+ 14580

1av1do! 1INPIS o
zl ~

1349V)
IAIOWA L
: : 301718 t :

A owsar:]
\ / 123usao/ 11 8
/ - |¢||' wi1s3 13xavd 13%0vd - :

IAIIHA ON3SA . !

t

1 O

INOJAHY/ 19 INY -fwWyd183/ «/WOINSL INAISAS] THYALDV 1HLNOY

T B S iy s ;

»

OlddNI J3X3

LR

re/a0ns

WILSd FO wexbetq aurrosedq

T L T T W

‘6-% sanbty

RS ENES)
_‘_Il_. . L | |
MHSE0 NODL 15d1¥N ANINAS EEETL L .o._..aac 110384 _ Mpseo
T 1 T T |
1no1s 210378 HHODS Aodms snsTs FLETR LiNIS3 HonLval _wmw‘%un.
L _ | _ | L |
Yy ShaoHn was anats LINTIg
_ _ _ _
HANWSI 3arsa LINIS3
L |
Wiis3

——

4-21

for each of the different executive function directives:
the internal logic that implements each directive is em-
bedded in the modules.

Each iteration consists of a minimum of one pass Lhrough all
of the available observation data within the timespan of the
current slide. During this processing loop, the normal ma-
trix and other batch estimation statistics are accumulated
(SLSUMS) ; the state correction is computed (SLCORR);: the
solve state is updated (SLUPDT); and estimation reports are
gueued for downlink (SLOUT). Various types of observation
editing are performed during this cycle. The first time
that ESTIM uses each observation data record, PREDIT is
called to detect grossly out-of-bounds measurements by
checking TDRS-target-station geometry. During the first
iteration of each slide and if linearity constraints are
violated on subsequent slides, the observed-minus-computed
residuals are edited if they are larger than acceptable, and \H)
one or more edit loops are performed to remove measurements
from the accumulated sums based upon the current estimation
statistics.

4.5 OBSERVATION MODELING (OBSMDL) TASK

OBSMDL is a primary task in FEDS that computes TDRSS obser-
vations based on given TDRS crbits and the current best
estimate of the user spacecraft orbit. Unlike other primary
tasks, OBSMDL is not controlled by the executive. OBSMDI is
simply an extension of the estimator and is therefore con-
trolled directly by ESTIM.

OBSMDL models one-way TDRSS Doppler observations and, op-
tionally, computes the partial derivatives required in the
estimation algorithm for these observations,

4~-22
9808

i
i
1
|
b
e LS

e AN L RO G S g - N

OBSMDL perfdrms the following corrections for the specified
types of observations:

Backward light-time
Tropospheric refrastion
Transponder delay

User frequency offset
User freguency drift

User frequency drift rate

The computational models are described in Reference 2. Fig-
ure 4-10 is a baseline diagram of OBSMDL. The communication
and data flow among OBSMDL and ESTIM and other FEDS tasks
are shown in Figure 4-11. Appendix C presents descriptions
of the data packets,

If ESTIM has requested OBSMDL to compute an observation re-

sidual, OBSMDL begins by retrieving the observation time tag

from global COMMON and calling GHAUPN to compute the GHA for

the ground station at the time tag. Next, OBSMDL calils

TDR1WM to model one-way TDRSS Doppler observations. During

observation modeling, subroutine SORBIT is used to propagate

the target satellite orbit for short periods of time using a i
second-order Euler method. This avoids numerous calls to
the ORBIT task during light-time correction computation.

If OBSMDL has been requested to compute partial derivatives,
it calls TDRIWP to compute partial derivatives of TDRSS
one~way Doppler observations at the given observation time.

{9
'
[\S]
(V]

9808 | | L

{#)

.,

(z FO T) 'IAWSHO 3FO wexbetrq surlased °"QT-p =2Inb1g

39%d LX3N FHL NO Si WMLYAL 40 WYHDVIA INNSSYY)

va/oo0e6

aLvar
{4OWLYQ) (HOWLYQ) .
INWLYW IOMLYC HONLYC NOT 4381 o
I
=3
1
dMI¥AL JNMLHAL HOLLID NdNVHD
1
P
J0WSa0 i

18/t2se

(z 30 Z) T1AWSuO 3O weiberqg suriaseg

*Q0T-% 2aInbty

INWLYW ‘
¥
’ {HOW1YQ) _
NOT GNIEA _uwuuﬂn. 217 NOTILV MNWLYW)
. 4
m HOLLID 1I8H0S anNvAl YEL X13004d 31var
wm
(o]
|
-
(11940} (LIGHO)
aN3ISA IAIIYA Ad1S 931AND OWAL FERIAN
1 A,
-
k) u
._
AHO139D 1AW NJNYHO ‘
WMIHOL

:

MOTJ e3eq TAWSHO “IT-§ @anbrg

b SASV.L AHVONGDIAS
WOH2 w190 3AM323H HO 0L VAV0 ON3S 04 G3SN 133Dvd viva

32078 NOWWGD a0

.
ASVL 123rENS HLIM O

FLVIINNIWWOD LYHL SNSVYL S033 HIHLIC
WYHOVIA 40 1D3Irans St AVHL Y5V

= anN3n3a
o
N
= ,p
=
ay013oH
|
© .
EldVED] o
I
- ¥
TOWSHO
1
¥ . L 4 -
1 il
5 € zL ol P
AINDVd i3dove |+ 1330vd 133094 . N
s !
Adual JWO2NSY IAITHA ONISA 1034580/ INOJAHA! IAIIHA anNasa 1IN0/ :

f t]
2 v ‘

HOWlYQa wiLs3 - OUddiI 11840

e

SECTION 5 - COMMUNICATIONS BOX

The Communications Box is a microprocessor-hased piece of
communications hardware that handles interfaces between FEDS
on the PDP-11/23, a PB5 time code generator, and a second-
generation transponder. Section 5.1 describes the Communi-
cations Box hardware. Section 5.2 discusses the interface
functions of the Communications Box. Section 5.3 describes
tne operation of the Communications Box. Section 5.4 dis-
cusses a FEDS software testing program that simulates the
functions of the Communications Box and transponder.

5.1 COMMUNICATIONS BOX HARDWARE

The Communications Box consists of a microprocessor and chas-
sis, a CRT, a clock mcdule, and a pulse generator. Together
the clock module and pulse generator function as the PB5

time code generator. The CRT provides a means for a user to
communicate with the Communications Box. The microprocessor
controls the actions of the Communications Box. A block
diagram for the Communications Box is given in Figure 5-1.

The microprocessor, an Intel 8085, resides in a single board
computer (SBC-80/30) containing 8K of erasable, programmable
read only memory (EPROM). The chascis vontaining the micro-
processor and clock module also contains an interface board
and terminal ports which provide input and output capabili-
ties for data to and from FEDS and the transponder. The
miczroprocessor can also access the clock module memory to
obtain the PB5 time code,

5.2 COMMUNICATIONS EU.s INTERFACE FUNCTICNS

The main functions of the Communications Box are to provide
an interface between the transponder and FEDS and to access
the PB5 time code generator. All actions taken by the Com-
munications Box are in response to messages sent from FEDS or
from the transponder. All message formats are provided in
Appendix A. '

9808

wreIbeTq YOOTH XOg SUOTIROTUNUOD *T-GS axnbtg

()

sneiInw
[
ay
MOLVHIND 0w 9N 1 5808
3002 3NIL HIONOJSNVYL, 0e£/08-28S
SHd NS
T] LT 17
-
x0h<zmumo — !
35N
—\— (ZEZ-SY)
IOvIuIING SCH
HIONOdSNYHL

 1HD

{

During initialization of the FEDS/Communications Box inter-
face, FEDS transmits an initialization message to the Commu-
nications Box. The Communications Box responds by
transmitting an initialization receipt message to FEDS.

At the beginning of the simulation and prior tc each sched-
uled tracking pass, the Communications Box will receive a
time request message from FEDS. The Communications Box wiil
then obtain the PB5 time code from the time code generator
and form and ~zransmit the time message to FEDS. The Commu-
nications Box will also receive a reset Doppler accumulator
message prior to each scheduled tracking pass. In response
to this message, the Communications Box will set the Doppler
reset input into the transponder.

When the transponder does not have a lock on the tracking
signal during a scheduled tracking pass, the Communications
Box will receive predicted Doppler ressages at a preset fre-
quency, nominally once every 6 seconds. The Communications
Box will take two actions in response to this message.
First, the frequency control word will be extracted from the
predicted Doppler message and trangmitted to the transpon-
der. Then, a message indicating that a predicted Doppler

message has been successfully processed will be transmitted
to FEDS,.

As soon as signal acquisition has occurred, the Communica-
tions Box receives a signal from the synchronization de-
tected (sync detect) output of the transpondzr. The
Communications Box responds by transmitting a signal acqui-
sition message to FEDS.

During the tracking pass, the Communications Box collects
observation data from the transponder and associated time
tags from the PB5 generator and transmits this information
to FEDS. After accumulating data over the Doppler averaging
interval, the transponder will output a time strobe to the

9808

.

Communications Box. The Communications Box immediately ob-
tains the current PB5 time code and then clocks the 40-bit
Doppler accumulator from the transponder over a serial

port. If FEDS has transmitted a Doppler observation mes-
sage, indicating FEUS is ready to receive an observation,
the Communications Box immediately transmits the observation
data message containing the Doppler accumulator and the PB5
time code to FEDs. Otherwise, the Communications Box will
await the message from FEDS before transmitting the observa-
tion data. As soon as tne transponder loses the lock on the
tracking signal, the Communications Box receives a signal
from the carrier lock port of the transponder and responds
by transmitting a signal loss message to FEDS.

5.3 COMMUNICATIONS BOX OPERATION

The procedure to prepare the Communication Box for operation
consists of five steps:

1. Connect terminal port TTl: on the PDP-11/23 to the
designated terminal port on the Intel chassis with
the cable provided.

2. Connect the Communications Box ports to the corre-
' sponding ports on the transponder.

3. Turn on the power switch on the Intel chassis front
panel.

4. Turn on the power switch on the CRT,

3. After the cursor appears on the CRT, depress the
nge key repeatedly until the transponder interface.
menu appears (Figure 5-2). If the menu fails to
appear, depress the reset button on the Intel chas-
sis front panel and repeat this step.

Following this procedure, the Communications Box is prepared
to initialize the FEDS interface and begin operation. The
PB5 time code must now be initialized. For testing purposes,

9808

Q)

e

v N ey My e RPN S el e A o s ATy

D* Display Memory (Dx, y)

G* Go Command

Xr* Display/Set Register

M* Move Memory

S* Substitute Memory

N* Single Step

I* Insert Memory

) T Set Up Time

{ C Resume Xponder Program

- Initialize Xponder Routines
Display Time

Help Menu

Fx Send Function Code to LSI
Send to CRT/LSI (C or L)

=

I:"

*Debug commands

Figure 5-2. Transponder Interface Menu

9808

the "T" command {see Table 5-1) can be used. During the
demonstration, a more accurate method of synchronizing the
PB5 time code generator with Universal Time Coordinated
(UPC) will be used. The "R" command (see Table 5-1) is then
used to instruct the Communications Box to expect an ini-
tialization message from FEDS. If FEDS does not respond in
the given time, the "R" command must again be entered before
operation will begin. After FEDS has responded properly,
the Communications Box will provide all interface functions
described in Section 5.2.

Following completion of an execution, the Communications Box
should be powered down by turning off the power switches on
the Intel chassis front panel and the CRT.

Figure 5-2 shows the tranﬁpondet interface menu. The use
and function of each command is described in Table 5-1.

5.4 COMMUNICATIONS BOX SIMULATOR

The primary responsibility of the Communications Box Simula-
tor (SIMCB) is to simulate the actions of the Communications
Box and transponder that are pertinent to FEDS. SIMCB is
requested by ADSIM when the Communications Box is not avail-
‘able for testing.

SIMCB receives, identifies, and transmits messages to and
from FEDS. Valid messages that can be received from FEDS are

. Initialization (function code 0)

. Accumulator reset (function code 5)

. Predicted Doppler commanded offset (function code 3)
. Time request (fuﬁction code 2)

U o W N

. Doppler request {function code 1)
-Valid messages that can be transmitted to FEDS are

1. Carrier signal lock (function code 4)
2. Carrier signal lock leost (function code 6}
3. Initialization bit received (function code 0}

5-6

(4

8/ (D5)-0005

<l OLOY

00 00 00 68 £8 S¥ £Z L0 43 A2 9V 06 8Z 95 ¥€ ZL 000V

Bx« ..

4> gLOY' 000y T
{vdwosa) Z100000063299¥EZL03I A E VOSELISIEZL
+2 000H
. . __Bi0-vX
0L=5 VEZL=d 3= 44=T 24=H 91 =3 S0=3 ¥0=0 =3 =9 0=V
, €4 0100
€0 Z1 Y0 LE £0 26 £J 90 83 G2 £4 00 4¥ £ £4.0000
.—UQF-SF
“wosy deis
03 SBSIM JOSN SERIPpPe
. 1R 0} 199 Bq JsNWL Jeysthes
3d "ewp ¥ ¥ uopsnns
~up suo winiord ylinoay deig ejbujg
- N [deis aBus 03 Jesn smojy N
‘ucfiRunsep
s Buunleq ‘Wyy jo vere
<UORBURSEpP > Y3 03 AJowews o 8yo04g Adoweyy eaoyy
0000 ‘O00LF ‘DO0MIN | * <*STIPPE YByy >’ <sseippe L g | GADWY 0} JeEn smOjTY . W
‘pueuoD sy
Supnoexe stojeq ssesppe
Hms sy 03 4epujod uop
-annsu; syl dn jes Jxnw
PRINSExS GLOY M3 000 O3 OF JLOV-— DOOFD B [<stuppe Jujodyesiq> —‘) | esq) “Kuodyeaiq puondo
) 000y o4 0f 000D [<sswippe sujodiesiq > —] 188 pue vy u) wed o9
Junod vogINngRE W0l o P [<essuppe unis > -0xd LUwIS 0} SN sMOpY)
~A1owsew
“HlN|aa 0} Buoy O1u] 8p03 jo RunowWE Atowely 1108t
003 souy Amd mopeq sidumexe seg,, 9 <sseappe>| | sfuv) uesuy 03 iesn smopy i
‘ Apenpiap
-U} SUOK290] AlowWseL
| SBOTRA XBY Giw X *AK ‘xx ssym Ajipouw: Afjwuogdo puw Aowejy sympsqng
T2-IZ AA-LL %%-00 D00V - (eceds) <sxwuppe>g SUUENS O) I8N SMOYY S
“(sHsunod yons
o »05 Buo .n.n.E._.:.!vmu.ﬂ.l“ smsies 0 uus. MRN0D :ﬂ.nho.-n somie .
. " W) 2 msaym | ‘sammy dD 9808 bl widisig
003 Saup Ampdeip ‘mopeq sxhuexe eeg, x imomy Baiq_ﬂea;-!on(oM 308, P
"Uimna3 0} Buoy (£3) wiey eBuepmy | wp vo Lowsw yo :n._uh_-.ww Asowapy Awpdsig
003 ssuy) Amdep ‘mopeq srdwens seg, <ESIPPE Yy >’ <esAPPe MOI> G | Auw Amjdeip 03 aeen smoly ‘ a
F1dNVYX3 XVLINAS ONVYIWNOD NOLLdIN2S3a ONVYANINOGD

(z 30 T) spueumo) soezxajuTl aspuodsuexy,

‘T-9 9Tqeg

5~7

ST 03 pueg,
L
._ma.i*lgﬂa.hxuimlgsu!cm.
. L
PeARduip 51 457 S vray ssucdsay o,

3

- 513
‘AHD »p vo peiwpdup 5y JADVYSSIWN dNANVYM 1NIS 151,
obareaw wp ueyy ‘Apseisos spucdee;s 034 51

ORIGINAL PRSI
OF POOR QUALIVY

. oL
_lﬂa.gu.gégifg
-o.tai]sanxi.cc_u
Ef!ﬁhﬂi}i!ﬂ.l!ﬁ
SPUCIeE uy ediy
..ai.....a!!.s..%m
y o
.gigis.l!:agi .-._W
“ -arvd 4
, Bngep 20} 14D v & 20 {140 3)
= LNNOD 20§ Bucy
z osnl.__ﬁ!ula].l:l-.nu- - _u._-ﬂﬂwoﬂuo!.aa!:c .m,_:cus...._am
NEA SPOD YORIUNY = 8 2 . s
----- 15T M ol sepos uopl | eped wopauny pues
STV IXTITIIEIYIYN g ~3UN} PusE 03 J0RT ROy 2 .
o
. "nusl disH sy sdepdeg Awpde nueyy !
- _ 7] H 9])
T PUSuRLGD
SR Buren AG pepsyses
oG LD)] ‘uosess Muos
..ﬂ.us_t!:-uﬂi!iu
“nbm W pucdeusn Mg,
Bg.ﬂ;j umaBo.sy
. "SU03 wol) estodess 203
WM 03 Amep s msenbes ey
“lstingoy s0y Buo]]
DE0SEZ AWp g0 wuny 479 Awp o npy
LELR A%P o spucoeg 427 Aep uegng "LHD ™) Lo s sun) std Awdeg
v oy . Andup o seen smoyy v
"URLNNG> 20) By . s o :
003 b Lepdowp ‘moreq epdusmxe seg, oy SUIR 398 03 swen smoyy . E
TdNYX3 : XVYLINAS ONYWWO)D NOILJINISIa ANVYINWNOD

(z 30 z. spueumoy S0BFI93UI Iopuodsueig, "1-6 oIqmy _ _ R

The formats of all messages transmitted between SIMCB and
FEDS are those used between FEDS and the Communications Box
and are given in Appendix A.2.

Figure 5-3 illustrates the SIMCB data flow and Figure 5-4
presents a bhaseline diagram.

When SIMCB is initiated, it accesses a file of observations
generated from Doppler predictor output during a previous
FEDS execution. SIMCB reads the start and stop times of the
first pass on the file, issues a QIO to read from the line
connected to FEDS and places itself into a dormant state.
SIMCB remains in 'a dormant state until a message is re-
ceived. Upon receipt of the message, SIMCB identifies the
message type and follows the appropriate path through the
program.

If the received message was identified as an initialization
message, SIMCB transmits an "initialization received" mes-
sage and returns to the dormant state to wait for the next
message. If the message is identified as an accumulator
reset, SIMCB resets the accumulator to zero and returns to
the dormant state to wait for another message. If the mes-
sage is identified as a time request, SIMCB accesses the
system clock; computes a simulation time in PB5 format based
on the current system clock time, a reference system clock
time, and a simulation reference time; transmits the PB5
time code to FEDS and returns to the dormant state to wait

for another message.

J
If the message is identified as a predicted Doppler-

commanded offset, SIMCB searches for the tracking schedule
pass that contains the current simulation time. If no pass
is found containing the current time, an eérror message is
written to the terminal and SIMCB returns to the dormant
state awaiting a message. If a pass is found, SIMCB will
call LCKSET to estimaté when signal lock will occur, based

5-9

9808

¥

MOTJd ®3RA GOWIS ‘"¢-§ oanbrg

5 MOTd VLVG SONIS
€
»
g oIS
»
»
JO3IHISL/
/WOo282/
/GIHISL/
HNOINMY
NLIWIS/
HIWIWNIS

5-10

'@l‘

HOWIS X037 uexberq SurToseq.

NOZL

‘P-§ @anbrg

-

" R ey el T P -

MO21 — EELTL r vt
NO2L HODL _ 3lvar F FIHINS A_ AHISWH [—
i Miws —’ MIATY ANDHIN EELIY)3 —V EJR] — anaL ‘“—-’ NOJL ANIOMA No
S80ans TSMONS 438833 H3A0M ilwis N33 NN HSWADY dlann
— s “
’ il

5-11

on the commanded offset, the current time and data in the

observations file. SIMCB then waits for either another mes-

sage from FEDS or the simulation lock time.

If a message is received, SIMCB proceeds as indicated in the
preceding discussion. If the signal lock time has passed,
SIMCB will transmit a signal lock message to FEDS simulating
acquisition of the tracking signal. SIMCB then waits for
the end of the scheduled pass or a Doppler request. 1If
SIMCB recei@es a message other than a Doppler request, it
will send a lock message to FEDS and continue waiting. When
a Doppler request message is received, SIMCB finds the first
observation in the observations file that is time tagged
after the current simulation time, scales and biases it, and
adds it to a summation, modeling the accumulatcor. SIMCB
then forms an observation message consisting of the observa-
tion time tag in PBS format, the summation of observaticns
in a 5-byte integer, and the proper function code and waits
until the observation time tag or the scheduled end of the
pass. When the observation time tag is reached, SIMCB
transmits the observation message and waits to receive
another Doppler request. Whenever the end~of-pass time is
past, SIMCB sends a signal lock lost message to FEDS and
waits for any message.

9808

. i

Py ¢

SECTION 6 - SYSTEM CONSTRUCTION AND
OPERATION GUIDELINES

FEDS has been designed to support a demonstration of onboard
orbit determination using observation data collected autono-
mously. Section 6.1 describes the expected configuration
for the demonstration and testing. Section 6.2 details con-
struction of FEDS, both for test systems and the operational
system. Section 6.3 describes FEDS execution. (In this
section the PDP-li/23 microcomputer is referred to by the
name of its microprocessor, LSI-11/23.)

6.1 OPERATIONAL CONFIGURATIONS

During the FEDS demonstration, FEDS executing on the
LSI~11i/23 will be communicating with ADEPT by telecommunica~
tion lines and with a transponder through the Communications
Box. FEDS will receive data messages and commands from
ADEPT and will send output reports and messages to ADEPT.

These messages are described in Appendix A.l. FEDS will

transmit commanids and predicted Doppler shift data to the
Communications Box and receive data messages and flags from
the Communications Box. These messages are described in Ap-
pendix A.2. 1In addition, FEDS will output status messages
to a terminal to allow for simulation monitoring. These

‘messages will be a compressed form of activity log messages,

messaées sent to or received from the Communications Box,
and messages indicating task activity. These messages are
described in Appendix B.

During the demonstration, observation data will be collected
in a manner that simulates data collection on a satellite.

A tracking signal will be transmitted from the White Sands
Ground Terminal (WSGT). The tracking signal will be compen-
sated at transmission time to offset the Doppler shift that

would be observed by a satellite in the simulated orbit.

The transponder will attempt to acquitre the tracking signal

6-1

9808

i g e

relayed by the TDRSS satellite, based on the frequency off-
set commanded by FEDS through the Communications Box. Both
the LSI-11)23 running FEDS and the transponder will be lo-
cated at GSFC,

Several data items will have to be consistent throughout the
demonstration. A schedule of TDRS tracking passes has to be
consistent between WSGT and FEDS. The schedule will be ob-
tained by submitting a request for TDRS access at a TDRSS
scheduling meeting and receiving a final schedule., The sim-
ulated user elements transmitted to FEDS by ADEPT at the
start tiime of the demonstration must correspond to the user
elements used by WSGT for Doppler compensation. It is ex-
pected that the user elements will he extracted from a
Goddard Trajectory Determination System (GTDS) ephemeris
tape provided by the Operations Support Computing Facility
(OSCF). FEDS will therefore need to have a spacecraft model
that is consistent with the model used in the generation of
the tape.

TDRS elements must also be consistent. It is expected that
ADEPT will transmit to FEDS a TDRS vector provided by the
0SCF, and WSGT will use OSCF-determined TDRS elemerits trans-
mitted over the NASA Communication Network. For timing con-
sistency, the PB5 generat¢t will have to be synchronized
with UTC. Figure 6-1 presents the configuration for the
demonstration.

Prior to the demonstration, a test will be executed to ver-
ify FEDS operational interfaces. Under this configuration,
WSGT will transmit an uncompensated signal through the TDRSS
satellite to tné transponder. This test will verify the
ability of FEDS to control signal acquisition, data collec-
tion, and signal loss under near demonstration conditions.
S5ince Doppler compensation is not being performed, the user
elements will not be needed at WSGT.

6-2

9808

S PUS—

SANYS 3LIHM 480
g
Sudd - > 308N
€2/ 11157
1430V g ——
] 0L/11-dad
FINAQIHIS
ONIDVHL
Wﬁﬂﬁw mw%w mﬂwm__h HOLVHINID
EL 3002
FNAIHIS ONINIYHL YIINNWHOD 3Nl S84 HIOVNYIN
SLNIWAT3 SHOL U313nvaval NOLvEiSNOWaD
SiNIWITI HISN _
h 4 14vHD3IvdsS
4
H3ICNOd
300N -
NOILYINWIS . wumw_h
viva ssual 4280
195Mm
YANILINY, 5v
W FINAIHIS ONINGVHL
TYNDIS ONIAIVHL
03LVSN3IJWOD HI1ddGq
ILNELYS
SSHAL
ONILIIN
ONITNAG3HIS
SSHAL

For testing during the development process and local testing
of system modifications, two configurations are supported,
one with FEDS executing on the LSI-11/23 and one with FEDS
executing on the PDP., Under either of these configurations,
all facilities and data required for FEDS execution reside
in the System Technology Laboratory (STL). SIMCB provides
all required messages from the Communications Box and obser-
vation data. Terminals are connected using cables. ADEPT
will perform the same functions as in the demonstration con-
figuration.

6.2 SYSTEM CONSTRUCTION

Two versions of FEDS are maintained., One version is to be

executed on the LSI and the other executes along with ADEPT

on the PDP-11/70. The LSI version of FEDS uses all four

terminal ports on the LSI: two for communication with

ADEPT, one for communication with the Communications Box ot)
SIMCB, and one for a terminal. Because of a lack of avail- '
able terminal ports, the PDP version simulates one of the

lines between FEDS and ADEPT by using a system global event

flag, VSEND in QUTPRO, and a VRCEVE in the ADEPT task RECEEV.

Command files are maintained to generate beth versions of

FEDS. A command file exists to act as the executive for é
compiling FEDS. The file, [224,1]COMPILE.CMD, prompts for

the subsystem to be built, opens a corresponding file con-

taining tne name of each subroutine to be compiled, and com-

piles them one by one until an error occurs in the

compilation or an end of file is encountered. If an error

is encountered, COMPILE will prompt for user input.

There are two ways to build the FEDS tasks for each version
(LSI or PDP): one task at a time or all FEDS tasks with one
command. To build tasks separately, task command files are
available, each containing the task name followed by .CMD)
for the PDP version, or task name followed by 23.CMD for the

6-4

9808

LSI version. The command file TKB.CMD will build all tasks

for the PDP version and TKB23.CMD will build all tasks for
the LSI version. '

For the LSI version, a system image must also be built. To
accomplish tnis, a user must log on under a privileged user
identification code (UIC) and set the UIC to [1,64]. A sys-
tem image is then initialized by executing the command file
COP11S.CMD. The system is then generated by running VMR32,
which will prompt for a command f£ile., This prompt must be
answered as follows:

ENTER FILENAME: @{224;11FEDS23.CMD

Appendix D presents the command.files referred to in this
section.

6.3 SYSTEM OPERATION

Execution of the FEDS/ADEPT system is a three-step proce-
dure. FEDS must first be loaded on the LSI or installed on
the PDP. The simulator portion of ADEPT (ADSIM) must be

installed and then system execution must be initiated by an
operator,

Before FEDS is exXecuted on the LSI, a system image must be
created as descriped in Secticon 6.2. The user should then
perform the following steps to downline load FEDS to the
LSI-11/23:

1. Set the operator console (Hewlett Packard terminal)
in the STL computer room for 300-baud rate and flip the cor-
responding switch on the terminal box to 300-baud rate.

2. Power up the LSI-11/23 using the POWER ON switch in .

the back of the computer cabinet, near the terminal ports.
The LSI-11/23 will respond on the operator console as fol-
lows: '

28
START?

6-5

9808

o gt T TR AW T bk

i
|
l

To start the LSI-11/23, fhe user should enter "Y" followed
by a carriage return.

3. Next, the user should verify that the communica-
tions lines betw=zen the PDP-11/70 and LSI-11/23 are con-
nected properly. The proper connections for FEDS in
demonstration configuration are detailed in Figure 6-2,
Figure 6-3 shows the terminal port connections, using SIMCB.

4, At this point, the hardware is confiqured properly
and the user is ready to download the system image. To do
this, the user should enter the folldwing commands under
UIC[1,64}:

>KkEA LSTI 2 TT32:

>L5I

LSI>BOOT RSX11lS.S5YS
At this time, the system image is downlcaded into the
LSI-11/23. This will take approximately 10 minutes, using a
9600~baud line. When loading is complete, FEDS will attempt
to establish communication with the Communications Box or
SIMCB and then wait for a start command from ADEPT.

Procedures. that should be folliowed to minimize operational
difficulties on the LSI are discussed in the following para-
graphs. After the LSI power switch is turned on, the lines
connecting the two computers must be cleared. This is done
by the command

RUN [224,1] FLUSH
The LSI booting task must be terminated immediately after

downloading of the system has been completed to prevent it
from receiving data intended for ADEPT.

Installation of FES on the PDP is accomplished by executing
the command file INSFEDS.CMD. This command file installs
global common areés, terminal handlers, and FEDS task and
fixes the tasks to correspond with the FEDS system image

9808

S

— D G —— — T S— — A — — Y G S— — —

-
|
I
I
I
|
DATCAP : |
I |
I
COMMUNICATIONS ADEPT |
BOX |
(" I
- | OUTPRO : %
| - I
| I |
| | |
| I |
I 12 |
S [_JE j
LSt PDP

Figure 6~2. FEDS (on LSI) Communications Line Configura-
tion, Communications Box Used

g

ADEPT
PDP

FEDS (on LSI) Communications Line Configura-
Communications Box Simulator Used

1
_ _
_ _
| o
Q | @
T.- = = - 6]
I g 3 _
_ _ K
| '
_ _ ;
r 5 f
i | -
i s
I |
_ i o
| : s &
| 7] - 8 ®
| | 4
=
| | &
| ! Fy

used on the LSI-11/23, The installation command file for
FEDS on the PDP-11/70 is shown in Figure 6-4. Terminal port

communications are shown in Figure §-5,

Installation of ADEPT is also done by command file. For
either FED3 configuraticn on the LSI-11/23, ADEPT is in-
stalled by the following command under UIC [224,2].

> @ADSLSI

The command file to install ADEPT on the PDP-11/70,
ADSINS.CMD, is accessed by INSFEDS.CMii. These command files
differ only in the task that is installed to capture data
from OUTPRO. The command files to install the simulator
portion of ADEPT are shown in Figutes 6-6 and 6-7,

Nominally, operator interaction with ADEPT consists of en-
tering a simulation ID, a verification of simulation config-
uration, and the instruction to begin. Data preparation for
FEDS and optional operator interaction with ADEPT at run
time are detailed in Reference 3.

To begin a run, the operator enters the following command:
> RUN ADSIM

ADSIM prompts the user to enter a simulation ID code for the
simulation run as follows:

PLEASE INPUT A TWO CHARACTER SIMULATION IDENTIFICATION
CODE. DO NOT INPUT BLANKS OR SPECIAL CHARACTERS>

The user then enters a two-character alphanumeric code for the
simulation run, followed by a carriage return. The simulation
code should not contain blanks or special charécters. The
simulation ID code should be the same as the simulation ID
code used in data preparation.

9808

S —

i
|
H
H
]

T T T TR TR TR b T o el

INS
RUN
SET
SET
SET
SET
SET
SET
SET
INS
INS
INS
INS

;

INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
;

14

FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
uIcC

- Wiewa - ow T a s v @

£1,1311SRES
FLUSH

NOPAR : USRGE1
NOPAR : USRGB2
NOPAR : USRGB4

PAR:GLB3/BASE:3576/SIZE:400/COM

PAR:GLB4/BASE:4176/SIZE:600/COM
PAR:GLBl1/BASE:4776/SIZE:200/COM
PAR:GLB2/BASE:6176/SIZE:200/COM
C1,13GLB1l
£1,13GLB2
Cl,13GLE4
C1,11GLB3

INPPRO.TSK/TASK=INPPRO/PRI=45.
OUTPRO.TSK/TASK=0UTPRO/PRI=45.
DATCAP.TSK/TASK=DATCAF/PRI=80.
EXEC.TSK/TASK=EXEC/PRI=53.
STAPRE.TSK/TASK=STAPRE/PRI=45.
ORBIT.TSK/TASK=0RBIT/FRI=52.
DATMGR /TASK=DATMGR/PRI=52,
DOPPRE/TASK=DOPPRE/PRI=45.
PREPRO/TASK=PREFRQ/PRI=45.
ESTIM/TASK=ESTIM/PRI=45,
OBSMDL/TASK=0BSMDL/PRI1=51.

INPFRO
OUTPRO
DATCAP

EXEC

STAPRE
ORBIT
DATMGR
DOPFRE
PREFRO
ESTIM
OBSMDL
224 2

@ADSINS

;
RUN
)

Figure 6-4.

EXEC

Command File To Install FEDS on the PDP

6-10

SiMCB

Figure §-5.

DATCAP

" ADEPT

QUTPRO

DATA TRANSMITTED
VIA VSEND & VRCEVE

FEDS (on PDP) Communications Line Configura-

tion, Communications Box Simulator Used

6-11

1

s

|
I
|

; COMMAND FILE TO INSTALL ADSIM TABKS
; ADSINS.CMD

SET NOPAR:USRGBS

SET PAR:ADSGBL/BASE:6376/SIZ2E:200/COM
INS C1,1]ADSGBL/NOCHECK

INS ADSIM

INS STMMER/NQCHECK/PRI=53.

INS DNLINK/NOCHECK

INS DNHIST/NOCHECK

INS SCREEN/NOCHECK

INS RECEEV70/NOCHECK/TASK=RECEEV

INS SIMCB/NOCHECK/PRI=54.

FIX SIMMER

FIX DNHIST

FIX RECEEV

FI¥X DNLINK

b

Figure 6-6. ADSINS.CMD {(on PDP-11/70)

& i

;COMMAND FILE TO INSTALL ADSIM TASKS

r
SET
seT
INS
INS
INS
INS
INS
INS
INS
INS
FIX
FIX
FIX
FIX
2

ADSINS.CMD

NOPAR :USRGBS

PAR :ADSGBL/BASE:6376/81I2E:200/C0M
C1l,13ADSGBL/NOCHECK
ADEIM
SIMMER/NOCHECK/PRI=51.
DNLINK/NOCHECK
DNHIST/NOCHECK
SCREEN/NOCHECK
RECEEV/NOCHECK
SIMCB/NOCHECK/PRI=52.
SIMMER

DNHIST

RECEEV

DNILINK

Figure 6-7. ADSLSI.CMD (on LSI-11/23)

6-13

e

ADSIM then prompts for verification of simulation configura-
tion as follows:
ADSIM - DATA OBSERVATION SIMULATION MODE IS COMMUNICA~
TIONS BOX SIMULATOR (1)
DO YOU WISH TO CHANGE CURRENT DATA OBSERVATION ACCESS
METHOD [Y/N]?
Three sources for observation data exist:

1, Communications Box simulator
2. Actual Communications Box
3. Observation file used to support AODS

Under normal situations, the operator will not wish to
change the source of observation data. The simulator main
menu will then be displayed as follows:

SIMULATOR MAIN MENU

INITIALIZE SIMULATION

BEGIN SIMULATION

RESUME A PREVIOUS SIMULATION
TERMINATE SIMULATION

L VAN S

INPUT COMMAND >

The operator will enter a 2 followed by a carriage return
and simulation will begin. If the operator wishes to change
the source of observation data, FEDS will prompt for the new
data source before displaying the simulator main menu.

- To terminate a simulation, the operator instructs the com-
mand file to abort and remove all ADEPT and FEDS tasks by
entering the command

> @ [224,1]) REMOVE

This command file, shown in Figure 6-8, removes all tasks
that would be installed on the PDP under any configuration.
FEDS tasks on the LSI are terminated by turning the power
switch OFF. Figures 6-9 through 6-12 show the command files
this command accesses. |

9808

UIC 224 2
©@ADSARO
GADSREM
UIC 224 1
@BABOFEDS
GREMFEDS
>

Figure 6-8. REMOVE.CMD (To Abort and Remove All Installed
FEDS/ADEPT Tasks)

ABO/T EXEC
ABO/T DATCAP
ABO/T OUTPRO
ABO/T INPFRO
ABO/T STAPRE
ABO/T ORBIT
ABO/T DOPPRE
ABO/T DATMGR
ABO/T PREFRO
ABO/T ESTIM
ABO/T 0OBSMDL
>

Figure 6-9. ABOFEDS.CMD (Abort All FEDS Tasks)

ABO/T SIMCB
ABO/T ADSIM
ABO/T SIMMER
ABQ/T DNLINK
ABO/T DNHIST

- ABO/T SCREEN
ABO/T RECEEV
UNL SCHDULH1.DAT

Figure 6-10. ADSABO.CMD (Abort All Installed ADEPT Tasks)

9808

REM OUTPRO
REM INPPRO
REM DATCAP
REM EXEC
REM ORBIT
REM STAPRE
REM DOFPRE
REM DATMGR
REM PREPRO
REM ESTIM
REM OBSMDL

SET NOPAR:GLBE1l

SET NOPAR:GLB2

SET NOPAR:GLB4

SET NOPAR:GLB3

SET PAR:USRGBl/BASE:3576/8IZE:1200/C0OM
SET PAR:USRGB2/BASE:4776/5I1ZE:200/COM
SET PAR:USRGB4/BASE:6176/512ZE:200/C0OM

' we

Figure 6-11. REMFEDS.CMD (Remove All FEDS Tasks)

; ADSREM.CMD
REM SIMCE

REM ADSIM

REM SIMMER

REM DNLINK

REM DNHIST

REM SCREEN

REM RECEEV

SET NOPAR:ADSGBL
SET PAR:USRGBS/BASE:6376/SIZE:Z200/COM
>

Figure 6-12. ADSABO.CMD (Remove All Installed ADEPT Tasks)

9408

s

APPENDIX A - EXTERNAL INTERFACES

This appendix details the formats of the messages trans-
mitted to support FEDS.

Section A.l describes the messages
between FEDS and ADEPT.

Section A.2 describes the messages

between FEDS and the Communications Box or SIMCB. Sec-

tion A.3 describes the messages ketween the transponder and
the Communications Box.

9808

A.l1 ADEPT/FEDS INTERFACE

This section contains the uplink and downlink message for-
mats through which ADEPT communicates with FEDS. Figure A-l
shows the standard data transmission format that is used for
both uplink and downlink; Figure A-2 illustrates the trans-
mission record format. A definition of terms used in Fig-
ure A-1 and throughout the section is provided below:

Term Definition

Transmission Set of one or more blocks of data that are
transm.. ‘~d contiguously. A transmission is
always %e minated by an end-of-transmission
record 4ll -1s).

Block Set of one or more data records that contain
the same type of data.

Record A 256-byte record containing a header
(20 bytes) and one or more frames of data
(see Figure D-2),

Frame One entity of data. , ')
Header A 20-byte header frame that describes the
contents of the record.
The message formats given here supersade those given in Ap-
pendix D of Reference 4,

A.l.1 UPFLINK MESSAGES FORMATS

This section contains the uplink message formats tarough
which data and commands are uplinked to FEDS. The format of
the record header (first 20 bytes), which is common to all

uplinked messages, is given on Page A-5, and the message
block attributes and the frame format for each type of input
data and command are presented on the following pages.

{

9808

M8 AYTES

—

‘(_ ‘ ﬁ
rl RECORD 1, BLOCK 1, TRANSMISSION 1 I
{ | RECORD 2, BLOCK 1, TRANSMISSION 1]
BLOCK 1
L]
L
L J
] AECORD n, BLOCK 1, TRANSMISSION 1 l
L .
[]
[]
[]
a)
| RECORD 1, BLOCK 2, TAANSMISSION 1 |
1 RECORD 2, BLOCK 2, TRANSMISSION 1]
sLOCK 2 §
. TRANSMISSION
B [}
(. [RECORD m, BLOCK 2, TRANSMISSION 1 |
“
L]
[]
[]
[]
[]
L]
r
[RECOAD 1, BLOCK |, TRANSM{SSION 1 l
] RECORD 2, BLOCK j, TRANSMISSION 1 |
[]
N L
BLOCK) < .
[RECOAD I, BLOCK j, TRANSMISSION 1 _ |
-]
5
o
| END OF TRANSMISSION] J 3
T 5
\

Figure A-1. Data Transmission Format

A

09/6SEL

IBUIOS pIOooay UOTSsSTUSUR I,

*Z-¥Y sanbtg

HIT3

© INvHI

Z JNvYHS

L aWves

H3avaH

—

S31A89E7

{

$3LAROZ

ol]J

RECORD HEADER

FRAME FORMAT:

Variable Type Dimension
IDSC Byte 1
IDEX Byte 1
INTYPE Byte 1
INDATA Byte 1
(.
NBLOCK Byte 1
MBLOCK Byte 1
NTRAN - I*2 1
IDBLCK I*2 1
NSIZE I*2 1
TTRAN R*8 1
()
9808

Description

First synchronization code
Second synchronization code

Type of input:
1, data

2, code

3, command

W wa

]

pe of data:

1, not used in FEDS

, initialization table

 new TDRS vector

, estimation control param-
eters _

: maneuver schedule

, tracking schedule

7, miscellaneous constants

8, station constants

9, geopotential tables

10, atmospheric drag

11, timing coefficients

12, experiment parameters

w3
Ly X

Ry

nanwmunnnn

Running number of records in
block

Total number of records in
block

Running number of records in
transmission

Block ID number
Number of bytes used in record

Time of transmission (seconds
from reference time)

EXPERIMENT PARAMETERS INPUT MESSAGE

l frame = 1 experiment parameters set
1 record = header + 1 frame + fill
256 = 20 + 60 + fill
256 = 80 + fill
1l block = 1 record
FRAME FORMAT:.
Variable Type Dimension Description
FRACC R*8 5 Frequency associated with ac-
cess method I
DLTOBS R*8 1 Time period between observa-
_ tion messages from transponder
IFRACC I*x2 2 Access method associated with
' Ith TDRS
IDGRS I*2 ' 2 Ground station associated with
Ith TDRS '
IDT I*2 2 TDRS ID associated with Ith
TDRS
A-6

9808

o

INITIALIZATION TABLE INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = 1 initialization table (188 bytes)
l record =~ 1 header + frame + fill
256 = 20 + 188 + fill
256 = 208 + fill
1 block = 1 record
FRAME FORMAT:
Variable Type Dimension Description
REFTM R*§ i Reference time
REFAPR R*8 10 A priori state vector
REFSTD R*8 10 A priori standard deviation.
MAP I*2 10 Solve-for/consider map
aA-7
9808

i
)
|
|
|
i

ESTIMATION CONTROL PARAMETERS INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1l frame

1 record
256

256
1l block

FRAME FORMAT

Variable

@ ue n

Type

estimation control parameters set (152 bytes)

header + 1 frame + fill
20 + 152 + f£ill

172 + £fill
1l record

Dimension

Description

DCSPAN

OBSSMP

SEMULT

TMLEAD

MAXITR

INLOOP

OBSSTD (I,J)

IROUT

9808

R*4

R*2

R*4

R*4

I*2

I*2

R*4

I*2

1

1

Estimation timespan (size of
batch of data in seconds)

Sample frequency for observa-
tions (seconds) :

Se multiplier for inner loop
editing .

Lead time for DC precomputation
(secpnds)

Maximum number of iterations to
be performed per slide

Maximum number of inner edit
loops allowed

Observation s$tandard deviations
(only OBSSTD(2,1) is used in
FEDS)
I = measurement typs:

= 1, range
= 2, Doppler
= observation type:

1, one-way TDRSS

2, two-way TDRSS
three-way TDRSS
4, one-way SRE
5, two-way SRE

Residuals report output control

switch:

= 0, no report generated

=], report generated after last
iteration on a batch of
data

L
i

I (T I [
W

- S b
- EL e -

Variable

IROUT
(Cont'd)

IDCOUT

RESMAX (I,J)

ELVMIN

RAYANG
RAYHGT
EDTOL
PCONV
VCONV

SECONV
POSDIV

VELDIV
RATCOR

POSLIN
VELLIN

9808

Type Dimension

I*2

R*4

R*4

R*4
R* 4
R*4
R*4
R*4

R*4
R*4

R*4
R*4

R*4
R*4

Description

= 2, report generated after
firet and last inner edit
loops at each iteration on
a batch of data

DC Summary and Statistics Re-

port output control switch:

= 0, no report generated

= 1, réport generated after last
iteration on a batch of
data

= 2, report generated after
every iteration

Maximum observed-minus-computed
value for each observation type
(only, RESMAX(2.,1) is used in
FEDS) '

I = measurement type

J = observation type

Maximum acceptable elevation
angle for SRE data (degrees);
not used in FEDS

Maximum acceptable ray path
angle for TDRSS data (degrees)

Minimum acceptable ray path
height for TDRSS data types
(Kilometers)

Edit test tolerance

Position correction convergencs
tolerance

Velocity correction convergenc
_tolerance '

Se convergence tolerance

Maximum allowable position cor-
rection

Maximum allowable velocity cor-
rection

Position and velocity correction
differences multiplier

Position linearity tolerance
Velocity linrearity tolerance

St aftie R T e T -

NEW TDRS VECTOR(S) INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = new TDRS vector for 1 TDRS (60 bytes)
1 record = header + 1 (2) frame(s) + f£ill
256 = 20 + o0 (120) + fill '
256 = 80 (140) + fill
1 block = 1 record (1 of 2 frames defined at transmis-
sion)
FRAME FCORMAT:
Variable . Type Dimension Description
TDRTIM R*8 1 TDRS reference time
_ (YYMMDDHHMMSS . SS)
TDRSX R*§ 6 New TDRS position and velocity
vectors
IDTDRS I*2 1 TDRS ID
VECTYP I*2 1 Type of input vector: ,
= 0, new estimate of TDRS 7?
vector .
= 1, update to previcus TDRS
maneuver
o)
A-10

9808

==

oz P S o) LT S g L

MANEUVER SCHEDULE INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1l frame 1 scheduled maneuver (58 bytes)

1l record = header + 4 frames + fill

256 = 20 + 232 + £ill
256 = 252 + fill
1l block = 2 records

FRAME FORMAT:

Variable Type Dimension Description
TInO0l R*8 1 Time of maneuver
(YYMMDDHHMMSS , SS)
xM01 R*8 6 Predicted state (position and

velocity) after maneuver

MSIDO1 I*2 1 ID of maneuvered spacecraft
(TDRS ID for TDKS, SIC and VID
for user spacecraft)

9808

TRACKING SCHEDULE INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES

1 frame = schedule for 1 tracking interval (22 bytes)
1l record = header + 8 frames + fill
256 = 20 + 8 x 22 + fill -
256 = 20 + 176 + fill .
256 = 196 + f£ill
1 block = 2 records

FRAME FORMAT:

Variable Type Dimension Description

STIME R*8 1l Start time of tracking interval :
(YYMMDDHHMMSS . SS) |

ETIME R*8 1 End time of tracking interval |
{ YYMMDDHHMMSS . SS)

OBSFRQ R*4 1 Observation frequency

IDPTDR I*2 1 ID of TDRS to be used for one-

way Doppler prediction during " .
this interval SRS

)

9808

(

T AR ATt R T) - e I et L8 00 L -

C

, |

-

MISCELLANEQUS CONSTANTS INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

l frame = set of constants
l record = header + 1 frame + fill
256 = 20 + 170 + £ill = 190 bytes
1l block = 1 record

FRAME FORMAT:

Variable Type Dimension Description

EQTRAD R*8 1 Equatorial radius

FLAT R*8 1l Flattening coefficient

OMEGA R*8 1 Rotation rate of Earth

PI R*8 1l i1

REFJUL R*8 2 Reference time of Julian date
{used with timing coeffi-
cients)

RTD R*§ 1 Radians-to-degrees conversion
constant

TBIASS R*8 1 Timing bias for user space-
craft '

TFREQ(I) R*8 5 Table used to compute pilot
frequency for the following
access methods (not used in
FEDS)
I =1, multiple~-access (MA)
I = 2, S-band single-access

link (SSAl)
I =3, Ssa2
I = 4, K-band single-~access
link (KSAl)
I =5, KSA2
.~ VLITE R*8 1 Velocity of light

SCAREA R*4 1 User spacecraft area

SCMASS R*4 1 User spacecraft mass

SFLUX R*4 1 Solar flux value

SPFREQ R*4 1l State vector frequency in

‘ predict table (minutes)
(default = 1 minute)
A-13
- 9808

Fom

T eeks S

= g o .
e SO -

| T

-

Variable Type Dimension Description
SPINT R*4 1 State vector frequency in
predict table (minutes)
(default = 30 minutes)
SOLRAD (I) R*4 2 Solar radiation pressure for
- TDRS T
STEPSZ (1) R*4 2 Integration step size:
I =1, target
I = 2, TDRS
TDAREA (I) R*4 2 Arza of TDRS I
TDMASS (1) R*4 2 Mass of TDRS I
TPAD R*4 Time pad for output of pre-
dicted one-way Doppler data
(minutes)
ACTFLG Byte 1 Activity log generation
switch:
= 0, off
=1, on
IFRAC Byte 1 Refraction Switch: -
= 0, off }
=1, on :
NDRAG Byte 1 Drag switch for target:
= 0, off
=1, on
NOOM (1) Byte 2 Moon switches:
I =1, target
=1, on)
NSOLRP Byte 1 Solar radiation pressure 1
’ switch for TDRS:
= 0, off !
=1, on :
NSUN(TI) Byte 2 Sun switches:
I =1, target
| I = 2, TDRS
IDEX1 Byte 1 vehicle I& (VID) for user
spacecrait
IDSCl Byte 1 Ssupport identification code
(SIC) for use spacecraft
{”;
, 1
A-14 | g
9808 1

y—

STATION PARAMETERS INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

Set of constants = 946 bytes

Record 1 = header + frame 1 (234 bytes) = 254 bytes + fill

Record 2 = header + frame 2 (192 bytes) = 212 bytes + fill

Record 3 = header + frame 3 (176 bytes) = 196 bytes + £ill’

Record 4 = header + frame 4 (200 bytes) = 220 bytes + fill

Record 5 = header + frame 5 (144 bytes) = 164 bytes + £ill

_1 block = 5 recoids
FRAME 1 FORMAT:
Variable Type Dimension Description i
NSTA I*2 1 Total number of stations used i
IDSTA(J) I*2 20- Station IDs in order corre-

sponding to constants in fol- :
_ lowing arrays .

STAT(I,J) k*8 3,8 Constants for station J, where

FRAME 2 FORMAT:

J = 1 through #:

I = 1, Earth-fixed position
component-X

I = 2, Earth-fixed position
component-Y

I = 3, Earth-fixed position

component-2

Variable Type Dimension Description .

STAT(I,J) R*8 3,8 Constants for station J, where
J = 9 through 16 (see frame 1
format, above)

FRAME 3 FORMAT:

Variable Type Dimension Description

STAT(I,J) R*8 3,4 Constants for station J, where
J = 17 through 20 (see frame 1
format, above)

FREQB (J) R*4 20 '~ Station-dependent frequency
bias (hertz) for SRE data
types for station J, where
J = 1 through 20; not used in
FEDS

A-15

9808

Gy

T ks e L

FRAME 4 FORMAT:

Variable Type Dime.sion Description
ANTCOR (J) R*4 20 Antenna mount correction (kilo-

MREFRC(I,J} Byte

FRAME 5 FORMAT:

Variable ‘Pype

meters) for SFE data types for
station J, where J = 1 through
20; not used in FEDS

12,10 Monthly surface refractivity
values for station J, where
J = 1 through 10, and month £
year I, where I =1 to 12

Dimension Dascription

MREFRC(I,J) Byte

ANTALG(J) Byte
TDELAY R* 4

9808

12,10 Monthly surface refractivity
values for station J, where
J = 11 through 20 (see frzme 4
format, above)

20 Antenna alignment indicator
for staticn J, where J =1
through 20; not used in FEDS

1l User spacecraft transponder
delay (kilometers)

GEOPOTENTIAL TABLES INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

Total set of constants = 1032 bytes

Record 1 = header + frame 1 (Z32 bytes) = 256 bytes
Record 2 = header + frame 2 (200 bytes) = 220 bytes
Record 3 = header + frame 3 (200 bytes) = 220 bytes
Record 4 = header + frame 4 (200 bytes) = 220 bytes
Record 5 = header + frame 5 (200 bytes) = 220 bytes
1 block = 5 records
FRAME 1 FORMAT:
Variable Type Dimension : Description E
MORD () -~ Byte 2 Order of harmonic field: i
: : I =1, tarqet ;
1 = 2, TDRS |
MDEG(I) Byte 2 Degree of harmonic field:
I =1, target
I = 2, TDRS
GM R*B 1 Point mass
XJ R*4 15 Zonal harmonics (J;
- through Jis) :
CSs R*4 40 First 40 C- and S-harmonic ;
coefficients (C-harmonic :
coefficients in lower tri- S
angle of 15-by-16 matrix; l
S-harmonic coefficients in
upper triangle of 15-by-16 :
matrix) for 15-by-15 geo- {
potential model
FRAME 2 FORMAT:
Variable Type Dimension Description
cS R*4 50 Next 50 C- and S-harmonic
coefficients (C-harmonic
coefficients in lower
triangle; S-harmonic coef-
ficients in upper triangie)
of 15-by-15 model
A-17

5808

FRAME 3 FORMAT:

Variable Type Dimension Description
cs R*4 50 Next 50 C- and S~harmonic
coefficients {(C-harmonic
coefficients in lower tri-
angle; S-harmonic cceffi-
cients in upper triangle)
of 15-by-15 model
FRAME 4 FORMAT:
Variable Type Dimension Description
Cs R*4 50 Next 50 C- and S-harmonic
coefficients (C-harmonic
coefficients in lower tri-
angle: S-harmonic coeffi-
cients in upper triangle)
of 15-by-15 model
FRAME 5 FORMAT:
Variable Type Dimension Description 7 2
Cs - R*4 50 Next 50 C- and S-harmonic
coefficients (C~harmonic
ccefficients in lower tri-
angle; S-harmonic coeffi-
cients in upper triangle)
of 15-by-15 model
A-18
9808

BT T -

c

I S A N

ATMOSPHERIC DENSITY TABLES INPUT MESSAGE

s
—

MESSAGE BLOCK ATTRIBUTES:

Total set of data = 662 bytes
Record 1 = header + frame 1 (234 bytes) = 254 + £ill
Record 2 = header + Frame 2 (224 bytes) = 244 + fill
Record 3 = header + Frame 3 (144 bytes) = 164 + fill
1 block = records
FRAME 1 FORMAT:
Variable Type Dimension Description
NDENS I*2 1 Number of entries in density
table :
NALT (J) 1%2 60 Altitude associated with den- |
sity intervals (in ascending | ?
order) !
DENSTY (I,J) R*4 2,14 First 14 intervals in density |
table:

FRAME 2 FORMAT:

Variable Type

¥ =1, minimum density asso-
ciated with NALT(J)

I = 2, maximum density asso-
ciated with NALT(J); '

(where J = 1 through 14)

Dimension _ Description

DENSTY(I,J) R*4

FRAME 3 FORMAT:

2,28 Next 28 intervals in density
table (where J = 15 through 42)

Dimension Description 5

Variable Type

DENSTY (I,J) R*4

9808

2,18 Last 18 intervals in density
table (where J = 43 through 60)

A-19

(*)

TIMING COEFFICIENTS INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

Total set of data

1l frame

1 record
256

256
1 block

FRAME FORMAT:

Variable

ihnu u

H

Iype

= 194 bytes

Dimension

set of timing coefficients

1 header + 1 frame + fill
20 + 194 + fill
214 + f£ill

1l record

Description

NDAYS

TCOEFF (I,J)

NPDLHS
PDELHT (J)

PDELE (1,J)

9808

I*2

R*4

I*2

R*8

R*8

1l

2,2

10,2

Number of polynomials used in
TCOEFF (1 or 2)

coefficients of polynomials
approximating USNO time dif-
ference data:

I =1,

T =

2,

Number
PDELHT (1 or 2)

Modified Julian date asso-
ciated with PDELH polynomial J

Coefficients for equations of
equinoxes used to correct mean
GHA over a 20-day span:

J =1, first nutation polyno-

Jd =

2,

NOTE:

A~20

modified Julian date as-
sociated with polynomial
J

constant adjustment in
polynomial J

of polynomials used in

mial

‘second nutation polyno-

mial
I represents Ith coef-
ficient of Jth polyno-
mizal

E:‘

cy—

CONTROL COMMAND INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = 1 command (20 bytes)
1l record = header + 1 frame
256 = 20 + 20 + £1ill
_ 256 = 40 + f£ill
1 block = 1 record

FRAME FORMAT:

Variable Type Dimension

Description

ICTYPE I*2 1l
COMMAND (I) Byte 20
9808

Type of command:

start

2, stop

3, reboot

4, abort

5, suspend

6, continue

mark time

8. resume

9, begin fast timing
1¢, stop fast timing
11, set clock

12, status request

l
[
-

T T T | O 1 O O (TS 1A
~J
-

Contents of command (depends
on type of command)

U U UORU P S

o

AR S 2R

A.1.2 DOWNLINK MESSAGE FORMATS

This section contains the downlink message formats through
which data, reports, and messages are downlinked from FEDS,
The format of the record header, which is common to all
downlinked messages, is given on page A-24, and the message
block attributes and frame formats for each type of output

data, report, and message are presented on the following
pages.

9808

RECORD HEADER

FRAME FORMAT:

Variable

IDSC
IDEX
OUTYPE

NBLOCK
NTRAN

(. NSIZE
NTOT

TTRAN

9808

Type
Byte
Byte
Byte

Byte
I*2

I*2

I*2
I*2

R*8

n

Dimension

A-23

Description

Spacecraft ID
Experiment ID

of output:

1, spacecraft vectors
2, Doppler observations
error message

4, activity log

5, DC Summary and
Statistics Report

DC Residuals R=zport

3

LI R (3 |
[(¥Y)

|
h
-

Blank

Running number of records in
block

Running number of records in
transmission

Record size in bytes

Total number of records in
block

Time of transmission (sec-
onds from reference time)

By e

LS e, AR T

OUTPUT USER SPACECRAFT STATE VECTORS

MESSAGE BLOCK ATTRIBUTES:

1l frame

1l record
256
256

1 block

s 0w

FRAME FORMAT:

Variable

ID1

ID2

TTAG
PVEC

VVEC

9808

Iype

Byte

Byte

R*8
R*8
R*8

1 state vector (58 bytes)

header + 4 frames + £ill
20 + 232 + £ill
252 + f£ill

1l or more records

Description

Dimension '
1
l'
A-24

Indicator of source of ini-
tial state vector; can have
values of I, U, M

Counter incremented when
source of state vector ini-
tially used for generation
is changed

Time tag (YMDHMS)
Position vector (x, v, 2)
velocity vector (X, vy 2)

T R

. ."Ll_'[,li‘in_ BT P L L S

QUTPUT ONE-WAY DOPELER OBSERVATIONS

MESSAGE BLOCK ATTRIBUTES:

1l frame

1 record
256
256

1 block

onon &

FRAME FORMAT:

1 observation (20 bytes)

header + 11 frames + fill
20 + 220 + £ill
240 + £ill

1l or more records

Variable Type Dimension Description
UBTYPE Byte 1 Observation type (= 1, TDRS
one-way)
IDTDRS Byte 1 TDRS 1D
IDSTAF I*2 1 Forward link station ID
QBTIME R*8 1 Time tag (YMDHMS)
DOPL" R*8 1 Doppler observation
(
(’H
A=-25
9808

T —— RETIIEST RTETEIT T e

U RN B S RPN SN X P IR T B

LT

OUTPUT ERROR MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1l frame = 1 error message (50 bytes)

l record = header + 1 frame + fill
256 = 20 + 50 + f£ill
256 = 70 + £1ill

1l block = 1 record

FRAME FORMAT:

Variable Type Dimension Description
TERR R*8 1l Time of error (YMDHMS)
NERR I*2 1 Message number
ERRMSG Byte 40 Message
)
.
)
A-26
9808

m_., I

OUTPUT FROM ACTIVITY LOG

1l frame = 1 message (50 bytes)

1l record

256
1 block

FRAME FORMAT:

Variable Type
™SG R*8
MSGNUM I*2
MSG Byte

9808

e e g

= header + 4 frames + fill
286 = 20 + 200 + £ill
= 220 + £ill

20 records

Dimension’ Description
1 Time message entéred log
(YMDHMS)
1l Message number
40 Message
A-27

- T

P R PR

ala

AV L Yy T T T P s

DC_SUMMARY AND STATISTICS REPORT

MESSAGE BLOCK ATTRIBUTES;

Whole report = 524 bytes

Record 1 = header + frame 1 + fill = 20 + 184 + £ill = 256
Record 2 = header + frame 2 + fill = 20 + 160 + fill = 256
Record 3 = header + frame 3 + fill = 20 + 196 + f£ill = 256
1 block = 3 records
FRAME 1 FORMAT:
Variable Type Dimension Description
DCEPCH R*8 1 Epoch
DCSTRT R*8 1 Start time of estimation
data span
DCEND R*8 1 End time of estimation data
span
SE R*4 10 S5e at each inner loop
QSUM R*4 10 Q summed at each inner loop
XPREV R*8 10 Previcus state vector
FRAME 2 FORMAT:
Variable Type Dimension Description
XCURR R*8B 10 Current state vector
XAPR R*8 10 A priori state vector
FRAME 3 FORMAT:
Variable Type Dimension Description
RMS R*8 10 Predicted root mean square
at each inner loop
XUPD R*8 10 State correction vector
ISTATE I*2 10 Parameter numbers
NSTATE I*2 1 Number of solve—for param-
eters
NTOTAL I*2 1 Total number of observa-
tions available
NUSED I*2 . 1 Number of observations used
A-28
9808

iaran

' §.9]

Variable Type Dimension Description
NITER I*2 1 Iteration number
NBATCH I*2 1 Slide number
ICONVG I*2 1 Convergence/divergence in-
dicator:

= 0, no convergence/
divergence this itera-
tion
= 1, convergence (PCONV,
VCONV tests)
= 2, convergence (SECONV
test)
= 3, reduced convergence
{(maximum iteration
renched but within
to.erance of three i
times PCONV, VCONV, |
SECONV) '
= 4, diverged {(data arc
length after edit less
than minimum estima-
- tion span)
{ = 5, diverged (all new ob-
servations edited)
= 6, diverged (POSDIV,
VELDIV tests)
diverged {RATCHR
tests)
= 8, diverged (maximum iter-
ations)

NLOOP I*2 1 Number of inner edit loop
this iteration

LINTST L*2 1 Linearity indicator:
= TRUE, dv not recompute
partials or edit i
loop
= FALSE, recompute partials
and edit loop

i
~8
-

9808

f
(o1

!,‘ --7 . C o . R —— - s, —
‘ S i LB _eRdligie o o - .

DC _RESIDUALS REPORT

MESSAGE BLOCK ATTRIBUTES:

1l frame = 1 line of report (48 bytes) or report de-
scriptor information (48 bvytes)

1l record header + 4 frames + f£ill

256 = 20 + 192 + fill
256 = 212 + £1ill

1l block = up to 32 records

First record of block = header + descriptor frame +
3 data frames

All other records = header + 4 data frames

DESCRIPTOR FRAME FORMAT:

Variable Type Dimerision Description
REPOCH R*8 1 Epoch (YYMMDDHHMMSS,.SS)
STRES R*8 1 Start time of batch

(YTMPDHBEMMSS . S5)
ENDRES R*8 1 End time of batch

(YYMMMDDHHMMSS . 58)
RESITR I%2 1 Iteration number
RESBAT I*2 1 Batch number
RESINL I*2 : 1 Inner 1bop'number
SPARES Byte . 18 Spares

DATA FRAME FORMAT:

Variable Type Dimension _ . _Description

IOBTYP Byte 1 Observation type (= 1, TDRES
one-way)

IEDIT(I) Byte 2 Edit flag (I = 1, not used;

I = 2, Doppler):

= 0, not edited.

edited by DC during edit
loop ‘
edited during preprocess-
ing

edited by DC for maximum
observed-minus-computed
value

I [
[N] ol
- -

b
[
-

A-30
9808

e

)

o —

g

Variable Type Dimension Description
IEDIT(I) = 4, edited by DC for minimum
(Cont'd) ray path anqgle (TDRSS)
ITDRSF Byte 1 TDRSS ID (forward link)
ITDRSR Byte 1 TDRSS ID (return link)
ISTATF Byte 1 Forward link station ID
ISTATR Byte 1l Return link station iIL
ISPARE Byte 1 Spare 'location
OBTIME R*B 1 Time taqg
COBS (1) R*8 1 Computed range obse:vations
- (not used in FEDS)
COBS (2) R*8 1l Computed Doppler observation
RESID(1) R*4 1 Range residual (not used in
FEDS)
RESID(2) R*4 1 Doppler residual
PRESID (1) R*4 1 Predicted residual for range.
{not used in FEDS)
PRESID{(2) R*4 1 Predicted residual for Doppler
A=-31
9808

A.2 COMMUNICATIONS BOX/FEDS INTERFACE

The Communications Box and F7 S transmit and receive mes-
sages to contrcl acquisition ¢f a tracking sianal by the
transponder and to accumulate observation data. All mes-
sages between FEDS and the Communications Box are sent in an
1ll-byte format, shown in Fiqure A-3. The first seven hLits
.of the first byte in the message constitute the function
code. The first six bits define the message being sent and
the seventh bit indicates the source of the message: 0 if
the message is from FEDS, 1 if the message is from the Com-
munications Box. The eighth %it of the first byte and the
next five bytes are reserved for the PB5 time ccde. The
remaining five bytes of the message constitute a data
field. All unused fields in each message are zero-filled,

9808

JeUIOg 90vIISIUI SATA/XO0g SUOTIROTUNKUWOD

e~y 9anbta

H 300 3WILSBd
1 v
AVO Ava 3003
Qi viva SGNO2ISITIN 40 SONDDIS NV 93LVINNYL NOILINNA
~ — —Ae -~
r ~ ™ r I - | "
ptosvezi|esosveza |ecoseczilocosvez |geosrezi]BLosvEzI|oeo5rEC L [RLOSYEEL|RLOSPETY |BLOGPYERL a:m..nu._ suE
" al I) L) s v 5 z § #3LA8
b ’ -
L L

A-33

A.2.1 INITIALIZATION MESSAGES

FEDS TO COMMUNICATIONS BOX

Function Code Bytes 2 to 11 Interpretation

0 (0000000 binary) 192 (11000000 binary) FEDS executing;
: verify communica-
tion with Communi-
cations Box

COMMUNICATIONS BOX TO FEDS

Function Code , Bytes 2 to 11 Interpretation

0 (0000001 binary) Not used Initialization mes-~

sage received; com-
munication verified

9808

IR T, Y

i

G

A.2.2 DOPPLER OBSERVATION MESSAGES
FEDS TO !OMMUNICATIONS BOX

Function Code Time Field Data Field Interpretation

1 (1000000 binary) Not used Not used FEDS ready to re-
ceive Doppler ob-

gservation
COMMUNICATIONS BOX TO FEDS
Function Code Time Field Data Field Interpretation
1 (1000001 binary) PBS5 Time Doppler ac~ Doppler observa-
Code cumulator tion at the spec-
from the ified time
trans-
ponder
(format
shown be-
low) ‘
. Doppler accumulator 40-bit

Unsigned integer

MSBE’ _ LSB

5808/84

A

DOPPLER ACCUMULATOR
40-BIT UNSIGNED INTEGER

9808

e b o i 7 A T+ e e i o

P

LT

L

A.2.3 TIME CODE MESSAGES
FEDS TO COMMUNICATIONS BOX

Function Code Time Field Data Field Interpretation
2 (0100000 binary) Not used Not used Request for current
time from time
code generator
COMMUNICATIONS BOX TO FEDS
Function Code Time Field Data Field Interpretation
2 (0100001 binary) PB5 Time Not used Time field contains
Code current time
A-36

9808

R

p—

A.2.4 PREDICTED DOPPLER MESSAGES

FEDES TO COMMUNICATIONS BOX

Function Code

Time Field Data Field

Interpretation

3 (0010000 binary)

Not used Frequency
control
word (for-
mat below)

Predicted frequency
offset for use in
signal acquisition
by transponder

12349878 31011M213141516

VAN

N\
NOT - ODE

USED INDICATION PREDICTED
BIT OFFSET

NOT USED

14-BIT SIGNED INTEGER

COMIUNICATIONS BOX TO FEDS

Function Code

Time Field Data Field

Interpretation

3 (0010001 binary)

9808

Not used Not used

s R T L T

Frequency control
word received from
FEDS and trans-
mitted to trans-
ponder

9808/84

A.2.5 SIGNAL ACCJUISITION MESSAGE
FEDS TO COMMUNICATIONMS BOX
No message sent

‘COMMUNICATIONS BOX TO FEDS

Functiorn Code Time Field Data Field

Interpretation

4 (0001001 binary) Not used Not used
A-38

9808

Transponder has
acquired tracking
signal

——

i)

A.2.6 ACCUMULATOR RESET MESSAGE

FEDS TO COMMUNICATIONS BOX

Function Code Time Field Data Field Interpretation

5 (0000100 binary) Not used Not used Request trans-

COMMUNICATIONS BOX TO FEDS

No Message sent

9808

ponder to reset
the Doppler accu-
mulator

~

PR Pt . -

M

.y

A.2.7 SIGNAL LOSS MESSAGE
FEDS TO COMMUNICATIONS BOCX
No message sent

COMMUNICATIONS BOX TO FEDS

Function Code Time Field Data Field

5 {0000011 binary) Not used Not used

A~40
9808

Interpretation

Transponder has
logt the %tracking
signal

)

A.3 COMMUNICATIONS BOX/TRANSPONDER INTERFACE

Data for this section was not available when the document
went to press. This appendix will be produced and dis-
tributed at a later time.

9808

o

(&

APPENDIX B - OUTPUT MESSAGE FORMATS

This Appendix gives the expanded form of messages displayed
to the FEDS terminal. They come from activity log genera-
tion, execution.of the executive, and communication with the
Communications Box. A message will be displayed in brief
form, with the message number displayed f£irst, followed by
gix integers and three real numbers. If a number is not
pertinent to the current message, it will be displayed as a
zero. The only exceptions to this description are messages
67 and 68, which pertain to communication with the Communi -~
cations Box. They are displayed with the message number
first, followed by the ll-byte message displayed in octal
format.

Table B-1 presents the‘output messages and their source.

9808

33:‘,_'-‘._":';;--‘;.. R ‘ _ F . \'—ﬂ

b P

e[, 0019086

SS'SSWWHHOAQWWAA OL SS'SSWWHHOOWWAA WOYY Si SSYd "SE0 M3aN
(03123r34 SNOILVAYIS80 U
03143230V SNOILVYAHISEO U

0Ydidd Q3137dWO0D N33I8 SVH HIJHN9 NOILYABISED 40 ONISS3I0dIdd | 6L
HOLI3A FON3YIAIH MIN V¥ NO QISvE SS'SSWIIHHAOAWWAA OL
Oddibd SS'SSWIWHHOOWWAA WOHH G3LY0dN SYM U SHGL HOd 3T LIBHO | B
dvllva ANETdN DNIHNG J3IAIRIIY NOISSIWSNVYHL 40 ON3 | LI
OdddNt INLLIVM SI HOSS3I0Hd LNdNI — 7704 34Y S3N3ANT NOILVAH3SBO| 9L
03123734 SHIvd NOILVAH3SEo Y
3ININD NI SHIVYd NOILVAHISED U
OUddN! 03A13034 SHIYd NOILLYAHASEO U
OYddNI d3AAIID3Y YIVO NOILYAN3SEO Mvd | Sl
IS | bL
CHddNI G3IAIZDEH SINIIDIHH430D ONIWIL | EL
QlddNI Q3AI303H S3N19V.L DVHG DIHIHISOWLY | TL
OHddNl 03AI303H S378VY1L IVILNILO403D | LI
OlddNi AAII3Y SINYLISNOD NOQILVYIS| 0L
OHddNI Q3AI333H SLINVLISNOD SNCANYTIFISINY] 6
OuddNI d3AI323H 31NA3IHIS ONIOVHL] 8
QHddNI Q3AIRJ3IH SHILIWVYHYd TOHLNOD NOILVIILSI | £
OHddNI Q213034 3INGIHIS BIAANINYA] 9
OddNI QIAPIIH INIVL NOILVZITVILINI] S
OHddNl Q3IAITDIY SYM HOLI3IA SHAL AMIN | ¢
dVILva TIN4 SE3N3AND LNdNi | €
55'SSSSS IINIHIAFH WOHS SAONODIS
U IAILI3MIG C U g usEL
23x3 SIS INIL FAILNDIASNOD 01 HO4 GITNAIHIS NSYL| €
SS$'SSSS FONIWIIIY WOK SANODIS
U Oyld ALALDY ' U 3AILDIMIQ T U FNSWL
2332 NOILNJ3X3 HO4 G3INAIHIS ASYLEMIN| |
HOLVYNISIHO JOVYSSIN ‘ON

(9 3o 1) sobessoy TeuTWAS] SQId “T-d 2Tqel

R A

I etz

bR

B[4058086

‘4dd0d ¢t = (9lHIAl "HOLIIAQFHL HITdd0T AB O3IAIZO3Y FALLIZHIQ AITYANI | L€
318V.L L21038d FLVLS FHL NI LON St {SS SSWWHHAAWWAA OL SS'SSIWINHHAAWIWAA)
3HddaDa NvdS IWIL J31S3N0IY "I UYL NOLEDIAIHd HINHdOO AYM-INC | SE
SS'SSWWHHOOWWAA 1V 31374NCD 0L d31NA3IHIS SSYd
SS'SSWWHHOJWWAA OL SS'SSWWHHOAQWWAA NOYd
U SHOL ONISN GILYHINID IHIM SNOILYAHISE0 U
3Hdd0da G3121034d 3¥3IM SNOLLVALISHO HIN4d00 AYM INO | 5E
04dino AIUNITNMOA SYM LYHOd3Y STIVYNAIS3Y 2a | tE
QddLnNO OPANTINMOQ SYM LHOIH SIILSILVLE ANV AHYWWNS 00| tE
OHd1lNo AIANITNMOO SYM DO ALIANLDV | 2E
oHd1no AANITNMOG SYM FOVSSIIN HOHNT | LE
OH4LNO QINNITNMOQ IHIM SNOLLYAHISHEO H31dd00 AVYM-3NO Q31L0103Hd | 02
OHd1no GDINITNMOQ SYM 378v4, 1DIG3Hd HOLIIA JLVLIS | 62
JUY4S | 82
YdS| L
JHY4S| 92
Odd3ud a3aLiaiiod Y1VQ ON HLiM G3131dWGD SS'SSWINHHOQWINAA LY SSVd DNINOVYL| 52
SS'SSWWHHCOWWAA OL SS'SSIWWHHOAQWWAA WOHH S] SSY'd ZG_._.¢.>zmw.mQ M3N
Q3.123r34 SNOLLVAKISED Y
0314303V SNO!LYARISED U
Oldatd T3137dNDD SSVd v O ONISSIDOHdIUd | +T
SS SSHIHHAOAWWAA 0L SS'SSWWHHAOWWAA WOYS S| S3H4 L1840 JO NvYdS JWIL
039HNd 0S5V SYM 3WIL HIANINVYIN OL HOIH4 ¢1v0 SHAL
NIVDY NI938 1M NOILLD3TI0D V.LVO "S5 SSIWWHHAOWNAA
Odd3abd Av H3ANANVIW 2/S HISN ¥ 40 1INS3IH ¥ SY G39HNd SYM TTId NOILYAHISBO | €2
OHdIxd Q39HNC IHIM T4 NOLLVAHISEO 3HL ANV S31Id L1840 SBAL MV | Z¢
SSSSWWHHAOGWIWAA .
Odd3ud 1Y H3ANINVIN Vv 1031434 I0L A3Lvadn SYm U SHAL HOd 31 LIBHO | e
SSSSWINHHOQWIWAA 01 SS'SSWWHHAQWINAA
WOk SI S3Td L19HO SHAL 30 NvdS WL JALLIY
Odd3bd Yiva NOLLYAHISEO TTV H3A00 OL d3aN3LXI $3Td LiIB¥O SHAL Y| 02
HOLVYNIDIHO I9VSSIN ‘ON
(9 3O Z) sabessaN TEBEUTUIAY], SAdA ‘“1~d 3TqQeld-
P i
S’

CAN

¥8*{.09)* 0006

dv3aLlvQ
dvaLlva

J4ddoa

WILS3
WiLs3a
WILS3
wiLs2
S_._.mm.
WLLS3

34ddoa
34dd0a

J¥ddoa

3IHVdS
3H4VdS
AT
HIONOJSAVHL AB LSO7 TYNDIS SSHAL
HIANOISNYYL WOUS GIAITITY £03150 INAS
SS'SSWINHHOAWWAA 1V 3131d¥00 0L GITNAIHIS SSVd
SS'SSWIWHHOQWWAA 0L SS SSIWWHHAGRENAA WOSd.
U SYQL DNISN J3LNJWOD SNOLLVAUISED
G30N3LX3 3114 SNOLLVAEISAO0 HT'idd00 AVAM-ING
3YVds
SS'SSWWHHOGWIWAA = 3L ON3 SS'SSWINHHAAWWAA = 3WILL 'S
'SNOILYAU3SH0 318VIIVAY Y 40 U ONISA SNOIWHILI U %,
FONIOHIAIQ/FONITHIANDGD ON U “ON HOLVE HO4 03NV3 NOLL YW, 33
SS'SSWIWHHGOWWAA = JWILL ON3 SS'SSWINHHAGWINAA = SWIL LHYLS
SNOLI'JAYISEO FIGVIVAY U 30 U DNISN SNOILVHILI U H3Ldy
{ U =3000) G3DHIAII OG ¥ "ON HOLYS HO4 G371V NOILVINILST

S5'SSWWHHAAWWAA = 3W1L ONI SS'SSWAHHAAWWAA = JWIL LUVIS
SNOILVAHMISEO 318y HYAY ¥ ONISA SNOLLYHIL U HIidy

{ U =3002) GIDHIANDD 30 ° ¢ "ON HILVE HO4 GITIV4 NOILYINILS3

SS'SSWWHHOGWWAA = JWIL ON3 SS'SSWINHHAOIWWAA = 3WIL 1HVLS
SNOILVAHISBO J18VTIVAY U 40 U O9NISN SNOILWMIL U HILdY

FONIDHIAIQ/IINIDHIANDD ON ° U “ON HILYE HOH QLI TdWOD NOLLYINILS .

SE SSWWHHAAWIWAL = JNIL ANI S5 SSIWWHHAAWWAA = IWIL LBVLS
SNOILYAHISEO I8VIIVAY U 40 U ONISA SNOILYHIL U HIidy

{ U =3000) 032430 3G ° ¥ 'ON HOLYS HO4 QILFTdINOI NOILVINILSS |

SS'SSWWHHOQWWAA = 3WIL AN3 SS'SSWIWHHOOWNAA = IWIL LHYLS

‘SNOILVAHISB0 118vIIVAY U JO U DNISA SNOIYN3LI ¥ HILdY
(U =3000] Q2LHIANOD 20 ° U "ON HOLVE HO4 GI4I1dWOD NeILVINILSI
Q3HONDI SYA NOLLYANISE0 "NOLLIIGIHE HI7dd0T AVM-IND DNIYNA 13A0W NOILYAHISEO NI GIHENIDO HOHYI
NOILJIQ3Hd 431dd00 AVM-INO DNIYNG LVLS 3/S HISN 40 NOILYIO:dUILNI DNISNG AIYYRID0 YOHH3

u = (9})3y|

"HIDVNYIW v1va 3HL HLIM SW3180Md SNOILYIINAWWOD OL 300 a3Tivd NOLLDIO3Hd uI1ddoa AVM-ING

15

&

A

HOLVYNIDINO

J9VSSIN

‘ON

(9 30 g) sobessoy TeutTwIa] $QHd *T-9 STdRL

TEEEL

i-(4,0G)-8086

JUdYLS

JddvLlS

JHdVLS

3HdAS

IHdVLS

OHd1INO

dvalivag

S5 SSWWHHBAWIWAA OL S5 SSIWISIHGOMILAA

WO 0IANILXI SYM 318V.L LIIGEYS B0 Ju/ HIWLS FHL |

QINAIHIS NIHM INMENOZ TS Bty LHEID
EVL GHVANY.LS "GIHONDI 38 TIM SS'SSWWHHACWNAA 1Y HIANSNYW 2/3 ¥35% SHL 'Horaesdd
FLV.LS IHL NI AHIAODIY HIANTNVIN ONIYNG GIFUNIDT ¥ oA BGHET

037NA3HIS NIHM INNILMOD THAM NOLLVHINIY 3181 tlavaNy kS
J18YL NOLLYZEIVLLINI OVE ¥ OL 301G 318y: L1030

HOLI3A 3LVLS IHL JO NOIEVHINID ONiunag QIHENGRD U AL 40HYT
Q3TNOIHIS NIHA INNILNOD TIIM NOLLYYINID T8V, AHYEHR LS
NOILNI0S 3Lv1S ave v 01 3N Tievy 1osadd

HALIIA LVLS JHL 40 NOILVHINID ONINNG G3HENDI0 | IdAL BOHES

218YL IHL Ni SJVS 38 AVIE SHIHL "IWIL QI TNGIHOS LX3aN 3FiL
1V NIVOY O3LdW3LLY 38 TUM 1! 'STaVL 1010344 HO103A 31¥1S IHL JO NOILYHANTD TINIHNG G3YHN3I0 U 3dAL HOHHI

Uuuuouunauuwu e (oo AdAL ISYSSIN
X08 SNOILYIINAWNOD 01 QILLINSNYHL 39vSsaw

UM U U U U U U (TVII0) 1X3L IDVSSIW

X08 SNOILYDINNWIWOD WOH4 0IAIEI3Y IDYSSIN
JHvdS |

JHvds
FYvds
2HYdS
IYvdS
IHV4S
JUVdS
3uvds

ZHVYYS |

3HvdsS
34vdS
GHvwdS

Bl L Loty

¥

oL

HOLYNIDIHO

JOVSSIN

(9 30 y) sobesssy TeuTwISL SQEd *T-9 °I9eL

s

m dvaiva 03AI3034 GNYNIWOD doLs | 06
€ SS'SSIWWHHAGWWAA St JWHL 3ONFYIATY
dvolva Q3AI303H GNYWWOD Luvis| es
dvo1vY0 o U = (L¥IG! "3AILIIHIT QITYANI G3AEDIY 3MNLAYD viva| g3
Q3YOND] -
OYddNI AHIM SINVISNOD SNOINYTIZOSIW LNdNI — SNIDIS DNISSIO0UG U314V GIINVHO 38 LONNYD SINVLSNOD snoanviiassm | s

Q3133r3yY sasvssaw v
Q3AIFDIY SIDVYSSIW U

OHddNi) HOSSIDuHd LANdNI NI G3AI3D3H NOISSIASNVYHL 40 aNg | o8
SLNVLSNOD ONINNINGN 3Y0438 03aN34SHS 38 1SNW SAov

OHddNI U = 3dAL VLivO "G3HONDI IHIM SINVLSNOD aINNF4N| S8

OlddNI . U = (Z)4!01 "BOSSII0Hd LAdNI AB G2AI303H 3AILDIHIG QIYANI| 8

3018 v.ivVO JHILNT LINSNYYLIY .
1 3JWIL LV NOISSINSNYYL 40 Y QHO23Y !
U = HIEWNN dI 0018 U = 3Q0D HOYYI :

OHddNI . ¥ 3dAL VLVA 49 ANFIdN DNIHAG HoYu3 NOISSINSNYYL | €8 ,
OudNI NOISSIWSNYYL JO U QHDI3IH HLM ONINNIDIE LSO SIDVSSIW U ANIIIN ONIYNG 1SOT SIDYSSAW | T8 4
Obd3ud U = (B0l "HESSID0H4INd Y1VG AS QIAIFI3Y IAILIIYIO anvan| e o .
Odd3dd SHOWHI JAIIIY/ANIS O INA AINVS NOLLYHINID 34 11840 SHaL og n_u
QHd3yd SHOL ONILYHOALNI ITHM HOLYOVAOHd LIMHO N) HOWY3 IYIIHINNN| 62
JWIL ANz
OYd3Ud OL QINKILNGD NOILNJIXI "SHOL ONILYOVIOHd ITHM IDYIANOD 10N 4I0 HOLVYDVIOUd MBYO NI HOLIIHHOI-HOLIIASHd | 81
O"dino 4 = (LI HOSSID0Hd LNLNO A 0IAIFOIM IJAILIIHA arivaNl | ¢

SS'SSWWHHAOWWAA 1V HIANINYIN 2/S HISN ¥ NO 03svE
’ S8 SSIWHHOTWIWAL OL SS'SSWWHHAOWWAA |
JHdYLS) W04 03LVHINID SYM T8V LOI034d HOLDIA 34VLIS aHL | o

JT1HVL NOILYZITVYILINI MAN ¥ NO a3sve
SS'SSWWHHAAGWWAA OL SS'SSWINHHOOWNAA
IHdVLS WOUd 031VHINID SYM 318YL 1DI03Yd HOLD3A IAVIS FJHL| S¢

NOILMIDS FLVAS MIN ¥ NO g3sva
5S'SSWINHHOGWIMAA OL SS'SSIWINHHAAWINAA
JudYLS ' WOBd Q3LVHINID SYM T18VL 1D1034d HO103A VLS IHL | 6L

{
i
'
i
i
i
|

HOLYNIDIMO 39VSSaN | ON

(9. 30 G) sobessoW jruTWISL SAWd “T-9 oTqel

Aty O - TS L L

oAl Gk T A T e Yeen

e 2

¥6-{. 90515086

410 29 TIM D07 ALIALLOY — GIAII03Y NVWIOD LSINDIY SNLVLS | 00t
dvalva 110 G3SSIUJWDD SANDDIS 3 "GIAEI3H GNVINWOD %0010 135 | 88
dva1va 430 SI ONIWIL LS4 — GIAIEOTE ONVIWWOD ONIWIL 1SV4 d0iS | 86
dvo1va . NO S) ONIIL 1SV — GIAIZ3I ANVIWWOD ONIWIL LSV NiDaa | 26
dVaLVC Q3AI3034 ONVWWOD FWNS3 | 6
dvoLVa Q3AAIZOEH ONVWWOD TWIL JHVA | S5
dva1va QIAIID3H ONVINWNOD 3NNILNOI | 6
dvaLva GAAIDIM ONVIWWOD aN3asns| €6
dvoLva _AII03Y ONVIWWOD 1408V | 26
dVI1VG Q3AII0IY ONVIWWOD 100834 | 16
HOLVNIDIHO "ON

ADVSSIWN-

(9 30 9) sobessol TeutTwWIaL SAEd "T-4 2T4RL

-~
,

APPENDIX C - DATA PACKET DESCRIPTIONS

This appendix contains descriptions‘of the data packets used
to transfer data by means of SEND and RECEEV directives be-
tween FEDS primary and secondary tasks.

9808

J

i e I R

C.1 DATA PACKET 1l

SIZE: 73 words (146 bytes)
SENT BY: PREPRO
RECEIVED BY: DATMGR
FORMA'T:
Parameter TYpe Dimension Description
IORTYP I*2 1l Observation type = 1, one-
way TDRSS
OBSTIM R*8 1l Observation time tag
Spare Byte 8 Spare
OBS R*8 i bDoppler observation
FREQ R*8 1 TDRSS frequency
DOPINT R*4 1 Doppler averaging interval
Spare Byte 1 Spare
FORANT Byte 1 Forward station ID (internal
index)
Spare B, te i Spare
FORTDR Byte 1 Forward TDRSS ID (internal
index)
EDIT(I) Byte 2 Observation data edit flag:
= 0, not edited
= 1, edited by DC during edit
loown
= 2, edited by preprocessor
= 3, edited by DC for maximum
observed-minus-computed
value
= 4, edited by DC for ray
path
(EDIT(1) not used in FED3)
Spare Byte 1 Spare _
FORACC Byte 1 Forward actess method (inter-
A nal index) '
JPASS Byte 1 End-of-pass indicator
BAND Byte 1 Band frequency:
= 48, S-band
= 96, Ku-band
c-2

9808

B .

Tk d o

AT, Ceny ™ et ecwdd m e T RSTEEE RT

C.1 DATA PACKET 1 (Cont'd)

- Parameter

Iype Dimension Description
NEWREC L*1 1 New record flag (= 7, record
has not been processed by es-
timator)
Spare Byte 97 Spare
9808

= paet e

©

C.2 DATA PACKET 2

SIZE: 17 words (34 bytes)
SENT BY: PREPRO |
RECEIVED BY: DATMGR
FORMAT:
Parameter Type Dimension Description
ITYPE I*2 1 Type of TDRS vector:
=1, TDRS 1
= 2, TDRS 2
INPVEC R*8 4 Input vector (time and posi-
tion vector)
)
|
1
&
C-4
9808

C.3 DATA PACKET 3

SIZE: 5 words (10 bytes)
SENT BY: DOPPRE, OBSMDL
RECEIVED BY: DATMGR
FORMAT:
Parameter Type Dimension Desrription
NTDR I*2 1 Type of TDRS vector:
= 1, TDRS 1
) = 2, TDRS 2
TTAG R*8 1 Reguesting time for a set of
10 TDRS vectors
(
()
C-5
9808

C.4 DATA PACKET 4 -

SIZE: 73 words (146 bytes)
SENT BY: ESTIM, DATMGR
RECEIVED BY: DATMCR, ESTIM
FORMAT:
Parameter Type Dimension Description
IOBTYP I*2 1 Observation type: (= 1, one-
. way TDRSS)
OBSTIM R*8 1 Observation time tag
Spare Byte 8 Spare
OBS R*8 1l Doppler observation
FREQ R*§ 1l TDRSS frequency
DOPINT R*4 1l Doppler averaging interval
Spare Byte 1 Spare
FORANT Byte 1l Forward station ID {(internal
index) .*’
Spare Byte 1l Spare -~ '
FORTDR By te 1 Forward TDRSS ID (internal
: index)
EDIT(I) Byte 2 Observation data edit flag:
= 0, not edited
= 1, edited by DC during edit
loop
= 2, edited by preprocessor
= 3, edited by DC for maximum
observed-minus-computed
value
= 4, edited by DC for ray
path :
(EDIT(1l) not used in FEDS)
Spare Byte 1 Spare
FORACC Byte 1 Forward access method (inter-
' nal index)
JPASS Byte 1 End-of-pass indicator
BAND Byte 1 Band frequency:
. = 4Bp S"'band
= 96, Ku-band

9808

P Pt

. ed A Rl R hndahl AT

LA
e
-

C.4 DATA PACKET 4 (Cont'd)

Parameter Type Dimension Description
NEWREC L*1 1 New record flag (= 7, record
has not been processed by
estimator)
Spare Byte 4 Spare
OBSPAR R*4 10 Doppler observation partial
derivatives
SPARE Byte 8 Spare
OBSRES R*8 2 Doppler observation residual
.
(_
c-7
9808

r-w R

hod

vk ke ol AR B ey - SRyt - om R e

C.5 DATA PACKET 5

SIZE: 160 words (320 bytes)
SENT BY: DATMGR
RECEIVED BY: DOPPRE, OBSMDL
FORMAT:
Parameter Type Dimension Descript.ion
QUTVEC({I,J) R*8 4,10 Requested set of 10 TDRS
vectors survounding request
time:
I =1, time tag associated
with the vector J
I = 2, x-position component
of vector J
I = 3, y-position component
of vector J
I = 4, z-position component
of vector J
c-8

9808

C.6 DATA PACKET 6

SIZ2E: 40 woras (80 bytes)
SENT BY: PREPRO
RECEIVED BY: ORBIT
FORMAT:
Parameter Type Dimension Description
ISTART I*2 1 Start mode for propagation:
= 1, use input vector
= 2, use ianternal table
IPART I*2 1 variational equation control
flag {= 0, do not integrate
variational equation)
TTAG R*8 1 Starting vector time tag (A.1l
- geconds from reference time)
X(e) R*B & Starting vector (ignored if
ISTART = 2)
B Spare Byte 10 Spare
(ISCID I*2 1 Spacecraft ID:
= 1, TDRS 1
‘ = %, TDRS 2 .
ENDTIM R*§ 1 Requested end time of propaga-
tion (A.l seconds from refer-
ence time)
c-9
9808

T et e . -

A

C.7 DATA PACKET 7

SIZE: 40 words (80 bytes)

SENT BY: STAPRE

RECEIVED BY: ORBIT

FORMAT :

Parameter lType Dimension Description
ISTART I*x2 1 Start mode for propagation:

1, use input vector
= 2, use internal table

IPART I*2 1 Variational equation control
flag (= 0, do not integrate
variational equation)

TTAG R*8 1 Starting vector time tag (A.1
seconds from reference time)
X(6} R*8 6 " Starting vector (ignored if
ISTART = 2)
CD R*8 1 ~ Coefficient of drag .
IMAP7 I*2 1 CD use indicator:)
= 0, use default coefficient
of drag
> 0, use CD if ISTART = 1
ISCID I*2 1 ‘ Spacecraft ID (= 5, user pre-
dict)
ENDTIM R*8 1l Requested end time of propaga-

tion (A.l1 seconds from refer-
ence time)

9808 - [7

e

C.8 DATA PACKET 8

SIZE: 40 words (80 bytes)

SENT BY: ESTIM

RECEIVED BY: ORBIT

FORMAT:

Parameter Type Dimension Description
ISTART I*2 1 Start mode for propagation

(= 1, use input vector)

IPART I*2 1 Variational equation control

flag (= 0, Gdo not integrate
variational equation)

TTAG R*8 1l Starting vector time tag
({A.l1 seconds from reference
time)

X(6) ~ R*8 6 Starting vector

CD ~ R*8 1l Coefficient of drag

IMAP7 I*2 1 CD use indicator:
= 0, use default coefficient

of drag
> 0, use CD
ISCID I*2 1 ‘Spacecraft ID (= 4, user past)
ENDTIM R*8 -1 Requested end time of propa-

gation {A.l seconds from ref-
erence time)

c-11
9808

C.9 DATA PACKET 9

SIZE: 40 words (80 bytes)
SENT BY: RSTIM
RECEIVED BY: ORBIT
FORMAT:
Parameter Type Dimension Description
ISTART I*2 1 Start mode for propagation
(= 1, use .input vector}
IPART I*2 1 Variational eguation control
flag:
= 1, integrate variational
equation without drag |
partial derivative ' !
= 2, integrate variational
equation with drag
partial derivative
TTAG R*8 1 Starting vector time tag
(A.1 seconds from reference _
time) ')
X(6) R*8 6 Startina vector -
CD R*8 1 Coefficient of drag
IMAP7 I*2 1 CD use indicator: .
= 0, use default coefficient
of drag
> 0, use CD
1SCID I*2 1 Spacecraft ID (= 4, user
past) :
ENDTIM R*g 1 Requested end time of propa-
gation (A.l seconds from
reference time)
C~12 :
9808 :
| k
[~

C.1C DATA PACKET 10

SIZE:
SENT BY:
RECEIVED
FORMAT:

Parameter

BY:

40 words (80 bytes)

OBSMDL
ORBIT

Type Dimension

Description

ISTART

IPART

TTAG

X(6)
CD
IMAP7
ISCID
ENDTIM

9808

I*2

I*2

R*8

R*8
R*8
I*2
I*2
R*8

1

1

P HH O

Start mode for propagation
(= 2, use internal table)

Variational egquation control

flag:

= 1, integrate variational
equation without drag
partial derivative

= 2, integrate variational
equation with drag
partial derivative

Starting vector time tag
(A.l1 seconds from reference

time)

Ignored because ISTART = 2
Ignored because ISTART = 2
Ignored because ISTART = 2

Spacecraft ID (= 4, user past)

Requested end time of propa-
gation (A.l seconds from ref-
erence time)

c-13.

(£

C.1l1 DATA PACKET 1l

SIZE: 204 words (408 bytes)
SENT BY: ORBIT
RECEIVED BY: PREPRQ, STAPRE, ESTIM, OBSMDL
FORMAT : '
Parameter Type Dimension Description
NEWORB I+%2 1 Reference vector chosen by
ORBIT for propagation:
= §, used internal table
= 1, used input vector
TPARTO I*2 1 State transition matrix output
flag: (= 0, no state transi-
tion matrix)
ENDTM], R*8 1 End time of propagation (tim=2
tag associated with the new
vector)
X0UuT R*8 6 New vector
ISCIDO I*2 Spacecraft ID:
= 1, TDRS 1
= 2, TDRS 2
= 4, user past
= 5, user predict
IVALID I*2 5 Validity-of-results flag:1
= 0, no error detected
= 1. input parameter error:;
execution continues -

= 50, numerical fault; execu-
tion continues

= 100, input parameter error
and termination

= 200, input parameter out of

, range and termination

= 500, numerical error and
termination

Spare Byte 336 Spare

1

9808 _

Up to five errors can be entered.

C-14

TR

(‘)

T

O

C.12 DATA PACKET 12
SIZE: 204 words (408 bytes)
SENT BY: ORBIT
RECEIVED BY: ESTIM, OBSMDL
FORMAT :
Parameter Type Dimension Description
NEWORB I*2 1 Vector chosen by OREBIT for
startup:
= 0, used stored starting
4 vector
= 1, used input vector
IPARTO I*2 1 State transition matrix output
' : flag:
= 1, state transition matrix
o without drag
= 2, state transition matrix
with drag
ENDTM1 R*8 1 End time of propagation (time
tag associated with the new
| vector)
XouT R*§ 6 New vector
ISCID’ I*2 1 Spacecraft ID (= 4, past user
orbit)
IVALID I*2 5 Validity~of-results flag:l
= 0, no error detected
= 1, input parameter error;
execution continues
= 50, numerical fault; execu-
tion continues
= 100, input parameter error
and termination
= 200, input parameter out of
range and termination
.= 500, numerical error and
termination
STM R*8 6,7 State transition matrix at
: ENDTM1 .
1

9808

Up to five errors can be entered.

C-15

O

APPENDIX D - FEDS UPDATE PROCEDURES AND COMMAND FILES

The standard RSX-11M compilation and task building proce-
dures are used to update FEDS and ADEPT software. Fig-

ure D-1 gives the executive command file used to compile
FEDS modules. Text files used in the executive command file
and task build command files for each task are given in Fig-
ures D-2 through D-75, follow, grouped by task. For com-
pleteness, command files, text files and overlay descriptor
files are given to build ADEPT. 1In all cases, FEDS command
files eﬁding in "23" refer to command files associated with
the LSI version. The command file to build the FEDS system
image for the LSI is given in PFigure D-75.

. 9808

B

.
4

; SRCLST.CMD

N
L4

.ENABLE SUBSTITUTION

.START:

.
F
!

ENTER SUBSYSTEM

COMMAND FILE TO COMPILE ANY SUESYSTEMS

JASKS SUB ENTER SUEBEYSTEM
LIP SUB EQ "ORBIT" .GOTCO REST
.IF B8UB EQ "FEDS" .GOTO REST
.IF SUB E@ "ESTIM" .GOTGC REST
. IF SUB EQ "DATCAF" .GQT0 REST
.IF SUB EQ "OUTFPRO" .GOTO REST
JIF 8UB EQ "INFPPRO" .GQTO REST
.IF SUR EQ "PREFPRO" .GOTQ REST
LIF BUBR EO "DATMGR" .G0OTO REST
.IF BUB ER "DOPPRE" .GOTO REEBT
LIF SUB EQ "STAPRE" ,Q0T0O REST
LIF 8UD EQ "OBSMDL" .GOTO REST
LIF BUBR ERQ "EXECY .GOTO REZT
;REQUESTED SYSTEM NOT FOUND
.GOTO START
LHEST:
;0PEN FPILE FCR ALL EUBSYSTEMS
.OPENE 'BUB'.,THT
; COMPILE ALL MODULES
NEXT:
. READ MGOD
LJIFPT (EQF» .GOTO DONE
IF {FILERR> NE 1 .GOTO ZTART
FORTRAN/F4P 'MOD! ’
. IF ({EXSTAT> NE <3UCCES:> .COSUB ERR
.GOTO NEXT
.DONE:
.CLOSE
LEXIT
.ERE:

;RUN DBO:LC201,61BELL
JABKS CR CR TO CONTINUE
JIF CR (2 ' JEXIT
. RETURN

CMPFEDS.CMD (Executive Command File
to Compile FEDS)

Figure D-1.

gy

Figure D-2.

9808

ABAM
ACCEL
ACTGEN
ATMOS
BEHUN
BODFIX
CKPRIO
CLKMES
CNVCW
CNVTOB
CNVTTM
CURTIM
DATCAP
DATCAP23
DATMGR
DATMGRZ3
DDATE
DOPLEG
DOPLTM
DOPMDL
DOPERE
DOPPRE23
DPINIT
DSPRES
DSPOBS
DWNSND
DWNSND70
ELVANG
ESINIT
ESLIDE
ESMNVR
ESTIM
ESTIM23
EXEC
EXEC23
FORCV
GETORB
GETTDR
GHAUFD
GHAUPN
GTHEAD
INFFRM
INPPRD
INPPRO23
INTE
INTRN
INVZ
IPINIT

FEDS.TXT (Text File to Compile All FEDS
Modules (1 of 3)

D-3

A\

o l

JDATE
LATLON
LGN
LOCTDR
LODACT
LODBUF
LODDCS
LODDPL
LODERR
LODORS
LODRES
LODSEN
LODVEC
LOKAHD
LTC
LTIMT1
LUNA
MATMUL
MATPRE
MATPST
MSTEP
OBSMDL,
OBSMDL2Z3
OBSERE
OBSRW
OBSUPD
ONELEG
OPINIT
ORBINI
ORBIT
ORBIT23
QUTERO
OUTPR0O23
OUTQIO
OUTTIM
OUTTRN
PB52CL
PPINIT
PREDIT
PREPRO
PREPR0O?Z3
PURFIL
PUROBS
PURTDR
RANGRT
REDUCE
RUKUTT

Figure D-2. FEDS.TXT (Text File to Compile All FEDS
Modules (2 of 3)
D-4
9808

()

kW)

S e T TR T 2 e Al o T TR e T —-—

9808

Figure D-2.

SCANIN
SETCLK
SETINX
SLCORR
SLEDIT
SLEND
SLINIT
SLITER
SLOUT
SLSUMS
SLTEST
SLUPDT
SNDCMD
SOL
SOLLUN
SORBIT
SPART
SPARTV
SSTEF
STAFRE
STAPREZ23
STATM
STERR
STES:
STEXP
STGEO
STINIT
STMANS
STMISC
STPV
STSTAN
STTDRS
STTIMF
STTRKS
SUMS
SYMINV
TAGORS
TCON
TDRINT
TDRORB
TDR1WM
TDR1KP
TGTINT
TIMCON
TREF
TYMD
WIMSG
).

FEDS.TXT (Text File to Compile All FEDS
Modules (3 of 3)

D-5

A I

T Fe mETETTT - e g

bl W J

EXEC
ACTGEN
WIMSG
CURTIM
JDATE
OUTTIM
TCON
TIiMCON
IREF
TYMD
ouURglo
d

Figure D-3. EXEBC.TXT (Text File to Compile EXEC Modules)

EXEC/PR:0,EXEC=EXEC,0UTQI0, TIMCON , JDATE , ACTGEN , TCON,
CURTIM,TREF, TYMD, OUTTIM, NTMSG
SETCLK , DDATE
€1,1311SLIB/LB

/

COMMON=GLB1 : RW

COMMON=GLBZ : RW

PRI=75

ASG=TI:5:6

MAXBUF=80

TASK=EXEC

LIBR= 11SRES:RO

/1

>

Figure D-4. EXEC.CMD (Command File to Build EXEC Task)

EXEC23/PR:0,EXEC23=EXEC23,0UTQI0,TIMCON, JLATE, ACTGEN , TCON,
CURTIM, TREF,TYMD, OUTTIM, HTMSG , SETCLK

g

C1,1311SLIB/LB
/
COMMON=GLB1 :RW
COMMON=GLB2 : RW
PRI=70
ASG=TT3:5:6
MAXBUF=80
TASK=EXEC
LIBR= 11SRES:RO

yai

b,

Figure D-5.

- Pigure D-6.

EXEC23.CMD (Command File to Build

EXEC23 Task)

DATCAP
INTRN
LODOBS
CLKMES
PB52CL
DDATE
CURTIM
JDATE
LODBUF
SCANIN
SNDCMD
TCON
TREF
oUTQIO
>

DATCAP.TXT {Text File to Compile

DATCAP Modules)

DATCAP=DATCAP, INTRN , LODOBS , CLKMES , PB52CL , DDATE
SCANIN, SNDCMD, LODBUF
CURTIM,TCON,TREF , JDATE
MOVEC , OUTQIO0,VSEND
C1,1311SLIB/LB

/

UNITS=6
ASC=TT24:2,TY33:1,TI:5:6
COMMON= GLE1:RW

COMMON= GLB2:RW

COMMON= GLB4 :RW

MAXBUF= 256

ACTFIL= 3

PRI1= 51

LIBR= 11SRES:RO -
/1

?

Figure D=7, DATCAP.CMD (Command File to Build
DATCAP Task)

DATCAPZ3/FR: 0 ,DATCAP23/~SH=DATCAP23, INTRN, LODOBS , CLKMES , PBS2CL , DDATE
SCANIN, SNDCMD , LODBUF

CURTIM,TCON,TREF,JDATE

MOVEC, OUTQIO

C1,13111SLIB/LB

/
UNITS=6

ASG=TT1:2,TT0:1,TT3:5:6

COMMON=
COMMON=
COMMON=
TASK=
MAXRBUF'=
ACTFIL=
PRI=
LIBR=
/!

>

GLB1:RW
GLB2:RW
GLB4:RW
DATCAP
256

B5
11SRES:RO

Figure D-8. DATCAP23.CMD (Command File to Build
DATCAP23 Task)

~ AR e AT T e TR e ————— oA T

INPERO
IPINIT
GTHEAD
STERR
STEXF
STINIT |
STEST ;
STTDRS |
STMANS
STTRKS
STMISC
STSTAN
STGEC(

(STATM

- . STTIMF
INPFRM

LOKAHD
CURTIM

JDATE
TCON
TIMCON
TREF
ouTQIO
>

9. INPPRO.TXT (Text File to Compile
INPPRC Modules)

Figure D

(dsel OYddNI PTTng 03 STT4 PURMWOD) QWD O¥ddNI “0T-0 SInbTg

£
1/
- O¥FSANSTI = ¥dIT

MYy : ZHT) =NOWWOD

MY THTD =NOWWOD
M3 PETD =NOWWOD

OMJddNT =ASYL

0% =Idd

08 =JANEXYW

9:1I% =05Y

GIIL =98¢

0 =114V

9 =SLINN

/
H1/9I1STICT 13080
ordrno
‘ AAOWL T’ 90Z3
‘ AYL’ NOOWIL ' NOOL ALVAL ‘ WITNAD
‘qHYNOT

"WHAANT’ AWILLS WIVLS 0F9LS’ NYISLS OSIMIS‘ SHULLS
‘ SNYWIS SHAILS ' ISALS ' LINIIS aXALS ! MaAlS ¢ OVAHIS LINIAT 04ddNI=08ddNI

(NOISHHA 0L/TT 44d)
40SS3D0ud IN4ANT 3HL QTING MSYIL OL 3114 ONVWWOO WO * Q¥AdANT

Ll SN

)

)

D-10

g

= Wy

(3SelL EZOWAANI PIINE O3 2TTJd PUPWWOD) QWD EZOMdANI “TT-d ®anbia

{

: ¥
QM:SIUSTT = HHIT
M ZHTD =NOWWOD
M THTD =NOWWOD
MM: $HI9 =NOWWOD
0dddNI = =MSVYL
0g =I¥d
08 =JNAXYKW
9:G'ELL =H8Y
0 =TIJIDY
9 =5LINA
/
g1/911sSTiCT! 11 080
4 AAOWLC T 9023
{ TINL NOOWILY NOOL ATWAL ‘ HILAAND
‘0104060’ aHYN0T

‘WHMIGNT SWILLS * WIMIS/ 030LS ‘ NYLSIS DSIHLS / SHULLS SNYWLS
{ SuOLIS* ISALS TINTIS XALS HMALS ' O¥AHIO TINIAI ‘ €Z0NddANI =£Z0¥ddNT ‘ £Z20UddNT

(NOISHAA £Z2/TT IST)

H0SSAO0Hd INdNI dHL dIINg MSVI 0L 3113 ANYWWOD Q!UummomeZH

T die, 4w, 4

D-11

PREPRO
OBSRRE
TDRORB
PPINIT
PURFIL
RANGRT
SETINY
GUTOIO
LSPOBS
SETINX
CNVITM
CNVTOB
DDATE
JDATE
TAGOBS
TCON
TREF
PB52CL
b

Figure D~12. PREPRO.TXT (Test File to Compile
PREPRO Mocdules)

i

; PREPRO.CMD COMMAND FILE TO TASK BUILD THE DATA PREPROCESSOR

; {(PDP 11/70 VERSION)

i :

PREFRO ,FREPRO/ -SP=FREPRO, OBSPRE , TDRORB, PPINIT, PURFIL ,RANGRT , SETINX
CNVITM,CNVTOB, DDATE, JDATE , TAGOBS , TCON, TREF, PBS 2CL

VSEND, VRCEVE,
OUTQIO,DSPOBS
DBO:L1,1111SLIB/LR

/ .

UNITS= 6

ASG= TI:5

ASG= TI:6

PRI= 50

ACTFIL= 2

MAXBUF= B0

TASK= PREPRO
COMMON=_ GLB1:RW
COMMON=" GLB2 : RW
LIBR= 11SRES:RO
,

>

Figure D-13. PREPRO.CMD (Command File to Build
PREPRO Task)

3

ol YT

bl J

A

M= R AR TR S e

A R e, s 2 T e -

(xsel £zo¥dddd..pITnd 03 STT4 PURIIOD) AWD'E£ZO¥dddd “1-A 2InbTg

<
Y
O¥:SIUSTIT =MHIT
MY ZHTD =NOWWOD
MY : TH'ID =NOWWOD
O¥dENd =)SY.L
0B =JNAXYW
Z =71I4LOV
i 0% =I¥d
9iGELT =98y
9 =SLINR
-7
g21/9ITSTTICT 11084
014100
‘AAIOMA Y ANTSA
T10258d ‘ AT4L‘ NODL ' SEOOYL ALVAL ‘ ALYAT ‘ SOLAND * WIIAND
XNIIFS ‘ LHONYY ‘ 1T4¥80d ‘ TINIdd SH0¥AL‘ 3UdSH0* £ Z0HdAdd=dS -/ £ Z0HdTdd * £Z0dd=Y

{NOISHEIA EZ/TIT IST) .
HOSSHIO0¥ddYd YIVA JHL QTiNg ASVIL 0L JIIJd GNVYWWOD W2 " £Z20ddddd

- G, Y WA En

D-13

nd
L

DATMGR
LOCTDR
PURTDR
PURDBS
OUTQIO
>

Pigure D-15. DATMGR.TXT (Text File to Compile
DATMGR Modules)

14
; DATMGR . CMD COMMAND FILE TO TASK BUILD THE DATA MANAGER j
; (PDP 11/70 VERSION) ’
r
DATMGR , DATMGR/ - SP=DATMGR , LOCTDR , PURTDR , PUROBS
VSEND VRCEVE,
OUTQIO
DBO:C1,1]118SLIB/LB
/
UNITS= &
ACTFIL= 0O
ASG= TI:5:6
PRI= 60
MAXBUF= B0
COMMON= GLB1l:RW
TASK= DATMGR
LIBR= 11SRES:RO
/1
> .

 Figure D-16. DATMGR.CMD (Command File to Build
. DATMGR Task)

D-14

DATGMR23,CMD

Tap W wE W

COMMAND FILE TO TASK BUILD THE DATA MANAGER

(L2I 11/23 VERSION)

DATMGRZ23 , DATMGR23/~3P=DATMGR23,L.OCTDR, PURTDR, PURDBS

VSEND,VRCEVE,
QUTQIO
PHO:C1,131115LIB/LAB

/

UNITS= &

ACTEFIL= O

ASG= T13:5:8

PRiI= &0

MAXBUF= 80

COMMON= GLB1:RW
TASK= DATMGR
LIBR= 115EES RO
/i

2

Figure D-17.

Figure D-18.

DATMGR23.CMD (Command File to Build
DATMGR23 Task)

ESTIM.
ESTIM

ESTIM
ESLIDE
ESMNVR
SLINIT-
SLITER
SLEND
SLSUMS
SLEDIT
SLTEST
SLUPDT
SLouUT
SLCORR
SYMINV
MATMUL
OBSRAW
ESINIT
MATPRE
MATPST
OBSUFD
PREDIT
?

TXT (Text File to Compile
Modules)

(qsel, WILSE =21Tdwo) 03 STTd PURWMWOD) WD WILST °61-a SIMbIJ

¢
11

.z =T1LaidV¥

9 =SLINO

MY: EHTD =NOWWOO
0¥ :SHUSTT =4dI7
My 181D =NOWWOD

08 =JNHEXYW

AR A =HS5Y

9:11 =N8Y

G:IL =98Y

/

g1/411STTICTY T ,

. JINLES WALSAS w
ANHESA‘IAADHA
018100
AINAL ‘ AWAL’ NOOJI,

SYIVA MD0Td ANV SINILOOY JAILNDAXA SOV

il S S AW

SHO04SO‘ LI1034d ‘' AdNSsE0
 INHIVK * ISALYW SHALYK LINTSH MUSHO
‘ ANIWAS* HM02'IS‘ 3001S‘ 1aant1s IsATIS _
‘ LITATIS SHNSTS ANA'IS HALITS LINITIS MANWSH ‘ 3a11S3 WILSI=WILLSH ‘WILSH

(NOISHAA 0L/1T dad)
QIAOWIN ALITIEVAVD) F¥S - VIVd SSHAL ATINO -
§SFI0¥d O HOIVWIESE 40 d17Id ONYWWOD ONIQTING NSVLI OWD WILSE

aAm Mg sy By

L

D-16

(dsel £ZWILST pIINg 03 IJ[TJ purLMICD) (WO ECWILSE “0Z-a a2aInbtg

< .
/7 . ‘ s

Z =TI4I0V

9 =SIINO
ON:SANSTT =¥HI'T
WIISZ =NSVL .

MM EFTD =NOWWOD ¥
M¥: THTD =NOWWOD | ;

08 =JANEXVW
L 9IGIELTL =5V
. /
21/6ITSTICLT 1] ~
4 -
AINLS WALSAS ¢ A ,
] i 1
aNZSA ‘ ATIUA B
013100 : R
ALYAr QWAL NODL P

i, Y

SYIVO MD0Td GNV SANILNOY JNILNDAXT SAOV

[T TS

: LIQayd ‘ dNsdo
 TAWLYW ' LS3IVW ‘ JudIWW TINIS3 ‘ MYSHO
‘ ANIWAS ‘ 80018/ 1n01S* Iadn1s’ Ls3L1S
‘ LIAATS SWNSTIS ANTIS ‘ WAL ITIS ‘ TINITIS / MANWSE ‘ 3AIISH ‘ €ZWILSH=EZWILSH EZWILSH

(NOISH3IA EZ/TT 1ST)
TTANOWAY ALITIEVAVD) JUS - VIV SSYAL ATNO
SS3208d 0L HOLVWILSH 40 I1Id (INVWWOO DNIQIING MNSVL WO " £ZWILSH

il T, dh, S

OBSMDL
BEHUN
BODFIX
ELVANG
GETORB
GETTDR
* LTIMT1
ONELEG
SORBIT
STFPV
TDR1WM
TDR1WP

Figure D-21. OBSMDL.TXT (Test File to Compile
OBSMDL Modules) :

(PDP 11/70 VERSION)

O w W we

BSMDL , 0BSMDL/ -SP/SH=0BSMDL , BEHUN , BODFIX ,ELVANG ,GETORE,
GETTDR , GHAUPN , LATLON , LGN, L.TC
LTIMT1 ,MATMUL ,ONELEG,
SORBIT,STPV, TDR1WM, TDR1IWP

AODs EXECUTIVE ROUTINES AND BLOCK DATAS

e We W

JDATE, QUTQI0,TREF ,TYMD, VRCEVE, VSEND

SYSTEM STUFF

- wmr Ws

Cl,1311SLIB/LB
/
ASG= TI:5
MAXBUF= 80
COMMON= GLB1:RW
LIER= 11SRES:RO
COMMON= GLB3:RW

UNITS= 5
ACTFIL= 2
/7

>

Figure D-22. OBSMDL.CMD (Command File to Build
OBSMDI, Task)

D-18

OBSMDL.CMD TASK BUILDING COMMAND FILE OF MODEL TASK FOR
AODS ESTIMATOR TO PROCESS TDRSS DATA ONLY

T

OBSMDL.CMD = TASK BUILDING COMMAND FILE OF MODEL TASK FOR
AODS ESTIMATOR TO PROCESS TDRES DATA ONLY
(LSI 11/23 VERSION)

2 we we we W

BSMDL23 ,0BSMDL23/~5P/SH=0BSMDL23 , BEHUN , BODFIX, ELVANG ,GETORB,
GETTDR ,GHAUPN , LATLON , LGN, LTC
LTIMT1 ,MATMUL , ONELEG,
SORBIT, STPV, TDR1WM, TDR1WP

AODS EXECUTIVE ROUTINES AND BLOCK DATAS

™E W W

JDATE, OUTQI0,TREF, TYMD, VRCEVE, VSEND

SYSTEM STUFF

e W W

(- £1,1111SLIB/LB
/
ASG= TT3:5
MAXBUF= 80
COMMON= GLB1:RW
COMMON= GLB3:RW
TASK= OBSMDL
LIBR= 11SRES:R0

UNITS= 5
ACTFIL= 2
/1

?

Figure D-23. OBSMDL23.CMD (Command File to Build
OBSMDL23 Task)

RN LRSI

UPPGGnt~uJ-s

DORPRE
DOPLEG
DOPLTM
DOPMDL
DPINIT
TDRINT
TGTINT
BODFIXN
CHAUPBN
LTC
LATLON
ELVANG
LGN
MATMUL
BEHUN
STEV
TREF
JDATE
>

Figure D-24. DOPPRE.TXT (Text Flle to Compile
DOPPRE Modules)

DOPPRE. CMD COMMAND FILE TO TASK BUILD ONE-WAY DOPPLER
PREDICTOR :
(PDP 11/70 VERSION)

we e we

OPFRE, NO%=RE=DOFFRE , DOPLEG , DOPLTM, DOPMDL , DPINIT, TDRINT , TGTINT,
051X, GHAUPN , LTC , LATLON , ELVANG, LGN, MATMUL , BEHUN , STPV,
§RYF JDATE,VSEND, VRCEVE,
0UTQIO
C1,1311SLIB/LB

/ .

COMMON=GLBL : RW

COMMON=GLB3 : RW

MAXBUF= 80
UNITS= 6
ASG= TI:6,TI:5,TI:1
PRI= 50

TASK= DOPPRE
LIBR= 11SRES:RO
/!

> -

Figure D-25. DOPPRE.CMD (Command File to Build
DOPPRE Task)

D-20 | -

(™

e ol Da .. -
S TE Pty ""“"-‘".a' - .

Por

DOPPRE23.CMD COMMAND FILE TO TASK BUILD ONE-WAY DOFPLER
PREDICTOR
{LSI 11/23 VERSICN)

O™~

QOPPRE23 ,DOPFRE23=DOPPREZ23 ,DOPLEG, DOPLTM, DOPMDL ,DPINIT, TDRINT, TGTINT,
BODFIX,GHAUPN,LTC,LATLON ,ELVANG, LGN ,MATMUL , BEHUN,STEV,
TREF ,JDATE,VSEND, VRCEVE,
OUTQIO
£1,1J11SLIB/LB
/
COMMON=GLB1 :RW
= COMMON=GLB3 :RW

(maxsuFr= 80
UNITS= 6
ASG= TT3:6,TT3:5
PRI= 50

TASK= DOPPRE
LIBR= 11SRES :RO
7/

?

Figure D-26. DOPPREZ23.CMD (Command File to Build
DOPPREZ23 Task)

o A A g T SRR e ¥ T e - — A e -

OUTPRO
OUTTRN
OPINIT
. CKPRIO
LODACT
LODERR
' LODDCS

LODDPL
LODRES

LUDSEN
LODVEC
DWNSND70
JDATE
OUTTIM
TCON
TREF
TYMD
MOVEC
GETTIM
TYMDA
DSPRES
>

Figure D-27. OUTPRO.TXT (Text File to Complle
QUTPRO Modules)

QOUTPRO, OUTPRO=0UTPRO, OUTTRN, OPINIT
CKPRIO,LODACT,LODERR,LODDCS ,LODDPL,
LODRES ,LODSEN , LODVEC ,DWNSND70 , JDATE,
QUTTIM,TCON, TREF ,TYMD,MOVEC,
DSPFRES,
0UTQIO,VSEND,VRCEVE,CNVCH
DBO:L1,1111SLIB/LE
/.
COMMON=GLB1 :RW
COMMON=GLB3:RW
PRI=50
ACTFIL=0
MAXBUF=80
ASG=1TT24:3,TI:5:6
TASK=0UTPRO
LIBR= 11SRES:RO
/1
p)

Figure D-28. OUTPRO.CMD (Command File to Build

OUTPRO

Task)

‘i

OUTPROZ3,0UTPRO23=0UTPRO23, OUTTRN, OPINIT
CKPRIO, LODACT, LODERR, LODDCS , LODDEL,
LODRES , LODSEN , LODVEC , DNNSND , JDATE,
OUTTIM,TCON, TREF , TYMD , MOVEC ,
OUTQI0,VSEND,VRCEVE, CNVCK,
DBO:C1,13111SLIB/LB

/

COMMON=GLBE1 : RW
COMMON=GLB3 :RW

PRI=50

ACTFIL=0

MAXBUF=80
ASG=TT1:3,TT3:5:6,TT2: 1
TASK= OUTPRO

LIBR= 11SRES:RO

/7

M)

Figure D-29. OUTPRO23.CMD (Command File to Build
OUTPRO23 Task)

STAPRE
OUTQIO

A

Figure D-30, STAPRE.TXT (Text File to Compile
* STAPRE Modules)

STAPRE. CML COMMAND FILE TO TASK BUILD THE STATE PREDICTOR
(PDP 11/70 VERSION) :

®e WE WE up

STAPRE=STAPRE

- VSEND, VRCEVE
OUTQIO
' DBO:C1,1311SLIB/LB

/ .

UNITS= 6 .

ASG= " TI:5:6

ACTFIL= 0

MAXBUF= B0

PRI= 50

TASK= STAFRE
COMMON-= GLB1:RW
COMMCON= GLB3:RW
LIBR= 11SRES:RO
/!

>

Figure D-31. STAPRE.CMD (Command File to Build
STAPRE Task)

{’;-?‘q

2.
[

{

STAPREZ3.CMD COMMAND FILE TC TASK BUILD THE STATE FREDICTOR
(LST 11/23 VERSION)

wE WE M Wme

STAPRE23 , STAFREZ3= STAPRE23
VSEND, VRCEVE
OUTQIO
DBO:C1,1311SLIE/LB

/

UNITS= 6

ASG= TT3:5:6

ACTFIL= 0

MAXBUF= 80

PRI= 50

TASK= STAFRE

COMMON= GLB1:RW

COMMON= GLB3 :RW

LIBR= 11SRES:RO

I, a

5

Figure D-32. STAPRE23.CMD (Command File to Build
STAPRE23 Task)

ABAM
ACCEL
ATMOS
FORCV
GHAUPD
INTP
INV2
LUNA
MSTEP
ORBINI
ORBIT
PARTLS
REDUCE
RUKUTT
SOL
SOLLUN
SPART
SPARTV
SSTEP
STATES
SUMS

>

Figure D=33. ORBIT.TXT (Text File to Compile
"ORBIT Modules)

D=25

%)

?

-

L]
r
[
r
]
H
o)

ORBIT.CMD COMMAND FILE TO TASK BUILD THE ORBIT PROPAGATOR
(PDP 11/70 VERSION)

RXBIT= ORBIT,ACCEL,SOLLUN,SPART, 2 tM0S, SPARTV
RUKUTT,SSTEP, SUMS, ORBINI MSTEF, INTEG, GHAUFPD

LUNA, SOL REDUCE ABAM INTCON

INva, FORCV PARTL HARM INTP, STATES

VRCEVE,, VSEND
oUTOIO
DBO:C1,1J11SLIB/LB

/

ACTFIL= 0

MAXEUT= 80

UNITE: 6 .

ASG= TI:5

TASK= ORBIT

PRI= 60

COMMON= GLB1l:RW
LIBR= 115RES:RO
/!

Figure D-~34(a).

ORBIT23.CMD

)~ e we e

ORBIT23.CMD (Command File to¢ Build

ORBIT23 Task)

"B

COMMAND FILE TO TASK BUILD THE ORBIT PROPAGATOR

({LSI 11/23 VERSION)

RBIT23,0RBIT23=0RBIT?2Z3,ACCEL,SOLLUN,SPART ,ATMOS , SPARTV
RUKUTT ,SSTEP, SUMS, OREIIIY ,MSTEP , INTEG ,GHAUPD

LUNA,SOL,REDUCE, ABAM, INTCON

INV2, FORCV PARTL HARM INTP,STATES

VRCEVE VSEND

/

ACTFIL= 0
MAXBUF= 80
UNITS= &
ASG= TT3:5
TASK= ORBIT
PRI= 60

COMMON= GLB1:RW
LIBR= 11SRES:RO
/1
>

Figure D-34(b).

DBO:C1,1J11SLIB/LB

ORBIT Task)

ORBIT.CMD (Command File to Build

i)

o ARy der R e LS

R R b s LA R e B T

v

]
¥
QU

44 e

w7}
W

¥

ORiGIAL
E POCR

0

C;

L

(/T9TD/ NOWWOD TBqOT9 pITnd 03 =[TJd puewwo)) gWd TdI9 "9€-a @2aInbtg

4

!/

0 =8LINDO

go000E F00009TFTOID =1¥
0 =MIVLE

/
AYEAD ‘WOOMSILEY vZE D

' WHVANA NATSAS MYALIY THINOD ' WIILSHL V' #2T23
*DOTLOV " OEWEIE ‘AVIINT ' NODAHALY * #2213 =13/THID'dS-/HS/THIDUH- /1d/ THTO0T 13

(EE2/TT IST NV 0L/T1T J0J U0} _
1 NOWWOD "YHO0TD QIINd MSYL 0L JTTIJ ONYWROD aWwo ' THTD

h, Yh da e,

‘ (/TETID/ NOWWOD TeqoTd oT7Tdwo) o3 9TTd puRMWOD) ¥OI*'TdTO °SE-a 2InbTd

WOMETL=HODHST ¥0d
NAFSAS=NAASAS 904
NOJAHJA=NODOAHd H04

HVIdQ=d¥LJ0 HOI
HY.LINI=YVIINI ¥O0.
WHALEH=WHILGE HOA
DSHHYT=08HYYT ¥0d
THINOI=THILNOD HO.I
HVALIV=¥VALIV ¥O.d
DOTLIY=D0TLIV HOI

ey Ay

(EE€/TT IS ANY 0L/TT d04 HO)
/THTD/ NOWWOD TVHOTD H0Od SI1TI4 VIVa X018
NOWWDD I¥d07D JHIL HUTdW0d 0L JATId (INVHWOOD J04 110

L] S T

D-27

2)

(/2919/ NORWOD TeqOTD pTTINg 03 STTJd puRWMIOD) GWD Z91D ~8€-d

2
0000Z+0000FTZHMD
0

aanbtg

<

s
=ETLTNA
=¥l
=MOY.LE

: /
(IHISK QIHOSTE 0SH0 ' MOIMERT b $222 uwm\mmuu.mml\Im\mmmw‘QEI\Hm\mmﬂwnﬁLam

/1T IST ONV 0L/TT 403 HOgI)

(/29T9/ NOWWOD TeqoTd STTdWoD 03 STTd puRumOD) ¥Od*ZE1d “/L£-d

*

A

(IAHISI=A3HIST 0.3
Osgo=0880 M0J
TAH2SH=AIHISW ¥0d
HOIMIN=YTIMIN ¥OJ

4

v

(EZ/TT IST ANV OL/1IT d0d ¥0d)
/297D NOWWOD IVHOID #0.0 SITId ¥IVa N30TH
NOWWOD TIvd0TID HMI dTII3W0D 0L J1Id GNVKHWOO ¥4 2d1D

oy

"E O NOWWQD TIVHOTD OTIINY MEVE 04 dTIA ONVHWOD (110 A = o b

T dw am o

2anbTg

FUOE T T

D-28

e
E=nt

FE

(/£9719/ NOWWOD TeqoTD PTIng 03 3TTJ puemmo)d) dRD €919 0b-a 2anbtdg
£
1/
D =STINN
00NaEI00007 F £HID =HVd
0 =MIVLS
/

SAUSHO HOIVI WODOHARL P 223

HOTEN WOOOOK * DOILSACY ‘#7571 .
_ ‘13aINoLy’ ¥EE]
OAATAC ! TAUSAY INLSDOLH 5721 =Id/EU19'ds - /HS/E9T'0H -/ TId/EHTOET ' T

y

: (E£Z/TT IET UNV 0L/TT ddd HOJ)
TAETH0TID/ NOWWOD TIvd0TD dTIN"H MSVE 0L dTId ONTRWOD (017 10 I R i

]
NP

"
et

e A b dwm

~e
'kt

OF POCRE Guil

(/€9T9/ NOWWOD Teqord o1Tdwo) ©3 9[Td puRUMWO)) VOJ'€dTID ‘*6£-d 2I0bTI

ORI

<

EJUSFM=T445H8 ¥04
WODTHY=WOITHY HOA
QENAIN0=03ATN0 ¥Od
TAALN0="T40LN0 04
JHASHO=DTYSHO MDA
WOIIDW=WOIJ0OW ¥O.1
HOOVHR=HOLYHW H04 .
J0TLESI=D0TTEGHE A0
oNgAd=D0gEa 404
LYLSDO=IVL5D00 d04
WOIHAT=WOOHAYR

o
o
By

: JEHTIO/ MD0TId
. NOWWOD TV¥H0TD HHI @04 STTIS VILVa F2078
NOWWOD TIVHOTD FHL dATIAW0D OL JITA4 AQNYWWOO HOA ™ £EHID)

LA L UL LY

D-29

(/p919/ NOWWOD TedqOT9 PITIng O3 STT4 PURMMIOD) QWD pdTId °Zv-d 2anbTd

¢
: I
0 =SLIND

QO00CI000GOT PITD =dUY¥d

0 =MJYLS

/

INOINTCY ‘3727 =Td/va1D°ds- /HS/ #0107 aH-/ T/ vaTOCT /T

(£Z/TT IST NV 04/1T ddd ¥MO.d)
S JPIE0TD/ NOWWOD IVU0TIO (TTINd MSVIL O A1Td ONVHWOD QW3 " PRTO

a th dm

(/%91D/ NOWWOD Tedqord 91Tdwod 03 =TTd pueumiop) JYod ygIO “Ty-ad 2anbIg

ANEANT =A0"JINT H0.

{(€E/1T TIST ONY 04/1T 4ddd)

f#E719/ ¥MO0Td

NOWWOD IVHOTD W 804 S371Id YIva MO0Td
NOWWOD TVHOTD THL IATIIAW0D O dT1Id ONVAWOD HOg ™ 49T

L N N L L PPN

D=-30

Figure D-43.

Figure D-44.

. TKB GEXEC
TKB GDATCAP
TKB G@INPPRO
TKB GPREPRO
TKE @DATMGR
TKB GESTIM
TKE GDOPPRE
TKB @OUTFRO
TKB GSTAFRE
TKB GORBIT
TKB GOBSMDL

TKB.CMD {(Command File to Build All FEDS
Tasks, PDP-11/70 Version) '

TKB GEXEC23
TKB GDATCAP23
TKB GINPPROZ223
TKB @PREPRO23
TKB @DATMGR23
TKB GESTIM23
TKB GDOPPREZ3
TKB GOUTPRO23
TKB GSTAPREZ3
TKB GORBITZ23
TKB BGORSMDLZ3

TKB23.CMD (Command File to Build All FEDS
Tasks, LSI-11l/23 Version)

D-31

y-

|
|
|
I
|
|
|

COMPILE.CMD COMMAND FILE TO COMPILE ANY SUBSYSTEMS

e WE WE

.ENABLE SUBSTITUTION
+« START:

r
|ENTER SUBSYSTEM
.ASKS SUB ENTER SUBSYSTEM
.IF SUB EQ "ADPREP" .GOTO REST
.IF SUB EQ "EDITSS" .GOTQ REST
.IF SUB EQ "ADSIM" .GOTO REST
.IF SUB EQ "RECEEV" .GOTO REST
.IF SUB EQ "DNLINK" .GOTO REST
. IF SUB EQ "SCREEN" .GOTO REST
.IF SU8 EQ "ADOUT" .GOTO REST
.IF SUR EQ "SIMMER" .GOTO REST
.IF SUB EQ "SIMCB" .GOTO REST
.IF SUB EQ "DBMINI" .GOTO REST
; REQUESTED SYSTEM NOT FOUND
.GOTO0 START
-REST':
;OPEN FILE FOR ALL SUBSYSTEMS 1
+OPENR 'SUB’.TXT M
; COMPILE ALL MODULES

+NEXT:
.READ MOD
. IFT ({EOF> .GOTO DONE
LIF (FILERR> NE 1 .GOTO START
FOR 'MOD’ :
.IF <(EXSTAT> NE <(SUCCES> .GOSUB ERR i
.GOTO NEXT i
. DONE:
.CLOSE
L] EXIT
.ERR:

RUN DBO:C201,6]1BELL
.ASKS CR CR TO CONTINUE
JIF CR O " JEXIT
. RETURN

Figure D-45. CMDADEPT.CMD (Executive Command File
to Compile ADEPT)

- ADDSUB
- ADPREP
ATMPRT
BLDSIM
BUF
BUILD
CENTER
CMDCHK
CMDCOM
DATCHK
DBM
DBEMEDT
DEMPRT
DCODE
DIRCOM
DIRECT
ERROR
FIELD
FILES
FLAG
GEOPRT
GETINP
GETOB
GETPRM
GETTRK
- HEADER
(IDCODE
- LENM
LINFIL
LSTREC
MERGE
OBSCHK
OBSSCH
PAGOUT
PARA
PARAM |
PARFRT | !
PDMF : l
PDUMPF
PHYCON
SFILES
SPCPRT
SRTTRK
STRPRM | :
TIMCHK i
TRKSCH
TSORT
VERIFY
YMDHMS
>

O Figure D-46. ADPREP.TXT (Text File to Compile
: ADPREP Modules)

Figure D-47.

EDITSS
EDIT
WRT
OPENS
GETLIN
MOVE
REMVE
DECNUM
COMPL
ADD
ADDF
BOT
DEL
DELP
EXT
KILL
Ls1IT
LSTP
NEX
NEXP
OVE
RET
SAV
TOP
PRI
TYP
UNS
LoC
INS
TLOC
INSBLK
INSCMD
INSCOM
INSLIN
INSORBRS
CHG
SCHG
?

EDITSS.TXT (Text File to Compile Editor
Used in ADPREP Task)

D-34

<)

[L

g
L s

(3{sel 49ddd¥ pTInNd 03 STTA puRumIo)) dWD'dd¥day “8%-a SxnbTa

¢

/7

£=T1410Y

9£0 T=dNIXYH

9 G IL/0T 68 L3VIEZTIAS=O8Y

0T=SIINN

dW/J3YAOYLZ ¢ ¥223=dS-/HS/d34daYCz* $22 3/ J3udavee ’ «wa_

| "INALSAS TINd " ASWILNS
mommmuommmmmﬁﬁaﬁmmadeDm&mﬂHOHNaHhQZdZZOU mﬁﬁ.mmmmaﬂ

iy, dHn iy @

.

BN 7,

D-35

B Y T e T
,

LTI TIL TR P N

EXT1:
EXT3:
ROOT1.:
ROOT2:
ROOT3:
ROOT4:
ROOTS:
ROOTE:
SEG1:
SEG12:
SEG13:
LEGA:
LEGAl:
LEGB:
PART1:
PART?2:

PART2A: -

A:

B:

C:
LEGC:
ANKLA:
ANKIL.Al:
ANKLB:
SEG2:
SEG2A:
SEG3:
SEG3A:
SEG3B:

ADPREP.

.ROOT
FCTR
. FCTR
.FCTR
+FCTR
+FCTR
.FCTR
.FCTR
.FCTR
.FCTR
FCTR
.FCTR
.FCTR
JFCTR
JFCTR
.FCTR
.FCTIR
+FCTR
FCTR
. FCTR
+FCTR
.FCTR
.FCTR
.FCTR
.FCTR
FCTR
.FCTR
FCTR
+FCTR

- .FCTR

FCTR
FCTR
FCTR
JFCTR
.FCTR
JFCTR
sFCTR
JFCTR
.FCTR
- FCTR

.FCTIR.

. END

ODL COMMAND FILE THAT CONTROLS THE OVERLAY OF THE
DATA PREPARATION SYSTEM.
MODIFIED TO USE THE ROUTINES MODIFIED
FOR FEDS
[224,2]ADPREP-ROOT1-*(SEGl-(EﬁTl),SEGZ,SEGB-(EXTB))

LEGA,LEGE- (PART1~(A,B,C} ,PART2) ,LEGC- (ANKLA , ANKLB)
ARMA, ARMB

C224,2IMENU-C224,21PAGFIL-C224 ,21GETI2-RO0T2
£224,21LENM-L 224, 2]JCENTER-ROOT3
£224,2]1ERROR-[224 ,21PDUMPF-C224 ,21FILES-ROOT4
C224,21PAGOUT-C 224, 2ZIMOVEC-L224 , 2IPDMP-ROOTS
C224,ZILUNCOM-L 224, 21CMDCOM-L 224, 21YMDHMS -ROOTE
£224,21DTRECT

£224,2 +1'LD-[224,21GETPRM-C 224 , 2JADDSUB-SEG12
£224 2.2 {ENS-[224 , 21 TBYTE-SEG13
£224,2]1CETINP-L224,21LINFIL-L224, 21STRERM
£224,21PARA-[C 224, 21 I0FF-[224, 21SFILES-LEGAL
£224,21IDCODE

C224,21IDBM

£224,2I1DBEMEDI-C224,21SRTTRK
£224,21DBMPRT-L[224,21SPCPRT-L£224 , 2JATMPRT-FPART2A
£224,21GEOPRT-[L224, 21PARPRT

[224,21TRKSCH-C224, 21GETTRK
C224,2]10BSSCH-C224,21GETOR

C224,2IPARAM-L224 ,21DCODE
C224,2IVERIFY-C224,21TIMCHK-L 224, 2IMOVEB
£224,21DATCHK-[224, 21JPARPRT-ANKLA]
C224,2]1ATMPRT-C 224, 215EOPRT
£224,23CMDCHK-C27 4, 210BSCHK
£224,21BUILD-C224,21BLDSIM-L224 , 2IMERGE-SEG2A
£224,23TSORT-C224,2IADDSUB

£224,21EDITSS-C224 ,2]EDIT-L224 , 2TWRT- SEG3A
C224,210PENS-C224,23GETLIN-C[224,22 0VE-SEG3B
C224,23IREMVB-L224,21DECNUM-L 224, 21COMPL :
£224,21ADD-C224,21ADDP-T 224, 21BOT-ARMAL
£224,21DEL-[224,21DELP-C224 , 21EXT-ARMA?Z
£224,21KILL-C224,21LSTT-C224, 21LSTP-ARMA3
C224,23INEX-L224,2INEXP-[224, 210VE-ARMA4
C224,2]RET-L224,21SAV-£224 ,23TOP-ARMAS
£224,2IPRI-C224,21TYP-L224,21UNS-ARMAG
£224,23L0C

£224,21INS-C224,21TLOC-C224, 2ITIMCHK-ARMER
£224,21INSBLK-[224 , 21 INSCMD-L 224 , 21 INSCOM-ARMEC
£224,2]1INSLIN-L224,21INSORS-ARMB1
£224,2]1CHG-L224,2]1SCHG

Figure D-49, ADPREP.ODL (Overlay Descriptor

for ADPREP Tasgk)

B R A L SR T SV T T e T SRR A T T ! -

- ADSIM

(_ LENM
TIMCHK
FILES
YMDHMS
SIMINI
IDCODE
PAGOUT
MOVEC
ERROR
FLMP
PDMPE
ESTMOD
DCODE
PARAM
GETFRM
IBYTE
STRERM
FIELD
GETINP
LINFIL
FARENS
CENTER
DIRECT
PARA
IOFF

(" SIMOPT

- OUTMOD

MENU
FAGFIL
GETIZ
CENTER
>

'Figure D-50. ADSIM.TXT (Text File to Compile
ADSIM Modules)

ADSIM.CMD COMMAND FILE TO TASK BUILD THE SIMULATION
CONTROL COMPONENT.

HME AR ME W

ADSIM,ADSIM/SH/-SP=ADSIM/MP
LIBR=FCSRES:RO
COMMON=ADSGBL:RBW:7

ACTFIL=6
M2AABUF=1036
IINITS=20
ASG=5Y:1:2:3:4:7:8:9:20,TI:5:6
¥
?
(:) Figure D-51. ADSIM.CMD (Command File to Build

ADSIM Task)

D-37

(dsel WISAY xoF xojdraossq AeTioaQ) TAOWISAY °Z6--d 8Inbrg

aNd "
‘ HAINIOLZ ' #2237 ¥I03° :
10934~ EIIAOCE ¥CEI-T1IADVALT ' YCEI-NNTWLE ' #2221 HLDA"
JOWIOOLZ ‘%221 ¥IDA" :
IAOWISEZ #2721 HINd° :
SNEMVALE ' $#EEI~TTANITILZ ‘ $#223-dANIIIOCZ ¥22) dL2d" :
CHOAS-OIATILE Y2 3-WMANLSLZ ' b2 2 1-ALAHICZ #2721 ¥Ing” :
THOAS-WHITADLE * #Z221-JJ0ICZ ‘ $22I-YUVALZ ' ¥223 4103
IOFYIALz ' #2731 410"
YAINIDEZ f $521-SNANVALZ ‘$22] ¥Io4a” :
EVOAS-TIANITEZ ‘#2C1-ANITAOCE ' $28 1-QIdTAEZ ‘#2221 MIDI° :
ZYOAS - WHANISLZ P2 Y- ATAHILZ " 22 1-WHALAOEZ ' $#221 ¥INd” :
IVOAS-WYAVALZ ' $2231-3002ACZ #2273 4Lod°
AOWISdrz’ ¥z2z1 u104°
AdWNAACZ ' #221-dWAdECE %223 ¥YI0.4°
PU-OMYEL T $Z2F-2FAONLZ ' #7223-TN0OVIACZ ‘ ¥22Z3 ¥IoJd°
FH-JA00AIEE 'FEZ-INIWISLZ $#271- SHHAOWALZ ‘221 dIo°
CH-8ATTALé ' $ZZI-HHOWIILZ ‘ #22 I-WNIICZ ' ¥221 4IDA"
(29dS* (ZIUVYA’ TIMVA) -H2IS ' (23 ' Td) - ¥DES) ¥y—-TH-WISAVYLZ’ #2211 Loou"
* INANOJWOD T0YINOD
NOTINIOWIS HHI AVINIAO O AIIA ANVWWOD 700 " WISavY

“

1045
L8 810451

e am wm, Ak

D-38

SIMMER
UPLINK
SIMTIM
URAND
RTRAN
UPSEND
CRRUPT
SETRE
MSGGEN
uPCMD
UPBLCK
UPDATA
DBURST
DNOISE
GAUSS
CVTDRO
?

Figure D-53. SIMMER.TXT (Text File to Compile
SIMMER Modules)

{.
; SIMMER .CMD COMMAND FILE T0 TASK BUILD THE SIMULATION
H ' CONTROL COMPONENT
r
SIMMER,SIMMER/SH/-SP=5IMMER/MP
COMMON=ADSGBL :RW:7
ACTFIL=6
PRI=75
MAXBUF=1036
UNITS=15
ASG=5Y:1:2:3:4:8:14,T1:5:6,TT32:185
¥
?
(:} Figure D-=-54. SIMMER.CMD (Command File to Build
o ' SIMMER Task)

D-39

NE W W we

Rl:
R2:
R3:
51:
S11l:
512:
S1lA:
81B:
31C:
51D
2%
521:

SIMMER.ODL COMMAND FILE TO OVERLAY THE SIMULATION
CONTROL COMPONENT.

.ROOT [224,21SIMMER-R1-#(S1~{S1A,S1B,51C,510),82)
FCTR £224,23UPLINK-L224,215IMTIM-C224, 2JURAND-R2
.FCTR C224,21RTRAN-L224,21FILES-[224,215MTREF-R3
.FCTR [£224,210UTQI0

.FCTR [£224,21UPSEND-L224,21CRRUPT-[224,21SETRE-S11
.FCTR [£224,2IMSGGEN-[224,1IVSEND~512

.FCTR [224,215IMREF-E£224,21TCON

.FCTR L224,21UPCMD-[224,21CMDCOM

.FCTR [2724,2]UPBLOK-[Z24,2IMOVEB

.FCTR [224,21UPDATA -

.FCTR [224,231TTMCHK

.FCTR [224,2]1DBURST-C224,21DNOISE-C224,230AUS5-521
.FCTR [?224,21CVTDRO-L224,21YMDHMS

.END

Figure D-55. SIMMER.ODL (Overlay Descrlptor for

SIMMER Task)

RECEEV
S IMREF
SMTREF
TCON
OUTHIO
FRIOR
>

Figure D-56. RECEEV.TXT (Text File to Compiie
RECEEV Modules)

A

(0L/TT-dad ®y3 uo sgag 3zoddng o3
ASBL AHIOH PITNE O3 STTJ puRmMWOD) OWD 0LAFADTI "85-d 2InbTg

p
¥
ATIIAI=NSY.TL
96 Z=ANHXYW
v="T1410%
ET?AS‘9T:1T¢G:IT=98V
91=SLINN
GE=Iud
MY THO50Y=NOWHWOD
/
ANIEA azmm>n~ vZz1
‘oxdxno
.zoua JIUINS ‘ JTIWIS ‘ HOTUS* 0L ATIDTN=0 LATIDAN 02 ATIIAY

(€2/1T-1IST @2y3 uo saad 3xoddng o3 _
dSel AHEDFEY PITNE O3 OITJ PURUMWOD) AWD'AHADTY *LG-0 oInbTd

¢
i/
ATADAN=NSYL
SE=I8d
¥=11450V
9G6Z = INHXYW
ET:AS ZI:PZLL 9T TTI:G: IL=9SY
9T=SLINMN
MY ¢ 199S0Y=NOWWOD
/
HOI¥d ‘010500 NOOL
JAUINS * TTUWIS ! ASADAN=HS / dS- / AFADTL* dD- / ATIITE

*ININOAWOD JHILIYD
JOVYSSAW MNITNMOO dHL QQHDQ ASVEL 0L JTId ANVIWWOD WD * AF3DAY

T Wl e Sh

D-41

Alach A Te o e L

.
L4
a
r
.
L4
»
L4

Figure D-59.

DNLINK.CMD

DNLINK
STRETS
MSGGEN
S IMTIM
QUTQIO
DNINIT
DNMCHK
DNEXIT
GETMSG
STDATA
STMEG
‘TCON
SMTREF
RESPRT
DCSRET
>

DNLINK.TXT (Text File to Compile
DNLINX Modules)

COMMAND TO TASK BUILD THE DOWNLINK MESSAGE
PROCESSOR COMPONENT.

DNLINK,DNLINK/SH/-8P=C224,2]1DNLINK,C224,218TRPTS,
MSGGEN,L224,215IMTIM,(224,110UTQIO0,
L2224, ZJDNINIT £C224, ZJDNMCHF DNEKIT

GETMSG STDATA STMSG,

C224, ZJTCON C224 ,2]1SMTREF,
[224,13VSEND,

C224,21RESPRT,DCSRPT

/
ACTFIL=8

COMMON=ADSGBL :RW:7

UNITS=19

MAXBUF=256
ASG=5Y:13:14:16:17:18:19,T1:5:6

/7
b

FPigure D-60.

DNLINK.CMD (Command File to Build
DNLINK Task)

O)

Y & i W

L DT T L e e

DNHIST.CMD -

Mk W W W

COMMAND FILE TO TASK BUILD THE SIMULATION
HISTORY GENERATION COMPONENT

?NHIST,DNHIST/-SP=DNHIST,E224,IJVRCEVE

ACTFIL=3
COMMON=ADSGBL :RW: 7
PRI=80

UNITS=14
AS5G=5Y:14,TT2:5:6
/1

>

Figure D-61.

Figure D-62.

DNHIST.CMD (Command File to Build
DNHIST Task)

SCREEN
MOVEC
ERROR -
PDUMPF
PAGOUT
CENTER
LEN
PARENS
IBYTE
GCETFRM
LINFIL
FIELD
STRPRM
TPARA
TETIND
TSTMOD
TDIRCT
TDCODE
FILES
TPARAM
TIMOPT
INCMD
TMENU
LENM
PAGFIL
TGETI?Z
»

SCREEN.TXT (Text File to Compile
SCREEN Modules)

D-=43

(3ser, NIFYDS x0F Iojdraossq AeTIA0) TAO°NATIDS “v9-a 2anbid

anNd -

CILADY-TI4OVd ¥L04°
1ZS-WNAT-NNAWL-OWONI ¥LJd"
LAOWIL ¥I0d°

WYUVY4L-S3TI4 WLOA"

TYIS-J00LL- LOYIAL-JOWLSL ¥104°
dNILAL-VYVYdL ¥LIAg"
ETIS-WIAYLS~TTATA-TIJINIT ¥LO4~
Z1S-4A0I -WidLAD-ALAHT &lLOA°

: TIS-SNIYVd-N3T ¥LOJ°
YAINAD- LNV -AdWNdd ¥YL.04°
1TY-dWOd-HOWI -JJIA0N ¥LOA™

(ZS’ (HTIS’VIS)-1S)¥- TH-NIINDS LOOW"

" LNANOJWOOD
¥d055300¥a 0/1I ¥ASN JHL AVINANAD O III4 (GNVYWWOO ‘100 " NI3¥05

(ysel NITIDS
prIng 03 oTTJd PURUWOD) UKD NIAAYOS "£9-d =InbTa

<
1/

MY ¢ THHSAY=NOWWOD

L:9!G FIEI RS 2 ELL=D5Y

G="114L0V

0L Z=ANHIKRA

96 Z=ANAXYH

L=SIINN

dW/ NZIHDS=HS /dS~ / NZINIS * - / NTIHOS

;
=~

e Wy W e

D-44

2L

ewd

-
s‘_,-..f-—"

———— .+

ADOUT
OUTLUN'
BMHIST
DPRET
TIMCHK
DCRET
SVRPT
GETDCS
GETRES
ARESRP
ADCSRE
GET'TIM
EPHCMP
ADDSUB
YMDHMS
CINPUT
DIF
PARA
ERROR
PDUMPF
FOMD
FIELD
GETINP
I0FF
LINFIL
PARENS
STRPRM
MOVEC
PAGOUT
LEN
GETPRM
IBYTE
CMPOPT
CMPINT
EPHED
CHEAD
EPHDAT
CONVRT
RELSS .
REALS4
JCOMPAR
CNTINI
CTREQ
DIFFER
DIFQUT
CREAD1

Figure D-65. ADOUT.TXT (Text File to Compile
ADOUT Modules (1 of 2)

GETDAT
C5UMMR
DIFORB
DIFRM
CACCUM
DIFWRT
MENU
PAGFIL
GETIZ2
ERROR
LENM
PAGOUT
CENTER
?

Figure D-65. ADOUT.TXT (Text File to Compile
ADOUT Modules (2 of 2)

; .
: ADCQUT.CMD COMMAND FILE FOFE TASK BUILDING THE REFORT
H GENERATION AND ANALYSI[S SUBZSYSTEM

ADOUT , ADOUT/SH/ - 5P=ADOUT/MP

UNITS=13

MAXBUF=2440

FMTBUF=270

ACTFIL=7

ABG=3¥:1:2:3:6:9:12:13,TI:5 MMO:10,MM1i:11

/7

?

Figure D-66. ADOUT.CMD (Command File to Build
ADOUT Task)

(2

(¥sel Tnoav Ioy zoadrxossg KerIsa0) TAQ°INOAY °£9-0 oInBTg

N3
JAN0W WLOg" : ENNEW
ENNIW-YAINAD-LO0IVd-WNTT HLOg" : ZNNIW
ZNNFH-dWad - ddWNOE-HOYHE HIIAL" *IONIH
TANIW-ZITAD-TIIDNA-ONIN ULOA° F ONNEIW
JHMITIA-WADOVYD HILDJg* tv¥0

¥¥O-IJUJIA-GH0ITA-NHKASD I3 - :E¥D
£ $0-IVAIID-ZAVIYO-dNINT ¥IDd" ¥4 Je]
Z¥D-1aVauD-IN0JIA-Y414Id ¥IDJ” PT¥D
T#0-03UL-INIIND-HYAWOD ¥LDJ" :9%0
¥STVAY ¥IDJg” $ZED
ZED-BSTVIN-THANOD-IVAHIY MIOJ" PTED
T€D-QVIHD-TIHHII-INIdWD MIDd" PED

LdOdHO HLOJ" g A

ALAHT-WAALED-NIT ¥I0d° LR 2\ £ :

PHVd -LN0OVd-DINOW-WHJHLS HIO4* ‘EuNd

£UVd-SNIUVI -"1ITINT'T-JA0T HIOJg" Lx2-\ £
CHYd-dNITAD-aTITII-dWad ¥103" LRE-\ £
THVd~-JdHNAd-HOHEI -YHVd Y104 :0¥NYd
0¥V¥d-ZAV3IH 4133" ‘110
T10-TAYIH-JId-LOANID ¥4iDd-” 1D
SWHUWA ¥I10J4" *1Zs
TZS-HASAaV-dWOHAE ¥IDJ" :Is
WILLID ¥IO4* 918
YIS-dUSOOV-JUSIUV-STULAD YILOJ" *EiSs
E15~-SO0ALID~-LAUAS -IdHId WLOI* $Z1S
ZIS-NHOWIL-IJ¥d0-ISTHWS ¥1Dd° 1S
RNILN0 WLDg- L.

(¥2°£2'2D) uwIda” 1D

 (ONNEW’ (YT1O-10)-28*1S)»-TH-INOAY LOOH"

"WALSASENS SISATYNY (NY NOIIVEANID
LHOJAY FHEL J0 AVINIAO JHI 404 J1T4 ANVWWOD 100 * LOoav

CLKTIM
FNDOBS
HMSCNV
JDATE
LCKSET
RCVMSG
REFCNV
SIMCB
SIMREF
SIMTIM
SMTREF
SNDMSG
TCON
TIMDIF
‘TYMD
YMDCNV
>

Figure D-68. SIMCB.TXT (Text File to Compile o
SIMCE Modules) il

SIMCB,SIMCB=SIMCB,CLKTIM,FILES,FNDOBS, HMSCNV, JDATE,
LCKSET ,MOVEB, RCVMSG, SIMTIM, SMTREF , SNDMSG, TCON,
YMDCNV, SIMREF, TYMD, OUTQIO ,REFCNV,TIMDIF ,RECLN ,REVCH
/ .

ACTFIL=4

UNITS=21

ASG=TT21:21,TI:5:6

MAXBUF=356

COMMON=ADSGBL :RW

/7

>

Figure D~69. SIMCB.CMD (Command File to Build
SIMCE Task)

T e

DBMINI
INIT
MENU
PAGHFIL
GETIZ
CENTER
PAGOUT
LENM
MOVEC
ERROR
PDMP
PDUMPF
FILES
LUNCCOM
PARA

() I0FF

' IDCODE
PHYCON
INITAB
ESTPRM
EXPARM
PARENS
LINFIL
GETINP
FIELD
STRPRM
GETPRM
IBYTE
>

Figure D-70. DBMINI.TXT (Text File to Compile
DBMINI Modules)

D-49

b .) BT R J_

ST 4 ~
It N -

A

LRIt

QM i o !:’.

OF POCR

(3sel, gDS3dW PTENd ©3 STTJ PUBUMIOD) AWD YISSHEW °ZL-d 2InbTA

- <

I

' . ETIL CIOAC T 0EO-08Y
: - E=TIIALOV
9% 7 = INGYYW

=S LINAO

: / N
HIGEAW HE /A5~ /D0 SIW DS SN
4

TALTTITIAN NOTIWAIUD
AOVESHW LVWE0d THL JTINg MA8VI O JT1LJ (ONVRWGD (THD " dS 5

-, 4w @

L

{ysel INIWGd PTThY O3 STTJd PUBHWOD) QWD INIWEA *TL-d 2I0HTJ -

<

1/
9:G:IL‘Z: Tt AS=0SY
0T=SLINA .

9£0 T=ANBXYW *
$="1TJLOVY e

/

D-50

ALAGICZ ‘¥ZZ2

‘WNAIINCZ ‘ ¥2Z 1 WHANLSLZ ‘ #ZZ22/Q1AIdrz ¥221

‘ANITIOCZ $Z23° TIANITICZ $221° SNAAVALZ “ $2Z]

‘WaYAXIET $Z2213

‘WMAISACT +ZZ 1’ AVLINICL #2217 NODAHALZ ' 221

“40000ICZ ‘%221 410102 221/ YUVALZ ‘ #2231

‘WOONNTICZ ‘%221 SATITALCZ ‘$Z2Z21 ' ddWNAIEZ ‘ #2213

‘AWAdEZ’ $ZZ 3 HONNALZ ‘221 DINOKREZ ‘ vZZ 1

‘WAL Z ‘%222 1009Ydrz ' 271

‘WAINADCZ ' $2Z1°ZII3OC2 $Zz]11A0¥arz ‘ vzzl
‘ANAWLCZ ‘$ZZ1 ' LINICZ ' $ZZ1 ' INIWEACZ ' ¥Z23=HS/d5~/INIWEALZ ‘¥TZ 1 INIWHAEZ ‘ #2211

TALI'TILN NOITVWZI'TVILINI
JSVd VILva HHI q1Ifg MX5YL 0L JdT1Id4d ONYWWO0O W3 " INIWGa

BT Ty

e . - ; e L g

(/18950Y¥/ NOWWOD
TeqeTdD pTInd 03 STEA puBIO)D) dHD*Ig9sAdY "FL-A wuﬂmﬂm

¢

lf

0=8LINND

QO0GEZ-00C09T HOEAV=MYd

0=MIVYLE

!
umwmmﬁhw.wmmunHm\gmwmQﬁ~mmu\Imxﬂmumﬂﬁ;QIl\Hmmgmwmmﬂﬁﬁ.Hm

Ptz Rl 74
VANV NOWWOD IV¥HOTO AHI OIING 0T F1Id GNYHROD T WD TSV

Tt dW, W

(/1998a¥/ NOWWOD TeqoT® 3O
BurprIng TOI3UO0D 03 “@TTJ PUBMMC)) WO IIO9SAVY °g£(L-0 =2anbtg

Cz‘%221=21n/

THOSaOVLZ‘ ¥2218

AQ/ ¥ dYW " 189SaV’ ¥ {H1S * 189SV’ ¥ SL " 1gHSAYCTI‘ 13
C1‘T11=D18/

TEOSAY="1H95dY ‘ 19950y

/x4 L8 IEOSAY / ¥ ! PHO " 1HOSAY

£z'%2Z231=21n/

WALSAS JHL OINI VIV
NOWWOD 'TVHOTD /TdDS80Y/ MAN ¥V d0VId 0L J11Id4 ANVHWOD HWO0D " TH33aV

138
)L
did
I3s
¥od
did

iy d e S

D-51

Figure D-75.

RSX11S

SET
SET
INS
SET
INS
SET
INS
SET
INS
SET
INS

SET

LOA
SET
INS
FIX
SET
INS
FIX
SET
INS
FIX
SET
INS
FIX
SET
INS
FiX
SET
INS
FIX
SET
INS
FIX
SET

FEDS23.CMD (Command File to Build System -

/POOL=340
/MAIN=11SRES:340:145:COM
C1,1J11SRES
/MAIN=GLB1:4:136:COM
C1,1IGLBl/PAR=GLB2
/MAIN=GLBZ:%:50 : COM
€1,11GLB2/PAR=GLB2
/MAIN=GLB314:344 :COM
£1,11GLB3/PAR=GLE3
/MAIN=GLB4 :%:234 :COM
£1,11GLB4/PAR=GLB4

/MAIN=TTPRR:*:122:TASK

TT:

/MAIN=EXEC:#:470:TASK
C224,1JEXECZ23/PAR=EXEC
EXEC
/MAIN=DATCAP:4:231:TASK
C224,1IDATCAP23/PAR=DATCAP
DATCAFP
/MAIN=INPPRO:*:310:TASK
L224,1]1INFPRO23/PAR=INPPRO
INPPRO
/MAIN=PREPRO:4: 321 :TASK
£224,11PREPRO23/PAR=PREFRO
PREPRO
/MAIN=DATMGR:% 724 :TASK
C224,11DATMGR23/PAR=DATMGR
DATMGR
/MAIN=ESTIM:A:567 :TASK
£224,13ESTIM23/PAR=ESTIM
ESTIM

/MAIN=0BSMDL :%:442:TASK

'£224,110BSMDL23/PAR=0BSMDL

OBSMDL
/MAIN=DOPPRE:*:347:TASK

Image for L8I-11/23) (1 of 2)

D-52

R T e S F A i s c W el et ML T e

Figure D-75,

£224,11DOPPRE23/PAR=DOFPPRE
DOPPRE
/MAIN=QUTPRO:4:317:TASK
£224,130UTPRO23/PAR=CUTPRC
OUTPRO
/MAIN=STAPRE:*:154 :TASK
C224 ,115TAPRE23/PAR=STAFRE
STAPRE
/MAIN=0RBIT:%:1262:TASK
C224,1]10RBIT23/PAR=0RHIT
ORBIT

EXEC

ASYNCHRONQUS COMMUNICATION LINES

/SLAVE=TTQ:
/FDX=TT0: -
/TYPERHEAD=TTO :

/FDX=TT1:
/SLAVE=TT1:
/TYPEAHEAD=TT] :

/FDX=TT2:
/SLAVE=TTZ:
/TYPEAHEAD=TTZ2:

OPERATOR'’ S CONSOLE

/FDX=TT3:
/TYPERAHEAD=TT3 :
/SLAVE=TT3:
/CRT=TT3:

FEDS23.CMD (Command File to Build System
Image for LSI-11/23) (2 of 2)

e —

APPENDIX E - SUMMARY OF FEDS REQUIREMENTS

This appendix contains the updated FEDS requirements pre-~
gsented in Reference 1. The FEDS requirements are presented
according to level of detail, as follows:

. Section E.l specifies the system requirements,
which are the tasks the system must perform (on the
highest level) to satisfy the needs and objectives
of the end user.

o Section E.2 specifies the system performance re-
quirements and limitations. These consist of the
schedules on which specific requirements must be
satisfied and any limitations that will affect the
performance of the system.

® Section E.3 specifies the functional requireéements,
which are the functions the system must perform to
satisfy the system requirements. These are the
most detailed requirements given.

E.1l SYSTEM REQUIREMENTS

FEDS will be an onboard orbit determination system requiring
periodic ground support. The objective of FEDS is to éro-
vide the outside world with orbit information (i.e., posi-
tion and velocity) on a near-real-time basis that could be
used for experimental data annotation.

For the‘ground demonstration, FEDS will be located on the
ground with a transponder at GSFC. The external world in-
cluding the ground support system will be simulated by ADEPT
in GSFC's STL. Among other input, ADEPT will provide FEDS
with an initial spacecraft state. During the experiment,
the White Sands tracking station will perform Doppler com-
pensation based on the corresponding ephemeris tape. The
resulting Doppler signals will be transmitted through a TDRS

to the transponder connected to FEDS. Based on the initial
state, FEDS will predict the Doppler frequency shift to
enable the transponder to receive these signais. The
Doppler measurements will then be used by FEDS to achieve a

new best estimate of the state. The new state vector will
. be used on the next pass to predict the Doppler frequency
shift. Figure E-1, the FEDS context diagram, shows the
relationship of the ground demonstration version of FEDS to
its external environment.

This section specifies the system regquirements, i.e., the
tasks that the prototype FEDS must perform to satisfy the
needs and objectives of the ground demonstration. These
requirements include the top-level FEDS requirements, pre-
sented in Section E.l.1l, and the input and output reguire-
ments, presented in Sections E.l.2 and E.l.3, respectively.

E.1.1 TOP-LEVEL REQUIREMENTS
The top-level requirements of FEDS are as follows:

® FEDS will provide position and velocity on a near-
. real-time basis for experimental data annotation
and direct downlink.

(] FEDS will predict one-way Doppler observations on a
scheduled basis for direct downlink to ADEPT and
for transponder acquisition.

[] FEDS will generate and output a state vector pre~
dict table containing vectors at a specified fre-
quency over a specified time interval.

° FEDS will maintain and output an activity log on a
'regular basis and when specifically requested_
through ¢« control command.

® FEDS will perform any preprocessing required to
pProcess the input one-way Doppler observations.

9808

A0

¢ S1S3NG3AH
ELTY

awiL

HIANOJSNYYL
viA
ANIT SNOLL
-¥DINNNWOD

ueIbetg IX93U0] SAAd

£OvId TOHANDD
HIANOJSNYEL
H3Tdd0n

os/6%Es

[sETRILaELE]
SNOILYAHISEO)
HINdd0a

mw.uimmm! ALVDIHYy
<iu0 338 NOHLYWIjoF
7zmmn_u [TERE 0T nm.nu..owr. 7
m-&wz‘mzmw .-.WUEQL.

o

) . HOLVINWIS
o 1430y
Sy, ne? .
43Wviyy s roninos NOWT
UNYRNGD oBLNDD
> Iavy ygirvzeistt
S
L) oy SHOTOAA sHOL - =N
E] -)
Q38 yaanann 31107
i
fo—

i

ek et
- Rk

E.l.

2

FEDS will be capable of recovering from both user
spacecraft and Tracking Data and Relay Satellite
(TDRS) maneuvers. '

FEDS will perform orbit determination using a batch
least-squares method of estimation, differentially
correcting the orbit of the target {user space-
craft). FEDS will estimate the following state
parameters:

- Six parameters of the orbital state (target)
(position and velocity)

- Atmospheric drag coefficient, Cph

- Cpefficients of the frequency model for one-
way TDRS System (TDRSS) data

FEDS will process one~-way TDRSS Doppler observation
data.)

INPUT REQUIREMENTS

The FEDS input requirements are as follows:

FEDS will accept input messages c¢ontaining data and
control commands.

FEDS will accept from ABEPT the following input
data:

- New TDRS vectors. These data include one
state vector (position and velocity) for each
active TDRS, up to two TDRSs. hew TDRS vec-
tors will be uplinked at least once per day.

- Maneuvéer schedule. This schedule specifies
the predicted states and times of user space-~
craft and/or TDRS maneuvers. It covers up to
eiqht'maneuvers and will be uplinked as neces-~ -
sary. The entire maneuver schedule will be Qh)
urlinked at the same time.

E-4

X
!

B 5 ;

Tl el ot W P et

s e I
.

Tracking schedule. This schedule is the

tracking schedule for the prediction of one-

way Doppler frequency shift and the annotation
of observations with tracking configuration.
It covers 16 tracking intervals and will be
uplinkeé as necessary. The entire tracking
schedule will be uplinked at the same time.

Initialization table. This table specifies
the initial conditions for the estimator, in-
cluding the a prisri state vector, which will
be propagated for output until a solution is
reached., This table will be uplinked at the
start of FEDS execution and then later at the
user's direction.

Constants. These constants, which will be
used throughout the FEDS processes, may have
to be changed during long-term operations.
They are categorized as follows: integration,
conversion, and physical constants; station
positions (minimum of 3 stations) and observa-
tion modeling constants; geopotential model
constants; atmospheric drag model constants;

‘and timing coefficients.

Estimation control parameters. This set of

parameters (e.g., maximum iterations, observa-

tion weights, convergence criteria) provides
control in estimating the spacecraft state.

It will be uplinked at the first estimation

process and then later at the user's discre-
tion. '

FEDS will accept Doppler observations from the com-
munications link with the transponder consisting of
a 40-bit serial word which is time tagged.

E-5

S eds Tatg

® FEDS will recognize the following control commands
from ADEPT:

- REBOOT: Reboot FEDS.

- ABORT: Abort FEDS processing; output activity
log,

- STOP: Terminate FEDS processing in a normal

manner; do nct accept more data.

- START: Start FEDS processing:; accept all
data. (This is a reply to commands STOP and
ABORT.)

- SUSPEND: Suspend computational processes;
continue accepting data.

- CONTINUE: Resume computations. (This is a
reply to command SUSPEND.)

- MARK TIME: Suspend all processing to allow
shutdown of ground support system.

- RESUME PROCESSING: Pesume all processing:
(This is a reply to command MARK TIME.)

- BEGIN FAST TIMING: Begin fast~timing mode
(i.e., compress out all idle time)

- STOP FAST TIMING: Terminate fast-timing mode;
(i.e., resume processing in real time).

- STATUS REQUEST: Output activity log.
- SET CLOCK: Set system clock to new time.

e FEDS will accept the following control flags from
the ¢ommunications link with the transponder:

- Stop Doppler compensation indicating that the
receiver carrier is locked onto the TDRS sig- . f,)
nal. : L

i
E
s
i‘
|

9808

- Doppler data available flag indicating the
Doppler measurement has been taken and is
available for FEDS processing,

E.1.3 OUTPUT REQUIREMENTS

The FEDS output requirements are as follows:

9808

FEDS will periodically output an activity log con-
taining a history of all activities it has per-
formed.

FEDS will output priority messaqes to request spe-

cial ground support such as error handling, fast-
timing, and so forth.

FEDS will output tables of predicted state vectors
for direct downlink to ADEPT.

FEDS will output predicted one-way Doppler fre-
quency shift on a scheduled basis to the tianspon-
der via the communication link for receiver
acquisition.

FEDS will output predicted one-way Doppler fre-
guency shift on a scheduled basis for direct down-
link to ADEPT. '

FEDS will output the following reports !rom the
estimator: '

- Differential correction (DC) residuals re-
poit. This report contains information about
each individual observation (e.g., tracking
configuration, observation residual, editing).

- .DC summary and statistics report. This report
coantains DC summary information (e.g., state
update, new state, standard deviations of
state parameters) and DC statistics (e.qg.,

i ey O -

current root-mean-square (rms), previous rms,
batch editing statisties).

E.2 SYSTEM PERFORMANCE REQUIREMENTS AND LIMITATIONS

This section specifies those requirements that deal with
system performance and the limitations associated with it.
Section E.2.1 presents the system performance regquirements
that define the schedules on which specif'c requirements
must be satisfied. Section E.2.2 presents the hardware and
software requirements and the limitations that will affect
FEDS performance.

E.2.1 SYSTEM PERFORMANCE REQUIREMENTS
The system performance requirements for FEDS are as follows:
e FEDS will capture all incoming messages upon demand.

® FEDS will service each control command immediately
after reception.

' 3 FEDS will maintain an activity log and output
(downlink) it on a scheduled basis or when re-
gquested by a control command.

] FEDS will output a table of predicted user space-
craft state vectors over a specified time interval
ét a specified frequency. For example, if the time
interval is 1/2 hour and the freguency is 1 minute,
the state vector predict tables will be generated
as follows:

- Each time a new solution is reached or a new
a priori state vector (initialization table)
is received, a table containing state vectors
at l-minute intervals starting at the current
time (tn) and ending 1 hour later (tn + 1)

o

will be generated and output. Y

3808

(=)

- Then, 1/2 hour later (tn + 1/2), the next
table will be generated and output., This
table will contain state vectors at l-minute
intervals over the next 1/2 hour. The start
time of this table will be the end time of the
previous table (tn + 1) and the end time
will be 1/2 hour after that (tn + 1-1/2).

- The second step will be repeated until a new
solution is reached or a new a priori state
vector is received, which causes the process
to begin again with the first step.

FEDS will output one-way Doppler frequency shift no
later than 1 minute before the start time of the
current tracking interval. The actual amount of
lead time will be specified by ground control.

FEDS will complete data preprocessing and estima-
tion on each batch of data by the time the next
pass of Doppler data is received. Since observa-
tions data will be received every revolution under
normal circumstances, this processing time will be
limited to the length ¢of one revolution of the user
spacecraft (nominally, 100 minutes).

FEDS will be capable of performing batch estimation
over a user-specified minimum data span that will
never be larger than 24 hours. In addition, FEDS
must be capable of handling a maximum of 125 obser-
vations in each batch of data.

., FEDS will be capable'bf generating two types of
reports during each DC slide:

- The DC residuals report, if generated, will be
generated either after the last inner edit

loop of each iteration or after the last iter-
ation on each batch of data.

- The DC summary and statistics report, if gen-
erated, will be generated either after each DC
iteration or after the last iteration of each
DC slide. |

E.2.2 HARDWARE AND SOFTWARE REQUIREMENTS AND LIMITATIONS

The FEDS hardware and software requirements and the limita-
tions associated with them are as follows:

9808

The development computer will be the Systems Tech-
nology Laboratory (STL) PDP-11/70 under the RSX-11M
operating system.

The target computer will be a PDP-11/23 under the

RSX-11S operating system. It will have 256K bytes 7

of random access memory (RAM). The only peripheral o} |
available will be a ground terminal to mcnitor FEDS o
status during testing. ' i

All necessary system software (i.e., the :avice
handlers) in both the development and target com-
puters will be available.

Since there will be no data storage peripherals in
the target system, all data mnst be managed in
RAM. 1In addition, overlaying of tasks is impos-
sible.

A communications link with the transponder will
provide time-tagged Doppler measurements and con-
trol Doppler compensation, indicate when a measure-
ment is available, and control the Doppler
accumulator. '

E.3 FUNCTIONAL REQUIREMENTS DEFINITION

This section specifies the FEDS functional requirements,
i.e., the £
the system requirements and the performance requirements.

unctions that the system must perform to satisfy

E.3.1 FUNCTIONAL REQUIREMENTS

The FEDS functional requirements specified in this section
are presented according to functional areas, as follows:

System control {Section E.3.1l.1) é
Input processing (Section E.3.1.2) ;
Data preprocessing (Section E.3.1.3)

Data management (Section E.3.1.4)
Estimation (Section E.3.1.5)

One-way Doppler prediction (Section E.3.1.6)
Cutput processing (Section E.3.1.7) |

e b e i SV R S 4

These functional requirements are the most detailed require-
ments presented., No attempt is made to definé computational
models or algorithms here, except where the requirements are
specifically affected.,

The functional requirements specified in Ssctioas E.3.1.1
through E.3.1.7 are numbered for convenience. In the num-
bering system used, R indicates requirements.

E.3.1.1 8System Control Functional Requirements

The functional requirements for system control are as fol-
lows:

R1.1 FEDS will maintain an activity log containing the

following: system events, information messages,
error messages, directives, and control communds.

R1.2 FEDS will service each control command immediately
upon reception. '

R1.3 FEDS will schedule maneuver recovery according to
clock time and the maneuver schedule.

E-11

9808

. e -

Rl.4

R1.5

Rl.6

FEDS maneuver recovery will consist of the follow-
ing:

Rl:4.1 TDRS maneuver. The predicted state after
the maneuver will be given to the data
Preprocessor to be used for £ihture gener-
ation of the TDRS orbit file.

R1.4.2 .User spacecraft maneuver. The TDRS orbit
files and the observations iile will be
purged. The startup procedure will be
performed; estimation will be resumed
only when a complete estimation span of
data has been received.

FEDS will schedule onemway‘Doppler'predictign a

user-specified number of minutes before the start

time of each tracking interval in the tracking 5 :
schedule. | | NP

FEDS will schedule the output of data and messages.

R1.6.1 FEDS will schedule the output of severe
errors from which the system canrot re- ;
cover. 1

R1.6.2 FEDS will schedule the ocutput of priority
messages. '

R1l.6.3 FEDS will schedule the output of the ac-
tivity log at a specified interval.

R1,6.4 FEDS will schrdule the output of the ac-
tivity log when specifically requested
through a control command.

R1.6.5 FEDS will schedule the output of the pre-
dicted Doppler frequency shift at least
1 minute before the time tag of the first £
observation.

E-12

&Y

o~
i’
N

R1.7

Rl.8

R1.9

R1.10

R1.11

R1.12
R1.13

El3.l.2

FEDS will schedule the generation and output of the
state vector ..vdict table at the end of the speci-
fied interval ai:;er the last time of output,

FEDS will schedule the generation and output of the
state vector predict table immediately after a new
solution is obtained.

FEDS will schedule input processing when the input
queue is full or when the input gqueue contains data
and the system is otherwise idle.

FEDS will schedule data preprocessing when a com-
Plete pass of data has been processed through input
and estimation on the previous batch has been com-
pleted, |

FEDS will schedule data preprocessing when a TDRS

mana{uver occurs or when a new TDRS vector has been
received.

FEDS will scihedule estimation when a new pass of
data has been added to the observations data set.

FEDS will notify ground control when it has an ex-
cessive amount of idle time for fast timing.

Input Processing Functional Requirements

The functional requirements for input processing are as fol-

lows:

R2,1

R2.2

R2.3

9808

FEDS will capture all incoming messages upen demand.

FEDS will accept, as input, messages containing
data and control commands.

FEDS will process the following types of input
data: Doppler measurements, transponder control
flags, new TDRS vecturs, maneuver schedule, track-
ing schedule, initialization table, estima’ion con-
trol parameters, and constants {(i.e., miscellaneous

.

9808

constants, station constants, geopotential tables,
atmospheric density tables, and timing coeffi-
cients).

R2.4 FEDS will accept the fillowing control commands:
REBOOT, ABORT, STOP, START, SUSPEND, CONTINUE,
STATUS REQUEST, SET CLOCK, MARK TIME, RESUME
PROCESSING, BEGIN FAST TIMING, and STOP FAST TIMING.

R2.5 Deleted.

E.3.1.3 Data Preprocessing Functional Requirements

The functional reguirements for data preprocessing are as
follows:

R3.1 FEDS will accept only those Doppler oliservation
measurements that are in ascending time order and
have a reasonable value,

!

R3.2 FEDS will convert the Doppler observation measure- :
ments and time tag to the correct engineering units,

R3.3 No smoothing of the raw observation data will be¢
performed. '

R3.4 FEDS will pregenerate TDRS orbit files from the | i
uplinked TDRS vectors (one file £egr each TDRS). :
. These files will cover the same timespan as the
observations file; they will be used iteratively by
the batch estimator.

R3.5 FEDS will update the TDRS orbit files when a new
TDRE vector is received.

R3.6 After a TDRS maneuver, FEDS will use the predicted
state vector as the base vector for generating the
TDRS orbit files in the future. |

R3.7 After receiving an update to a TDRS maneuver, FEDS ' {'}
will vpdate the appropriate TDRS orbit file from e

B-14

E e e & Y b

L

the maneuver time to the current processing time by
propagating the input TDRS vector.

E.3.1.4 Data Management Functional Requirements

The functional requirements for data management are as fol-
lows:

R4.1 FEDS will manage all data files in memory, since no
data storage peripherals will be' provided.

R4.2 FEDS will have the capability to locate, read, and
write observation records in the observations file. ‘

R4.3 FEDS will have the capability to locate, read,

write, and update the records of the TDRS orbit i
R4.4 FEDS will have the capability to purge all data

files.

E.3.1.5 Estimation Functional Requirements

The functional requirements for estimation are as follows:

R5.1 FEDS will perform differential correction on the
most recent fixed-length minimum data span (speci-
fied through control parameters) of observation f
data. The observations data used will be whole
passes except when data wraparound occurs.

R5.2 The method of estimation will be batch least-
squares.
R5.3 Due to the real-time processing of FEDS, the esti-

mation timespan will be slid forward to encompass
each new pass of observations data. This will be
referred to as a "sliding batch estimator.”

R5,4 During initialization of the estimation process
(defined as operations included in estimation using

9808 » N

R5.5

R5.6

R5.7

9808

a particular batch of data), the following will be
performed:

RS5.4.1 FEDS will initialize the estimation pa-
rameters from the initialization table
and/or the estimation control parameters
if either was received since the begin-
ning of the previous estimation process.

R5.4.2 FEDS will set up the new estimation span.

Initialization of the estimation parameters will be
performed after estimation has been suspended
through a control command. '

FEDS will model one-way TDRSS Doppler observations.
R5.6.1 Deleted.

R5.6.2 Unless directed otherwise, the measure- L
ment partials will be computed only on I
the first iteration. The linearity test
described in R5.8.3 will determine
whether or not recomputation is necessary.

FEDS will perform an edit lo»p during the first
(or, on demand, subsequent) iteration of each DC
slide based on the predicted residuals and estima-
tion statistics (specified through control parame-
ters).

R5.7.1 The computed measurements and associated
partials will remain unchanged during
this process. '

R5.7.2 The edit loop will terminate upon either
the maximum number of loops this itera-
tion (maximum = 10) or no observations

were edited during the predicted residual (f): ;
E-16

versus sigma test (input parameter). : e l
)

AT

T

R5.8

R5.9

R5.10

9808

FEDS will test for DC slide convergence, divear-

gence, and linearity violation at the end of each
iteration.

R5.8.1

R5.8.2

" R5.8.3°

R5.,8.4

FEDS will declare a new state solution at
the point of convergence. Convergence is
defined in Reference 5, "FEDS Estimation
Logic," memorandum Sections II.A.l1l(a)
and II.A.1l2(a).

FEDS will remain in the propagate mode if
divergence occurs. Divergence is defined
in Reference 5, Sections I1I1.A.1ll(b) and
II.A.12(a).

FEDS will perform another iteration if
neither convergance nor divergence has
occurred. The linearity test defined in
Reference 5, Section I1I.A.12(b) will be
performed to determine whether recomputa-
tion of partial derivatives and another
edit loop will be done on the next itera-
tion.

FEDS will declare the current iteration
as the last iteration of this DC slide if
either convergence or divergence occurs,

FEDS will be capable of generating a DC summary and
statistics report. This report, if generated, will

be generated and output either (1) afte; every it-
eration or (2) after the last iteration on each

batch.

FEDS will be capable of geuerating a DC residuals

report.

If generated, this report will be output

either after the first and last edit loops of each

(4

iteration or after the last iteration of each DC
slide.

R5.11 If time allows, FEDS will precompute values needegd,

for the next DC slide prior to the actual receipt

| of the next data pass. This will be done for all
; ' slides except the initial slide.
|
;

R5.11.1 The new epoch will be predetermined as
' the current epoch plus a fixed lead time
(input parameier).

R5.11.2 Measurement residuals and partial deriva-
tives will be computed over all chserva-
tions in the previous slide.

The functional requirements for one-way Doppler prediction

!
|
1
! E.3.1.6 One-Way Uovbler Prediction Functional Requirements
; are as follows:

R6,1 FEDS will predict (simulate) one-way Doppler fre-
quency shift over the timespans indicated by the
uplinked tracking schedule,

R6.2 FEDS will use the TDRS, whose ID will be specified
with each tracking interval, to predict the one-way
Doppler frequency shift.

R6.3 No observation feasibility checking will be per-
formed, since the tracking schedule will contain
valid intervals for the specified TDRS.

R6.4 The target (user spacecraft) state vector used in
_one-way Doppler prediction will be based on the
most recent state solution. When a user spacecraft
maneuver has occurred or a new initialization table

has been received, the most recent solution will be
overridden by the new a priori estimate.

9808

i

("

R6.5 The TDRS state vector used in one-way Doppler pre-
‘diction will be based on the TDRS vector used to
generate the TDRS orbit file.

E.3.1.7 OQutput Processing Functional Requirements

The functional requirements for output processing are as
follows:

R7.1 FEDS will generate and output the state vector pre-
dict table. This table will be based on the most
recent state solution. Wwnen a user spacecraft ma-
neuvei has occurred or a new initialization table
has been received, the most recent solution will be
overridden by the new a priori state vector.

R7.2 FEDS will cutput priority messages directly to the
gronnd control (ADEPT).

R7.3 FEDS will output the activity log to ADEPT.

R7.4 FEDS vill output the predicted Doppler shift to the

communications link with the transponder at a spec-
ified interval.

R7.5 FEDS will output to ADEPT the DC residuals reports
‘as they are generated by the estimator.

R7.6 FEDS will output to ADEPT the DC éummary and sta-
tistics reports as they are generated by the esti-
mator.

R7.7 FEDS will output a table of the predicted Doppler

data for each tracking interval to ADEPT.

E~19

9808

9808

REFERENCES

Computer Sciences Corporation, Requirements Analysis for
Automated Orbit Determination System (AODS) System Modi-

fication to Support the Ground Demonstration (memoran-
dum), M. Regardie and D. Shank, November 1983

--, CSC/TM-84/6083, Flight Expériment Demonstration Sys-

tem (FEDS) Mathematical Specification, D. Shank, July
1984

-=-, CSC/SD-82/6068, Automated Orbit Determination System

{AODS) Environment Simulator for Prototype Testing
(ADEPT) User's Guide, S. Waligora, J. Fry, Jr., and
Y. Ong, June 1982

--, CSC/SD-82-6054, Automated Orbit Determination System
(AODS) Environment Simulator for Prototype Testing
{ADEPT) System Description, 5. Waligora, J. Fry, Jr.,

Y. Ong, B. Prusiewilcz, and G. Klitch, June 1982

Naticnal Aeronautic and Space Administration, Goddard
Space Flight Center, Recommended Estimation Logic for
AODS (memorandum), J. Teles, January 1981 {(also pub-
lished as Appendix E of Systems Technology Laboratory
(STL) document STL-80-003)

R=1

S eed Sy

L .

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf
	0001G14.pdf
	0002A01.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002C13.pdf
	0002C14.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf
	0002D07.pdf
	0002D08.pdf
	0002D09.pdf
	0002D10.pdf
	0002D11.pdf
	0002D12.pdf
	0002D13.pdf
	0002D14.pdf
	0002E01.pdf
	0002E02.pdf
	0002E03.pdf
	0002E04.pdf
	0002E05.pdf
	0002E06.pdf
	0002E07.pdf
	0002E08.pdf
	0002E09.pdf
	0002E10.pdf
	0002E11.pdf
	0002E12.pdf
	0002E13.pdf
	0002E14.pdf
	0002F01.pdf
	0002F02.pdf
	0002F03.pdf
	0002F04.pdf
	0002F05.pdf
	0002F06.pdf
	0002F07.pdf
	0002F08.pdf
	0002F09.pdf
	0002F10.pdf
	0002F11.pdf
	0002F12.pdf
	0002F13.pdf
	0002F14.pdf
	0002G01.pdf
	0002G02.pdf
	0002G03.pdf
	0002G04.pdf
	0002G05.pdf
	0002G06.pdf
	0002G07.pdf
	0002G08.pdf
	0002G09.pdf
	0002G10.pdf
	0002G11.pdf
	0002G12.pdf
	0002G13.pdf
	0002G14.pdf
	0003A01.pdf
	0003A02.pdf
	0003A03.pdf
	0003A04.pdf
	0003A05.pdf
	0003A06.pdf
	0003A07.pdf
	0003A08.pdf
	0003A09.pdf
	0003A10.pdf
	0003A11.pdf
	0003A12.pdf
	0003A13.pdf
	0003A14.pdf
	0003B01.pdf
	0003B02.pdf
	0003B03.pdf
	0003B04.pdf
	0003B05.pdf
	0003B06.pdf
	0003B07.pdf
	0003B08.pdf
	0003B09.pdf
	0003B10.pdf
	0003B11.pdf
	0003B12.pdf
	0003B13.pdf
	0003B14.pdf
	0003C01.pdf
	0003C02.pdf
	0003C03.pdf
	0003C04.pdf
	0003C05.pdf
	0003C06.pdf
	0003C07.pdf
	0003C08.pdf
	0003C09.pdf
	0003C10.pdf
	0003C11.pdf
	0003C12.pdf
	0003C13.pdf
	0003C14.pdf
	0003D01.pdf
	0003D02.pdf
	0003D03.pdf
	0003D04.pdf
	0003D05.pdf
	0003D06.pdf
	0003D07.pdf
	0003D08.pdf
	0003D09.pdf
	0003D10.pdf
	0003D11.pdf
	0003D12.pdf
	0003D13.pdf
	0003D14.pdf
	0003E01.pdf
	0003E02.pdf
	0003E03.pdf
	0003E04.pdf
	0003E05.pdf
	0003E06.pdf
	0003E07.pdf
	0003E08.pdf
	0003E09.pdf
	0003E10.pdf
	0003E11.pdf
	0003E12.pdf
	0003E13.pdf
	0003E14.pdf
	0003F01.pdf
	0003F02.pdf
	0003F03.pdf
	0003F04.pdf
	0003F05.pdf
	0003F06.pdf
	0003F07.pdf
	0003F08.pdf
	0003F09.pdf
	0003F10.pdf

