
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

Ema •
a.

e r

w--

f

C/
	

CSC/SD-U/6055

FLIGHT EXPERIMENT DEMONSTRATION SYSTEM
(FEDS)

FUNCTIONAL DESCRIPTION AND INTERFACE
DOCUMENT

Prepa^ed for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Goddard Space Flight Center

Greenbelt, Maryland

CONTRACT NAS 5-27888
Task Assignment 420

DECEMBER 1984

(:,A.SA-C.,- 175,50) 	FLIGHT RXFEEIH&NT
VISU. i S T.RAIIUA SYSTE:j (,FrDS) FUb^.TIQNAL
DBSCH_PTICt+ AAA	 ELCUM,.!!vi (.:o®puter
Sciences Cory.) 273 p HC Al2/M° Av 1

N85-26'363

Uncla -e-
G3/12 22636

CSC
COMPUTER SCIENCES CORPORATION

>/- C^ ^^ ^e#*)
^^ CSC/SD-84/6055

FLIGHT EXPERIMENT DEMONSTRATION SYSTEM (FEDS)

FUNCTIONAL DESCRIPTION AND

INTERFACE DOCUMENT

Prepared for

GODDARD SPACE FLIGHT CENTER

By

COMPUTER SCIENCES CORPORATION

Under

Contract NAS 5-27888
Task Assignment 420

;i
^I

1

t

hH

G

Prepared by:

/	 y
R.Bolcher	 Da e

D.Stank	 Date

Approved by:

ora	 , e
Waligor j DTdte

Technical Supervisor

jz-
. Page	 Date

Functional Area anager

,(7 A

^I

ABSTRACT

This document presents a functional description of the

Flight Experiment Demonstration System (FEDS) and of inter-

faces between FEDS and external hardware and software.

FEDS, developed at the Goddard Space Fli ght Center (GSFC)

System Technology Laboratory (STL), Code 550; is a modifi-

cation of the Automated Orbit Determination System (AODS)

developed at the STL during 1981 and 1982. FEDS has been

developed to support a ground demonstration of

microprocessor-based onboard orbit determination.

This document provides an overview of the structure and

logic of FEDS and details the various operational procedures

to build and execute FEDS. It also documents a microproces-

sor, interface between FEDS and a TDRSS user transponder and

describes a software simulator of the interface used in the

development and system testing of FEDS.

PRECEDING PAGE BLANK NOT FILMF"

iii

9808

a;
Ck:

R' TABLE OF CONTENTS

Section 1 - Introduction and System Overview.	 1-1

1.1 Overview	 1-1

l.i.l	 Hardware Configuration. 	 1-2
1.1.2	 Software Configuration.	 1-2
1.1.3	 Data	 Flow.
	

.	 1-6
1.1.4	 Time Systems in FEDS.	 1-11
1.1.5	 Data	 Collection	 1-13

1.2 Description of This Document	 1-14

Section 2 - FEDS Executive 	 (EXEC)	 Task.	 2-1

2.1 Basic Executive Control Techniques 2--3

2.1.1	 Use of RSX-11M(S)	 System Priorities .	 .	 . 2-3
2.1.2	 Timeslicing		

.•	
.	 2-5

2.1.3	 Use of Global System Event Flags. 	 2-7

2.2 Functional Flow of the Executive 2-7

2.2.1	 FEDS	 Initialization	 2-12
2.2.2	 Control Command Processing.	 2-13
2.2.3	 Task Scheduling 	 2-18
2.2.4	 End-of-Task Processing.	 2-•24
2.2.5	 Activity Log Generat°..on	 2-27

2.3 Error	 Handling	 2-28
2.4 Fast-Timinq	 Feature 2-29

Section 3 - Information Processing Tasks. 	 3-1

3.1 Data Capture	 (DATCAP)	 Task	 3-1
3.2 Input Processor	 (INPPRO)	 Task.	 3-5
3.3 Data Preprocessor	 (PREPRO)	 Task.	 3-12

3.3.1	 TDRS Orbit File Generation.	 3-14
3.3.2	 TDRS Orbit File Update.	 3-17
3.3.3	 TDRS Maneuver Recovery.	 3-18
3.3.4	 Observation Data Preprocessing. 	 3-18

3.4 Data Manager	 (DATMGR)	 Task	 3-19

3.4.1	 TDRS Orbit File Management.	 3-23
3.4.2	 Observations File Management.	 3-24

3.5 Output Processor	 (OUTPRO)	 Task 3-26

v

9808
PJZRCDDING PAGE BLANIL NOT FMATE, D

vi

TABLE OF CONTENTS (Cont'd)

Section 4 - Computational Tasks

4.1 Orbit Propagator (ORBIT) Task.
4.2 State Predictor (STAF:°E) Task.
4.3 Doppler Predictor (DOPPkZ) Task.
4.4 Estimator (ESTIM) Task.
	

. 5	 .

4.5 Observation Modeling (OBSMDL)Task

Section 5 - Communications Box.

5.1 Communications Box Hardware.
5.2 Communications Box Interface Functions
5.3 Communications Box Operation
5.4 Communications Box Simulator

4-1

4-2
4-9
4-13
4-18
4-22

5-1

5-1
5-1
5-4
5-6

Section 6 - System Construction and Operation Guidelines

6.1 Operational Configurations 	 6-1
6.2 System Construction 	 6-4
6.3 System Operation 	 6-5

Appendix A - External Interface

Appendix B - Output Message Formats

Appendix C - Data Packet Descriptions

Appendix D - FEDS Update Procedures and Command Files

Appendix E - Summar y of FEDS Requirements

References

9808

LIST OF ILLUSTRATIONS

Hierarchy of FEDS Tasks.
FEDS Data Flow.
Baseline Diagram . ^,f Exec
EXEC Data Flow.
Baseline Diagram ofDATCAP
DATCAP Data Flow.•
	

.
Baseline Diagram ofINPPRO
INPPRO Data Flow.
	

.
Baseline Diagram ofPREPRO
PREPRO Data Flow

.•

Baseline Diagram ofDATMGR
DATMGR Data Flow.
Baseline Diagram ofOUTPRO
OUTPRO Data Flow.
	

.
Baseline Diagram ofORBIT.
Functional Block Diagram of ORBIT. 	 .
ORBIT Data Flow.	
Baseline Diagram of STAPRE
STAPRE Data Flow

.• 	
.

Baseline Diagram ofDOPPRE
DOPPRE Data Flow
ESTIM Data Flow . •
Baseline Diagram ofESTIM.
Baseli.n Diagram of OBSMDL
OBSMDL Data Flow
Communications Box Block Diagram
Transponder Interface Menu
SIMCB Data Flow.	
Baseline Diagram for SIMCB 	
FEDS Demonstration Configuration 	 . .
FEDS (on LSI) Communications Line Confiqu-

ration, Communications Box Used.	 . .
FEDS (on LSI) Communications Line Confiqu-

ration, Communications Box Simulator Used.
Command File To Install FEDS on the PDP. . .
FEDS (on PDP) Communications Line Configu-

ration, Communications Box Simulator Used.
ADS INS .CMD
ADSLSI.CMD
REMOVE.CMD	
ABOFEDS . CMD
ADSABO .CMD
REMFEDS . CMD
ADSABO. CMD

Vii

1-3
1-8
2-2
2-9
3-2
3-3
3-6
3-9
3-15
3-16
3-20
3-22
3-27
3-28
4-5
4-6
4-7
4-10
4-11.
4-16
4-17
4-20
4-21
4-24
4-26
5-2
5-5
5-10
5-11
6-3

6-7

6-£
6-10

6-11
6-12
6-13
6-15
6-15
6-15
6-16

Figure

1-1
1-2
2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
5-2
5-3
5-4
6-1
6-2

6-3

6-4
6-5

6-6
6-7
6-8
6-9
6-10
6-11
6-12

viii

9808

LIST OF TABLES

Table

	

2-1
	

System Priorities of FEDS Tasks. 2-4

	

2-2
	

AODS System Event Flags.	 . .	 2-8

	

2-3
	

Service Control Commands and Results . . . 	 2-14

	

5-1
	

Transponder Interf-ice Commands 5-7

^R

SECTION 1 - INTRODUCTION AND SYSTEM OVERVIEW

This document is a functional design and interface descrip-

tion of the prototype version of the Flight Experiment Dem-

onstration System (FEDS) developed at Goddard Space Flight

Center's (GSFC's) Systems Technology Laboratory (STL),

Code 550. The prototype FEDS demonstrates, in a laboratory

environment, the feasibility of using microprocessors to

perform onboard orbit determination in an automated manner

with limited ground support. FEDS is supported in the labo-

ratory environment by the FEDS Environment Simulator for

Prototype Testing (ADEPT), which provides all external in-

formation required for FEDS operation and monitors FEDS per-

formance.

1.1 OVERVIEW

- t	 FEDS fulfills the requirements specified in Appendix E,

which is an updated version of those given in Reference 1.

FEDS captures all data and control commands uplinked by the

simulator. Based on the required time schedule, it proc-

esses the uplinked data, predicts one-way Doppler data, pre-

dicts state vector tables, and estimates and corrects the

user spacecraft state using simulated observations data.

Least-squares estimation is performed by a sliding batch

process that uses real-time accumulated Tracking and Data

Relay Satellite System (TDRSS) observations data provided by

the transponder. The Communications Box serves as an inter-

face between the transponder and FEDS. Predicted one-way

Doppler data are output from FEDS through the Communications

Box to the transponder. Predicted state vector tables and

estimator reports are downlinked to ADEPT after they are

generated. FEDS also records all status messages and error

messages in an activity log that is downlinked to ADEPT

either at regular time intervals or when the log is full.

1-1

9808

i

'	 Critical error messages are immediately downlinked to ADEPT

to inform the user.

1.1.1 HARDWARE CONFIGURATION

FEDS is implemented on both the STL PDP-11/70 minicomputer

under the RSX-11M operating system and the STL PDP-11/23

microcomputer under the RSX-11S operating system. The

PDP-11/23, which is the target computer, has 256K bytes of

random access memory (RAM) and no peripherals. FEDS commu-

nicates with ADEPT, which resides on the PDP-11/70, through

communications lines (EIA RS-232C asynchronous interface)

that are connected to terminal ports on the PDP-11/70. Two

communications lines are used to communicate with ADEPT:

one incoming line for receiving uplinked messages from ADEPT

and one outgoing line for downlinking messages to ADEPT.

The LSI version of FEDS communicates with the transponder

through the Communications Box. One communications line

(EIA RS-232C asynchronous interface) is used in the communi-

cation between the Communications Box and the LSI version of

FEDS. Many communications lines (detailed in Appendix A.3)

are used in the communication between the transponder and

the Communications Box.

1.1.2 SOFTWARE CONFIGURATION

Since no peripherals are available on the PDP-11/23, all

data must be stored in RAM. In addition, overlaying of

tasks is impossible. Because of these factors, FEDS is com-

posed of 11 separate tasks and A global COMMON areas that

are installed and fixed in memory during execution. The

FEDS software configuration is shown in Figure 1-1. One

executive task controls the execution of the other FEDS

tasks, which are divided into primary and secondary tasks.

The executive task controls the execution of FEDS. It acts

as a minioperating system that allocates time slices to the

primary tasks based on the data received, uplinked schedules,

1-2

9808

Is/Lass

O

¢¢OO

a

¢	 N	 i
a^ N

n

¢Z O
o Q E4
f

N
1
G]
W
W
O

s S'

ura i

¢a u
O a0 pl 1

•^

a S (`

1

"^	
P

E

C1

w u

a-a
O

rn
OZ W2	 1

O
F ^' Q
m 2Q
¢ 00O

'	 a

w w°r
o iv
O OW0 oa

w0

^c
N ¢
a

¢
- N^ Naw
0 U
O¢
a

o^
W
W

0
a

Nw

2
ry
o:Do

?O'
a

O
rQ

Od
O
a

Qw
r ^'aQ° Z
Q z0

F z
>w
w°N °
m^
O

O
NN

O¢aw
a

1-3

w
Q ¢rFasoQ

U

w

Qa

OQ Y
a >
F- ¢
> a°
a. o

V¢ wa NN

YN

+.i

r

the current status of the FEDS tasks, and a predetermined

set of priorities. The executive task also generates an

activity log based on .system status messages for the other

FEDS tasks. All error messages received by the executive

are loaded in the activity log. When the error is con-

sidered severe, the message is also scheduled for immediate

downlink to ground control. In addition, the executive task

processes all control commands received from ground control.

1.1.2.1 Primary Tasks

Primary tasks perform specific functions scheduled by the

executive. Psch primary task is completely controlled by

the executive; the executive decides when a primary task is

to be executed and determines which function the task is to

perform. All cc:5imunication between the executive and the

primary tasks and all communication among the primary tasks

are performed through global COMMON blocks. FEDS contains 	 j

the following eight primary tasks:

1. Data Capture (DATCAP). This task captures all in-

coming messages, identifies uplinked control commands and

notifies the executive, performs limited message validation,

loads data and command messages into the input queue for

later processing by the input processor, and loads observa-

tion messages into the observation buffer.

2. Input Processor (INPPRO). This task checks input

messages for validity and stores input data in the appropri-

ate global COMMON blocks.

3. Data Preprocessor (PREPRO). This task validates

raw observation data and converts ohservation da-a to inter-

nal units, generates the Tracking and Data Relay Satellite

(TDRS) orbit files, updates the TDRS orbit files based on

uplinked new TDRS vectors, and performs TDRS maneuver recov-

ery

.

^.'

1-4
i
{

9808

—	 -

Al

4. Doppler Predictor (DOPPREj. This task predicts

(siMtlatPS) one-way Doppler data for a specified time inter-
val.

5. State Predictor (STAPRE). This task generates a

predicted state vector table over a specified time interval

based on the current best estimate of the user spacecraft

state.

6. Estimator (ESTIM). This task performs least- .

squares estimation by means of a sliding batch process to

estimate the six components of the user spacecraft state

vector and, optionally, one atmospheric drag coefficient and

three coefficients of the frequency model for the one-way

Doppler data.

7. Observation Modeling (OBSMDL). This task computes

one-way, averaged TDRSS Doppler observations and partial

derivatives as requested by the estimator. OBSMDL is an

extension of the estimator because of memory restrictions

and is, therefore, mainly controlled by the estimator.

8. Output Processor (OUTPRO). This task prepares the

messages to be downlinked, performs the actual downlinking

of the messages to ADEPT, and outputs messages-to the Commu-

nications Box.

1.1.2.2 Secondary Tasks

Secondary tasks perform functions that several of the pri-

mary tasks require to perform their duties. Because of this

arrangement, a secondary task is controlled by the primary

task that is currently using it. Communication between a

secondary task and the primary task using it is performed by

SEND and RECEEJ system directives. A secondary task will,

however, access global COMMON blocks for uplinked constants

1-5

9808

f

and control parameters. The two FEDS secondary tasks are as

e
	 follows:

1. Data Manager (DATMGR). This task contains the ob-

servations file and two TDRS orbit files and performs all

storage (writing) and retrieval (reading) of observation

data and TDRS state vectors. It is used by the PREPRO,

ESTIM, OBSMDL, and DOPPRE primary tasks.

2. Orbit Propagator (ORBIT). This task propagates the

TDRS and user spacecraft state vectors using multistep inte-

gration and interpolation methods. It is used by the

PREPRO, ESTIM, OBSMDL, and STAPRE tasks.

1.1,3 DATA FLOW

The 11 tasks that compose FEDS communicate with each other

through the use of global COMMON blocks that are grouped by

usage into four major global COMMON areas:

1. GLB1. This area contains all control information,

the activity log and all information required to generate

it, all global constants, the initialization table, and es-

timation control parameters.

2. GLB2. This area contains the observations queue,

the new TDRS vectors, and the tracking and mara!uver sched-

ules.

3. GLB3. This area contains the predicted state vec-

tors table:, predicted one-way Doppler data, the differential

correction (DC) summary and statistics report, and the DC

residuals report to be downlinked. It also contains the

global COMMON blocks that a7_;ow communication between the

estimator and the observation model.

4. GLB4. This area contains the input queue.

All communication and data flow among primary tasku are per-

formed using these global COMMON areas, and the executive
	 K ,`

1-6

9808

r.
communicates with the FEDS tasks through the global COMMON

only. Figure 1-2 shows the interfaces of the FEDS tasks

with the global COMMON areas and with each other.

The following information is input to FEDS (see Appendix A):

•	 Input data uplinked by ADEPT

-	 New TDRS vectors

-	 Maneuver schedule

-	 Trac4ing schedule

-	 Initialization table

-	 Miscellaneous constants

-	 Estimation control parameters

-	 Station parameters

-	 Geopotential tables

-	 Atmospheric density table

-	 Timing coefficients

t	 -	 Experiment parameters

•	 Input data transmitted by the Communications Box

Time-tagged Doppler Observation

External clock time

•	 Control commands from ADEPT

-	 START

-	 STOP

-	 REBOOT

-	 ABORT

-	 SUSPEND

-	 CONTINUE

-	 MARK TIME

-	 RESUME

-	 BEGIN FAST TIMING

-	 STOP FAST TIMING

-	 SET CLOCK

-	 STATUS REQUEST

1-7

9808

l

I
I
I
I

TASK	 n

ORIGMAL PNEIZ
OF POOR QUALi ti ^

I

Figure 1-2. FEDS Data Flow

1-8

•	 Control Flags from the Communications Box

Carrier lock signal

Communications established signal

The following information is output from FEDS (see Appen-

dix A)

•	 Output data downlinked to ADEPT

Activity log

Priority messages (critical error messages and

idle time messages)

Predicted state Vector table--s

Predicted one-way Doppler frequency shift

DC residuals report from the estimator

DC summary and statistics report from the es-

timator

•	 Predicted one-way Doppler frequency shift data mes-

sage output to the Communications Box

•	 Control messages output to the Communications Box

-	 Communication initialization

-	 Time request

-	 Reset Doppler accumulator

-	 Doppler measurement request

The flow of data through the FEDS tasks is as follows:

•	 FEDS Executive. EXEC uses task status information,

tracking and maneuver schedules, and the system time along

with knowledge of recently received uplinked data and con-

trol commands to assign functions to and schedule FEDS tasks

for execution. It also maintains an activity log that is

periodically downlinked to ground control. In addition, it

generates critical error messages for downlink when neces-

sary.

1-9

,;

9808

•	 Data Capture.	 DATCAP raptures all uplinked mes-

sages on demand and loads them in the input queue for later

processing.	 It also extracts all control commands and

passes them to the FEDS executive for immediate processing.

For messages from the transponder, DATCAP sets flags for the

.j FEDS executive and loads observations into the observation

fy buffer in /OBSQ/.

I} •	 Input Processor.	 INPPRO identifies all data in the

input queue and loads all valid data into the appropriatei

global COMMON blocks where it will be used by the other
r	 y

t tasks.

•	 Data Preprocessor.	 PREPRO preprocesses the obser-

vations data in the observations buffer in /OBSQ/, and sends

it to the data manager in chronological order to be written

in the observations file.	 PREPRO also generates and updates

the TDRS orbit files based on uplinked TDRS vectors in

l /NEWTDR/.

•	 Data Manager.	 DATMGR reads or writes data in the

observations file or in the TDRS orbit files as requested by

the primary tasks.	 These files are stored internally in

DATMGR memory.

•	 Estimator and Observation Modeling. ESTIM esti-

mates the user spacecraft state and other solve-for parame-

ters as specified in the initialization table in /INITAB/.

The sliding batch estimation process is controlled by the

estimation control parameters in /ESTPRM/. During estima-

tion, ESTIM requests OBSMDL to compute observations, based

on the current best estimate of the state (propagated by

ORBIT), that correspond to the observations retrieved from

the observations file by DATMGR. A state update is then

computed and applied based on a comparison of the observed

and computed values of the observations data. This process

:es two output reports% a DC summary and statistics

1-10

report, /DCSTAT/, and a DC residuals report, /RESRPT/, both

of which are later downlinked to ground control.

•	 State Predictor. Using ORBIT, STAPRE generates the

predicted state vector tables based on the current best es-

timate of the user spacecraft state. This information is

stored in /OUTVEC/ for use by DOPPRE and for downlink to

ground control.

•	 Doppler Predictor. DOPPRE predicts one-way Doppler

data based on the user spacecraft vectors in the predicted

state vector table in /OUTVEC/ and on the TDRS vectors re-

trieved from the TDRS orbit file through DATMGR. The pre-

dicted Doppler data is stored in /OUTDPL/ for downlink to

ground control and output to the Communications Box.

•	 Output Processor. OUTPRO downlinks the output in-

formation to ground control and the Communications Box.

t ?--	 •	 Orbit Propagator. ORBIT propagates a given state
i'

vector; optionally computes the associated partial deriva-

tives using a multistep integrator and interpolator; and

sends the results to the requesting primary task.

1.1.4 TIME SYSTEMS IN FEDS

It is important to understand the time systems used in

FEDS. To reduce the number of time conversions required in

FEDS, all data time tags are converted on input to an inter-

nal time system in which most computations will be per-

formed. Time tags on data to be output are then converted

back to the external time system before downlink.

All incoming data is time tagged with a Universal Time Coor-

dinated (UTC) time in one form or another. Observation data

times are in Parallel Grouped Binary time code 5 (PB5) for-

mat consisting of the last four digits of the Julian day,

seconds, and milliseconds. All time tags of state vectors

1-11

9808

ro

i
4

and the times in uplinked schedules are input in

YYMMDDHHMMSS.SS format. During input processing, all these

times are converted to seconds from reference in atomic

(A.1) time using the timing coefficients table. Before in-

formation is downlinked, it is returned to UTC time in

YYMMDDHHMMSS . SS format.

The advantaqe of A.1 time is that time advances at a con-

stant rate; that-is, no discontinuities occur periodically

as in the UTC time system. The advantage of keeping all

times in seconds from reference is that the system (com-

puter's) clock can be used to measure real time or simula-

tion time as well as execution time.

Two reference times are used throuqhout FEDS. The simula-

tion reference time is the time that is uplinked in the

START command in YYMMDDHHMMSS . SS format, synchronized to

within several seconds of the PB5 generator. The system 	 t

reference time is the system clock time (YYMMDDHHMMSS.SS)

when the START command is received by FEDS. These two

times, which actually represent the same time in two differ-

ent ways, are used to synchronize the system clock time and

the simulation time. After the simulation reference time

and the system reference time have been ,established, an off-

set is computed to bring the simulation time into agreement

with the PB5 generator. During FEDS demonstration, the PB5

generator will be an external clock synchronized to within

1 millisecond of current UTC obtained from the Ground Space-

flight Tracking and Data Network (GSTDN). In this manner,

FEDS can schedule simulation events based on the system

clock.

At certain places in FEDS, times must be converted to a mod-

ified Julian date (modified by 2430000). This is made

simple by computing and-saving the modified Julian date of

the simulation reference time. A time in seconds from 	 ("^
j

1-12

9808

ti

'I

reference can be converted to a modified Julian date by

simply converting it to days and adding it to the reference

Julian date.

Ephemeris time (ET) is also used in the orbit propagator to

compute the position of the Sun and the Moon. When neces-

sary, the orbit propagator performs this conversion.

1.1.5 DATA COLLECTION

FEDS collects observation data to perform orbit estimation

so that more observation data can be collected. For a

fliqht system, a tracking siqnal would be transmitted at a

constant frequency from a ground station and collected on

board. The onboard system would then use the Doppler-

shifted frequency record to estimate location. For a demon-

stration system, since the receiving transponder is

stationary, the frequency transmitted will be shifted to

simulate data that would be received by a satellite in a

given orbit. These data come in nominal 10-minute passes.

The transponder will form an observation by adding the re-

ceived frequency to a constant bias and accumulating data in

a nondestruct mode in a 40-bit accumulator.

The flow of control of FEDS begins with the extension of the

file of predicted Doppler frequency shift 5 minutes before

the beginning of a pass. Twenty seconds before the begin-

ninq of a pass the transponder accumulator is reset to

zero. To accomplish this, FEDS sends a message to the Com-

munications Box to reset the accumulator, the Communications

Box sends a message to the transponder to reset the accumu-

lator, and the transponder resets the accumulator to zero.

FEDS then requests a time message and uses the subsequent

reply to update the current simulation time. The Communica-

tions Box accesses the PB5 generator and sends the current

time to FEDS. FEDS then begins to output predicted Doppler

frequency offset. When FEDS sends a predicted Doppler

1-13

9808
a

t
	

^W

message, containing the predicted offset in the form of a

frequency control word, the Communications Box passes the

frequency control word to the transponder for use in signal

acquisition. FEDS outputs a predicted Doppler message at a

user-specified frequency.

When signal lock occurs, the Communications Box sends a sig-

nal lock message indicating that FEDS snould stop transmit-

ting predicted Doppler messages and that observation data is

being collected. FEDS responds to the signal lock message

with a request for a Doppler observation. When the Communi-

cations Box has received a Doppler observation request from

FEDS and an accumulator reading from the transponder, it

accesses the PB5 generator to obtain the current time and

transmits an observation message. FEDS again responds by

transmitting a request for a Doppler observation. This

process will continue until the tracking signal is lost.

FEDS will try to reacquire signal lock by resuming output of

predicted Doppler messages until the end of the scheduled

tracking pass. FEDS will then perform end-of-pass process-

ing to prepare for the next tracking pass.

The Doppler file is initially generated by the first execu-

tion for each tracking pass of the Doppler predictor wherein

60 records of data are written .to the file. The Doppler

file is extended throughout the pass in a wraparound manner

so that at least half of the file (30 records) is in the

future. This procedure maintains the immediate availability

of the predicted frequency shift for output when the track-

ing signal is lost.

1.2 DESCRIPTION OF THIS DOCUMENT

Sections 2, 3, and 4 of this document describe the FEDS ex-

ecutive, the FEDS information processing tasks, and the FEDS

computational tasks, respectively. These sections also con-

tain an overview, baseline diagrams, and data flow diagrams

1-14

r^)

,I

t^l

9808
4

9808

1-15

grouped by function for each of the FEDS tasks. Section 5

describes the Communications Box used in FEDS. Section 6

discusses the construction and operation of FEDS.

There are five appendixes: Appendix A contains descriptions

of external interfaces in FEDS. Appendix B contains output

message descriptions. Appendix C contains detailed descrip-

tions of the data packets used to send information to and

receive information from secondary tasks. Appendix D con-

tains the command files that are used for updating the sys-

tem. Appendix E contains a summary of the FEDS requirements.

1

R	 1

SECTION 2 - FEDS EXECUTIVE (EXEC) TASK

The FEDS executive task (EXEC) controls FEDS execution using

the RSX-11M (S) system services. The executive controls what

each FEDS primary task is doing and when each task is exe-

cuting. Since FEDS is a real-time system, the FEDS execu-

tive must ensure that all schedules are met and that all

time-critical functions are performed. The executive must

monitor all FEDS queues, anticipate problems, and take ac-

tion to avoid backlogs. The executive must also ensure that

all incoming data are processed as quickly as possible by

the time-consuming computational tasks. In addition, the

execution must service uplinked control commands soon as

they are received.

Processing priorities can change rapidly in FEDS because of

CI	
changing system status and uplinked schedules and data.

This rapid changing of priorities requires that the execu-

tive be able to switch quickly from one primary task to

another to ensure that the highest priority function is

being performed at any given time. To accomplish this, the

executive uses a timeslicing technique that allows a task to

execute for only a specified length of time before the.exec-

utive resumes control, reevaluates priorities, and allows

the same or another task to execute during the next time

slice, and so on.

Because the executive is executed at the end of each time

slice, it is important that it be time efficient;'for this

reason, all sequential executive functions are included in

one large routine called EXEC. Only time conversion rou-

tines and certain activity log generation subroutines that

are used repeatedly throughout the executive are called by

EXEC. A baseline diagram of the FEDS executive task is

shown in Figure 2-1.

2-1

9808

3 ^^1

"'LEgg

?2 _	 d^L

U
W
k
W

44

O

ro
$i
trL
ro

A

v

v
N
ro
w

N
N
L4
7
tr1

.H

2-2

2.1 BASIC EXECUTIVE CONTROL TECHNIQUES

Because many FEDS functions must be performed simultane-

ously, the executive uses a combination of RSX-11M(S) system

priorities, a basic timeslicing technique, and global system

event flags to control the execution of FEDS primary tasks.

Use of these techniques and the system services available

under the RSX-11M(S) operating system enables the FEDS exec-

utive to give the central processing unit (CPU) to the pri-

mary task performing the highest priority function at any

given time. These control techniques are described in the

following subsections.

2.1.1 USE OF RSX-11M(S) SYSTEM PRIORITIES

The FEDS tasks are assigned different RSX-11M(S) system pri-

orities as shown in Table 2-1, With the knowledge of each

task's priority and the relative priorities among the tasks,

(the executive can change the task that is executing rather

easily. Based on the priorities given in Table 2-1 and on a

fundamental understanding of the RSX-11M(S) operating sys-

tem, FEDS will perform in the following ways:

•	 The data capture (DATCAP) task, which has the high-

est system priority, will interrupt any other task that is

exFcw;uting, including the executive, when it receives an mes-

sage (one that satisfies a queue input/output directive

(QIO) issued by DATCAP). This assures the executive that

data will be captured on demand and without any direct su-

pervision by the executive. After receiving the message,

DATCAP issues another QIO and goes into a wait to the mes-

sage source state, thereby removing itself from contention

for the CPU until the next message is received.

•	 The executive, which has the second highest system

_	 priority (70), will gain control any time one of its wait

conditions (WAITFR and WFLOR directives) is satisfied as

long as DATCAP is not executing at the time. If DATCAP is

2-3

9808

Table 2-1. System Priorities of FEDS Tasks

9

TASK NAME
HIGH-

PRIORITY
LEVEL

LOW-
PRIORITY

LEVEL

EXECUTIVE - EXEC 70 70

PRIMARY TASKS
DATA CAPTURE - DATCAP 80 80
INPUT PROCESSOR - INPPRO 50 1
DATA PREPROCESSOR - PREPRO 50 1
ESTIMATOR - ESTIM 50 1
OBSERVATION MODELING - OBSMDL 55 1
DOPPLER PREDICTOR - DOPPRE 50 1
STATE PREDICTOR - STAPRE 50 1
OUTPUT PROCESSOR - OUTPUT 50 1

IADEPT)
65

(CB)

SECONDARY TASKS
DATA MANAGER - DATMGR 60 60
ORBIT PROPAGATOR - ORBIT 60 60

iTHE HIGH PRIORITY !S ASSIGNED TO THE TASKS DURING TASK BUILDING.

2-4

executing, EXEC will gain control after. DATCAP.goes into a

wait state.

•	 Secondary tasks (DATMGR and ORBIT) have a priority

(60) between the primary tasks and the executive. They will

be executed immediately whenever they are requested by a

primary task and can be interrupted by either DATCAP or EXEC.

•	 Primary tasks other than DATCAP will execute only

when other active FEDS tasks with higher priority are wait-

ing or are suspended. If one primary task has a system pri-

ority of 50 and the other,-3 have a priority of 1, the task

with priority 50 will be executed. Unlike the priorities

assigned to other primary tasks, the high system priority

4azigned to OBSMDL is 55 rather than 50, which allows the

operating system to complete housekeeping functions when

OBSMDL exits before allowing the ESTIM task to continue.

Due to the time-critical nature of the information trans-

mitted from FEDS to the Communications Box, OUTPRO will have

a higher priority (65) than that of the secondary tasks when

outputting to the Communications Box.

2.1.2 TIMESLICING

The FEDS time-slicing scheme is based on the rules just

cited. The tasks that are time sliced are the primary tasks

other than DATCAP. After th-zse tasks are initialized, their

system priority is set to 1. Then, whenever one of these

tasks is to be executed, its system priority is raised to

the high-priority level, allowing it to be the primary task

that will execute when the higher priority tasks give up the

CPU. Thus, when the executive selects a primary 'task to

execute during the next time slice, it simply raises the

system priority of that task. It then issues a system mark

time (MARK TIME) directive and waits either for the primary

^+	 task to complete or until. the end of the time slice, which-

ever comes first. This allows the selected primary task to

2-5

9808

7

{
	 t

r

execute. When control returns to the executive, the system

priority of that primary task is lowered to 1. It should be

noted that the priority of OBSMDL is raised and lowered

based on the priority of ESTIM when the estimator is

scheduled.

This scheme is somewhat complicated when a primary task has

requested (called) a secondary task that has not yet com-

pleted when the time slice ends. For example, primary

task A at priority 50 is waiting for an event flag to be set

by the secondary task running at priority 60. In this situ-

ation, the same procedure is followed when the executive

takes control from the secondary task. Primary task A's

priority is lowered to 1. When a new primary task, B (other

than OUTPRO sending data to the Communications Box), is se-

lected for the next time slice, its priority is raised to

50, and the executive gives up control by performing a MARK

TIME. This time, however, the secondary task continues exe-

cuting since its priority (60) is higher than that of the

selected primary task B. When the secondary task completes

and sets the event flag for which primary task A was wait-

ing, task A does not gain control because its priority is

1. The system then selects task B, which has the highest

priority (50) of the tasks contending for the CPU. This

procedure ensures that execution of primary tasks will not

be blocked by a request for a secondary task that is already

in use by another primary task. When the primary task B is

OUTPRO sending data to the Communications Box, the executive

will raise OUTPRO's priority to 65. OUTPRO will then gain

control of the CPU and execute the completion. Upon comple-

tion of OUTPRO, the executive will regain control to sched-

ule the next primary task.

The length of the time slice is an EXEC parameter that may

be set before compilation and task building are performed.

This allows the executive to be tuned to use the optimum

2-6

9808
r

time slice. However, the time slice may not be changed dur-

ing FEDS execution.

2.1.3 USE OF GLOBAL SYSTEM EVENT FLAGS

The RSX-11M(S) operating system has a set of global event

flags available to all active tasks. A global event flag

signals the occurrence of a specific event during execu-

tion. Each event flag is identified by a unique number.

Global event flags allow one task to detect and control, if

necessary, events occurring in other active tasks. They may

be set and/or cleared by either active tasks or system serv-

ices.

The FEDS executive uses these global event flags to monitor

events occurring in other FEDS tasks. A list of the global

event flags used by the FEDS executive and their functions

is given in Table 2-2. In most cases, the executive uses

these event flags as a means of regaining control after it

gives up the CPU to a lower priority task.

2.2 FUNCTIONAL FLOW OF THE EXECUTIVE

The communication and the data flow between EXEC and the

other FEDS tasks are shown in Figure 2-2. FEDS execution

begins when the FEDS executive is started. The executive

first performs an initialization procedure that includes

initializing local variables that will be used to perform

task scheduling and the startup and initialization of all

other FEDS tasks except DATCAP (see Section 2.2.1). After

each primary task is initialized, its system priority is
h	

lowered. The executive then starts DATCAP and directs it to

perform initialization and to accept only the START command

from ground control and Communications Box messages. The

executive then directs OUTPRO to send the Communications Box

an initialization message and waits for DATCAP to set event

W. flag IFLAG7, indicating that communication with the Communi-

cations Box has been established. The executive will again

2-7

9808

,o/ra _

CC

\ d d § \ k

U, < §
/ § k § \

x /\
2 - ! m_

Z^§ (,
c

W-
00

-
m /(-

G $ §§
_ [\ /\ /

\\ \ \\ §}Ld /u .

\ w\w

oo
1-0

W^w!_!

n 2 n k§ m§i k§2

(Z ; n n $=)

)§ \ \

\

/
;
pq

$
t
&

\

\

j
J

2-

0
LL

0

	

r	 ^z f

	

^^	 oa i

	

Q z	 aw a

	

^f	 o0 0

	

Qf	 z

	

a V	 wN VC h .Y 0, 2

WP

U I O ^Nh Y J h 2
1 41N m Wf^ Q

H Qh 7Q WN hV ^ hh ^
NW ^ Wy O

2 LL7 J Q^ N

Y WT m Q w
r^ of <w aC ^- C3 0 ow ¢

z

W ^^li qJ

30
P4

ro
+1
ro
a

U
W
x
w

N
I

N

N

W

2-9

4

Ar

wait until DATCAP sets IFLAG7, indicating that a control

command (in this case, the START COMMAND) has been received.

At this point, if a command has been receivef,<, the executive

performs the functions dictated by the control command (see

Section 2.2.2). After control command processing has been

completed, the executive calls ACTGEN to enter a message in

the activity log (see Section 2.2.5) about the control com-

mand processed. From this point on, DATCAP will execute

asynchronously, taking control when a message is received,

storing it in the input queue, and then waiting for another

uplinked message.

Next, EXEC calls CURTIM to obtain the current time in sec-

onds from reference. It then schedules tasks based on the

current time, the uplinked tracking and maneuver schedules,

FEDS control flags and parameters, and the FEDS output

table. When the primary task that is to execute during the

next time slice and the function it will perform have been

determined (see Section 2.2.3), EXEC checks to see whether a

command has been received. If so, EXEC goes back to command

processing, responds to the command, and performs task

scheduling as described above.

If no control command is present and if a primary task has

been selected, the executive proceeds to transfer control to

the primary task. EXEC does this by raising the system pri-

ority of the selected primary task as described in Sec-

tion 2.1.2. EXEC then clears event flag IFLAGS and issues a

MARK TIME system directive. This effectively sets a timer

for the time slice, whose length is'selected from whichever

is the larger: the default time slice or the time until

output to the Communications Box is scheduled. Next, EXEC

gives up the CPU by waiting until one of three event flags

is set. IFLAG5 will be set by the primary task if it com-

pletes its function before the time slice is over; IFLAG6 	 -'

2-10

9808

will be set by the RSX-11M(S) system whenever the time slice

has expired, and IFLAG7 will be set by DATCAP if a control

command or Communications Box message is received. The ex-

ecutive will regain control when at least one of these event

flags is set.

When EXEC regains control, it tests all three event flags to

see which condition(s) caused it to regain control. If the

time slice has not expired, it is canceled. At this point,

EXEC checks to see whether the primary task that was execut-

ing was the input processor (INPPRO). If so, EXEC checks

whether INPPRO was interrupted in the middle of processing a

block of data (BLKFLG is true). If this is the case, EXEC

directs INPPRO to complete processing that block of data and

waits for it to return control to EXEC (IFLAG5 is set).

This prevents a mixing of old and new data in global COMMON

blocks. At this point, the system priority of the primary

task is lowered. Next, EXEC calls ACTGEN to record status

and error messages from the primary task in the activity

log. At this time, any severe error messages that are to be

entered in the activity log (see Section 2.2.5) are a1=o

downlinked to ground control.

EXEC then continues to determine why it regained control.

If a control command or Communications Box message reception

occurred (IFLAG7 is set) and if the primary task did not

complete its function (IFLAG5 is clear), EXEC transfers con-

trol to the command processing section (after clearing

IFLAG7) and proceeds as described above.

If, however, the primary task completed its assigned func-

tion or if an error occurred in the primary task-(IFLAG5 is

set), EXEC performs end-of-task processing (see Sec-

tion 2.2.4). This includes performing FEDS housekeeping

--	 functions, clearing the primary task's directive (IDIR(I))y

2-11

9808

a I ^

t

if the primary task has removed itself from the task sched-

uling list (IACT(I)=0), and setting the primary task's re-

turn flag (IRET(I)) to zero. EXEC then goes to the command

processing section and begins the cycle again.

If no primary task is selected for execution during the next

time slice, EXEC checks for idle time or a stop condition.

If a STOP command has been received and if there is no more

data to process, EXEC directs the output processor (OUTPRO)

to downlink the activity log and then to downlink the end-

of-simulation message. EXEC then waits until DATCAP re-

ceives a START command at which time processing will resume

with command processing. However, if a STOP command has not

been received, EXEC finds the time of its next scheduler)

event and computes the amount of idle time until that

event. When the fast-timing option is on and an idle time

message has not already been sent, EXEC creates an idle time 	 -)

message, directs OUTPRO to downlink it immediately, and

waits until it has been completed. EXEC then transfers con-

trol to the command processing section and the cycle begins

again.

2.2.1 FEDS INITIALIZATION

On initiation, EXEC performs an initialization procedure,

which initializes all local variables used in the execu-

tive. Event flags IFLG10 and IFLGll are set to indicate

that the data manager task, DATMGR, and the orbit propagator

task, ORBIT, are not executing. Each primary task (except

DATCAP) is then started up and directed to perform initiali-

zation. To do this, the executive clears event flag IFLAG5,

requests the primary task by name (REQUEST directive), and

waits for IFLAG5 to be set by the primary task to indicate

that it has finished initialization. This effectively sus-

pends the executive and allows the primary task to execute.

1-12

9808

y4.

4	 I,

When control returns to EXEC, the primary task's system

priority is lowered. This is repeated for each primary task.

Ncxt, ORBIT is requested and directed to perform initializa-

tion in the same manner as primary tasks. Since ORBIT is a

secondary task, its unique event flag, IFLG10, is used to

indicate that ORBIT has finished initialization. Unlike the

primary tasks, ORBIT will exit after performing initializa-

tion. This is the only direct interface that the executive

has with a secondary task.

At this point, DATCAP is requested and directed to perform

initialization and to accept only a START command from

ground control. The executive then directs establishment of

communication with the Communications Box and waits for

DATCAP to set event flag IFLAG7 to indicate that a START

command has been received.

2.2.2 CONTROL COMMAND PROCESSING

When a control command is received by DATCAP, the executive

immediately gains control through IFLAG7. The control com-

mands are processed according to the FEDS requirements given

in Reference 1. The function of each control command is

shown in Table 2-3. The executive responds to each specific

control command as follows:

1, START command

a. Sets the data capture directive to accept all

valid uplinked messages

b. Clears local flag ISTOP to allow FEDS process-

ing to begin

C.

	

	 Sets the simulation reference times from the

uplinked simulation reference time in the com-

mand

2-13

s	 9808

LL LL LLu

^n FF
LL LL

oJ w
Y Y O

Y Y Y O
2 O$

W
Y W O OY 2 2

° O O O

< °
W
G

W
G w w

^Q
g ^' o w

LL LL
LL LL

J J J U Y Y o2 o2 Y w o 0Y $ Z

Y
O
fLL_N >

O w0

2 6
2C ^i

w
4WDF4c =

O
<

D
m

O$
q

UO
g

pH2N
LL¢m

O
H

FFFS p
p WF

y q W aW p LL w W yVj
w JF Z

Rw
w F

° pW LL LL
U N O

^qI
Z w

H
y^yw, F J

1Y
j Q 6

N U
l'JF_$ WYLL ° OpF W q qQ. N 2W< Z N 6 2 Z

i O D
J ^ H H

ypj Wqf Oy 2)aa p pN °N jW
aLLfW'J F

D

O

2 J4 ¢W am aD ^2 WQ O LL
J Q >zJz

p LL
N ' F6 Q^ Z.Q2 ZF ,-3 7u a 2 Q Q

QO OZ u~iZ NV
F<ZGNU

2

QF NQO Q 2 2

q q
4 4 o2

j
2
U U

y

>6 6
y
6 O O

FLL

a N p p
c 2F2 F F F r gQ F w

¢W
W
Q° <O QO QO W W NO U

y^ Na Qw aw LL LL IYZ
.•G
Mi LL LL

A
Jw JU

Q1Fy
OU JU' < 4J

f
>2
2O Jq U F

OQ OQ Q¢ QQ QQ Z 2 OU <Q 2 2

°

°

Q

J

92
m 4 o ° < w wp
o

F
2

GW
F q QF o

2 LL
W t

o
m
Nm

w

Q i2 m 'Q w ¢z
v
i
i

u
Z

aa H
J > w y @ LLD2 ON w f $ WO $Q awww W ON

wQ
O

DNi
aw J O GF ou ww WN J Zip

O Z°,? Q 62 ¢LL ZW 2N F Q O O jyyj JU
hF
20

y
q

<W Q ¢V WW >_ YO y 5a Oa 3y

8 q O h
QW QF 60 Y.0

NO F U2
.°i2 J J Jp2

N
q w

6 < qF O U6 Ni
`j
< Uf Q Q QU U

Z
_O
^j n 2 O< 2 z

D r _2
O$ h O

w
D

w
W

Y
U

w
2 yQ

h

O C. F W Z D °J ~ W2 LL Q6
FFj... pZ

p LL
O 6 < N N N U N m

OU Q

U
U

Iq
U
k
4J
d
O
U

U

k

2-14

(h

N
a)

A

E

d. Establishes the FEDS system reference time by

accessing the system clock

e. Synchronizes the simulation time with the PB5

generator

f. Computes and stores the Julian date of the

simulation reference time

g. Gets the current time (from reference)	 and

defaults the first activity log downlink time

h. Begins task scheduling

2.	 STOP command

a. Sets the data capture directive to accept only
1
1

a START command

b. Sets local flag ISTOP that will cause FEDS j

processing to stopp	 g	 p (to wait for START command)

after all available data is processed an' cur-

rently scheduled activities have been completed

3.	 REBOOT command (useful in flight system only)

a. Aborts all active FEDS tasks (primary and sec-

ondary)
j

b. Aborts EXEC

C. Requests the system boot routine (only a dummy

boot routine is available at this time)

4.	 ABORT command

a. Directs OUTPRO to downlink the activity log

and waits until OUTPRO has completed

b. Aborts all active FEDS tasks

C. Sets local flag INITLZ to cause the executive

—^

to .reinitialize and to start over the next

cycle

2-15

y

9808

5. SUSPEND command. Suspends computational tasks to

allow uplink of constants, tables, and/or control

parameters that may affect them

a. Temporarily suspends the Doppler predictor,

state predictor, and estimator (unless the

estimator is performing maneuver recovery

bookkeeping) by removing the appropriate tasks

from the scheduling list

b. Sets local flag SUSPEN to keep the DOPPRE,

STAPRE, and ESTIM tasks from being scheduled

6. CONTINUE command

a. Directs TNPPRO to process all input in the

input queue up to the CONTINUE command and

waits until INPPRO is finished.

b. If an initialization table, the estimation 	 j

control parameters, a geopotential table, an

atmospheric density table, and/or the station

parameters have been received since suspen-

sion, EXEC aborts the estimator, sets the ap-

propriate restart flag, and requests ESTIM.

This causes ESTIM to restart the function it

was performing when the SUSPEND control com-

mand was received; otherwise, EXEC allows

ESTIM to continue by putting it back in the

scheduling list.

C.

	

	 If geopotential tables or atmospheric density

tables have been received since suspension,

EXEC aborts both DOPPRE and STAPRE, sets the

appropriate restart flags, and requests these

tasks. This allows them to restart the func-

tions they were performing the next time they 	 }

are scheduled for execution; otherwise, EXEC 	 -

3-16

9808

	

	 ^^^
^^f

allows them to continue as before by inserting

them in the scheduling list.

d.	 Clears local flag SUSPEN to indicate that sus=

pension is over.

7. MARK TIME command

a. Directs DATCAP to accept only a RESUME command

b. Stores the time that the FEDS mark time began

(current time from reference)

C.	 Sets local flag MRKTIM to indicate that FEDS
is marking time

d.	 Waits for event flag IFLAG7 to be set to indi-

cate that a RESUME command was received

8. RESUME command

a. If the system is not marking time, EXEC re-

jects the command.

b. Computes the time pad necessary to make the

timespan of the mark time transparent to FEDS

tasks.

C.	 Clears local flag MRKTIM to indicate that the

mark time is over.

9. BEGIN FAST TIMING command

a. Sets local flag FAST to indicate that the

fast-timing option is on

b. Sets the minimum idle time allowed in FEDS

from the time in the command

10. STOP FAST TIMING command: Clears local flag FAST

to indicate that the fast-timing option is off

2-17

9808

11. SET CLOCK command (used only when fast timing is on)

a. Increments the system time pad by the number

of seconds in the command, which effectively

compresses out the specified amount of idle

time

b. Gets the new current time

C.	 Adjusts the activity log output time by the
number of seconds in the command

12. STATUS REQUEST command: Directs OUTPRO to downlink

the activity log and wait until it has completed

2.2.3 TASK SCHEDULING

tasks for execution

arformed by the execu-

the FEDS functional

Although each task can

one function may be

However, all tasks may

The executive schedules FEDS primary

based on a series of logical tests pi

tive. These tests were derived from

requirements included in Appendix E.

perform more than one function, only

scheduled for one task at one time.

be scheduled simultaneously.

To reduce the execution time of the executive, the schedul-

ing logic for each task is coded so that the smallest number

of logical tests is executed to determine the highest prior-

ity function that the task is to perform. In most cases,

this means scheduling the lowest priority function first so

that it can be overridden by a higher priority function

later, when necessary.

Tasks are scheduled by setting task directive IDIR(I) (where

I is the task number or ID) to the proper function number.

When no function is scheduled to be performed by task I,

then IDIR(I) = 0. When a task is currently being executed,

only a limited set of tests will be performed to see whether

the schedule should be altered for that task.

2 -18

9808

After the highest priority function for each task has been

identified and the directives have been set accordingly, the

corresponding IACT(I) flag is set to 1 for each task to be

scheduled. The task scheduled to perform the highest prior-

ity function is then identified by using a preset table of

priorities in EXEC called IPRIOR. This table contains a

FEDS priority (one that has nothing to do with

RSX-11M(S) system priorities) for each function that can be

performed by each task. When there is more than one task

with the highest priority, a round-robin scheduling tech-

nique is used by which each task is given a time slice in

turn.

Once the task is identified, the task's RSX-11M(S) system

priority is raised (set to the primary task execution prior-

ity). A MARK TIME system directive is then set up for the

length of a time slice, and the prirdary task is allowed to

begin or to continue executing until it finishes its as-

signed function (IFLAGS is set), until the time slice has

expired (IFLAG6 is set), or until a control command or Com-

munications Box message is received (IFLAG7 is set).

The task scheduling tests performed by the executive for

each primary task are described in the following para-

graphs. The tests are performed in the order given. Each

successive positive decision overrides the previous one for

a specific task. The executive sets the system directive

for the primary tasks based on the following conditions:

	

1.	 DATCAP is not scheduled by the executive in this

fashion because of its asynchronous I/O function.

	

1.	 INPPRO

a.	 If there is data in the input queue, EXEC di-

rects INPPRO to process input data (IDIR(2)=1).

2 -19	

Ii
9808
	 L

('i

A

a

I ^,

3

b. If the input queue is almost full, EXEC di-

rects INPPRO to process input data at a higher

priority (IDIR (2)=2).

c. If there is no more data in the input queue

and if the directive was set otherwise, EXEC

does not direct INPPRO to process input data

(IDIR (2)=0).

PREPRO

a. If the estimator is not running and if the

preprocessor is not already scheduled, the

executive does the following:

(1) If an observation buffer is full, it di-

rects PREPRO to preprocess a buffer of

observation data (IDIR(3)=1).

(2) If new observations have recently been

added to the observations file, it di-

rects PREPRO to extend the TDRS orbit

files to cover the next scheduled track-

ing pass (IDIR(3)=6).

(3) If a new TDRS vector has been received

and if the corresponding TDRS file has

been created and is not currently busy,

it directs PREPRO to update the entire

corresponding TDRS orbit file (IDIR(3)=3).

(4) If a new TDRS maneuver update vector has

been received and if the corresponding

TDRS orbit file has been created and is

not currently busy, it directs PREPRO to

update the portion of the corresponding

TDRS orbit file since the last maneuver

(IDIR(3)=5).	 (tli

2-20

9808

(5) If a new TDRS vector has been received

and the corresponding TDRS orbit file has

nct been created and if a tracking sched-

ule for Doppler prediction has been re-

ceived, it directs PREPRO to generate the

corresponding TDRS orbit file over a cur-

rent timespan (IDIR(3)=7).

(6) If the transponder is not currently

locked onto the tracking signal and the

current time is more than 30 seconds past

the scheduled end of the tracking pasa,

it directs PREPRO to preprocess all ob-

servations data in the buffer -ind to per-

form end-of-pass processing (IDIR(3)=2).

b.	 If the preprocessor has not already been

scheduled and if it is time for a TDRS maneu-

ver and the corresponding TDRS orbit file has

been created and is not currently busy, EXEC

directs PREPRO to perform the maneuver for the

specified TDRS (IDIR(3)=4 and ITDRSS = IDMAN).

4.	 DOPPRE: If DOPPRE is not already scheduled, the

executive does the following:

a. If the current time is past the scheduled

Doppler prediction time and an initialization

table has been received, EXEC directs DOPPRE

to extend the current table of predicted one-

way Doppler data (IDIR(6)=2).

b. If the above tests have been passed and DOPPRE

has not been requested to predict data for the

current pass, EXEC directs DOPPRE to generate

a table of predicted Doppler data (IDIR(6)=1).

2-21

9808

PT1_ 	
C)_1

^'Y y

1

	5.	 STAPRE: If STAPRE is not already scheduled, the

executive does the following:

a. If it is time to generate a state predict

table (done at regular scheduled intervals)

and if an initialization table is present,

EXEC directs STAPRE to extend the current

state vector table (IDIR(8)=1).

b. If a new state solution nas been obtained (by

the estimator), EXEC directs STAPRE to gener-

ate a new state predict table based on the new

state solution (IDIR(8)=2).

t`
	

C.	 If a new initialization table has recently
to--

been received, EXEC directs STAPRE to generate

• new state predict table based on the new

• priori state vector given in the initializa-

tion table (IDIR(8)=3).	 fo^

d.

	

	 If it is time for a user spacecraft maneuver,

EXEC directs STAPRE to generate a new state

predict table based on the estimated state

after the maneuver and to perform maneuver

recovery housekeeping functions (IDIR(8)=4).

	

6.	 ESTIM

a.

	

	 If the estimator is not currently scheduled,

the executive does the following:

(1) If this is the first batch and the obser-

vation timespan is equal to or larger

than the requested batch timespan, EXEC

directs ESTIM to perform a complete esti-

mation (IDIR(5)=1).

(2) When there is new data iz the observa-

tions file, when the timespan of the ob--

servations file is adequate for a batch,

2-22

Iti

i

(

and when estimation precomputation has

been performed, EXEC directs ESTIM to

finish the estimation process using the

new data (IDIR(5)=3).

(3) If the estimator has not been directed to

do anything else in tests 1 and 2 above

and if this is not the first batch, EXEC

directs ESTIM to perform estimation pre-

computation (IDIR(5)=2).

b.	 If a user spacecraft maneuver has been identi-

fied by the preprocessor during observation

preprocessing and the estimator is not cur-

rently executing, EXEC directs ESTIM to per-

form maneuver recovery (IDIR(5)=4).

C.	 When the estimator is currently scheduled to
(perform estimation precomputation but has not

started yet, if new data has been added to the

observations file, and if the observation

timespan is adequate, EXEC directs ESTIM to

perform complete estimation (IDIR(5)=1).

7.	 OUTPRO

a.	 If any of the following tests are passed, EXEC

directs OUTPRO to output the specified func-

tion code (ICODE) to the Communications Box

(IDIR (7) =10) .

(1) If the current time is.less than 20 but

more than 10 seconds before the scheduled

start time of the current pass and the

accumulator in the transponder has not

been reset since the last pass, EXEC di-

rects OUTPUT to send a reset accumulator

—)	 message (ICODE = 1).

I

2-23

9808 .

(2) If the current time is less than 10 sec-

onds before the scheduled start time of

the current pass and the PB5 generator

has not been accessed to obtain an accu-

rate estimate of the current time, EXEC

directs OUTPRO to request a clock time

message from the Communications Box

(ICODE - 2).

(3) If the current time is later than the

scheduled time to output a predicted

Doppler frequency shift, EXEC directs

OUTPRO to form and transmit a frequency

control word (ICODE = 3).

(4) If the transponder is locked onto the

tracking signal and all requests for ob-

servation messages have been filled, EXEC

directs OUTPRO to request an observation

message.

b.	 EXEC sets the lock flag in the output table to

indicate that it is time for regular activity

log downlink.

C.	 EXEC loops through the output table, /OPTAB/,

to locate the highest priority output re-

quested by other tasks through the table; if

any are found, EXEC directs OUTPRO to downlink

output tables starting with the highest prior-

ity entry -(IDIR = 1, 2, 3, 4, 5, or 6).

2.2.4 END-OF-TASK PROCESSING

After a task returns control to the executive by setting

IFLAGS to indicate that it has completed its assigned task,

EXEC performs end-of-task processing. This consists of a 	 ~-
series of housekeeping functions based on the particular

2-24

9808

YM	
^._

primary task that executed during the time slice. The end-

of-task housekeeping functions performed for each primary

task are as follows:

1. DATCAP: f; housekeeping is required

2. INPPRO: No housekeeping is required

	

3.	 PREPRO

a. If PREPRO has completed end-of-pass processing

(IDIR(3)=2), EXEC searches through the re-

mainder of the tracking schedule for the next

scheduled tracking interval and sets the cor-

responding executive scheduling parameters.

b. If PREPRO performed TDRS Maneuver recovery

(IDIR(3)=4), EXEC searches through the re-

mainder of the maneuver schedule until it

finds the next scheduled TDRS maneuver; it

then updates the corresponding executive

scheduling parameters.

C.	 If PREPRO has just finished extending the TDRS

orbit files to cover the new observation time-

span (IDIR(3).EQ.6), EXEC sets local schedul-

ing flags to indicate that all observation

preprocessing has been completed and that es-

timation may be performed (NEWOBS = false and

NEWDAT = true).

	

4.	 ESTIM

a.	 If ESTIM has not yet finished (IACT(5).GT.0)

but has returned only to record an error mes-

sage in the activity log, no housekeeping is

performed.

2-25

9808

n

b.

	

	 If ESTIM has just finished a complete estima-

tion cycle (IDIR(5).EQ.1), EXEC sets the

first-time estimation flag (FIRST) to false.

C.

	

	 If ESTIM has just finished estimation
(IDIR(5).EQ.3 or 1). EXEC sets the data ready

for estimation flag (NEWDAT) to false.

d.

	

	 If ESTIM has just finished processing a user

spacecraft maneuver (IDIR(5).EQ.4), EXEC sets

the time of the last maneuver processed by

PREPRO past the end time of the simulation.

5. DOPPRE: If DOPPRE has just finished generating the

first 60 predicted frequency shift records, EXEC

sets the time to transmit a predicted Doppler shift

to the transponder to the time of the first record

in the file

6. OUTPRO: If OUTPRO has just sent a message to the

transponder, EXEC does one of the following:

a. If OUTPRO sent a requert for clock time, EXEC

sets a flag to indicate that the clock has

been accessed for this pass.

b. If OUTPRO sent a command to reset the accumu-

lator in the transponder, EXEC sets flags in-

dicating that the accumulator has been reset

before the upcoming pass and that the trans-

ponder is not currently locked onto the track-

ing signal.

C.	 If OUTPRO has just transmitted a predicted

Doppler shift to the transponder, EXEC sched-

ules the next time to transmit a predicted

Doppler shift and sets the time slice to

whichever is larger: time until output of the

2-26

— a	 —

next predicted Doppler shift or the default

time slice.

d.	 If OUTPRO has sent a request for an observa-

tion, EXEC sets a flag indicating that a re-

quest for data is pending and sets the time to

output the next predicted frequency shift to

the current time.

7.	 STAPRE: If STAPRE has just performed user space-

craft maneuver recovery (IDIR(8).EQ.4), EXEC

searches through the remainder of the maneuver

schedule to locate the next scheduled user space-

craft maneuver and sets the corresponding executive

scheduling parameters

After task-specific, end-of-task processing has been per-

formed; EXEC clears the task directive (IDIR(I)=0) for the

primary task that was executing if the task has removed it-

self from the scheduling list (IACT(I).EQ.0). In all cases,

EXEC also clears the return status (error) flag (IRET(I)=0)

for the primary task.

2.2.5 ACTIVITY LOG GENERATION

Activity log generation is perf=ormed by subroutine ACTGEN.

Each time messages are to be inserted in the activity log,

EXEC calls ACTGEN specifying the task that has recently exe-

cuted. ACTGEN then checks the status flags and return status

flags for the specified task in global COMMONS /SYSEVN/ and

/TSKCOM/, respectively, to identify those messages that are

to be entered in the activity log.

For each message to be.generated, ACTGEN stores the message

number and contents that it retrieves from global COMMONS

/ACTVAR/ and /CONTROL/ in local COMMON /ALMESG/. For mes-

sages that contain times as part of their contents, ACTGEN

converts the times to YYMMDDHHMMSS.SS format when necessary.

2-27

9808

nl

i
A

n

Once each message has been created, ACTGEN calls WTMSG to

enter the message in the activity log. WTMSG first time

tags the activity log message; then the message is inserted

in the next available location in the activity log,

/ACTLOG/. I£ the activity log is full, WTMSG directs OUTPRO

to downlink it immediately and waits until OUTPRO has com-

pleted the downlink.

If the critical error flag is set by ACTGEN, the message is

also downlinked as a critical error messaqe. To do this,

WTMSG loads the message into global COMMON /ERRMSG/ and di-

rects OUTPRO to downlink it immediately. WTMSG waits until

OUTPRO has completed the downlink and then automatically

loads another message in the activity log stating that a

critical error message was downlinked.

When all indicated messages for the specified task have been

generated and entered in the activity loq, ACTGEN returns	 ?

control to EXEC.

2.3 ERROR HANDLING

Error handling is a combined effort between the executive

and the primary task where the error occurred. Errors oc-

curring in secondary tasks are reported through the primary

task that called them.

When an error occurs in a primary task, the primary task

evaluates the seriousness of the error. If the task can

continue but the error should be recorded, return status

flag IRET(I) is set. When the executive regains control,

the error message will be entered in the activity loq. If

the task can continue but the error should be recorded imme-

diately or, optionally, a critical error message should be

downlinked to ground control, the return status flag is set,

and the primary task immediately gives up control by setting

IFLAG5. Howevere since the-'primary task can continue, it

2-28

9808

ri

ae.1a

does not remove itself from the scheduling list. This guar-

antees that it will get another time slice to continue proc-

essinq.

When the primary task cannot continue processing due to a

critical error, the primary task sets the return status flag

appropriately, removes itself from the scheduling list

(IACT(I)=0), performs other housekeeping functions necessi-

tated by the error, and gives up control by setting IFLAG5.

When the executive regains control, it enters the error mes-

sage in the activity log and, optionally, based on preset

indicators, downlinks the critical error message to ground

control

2.4 FAST-TIMING FEATURE

The fast-timing feature allows a simulation case using the

Communications Box simulator to run faster than real time by

compressing idle time out of the simulation. When a BEGIN

FAST TIMING control command is received by FEDS, the fast-

timing option is turned on.

From this point until a STOP FAST TIMING control command is

received by FEDS, the following procedure is performed.

Whenever FEDS has nothing scheduled immediately, it finds

the time of its next scheduled event. When the amount of

idle time (i.e., the time between the current time and the

time of the next scheduled event) in FEDS is greater than

the maximum amount of idle time permitted during fast timing

(uplinked in the BEGIN FAST TIMING command), FEDS downlinks

the time of the next scheduled event in an idle time message

to ADEPT.

Wh-n the simulator receives this message, it checks its list

of scheduled events. When an urgent command or data re-

transmission is required, the simulator ignores the idle

time message. Otherwise, if the amount of idle time (i.e.,

the time between the current time and the next scheduled

2-29

9808

uplink time) in the simulator is greater than the maximum

amount of idle time permitted during fast timing, the simu-

lator sets the amount of idle time to be compressed out (At)

to the smaller of the FEDS idle time and the simulator idle

time. The simulator then moves its current time ahead to

compress out the idle time and uplinks to FEDS the amount of

idle time to be compressed out (At) in a SET CLOCK control

command. When FEDS receives the SET CLOCK control command,

it adjusts the onboard current time by the uplinked At.

At this point, the idle time has been compressed out of both

systems. This process is repeated each time idle time is

discovered in FEDS.

i

2-30

9808

SECTION 3 - INFORMATION PROCESSING TASKS

Five FEDS tasks are mainly responsible for data movement,

manipulation, and/or conversion:

a	 Data Capture (DATCAP)

•	 Input Processor (INPPRO)

•	 Data Preprocessor (PREPRO)

•	 Data Manager (DATMGR)

•	 Output Processor (OUTPRO)

The following subsections provide a functional description

of each task, including baseline diagrams and data flow dia-

grams.

3.1 DATA CAPTURE ('DATCAP) TASK

The primary responsibility of DATCAP is to receive uplinked

data from ADEPT and observations data from the Communica-

tions Box and to dispatch them from the uplink buffer to the

input message queue in the FEDS system. It also screens the

uplinked message for high-priority data types. If the up-

linked message is a high-priority type, DATCAP dispatches it

to the executive for immediate use. DATCAP has the highest

system priority of all the tasks in FEDS to allow it to cap-

ture data immediately after they are uplinked. Figure 3-1

is a baseline diagram of DATCAP; Figure 3-2 shows the commu-

nication and data flow among DATCAP and other FEDS tasks.

During initialization (INIT(1)=1), the input message queue

pointers and counters are initialized. DATCAP clears all

global system flags to indicate that it has not yet received

a command message, a sentinel record, or a data message.

DATCAP also clears the input message queue flag to indicate

that no messages have been received.

DATCAP issues a "ready" message to ground control by using

WTQIO to signal that it is ready to receive the next uplinked

3-1

9808

r { •f

3-2

3
l

a

U
H

A

w
0

ro
N

ro

A

U1
A

r-I
Gl
N
ro
ca

d
H
0
rn

P4

DATCAP

/SVSEVN/	 /TSKrOM/	 /CONTRL/	 /INPBUF/
	

OBSQ

owY Q
2 Vl
J W
7

ADEPT) (COMMUNICATION
BOX

LEGEND:

QTASK THAT IS SUBJECT OF DIAGRAM

O
OTHER FEDS TASKS THAT COMMUNICATE
WITH SUBJECT TASK
GLOBAL COMMON BLOCK

Figure 3-2. DATCAP Data Flow

3-3

m

message. It then issues QIOs to read the line to receive

data from ADEPT and the line connecting FEDS to the Communi-

cations Box. At this point, DATCAP goes into a "wait" state

and surrenders the CPU to allow other tasks to execute while

it is waiting for a message. When a message arrives,'DATCAP

immediately takes control and receives the message because

of its status as the highest priority task.

DATCAP first identifies " the source of the message. If the

message is from the Communications Box, DATCAP performs all

processing and data storage before informing the FEDS execu-

tive that a message has been received from the Communica-

tions Box. I£ the message is from ADEPT, DATCAP performs

preliminary validity checks on the uplinked`message and sets

the appropriate return status flag to inform the FEDS execu-

tive of the status of the QIO. DATCAP then proceeds to scan

the uplinked message.

There are three types of messages uplinked from ADEPT: in-

put data messages, hiqh-priority control command messages,

and the sentinel (end-of-transmission) record (see Appen-

dix D of Reference 2). If the message is a sentinel record,

subroutine SCANIN sets the global status flags to inform the

FEDS executive and subroutine LODBUF loads it into the

global COMMON /INPBUF/. If the synchronization characters

in the uplinked message record header are bad, LODBUF loads

the entire corrupted message into the input queue to keep

the pointers consistent. The input processor will handle

the corrupted message later. SCANIN next checks to see

whether the message is acceptable.

If DATCAP has been directed by the executive to accept all

incoming messages (IDIR(1)=1), it checks the type of mes-

sage. If it is a control command, SCANIN first calls GETFRM

to extract the command frame and then calls SNDCMD to trans-

fer the command to the executive by means of global COMMON

3-4

F—^

9808

	

^i	 "

.	 i

/CONTRL/ and to set global event flag IFLAG7 to notify the

executive that a control command was received. SCANIN next

calls LODBUF to store the uplinked message (data or command)

in the input queue.

If DATCAP has been directed by the executive to accept only

a specific control command (e.g., a START command

(IDIR(1)=2), a RESUME command (IDIR(1)=3), or a CONTINUE

command (IDIR(1)=4)) and if the message contains the speci-

fied command, SCANIN calls SNDCMD to transfer the command to

the executive by means of gl.obal COMMON /CONTRL/ and to set

IFLAG7 to inform the executive that the command for which it

is waiting has been received and is ready for processinq.

SCANIN then calls LODBUF to load the command in the input

queue. If the message did not ogntain the specified com-

mand, the message is ignored, except when DATCAP is lookinq

(for a CONTINUE command, when all data messages are to be

accepted.

After the message process, if the message was from ground

control, DATCAP issues another "ready" message to the ground

to indicate that	 is ready to receive the next message.

After issuing the QIO to read to the source of the previous

message, DATCAP waits for the next message and the process

begins again with the reception of that message. This proc-

ess continues until DATCAP is aborted by the FEDS executive.

3.2 INPUT PROCESSOR (INPPRO) TASK

INPPRO is a primary task in FEDS. Its main function is to

empty the input queue, /INPBUF/, and to store the input data

in the appropriate global COMMON blocks. Figure 3-3 is a

baseline diagram of INPPRO; Fiqure 3-4 shows the communica-

tion and data flow among INPPRO and other FEDS tasks,

During initialization (INIT(2)=1), INPPRO calls subroutine

I(^7 	IPINIT to initialize all local flags and the observations
queue link-l.ist pointers. INPPRO then sets global event

3-5

9808

3-6

O

z

4-1

0

Ol

CLI

rT4

T.-;

w
O

N

O9
W
44
z
H

W
O

E
ro
u
rn
ro

a

ro

m
ro
w

ri

M
N
F4
7
tT

W

3-7

3-8

44
O

M

0
x
G
G
z
H

4-1
O

ro
N

ro

A

v

m

ro
w

ri

M

N
Si
7

C:1

LL
ma
z

0
U
y
N
r

z

N
N

Q

U
Q

lB/ld-A

1	 t 1

3-9

ON
mN Xa

W
2.

2

co

H
W

F
Q

^ V
Q 2

C7 ^
Q o
c r
LL U
O r yQ

S
W r y 3
n NN m

y Q^ O
N rU ^r N' O

O

r ¢N Q

N SH O

ooi^

3
O
H
W

O
+1

Q

O
Z
w
A4
z
H

i
M

W
H
O
Im
•1

V

	

1	 1

/ ?!

flag IFLAG5 to return control to the executive. When INPPRO

is given control again by the executive, it calls subroutine

GTHEAD to extract the record header of the first record in

the block and to perform a set of quick validity checks on

the record header, including data corruption, end of trans-

mission, validity of input type and input data indicators,

transmission number, and block ID number. If an error is

found by GTHEAD, INPPRO calls STERR to perform error recov-

ery and sets IFLAG5 to give up control. Otherwise, INPPRO

waits until the input queue has a complete block of data and

then calls the appropriate subroutine to process the input

message block. A list of the subroutines and the type of

data they process follows.

Subroutine	 Item Processed

STINIT Initialization table

STEST Estimation control parameters	 1

STTDRS New TDRSS vectors

STMANS Maneuver schedule

STTRKS Tracking schedule

STMISC Miscellaneous constants

STSTAN Station parameters

STGEO Geopotential tables

STATM Atmospheric density tables

STTIMF Timing coefficients or constants

STEXV Experiment parameters

The input data is stored in the proper global COMMON block

where it will be used later by other FEDS tasks.

The subroutine that processes and stores the particular type

of input message also validates each block of data before

storing any part of it in the global COMMON block. The data

block is checked for completeness and for corrupted mes-

sacPs. If the message block is valid, it is then checked to

see whether it is acceptable input at this time, based on 	 y

3-10

9808 a

the data previously received. For instance, miscellaneous

constants can never be accepted after the first initializa-

tion table has been received. Geopotential tables, station

parameters, and atmospheric density tables may be accepted

only between a SUSPEND command and a CONTINUE command once

data processing has begun. Estimation control parameters

may be accepted only when the estimator/observation model is

not executing or between SUSPEND and CONTINUE commands.

Once input processing has begun for a particular block of

data, the processing subroutine sets BLKFLG to true to indi-

cate that the INPPRO task is in the middle of processing a

contiguous block of input messages. This is a safeguard to

guarantee that an entire block of input data will be stored

in a COMMON block at the same time. If an INPPRO time slice

ends and if BLKFLG is true, the executive will allow INPPRO

to finish processing the current block of messages before

resuming control. Each time input processing of a message

block is completed ? BLKFLG is set to false.

If an error or an unacceptable message block is discovered

during input processing of a specific message block, INPPRO
calls subroutine STERR to store the information in global

COMMON /ACTVAR/; this information will be used by the execu-

tive to record the error in the activity log and, op-

tionallv , to downlink a critical error message. When data

corruption or an incomplete message block is detected, the

record header information is supplied for the critical error

message to allow ground control to identify and ,retransmit

the erroneous message block. After STERR has stored this

information, INPPRO sets IFLAGS to return control to the

executive so that it may report the error.

If no errors were found during input processing of the par-	 c1

ticular message block, INPPRO updates the input queue

3-11

9808

^. r

pointers and counters. It then continues to the next mes-

sage block and begins processing it with the call to GTHEAD

described earlier.

The means by which the input processor task voluntarily

gives up control depends on the input processor directive

(IDIR(2)) set by the executive. If INPPRO has been directed

to process all messages available in the input queue

(IDIR(2)=1 or 2). INPPRO will continue processing message

blocks until the input queue is empty or until an end-of-

transmission record is detected. At this point, INPPRO will

reinitialize the input queue pointers and counters and will

report to the executive, through global parameters, on the

condition that caused it to stop. It then removes itself.

from the scheduling list (IACT(2)=0) and sets IFLAG5 to re-

turn control to the executive.

If INPPRO has been directed to process all messages up to

the CONTINUE command (IDIR(2)=3), it will continue process-

ing until it detects the CONTINUE command. At this point,

it sets the appropriate return status flag, removes itself

from the scheduling list, and sets IFLAG5 to return control

to the executive.

If INPPRO has been directed to finish processing the current

message block only (IDIR (2)=4), INPPRO stops when it has

completed the current block. INPPRO is directed to do this

when it has not completed processing a message block when

the time slice expires. At this point, INPPRO removes it-

self from the scheduling list and sets.IFLAGS to return con.-

trol to the executive.

3.3 DATA PREPROCESSOR (PREPRO) TASK

PREPRO is an independent primary task in FEDS. Each time it

is given control, it is directed by the executive to perform

a specified function.

3-12

9808 :,'i

r

During initialization (INIT(3)=1), PREPRO calls PPINIT to

clear the local variables and to request the (secondary)

DATMGR task and directs it to purge the observations file

and the TDRS orbit files. PREPRO then sets IFLAG5 to return

control to the executive.

When PREPRO regains control, it examines task directive

IDIR(3) set by the executive to determine which of the fol-

lowing functions it is to perform:

•	 Preprocess the observation data, buffer full of

data (IDIR(3)=1)

•	 Preprocess the observation data until end of data

encountered, set end-of-processing flags, pass has

ended (IDIR(3)=2)

•	 G =rate new TDRS orbit files (IDIR(3)=7)

•	 Extend the TDRS orbit files (IDIR(3)=6)

•	 Update orbit file	 (IDIR(3) = 3 or 5)

•	 Perform TDRS maneuver recovery (IDIR(3)=4)

To perform these functions, PREPRO uses the DATMGR and/or

ORBIT secondary tasks. The communication between PREPRO and

these secondary tasks is performed using the global task

directive, return flag and global variables, utility subrou-

tines VSEND and VRCEVE, and qlobal event flags. Detailed

descriptions of the methods for requesting DATMGR and ORBIT

are given in Sections 3.4 and 4.1, respectively.

When PREPRO finishes its assigned function, it reports its

activities to the executive by setting the global flags and

by updating the global variables that will be used to gener-

ate activity log messages. PREPRO then removes itself from

the scheduling list (IACT(3)=0) and sets IFLAG5 to return

control to the executive.

3-13

9808

Descriptions of the four major functions performed by PREPRO

are given in the following subsections. Figure 3-5 is a

baseline diagram of PREPRO; Figure 3-6 shows the communica-

tion and data flow among PREPRO and other FEDS tasks. An

accompanyinq description of the send/receive data packets is

given in Appendix C.

3.3.1 TDRS ORBIT FILE GENERATION

Two separate directives cause PREPRO to generate TDRS Orbit

files. These directives cause the same basic function to be

performed; however, the method for computing the start and

end times of the orbit files is different.

When PREPRO is directed to create the TDRS orbit files

(IDIR (3)=7), the start time of the file is set , to the simu-

lation reference time and the end time is set to 10 minutes

past the end of the first scheduled tracking pass. This

directive is used only at the beginning of the simulation.

When PREPRO is directed to extend the TDRS orbit files

(IDIR (3)=6), PREPRO sets th =e end time of the orbit files to

10 minutes after the end time of the next scheduled tracking

pass. This directive is used after a tracking pass has

ended or, possibly, when a new tracking schedule is uplinkeA.

When PREPRO is directed to perform either of these func-

tions, new TDRS vectors for the ' requested timespan are added

to all existing TDRS orbit files. If the orbit files are

being created for the first time, one file is created for

each unique new TDRS vector received (up to two TDRSs).

Thus, all TDRS orbit files will have the same start and end

times when PREPRO has completed its assigned function.

After PREPRO has determined ^.he start and end times of the

orbit files, it calls subroutine TDRORB to generate the spec-

ified TDRS orbit file. PREPRO provides the start time, end

3-14

9808
fP

^I

0
6
W
6

R

m
O
0r

6
a

O

r
Z
d
1

K/Q

2m
W^
mQ
^O

W->rWm
U¢	 ,
j0

W m	 W	 QRy
> o	 r	 a	 G7

	

a	 i
w
0

j	 a
z
v $.{

tm
ro

a
m	 V	 W

Q

ro
m	 X
m	 Z
^	 W	 ^r	 m	 11'1

M

~	 ^	 i

¢	 W

J

LL
6
LL

W

i

3-15

1

3
O

W
ro

ro
Q

Oa
P4

aa

1D
I

M

N

M

i

aaaaa

Z
C
U
xf
6

O
a

6
r°
3
i

i
a
y

a<	 a
o

0

z

r
N

J
H

U

W
W

a

f

rnm <°

V
m^
O°

4	 06 Q

Q Z	 Qy Q

Q f	 °r 2

° Q	 Y NW
°NU r Y ^

W NN m wN Q
Z7 NF	 NN F

=HN Fy f

a°'m u um^aZ W p ^ 6p N

w	 Q
N 2H O rU
^o3main ¢̀

0011F,

/8016

J

time, and initial vector for the specified TDRS (specified

by the internal TDRS ID). The initial vectors for generat-

ing new TDRS files are taken from global COMMON /NEWTDR/;

the initial vectors for extending the TDRS orbit files are

the vectors associated with the last entry in the current

files. Subroutine TDRORB simply requests ORBIT to propagate

the vector one step size at a time and then requests DATMGR

to store the new TDRS vector in the next location in the

orbit file. TDRORB also sets the start flag (ISTART) in the

input parameters that are sent to the ORBIT task to indicate

whether ORBIT should restart based on the input vector or

whether to use its local table of backpoints to generate the

requested vector.

While a TDRS orbit file is being generated, TDRORB blocks

all other tasks from using the TDRS orbit file by setting

global control flag TDRBSY(I) to indicate that the orbit

file for TDRS I is busy and then clears the flag when the

process is completed. TDRRDY (I) is set when a new orbit

file has been generated for TDRS I. TDRORB returns control

to PREPRO when the specified TDRS orbit file has been

created or extended to the specified end time. PREPRO then

calls TDRORB to create or extend the orbit file for the

other TDRS. After this, PREPRO removes itself from the

scheduling list and sets IFLAGS to return control to-the

executive.

3.3.2 TOPS ORBIT FILE UPDATE

Each time new TDRS vectors are received, the executive will

direct the data preprocessor to update an entire TDRS orbit

file or the portion of the specified orbit file that was

affected by the most recent maneuver. If it is a simple

update request (IDIR(3)=3), PREPRO sets the timespan of the

^-	 update from the start time to the end time of the file. It

then calls subroutine TDRORB to perform the update and

3-17

9808

provides it with the otart time, end time, and new TDRS

vector taken from global COMMON /NEWTDR/ for the specified

TDRS. TDRORB performs the update by requesting ORBIT and

DATMGR as it does during TDRS orbit file generation (see

Section 3 . 3.1), except that DATMGR is directed to replace

the corresponding old vector in the TDRS orbit file with

each new vector.

IF PREPRO is directed to update only the portion of the or-

bit file following the last maneuver (IDIR (3)=5), it sets

the timespan of the update from the time of the last maneu-

ver to the end time of the orbit file. PREPRO then proceeds

as described above for a standard update.

When PREPRO has completed the assigned update for the speci-

fied TDRS, PREPRO removes itself from the scheduling list

and sets IFLAG5 to return control to the executive.

3.3.3 TDRS MANEUVER RECOVERY

When Lhe current time matches the scheduled time of a TDRS

maneuver, the executive schedules PREPRO to perform the TDRS

orbit file maneuver recovery 1,IDIR(3) =4). Basically, PREPRO

obtains the predicted vector after the maneuver from global

COMMON /CONTRL/ and sets the timespan of the update from the

maneuver time to the end time of the file. TDRORB is then

called to update the file as described in Section 3.3.2.

The current maneuver vector is saved for later use in local

storage. PREPRO then sets the global flags, updates activ-

ity log variables, and surrenders control to the executive

by removing itself from the scheduling list and settinq

IFLAG5.

3.3.4 OBSERVATION DATA PREPROCESSING

The last major function of PREPRO.is to preprocess observa-

tion data (IDIR(3)=1 or 2). Subroutine OBSPRE is called to—^

preprocess the observation data. If a user spacecraft

3-18

9808

maneuver has occurred recently, OBSPRE checks the observa-

tion to check whether or not it is the first observation

followinq the maneuver by comparing the observation time taq

with the maneuver time. If it is the first observation fol-

lowing the maneuver, OBSPRE calls the DATMGR task to purge

the observations file and the TDRS orbit files before the

user spacecraft maneuver time. OBSPRE then proceeds by

checking the validity or acc_ptability of the observation

record based on the observation data time tag and validity

flags for the observation data. If the data record is

acceptable, OBSPRE converts the time (input in PB5 format)

to the FEDS internal time format (A.1 seconds from refer-

ence); associates the current pass station ID, TDRS ID, and

access method with the data record; and converts the Doppler

observations to the proper engineerinq units. No smoothing

of the observation data is done by PREPRO; however, observa-

tions are selected at the requested sample frequency. The

preprocessed observation data record is then sent to DATMGR

to be added to the observations file. This process is re-

posted for each observation record until the observations

buffer is empty. At this point, the observation pass sta-

tistics and global flags are updated or set according to the

directive and OBSPRE returns to PREPRO. PREPRO then removes

itself from the scheduling list and sets IFLAG5 to return

control to the executive:

3.4 DATA MANAGER (DATMGR) TASK

As a secondary task in FEDS, DATMGR's main functions are to

manage one observations file and up to two TDRS orbit

files. These files are stored in DA:FMGR's local memory

since no peripherals are available on the PDP-11/23. All

access to these files by any FEDS task is controlled by the

data manaqer that locates, reads, writes, and purges data

when directed. Figure 3-7 is a baseline diagram of DATMGR;

3-19

9808

.	

I'

S

DATMGR

PURTDR	 PUROSS	 LOCTOR^	 VSEND	 VRCEVE

	 4. 7
	

11

Flaure 3-7. Baseline Diagram of DATMGR

L y

3-20

Y	 n ^ -1 ^..a. R 11

f

t

Figure 3-8 shows the communication and data flew among

DATMGR and other FEDS tasks. Appendix C describes the data

packets.

Because DATMGR is a secondary task, it is controlled com-

pletely by the primary tasks PREPRO, ESTIM, OBSMDL, and

DOPPRE. As shown in Figure 3-8, communication amonq.DATMGR

and the primary tasks is performed by means of task direc-

tive IDIR(4) and return status. flag IRET (4) in qlobal COMMON

/TSKCOM/ and data packets that are sent to and from DATMGR.

Glabal event flag IFLG10 is used to ensure that only one

primary task at a time may use DATMGR. While the data mana-

ger is busy, IFLG10 is clear and when DATMGR is idle, IFLG10

is set. This allows a primary task to check whether DATMGR

is busy before requesting it.

The procedure used by a primary task to request DATMGR is as

(follows. If the function performed by DATMGR requires input

data from the primary task, the primary task sends the

proper data packet to DATMGR via VSEND. The primary task

then waits until DATMGR is free (IFLG10 is set). When

DATMGR is free, the primary task sets task directive IDIR(4)

to indicate which function DATMGR is to perform, requests

DATMGR, and waits for IFLG10 to be reset by DATMGR to indi-

cate that it has finished. If the function performed by

DATMGR caused data to be output to the primary task, the

primary task then receives the appropriate data packets

using VRCEVE and checks whether an error occurred in

DATMGR. The primary task must perform error recovery for

any errors that occur in DATMGR.

During initialization (INIT (4)=1), DATMGR is called by

PREPRO and is directed to purge all files. At this time,

all local pointers and counters are cleared. When initiali-

zation is conpleted, DATMGR sets IFLG10 to notify PREPRO

that it is finished and then exits.

3-21

j	 9808

LEGFNO:

QTASK THAT IS SUBJECT OF DIAGRAM

Q
OTHER FEDS TASKS THAT COMMUNICATE
WITH SUBJECT TASK^L GLOBAL COMMON BLOCK
DATA PACKET USED TO SEND DATA TO OR RECEIVE DATA FROM
SECONDARY TASKS
APPEARS MORE THAN ONCE IN DIAGRAM

Figure 3-8. DATMGR Data Flow

3-22

Other functions that DATMGR performs relate specifically to

TDRS orbit file management and observations file management,

both of which are discussed in the following subsections.

3.4.1 TDRS ORBIT FILE MANAGEMENT

TDRS orbit files are stored in a wraparound fashion within a

fixed-length storage area in local COMMON /TDRFLE/. The

files are extended in a sequential record order starting in

the first physical record. When all physical records in the

orbit file are full, the next record is written in the first

physical record of the file, thereby destroying the data

previously stored there. The start pointer (first logical

record) of the file is then.moved to the second physical

record. This process continues as new records are added to

the file. The data manager uses the start and end pointers

for each TDRS orbit file to find the location to write the

next record. The time tags of the first and last logical

records in each orbit file are also maintained. These times

are used to locate a TDRS vector by time tag in the orbit

files. When the TDRS orbit files are purged, these pointers

and times are cleared, effectively emptying the files.

When DATMGR is directed to add a new TDRS ven' ^tor to an orbit

file (IDIR(4)=6), DATMGR receives the data packet containing

the TDRS vector, its time tag, and the associated TDRS ID.

DATMGR then stores the vector in the next logical record in

the orbit file for the specified TDRS, and the start and end

times and pointers for that orbit file are updated. DATMGR

then sets IFLG10 and exits.

When DATMGR is directed to update a TDRS record according to

its time tag (IDIR (4) = 7) 0 DATMGR receives the data packet

containing the updated TDRS vector, its time tag, and the

associated TDRS ID. DATMGR then calls LOCTDR to locate the

current record in the specified orbit file that contains the

TDRS vector with the same time tag. DATMGR replaces the old

3-23

9808

3-24

)8

)

vector in that record with the new (input) TDRS vector, sets

IFLGIU, and exits.

When DATMGR is directed to return a set of TDRS vectors sur-

rounding a specified time to OBSMDL (IDIR(4)=8) or to DOPPRE

(IDIR (4)=9), 'it receives the data packet containing the

specified time tag and TDRS ID. DATMGR then calls LOCTDR to

locate the record containing a time tag closest to the input

time tag. Next, DATMGR loads into, the output data packet 10

vectors that surround the input time tag and are retrieved

from the specified orbit file. When possible, the vectors

are chosen so that the input time falls in the middle of the

timespan of the 10 TDRS vectors. If the input time tag is

too close to the start time of the orbit file, the first

10 vectors in the file will be loaded into the output data

packet; if the time tag is too close to the end time of the

orbit file, the last 10 vectors will be loaded. The output 	 -)

data packet is then sent to the appropriate task and DATMGR

sets IFLGIO and exits.

When DATMGR is directed to purge the portion of an orbit

file before the time of a maneuver (IDIR(4) =10), it receives

the data packet containing the input time tag and TDRS ID.

Then, DATMGR resets the start pointer to point to the first

record in the orbit file with a time tag equal to or greater

than the input timf2 tag and sets the start time of the orbit

file accordingly. DATMGR sets IFLG10 and exits.

3.4.2 OBSERVATIONS FILE MANAGEMENT

The observations file is also a wraparound file that is

stored in a fixed-length storage area in local COMMON

/OBSFLE/. A set of start and end times is maintained for

each observation pass in the observations file. These times

are updated each time a new record is added to the file. As

the file wraps around itself, the earliest pass in the file 	 P^^

gets shorter as the start time moves closer to the end time

until the pass is eventually eliminated from the file. The

observations file holds up to 125 observation records.

When DATMGR is directed to write a new observation record in

the observations file (IDI'R(4)=1), it receives the data

packet containing the observation record. DATMGR writes the

observation in the next record in the observations file and

updates the pointers and pass timespans accordingly. DATMGR

then sets IFLG10 to notify the calling task that it has fin-

ished and exits.

When DATMGR is directed to retrieve an observation record

and send it to requesting task ESTIM (IDIR(4)=2), DATMGR

retrieves the previous record and loads it in the output

data packet. It then sends the data packet to the primary

task, sets IFLG10, and exits.

When DATMGR is directed to reset the observation read

pointer (IDIR(4)=3), it sets the observation read pointer to

point to the last observation (the observation with the lat-

est time tag) in the observations file. It then sets IFLG10

and exits.

When DATMGR is directed to update the end-of-pass indicator

in the last observation written in the file (IDIR(4)=4),

DATMGR changes the end-of-pass indicator in the last record

in the file to 1, sets IFLG10, and exits.

When DATMGR is directed to update the last record that was

read from the observations file (IDIR(4)=5), it receives the

data packet containing the updated observation values. The

information is then written into the record to which the

observation read pointer is pointing. DATMGR sets IFLG10

and exits.

i

3-25

9808

C4' 1

t

3.5 OUTPUT PROCESSOR (OUTPRO) TASK

OUTPRO is an independent primary task in FEDS that is re-

tI
'	 sponsible for downlinking output messages to ground control

i	

and for sending messages to the Communications Box. Six

+(

	

	 types of messages are downlinked from FEDS: predicted state

vector tables, predicted one-way Doppler data, priority mes-

sages (critical errors and idle time messages), activity

logs, DC summary and statistics reports, and DC residuals

reports. In addition, OUTPRO downlinks a stacial end-of-

:',

	

	 simulation message when directed by the executive. Four

types of messages are output to the Communications Box:

current time request messages, reset accumulator command

messages, predicted frequency shift messages, and Doppler

measurement requeat messaqes. In addition, an initializa-

tion message is sent a! the beginning of a simulation to

I	 verify communication between FEDS and the Communications Box. 	 j
{	 Figure 3-9 is a baseline diagram of OUTPRO; Figure 3-10

shows the communication and data flow among OUTPRO and other
E:I

FEDS tasks.

Like other primary tasks, OUTPRO is controlled by the FEDS

execs :Ave. Most of this control is performed by the output

control table, /OPTAB/. Each task that generates FEDS out-

put information for downlink to ground control requests out-

put of this information through the output table in the

following manner. When the responsible task has completed

Ei

	

	 generating the information and has stored it in the appro-

priate global COMMON block, it sets a lock flag (LCKFLG(I),

where I indicates .the type of data) that prevents any task

from writing over and thus destroying the information before

it is downlinked. The output control table also contains an

output priority and the number of frames to be output

(NFRAME(I)) for each type of output. Each time the execu-

tive gains control, it checks the output table for output

3-26

9808

3-27

it•

1.,1M

°a
P4
E
D
O
w
O

ro
s^
a+
ro

A

ro
a

v
N
ro
co

rn

m

N
N

W

W909c

2
O
FFLLF

Q
0
W
w
UW
¢ O

FOz
U	 o<

a z	 Qy

V D	 ^O

O O	 OU
W v	 zwW yO h Y NW
F	 U	 Wi	 OO ry

m N Yp m ONWzO yF O jy
y a^	 6

Q Om	 U¢
S w o J a0
F- ¢ y a 1z
N Sf O f0

03 Q on

n

^

00 1I
u

3
O
r-I
P4

ri
41
0
im

0W

0
O

C)

M

a

W

3-28

17

bJfU
a

z
WN
7
N

m
2
U

ma
6
O

I
Nf¢
W

f
0
VY
yf

requests (lock flag is on). It then finds the highest pri-

ority output request in the output table. Directive IDIR(7)

is set to the highest priority type of output to be down-

linked, and OUTPRO is then scheduled as described in Sec-

tion 2. When OUTPRO gains control it performs standard

output. OUTPRO can also be directed to perform priority

output; that is, it will downlink the specified information

immediately and return control to the executive. Standard

and priority !output functions are described in the following

paragraphs.

During initialization (INIT(7)=1) 0 OUTPRO calls OPINIT to

initialize local variables and pointers. OUTPRO then sets

IFLAG5 to return control to the executive. when OUTPRO re-

gains control, it examines task directive IDIR(7) to deter-

mine whether it is to perform standard or priority output.

(

	

	 If OUTPRO has been directed to perform standard output

(IDIR(7) = 1, 2, 3, 4, 5, or 6), OUTPRO calls CKPRIO to scan

through the output control table, /OPTAB/, to search for the

highest priority information to be output. OUTPRO then

calls one of the following subroutines to l o ad the informa-

tion into the output buffer:

•	 LODVEC (load next message of the state vector table)

•	 LODDPL (load one-way Doppler data)

•	 LODERR (load priority messages)

0	 LODACT (load activity log)

•	 LODDCS (load DC summary and statistics report)

•	 LODRES (load DC residuals report)

If OUTPRO has been directed to perform priority output

(IDIR(7) =7 or 8), it calls either LODACT to load the next

activity loq message (IDIR(7) =7) or LODERR to load the pri-

ority message (IDIR(7) =8) in the output buffer. If OUTPRO

has been directed to downlink an end-of-simulation message

3-29

9808

, 17
(IDIR (7)=9), it calls LODSEN to load the sentinel record

into the output buffer.

Each time a message is loaded into the output buffer, the

number of frames is decremented by the number of frames

loaded in the message. After the message has been loaded,

OUTPRO calls OUTTIM to obtain the current simulation time in

YYMMDDHHMMSS . SS format and inserts it into the record header

of the downlinked message. OUTPRO then calls DWNSND to

downlink the message to ground control. To do this, DWNSND

issues a QIO directive to read the ready message sent by

ground control. When a message is received, DWNSND checks

whether it is a ready message or a retransmission request.

If it is a retransmission request, DWNSND issues a QIO to

downlink the previously downlinked message that was saved,

issues a QIO for a ready message, and the output process

described in the preceding paragraphs is performed. When a

ready message is received, DWNSND issues a QIO to downlink

the current output message in the output buffer. The mes-

sage is then transferred to the save buffer and DWNSND re-

turns to OUTPRO.

If there are more frames of this type, processing returns to

the point at which OUTPRO calls the appropriate subroutine

to load the message and processing continues as before.

If all frames of this type have been output (NFRAME (I)=0),

output processing of this type of data has been completed.

At this time, the output information storage area is un-

locked (LCKFLG (I) is turned off). If standard output has

been requested, OUTPRO searches the output control table by

priority for the next type of output to be downlinked. If

one is found, standard processing of that type of data is

performed as described above. When no more types of re-

quested output are left in the output control table, OUTPRO"-^

3-30

9808

i

removes itself from the scheduling list and sets IFLAG5 to

return control to the executive.

If all frames of the specified type of priority output have

been output, OUTPRO simply removes itself from the schedul-

ing list and sets IFLAG5 to return control to the executive.

If OUTPRO has been directed to perform output to the Commu-

nications Box (IDIR(7) =10), it calls OUTTRN to form and

transmit the requested message. OUTTRN examines ICODE in

/OPTAB/ to determine which message is to be transmitted,

forms the 11-byte message and immediately issues a QIO to

transmit the message. After OUTTRN has returned, OUTPRO

unconditionally removes itself from the scheduling list and

sets IFLAG5 to return control to the executive.

3-31

9808

L

SECTION 4 - COMPUTATIONAL TASKS

Five FEDS tasks are primarily responsible for performing

computations in FEDS. These tasks generate data to be down-

linked to ground control or produce intermediate quantities

thct must be used by other FEDS computational tasks to gen-

erate the output data. They are as follows:

•	 Orbit Propagator (ORBIT) propagates a given space-

craft state (and, optionally, its partial derivatives) and

sends it to a specified task for output or for use in

another computational model.

•	 State Predictor (STAPRE) generates tables of pre-

'iicted user spacecraft state vector data for downlink to

ground control and use in the Doppler predictor.

•	 Doppler Predictor (DOPPRE) generates predicted

one-way Doppler data for downlink to ground control and out-

put to the Communications Box.

•	 Estimator (ESTIM) estimates and corrects the cur-

rent user spacecraft state based on the differences in ob-

served and computed TDRSS observations. The output state

vector is used for both state prediction and Doppler predic-

tion.

•	 Observation Modeling (OBSMDL) computes TDRSS

Doppler observations and partial derivatives that correspond

to the data in the observations file based on the current

best estimate of the user spacecraft state and the given

TDRS position at each observation time.

The following subsections provide a functional description

of each of these tasks including baseline diagrams and data

flow diagrams. The mathematics for the computational models

used in these tasks is given in the FEDS mathematical speci-

fication (Reference 2). Appendix C contains detailed

4-1

9808	
ll;.

-	 -	 -	 -	 VAA

P

C--AtI

%i

descriptions of the data packets, shown in the data flow

diagrams, that are used for intertask communications.

4.1 ORBIT PROPAGATOR (ORBIT) TASK

ORBIT is a secondary task in FEDS. Tt is used by four of

the FEDS primary tasks that require orbit propagation:

PREPRO, STAPRE, ESTIM, and OBSMDL. Because of the FEDS

time-slicing control scheme, the orbit propagator must be

able to service a wide variety of back-to -back requests from

the primary tasks. In addition, the application demands

that ORBIT must have sufficient force-modeling capabilities

to propagate both the high-altitude geosynchronous TDRS or-

bits and the low-altitude drag-perturbed user spacecraft

:	 orbit.

To fulfill the needs o£ other FEDS tasks, ORBIT has the ca-

pabil?,ty of propagating your separate orbits simultane-

ously. This means that it can switch from propagating one

orbit to propagating another without starting the integrator

each time. Each time ORBIT is requested (called) by a pri-

mary task, it propagates the requested orbit only. it must

finish executing one request before it can be called to do

another; it is not reentrant.

The four orbits are identified by-two FEDS spacecraft IDs.

ISCID,. included in the ORBIT input data packets (see Appen-

dix C), is used by the primary task to indicate which orbit

is to be propagated, and IDSC is used internally as an index

in the ORBIT task. The four orbits are as follows:

ISCID	 IDSC	 Spacecraft Orbit

1	 1	 Orbit for TDRS 1; used ^ %y PREPRO

2	 2	 Orbit for TDRS 2; use zy PREPRO

4	 3	 Past-time orbit for user spacecraft that
includes associated variational equa-
tions; used by ESTIM and OBSMDL

4-2

9808

ISCID
	

IDSC	 Spacecraft Orbit

5
	

4	 Real-time orbit for user spacecraft; used
by STAPRE

ORBIT uses the multistep method of numerical integration

when possible. Two pairs of predictor-corrector integrators

from the Adams and Cowell groups of integrators are useu.

These methods are derived by integrating polynomials that

interpolate (or, for the predictors, extrapolate) based on a

table of backpoints. A set of previously computed accelera-

tions farms the table of backpoints for a satellite state,

and the partial derivatives of accelerations with respect to

the initial (epoch) state form the backpoints for the varia-

tional equations. Each of the four spacecraft states has

its own table of backpoints independent of the other space-

craft trajectories, and the past-time user spacecraft state

(ISCID=4) has the variational equations table of backpoints

associated with it..

Because the predictor-corrector methods have inherent , limi-

tations in startup capability, a separate procedure for ini-

tially filling the table of backpoints is required. In

ORBIT, integration startup is performed by a Runge-Kutta-
Fehlberg (RKF) integrator. However, this procedure is per-

formed only when necessary for the following reasons: the

RKF integrator is slow since it performs five derivative

evaluations per step and is of low order (six RKF steps must

be performed to approximate one step of the multistep inte-
grator in accuracy).

These types of numerical integration alone are not entirely*
satisfactory for meeting the requirements placed on the (3r.

bit propagator. ORBIT must be able to frequently produce

satellite state and state transition matrix for the gw-:trva-

ion model ari the estimator. The request times fon thi se

uantities will almost always be off-grid compared to a

4:-3

808

iY

I!	
?^^'` t ^.	

Iit, I

,I

fixed step -size ephemeris prediction. Single-step integra-

tion (using RKF integration) would enable ORBIT to produce

results at the requested times; however, the extreme slow-

ness of the single-step integration compared to multistep

integration makes this method unacceptable here, especially

for integrating the variational equations (a 6-by-6 or a

6-by-7 matrix).

The solution to this problem i s the multistep method of in-

terpolation, which is a generalization of the predictor-

corrector methods. This interpolation method takes

advantage of the existence of the tables of backpoints al-

ready present for multistep integration. Thus, multistep

interpolation is the primary method used by ORBIT to produce

the state and, optionally, the state transition matrix at

the time requested by the calling task. Multistep integra-

tion is used only to extend the table (s) of backpoints (for-

ward ^r backward) in time, and single-step integration is

used only to fill the table (s) of backpoints initially.

Figures 4 -1 and 4-2 present baseline diagrams of ORBIT.

Fiqure 4 -1 shows the hierarchy of the subroutines in ORBIT,

whereas Figure 4-2 shows the subroutines grouped by func-

tion. The external communication and data flow among ORBIT

and other FEDS tasks and the internal data flow in ORBIT are

shown in Figure 4 -3, Appendix C contains descriptions of

the data packets. Further description of orbit integration

and interpolation can be found in.Reference 2. Following is

a description of the data flow in ORBIT.

During initialization (INIORB=1), ORBIT calls ORBINI to ini-

tialize local pointers and flags. ORBIT then sets IFLGll to

indicate that it has finished and exits.

Each time ORBIT i s requested and initialization is not to be

done, the following procedure is performed. ORBIT first
	

t

checks array ORCALL to determine which primary task has

4-4

9808

	

D1,

F
H
U]C
0

w
O

c

S-i
G^

^.1
C

H
Ql

UI

d

H

O
a
7
U

LOMB

4-5

.a

g-6

i

t

I

7
U
a
2
wz
r
Fw-a
U
O
2
w

a
z
w
Z
F
02m
m
wSr
C7z
0WUW
S
a

W
m

2
W
S
r
W
r
O
Z

F
Hq
O

4-I

O

r
J
C^

G

x
U
O
H
C7

r-i
O
C
O

J
U
c

N
c

7

r4

4
7

SB

r

ORBIT
DRIVER

DCNTRLI'

	

ORBINI	 I

!STATES/•

SSTEP

	

MSTEP	 /PARTL!'

RUKUTT
ARAM
SUMS

INTEG!

)INTCDNI

/HARM/

GHAUPO
ACCEL
FORCV
INV2
SPARTV

	

SPART	 /OCNTRL/'ATMOSSOLLU
SOLLUry
SOLNLU

	

REDUCE	 /pHYCON!•

'PARTLI•

	

NTP	
_

/STATES/'

I .I

EXTERNAL DATA FLOW
	 ORBITTASK	 INTERNAL DATA FLOW

r

/CONTRL/•

EXEC

IpHYCONI

INPIRO	
/INITABI

PREPRO)	 I PACKET I	 I PACKET

ESTIM)	 I PACK	
I	 I L

PACKET

OBSMDL)	 I PACKET I	 I PACKET

STAPRE

	

PACKETI	 PACKET

	

7	 11

LEGEND:

1	 I TASK THAT IS SUBJECT OF DIAGRAM
OTHEfl FEDS TASKS THAT COMMUNICATE

^.J WITH SUBJECT TASK
GLOBAL COMMON BLOCK

q
DATA PACKET USED TO SEND DATA TO OR RECEIVE DATA FROM
SECONDARY TASKS ISEE SECTIONS 3 AND AI

•	 APPEARS MORE THAN ONCE IN DIAGRAM

Figure 4-3. ORBIT Data Flow

4-7

.^
requested it. The input data packet (see Appendix C) is

then receive.. €rom the specified primary task. ORBIT con-

verts the input start and end times of integration from sec-

onds from reference to modified Julian dates.

If partial derivatives are requested (IPART=1 or 2), the

number of variational equations (NEQ) is set based on the

solve for drag coefficient indicator in the input data

packet. Next, ORBIT checke the input value of ISTART to

dete::mine whether integration startup is required (ISTART=1)

or whether an output vector is to be produced based on the

current backpoints table.

If integration startup is requested, ORBIT verifies that a

reasonable starting vector was input. If not, an error flag

is set, IFLGll is set, and ORBIT exits. ORBIT also verifies

that if partial derivatives are requested, the spacecraft ID

(ISCID) is 4 (the only orbit for which partial derivatives	 0

can be computed). ORBIT then sets the integration step size

based on the ISCID and the step sizes given in global COMMON

/PHYCON/. If integration startup is requested, the direc-

tion pointer is set to indicate forward (IFWD (IDSC) =1) or

backward (IFWD (IDSC)= -1) propagation, and the input vector

is moved into the internal start vector array. For all

cases, the Greenwich flour Angle (GHA) is computed at the

input start time, and the spacecraft area and mass and the

Sun and the Moon force model indicators are set, based on

the IDSC and the values given in global COMMON /PHYCON/.

If startup is requested, ORBIT proceeds to call SSTEP for

each of 10 steps required to fill the table of backpoints

for the specified IDSC. MSTEP is then called to compute and

insert the 11th set of accelerations in the table of back-

points and to compute the second sums required for multistep

integration and interpolation. Having filled the backpoints

table, ORBIT then proceeds as if ISTART were zero.

4-8

9808

	

^i

i

^k(

When the table of backpoints is already full (ISTART,NO),

ORBIT checks the requested propagation end time (the 'e-

quested time tag of the output vector). If the end time is

within the timespan of the current table of backpoints,

ORBIT simply calls INTP to obtain the output vector at tt:i

end time through multistep interpolation. Otherwise, ORBIT

calls MSTEP to extend the table one step at'a time in the

direction indicated by IFWD (IDSC) •. This is done until the

requested end time is within the timespan of the table, at

o

	

	 which time INTP is called to produce the output state vector

at the requested end time. The partial derivatives, if re-

quested, are computed in conjunction with the state during

the calls to SSTEP, MSTEP, and INTP.

The output state vector and, optionally, the partial deriva-

tives (state transition matrix) are loaded into the output

data packet along with flags that indicate which operations

were performed. ORBIT then sends the data packet to the

primary task that requested it, IFLGll is set, and ORBIT

exits.
'	 I

4.2 STATE PREDICTOR (STAPRE) TASK

STAPRE is a primary task responsible for generating or .ex-

tending the predicted state vector table for the user space-

craft. Figure 4-4 is a baseline diagram of STAPRE;

Figure 4-5 shows the communication and data flow among

STAPRE and other FEDS tasks. Appendix C describes the data

packets.

There are two constants, SPINT and SPFREQ, in global COMMON

/PHYCON/ that determine the size of the state predict table

and how often it is generated. Since this table contain3

"predicted" vectors, it always contains a future timespan.

The requirement for the state predict table is that the

table must contain data that covers at least a specified

amount of time in the future. To satisfy this requirement,,

4-9

9808

STAPRE

m
VSEND	 VRCEVE
(ORBIT)	 (ORBIT)	 o

Figure 4-4. Baseline Diagram of STAPRE

t^l

4-10

LEGEND:

OTASK THAT IS SUBJECT OF DIAGRAM

O
OTHER FEDS TASKS THAT COMMUNICATE
WITH SUBJECT TASK
GLOBAL COMMON BLOCK

Q
DATA PACKET USEO TO SEND DATA TO OR RECEIVE DATA FROM
SECONDARY TASKS

1

Figure 4-5. STAPRL Data Flow

4-11

EXEC

/ACTVAN/	 /SYSEVN/ /TSKCOM/

r

/CONTRU	 /INITAB/	 /PHYCON/

DOPPRE
e

v

a state vector table twice the specified size (in time

units) is generated from the current time forward each time

a new table is to be generated. Then, when half of theI
state vectors are out of date, the table is extended into

the future by the table size. For instance, if the state

predict table must contain at least 30 minutes of future

	

}	 data at 1-minute intervals, the table is generated to cover

	

>f	 the next 60 minutes. Then, after 30 minutes when only

30 minutes of future data remain in the table, it is ex-

tended by 30 minutes, replacing the out-of-date data with

the new data. After- this extension, the last vector in the

table should be time tagged 60 minutes after the current

time.

Each time a new best estimate of the user spacecraft state

is obtained from a new initialization table, from a new

state solution from the estimator, or from a user spacecraft

maneuver, a new state predict, table is generated. The exec-

utive determines when the state predict table needs to be

extended or generated based on a new vector and directs

STAPRE to perform the appropriate function.

During initialization (INIT(8)=1), STAPRE initializes all

local variables and flags and sets IFLAGS to return control

to the executive.

When STAPRE regains control, it examines task directive

IDIR(8) to determine the function it is to perform. If

STAPRE has been directed to generate a new predicted state

vector table based on a new state solution (IDIR(8)=2), a

new initialization table (IDIR(8)=3), or a user spacecraft

maneuver (IDIR(8)=4), it retrieves the initial state vector

from the specified source, saves it in /OUTVF.C/ as the offi-

cial FEDS reference state (for use by the Doppler ,predic-

tor), sends the new vector to ORBIT, and requests ORBIT to

restart orbit number 5 (ISCID=S) with the new vector and to)

4-12

9808

F/1_	 ---	 _	 -	 ----vim

propagate it to the current time. STAPRE waits for ORBIT to

complete and receives the output state vector at the current

time. STAPRE then sets the start time of the table to the

current time, sets the end time to the current time plus

twice the specified size of the table (SPINT), and reini-

tializes the pointers. For each time interval, STAPRE then

requests ORBIT to obtain the state vector and to store it in

the next location of the state predict table.

When the table has been completed, STAPRE sets lock flag

LCKFLG(1) in the output control table, /OPTAB/, to indicate

that the state predict table is ready to be downlinked. It

then saves the last vector in the table as the start vector

for the next extension and wets IFLAG5 to return control to

the executive.

When STAPRE is called to extend the state predict table

((IDIR(8)=1), STAPRE sets the new end time of the table to

the previous end time plus the specified size of the table.

For each time interval to be added to the table, STAPRE re-

quests ORBIT to obtain the state vector and to store it in

the next location of the state predict table in a wraparound

fashion. When the table has been extended, the start time

is updated, and output pointers are updated to point only to

the part of the table that contains the extension. The

table is then locked as described earlier to indicate that

the extension of the table is ready to be downlinked. The

last vector in the table is saved as the start vector for

the next extension, and STAPRE sets IFLAG5 to return control

to the executive.

4.3 DOPPLER PREDICTOR (DOPPRE) TASK

DOPPRE is a primary task in FEDS that predicts one-way TDRSS

Doppler observations over a specified tracking interval.

The tracking intervals for one-way Doppler prediction are

contained in the uplinked tracking schedule. Each tracking

4-13

9808

A	 y V^^

interval is defined by a start time and an end time, which

are specified in global COMMON /CONTRL/, and an observation

frequency, which is specified in global and the COMMON

/EXPARM/ TDRS ID to be used, which is specified in global

COMMON /TSCHED/.

^I

•'I

The requirement for the Doppler predict table is that the

table must contain data covering at least a specified amount

of time in the future. To satisfy this requirement, a

Doppler frequency shift predict table, twice the specified

size (in time units), is generated from the current time

forward each time a new table is to be generated. Then,

when half of the Doppler shift records are out of date, the

table is extended into the future by the table size. For

instance, if the Doppler -,,r;edict table must contain at

least 5 minutes of future data at 10-second intervals, the

table is generated to cover the next 10 minutes. Then,

after 5 minutes, when only 5 minutes oC future data remain

in the table, it is extended by 5 minutr.s, replacing the

out-of-date data with the new data. After this extension,

the last predicted frequency shift record in the table

should be time tagged nearly 10 minutes after the current

time.

The executive requests DOPPRE during task initialization and

each time Doppler prediction is scheduled based on the

tracking schedule. To ensure that the predicted Doppler

data will tie downlinked close to the start time of the

tracking interval, DOPPREE is scheduled with a specified

amount of pad time (TPAD) before the start time of each in-

terval. This gives DOPPRE ample time to generate the data.

DOPPRE uses both TDRS vectors retrieved by DATMGR for the

specified TDRS and the predicted state vector table for the

user spacecraft to perform the one-way Doppler prediction.

DOPPRE does not interface with ORBIT. The mathematics for

4-14

9808

the one-way TDRSS Doppler observation model is given in Ref-

erence 2.

Figure 4-6 is a baseline diagram of DOPPRE; Figure 4-7 shows

the communication and data flow among DOPPRE and other FEDS

tasks. Appendix C contains descriptions of the data packets.

During initialization (INIT(6)=1), DOPPRE calls DPINIT to

initialize the local variables used in the Doppler predic-

tion. When initialization is complete, DOPPRE sets IFLAGS

to return control to the executive.

When the executive directs DOPPRE to generate a Doppler pre-

dict table (IDIR(6)=1), the requested tracking interval is

passed through global COMMON /(-'ONTRL/. DOPPRE then predicts

one-way Doppler data over this tracking interval in the fol-

lowing manner. DOPPRE locates the specific ground station

associated with the specified TDRS ID. DOPPRE calls GHAUPN

to compute the GHA update for the ground station at the

start time of the tracking interval. After the GHA update

is completed, DOPPRE calls DOPMDL to compute the tracking

range at the starting time. This is done because a Doppler

observation cannot be computed without the initial range at

the start time of the tracking interval. DOPPRE then adds

the specified observation frequency to the start time to

obtain 'he first observation time tag. DOPPRE then calls

DOPMDL to compute a Doppler observation at the observation

time and ?roads the observation into global COMMON /OUTDPL/.

The next observation time tag is computed, and DOPMDL is

called to compute the associated observation as described

above until the table is full or the pass end time is past.

When the executive directs DOPPRE to extend the Doppler pre-

dict table (IDIR(6)=2), DOPPRE computes the number of rec-

ords to produce based on the time of the last entry in the

C) tame and the scheduled pass end time. DOPPRE then contin-

ues filling the Doppler predict table in wraparound fashion

until the proper number of records has been computed.

4-15	 C
9808

C:7
C
G
G
O

W

r

V
ti

U
C

ri
iU

N

p

c

U

G-i

i

JX

m

4-16

C

cuacg

u

	

7	 0
I
	 `o	 s

^	 0	 0
^	 fl

J	 r—^-^I W	
yZ

2	 I	 I^

z	 o

¢	 n	 a

U	 i	 ?
6

^ ^ W

U ^jN

Q¢

N

t8 p

O WY

0
W

ro

ro

a
P4a
e
a

LL
r

o ^

W

W	 Q t

',f	
o

¢ O	 Q w
O ^	 OQ

O
^ u	 zLL
O H	 y N

Q	 V
U r	 O ^
W

NN
m WN

2^ NQ	 NN
N QF ^ JFN ru

NW f y}

W^	 u606
0y w2	 60N S r O FU

F O §i N ON

OMMJ

4-17

t°

When all the requested Doppler observations have been com-

puted and placed in COMMON /OUTDPL/, DOPPRE locks the

Doppler predict table by setting LCKFLG(2) to .TRUE, in the

output control table, which indicates that Doppler data is

ready to be downlinked. DOPPRE then removes itself from the

active task list (IACT(6)=0) and sets IFLAGS to return con-

trol to the executive.

4.4 ESTIMATOR (ESTIM) TASK

ESTIM is a primary task that performs one of the major com-

putational functions in FEDS. Its purpose is to estimate

the user spacecraft (target) state using the most recent

batch of observation data. A batch least-squares estimator

is used to perform differential correction on the target's

state parameters in a sliding batch mode in which the previ-

ous DC epoch is moved forward to encompass a fixed-length

span of observation data. The state parameter set consists

of a minimal set of six Cartesian state (position and veloc-

ity) components to which four optional parameters can be

added--a drag term and three user spacecraft clock terms.

To limit the computational load, the estimation algorithm

uses an editing scheme and 'a measurement partial derivatives

computation that are nominally done only once per DC slide.

The algorithm also allows a partial precomputation of the

next DC slide before all the observations data for that

slide are available.

ESTIM was originally designed to include both estimation

logic and observation modeling. However, due to task memory

limitations, the observation modeling has been separated

into another task, OBSMDL. OBSMDL is completely controlled

by ESTIM. Communication between the two tasks is accom-

plished through global COMMON blocks, and an event flag is

used for task synchronization.

4-18

9808

i

F

r

9

(Figure 4-8 shows the data flow between ESTIM and the other

FEDS tasks. Figure 4-9 provides a baseline diagram of

ESTIM. Appendix C contains descriptions of the data packets.

Four FEDS executive function directives are processed under

the control of ESTIM:

1. Perform full esLi.mation (slide forward) over the

latest fixed-length batch of observation data

(IDIR(5)=1).

2. Partially precompute the next slide using the pre-

vious observation span (IDIR(5)=2).

3. Complete estimation (slide forward) after precompu-

tation is finished (IDIR(5)=3).

4. Update a priori state parameters with the predicted

user state after a maneuver (IDIR(5)= 4).

(When ESTIM is first requested by the executive, the internal

COMMON blocks used by ESTIM and OBSMDL are initialized to

their default values in ESINIT, a global event flag is set,

and ESTIM suspends itself. Upon resumption by the execu-

tive, ESTIM transfers control to either ESLIDE or ESMNVR,

depending on the function directive to be performed. The

first three function directives listed previously are per-

formed by ESLIDE, and the last function is performed by

ESMNVR. ESLIDE controls the slide advance and estimation

process that consists of initialization (SLINIT), a state

correction loop (SLITER), and status return and slide

termination (SLEND).

The estimation algorithm consists of one or more iterations

of corrections to the solve-for state based upon the most

recr:nt batch of multipass data: SLITER controls each itera-

tion and returns updated state and estimation status (con-

vergence/divergence) to ESLIDE. This sequence is performed

i

)

4-19

9808

2
OU
2

m
f
2

6
H

v

f

TY/rzsw

O
p¢
F •

O

U I	 Iw Ily_ JI ^
H

H<
~

~6
f

ro

a

— iH S..

W

o
N J

N

J
N

€
0
p

ul	
__!

W
^

O	 i
LL	

0

a
I	 H

O ^
w
>F	 w

lil	 > y >
FF
W• U

US	 O U— cwi U¢p
¢—

tona	 > O

< Z	 <N ¢
p f	 <O ¢

0.< f	 OF O

p O O y	 2w z

Um	 w Um w U• O Q	 U Nw Z
<	 >d 6 > i U	 p ^y p

i	 mNV WY <
J NH O j N r
N FV ^ fF C
F Npi O YQ OE
S LL7 J	 Nu0f WN <	 2 ¢

¢ I
LL
m

U
^

O
x

N ZH O HU 6
^ 03 ^ om a`

w
j

>

N
vi

Q

O

4-20

W

u
0
n

a

WJN

se I `--I
I	

s

WL
1L
u°
§o

P

W

N

x

Wool.

Ial

HE
W

w
0

i1

ro

0
N
G

^	 r-I

N
°	 row

m

W

wm0

P,

6VM

NF
L

N

g
3

0
Y

4-21

for each of the different executive function directives:

the internal logic that implements each directive is em-

bedded in the modules.

Each iteration consists of a minimum of one pass through all

of the available observation data within the timespan of the

current slide. During this processing loop, the normal ma-

trix and other batch estimation statistics are accumulated

(SLSUMS); the state correction is computed (SLCORR); the

solve state is updated (SLUPDT); aAd estimation reportL; are

queued for downlink (SLOUT). Various types of observation

editing are performed during this cycle. The first time

that ESTIM uses each observation data record, PREDIT is

called to detect grossly out-of-bounds measurements by

checking TDRS-target-station geometry. During the first

iteration of-each slide and if linearity constraints are

violated on subsequent slides, the observed-minus-computed

residuals are edited if they are larger than acceptable, and 	
i

one or more edit loops are performed to remove measurements

from the accumulated sums based upon the current estimation

statistics.

4.5 OBSERVATION MODELING (OBSMDL) TASK

OBSMDL is a primary task in FEDS that computes TDRSS obser-

vations based on given MRS orbits and the current best

estimate of the user spacecraft orbit. Unlike other primary

tasks, OBSMDL is not controlled by the executive. OBSMDI, is

simply an extension of the estimator and is therefore con-

trolled directly by ESTIM.

OBSMDL models one-way TDRSS Doppler observations and, op-

tionally, computes the partial derivatives required in the

estimation algorithm for these observations.

4-22

9808

OBSMDL performs the following corrections for the specified

types of observations:

•	 Backward light-time

0	 Tropospheric refry-tion

•	 Transponder delay

•	 User frequency offset

0	 User frequency drift

•	 User frequency drift rate

The computational models are described in Reference 2. Fig-

s̀

	

	 ure 4-10 is a baseline diagram of OBSMDL. The communication

and data flow among OBSMDL and ESTIM and other FEDS tasks

are shown in Figure 4-11. Appendix C presents descriptions

of the data packets.

`

	

	 If ESTIM has requested OBSMDL to compute an observation re-

sidual, OBSMDL begins by retrieving the observation time tag

from global COMMON and calling GHAUPN to compute the GHA for

the ground station at the time tag. Next, OBSMDL calls

TDRIWM to model one-way TDRSS Doppler observations. During

observation modeling, subroutine SORBIT is used to propagate

the target satellite orbit for short periods of time using a

second-order Euler method. This avoids numerous calls to

the ORBIT task during light-time correction computation.

If OBSMDL has been requested to compute partial derivatives,

it calls TDRIWP to compute partial derivatives of TDRSS

one-way Doppler observations at the given observation time.

4-23

9808

a
3

-^
'f

o

o¢
W

S N Q
r —

v

FillO

J

i

z
D	 y

x	 r
L')

b8/8088 _

N
w
O

rl

aa

w
0

W
O

W

a f%1x
X roWzW A
r
z qo

^ v
3 Nro
s pa0r
Q^ O
Q

^Q
O ^

0 N
'^Q

m w

4-24

iJ

w
O

N

a
a

0
w
0

ro

o+
ro

c

v
c

v
N
ro
m

0

a
v
4
7
T

W

LY/Im

4-25

IaI

w

0

W
W
Q

W

	

Q	 ^

	

^ U	 r
Q

	

Q ^	 O

	

U	 w
O r x N

i o or
N yQ m Wy
N Nr p jN
N HV E Fr Ni p ^}
= W^ QU a

J G
v Sr U HU
tio3uoa

00 lI r

3
O
14
W
ro
4J
ro
n

a
a

C/3
w
0

14
r

m
u

tr^

(w)

err Ge

4-26

y

SECTION 5 - COMMUNICATIONS BOX

The Communications Box is a microprocessor-based piece of

communications hardware that handles interfaces between FEDS

on the PDP-11/23, a PB5 time code generator, and a second-

generation transponder. Section 5.1 describes the Communi-

cations Box hardware. Section 5.2 discusses the interface

functions of the Communications Box. Section 5.3 describes

the operation of the Communications Box. Section 5.4 dis-

cusses a FEDS software testing program that simulates the

functions of the Communications Box and transponder.

5.1 COMMUNICATIONS BOX HARDWARE

The Communications Box consists of a microprocessor and chas-
sis, a CRT, a clock module, and a pulse generator. Together

the clock module and pulse generator function as the PB5
time code generator. The CRT provides a means for a user to

communicate with the Communications Box. The microprocessor

controls the actions of the Communications Box. A block

diagram for the Communications Box is given in Figure 5-1.

The microprocessor, an Intel 8085, resides in a single board

computer (SBC-80/30) containing 8K of erasable, programmable

read only memory (EPROM). The chase- 's containing the micro-

processor and clock module also contains an interface board
and terminal ports which provide input and output capabili-

ties for data to and from FEDS and the transponder. The

microprocessor can also access the clock module memory to
obtain the PB5 time code.

5.2 COMMUNICATIONS BOX INTERFACE FUNCTIONS

The main functions of the Communications Box are to provide

an interface between the transponder and FEDS and to access

the PB5 time code generator. All actions taken by the Com-

munications Box are in response to messages sent from FEDS or
from the transponder. All message formats are provided in

Appendix A.

I
5-1

9808

5-2

U

9»rr
ro

x
0
O

W

0
O
G1

N

0

4J
ro
U

•rl
q
a

0
O

Ln

U

r-I
I

v
>4

Gw

During initialization of the FEDS/Communications Box inter-

face,, FEDS transmits an initialization message to the Commu-

nications Box. The Communications Box responds by

transmitting an initialization receipt message to FEDS.

At the beginning of the simulation and prior to each sched-

uled tracking pass, the Communications Box will receive a

time request message from FEDS. The Communications Box will

then obtain the PBS time code from the time code generator

and form and transmit the time message to FEDS. The Commu-

nications Box will also receive a reset Doppler accumulator

message prior to each scheduled tracking pass. In response

to this message, the Communications Box will set the Doppler

reset input into the transponder.

When the transponder does not have a lock on the tracking

signal during a scheduled tracking pass, the Communications

Box will receive predicted Doppler ffessages at a preset fre-

quency, nominally once every 6 seconds. The Communications

Box will take two actions in response to this message.

First, the frequency control word will be extracted from the

predicted Doppler message and transmitted to the transpon-

der. Then, a message indicating that a predicted Doppler

message has been successfully processed will be transmitted

to FEDS.

As soon as signal acquisition has occurred, the Communica-

tions Box receives a signal from the synchronization de-

tected (sync detect) output of the transponder. The

Communications Box responds by transmitting a signal acqui-

sition message to FEDS.

During the tracking pass, the Communications Box collects

observation data from the transponder and associated time

tags from the PB5 generator and transmits this information

to FEDS. After accumulating data over the Doppler averaging

interval, the transponder will output a time strobe to the

5-3

9808

Communications Box. The Communications Box immediately ob-

tains the current PBS time code and then clocks the 40-bit

Doppler accumulator from the transponder over a serial

port. If FEDS has transmitted a Doppler observation mes-

sage, indicating FEDS is ready to receive an observation,

the Communications Box immediately transmits the observation

data message containing the Doppler accumulator and the PB5

time code to FEDS. Otherwise, the Communications Box will

await the message from FEDS before transmitting the observa-

tion data. As soon as the transponder loses the lock on the

tracking signal, the Communications Box receives a signal

from the carrier lock port of the transponder and responds

by transmitting a signal loss message +o FEDS.

5.3 COMMUNICATIONS BOX OPERATION

The procedure to prepare the Communication Box for operation

consists of five steps:)

1. Connect terminal port TTl: on the PDP-11/23 to the

designated terminal port on the Intel chassis with

the cable provided.

2. Connect the Communications Box ports to the corre-

sponding ports on the transponder.

3. Turn on the power switch on the Intel chassis front

panel.

4. Turn on the power switch on the CRT.

5. After the cursor appears on the CRT, depress the

"U" key repeatedly until the transponder interface

menu appears (Figure 5-2). If the menu fails to

appear, depress the reset button on the Intel chas-

sis front panel and repeat this step.

Following this procedure, the Communications Box is prepared

to initialize the FEDS interface and begin operation. TheV^

PB5 time code must now be initialized. For testing purposes,

5-4

9808

D* Display Memory (Dx, y)
G* Go Command
Xr* Display/Set Register
M* Move Memory
S* Substitute Memory
N* Single Step
I* Insert Memory
T Set Up Time
C Resume Xponder Program
R Initialize Xponder Routines
A Display Time
H Help Menu
Fx Send Function Code to LSI
L Send to CRT/LSI (C or L)

*Debug commands

Figure 5-2. Transponder Interface Menu

9808

	 5-5
	

i

h
	 I

the "T" command (see Table 5-1) can be used. During the

demonstration, a more accurate method of synchronizing the

PB5 time code generator with Universal Time Coordinated

(UTC) will be used. The "R" command (see Table 5-1) is then

used to instruct the Communications Box to expect an ini-

tialization message from FEDS. If FEDS does not respond in

the given time, the "R" command must again be entered before

operation will begin. After FEDS has responded properly,

the Communications Box will provide all interface functions

described in Section 5.2.

Following completion of an execution, the Communications Box

should be powered down by turning off the power switches on

the Intel chassis front panel and the CRT.

Figure 5-2 shows the transponder interface menu. The use

and function of each command is described in Table 5-1.

5.4 COMMUNICATIONS BOX SIMULATOR

The primary responsibility of the Communications Box Simula-

tor (SIMCB) is to simulate the actions of the Communications

Box and transponder that are pertinent to FEDS. SIMCB is

requested by ADSIM when the Communications Box is not avail-

able for testing.

SIMCB receives, identifies, and transmits messages to and

from FEDS. Valid messages that can be received from FEDS are

1.	 Initialization (function code 0)

1.	 Accumulator reset (function code 5)

3. Predicted Doppler commanded offset (function code 3)

4. Time request (function code 2)

5. Doppler request (function code 1)

Valid messages that can be transmitted to FEDS are

1. Carrier signal lock (function code 4)

1. Carrier signal lock lost (function code 6)

3. Initialization bit received (function code 0)

9808

5-6

^	 }

^ \

! ! ^ ! B

^ n ^
^

}!!
i

§ !' }•
ƒ^ |

|! ^

a aaa§

^^ ^^ §! J^ $§§ §
^ .

§

n

&

k

n ^

§ ^ .^ !
-

v

§| & n §A

vi ||! . ! ! vv 2 •
.|| . $ v J

n
}E

' ' !^ "$!f
'! a| ® nE

§ ,| ,2
|
a^ ,

|	 •.
s !||

Ea
||!|

®
| n .

% `!
n !

g.
n !•|

a^
! n |

,	 ^!
n ._	 !|,

k|!
n!,

||| n
n ,

@ @! | @! ^ @|| @^E J|	 .I

k x
g.

!

0

^^ ,! s!• «e . ^; .^	 j

\

\
E-1

L
§

n ^ ._|

^ ^ §

n ^ .	 ,	 ^

n n 	 !

e nu
n

inJ
n

499M
i |A^k.

n 	 .
|	 .

5-7

--. .

N

N

ro

ro00
U

N
U
m
w
N
v

C
H

W
N
ro
a0U
N
r.

H

roE

'

	e ((^^ [i Fry	

-" '

OE POOR QUALUC

w	 a

f	 .

u is	 3

	

.N if	 d

x

9 g	 _

UO

O
V

t

a t

. Q s 8 	 S

fj

	

^Q6 e 	

u
}}^ 	

s.	 iafi s	 s
blb L	 i	 Yi6	 if LL^a J^V	 `l^r^r^^{^ ^^^r! ^JyJjZ WJi••	 J

C)	 I
5-8

The formats of all messages transmitted between SIMCB and

FEDS are those used between FEDS and the Communications Box

and are given in Appendix A.2.

Figure 5-3 illustrates the SIMCB data flow and Figure 5-4

presents a baseline diagram.

When SIMCB is initiated, it accesses a file of observations

generated from Doppler predictor output during a previous

FEDS execution. SIMCB reads the start and stop times of the

first pass on the file, issues a 410 to dead from the line

connected to FEDS and places itself into a dormant state.

SIMCB remains in 'a dorma;,t state until a message is re-

ceived. Upon receipt of the message, SIMCB identifies the

message type and follows the appropriate path through the

program.

If the received message was identified as an initialization

(message, SIMCB transmits an "initialization received" mes-

sage and returns to the dormant state to wait for the next

message. If the message is identified as an accumulator

reset, SIMCB resets the accumulator to zero and returns to

the dormant state to wait for another message. If the mes-

sage is identified as a time request, SIMCB accesses the

system clock; computes a simulation time in PB5 format based

on the current system clock time, a reference system clock

time, and a simulation reference time; transmits the PB5

time code to FEDS and returns to the dormant state to wait

for another message.
I

If the message is identified as a predicted Doppler-

commanded offset, SIMCB searches for the tracking schedule

pass that contains the current simulation time. If no pass

is found containing the current time, an error message is

written to the terminal and SIMCB returns to the dormant

state awaiting a message. If a pass is found, SIMCB will

call LCKSET to estimate when signal lock will occur, based

5-9

9808

w^

3
O
14

W
ro

o	 C]
J
LL

r U

Ln

m	
Fi

U ^
N

M

I

N
t3
tr

W

1

J
fU

N

mW

to

5-10

f	
_

5-11

w
U
M

N
O
w

s
m
U
U)
m

0

v
a

(n
N
b
co

d'

N
N
z
tr1

W

_rTi

fwd

5-12

on the commanded offset, the current time and data in the

observations file. SIMCB then waits for either another mes-

sage from FEDS or the simulation lock time.

If a message is received, SIMCB proceeds as indicated in the

preceding discussion. If the signal lock time has passed,

SIMCB will transmit a signal lock message to FEDS simulating

acquisition of the tracking signal. SIMCB then waits for

the end of the scheduled pass or a Doppler request. If

SIMCB receives a message other than a Doppler request, it

will send a lock message to FEDS and continue waiting. When

a Doppler request message is received, SIMCB finds the first

observation in the observations file that is time tagged

after the current simulation time, scales and biases it, and

adds it to a summation, modeling the accumulator. SIMCB

then forms an observation message consisting of the observa-

tion time tag in PBS format, the summation of observations

in a 5-byte integer, and the proper function code and waits

until the observation time tag or the scheduled end of the

pass. When the observation time tag is reached, SIMCB

transmits the observation message and waits to receive

another Doppler request. Whenever the end-of-pass time is

past, SIMCB sends a signal lock lost message to FEDS and

waits fon any message.

tl

6-1

9808

SECTION 6 - SYSTEM CONSTRUCTION AND
OPERATION GUIDELINES

FEDS has been designed to support a demonstration of onboard

orbit determination using observation data collected autono-

mously. Section 6.1 describes the expected configuration

for the demonstration and testing. Section 6.2 details con-

struction of FEDS, both for test systems and the operational

system. Section 6.3 describes FEDS execution. (In this

section the PDP-11/23 microcomputer is referred to by the

name of its microprocessor, LSI-11/23.)

6.1 OPERATIONAL CONFIGURATIONS

During the FEDS demonstration, FEDS executing on the

LSI-11/23 will be communicating with ADEPT by telecommunica-

tion lines and with a transponder through the Communications

Box. FEDS will receive data messages and commands from

ADEPT and will send output reports and messages to ADEPT.

These messages are described in Appendix A.I. FEDS will

transmit commands and predicted Doppler shift data to the

Communications Box and receive data messages and flags from

the Communications Box. These messages are described in Ap-

pendix A.2. In addition, FEDS will output status messages

to a terminal to allow for simulation monitoring. These

messages will be a compressed form of activity log messages,

messages sent to or received from the Communications Box,

and messages indicating task activity. These messages are

described in Appendix B.

During the demonstration, observation data will be collected

in a manner that simulates data collection on a satellite.

A tracking signal will be transmitted from the White Sands

Ground Terminal (WSGT). The tracking signal will be compen-

sated at transmission time to offset the Doppler shift that

would be observed by a satellite in the simulated orbit.

The transponder will attempt to acquire the tracking signal

j

relayed by the TDRSS satellite, based on the frequency off-

set commanded by FEDS through the Communications Box. Both

the LSI-11/23 running FEDS and the transponder will be lo-

cated at GSFC.

Several data items will have to be-consistent throughout the

demonstration. A schedule of TDRS tracking passes has to be

consistent between WSGT and FEDS. The schedule will be ob-

tained by submitting a request for TDRS access at a TDRSS

scheduling meeting and receiving a final schedule. The sim-

ulated user elements transmitted to FEDS by ADEPT at the

start time of the demonstration must correspond to the user

elements used by WSGT for Doppler compensation. It is ex-

pected that the user elements will be extracted from a

Goddard Trajectory Determination System (GTDS) ephemeris

tape provided by the Operations Support Computing Facility

(OSCF). FEDS will therefore need to have a spacecraft model 	 -
1

that is consistent with the model used in the generation of

the tape.

TDRS elements must also be consistent. It is expected that

ADEPT will transmit to FEDS a TDRS vector provided by the

OSCF, and WSGT will use OSCF-determined TDRS elements trans-

mitted over the NASA Communication Network. For timing con-

sistency, the PB5 generatof will have to be synchronized

with UTC. Figure 6-1 presents the configuration for the

demonstration.

Prior to the demonstration, a test will be executed to ver-

ify FEDS operational interfaces. Under this configuration,

WSGT will transmit an uncompensated signal through the TDRSS

satellite to the transponder. This test will verify the

ability of FEDS to control signal acquisition, data collec-

tion, and signal loss under near demonstration conditions.

Since Doppler compensation is not being performed, the user
^A

elements will not be needed at WSGT.

e

6-2

9808

JC
• -)

^YI
a

C

U
ri
O
.11

N	 I

K
O	 I
E

O
pq i;
w

LL r 3

a7

N

tr^
•rl

44

OZNZ
f7

^ N
CZz
¢'u

^H

	

N]	 D

	

NJ	
s¢ W

ra/N

WJ
O H

vfg
L^

Z
O_

c7 aro

3 c^^
IN

/6Im

I W

^_ QW

ro
mU
a

%V

NwZp
o^sa
r ra m	 ^LL

J "

UN
O

NO
2aN
H

3

aN
W

z

W W

MW
W W

Np^r R
^a.- W
doOaa

^ J

UWaz
¢ UhN

UU
ON

a
Z

NJZ

¢ z -F
^ W W

UN

W
J

O
W_

U
N
N
Z

Q
h

are

r

6-3

For testing during the development process and local testing

of system modifications, two configurations are supported,

one with FEDS executing on the LSI-11/23 and one with FEDS

executing on the PDP. Under either of these configurations,

all facilities and data required for FEDS execution reside

in the System Technology Laboratory (STL). SIMCB provides

all required messages from the Communications Box and obser-

vation data. Terminals are connected using cables. ADEPT

will perform the same functions as in the demonstration con-

figuration.

6.2 SYSTEM CONSTRUCTION

Two versions of FEDS are maintained. One version is to be

executed on the LSI and the other executes along with ADEPT

on the PDP-11/70. The LSI version of FEDS uses all four

terminal ports on the LSI: two for communication with

ADEPT, one for communication with the Communications Box or

SIMCB, and one for a terminal. Because of a lack of avail-

able terminal ports, the PDP version simulates one of the

lines between FEDS and ADEPT by using a system global event

flag, VSEND in OUTPRO, and a VRCEVE in the ADEPT task RECEEV.

Command files are maintained to generate both versions of

FEDS. A command file exists to act as the executive for

compiling FEDS. The file, [224,1]COMPILE.CMD, prompts for

the subsystem to be built, opens a corresponding file con-

taining the name of each subroutine to be compiled, and com-

piles them one by one until an error occurs in the

compilation or an end of file is encountered. If an error

is encountered, COMPILE will prompt for user input.

There are two ways to build the FEDS tasks for each version

(LSI or PDP): one task at a time or all FEDS tasks with one

command. To build tasks separately, task command files are

available, each containing the task name followed by .CMD

for the PDP version, or task name followed by 23.CMD for the

6-4

9808

f

5	 999DT

F

"s

'r

LSI version. The command file TKB.CMD will build all tasks

for the PAP version and TKB23.CMD will build all tasks for

the LSI version.

For the LSI version, a system image must also be built. To

accomplish this, a user must log on under a privileged user

identification code (UIC) and set the UIC to [1,64]. A sys-

tem image is then initialized by executing the command file

COPIIS.CMD. The system is then generated by running VMR32,

which will prompt for a command file. This prompt must be

answered as follows:

ENTER FILENAME: @[224;1]FEDS23.CMD

Appendix D presents the command files referred to in this

section.

6.3 SYSTEM OPERATION

Execution of the FEDS/ADEPT system is a three-step proce-

dure. FEDS must first be loaded on the LSI or installed on

the PDP. The simulator portion of ADEPT (ADSIM) must be

installed and then system execution must be initiated by an

operator.

Before FEDS is executed on the LSI, a system image must be

created as described in Section 6.2. The user should then

perform the following steps to downline load FEDS to the

LSI-11/23:

1. Set the operator console (Hewlett Packard terminal)

in the STL computer room for 300-baud rate and flip the cor-

responding switch on the terminal box to 300-baud rate.

2. Power up the LSI-11/23 using the POWER ON switch in

the back of the computer cabinet, near the terminal ports.

The LSI-11/23 will respond on the operator console as fol-

lows:

28
START?

6-5

9808

:a

To start the LSI-11/23, the user should enter "Y" followed

by a carriage return.

3. Next, the user should verify that the communica-

tions lines between the PDP-11/70 and LSI-11/23 are con-

nected properly.' The proper connections for FEDS in

demonstration configuration are detailed in Figure 6-2.

Figure 6-3 shows the terminal port connections, using SIMCB.

4. At this point, the hardware is configured properly

and the user is ready to download the system image. To do

this, the user should enter the following commands under

UIC[1,64j:

>REA LSI 2 TT32:
>LSI
L•SI>BOOT RSXIIS.SYS

At this time, the system image is downloaded into the

LSI-11/23. This will take approximately 10 minutes, using a

9600-baud line. When loading is complete, FEDS will attempt

to establish communication with the Communications Box or

SIMCB and then wait for a start command from ADEPT.

Procedures.that should be followed to minimize operational

difficulties on the LSI are discussed in the following para-

graphs. After the LSI power switch is turned on, the lines

connecting the two computers must be cleared. This is done

by the command

RUN [224,1] FLUSH

The LSI booting task must be terminated immediately after

downloading of the system has been completed to prevent it

from receiving data intended for ADEPT.

Installation of FE?S on the PDP is accomplished by executing

the command file INSFEDS.CMD. This command file installs

global common areas, terminal handlers, and FEDS task and

fixes the tasks to correspond with the FEDS system image

6-6

9808
	 l

S (on LSI) Communications Line Configura-
n, Communications Box Used

6-7

04-

4- .,I

;I

^X

I	 I

I	 ^
I	 I

I	 j

L---------A
LSi
	

PDP

I
I	 II	 II	 II	 I
I
i	 I
I	 SIMCB
I	 I

I	 II	 I
I	 I
I	 I
I	 I

PDP

I	 II	 II	 II	 II	 IDATCAP

I	 moo• ^

^,.	
,,I;.

!	 OUTPROI	 I
I	 I
I	 I
I	 I

LSi

II	 I
I	 I
I I
I	 I
I	 I
I^	 I
I	 'ADEPT	 I

I ^tia	 i
I	 I
I

I	 i
I	 I
I	 I

PDP

Figure 6-3. FEDS (on LSI) Communications Line Configura-
tion, Communications Box Simulator Used

6-8

used on the LSI-11/23. The installation command file for

FEDS on the PDP-11/70 is shown in Figure 6-4. Terminal port

communications are shown in Figure 5-5.

Installation of ADEPT is also done by command file. For

either FEDS configuration on the LSI-11/23, ADEPT is in-

stalled by the following command under UIC [224,2].

> @ADSLSI

The command file to install ADEPT on the PDP-11/70,

ADSINS.CMD, is accessed by INSFEDS .CMD. These command files

differ only in the task that is installed to capture data

from OUTPRO. The command files to install the simulator

portion of ADEPT are shown in Figures 6-6 and 6-7.

Nominally, operator interaction with ADEPT consists of en-

tering a simulation ID, a verification of simulation config-

uration, and the instruction to begin. Data preparation for

FEDS and optional operator interaction with ADEPT at run

time are detailed in Reference 3.

To begin a run, the operator enters the following command:

> RUN ADSIM

ADSIM prompts the user to enter a simulation ID code for the

simulation run as follows:

PLEASE INPUT A TWO CHARACTER SIMULATION IDENTIFICATION
CODE. DO NOT INPUT BLANKS OR SPECIAL CHARACTERS>

The user then enters a two-character alphanumeric code for the

simulation run, followed by a carriage return. The simulation

code should not contain blanks or special characters. The

simulation ID code should be the same as the simulation ID

code used in data preparation.

I

6-9

9808

	

^y
i

INS C111311SRES
RUN FLUSH
SET N0PAR:USRGBI
SET N0PAR:USRGB2
SET N0PAR:USRGB4
SET PAR:GLB3/BASE:3576/SIZE:400/COM
SET PAR:GLB4/BASE:4176/SIZE:600/COM
SET PAR:GLB1/BASE:4776/SIZE:200/COM
SET PAR:GLB2/BASE:6176/SIZE:200/COM
INS C1,13GLB1
INS C1,13GLB2
INS 11,13GLB4
INS C1113GLB3

INS INPPRO.TSK/TASK=INPPRO/PRI=45.
INS OUTPRO.TSK/TASK=OUTPRO/PRI=45.
INS DATCAP.TSK/TASK=DATCAP/PRI=SO.
INS EKEC.TSK/TASK=FCC/PRI=53.
INS STAPRE.TSK/TASK=STAPRE/PRI=45.
INS ORBIT.TSK/TASK=ORBIT/PRI=52.
INS DATMGR/TASK=DATMGR/PRI=52.
INS DOPPRE/TASK=DOPPRE/PRI=45.
INS PREPRO/TASK=PREPRO/PR'I=45.
INS ESTIM/TASK=ESTIM/PRI=45.
INS OBSMDL/TASK=OBSMDL/PRI=51.

a_d

FIX INPPRO
FIX OUTPRO
FIX DATCAP
FIX EXEC
FIX STAPRE
FIX ORBIT
FIX DATMGR
FIX DOPPRE
FIX PREPRO
FIX ESTIM
FIX OBSMDL
UIC 224 2
OADSINS

RUN EXEC

Figure 6-4. Command File To Install FE.DS on the PDP

6-10

. ^	 4

i	 y

,I

1

r	 -^

I
I

I	 ^^,yp;•	 DATCAP	 I

I
SIMCB	 'ADEPT	 I

I	 (
OUTPRO	 i

DATA TRANSMITTED
VIA VSEND B VRCEVE

I	 I

I	 I^

PDP

Figure 6-5. FEDS (on PDP) Communications Line Configura-
tion, Communications Box Simulator Used

6-11

4

;COMMAND FILE TO INSTALL ADSIM TASKS
ADSINS.CMD

SET NOPAR:USRGBS
SET PAR:ADSGBL/BASE:6376/SIZE:200/COM
INS C1,1]ADSGBL/NOCHECK
INS ADSIM
INS SIMMER/NOCHECK
INS DNLINK!NOCHECK
INS DNHIST/NOCHECK
INS SCREEN/NOCHECK
INS RECEEV70/NOCHEI
INS SIMCB/NOCHECK/1
FIX SIMMER
FIX WHIST
FIX RECEEV
FIX DNLINK

ADSINS.Figure 6-6

6-

ATV,

;COMMAND FILE TO INSTALL ADSIM TASKS
ADSINS.CMD

SET NOPAR:USRGB5
GZT PAR:ADSGBL/BASE:6 76/SIZE:200/COM
INS 11,13ADSGBL/NOCHECK
INS ADSIM
INS SIMMER/NOCHECK/PRI=51.
INS DNLINK/NOCHECK
INS DNHIST/NOC_-HECK
INS SCREEN/NOCHECK
INS RECEEV/NOCHECK
INS SIMCB/NOCHECK/PRI=52.
FIX SIMMER
FIX DNHIST
FIX RECEEV
FIX DNLINK

Figure 6-7. ADSLSI.CMD (on LSI-11/23)

6-13

1

y A

ADSIM then prompts for verification of simulation configura-

tion as follows:

ADSIM - DATA OBSERVATION SIMULATION MODE IS COMMUNICA-
TIONS BOX SIMULATOR (1)

DO YOU WISH TO CHANGE CURRENT DATA OBSERVATION ACCESS
METHOD [YIN]?

Three sources for observation data exist:

1. Communications Box simulator

2. Actual Communications Box

3. Observation file used to support AODS

Under normal situations, the operator will not wish to

change the source of observation data. The simulator main

menu. will then be displayed as follows:

SIMULATOR MAIN MENU

1 INITIALIZE SIMULATION
2 BEGIN SIMULATION	 46
3 RESUME A PREVIOUS SIMULATION
4 TERMINATE SIMULATION

INPUT COMMAND >

The operator will enter a 2 followed by a carriage return

and simulation will begin. If the operator wishes to change

the source of observation data, FEDS will prompt for the new

data source before displaying the simulator main menu.

To terminate a simulation, the operator instructs the com-

mand file to abort and remove all ADEPT and FEDS tasks by

entering the command

> @ [22411]Rhimov

This command file, shown in Figure 6-8 1 removes all tasks

that would be installed on the PDP under any configuration.

FEDS tasks on the LSI are terminated by turning the power

switch OFF. Figures 6-9 through 6-12 show the command files

this command accesses.	 -

6-14

9808

11­10

,1

sw___,R

UIC 224 2
OADSABO
OADSREM
UIC 224 1
OABOFEDS
OREMFEDS

6-8. REMOVE.CMD (To Abort and Remove All Installed
FEDS/ADEPT Tasks)

ABO/T EXEC
ABO/T DATCAP
ABO/T OUTPRO
ABO/T INPPRO
ABO/T STAPRE
ABO/T ORBIT
ABO/T DOPPRE
ABO/T DATMGR
ABO/T PREPRO
ABO/T ESTIM
ABO/T OBSMDL

a. - u, ru.. 	 va

Figure 6-9. ABOFEDS.CMD (Abort All FEDS Tasks)

ABO/T SIMCB
ABO/T ADSIM
ABO/T SIMMER
ABO/T DNLINK
ABO/T DNHIST
ABO/T SCREEN
ABO/T RECEEV
UNL SCHDULHI.DAT

Figure 6-10. ADSABO.CMD (Abort All Installed ADEPT Tasks)

6-15

9808

r

^I

t

REM OUTPRO
REM INPPRO
REM DATCAP
REM EXEC
REM ORBIT
REM STAPRE
REM DOPPRE
REM DATMGR
REM PREPRO
REM ESTIM
REM OBSMDL

SET NOPAR:GLB1
SET NOPAR:GLB2
SET NOPAR:GLB4
SET NOPAR:GLB3
SET PAR : USRGBI / BASE : 3576 / SIZE : 1200/COM
SET PAR:USRGB2 / BASE :4776/ SIZE:200/COM
SET PAR : USRGB4 /BASE : 6176 / SIZE : 200/COM
r

i

Figure 6-11. REMFEDS.CMD (Remove All FEDS Tasks)

ADSREM,CMD
REM SIMCB
REM ADSIM
REM SIMMER
REM DNLINK
REM DNHIST
REM SCREEN
REM RECEEV
SET NOPAR :ADSGBL
SET PAR : USRGB5/BASE:6376 / SIZE:200/COM

Figure 6-12. ADSABO.CMD (Remove All Installed ADEPT Tasks)

6-16

t^

9$08

APPENDIX A - EXTERNAL INTERFACES

This appendix details the formats of the messages trans-

mitted to support FEDS. Section A.1 describes the messages

between FEDS and ADEPT. Section A.2 describes the messages

between FEDS and the Communications Box or SIMCB. Sec-

tion A.3 describes the messages between the transponder and

the Communications Box.

A-1

9808

,o

.T 1

A.1 ADEPT/FEDS INTERFACE

This section contains the uplink and downlink message for-

mats through which ADEPT communicates with FEDS. Figure A-1

shows the standard data transmission format that is used for

both uplink and downlink; Figure A-2 illustrates the trans-

mission record format. A definition of terms used in Fig-

ure A-1 and throughout the section is provided below:

Term	 Definition

Transmission Set of one or more blocks of data that are
transm'..'nd contiguously. A transmission is
always te:minated by an end-of-transmission
record t dll -ls).

Block	 Set of one or more data records that contain
the same type of data.

Record	 A 256-byte record containing a header
(20 bytes) and one or more frames of data
(see Figure D-2).

Frame	 One entity of data.

Header	 A 20-byte header frame that describes the
contents of the record.

The message formats given here super-ade those given in Ap-

pendix D of Reference 4.

A.1.1 UPLINK MESSAGES FORMATS

This section contains the uplink message formats through

which data and commands are uplinked to FEDS. The format of

the record header (first 20 bytes), which is common to all

uplinked messages, is given on Page A-5, and the message

block attributes and the frame format for each type of input

data and command are presented on the following pages.

lT

A-2

i
9808

756 BYTES

RECORD I, BLOCK I. TRANSMISSION I

RECORD 7, BLOCK 1, TRANSMISSION 1
BLOCK 1

•
•
•

RECORD n, BLOCK I, TRANSMISSION 1

•

• r.
RECORD 1, BLOCK 7, TRANSMISSION I

RECORD A BLOCK 7. TRANSMISSION I	
.^^

BLOCK 7
• TRANSMISSION•
•

RECORD m, BLOCK 7. TRANSMISSION I

•
•
•
•
•

RECORD 1, BLOCK j, TRANSMISSION 1	 —^

11^^

RECORD 7, BLOCK;. TR ANSMISSION 1
•

BLOCK]	 •
•

^— RECORD 1, BLOCK j, TRANSMISSION 1

END OF TRANSMISSION

e
n
n

Figure A-1. Data Transmission Format

A-3

4+
ro

0w
ro
0
0
U
d
a

a
0

N
Ul

ro
s4E

N
I

v
7•I7

W

A-4

^^ 1

0916GEL

N
W
F
}
m
m
N

NWF
}
m
R

NBLOCK	 Byte
	

1

MBLOCK	 Byte
	

1

NTRAN I*2	 1

IDBLCK I*2	 1

NSIZE I*2	 1

TTRAN R*8	 1

Description

First synchronization code

Second synchronization code

Type of input:
= 1, data
= 2, code
= 3 0 command

Type of data:
= 1, not used in FEDS
= 2, initialization table
= 3, new TDRS vector
= 4, estimation control param-

eters
= 5, maneuver schedule
= 6, tracking schedule
= 7, miscellaneous constants
= 8, station constants
= 9, geopotential tables
= 10, atmospheric drag
= 11, timing coefficients
= 12, experiment parameters

Running number of records in
block

Total number of records in
block

Running number of records in
transmission

Block ID number

Number of bytes used in record

Time of transmission (seconds
from reference time)

RECORD HEADER

FRAME FORMAT:

Variable Type Dimension

IDSC	 Byte
	

1

IDEX	 Byte
	

1

INTYPE	 Byte
	

1

INDATA	 Byte
	

1

A-5

9808

EXPERIMENT PARAMETERS INPUT MESSAGE

1 frame = 1 experiment parameters set

1 record = header + 1 frame + fill
256 = 20 + 60 + fill
256 = 80 + fill

1 block = 1 record

FRAME FORMAT:.

Variable Type Dimension 	 Description

FRACC	 R*8	 5	 Frequency associated with ac-
cess method I

DLTOBS	 R*8	 1	 Time period between observa-
tion messages from transponder

IFRACC	 I*l	 2	 Access method associated with
Ith TDRS

IDGRS	 I*2	 2	 Ground station associated with
Ith TDRS

IDT	 I*2	 2	 TDRS ID associated with Ith
TDRS

.—

A-6

9808

INITIALIZATION TABLE INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

	

1 frame	 1 initialization table (188 bytes)

1 record 1 header + frame + fill

	

256	 20 + 188 + fill
256 = 208 + fill

1 block = l record

FRAME FORMAT:

Variable	 Zy2e	 Dimension	 Description

REFTM	 R*8	 1	 Reference time

REFAPR	 R*8	 10	 A priori state vector

REFSTD	 R*8	 10	 A priori standard deviation

MAP	 I*2	 10	 Solve-for/consider map

A-7

9808

ESTIMATION CONTROL PARAMETERS INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = estimation control parameters set (152 bytes)

1 record = header + 1 frame + fill
256 = 20 + 152 + fill
256 = 172 + fill

1 block = 1 record

FRAME FORMAT:

Variable Type

DCSPAN	 R*4

OBSSMP	 R*2

SEMULT	 R*4

TMLEAD	 R*4

MAXITR	 I*2

INLOOP	 I*2

OBSSTD(I,J) R*4

I*2

Dimension Description

1 Estimation timespan (size of
batch of data in seconds)

1 Sample frequency for observa-
tions	 (seconds)

1 Se multiplier for inner loop
editing

1 Lead time for DC precomputation
(seconds)

1 Maximum number of iterations to
be performed per slide

1 Maximum number of inner edit
loops allowed

2,5 Observation standard deviations
(only OBSSTD(2,1)	 is used in
FEDS)
I = measurement typ=::

= 1, range
= 2, Doppler

J = observation type:
= 1, one-way TDRSS
= 2, two-way TDRSS
= 3, three-way TDRSS
= 4, one-way SRE
= 5, two-way SRE

1 Residuals report output control
switch:
= 0., no report generated
= 1, report generated after last

iteration on a batch of
data

A-8

i
Variable Type Dimension Description

IROUT = 2, • report generated after
(Cont'd) firrt and last inner edit

loops at each iteration on
a batch of data

IDCOUT I*2 1 DC Summary and Statistics Re-
port output control switch:
= 0, no report generated
= 1, report generated after last

(iteration on a batch of
data

= 2, report generated after
every iteration

RESMAX(I,J) R*4 2,5 Maximum observed-minus-computed
i value for each observation type

(only, RESMAX(2,1)	 is used in
FEDS)
I = measurement type
J = observation type

i ELVMIN R*4 1 Maximum acceptable elevation
angle for SRE data (degrees)f
not used in FEDS

RAYANG R*4 1 Maximum acceptable ray path
4

angle for TDRSS data (degrees)

RAYHGT R*4 1 Minimum acceptable ray path
height for TDRSS data types
(kilometers)

EDTOL R*4 1 Edit test tolerance

PCONV R*4 1 Position correction convergence {
tolerance

VCONV R*4 1 Velocity correction convergence
tolerance

SECONV R*4 1 Se convergence tolerance

POSDIV R*4 1 Maximum allowable position cor-
rection i

VELDIV R*4 1 Maximum allowable velocity cor-
rection

RATCOR R*4 1 Position and velocity correction
differences multiplier

POSLIN R*4 1 Position linearity tolerance

VELLIN R*4 1 Velocity linearity tolerance

A-9

9808

FRAME FORMAT:

Variable , Type Dimension

TDRTIM	 R*8
	

1

TDRSX R*8

IDTDRS I*2

VECTYP I*2

6

1

1

A-10

9808

NEW TDRS VECTOR(S) INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = new TDRS vector for 1 TDRS (60 bytes)

1 record = header + 1 (2) frame(s) + fill
256 = 20 + 60 (120) + fill
256 = 80 (140) + fill

1 block = 1 record (1 of 2 frames defined at transmis-
sion)

Descrintion

TDRS reference time
(YYMMDDHHMMSS.SS)

New TDRS position and velocity
vectors

TDRS ID

Type of input vector:
= 0, new estimate of TDF

vector
= 1, update to previous

maneuver

Ii

I	 ^III

MANEUVER SCHEDULE INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = 1 scheduled maneuver (58 bytes)

1 record = header + 4 frames + fill
256 - 20 + 232 + fill
256 = 252 + fill

1 block = 2 records

FRAME FORMAT:

Variable Type Dimension 	 Description

TI24O1	 R*8	 1	 Time of maneuver
(YYMMDDHHMMSS.SS)

XMO1	 R*8	 6	 Predicted state (position and
velocity) after maneuver

MSIDO1	 I*2	 1	 ID of maneuvered spacecraft
(TDRS ID for TDRS, SIC and VID
for user spacecraft)

A-11

9808

4v^
i

1•
Iki

A-12

r	 i

r1

f'

i

TRACKING SCHEDULE INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES

1 frame = schedule for 1 tracking interval (22 bytes)

1 record = header + 8 frames + fill
256'= 20 + 8 x 22 + fill
256 = 20 + 176 + fill
256 = 196 + fill

1 block = 2 records

FRAME FORMAT:

Type Dimension	 Description

R*8	 1	 Start time of tracking interval
(YYMMDDHHMMSS.SS)

R*8	 1	 End time of tracking interval
(YYMMDDHHMMSS.SS)

R*4	 1	 Observation frequency

I*2	 1	 ID of TDRS to be used for one-
way Doppler prediction during
this interval

Variable

STIME

ETIME

OBSFRQ

IDPTDR

MISCELLANEOUS CONSTANTS INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = set of constants

1 record = header + 1 frame + fill
256 = 20 + 170 + fill = 190 bytes

1 block = 1 record

f

FRAME FORMAT:

Variable	 Type Dimension

EQTRAD R*8 1

FLAT R*8 1

OMEGA R*8 1

PI R*8 1

REF, UL R* 8 2

RTD R*8 1

TBIASS R*8 1

TFREQ(I) R*8 5

VLITE R*8	 1

SCAREA R*4	 1

SCMASS R*4	 1

SFLUX R*4	 1

SPFREQ R*4	 1

Description

Equatorial radius

Flattening coefficient

Rotation rate of Earth

IT

Reference time of Julian date
(used with timing coeffi-
cients)

Radians-to-degrees conversion
constant

Timing bias for user space-
craft

Table used to compute pilot
frequency for the following
access methods (not used in
FEDS)
I = 1 1 multiple =access (MA)
I = 2, S-band single-access

link (SSA1)
I = 3, SSA2
I = 4, K-band single-access

link (KSAl)
I = 5, KSA2

Velocity of light

User spacecraft area

User spacecraft mass

Solar flux value

State vector frequency in
predict table (minutes)
(default = 1 minute)

A-13

I9808

Variable Type Dimension Description

SPINT R*4 1 State vector frequency in
predict table	 (minutes)
(default = 30 minutes)

SOLRAD(I) R*4 2 Solar radiation pressure for
- TDRS I

STEPSZ(1) R*4 2 Integration step size:
I = 1, tarqet
I = 2, TDRS

TDAREA(I) R*4 2 Area of TDRS I

TDMASS(I) R*4 2 Mass of TDRS I

TPAD R*4 1 Time pad for output of pre-
dicted one-way Doppler data
(minutes)

ACTFLG Byte 1 Activity log generation
switch:
= 0, off
= 1, on

IFRAC Byte 1 Refraction Switch:
= 0, off
= 1, on

NDRAG Byte 1 Drag switch for target:
= 0,	 off
= 1, on

NOOM(I) Byte 2 Moon switches:
I = 1, target
I = 2,	 TDRS	 (= 0, off;

_ 1,	 on)

NSOLRP Byte 1 Solar radiation pressure
switch for TDRS:
= Or off
= 1, on

NSUN(I) Byte 2 Sun switches:
I = 1,	 tarqet
I = 2, TDRS

IDEX1 Byte 1 Vehicle Id	 (VID)	 for user
spacecraft

IDSC1 Byte 1 Support identification code
(SIC)	 for use spacecraft

A -14

8

R*4FREQB(J)

4

STATION PARAMETERS INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

Set of constants = 946 bytes

Record 1 = header + frame 1 (234 bytes) = 254 bytes + fill
Record 2 = header + frame 2 (192 bytes) = 212 bytes + fill
Record 3 = header + frame 3 (176 bytes) = 196 bytes + fill
Record 4 = header { frame 4 (200 bytes) = 220 bytes + fill
Record 5 = header -r frame 5 (144 bytes) = 164 bytes + fill

1 block = 5 recoi;ds

FRAME 1 FORMAT:

Variable Type Dimension Description

NSTA I*2 1 Total number of stations used

IDSTA(J) I*2 20' Station IDS in order corre-
sponding to constants in fol-
lowing arrays

STAT(I,J) R*8 3,8 Constants for station J, where
J = 1 through 8!
I = 1, Earth-fixed positions

component-X
I = 2, Earth-fixed position

component-Y
I = 3, Earth-fixed position

component-Z

FRAME 2 FORMAT:

Variable	 Type Dimension	 Description

STAT(I,J)	 R*8	 3,8	 Constants for station J, where
J = 9 through 16 (see frame 1
format, above)

FRAME 3 FORMAT:

Variable	 Type

STAT(I,J)	 R*8

Dimension	 Description

3,4 Constants for station J, where
J = 17 through 20 (see frame 1
format, above)

20	 Station-dependent frequency
bias (hertz) for SRE data
types for station J, where
J = 1 through 20; not used in
FEDS

A-15

9808

t

L.?•^._	 .^,
	

i
jl
!j

FRAME 4 FORMAT:

Variable Type Dimension	 Description

ANTCOR (J)	 R*4	 20	 Antenna mount correction (kilo-
meters) for SRE data types for
station J, where J = 1 through
20; not used in FEDS

MREFRC (I,J) Byte	 12,10	 Monthly surface refractivity
values for station J, where
J = 1 through 10, and mont'l cf
year I, where I = 1 to 12

FRAME 5 FORMAT:

variable Type Dimension _	 Description

MREFRC(I,J) Byte 12,10 Monthly surface refractivity
values for station J, where
J = 11 through 20 (see frame 4
format, above)

ANTALG (J) Byte 20 Antenna alignment indicator
for station J, where J = 1	 -^
through 20; not used in FEDS_

TDELAY R*4 1 User spacecraft: transponder
delay (kilometers)

A-16

9808

1-1-
rmquY

GEOPOTENTIAL TABLES INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

Total set of constants = 1032 bytes

Record 1 = header + frame 1 (232 bytes) = 256 bytes
Record 2 = header + frame 2 (200 bytes) = 220 bytes
Record 3 = header + frame 3 (200 bytes) = 220 bytes
Record 4 = header + frame 4 (200 bytes) = 220 bytes
Record 5 = header + frame 5 (200 bytes) = 220 bytes

1 block = 5 records

FRAME 1 FORMAT:

Variable Type Dimension Description

MORD(I) Byte 2 Order of harmonic field:
I = 1, tarqet
I = 2, TDRS

MDEG(I) Byte 2 Degree of harmonic field:
I = 1, target
I = 2, TORS,

GM R*8 1 Point mass

XJ R*4 15 Zonal harmonics (J1
through J15)

CS R*4 40 First 40 C- and S-harmonic
coefficients (C-harmonic
coefficients in lower tri-
angle of 15-by-16 matrix;
S-harmonic coefficients in
upper triangle of 15-by-16
matrix) for 15-by-15 geo-
potential model

FRAME 2 FORMAT:

Variable Type Dimension Description

CS R*4 50 Next 50 C- and S-harmonic
coefficients (C-harmonic
coefficients in lower.
triangle; S-harmonic coef-
ficients in upper triangle)
of 15-by-15 model

A-17

9808

1

II

FRAME 3 FORMAT:

Variable	 Type

CS	 R*4

FRAME 4 FORMAT:

Variable	 Tie
CS	 R*4

Dimension	 Description

50	 Next 50 C- and S-harmonic
coefficients (C-harmonic
coefficients in lower tri-
angle; S-harmonic coeffi-
cients in upper triangle)
of 15-by-15 model

Dimension	 Description

50	 Next 50 C- and S-harmonic
coefficients (C-harmonic
coefficients in lower tri-
angle; S-harmonic coeffi-
cients in upper triangle)
of 15-by-15 model

Dimension	 Description

50	 Next 50 C- and S-harmonic
coefficients (C-harmonic
coefficients in lower tri-
angle; S-harmonic coeffi-
cients in upper triangle)
of 15-by-15 model

FRAME 5 FORMAT:

Variable	 Type

CS	 R*4

h"!

9808

A-18

5*771.i[.,._^	 + _,	 a

ATMOSPHERIC DENSITY TABLES INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

Total set of data = 662 bytes

Record 1 = header + frame 1 (234 bytes)	 = 254 + fill
Record 2 = header + Frame 2 (224 bytes)	 = 244 + fill
Record 3 = header + Frame 3 (144 bytes)	 = 164 + fill

1 block = 'records

FRAME 1 FORMAT:

Variable Type Dimension Description

NDENS I*2 1 Number of entries in density
table

NALT(J) I*2 60 Altitude associated with den-
sity intervals	 (in ascending
order)

DENSTY(I,J) R*4 2,14 First 14 intervals in density
table-
R = 1, minimum density asso-

ciated with NALT(J)
I	 2, maximum density asso-

ciated with NALT(J)
(where J = 1 through 14)

FRAME 2 FORMAT:

Variable Type Dimension Description

DENSTY(I,J) R*4 2,28 Next 28 intervals in density
table (where J = 15 through 42)

FRAME 3 FORMAT:

Variable Type Dimension	 Description

D'NSTY(I,J) R*4	 2,18	 Last 18 intervals in density
table (where J = 43 through 60)

L)

A-19

'i
q

9808

TIMING COEFFICIENTS INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

Total set of data = 194 bytes

1 frame = set of timing coefficients

1 record = 1 header + 1 frame + fill
256 = 20 + 194 + fill
256 = 214 + fill

1 block = 1 record

FRAME FORMAT:

Variable

NDAYS

TCOEFF(I,J)

NPDLHS

PDELHT(J)

PDELH(I,J)

Type Dimension	 Description

I*2	 1	 Number of polynomials used in
TCOEFF (1 or 2)

R*4	 2,2	 Coefficients of polynomials
approximating USNO time dif-
ference data:
I = 1,, modified Julian date as-

sociated with polynomial
J

I = 2, constant adjustment in
polynomial J

1*2	 1	 Number of polynomials used in
PDELHT (1 or 2)

R*8	 2	 Modified Julian date asso-
ciated with PDELH polynomial J

R*8	 10,2	 Coefficients for equations of
equinoxes used to correct mean
GHA over a 20-day span:
J = 1, first nutation polyno-

mial
J = 2, second nutation polyno-

mial
NOTE: I represents Ith coef-

ficient of Jth polyno-
mial

A-20

9808

e
	

^•i

CONTROL COMMAND INPUT MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = 1 command (20 bytes)

1 record = header + 1 frame
256 = 20 + 20 + fill
256 = 40 + fill

1 block = 1 record

FRAME FORMAT:

Variable Type Dimension	 Description

ICTYPE	 I*2	 1	 Type of command:
= 1, start
= 2, stop
= 3, reboot
= 4, abort
= 5, suspend
= b, continue
= 7, mark time
= 8, resume
= 9, begin fast timing
= 10, stop fast timing
= 11, set clock
= 12, status request

COMMAND(I)	 Byte	 20	 Contents of command (depends
on type of command)

A-21

9808

I

Ali

1

7

A.1.2 DOWNLINK MESSAGE FORMATS

This section contains the downlink message formats through

which data, reports, and messages are downlinked from FEDS.

The format of the record header, which is common to all

downlinked messages, is given on page A-24, and the message

block attributes and frame formats for each type of output

data, report, and message are presented on the following

pages.

l

A-22

9808
	

r7

RECORD HEADER

FRAME FORMAT:

Variable Type Dimension Description

IDSC Byte 1 Spacecraft ID

IDEX Byte 1 Experiment ID

OUTYPE Byte 1 Type of output:
= 1, spacecraft vectors
= 2, Doppler observations
= 3, error message
= 4, activity log
= 5 1 DC Summary and

Statistics Report
6, DC Residuals Report

Byte 1 Blank s
NBLOCK I*2 2 Running number of records in

block

NTRAN I*2 2 Running number of records in
transmission

NSIZE I*2 2

i

Record size in bytes

NTOT I*2 2 Total number of records in
block

TTRAN R*8 8 Time of transmission (sec-
onds from reference time)

I

A-23

9808
i

ID2	 Byte	 1

TTAG R*8	 1

PVEC R*8	 3

VVEC R*8	 3

9808

,,	 _,^ l

OUTPUT USER SPACECRAFT STATE VECTORS

MESSAGE BLOCK A4TRIBUTES:

1 frame = 1 state vector (58 bytes)

1 record = header + 4 frames + fill
256 = 20 + 232 + fill
256 = 252 + fill

1 block = 1 or more records

FRAME FORMAT:

Variable Type Dimension Description

ID1 Byte 1 Indicator of source of ini-

ti
i

tial state vector; can have
values of I, U, M

Counter incremented when
source of state vector ini-
tially used for generation
is changed

Time tag (YMDHMS)

Position vector (x, y, z)

Velocity vector (z, y z)

A-24

OUTPUT ONE-WAY DOPELER OBSERVATIONS

MESSAGE BLOCK ATTRIBUTES:

1 frame

1 record
256
256

1 block

FRAME FORMAT:

1 observation ' (20 bytes)

header + 11 frames + fill
20 + 220 + fill
240 + fill

1 or more records

Variable Type Dimension Description

OBTYPE Byte 1 Observation type (= I t TDRS

IDTDRS Byte	 1

IDSTAF I*2	 1

OBTIME R*8	 1

DOPL'• R*8	 1

one-way)

TDRS ID

Forward link station ID

Time taq (YMDBMS)

Doppler observation

A-25

9808

yyN

OUTPUT ERROR MESSAGE

MESSAGE BLOCK ATTRIBUTES:

1 frame = 1 error messaqe (50 bytes)

1 record = header + 1 frame + fill
256 = 20 + 50 + fill
256 = 70 + fill

1 block = 1 record

FRAME FORMAT:

Variable	 Type	 Dimension	 Description

TERR	 R* 8	 1	 Time of error (YMDHMS)

NERR	 I * 2	 1	 Messaqe number

ERRMSG	 Byte	 40	 Message

r

i

A-26

9808
I,

V^

r.^

?UT FROM ACTIVITY LOG

1 frame = 1 message (50 bytes)

1 record = header + 4 frames + fill
256 = 20 + 200 + fill
256 = 220 + fill

1 block = 20 records

FRAME FORMAT:

Variable Type Dimension _	 Description

TMSG R*8 1 Time message entered log
(YMDRMS)

MSGNUM I*2 1 Message number

MSG Byte 40 Message

A-27

9808

DC SUMMARY AND STATISTICS REPORT

MESSAGE BLOCK ATTRIBUTES;

Whole report = 524 bytes

Record 1 = header + frame 1 + fill = 20 + 184 + fill = 256
Record 2 = header + frame 2 + fill = 20 + 160 + fill = 256
Record 3 = header + frame 3 + fill = 20 + 196 + fill = 256

1 block = 3 records

FRAME 1 FORMAT:

Variable Type Dimension Description

DCEPCH R*8 1 Epoch

DCSTRT R*8 1 Start time of estimation
data span

DCEND R*8 1 End time of estimation data
span

SE R*4 10 Se at each inner loop

QSUM R*4 10 Q summed at each inner loop

XPREV R*8 10 Previous state vector

FRAME 2 FORMAT:

Variable Type Dimension Description

XCURR R*8 10 Current state vector

XAPR R*8 10 A priori state vector

FRAME 3 FORMAT:

Variable lZa Dimension Description

RMS R*8 10 Predicted root mean square
at each inner loop

XUPD R*8 10 State correction vector

ISTATE I*2 10 Parameter numbers

NSTATE I*2 1 Number of solve—for param-
eters

NTOTAL I*2 1 Total number of observa-
tions available

NUSED I*2 1 Number of observations used

A-28

9808

1
F

Variable	 Type	 Dimension

NITER	 I*2	 1

NBATCH	 I*2	 1

ICONVG	 I*2	 1

NLOOP	 I*2	 1

LINTST	 L*2	 1

Description

Iteration number

Slide number

Convergence/divergence in-
dicator:
= 0, no convergence/

divergence this itera-
tion

= 1, convergence (PCONV,
VCONV tests)

2, convergence (SECONV
test)

= 3, reduced convergence
(maximum iteration
reached but within
to^erance of three
times PCONV, VCONV,
SECONV)

= 4, diverged (data are
length after edit less
than minimum estima-
tion span)

5, diverged (all new ob-
servations edited)

6, diverged (POSCIV,
VELDIV tests)

= 7, diverged (RATCOR
tests)

= 8, diverged (maximum iter-
ations)

Number of inner edit loop
this iteration

Linearity indicator:
= TRUE, do not recompute

partials or edit
loop

= FALSE, recompute partials
and edit loop

A-29

9808

J

^' 1

A

DC RESIDUALS REPORT.

MESSAGE BLOCK ATTRIBUTES:

1 frame = 1 lire of report (48 bytes) or report de-
scriptor information (48 bytes)

3. record = header + 4 frames + fill
256 = 20 + 192 + fill
256 = 212 + fill

1 block = up to 32 records

First record of block = header + descriptor frame +
3 data frames

All other records = header + 4 data frames

DESCRIPTOR FRAME FORMAT:

Variable	 Type	 Dimension

REPOCH	 R*8	 1

STRES	 R*8	 1

ENDRES	 R*8
	

1

RESITR I*2 1

RESBAT I*2 1

RESINL I*2 1

SPARES Byte 1&

DATA FRAME FORMAT:

Description

Epoch (YYMMDDHHMMSS.SS)

Start time of batch
(Y ,4MDDHHMMSS.SS)

End time of batch
(YYMMMDDHHMMSS.SS)

Iteration number

Batch number

Inner loop number

Spares

Type	 Dimension	 ... Description

Byte	 1	 Observation type (= 1, TDR13
one-way)

Byte	 2	 Edit flag (I = 1, not used;
I = 2, Doppler):

0, not edited
= 1, edited by DC during edit

loop
2, edited during preprocess-

ing
= 3, edited by DC for maximum

observed-minus-computed
value

I

Variable

IOBTYP

IEDIT(I)

A-30

9808

variable Type Dimension Description

IEDIT(I) = 4, edited by DC for minimum
(Cont'd) ray path angle (TDRSS)

ITDRSF Byte 1 TDRSS ID (forward link)

ITDRSR Byte 1 TDRSS ID (return link)

ISTATF Byte 1 Forward link station ID

ISTATR Byte 1 Return link station IL,

ISPARE Byte 1 Spare'location

OBTIME R*8 1 Time taq

COBS(l) R*8 1 Computed range obse_-vations
(not used in FEDS)

COBS(2) R*8 1 Computed Doppler observation

RESID(1) R*4 1 Range residual (not used in
FEDS)

RESID(2) R*4 1 Doppler residual

PRESID(l) R*4 1 Predicted residual for range
(not used in FEDS)

PRESID(2) R*4 l Predicted residual for Doppler

C

A- 31

9808

i

9808

A-32

r
GY

A.2 COMMUNICATIONS BOX/FEDS INTERFACE

The Communications Box and F =
. 7_
c transmit and receive mes-

sages to control acquisition z^ a tracking si gnal by the

transponder and to accumulate observation data. All mes-

sages between FEDS and the Communications Box are sent in an

11-byte format, shown in Figure A-3. The first seven bits

of the first byte in the message constitute the function

code. The first six bits define the message being sent and

the seventh bit indicates the source of the message: 0 if

the message is from FEDS, 1 if the message is from the Com-

munications Box. The eighth bit of the first byte and the

next five bytes are reserved for the PB5 time code. The

remaining five bytes of the message constitute a data

field. All unused fields in each message are zero-filled.

_J

t (!

P YK

n

N

m
n	 ^

ar
e

m n

m
r	 en	 z

0
W

i

1

0

z a uoP
W	 ^

d

m

m

n	 z
a_	 J

or
'O 	^on	 V

2
J
6

m 1 .w

1\

^	 ZVJ

^ H
0 m

Y
ro

^i

v
U
ro
W
1^`1
a)
Y

H

Ea
A
Ga

k
M
M

N
r.
O
.H
41
ro
U

0
U

M
1
R'

N

0

A-33

i

ryr^

1
)

A.2.1 INITIALIZATION MESSAGES

FEDS TO COMMUNICATIONS BOX

Function Code	 Bytes 2 to 11	 Interpretation

0 (0000000 binary) 192 (11000000 binary) FEDS executing;
verify communica-
tion with Communi-
cations Box

COMMUNICATIONS BOX TO FEDS

Function Code	 Bytes 2 to 11	 Interpretation

0 (0000001 binary) Not used Initialization mes-
sage received; com-
munication verified

9808

A-3.4

A.2.2 DOPPLER OBSERVATION MESSAGES

FEDS TO 'OMMUNICATIONS BOX

	

Function Code	 Time Field Data Field 	 Interpretation

1 (1000000 binary) Not used Not used FEDS ready to re-
ceive Doppler ob-
servation

COMMUNICATIONS BOX TO FEDS

	

Function Code	 Time Field Data Field	 Interpretation

1 (1000001 binary) PB5 Time	 Doppler ac- Doppler observa-
Code	 cumulator	 tion at the spec-

from the	 ified time
trans-
ponder
(format
shown be-
low)

Doppler accumulator 40-bit
Unsigned integer

	

MSB'	 LSB

	

^	 I	 I	 I	 I	 I
0

	

L	 _ _	 1 m

DOPPLER ACCUMULATOR
40-SIT UNSIGNED INTEGER

A-36sew

9808

A.2.3 TIME CODE MESSAGES

FEDS TO COMMUNICATIONS BOX

Function Code	 Time Field Data Field	 Interpretation

2 (0100000 binary) Not used 	 Not used	 Request for current
time from time
code generator

COMMUNICATIONS BOX TO FEDS

Function Code	 Time Field Data Field	 interpretation

2 (0100001 binary) PB5 Time	 Not used	 Time field contains
Code	 current time

1

m
m0
m

Y
NOT USED

NOT MODE
USED INDICATION	 PREDICTED

BIT	 OFFSET

14-BIT SIGNED INTEGER

A.2.4 PREDICTED DOPPLER MESSAGES

FEDS TO COMMUNICATIONS BOX

Function Code	 Time Field Data Field

3 (0010000 binary) Not used	 Frequency
control
word (for-
mat below)

Interpretation

Predicted frequency
offset for use in
signal acquisition
by transponder

I	 I --]--T-
1. 2 3 4 5 8 7 8 9 10 11121314 1516

COMMUNICATIONS BOX TO FEDS

Function Code	 Time Field Data Field	 Interpretation

3 (0010001 binary) Not used	 Not used	 Frequency control
word received from
FEDS and trans-
mitted to trans-
ponder

A-37

9808

A-38

A.2.5 SIGNAL ACQOISI^x ION MESSAGE

FEDS TO COMMUNICATIONS BOX

No message sent

COMMUNICATIONS BOX TO FEDS

Function Code	 Time Field Data Field	 Interpretation

4 (0001001 binary)	 Not used	 Not used	 Transponder has
acquired tracking
signal

_i

fr`l

i

I

A.2.6 ACCUMULATOR RESET MESSAGE

FEDS TO COMMUNICATIONS BOX

Function Code	 Time Field Data Field	 Interpretation

5 (0000100 binary)	 Not used	 Not used	 Request trans-
ponder to reset
the Doppler accu-
mulator

COMMUNICATIONS BOX TO FEDS

No Messaqe sent

A-39

9808

A.2.7 SIGNAL LOSS MESSAGE

FEDS TO COMMUNICATIONS BOX

No message sent

COMMUNICATIONS BOX TO FEDS

Function Code	 Time Field Data Field	 Interpretation

5 (0000011 binary)	 Not used	 Not used	 Transponder has
lost the tracking
signal

9808

A-40

A.3 COMMUNICATIONS BOX/TRANSPONDER INTERFACE

Data for this section was not available when the document

went to press. This appendix will be produced and dis-

tributed at a later time.

A-41

9808
4

B-1

APPENDIX B - OUTPUT MESSAGE FORMATS

This Appendix gives the expanded form of messages displayed

to the FEDS terminal. They come from activity log genera-

tion, execution-of the executive, and communication with the

Communications Box. A message will be displayed in brief

form, with the message number displayed first, followed by

six integers and three real numbers. If a number is not

pertinent to the current message, it will be displayed as a

zero. The only exceptions to this description are messages

67 and 68, which pertain to communication with the Communi-

cations Box. They are displayed with the message number

first, followed by the 11-byte message displayed in octal

format.

Table B-1 presents the output messages and their source.

^O

W
0

¢
I^-Qz
0
O

Uw Uw
QU
¢p

O¢LLa2

ORda2

0¢aa2

0¢aa2

0¢aa2

O¢aa2

O¢aa2

O¢aaZ

O¢aaz

O¢aaz

00¢¢adas2z

O¢aZ2

a
UFQ¢
O

aw
a

aw¢
LL

NN
NN

y ^W
Q 2 wo O	 x
N
W ~ 'cU ri	 O

E
3

x> Ja	 ^

O U
>p7 0

¢
OZ
^w

OU >
0

N 0
Z
	 fC

U
N

U
LL

2¢
W	 Nm	 N

(7
g

J
$ Q	 Np

> a ¢Z x

w
F N z °wQ LL	 =O0 > y ¢ w O OWO 2 2 Fz LL	 x

FUN w ¢ W > W>WU^_

I

C QOM m	 O

aw
W ^

W O W
W LL N OFW^

F1OY% N W W W w p ¢ W > ¢ W U¢?¢ J > w Q
UCW W U W W ¢¢_¢¢ W U 3N >U-W,g¢ WW ¢ w U ¢ W 2 ¢ N

w7 ¢ OW¢ W W Q U Q W ¢ m W QQQQ (L WQ¢W

-i 3 W w W 2 N W F N OZZZ W O 02 OZZNw W ¢ OU¢ O 00 2 mm 120—
W O Q W U ¢ W OQQQ O N O= pQQyw p 0 w00 Z O Q FQ-

'LLix.) m W N W Z U U ^"^ w >WWW z U p ?WWa0 Cy 0 cN D > O f/1 z U
W

0 2
O

Q
FF ¢ yWj wu)(A) O ZQ wf NNNN

y^2 x yz O ¢ O
wQQ W wmcomN000 Q F J^ 0000Q YO 0 N> 2 J 2 a U m >NYO O J Q J 0 F N U CCC LL w> 0	 2

F QW YAW 1- ~+ Q_ w V U 1^ S O 2_ 2 W O Fp aCCGi
3F1/1 aFN Z) { Q N 2 N

F w 2 n a Q Z ¢~ Z1Z. F ? z ? 2 W F N C7 Q 1- N ¢ mO w O a
O N l0 I[l W w W O .N- ' W 0 0 ' w w
2

N
O
ro
N
N
d
S.

r1
ro
C

H
ul
w

44

r-1
1

Ul
f^

ro
F

B-2

tz

0

^

§}
0

} \\ } \ 0 0 0 0 0 0 0 0/

k -.
3.

$.§

) (
§ $ §	 \

.

§ § < z /§ E/ i
2

;§§w §

= 2

k
; ,® ;2 §

W§)
2§ /

COME
0

Vim § ®^ § * °E!_ 0 22! !
ƒ (0 k \\k(k d ! 0 > !4§2 §(k

>
_

lW;^ ^- E«`$
-

^^
`; a

0	 > 2 § 7 I
f(- §	 . $ § a 0 §§ K

§§ t
\

§ no §eel !
2
! @ # § § §¢a[<! `|/jm/ § q F-§/ U.U-

S
0 t

2°§(A § £
, u ® Gk ,,

^	 [
Z)a;) § . M E >WO §o

,wo, !¥,2 ! 0 ! # / &22/ g) §
@ § #2§m 4§§6 2 2 0 j 0 2; `§/§

` §§ ! ^§-o l^; F- < 2 § §e >
&§! a^_ _ n,ma >> ! # ! ! n!;§

.
2! /_ __ , OE!§ IWown §§ ° ® ^ @2 (2 ©^ } K 2§
:0

<;
K

" ^• ` #!°® 0 ° ^ K / - « •0 ,
)«^^^^5>-O_¥e^a§ nn Wl 22MFFla^)#\g

<0 @. /KK /§E!<000 0 #roz 0
^ RRl k mmnmm2^RR^m m R

\

§

\

j
§
/

S
2

\

\

sa

t

§in
in

\

/

/

\

\

. « \+\

/ \ / § §. (n § § § } \ }

§ kz

\ }

§ -
§ * -2 .

} k
.

§(^)(2 (<Z q(§(B

kk(§ § i § § §)\d §((§2 >!! WW, >W , e!^ eW . zW ,
\ w k k -

^(n Sjj U| 0>2 0>2 §/kk
;) Can ,_ / 822 § 2{/ WaX2 x

§a a§ jdf \§ % § 26ƒ &;} kb§ ^#;) m
7c z @ G

- K}F (}§ 2/s Q/§ §}§ § /k§@ § k- MZE MIZ. aZ, l- I .
- - + § qf Oqc

; z .® §7
;Z,
<Do

§z.
°§!

_^
)^) 2 }0 ow

§ W k0 (° k/99^ °° k k §	 a&\- §° §`^.m ^w W 2^ §§» ° 22 e=i- t r
B \/, , -,E, , , §)) §U U g > 20

O
il - - °.2 }§ {! / ƒ 2

[^ d § kW I k n[)!(^)$e >- / §
j§ n § ; § ! & ! i^- w m ; ® ;< r<- w m \ :.© 2) 2a «-	 !^ @ / §

\ a .ma ; @ ; n n , S G \2. c)

B-4

y

\
2

\

}

\
$

44

\

\a

(

Ct^

§ § § § k § §	 §

k

k

) k

/ §
Ld

CD

(© >± >§^/

, < m
.

w`/ 2. - [{%[(§]0/.

-zz)®-
>.

- p - ^^E
- moo §)(ƒ §k_

§ \^ !i @;^ !#2 !a§`
-

» ,} @\;a Qra E,z <
, ;2a aaM » co

\/\/k§'konm ==W• 9|! Q<= 9u/ [»
070/2W)a§$\O
mu :ro)a | 3] W.
/a w oƒ @2) ,m* -);

c \ a(2 .
§§ ^§ !2« ! ^2/ (\. . [:^RaKA` " ~\22 « ^^ \ ==f /

k}) } k }} §!W EaQ^G /& Q>%(/^m,mm^, n\§2 / K 5u E &
Fid Tg-ts

9 x R ;

B-5

} \ 0 0 \ \ / \ (z z z z \ /

§ }

\ } \
_ . o (

\ \

/ \w m\ CDM - ` me (- - !
cow

/^ \\
CD

Z \\ 11 0 § }!;; § \) ! ` _ ` -wo
! § (§ ow - k /\ /WE

0 2 ^)$f § (\
®_« ®I» 2 / § ®§k E §2= z

wo_ #az #§m
/
® ° !

f .
-) §

</: WEP a ` j / § `MEW /)) D_O(f§>-([»§ !!* & & _ @ q fQo! _ § | _ k) e ($A E z ^-§k - -2Q| eQ¥ « - ! o] § / - - -&/W(MA %O \ § - - - :_ Z -. k § /e •«°| §[§ § _ -
`

§
*7z Miz >_ . m E§ G w oz zoo 3 § ;¥w n§2 ^§; § $¥ % § k § 2§ a ;! PEE \) \ {4 !« 1 * ; 02 m o » ^ «0» §tea § > q® /

g 8^i	 n §2 a §\ kW (2 7 G > $m; w! w« . n § 5 ! o w &
kRrg ;.Rk aaZ2 n G a ^3 @@ e.

Z^

^

6

. .. h

U)

\
/
\
\@

\

\

\e

B-7

.-y.. ... 	

...,r67 r.

^a1.W91^B8

¢
O

=O2
O

a

aO

a

aO

a

aO

a

aO

a

aO

n

a9

a

a
G

a

aO

a

aO

a

aO

w
Q ^'
y Z LL Ô wS

LL^ y O w J
N y 3

WZ C7 [7
? ^f n

F ^_ yyf O F-
y ^N N
LL LL Z Ua

^

^
v I

W W y O> > W
W

e.
U

w
¢Q O O W ¢

W>
W

W Q Z >
W W Z

W> U W W W Q
U W ¢ ^ ¢

¢ O O¢ w e O ZZ ¢ U u z
O¢ z

z
a

0
Z < °z z Q

Q Z 2 Q g z f r
N

d̀ O U
O U" w O i- F ^[w
U O w U y y U ¢
F U G O F W LL Q O Nz

2 W
S W f Y Z V ^

P QQ ow w

¢ 'Q N UU

tO

^ m

0Npp C

N

QN
zOI

^[^f
T POI Ol Ol O'. W W

44
O

N
U1

m
N

N

S.

r-I
N

NE

w

41

rl

I"

roE

'^ i

(^L

APPENDIX C - DATA PACKET DESCRIPTIONS

This appendix contains descriptions of the data packets used

to transfer data by means of SEND and RECEEV directives be-

tween FEDS primary and secondary tasks.

C-1

F

9808

Description

Observation type = 1, one-
way TDRSS

Observation time tag

Spare

Doppler observation

TDRSS frequency

Doppler averaging interval

Spare

Forward station ID (internal
index)

Spare

Forward TDRSS ID (internal
index)

Observation data edit flag:
= 0, not edited
= 1, edited by DC during edit

loop
= 2; edited by preprocessor
= 3, edited by DC for maximum

observed-minus-computed
value

= 4, edited by DC for ray
path

(EDIT(1) not used in FEDS)

Spare

Forward access method (inter-
nal index)

End-of-pass indicator

Band frequency:
= 48, S-band
= 96, Ku-band

4

C.1 DATA PACKET 1

SIZE:	 73 words (146 bytes)

SENT BY: PREPRO

RECEIVED BY: DATMGR

FORMAT:

Parameter Type Dimension

IOBTYP I*2 1

OBSTIM R*8 1

Spare Byte 8

OBS R*8 1

FREQ R*8 1

DOPINT R*4 1

Spare Byte 1

FORANT Byte 1

Spare Bate 1

FORTDR Byte 1

EDIT(I) Byte 2

Spare Byte	 1
FORACC Byte	 1

JPASS Byte	 1

BAND Byte	 1

i
3808

C-2
x

s.

C.1 DATA PACKET 1 (Cont'd

Parameter	 ,-cr'pe Dimension	 Description

NEWREC	 L*l	 1	 New record flag (= 7, record
has not been processed by es-
timator)

Spare	 Byte	 97	 Spare

C-3

9808

C.2 DATA PACKET 2

SIZE:	 17 words (34 bytes)

SENT BY: PREPRO

RECEIVED BY: DATMGR

FORMAT:

Parameter	 Type Dimension

ITYPE	 I*2	 1

INPVEC	 R*8	 4

i

Description

Type of TDRS vector:
= 1, TDRS 1
= 2, TDRS 2

Input vector (time and posi-
tion vector)

C-4

9808

C.3 DATA PACKET 3

SIZE:	 5 words (10 bytes)

SENT BY:	 DOPPRE, OBSMDL

RECEIVED BY: DATMGR

FORMAT:

Parameter	 Type Dimension

NTDR	 I*2	 1

TTAG	 R*8	 1

Description

Type of TDRS vector:
= 1, TDRS 1
= 2, TDRS 2

Requesting time for a set of
10 TDRS vectors

C--5

9808

C.4 DATA PACKET 4•

SIZE:	 73 words (146 bytes)

SENT BY: ESTIM, DATMGR

RECEIVED BY: DATMGR, ESTIM

FORMAT:

Parameter Type Dimension

IOBTYP I*2 1

OBSTIM R*8 1

Spare Byte 8

OBS R*8 1

FREQ R*8 1

DOPINT R*4 1

Spare Byte 1

FORAAT Byte 1

Spare Byte 1

FORTDR Byte 1

EDIT(I) Byte 2

Spare Byte	 1

FORACC Byte	 1

JPASS Byte	 1

BAND Byte	 1

Descriotion

Observation type: (= 1, one-
way TDRSS)

Observation time tag

Spare

Doppler observation

TDRSS frequency

Doppler averaging interval

Spare

Forward station ID (internal
index)

Spare

Forward TDRSS ID (internal
index)

Observation data edit flag:
= 0, not edited
= 1, edited by DC during edit

loop
= 2, edited by preprocessor
= 3, edited by DC for maximum

observed-minus-computed
value

= 4, edited by DC for ray
path

(EDIT(1) not used in FEDS)

Spare

Forward access method (inter-
nal index)

End-of-pass indicator

Band frequency:
= 48, S-band
= 96, Ku-band

C-6

9808

Ira -a S

P
S

i

CA DATA PACKET 4 (Cont'd

Parameter Type Dimension Description

NEWREC L*l 1 New record flag (= 7, record
has not been processed by
estimator)

Spare Byte 4 Spare

OBSPAR R*4 10 Doppler observation partial
derivatives

SPARE Byte 8 Spare

OBSRES R*8 2 Doppler observation residual

C-7

9808

C-8

C.5 DATA PACKET 5

SIZE:	 160 words (320 bytes)

SENT BY:	 DATMGR

RECEIVED BY: DOPPRE, OBSMDL

FORMAT:

	

Parameter	 Type Dimension

	

OUTVEC(I,J)
	

R*8	 4,10

Description

Requested set of 10 TDRS
vectors sur^-oundinq request
time:
I = 1, time tag associated

with the vector J
I = 2, x-position component

of vector J
I = 3, y-position component

of vector J
I = 4, z-position component

of vector J

9808

C-9

I'

i

^I

7•

i

1

il

C.6	 DATA PACKET 6

' SIZE: 40 words (80 bytes)

SENT BY: PREPRO^

„ RECEIVED BY:	 ORBIT

FORMAT:
xi

Parameter Type	 Dimension	 Description

ISTART I * 2 1 Start mode for propagation:
= 1, use input vector

2, use internal table

Y IPART I * 2 1 Variational equation control
tr flag	 (= 0, do not integrate
w variational equation)

" TTAG R*8 1 Starting vector time tag 	 (A.1
seconds from reference time)

`-^ X(6) R*B F Starting vector	 (ignored if
ISTART = 2)

i Spare Byte 10 Spare

ISCID I*2 1 Spacecraft ID:
s _ J.,	 TDRS 1

= 2, TDRS 2

r R * 8 1 Requested end time of propaga-
tion (A.1 seconds from refer-
ence time)

C.7 DATA PACKET 7

SIZE: 40 words (80 bytes)

SENT BY: STAPRE

RECEIVED BY:	 ORBIT

FORMAT:

Parameter Type	 Dimension	 Description

ISTART I * 2 1 Start mode for propagation:
= 1, use input vector
= 2, use internal table

IPART I * 2 1 Variational equation control
flag (= 0, do not integrate
variational equation)

TTAG R*8 1 Starting vector time tag (A.l
seconds from reference time)

X(6) R*8 6 Starting vector (ignored if
ISTART = 2)

CD R*8 1 Coefficient of drag

IMAP7 I * 2 1 CD use indicator:
0, use default coefficient

of drag
> 0, use CD if ISTART = 1

ISCID I * 2 1 Spacecraft ID (= 5, user pre-
dict)

ENDTIM R* 8 1 Requested end time of propaga-
tion (A.1 seconds from refer-
ence time)

W

9808

C-10

-	 64^e.

C-11

IT	 .^.;

C.8	 DATA PACKET 8

SIZE: 40 words (80 bytes)

SENT BY: ESTIM

RECEIVED BY:	 ORBIT

FORMAT:

Parameter Type	 Dimension	 Description

ISTART I*2 1 Start mode for propagation
(= 1, use input vector)

IPART I*2 1 Variational equation control
flag (= 0, do not integrate
variational equation)

TTAG R*8 1 Starting vector time tag
(A.1 seconds from reference
time)

X(6) R*8 6 Starting vector

CD R*8 1 Coefficient of drag

IMAP7 I*2 1 CD use indicator:
= 0, use default coefficient

of drag
> 0, use CD

ISCID I*2 1 Spacecraft ID (= 4, user past)

ENDTIM R*8 1 Requested end time of propa-
gation (A.1 seconds from ref-
erence time)

r^	 ^^^ fl

C.9 DATA PACKET 9

SIZE:	 40 words (80 bytes)

SENT BY: ESTIM

RECEIVED BY: ORBIT

FORMAT:

Parameter	 Type Dimension

ISTART	 I*2	 1

IPART	 I*2	 1

TTAG R*8	 1

X(6) R*8	 6

CD R*8	 1

IMAP7 I*2	 1

ISCID I*2	 1

ENDTIM R*8	 1

Description

Start mode for propagation
(= 1, use.input vector)

Variational equation control
flag:

integrate variational
equation without drag
partial derivative

2, integrate variational
equation with drag
partial derivative

Starting vector time tag
(A.1 seconds from reference
time)

Starting vector

Coefficient of drag

CD use indicator:
0, use default coefficient

of drag
> 0, use CD

Spacecraft ID (= 4, user
past)

Requested end time of propa-
gation (A.1 seconds from
reference time)

^y^

Parameter Type

ISTART I*2

IPART I*2

Dimension

1

1

C.10 DATA PACKET 10

SIZE:	 40 words (80 bytes)

SENT BY:	 OBSMDL

RECEIVED BY: ORBIT

FORMAT:

XfA1	 R*R 6

1

1

1

1

Description

Start mode for propagation
(= 2, use internal table)

variational equation control
flag:
= 1, integrate variational

equation without drag
partial derivative

= 2, integrate variational
equation with drag
partial derivative

Starting vector time tag
(A.1 seconds from reference
time)

Ignored because ISTART = 2

Ignored because ISTART = 2

Ignored because ISTART = 2

Spacecraft ID (= 4, user past)

Requested end time of propa-
gation (A.1 seconds from ref-
erence time)

C-13

TTAG	 R*8
	

1

r)

Y'

C.11 DATA PACKET 11

SIZE:	 204 words (408 bytes)

SENT BY:	 ORBIT

RECEIVED BY: PREPRO, STAPRE, ESTIM, OBSMDL

FORMAT.

Parameter, Type Dimension Description

NEWORB I*2 1 Reference vector chosen by
ORBIT for propagation:
= 0, used internal table
= 1, used input vector

TPARTO I*2 1 State transition matrix output
flag:	 (= 0, no state transi-
tion matrix)

ENDTMI R*8 1 End time of propagation (tima
tag ;associated with the new
vector)

XOUT R*d 6 New vector

ISCIDO I*2 1 Spacecraft ID:
= 1, TDRS 1
= 2, TDRS 2
= 4, user past
= 5, user predict

IVALID I*2 5 Validity-of-results flag:l
= 0, no error detected
= 1, input parameter error;

execution continues
= 50, numerical fault; execu-

tion continues
= 100, input parameter error

and termination
= 200, input parameter out of

range and termination
= 500, numerical error and

termination

Spare Byte 336 Spare

1n(1

ill

J

1 u to five errors can be entered.

C.12	 DATA PACKET 12

SIZE: 204 words	 (408 bytes)

SENT BY: ORBIT

RECEIVED BY:	 ESTIM, OBSMDL

FORMAT:

Parameter Type	 Dimension Description

NEWORB I*2 1 Vector chosen by ORBIT for
startup:
= 0, used stored starting

vector
= 1, used input vector

IPARTO I*2 1 State transition matrix output
flag:
= 1, state transition matrix

without drag
= 2, state transition matrix

with drag

ENDTMI R*8 1 End time of propagation (time
tag associated with the new

_ vector)

XOUT R*8 6 New vector

ISCID, I*2 1 Spacecraft ID (= 4, past user
orbit)

IVALID I*2 5 Validity-of-results flag:l
= 0, no error detected
= 1, input parameter error;

execution continues
= 50, numerical fault; execu-

tion continues
= 100, input parameter error

and termination
= 200, input parameter out of

range and termination
= 500, numerical error and

termination

STM R*8 6,7 State transition matrix at
ENDTMI

C)	 lUp to five errors can be entered.

C-15

9808

D-1

i

r
9808

t4-11

APPENDIX D - FEDS UPDATE PROCEDURES AND COMMAND FILES

The standard RSX-11M compilation and task building proce-

dures are used to update FEDS and ADEPT software. Fig-

ure D-1 gives the executive command file used to compile

FEDS modules. Text files used in the executive command file

and task build command files for each task are given in Fig-

ures D-2 through D-75, follow, grouped by task. For com-

pleteness, command files, text files and overlay descriptor

files are given to build ADEPT. In all cases, FEDS command

files ending in "23" refer to command files associated with

the LSI version. The command file to build the FEDS system

image for the LSI is given in Figure D-75.

D-2

E

SRCLST.CMD COMMAND FILE TO COMPILE ANY SUBSYSTEMS

.ENABLE SUBSTITUTION
START.,

!ENTER SUBSYSTEM
.ASKS SUB ENTER SUBSYSTEM
.IF SUB EQ "ORBIT" .COTO REST
.IF SUB EQ "FEDS" .COTO REST
.IF SUB EQ "ESTIM" .COTO REST
.IF SUB EQ "DATCAP" .COTO REST
.IF SUB EQ "OUTPRO" .GOTO REST
.IF SUB EQ "INPPRO" .COTO PEST
.IF SUB EQ "PREPRO" .COTO REST
.IF SUB EQ "DATMGR" .COTO REST
.IF SUB EQ "DOPPRE" .GOTO PEST
.IF SUB EQ "STAPRE" .COTO REST
.IF SUBEQ "OBSMDL" .COTO REST
.IF SUB EQ "EXEC"	 COTO REST

;REQUESTED SYSTEM NOT FOUND
.COTO START

.REST:
;OPEN FILE FOR ALL SUBSYSTEMS

. OPENR ' SUS' . T.' VT
COMPILE ALL MODULES

NEXT:
.READ MOD
.IFT <EOF> .COTO DONE
.IF <.FILERR> NE 1 .COTO START

FORTRAN/F4P 'MOD'
.IF CEXSTAT> NE <SUCCES> .GOSUB ERR
.COTO NEXT

.DONE:
.CLOSE
.EXIT

ERR:
;RUN DBO:C201,63BELL

.ASKS CR CR TO CONTINUE

.IF CR <> "" .EXIT
RETURN

•t

Figure D-1. CMPFEDS.CMD (Executive Command File
to Compile FEDS)

^I

_1,

ABAM .
ACCEL
ACTGEN
ATMOS
BEHUN
BODFIX
CKPRIO
CLKMES
CNVCW
CNVTOB
CNVTTM
CURTIM
DATCAP
DATCAP23
DATMGR
DATMGR23
DDATE
DOPLEG
DOPLTM
DOPMDL
DOPPRE
DOPPRE23
DPINIT
DSPRES
DSPOBS
DWNSND
DWNSND70
ELVANG
ESINIT
ESLIDE
ESMNVR
ESTIM
ESTIM23
EXEC
EXEC23
FORCV
GETORB
GETTDR
GHAUPD
GHAUPN
GTHEAD
INPFRM
INPPRO
INPPRO23
INTP
INTRN
INV2
IPINIT

Figure D-2. FEDS.TXT (Text File to Compile All FEDS
Modules (1 of 3)

D-3

9808

9,7',

r

JDATE
LATLON
LGN
LOCTDR
LODACT
LODBUF
LODDCS
LODDPL
LODERR
LODOBS
LODRES
LODSEN
LODVEC
LOKAHD
LTC
LTIMTI
LUNA
MATMUL
MATPRE
MATPST
MSTEP
OBSMDL
OBSMDL23
OBSPRE
OBSRW
OBSUPD
ONELEG
OPINIT
ORBINI
ORBIT
ORBIT23
OUTPRO
OUTPRO23
OUTQIO
OUTTIM
OUTTRN
PB52CL
PPINIT
PREDIT
PREPRO
PREPR023
PURFIL
PUROBS
PURTDR
RANGRT
REDUCE
RUKUTT

Figure D-2. FEDS.TXT (Text File to Compile All FEDS
Moduleo (2 of 3)

D-4

9808

SCANIN
SETCLK
SErINX
SLCORR
SLEDIT
SLEND
SLINIT
SLITER
SLOUT

^j SLSUMS
F SLIEST

SLUPDT
SNDCMD
SOL
SOLLUN 8
SORBIT
SPART
SPARTV
SSTEP

g; STAPRE
STAPRE23
STATM

ST̂ RES '	 s
STTKP

(I STGEO

Rp
STINIT
STMANS I`
STMISC
STPV
STSTAN

`-"
STTDRS
STTIMF
STTRKS ?
SUMS
SYMINV
TAGOBS
TCON
TDRINT
TDRORB
TDRINM
TDRINP
TGTINT
TIMCON
TREF
TYMD
NTMSG

li >

Figure D-2.	 FEDS.TXT (Text File to Compile All FEDS
Modules (3 of 3)

D-5
9808

D-6

4

1

EXEC
ACTGEN
WTMSG
CURTIM
J DATE
OUTTIM
TCON
TIMCON
TREF
TYMD
OU7'.Q10

IN

Figure D-3. EXEC.TXT (Text File to Compile EXEC Modules)

EXEC/ PR: 0, EXEC=E2.'EC,OUTQIO ,TIMCON,JDA`i'E,ACTGEN,TCON,
CURTIM,TREF,TYMD,OUTTIM,WTMSG
SE.PCLK,DDATE
11,1711SLIB/LB

COMMON=GLBI:RW
COMMON=GLB2:RW
PRI=75
ASG=TIl5:6
MAXBUF=80
TASK=EXEC
LIBR= 11SRES:R0

Figure D-4. EXEC.CMD (Command File to Build EXEC Tasl

EXEC23/PR:O,EXEC23= S C23,OUTQIO,TIMCON,:l'1TE,ACTGEN,TCON,
CURTIM,TREF,TYMD,OUTTIM,WTMSG,SETCLK
11,1311SLIB/LB

COMMON=GLBI:RW
COMMON-=GLB2:RW
PF.I=70
ASG=TT3:5:6
MAXBUF=80
TASK=EXEC
LIBR= 11SRES:RO

Figure D-5. EXEC23.CMD (Command File to Build
EXEC23 Task)

DATCAP
INTRN
LODOBS
CLKMES
FB52CL
DDATE
CURTIM
JDATE
LODRUF
SCANIN
SNDCMD
TCON
TREF
OUTQIO

Figure D-6. DATCAP.TXT (Text File to Compile
DATCAP Modules)

D-7

rtf`k

t

_4

DATCAP=DATCAP,INTRN,LODOBS,CLKMES,PB52CL,DDATE
SCANIN,SNDCMD,LODBUF
CURTIM,TCON,TREF,JDATE
MOVEC,OUTQIO,VSEND
C1,1311SLIB/LB

UNITS=6
ASG=TT24:2,TT33:1,TI:5:6
COMMON= GLBI:RW
COMMON= GLB2:RW
COMMON= GLB4:RW
MAXBUF = 256
ACTFIL= 3
PRI=	 51
LIBR=	11SRES:RO

Figure D-7. DATCAP.CMD (Command File to Build
DATCAP Task)

DATCAP23/PR:U,DATCAP23/-SH=DATCAP23,INTRN,LODOBS,CLKMES,PB52CL,DDATE
SCANIN,SNDCMD,LODBUF
CURTIM,TCON,TREF,JDATE
MOVEC,OUTQIO
C1,1311SLIB/LB

UNITS=6
ASG=TT1
COMMON=
COMMON=
COMMON=
TASK=
MAXBUF=
ACTFIL=
PRT=
LIBR=

Figure D-8. DATCAP23.CMD (Command File to Build
DATCAP23 Task)

D-8

:2,TTO:1,TT3:5:6
GLBI:RW
GLB2:RW
GLB4:RW
DATCAP
256
3
85
11SRES:RO

D-9

INPPRO
IPINIT
GTHEAD
STERR
STEXP
STINIT
STEST
STTDRS
STMANS
STTRKS
STMISC
STSTAN
STGEC
STATM
STTIMF
INPFRM
LOKAHD
CURTIM
JDATE
TCON
TIMCON
TREE
OUTQIO

Figure D-9. INPPRO.TXT (Text File to Compile
INPPRO Modules)

\
\
/
j
}
j
\§
u

/
\
/

\

\&

,GA 7

n /
E
/	 m	 .

(
PEI

k	 E..

§ 2
B to
§) ^§
0 M 9 J /
m§ §§ /
§[^^ (

§
g §§ & ^^p

En

u . a

G(HU ^. 0
ntn)
§k ^ G.n R 2 -% 8& - X04

§ / 1 0::)§ A ^ 0u ^ 0

\.\(

nnn ..0 Zlz M
rf	 Id.'QNqoo&go@§Wo^P win _oou_

&§ § 000
)tkk.Q^§§§)^gyp« n #§/Buuuo^^

b-IQ

X
N
bF
mN
0a
P4azH
roH

C,1

O
4J

W
ro
a
m

0
0U

zU
m
N

a'
P4

z
H

O

oaaaN

a,4H a
m	 a4 P7P7mNoozaaarl

110	 Zzm
ul H	 11 000

^C! O	 aQ Iti H C7 a7 CJ rl

H
Cti

u HNEEE^2 U N m g o o O H^
^J FLW 040004^^

ri
I

Q

Sa
7
m

aH

Ii

N

N

o F
t
N^
W

(N(^̂]

FU NO

z
D HzW NH
H

^H

•N

a a
^In H^N

tn

Fz

00 ow

W N H

ot~ w El
m HN 0

^4 C14 En H
H O H P7

EEE a z	 a
U a Z to ` E	 HH0

.- HNO
1t 1^ H

- o
WUN

q N ida ^.-I

N

0AnnU

Poa.

-I

M a4 tnZHH

Ha X	 0 09
0	 0

rfl FFFtn 0	 0z OH an.

D-11

Figure D-13. PREPRO.CMD (Command File to Build
PREPRO Task)

PREPRO
OBSPRE
TDRORS
PPINIT
PIRFIL
RANGRT
SETINX
OUTQIO
DSPOBS
SETINX
CNVTTM
CNVTOB
DDATE
JDATE
TAGOBS
ICON
TREF
FB52CL

Figure D-12. PREPRO.TXT (Test File to Compile
PREPRO Modules)

r
PREPRO.CMD	 COMMAND FILE TO TASK B1,ILD THE DATA PREPROCESSOR

(PDP 11/70 VERSION)

PREPRO,PREPRO/-SP=PREPRO,OBSPRE,TDRORB,PPINIT,PURFIL,RANGRT,SETINX
CWnVM,CNVTOB,DDATE,JDATE,TAGOSS,TCON,TREF,PB52CL
VSENA,VRCEVE,
OUTQIO,DSPOBS
DBO:C1,1711SLIB/LB

UNITS= 6
ASG=	TI:5
ASG=	 TI:6
PRI=	 50
ACTFIL= 2
MAXBUF= 80
TASK= PREPRO
COMMON= GLBI:RW
COMMON= GLB2:RW
LIBR= 11SRES:RO

D-12

Fy

\
8
en

\
/
\
j

\
j
\
(2
\

\
@a

± \097
Ul

r-4 r4

^c o§P39§WE-fLnN=aee_

/43/\ ^
oz cz 11

§2a«2
F

puuo2^

}
\
\

.	 . 7 ^^..

§ 9
En

k^
Ix

§a 2

/U .
^D2
2aQ

^ a4§
§ k\

^§ §
kk

^^ \^

§\
k§
§u § §
to k
t q- §

2 °\§
§ N>Qu 0

§.,..7

D-13

DATMGR
LOCTDR
PURTDR
PUROBS
OTJTQIO

Figure D-15: DATMGR.TXT (Text File to Compile
DATMGR Modules)

DATMGR.CMD	 COMMAND FILE TO TASK BUILD THE DA
(PDP 11/70 VERSION)

DATMGR,DATMGR/-SP=DATMGR,LOCTDR,PURTDR,PUROBS
VSEND,VRCEVE,
OUTQIO,
DBO:C1,1311SLIB/LB

UNITS= 6
ACTFIL= 0
ASG=	 TI:5:6
PRI= 60
MAXBUF= 80
COMMON= GLBI:RW
TASK= DATMGR
LIBR= 11SRES:RO

Figure D-16. DATMGR.CMD (Command File to Bui
DATMGR Task)

D-14

ldP'y R

DATGMR23.CMD	 COMMAND FILE TO TASK BUILD THE DATA MANAGER
(LSI 11/23 VERSION)

r
DATMGR23,DATMGR23/-SP=DATMGR23,I,0r'"DR,PURTDR,PUROBS

VSEND,VRCEVE,
OUTQIO
DBO:Cl,llllSLIB/LB

I /

UNITS=	 6
ACTF IL' = 0
ASG=	 TT3:5:6
PRI=	 60
MAXBUF= 80
COMMON= GLBI:RW
TASK=	 DATMGR
LIBR=	IISRES:RO

Figure D-17.	 DATMGR23.CMD (Command File to Build
DATMGR23 Task) .s^v

ESTIM
ESLIDE
ESMNVR
SLINIT'
SLITER
SLEND
SLSUMS
SLEDIT
SLTEST
SLUPDT
SLOUT
SLCORR
SYMINV
MATMUL
OBSRW
ESINIT
MATPRE
MATPST
OBSUPD
PREDIT

Figure D-18.	 ESTIM.TXT (Text File to Compile
C^ ESTIM Modules)

D-15
i

r.

w«<mg. —y^

w
Ix

)§
^. ^

f § \
Q \

i
0m fig§ 3
§ t 0 ^f t

E ui§^ H
$^0 Z^En \

^ Q M,/§ \ k
1-4 / 6 ® m }0mr- § § °d22 §HO & q
or-1, w

k Rm g Gl § =
n >4 § HE4 § o g ®@

K§EnM 2 §NU msmoo No§ H
§ § n ^a

a:
k Nw N § -IXrn oi ^f)

u .. Gtn n a)
§ ^ RR^2ggG^§§)

En

§ \&	 &,&/
^ \ k 0001EME§§"

X522 GGG§q-^

D-16

C

0
a

za^W
raMHa

M Ra IL H NoaaNH
mC9[7WH4DN
u u n	 u

u
(p̂
goo

kP1 MHO
En 00ll^WHNHz
io f S4 U U Hai 61:3 UA .' ^^

X
N
-1
F

M
N
H
F
W
W

ro

k"a

4J

N
.-I

w
ro
c
ro

0

U

U

M
N
S.'
H
F
m
W

0N
I
A

v

w

Q
h

N

CWE
H

u
p^

HOD

U)

E-1

Q

u
O
aw

N

P

a

N
H

U

A

PQ

as
H
a
N
r-I
ri

n
H

r.1

L.1

MN

0
N

N H

U
N AH

W
O «777

NW

H N
a a

90
^(H11 N

MW NCH

W p̂ N
w

Z

Na O

N 0I
tr) x

g
U10 ^^

NWa
a
H

z^W(a7 WN
D

^I.
'J NN HQHgM
Rla

pe
0

.7$W-1

W NN
NEI . H

asA H H M .
H a0 NH -Q

HWaUpa

W

EE

EnOO
U

ynr
rn
N F

E-4 Enw
w

M

H

D-17

OBSMDL.CMD (Command File to Build
OBSMDL Task)

D-18

Figure D-22 ^j

OBSMDL
BEHUN
BODFIX
ELVANG
GETORB
GETTDR
LTIMTI
ONELEG
SORBIT
STPV
TDRIWM
TDRIWP

r

Figure D-21 OBSMDL.TXT (Test File to Compile
OBSMDL Modules)

OBSMDL.CMD	 TASK BUILDING COMMAND FILE OF MODEL TASK FOR
AODS ESTIMATOR TO PROCESS TDRSS DkZA ONLY
(PDP 11/70 VERSION)

i
OBSMDL,OBSMDL /-SP/SH=OBSMDL,BEHUN , BODFIX,ELVANG,GETORB,

GETTDR,GHAUPN,LATLON,LGN,LTC
LTIMTI,MATMUL , ONELFG,
SORBIT,STPV ,TDRIWM ,TDRIWP

AODS EXECUTIVE ROUTINES AND BLOCK DATAS

JDATE,OUTQIO,TREF,TYMD,VRCEVE,VSEND

SYSTEM STUFF
r

11,1311SLIB/LB

ASG=	 TI:5
MAXBUF= 80
COMMON= GLBI:RW
LIBR	 11SRES:RO
COMMON= GLB3:RW
UNITS= 5
ACTFIL= 2

OBSMDL.CMD	 TASK BUILDING COMMAND FILE OF MODEL TASK FOR
AODS ESTIMATOR TO PROCESS TDRSS DATA ONLY
(LSI 11/23 VERSION)

i
OBSMDL23,OBSMDL23/-SP/SH=OBSMDL23,BEHUN,BODFIX,ELVANG,GETORB,

GETTDR,GHAUPN,LATLON,LGN,LTC
LTIMTI,MATMUL,ONELEG,
SORBIT,STPV,TDRIWM,TDRIWP

AODS EXECUTIVE ROUTINES AND BLOCK DATAS
i

JDATE,OUTQIO,TREF,TYMD,VRCEVE,VSEND

SYSTEM STUFF

C1,1311SLIB/LB

ASG=	 TT3:5
MAXBUF= SO
COMMON= GLBI:RW
COMMON = GLB3:RW
TASK= OBSMDL
LIBR= 11SRES:RO
UNITS= 5
ACTFIL= 2

Figure D-23. OBSMDL23.C14D (Command File to Build
OBSMDL23 Task)

Ry

D-19

Figure D-25. DOPPRE.CMD (Command File to Build
DOPPRE Task)

D-20

DOPPRE,
DOPLEG
DOPLTM
DOPMDL
DPINIT
TDRINT
TGTIDIT
I30DFI:
GHAUPN
LTC
LATLON
ELVANG
LGN
MATMUL
BEHUN
STPV
TREF
JDATE

Figure D-24. DOPPRE.TXT (Text File to Compile
DOPPRE Modules)

DOPPRE.CMD

	

	 COMMAND FILE TO TASK BUILD ONE-WAY DOPPLER
PREDICTOR
(PDP 11/70 VERSION)

DOPPRE,P.O??F'RE=DOPPRE,DOPLEG,DOPLTM,DOPMDL,DPINIT,TDRINT,TGTINT,
BOOFz!X,GHAUPN,LTC,LATLON,ELV.4NG,LGN,MATMUL,BEHUN,STPV,
'i'RREI,JDATE,VSEND,VRCEVE,
OUTQIO
E1,1711SLIB/LB

COMMON=GLBI:RW
COMMON=GLB3:RW
MAXBUF= 80
UNITS= 6
ASG=	TI:6,TI:5,TI:1
PRI=	 50
TASK= DOPPRE
LIBR=	11SRES:RO

D-21

DOPPRE23.CMD

	

	 COMMAND FILE TO TASK BUILD ONE-WAY DOPPLER
PREDICTOR
(LSI 11/23 VERSION)

9
DOPPRE23,DOPPRE23=DOPPRE23,DOPLEG,DOPLTM,DOPMDL,DPINIT,TDRINT,TGTINT,

BODFIX,GHAUPN,LTC,LATLON,ELVANG,LGN,MATMUL,BEHUN,STPV,
TREF,JDATE,VSEND,VRCEVE,
OUTQIO
C1,1311SLIB/LB

COMMON=GLBI:RW
COMMON=GLB3:RW
MAXBUF= 80
UNITS= 6
ASG =	TT3:6,TT3:5
PRI =	50
TASK= DOPPRE
LIBR= 11SRESS.RO

Figure D-26. DOPPRE23.CMD (Command File to Build
DOPPRE23 Task)

OUTPRO.CMD (Command File to Build
OUTPRO Task)

D-22

Figure D-28. f^^

r-,

OUTPRO
OUTTRN
OPINIT
CKPRIO
LODACT
LODERR
LODDCS
LODDPL
LODRES
LUDSEN
LODVEC
DNNSND70
JDATE
OWTIM
TCON
TREF
TYMD
MOVEC
GETTIM
TYMDA
DSPRES

Figure D-27. OUTPRO.TXT (Text File to Compile
OUTPRO Modules)

OUTPRO,OUTPRO=OUTPRO,OUTTRN,OPINIT
CKPRIO,LODACT,LODERR,LODDCS,LODDPL,_
LODRES,LODSEN,LODVEC,DWNSND70,JDATE,
OUTTIM,TCON,TREF,TYMD,MOVEC,
DSPRES,
OUTQIO,VSEND,VRCEVE,CNVCW
DBO:C1,1311SLIB/LB

COMMON=GLBI:RW
COMMON=GLB3:RW
PRI=50
ACTFIL=O
MAXBUF=80
ASG=TT24:3,TI:5:6
TASK=OUTPRO
LIBR= 11SRES:RO

4

y

OUTPRO23,OUTPRO23=OUTPRO23,OUTTRN,OPINIT
CKPRIO,LODACT,LODERR,LODDCS,LODDPL,
LODRES,LODSEN,LODVEC,DWNSND,JDATE,
OUTTIM,TCON,TREF,TYMD,MOVEC,
OUTQIO,VSEND,VRCEVE,CNVCW,
DBO:C1,1311SLIB/LB

/
COMMON=GLBI:RW
COMMON=GLB3:RW
PRI=50
ACTFIL=O
MAXBUF=BO
ASG=TTI:3,TT3:5:6,TT2:1
TASK=OUTPRO
LIBR= 11SRES:RO

Figure D-29. OUTPRO23.CMD (Command File to Build
OUTPRO23 Task)

D-23

STAPRE
OUTQIO
i

Figure D-30. STAPRE.TXT (Text File to Compile
STAPRE Modules)

STAPRE.CI^	 COMMAND FILE TO TASK BUILD THE STAT^ """^'^m^"
(PDP 11/70 VERSION)

r

	

	 '
STAPRE=STAPRE
VSEND,VRCEVE
OUTQIO
DBO:C1,1311SLIB/LB

UNITS= 6 .
ASG=	 TI:5:6
ACTFIL= 0
MAXBUF= SO
PRI=	50
TASK= STAPRE
COMMON- GLBI:RW
COMMON= GLB3:RW
LIBR= 11SRES:RO

Figure D-31. STAPRE.CMD (Command File to Bui
STAPRE Task)

D-24

STAPRE23.CMD	 COMMAND FILE TO TASK BUILD THE STATE PREDICTOR
(LSI 11/23 VERSION)

STAPRE23,STAPRE23=STAPRE23
VSEND,VRCEVE
OUTQIO
DBO:[1,1311SLIB/LB

UNITS=	 6
ASG=	 TT3:5.6
ACTFIL= 0
MAXBUF= 80
PRI=	 50
TASK=	 STAPRE
COMMON= GLBliRW
COMMON= GLB3:RW
LIBR=	 11SRES-RO

Figure D-32.	 STAPRE23.CMD (Command File to Build
STAPRE23 Task)

ABAM
ACCEL
ATMOS
FORCV
GHAUPD
INTF
INV2
LUNA
MSTEP
ORBINI
ORBIT
PARTLS
REDUCE
RUKUTT
SOL
SOLLUN
SPART
SPARTV
SSTEP
STATES
SUMS

Figure D-33.	 ORBIT.TXT (Text File to Compile
ORBIT Modules)

D-25

I

; ORBIT.CMD	 COMMAND FILE TO TASK BUILD THE ORBIT PROPAGATOR
(PDP 11/70 VERSION)

i
0:3BIT= ORBIT,ACCEL,SOLLUN,SPART,A'-,-,MOS,SPARrV

RUKUTT,SSTEP,SUMS,ORBINI,MSTEP,INTEG,GHAUPD
LUNA,SOL,REDUCE,ABAM,INTCON
INV2,FORCV,PARTL,HARM,INTP,STATES
VRCEVE,VSEND
OUTQIO
DBO:L1,1311SLIB/LB

ACTFIL= 0
MAXBUT-= 80
UNITE- 6
ASG=	 TI:5
TASK= O'RBIT
PRI=	 60
COMMON= GLB1:RW
LIBR= 11SVES:R0

Figure D-34(a). ORBIT23.CMD (Command File to Build	 -
ORBIT23 Task)

,
ORBIT23.CMD	 COMMAND FILE TO TASK BUILD THE ORBIT PROPAGATOR

(LSI 11/23 VERSION)
i
ORBIT23,ORBIT23=ORBIT23,ACCEL,SOLLUN,SPART,ATMOS,SPARTV

RUKUTT,SSTEP,SUMS,ORBI;I,MSTEP,INTEG,GHAUPD
LUNA,SOL,REDUCE,ABAM,INTCON
INV2,FORCV,PARTL,HARM,INTP,STATES
VRCEVE,VSEND
DBO:L1,1311SLIB/LS

ACTFIL= 0
MAXBUF= 80
UNITS= 6
ASG=	 TT3:5
TASK= ORBIT
PRI =	60
COMMON= GLBI:RW
LIBR	 11SRES:RO

ORBIT.CMD (Command File to Build
ORBIT Task)

D-26

Figure D-34(b)

Er

z^
01-4

O /J
U ^

0
0
ao
UU--M
xc^H	 H0
Way

U H

xo
O 14mU Z

rn 4
E-A00
Hn

W[4^
a	 H

wH^
QAaw
uz
0.7 Goo ,	 .um —

0 	 ZNaC	 0z0a	 Hxn,H co, u	 uHHZxHH4>4tga4x uuozw4Hx>1m
0 44 U W WH 0., C4 m&I
D4 11	 II	 II,	 fl	 II	 II	 O	 II	 II	 II
,-i o^a^uizdwozo
a 4zPHH>qmx
[J US.Jowco4cC =>^ m44UWWHOrI4rr,H

0000000000r
.^ 14^ l4 14^tiw F2 1 G14 III n.

n,
• [A^1

w

1• I V ^i

a a^r' H t7

4 mz
O rr! 4

N
0

HILy14
r4 C]4 R+

.0
b2 r.-1"
HO

H 2 U
U' O Z 0 :.

U H U En
-I H
H •a zxn
.r l a+ .+0,--,

uu`
ER

w
O n >.

O .Ira Tt^N
U u O.. W ,v

H r r1 U

0 Q H d
4J]H H m
v 7En NN

q a ro r,
•14 u u
w xQ
ro ^6 H
a H a
ro o

n
E q

a^
H u G
G. A r9o

w Q ^
ti, x

to

W w
o
ri a

[7

l!1 L.
M

I
Q

^
^
HQ

£

0 -a
.H Hw a

[J H

H

asa
C9

O

U

H
m

0
H
C7

H
7
m
O
aJ

v
H
•ri

w
ro
a
m•

U

A
U

J
0
	

H

O
	 a

C7

0
O
OO	 M
W
	

I

H
	 A

H
O
	

Sa

C 0 CD

F-4

Hv"7^

Rv

 •F

f OOR QU

D-27

ouuw
\(
\8g
)em
/\j=og

®§8
R\\.
u\\
\§-

)
G(
u%

.

/j\ §S	 O
g §	 5

(// \(
§§0S

\ \(\\a=ow
j§§§...,_,Qr &a

\
\

E
S
)
\

\
\

\
j
\
§
\
\C4

\

\
4

!	 ^

!

§
_	 (\

\	 \
\	 /	 E	

.
o	 =)
(g	 o.	 0	 e)

2
\)	 F-4	 j
) w	 &	 S	 ,
g \	 N	 0
LO \)	 \!	 !
\/	 \	 §Rw	j.
§)	 § 	

10
k()	 (.

))	 \	 \
\)

\	 (R	 ,	 ^

{	 \	 c)e	 \^
:
/ U II	 \

,. ..2 ^La :3

 ^}.^

D-28

I

OF POOP,,

D-29

O

0

0
uO

^
o
a

HU
WWx

HH
^o
O Lao

U
L^

OW
EI

H

W E14

H¢m

EL,¢t7

zG^

o
oaa
Li wm

Od ouow	 WOW'L
U E-i0AE-+UxG	 Ua

u^GH¢gGnE+auIz ,34UmW1XI0MMMWW
O mgWwrZOOOMIx
Ga It	 II	 N il	 II	 II	 II	 II	 II	 It	 II

xE4a U=zUaUxH
M 0¢ COU O W a. WO tla
m HUDaHUwQ>U%a
L7

Hwmp0x=:w
UWc^moc;00=x

Dw

mggwZEOOOxx
wxx=xxxxaxx00000000000

._ '_ G-I (3a Ls. L4 [W :'4 EW ^11 11 1 41 114 n.

M L!C W
U w
WQ

n E
q

u

N	 U Ho q 	 G6
a O	 O m
C7 ^	 t c`^.

4 1^ U w

tl

-1

C) ziIQLAU
WHH.T-.

.0WMo
U Hnt•'tn

¢w
r^

O M G ^3 C•1 N

arl nuuu

G r
a
N H

cq
N

a to u

ma
u
H^Gz

¢E¢-I
M

O m
O r]
P — C7

W H r~

waa
;a ("„ CrJ

Cl LA
U

x

I

H
r w

U mM

m a
Im.7 n
U H

ri
_....._u

M

m
a

O

ro

0

N
H

E
O
U

0
11

N

Ga

a
ro

0
0
U

^i

O
W
M

m

a
U

a,
M

I

A
N
u
•s
rl

PLI

M

a
C7

O

E
U

ro

0
U

CQ

0
-1-I

N

Lsi

ro
C
ro

0U

G
O

C U

0
0
p
r^ p

a A
o J ^ N

^n	 I

U	 II	 ^-I .,..,

'	 H [yE+CZ^
^N21 ,'""7- 'ten

}

\

/
G
\
\
j
\
3
W
&

\
f

\)

`}':±\"	

^

.^...	 ..	 :	 +

§
_

\uu
))
/^

§§\
a4 z

\u
E \	 \m^^4
§q)/
0ƒ2&
$

rA

00moeu^om= -
\
§;

} \
j \o j

_2-^- ®%«

R 2-
\ \
^ /
%U)
% L)
0 §/
g yR E

u j) \o	 . «_
\ \
% G2 3
\)]li
, \§ /

r-4
f \f14w \

-
0 7 2

(/
} 2 ± ojc.

\ / \\\
.,.,2.§± §2

D-3 0

i

I

D-31

TKB @EXEC
TKB @DATCAP
TKB @INPPRO
TKB @PREPRO
TKB @DATMGR
TKB @ESTIM
TKB @DOPPRE
TKB @OUTPRO
TKB @STAPRE
TKB @ORBIT
TKB @OBSMDL

Figure D-43. TKB.CMD (Command File to Build All FEDS
Tasks, PDP-11/70 Version)

TKB @EXEC23
TKB @DATCAP23
TKB WNPPR023
TKB @PREPRO23
TKB @DATMGR23
TKB @ESTIM23
TKB @DOPPRE23
TKB @OUTPRO23
TKB @STAPRE23
TKB @ORBIT23
TKB @OBSMDL23

Figure D-44. TKB23.CMD (Command File to Build All FEDS
Tasks, LSI-11/23 Version)

_	

r3

;	 COMPILE . CMD COMMAND FILE TO COMPILE ANY SUBSYSTEMS

.ENABLE SUBSTITUTION
.START:

!ENTER SUBSYSTEM
.ASKS SUB ENTER SUBSYSTEM
.IF SUB EQ "ADPREP" CCOTO REST
.IF SUB EQ "EDITSS" . COTO REST
.IF SUB EQ "ADSIM" . COTO REST
.IF SUB EQ "RECEEV" . COTO REST
.IF SUB EQ "DNLINK" . COTO REST
.IF SUB EQ "SCREEN" . COTO REST
.IF SUB EQ "ADOUT" .COTO REST
IF SUB EQ " SIMMER" . COTO REST
.IF SUB EQ " SIMCB" COTO REST
.IF SUB EQ "DBMINI" .COTO REST

;REQUESTED SYSTEM NOT FOUND
.COTO START

.REST:
;OPEN FILE FOR ALL SUBSYSTEMS

OPENR ' SUB'.TXT
COMPILE ALL MODULES

.NEXT:

.READ MOD

.IFT (EOF > . COTO DONE

.IF (FILERR > NE 1 .COTO START
FOR 'MOD'

IF (EXSTAT > NE (SUCCES > . GOSUB ERR
COTO NEXT

.DONE:
.CLOSE
• EXIT

.ERR:
RUN DBO:C201 , 63BELL

.ASKS CR CR TO CONTINUE

.IF CR (> "" . EXIT

.RETURN

Figure D-45. CMDADEPT.CMD (Executive Command File
to Compile ADEPT)

D-32

F^l

a,

ADDSUB
ADPREP
ATMPRT
BLDSIM
BUF
BUILD
CENTER
CMDCHK
CMDCOM
DATCHK
DBM
DBMEDI
DBMPRT
DCODE
DIRCOM
DIRECT
ERROR
FIELD
FILES
FLAG
GEOPRT
GETINP
GETOB
GETPRM
GETTRK
HEADER
IDCODE
LENM
LINFIL
LSTREC
MERGE
OBSCHK
OBSSCH
PAGOUT
PARA
PARAM
PARPRT
PDMP
PDUMPF
PHYCON
SFILES
SPCPRT
SRTTRK
STRPRM
TIMCHK
TRKSCH
TSORT
VERIFY
YMDHMS

Figure D-46. ADPREP.TYT (Text File to Compile
ADPREP Modules)

D-33

EDITSS
EDIT
WRT
OPENS
GETLIN
MOVE
REMVB
DECNUM
COHPL
ADD
ADDP
BOT
DEL
DELP
EXT
KILL
LSTT
LSTP
NEX

OVE
RET
SAV
TOP
PRI
TYP
UNS
LOC
INS
TLOC
INSBLK
INSCMD
INSCOM
INSLIN
INSOBS
CHG
SCHG

Figure D-47. EDITSS.TXT (Text File to Compile Editor
Used in ADPREP Task)

D-34

D-35

M

0

E4

b4
In

En N

En
Ert N

N

:n
I

ul
ILI

u U) Iz

N	 cm

r4
N	 I,-

C4 III

r4	 01	 11
M

if
t"	 0^

% En gn	 H
-0	 If
C4	 0
N	 U3
6j	 4

U)

IV

E-1

A4

0

rX4

0

im

00
-W

P4

.ROOT
EXT1: FCTR
EXT3: FCTR
ROOT1. FCTR
ROOT2: FCTR
ROOTS: FCTR
ROOT4: FCTR
ROOT5: FCTR
ROOT6: FCTR
SEG1: FCTR
SEG12: .FCTR
SEG13: FCTR
LEGA: FCTR
LEGA1: FCTR
LEGB: FCTR
PART1: FCTR
PART2: FCTR
PART2A. .FCTR
A: .FCTR
B: FCTR
C. FCTR
LEGC: FCTR
ANKLA: FCTR
ANKLA1. FCTR
ANKLB: FCTR
SEG2: FCTR
SEG2A: FCTR
SEG3: FCTR
SEG3A: FCTR
SEG3B: FCTR
ARMA: .FCTR
ARMA1: FCTR
ARMA2: .FCTR
ARMA3: FCTR
ARMA4: FCTR
ARMA5: FCTR
ARMA6: FCTR
ARMB: FCTR
ARMBB: FCTR
ARMEC. .FCTR
ARMB1: FCTR

.END

A

ADPREP.ODL	 COMMAND FILE THAT CONTROLS THE OVERLAY OF THE
DATA PREPARATION SYSTEM.
MODIFIED TO USE THE ROUTINES MODIFIED
FOR , FEDS

C224,23ADPREP-ROOT1-*(SLGl-(EXT1),SEG2,SEG3-(EXT3)
LEGA,LEGB-(PART1-(A,B,C),PART2),LEGC-(ANKLA,ANKLB)
ARMA,ARMB
1224,23MENU-1224,23PAGFIL-1224,23GETI2-ROOT2
1224,23LENM-C224,23CENTER-ROOT3
[224,23ERROR-C224,23PDUMPF-1224,23FILF.S-ROOT4
C224,23PAGOUT-1224,23MOVEC-C224,23PDMP-ROOTS
C224,23LUNCOM-1224,23CMDCOM-1224,23YMDHMS-ROOT6
1224,23DiRECT
C224,2'r1:;LD-C224,23GETPRM-1224,23ADDSUB-SEG12
C224,2i.i't".tENS-1224,232BYTE-SEG13
C224,23GETINP-1224,23LINFIL-1224,23STRPRM
C224,23PARA-1224,23IOF7-1224,23SFILES-LEGA1
C224,23IDCODE
1224,23DBM
1224,23DBMEDI-1224,23SRTTRK
C224,23DBMPRT-C224,23SPCPRT-C224,23ATMPRT-I
C224,23GEOPRT-1224,23PARPRT
1224,23TRKSCH-1224,23GETTRK
1224,23OBSSCH-C224,23GETOB
1324,23PARAM-C224,23DCODE
C224,23VERIFY-1224,23TIMCHK-1224,23MOVEB
C224,23DATCHK-C224,23PARPRT-ANKLAI
1224,23ATMPRT-1224,23GEOPRT
C224,23CMDCHK-C2-14,23OBSCHK
C224,23BUILD-C224,23BLDSIM-C224,23MERGE-SE(
C224,23TSORT-1224,23ADDSUB
1224,23EDITSS-1224,23EDIT-C224,23WRT-SEG3A
1224,23OPEN5-1224,23GETLIN-122412_^`.OVE-SEG:
C224,23REMVB-C224,23DECNUM-C224,23COMPL
C224,23ADD-C224,23ADDP-C224,23BOT-ARMA1
C224,23DEL-C224,23DELP-C224,23EXT-ARMA2
C224,23KILL-C224,23LSTT-1224,23LSTP-ARMA3
E224,23NEX-C224,23NEXP-C224,23OVE-ARMA4
C224,23RET-1224,23SAV-C224,23TOP-ARMA5
C224,23PRI-1224,23TYP-C224,23UNS-ARMA6
C224,23LOC
C224,23INS-E224,23TLOC-1224,23TIMCHK-ARMBB
1224,23INSBLK-C224,23INSCMD-1224,23INSCOM-2
1224,23INSLIN-C224,23INSOBS-ARMB1
1224,23CHG-C224,23SCHG

Figure D-49. ADPREP.ODL (Overlay Descriptor
for ADPREP Task)

D-36

0)

t - ADSIM
LENM
TIMCHK
FILES
YMDHMS
SIMINI
IDCODE
PAGOUT
MOVEC
ERROR
PDMP
POUMPF
ESTMOD
DCODE
PARAM
GETPRM
IBYTE
STP.PRM
FIELD
GETINP
LINFIL
PARENS
CENTER
DIRECT
PARA
IOFF
SIMOPT
OUTMOD
MENU
PAGFIL
GETI2
CENTER

Figure D-50. ADSIM.TXT (Text File to Compile
ADSIM Modules)

ADSIM.CMD	 COMMAND FILE TO TASK BUILD THE SIMULATION
CONTROL COMPONENT.

ADSIM,ADSIM/SH/-SP=ADSIM/MP
LIBR=FCSRES:RO
COMMON=ADSGBL.RW:7
ACTFIL=6
MAXBUF=1036
?'.NITS=20
ASG=SY:1:2:3:4:7:8:9:20,TI:5:6

Figure D-51. ADSIM.CMD (Command File to Build
ADSIM Task)

D-37
	

I

z
0
H

a

H

N

a

O ^-I

Hoz

H0H O
44 Ui

z
U U

a
Q
0

H
Crl
Q

U
H
W
!n

rlH N
6 ri

[l.
x	 W W ,-^ ^	 V

u rnEiN
ELI

a
CuEaEa	 W

^Naa
[1wnn

[wlrwinnrl

-N V!'	 H•- ^" rl e' N
.-.WNN	 Ft,'NN NNN	 W
NN1JN	 C..7 ra r7 -N u	 N
r-4 N' LI	 w u Li C u I	 N
- u HI	 f!J	 !	 ()r N I a	 u

N	 H	 ^.H	 I z U	 I	 p:4 [E,.]I
ax1-+wf^	 £	 z

lz
uaw	 a

-x£^u.	 4 >4HS. I	 4	 HaD>.

^HHFiIUQ'xU]£a GW.E4	 CW7
C7 H n n Im	 fi, n C9 n 0 of m	 r.0
WHNr4a4	 r1Nr1N HrlN	 w
M rl	 - r•I	 N	 .N	 . rl N	 rl— N d' sH N	 — ,:^	 .,r N	 d'	 N
<	 _r:N	 d'r7-It-r7 .a'N
I •3'N r,3 d• 	N NNN d'NN	 c'--INUUN	 NuNU raNU	 N
a. N	 r	 I	 N	 L.1	 I	 L1	 1 P7 u I	 N
l ucnEuq 1 £ I raHu 1 I14EGu
£ I £."7 1 Ow afa2U 1 W zkno i wo C1,£q!rkW^4; l 	 w

^•',

r
+y^

G
.f

H
^

£
?np

^
.

H
f^

H
-^I

O£ DH

a>4 w 114 wQ U^ W aw H 0M o mri
rinrinrinnrlrlr-Inrlrinr-Irlrir-1
N Nr7 N r7 NN NN r] NrV r7 NNNNN
.	 e	 d• d• t% d' V' d' d' c!'C V sN Cd'W<3•drN N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N rV N
uuuuuuuuuuuuuuuuuu
PP a	 a4
0HHE-IHHHEHHHHHHHEHHCt

1:4C9C4C	 Y
ouuuuuuuuuUUUUUUuuz
944P4 f14 f444GWCW44.	 f^fwf3,G4.	 .	 . 114CWW4444W.	

U)
rn
ro
E

H

Qa
H
O
4-I

FI
O
41
W

>a
U
N
m
O

>'	
1ro

H
N
N
O

0
O

H
rn
Q

N
L,

Q

N

13

P4...
HNM	 •• H NHN ••r-lI
u ri W W u 11: 0 .i

-+ ra m d' W -1 W W W N W w U^ ^C w W

	

•^ •^ •• •• 4Y. 4"-. C. C:. U] ::. N rn U7 W N U7 U] a [L U] ri1	 r.

D-38

f

SIMMER
UPLINK
SIMTIM
URAND
RTRAN
UPSEND
CRRUPT
SETRE
MSGGEN
UPCMD
UPBLOK
UPDATA
DBURST
DNOISE
GAUSS
CVTDBO

Figure D-53. SIMNIER.TXT (Text File to Compile
SIPMQER Modules)

SIMMER.CMD	 COMMAND FILE TO TASK BUILD THE SIMULATION
CONTROL COMPONENT

SIMMER,SIMMER/SH/-SP=SIMMER/MP
COMMON=ADSGBL:RW:7
ACTFIL=6
PRI=75
MAXBUF=1036
UNITS=15
ASG=SY:1:2:3:4:8:14,TI:5:6,TT32:15

Figure D-54 SIMMER.CMD (Command File to Build
SIMMER Task)

RECEEV
SIMREF
13MTREP
TCON
OUTOIO
PRI6R

RECEEV.TXT (Text File to Comp:
RECEEV Modules)

Figure D-56

D-40

SIMMER.ODL	 COMMAND FILE TO OVERLAY THE SIMULATION
CONTROL COMPONENT.

.ROOT C224,23SIMMER-R1-*(S1-(S1A,S1B4O1C,S1D),S2)
Rl: FCTR C224,23UPLINK-1224,23SIMTIM-C224,23URAND-R2
R2: FCTR 1224,23RTRAN-C224,23FILES-1224,233MTREF-R3
R3: FCTR C224,230UTQI0
S1: FCTR 1224,23UPSEND-C224,23CRRUPT-C224,23SETRE-511
Sll: FCTR 1224,23MSGGEN-C224113VSEND-S12
512: FCTR 1224,23SIMREF-C224,23TCON
S1A: FCTR C224,23UPCMD-C224,23CMDCOM
SIB: FCTR C224,23UPBLOK-CZ24,23MOVEB
SIC: FCTR C224,23UPDATA
SID: ..FCTR C224,23TIMCHK
S2: FCTR 1224,23DBURST-C224,23DNOISE-C224,Z3GAUSS--S21
S21. FCTR C224,23CVTDBO-C224,23YMDHMS

.END

Figure D-55. SIMMER.ODL (Overlay Descriptor for
SIMMER Task)

Ln
M

It
EH

>
pq
pq

W
u

C4

.,I CN
CD
r-

0
4-1

0	 1
41 Q) P4

li P4

0
tn .0

4J
1-4

r: -PE-1 0 ro K (a0 H
lz

04

r r.
vi 0

.	 tn
0	 >

E r^
E 0

I

1.4	 ^ s ca
rl	 ft rl

01-4
0
ri U)

1
cu u En 0 0 Im 0

u W cx I:p wcw 44

^ lrqq

n rX4

m 4J zow
m 2:

U 4Jo l

u 0 x ^4 .	 ^4
u 0

En
0
04

u u 110 04 iz	 ft
> 04

= u

En E-4
to W :3

w ca w	 ::I

pq mN u

M
^4 pq 0

41
14

M	 m	 to
0
4J

u

Lntia in
-W rq U

r4	 ..	 11	 p

Ln
Z in 11 HOH
0

C^
u LD

63	 rq

w rn E-1 H	 11
E-1

Ln

H	 tn
OKM

04
Q) u	

9

IU

En	 r4 W
Ln

^4

LD	 u

zo

Ar4

M E-4	 H to u

E
E-4 11 M

c

D-41

DNLINK
STRPTS
MSGGEN
SIMTIM
OUTQIO
DNINIT
DNMCHK
DNEXIT
GETMSG
STDATA
STMSG
ICON
SMTREF
RESPRT
DCSRP'i'
7

Figure D-59. DNLINK.TXT (Text File to Compile
DNLINK Modules)

DNLINK.CMD

	

	 COMMAND TO TASK BUILD THE DOWNLINK MESSAGE
PROCESSOR COMPONENT.

DNLINK,DNLINK/SH/-SP=C224,23DNLINK,C224,23STRPTS,
MSGGEN,C224,23SIMTIM,C224,13OUTQIO,
C224,23DNINIT,C224,23DNMCHK,DNEXIT,
GETMSG,STDATA,STMSG,
1224,23TCON,1224,23SMTREF,
C224,13VSEND,
1224,23RESPRT,DCSRPT

ACTFIL=S
COMMON=ADSGBL:RW:7
UNITS=19
MAXBUF=256
ASG=SY:13:14:16:17:lS:19,TI:5:6

Figure D-60. DNLINK.CMD (Command File to Build
DNLINK Task)	

i

D-42
.	 t

e

i

(i

DNHIST.CMD	 COMMAND FILE TO TASK BUILD THE SIMULATION
HISTORY GENERATION COMPONENT

DNHIST,DNHIST/-SP=DNHIST,C224,13VRCEVE

ACTFIL=3
COMMON=ADSGBL:RW:7
PRI=80
UNITS=14
ASG=SY:14,TT2:5:6

Figure D-61. DNHIST.CMD (Command File to Build
DNHIST Task)

CREEK
MOVEC
ERROR
PDUMPF
FAGOUT
CENTER
LEN
FARENS
IBYTE
GETPRM
LINFIL
FIELD
STRFRM
TFARA
TETINF
TSTMOD
TDIRCT
TDCODE
FILES
TFARAM
TIMOPT
INCMD
TMENU
LENM
FAGFIL
TGETI2
7

Figure D-62. SCREEN.TXT (Text File to Compile
SCREEN Modules)

C.?

D-43

ro

O
41

a^

w

x
In
ro
E
z
W

a
U
O
N
-1
w

0

W

N
U
rn
v

N
H

v
0

ro
G
m

0

U

X

U E

u
U) cn

q
O
zw

m

M
ko

1
q:a
w

1q
3a
7
tr^

W

a0
rn

0
aa
O

POO

H

990E
w

i
M .w^

UU

2
O

i
U
N

NN
ri

at	 m .^+

A	 N N to

CNI
+r4	 H 1W 	1-4

NM
I'	 1 W O	 M

ICU HM I
I	 iI-1H	 M V1

ya ^'rHn 1 1 acHi	 aH1001aHza
a s I

^

1 a
5H

1
W!

M

ww

1 OUW] Ri cc1 H

zQ0NaF^^HM^

U
N

x
ul `^a
N ^D

..1
In

v "^ a
N

wNa	 W O +

I	 N N IC1
[N[^^
r^

11	 11	 It

^HNN1
1
[

`

4y

a
[1110

GW
(z.

^

H	 E1 l^ U'

•fiWN1'
ô"7 a'4U^-n

. r1 N M 4 rQ 90 --,4
H H r4 r 4 H H r-1 H H N N

•+•••'••+ ma: Mtn NNMMMUIM n

.o-

D-44

E	
JJ^

D-45

ADOUT
0 UTLUN
SMHIST
DPRPT
TIMCFIK
DCRPT
SVRPT
GETDCS
GEi RES
ARESRP
ADCSRP
GETTIM
EPHCMP
ADDSUB
YMDHMS
CINPUT
DIF
PARA
ERROR
PDUMPF
PDMP
FIELD
GETINP
IOFF
LINFIL
PARENS
STRPRM
MOVEC
PACOUT
LEN
GECPRM
IBYTE
CMPOPT
CMPINT
EPHED
CHEAD
EPHDAT
CONVRT
RELSB.
REALS4
JCOMPAR
CNTINI
CTREQ
DIFFER
DIFOUT
CREADI

Figure D-65. ADOUT.TXT (Text File to Compile
ADOUT Modules (1 of 2)

F)

D-46

GETDAT
CSUMMR
DIFORD
DIFRM
CACCUM
DIFWRT
MENU
PAGFIL
GETI2
ERROR
LENM
PAGOUT
CENTER

Figure D-65 ADOUT.TXT (Text File to Compile
ADOUT Modules (2 of 2)

y)

i

p	 ADOUT.CMD	 COMMAND FILE FOR TASK BUILDING THE REPORT
GENERATION AND ANALYSIS SUBSYSTEM

ADOUT,ADOUT/SH/-SP=ADOUT/MP
UNITS=13
MAXBUF=2440
FMTBUF=270
ACTFIL=7
ASG=SY:1:2:3:6:9:i2:13,TI:5,MM0:10,i`MM1:11

}

Figure D-66. ADOUT.CMD (Command File to Build
ADOUT Task)

A0

x

ro
E

E
0

O

14

>4
0w

O

a
>a
U
N
N
A

b
.-I
N
v
y
0

a
Q
O

E

00

IA
a>T
w

u CW7

0

ON
.'w

ta

M
9

N

O En

O
W

M

O

r^-1	 N M	 M^	 r4 	 mo mo r4Nm
u	 mmtn	 rIN	 mu &y 6y

I	 Nri 1	 a	 u 1	 u 1 U
^
i
.IU	 I N Or	 ^ 4404 ^

	 I inE4H

1

 ^L	 I

N	
^̂[N
s1j	 N r-1 p$1. I N

^y rr7

(
[
t
^1 	 C',	 ^ [~I 1 {[p^^iy:N	

E4 G7 1	
U!	

D r Q .̂r pn	 t I	 I I U' ^1	 W Q Wr:	 I GGG777 Ix R1	 IL -I I RI	 1-1	 I W Ei U I U*^	 l a
C

Q

^ mu	 12

N N0 M 124 1
r4 C.7 call R mu Wr(^y^2	 ^y O

^'M MMGn O

-	 I m l	 I	
l '1 	 1.1 1-1 ^1	 I U	 I ^1	 ^I ^1 r^^r ^a	 "N,	 E[ppi^;

;	
^ 1

-I
^

i U J̀tOK I4 E rJ' I ^i a to $ H vi ^a w	 Ida ICU

a

OZ 9 OR &IM,

..............................
oP4Nrn••o.+icimpw

N In d	 r	 •
.•	 + •• N •• r I W 'i	

rC •• ••
fn eV •• .i Pi m a

^ s1 rl r-I ri rlNNri rl A'i	 Nmmmdr 'r'dr dr drulzWMtnMtn wuuaaaaauuuuuuuuu

D-47

CLKTIM
FNDOBS
HMSCNV
JDATE
LCKSET
RCVMSG
REFCNV
SIMCB
SIMREF
SIMTIM
SMTREF
SNDMSG
TCON
TIMDIF
TYMD
YMDC..W

Figure D-68. SIMCB.TXT (Text File to Compile
SIMCB Modules)

SIMCB,SIMCB=SIMCB,CLKTIM,FILES,FNDOBS,HMSCNV,JDATE,
LCKSET,MOVEB,RCVMSG,SIMTIM,SMTREF,SNDMSG,TCON,
YMDCNV,SIMREF,TYMD,OUTQIO,REFCNV,TIMDIF,RECLN,REVCW

ACTFIL=4
UNITS=21
ASG=TT21:21,TI:5:6
MAXBUF=356
COMMON=ADSGBL:RW

Figure D-69. SIMCB.CMD (Command File to Build
SIMCB Task)

D-48

DSMINI
INIT
MENU
PAGFIL
fl- Er 12
CENTER
PAGOUT
LENM
MOVEC
ERROR
PDMP
PDUMPF
FILES
LUNCOM
PARA
IOFF
IDCODE
PHYCON
INITAB
ESTPRM
EXPARM
PARPENS
INFIL

GE TINP
FIELD
STRPRM
GETPRM
IBYTE
7

Figure D-70. DBMINI.TXT (Text File to Compile
DSMINI Modules)

D-49

n $N ,
z

U	 ,Q.^
E
wHn0

un
av rl

tq C.4HN	 N n
- HV d

H	 •d' n N N d•
E .?..'N	 d- NNN NN
A.' H 1	 NN	 LJ 61N
Q nLA	 Nud' - .LJ

N .	 u • Naq

N•

4
w	 EA

rNiW
1 r'

yJIZH[yz HRH

QH
^
H

19 r,

NEn-1H NN /1 N	 -4
'J `j..	 N	 • n	 . • N
O N d, N N2N	 N aV d'
YH m N N NN d'N NN

IM Li w NLI N Li 61NNI
0
[

E D N H D
W
U 	 uoP^GNaQ̂q

s	
4

D W
w
 uo wxaQaaaa. a.w^a E II nnnnnnnnnnHA,' .'l•NNNNNNHNNN

w N N
H ^ d' W
b] {L NNNNNNNNNN
lay' NNNNNNNNNNN

Li Li W w 	 Li W Li Li LJ
N

I

O m $
UH

H

Q
n
N
N
N

U N
Li

H
H $

A q^q
Qn
N

N

LJ

J

U7

H

0
O
W

T
H
qa
H
Jq

rlj

Ei

off
t-I

tiH-1

aH
H J
H

Q
H

r7 U
U U C7

U?

7
.yr

^ H

U UI
ri

C5 ^
U w
M U
cn e^ q

rn tii
Lrl	 N

ti 1^1	 fTl	 •.•

d'	 II	 I	 C
Q
Q

E0.07G
A 1-4	 E J
W Z	 U I

x
N
ro
E
H
2
N

q
ro

P^

cal

O

N

W
RJ
0
ro

E
U

q

U
H

H

F•
GQ

Ht
m N
O

E-f 11

W H O H
11 If H .•

H N N

H CO

t`
I

q
v
FI

tr+

w

.k
N
ro
E

Ul

a
U

Wx
b

a
q

O

IV

' •Pi
W

Ero

O

U

U

a
U
U)

ti
t`

1
q

U1
Sa
7
lT

w

u^Cac
q

fc^,., . qg:F:^.

D-50

^

0-,1

(/\

0
8

§
N \

j

\
j

q
 2

(^
j u
® e m
° Eq

\ \ (
s::

F-4
4J

Cl!

]

\\ \
ra G @
9

LO
j

§^ E14 \
» o °\ ¢
f\ /(\
j0 Gf
E q §
044

\ \/ .
J 134

° 5)
.

\
! 7 E §
\) \}/.

» (AGE^- a4 _ ^.

/

\

k

§ .

§ §
« -K

§§ 3
0 U)

k
^

§ -§ K n
8A S^ \

pi 0En «

/an Q.
d \) SkRQ

§ &k §tkgra

§ §kQ §k}§
HGGH^NH
QGRLa n

a4 gn

_.. _§ §DWtaC4

\

u
c^
)\
k^

\E

\

\
4

^»«^ mow:= ^^^ y^ 2

[
F	 ^

RSX11S
SET /POOL=340
SET /MAIN=IISRES : 340s145:COM
INS C1 , 1311SRES
SET /MAIN=GLB1 :*: 136:COM
INS El,13GLBl/PAR=GLP1
SET /MAIN=GLB2s *: 50:COM
INS C1 , 13GLB2 / PAR=GLB2
SET /MAIN=GLB3: *: 344:COM
INS C1,13GLB3/PAR=GLB3
SET /MAIN=GLB4 :*: 234:COM
INS C1 ; 13GLB4 /PAR=GLB4
SET /MAIN=TTPAR:*:122:TASK
LOA TT:
SET /MAIN=EXEC:*:470:TASK
INS 1224 , 13EXEC23 /PAR=EXEC
FIX EXEC
SET /MAIN=DATCAP :*: 231:TASK
INS C224,13DATCAP23 / FAR=DATCAP -
FIX DATCAP)	 ^
SET /MAIN=INPPRO: *: 310:TASK rINS C224 , 13INPPR023 /PAR=INPPRO
FIX INPPRO
SET /MAIN=FREPRO:*.-321:TASK
INS C224 , 13PPJWR023 /PAR=PREPRO
FIX PREPRO
SET /MAIN=DATK;R: *: 724:TASK
INS C224 , 13DATMGR23 /PAR=DATIMGR
FIX DATMGR -
SET /MAIN=ESTIM :*: 567:TASK
INS 1224 , 13ESTIM23 /PAR=.ESTIM
FIX ESTIM
SET /MAIN=OBSMDL: *: 442:TASK
INS C224 , 130BSMDL23 /PAR=OBSMDL
FIX OBSMDL
SET /MAIN=DOPPRE: *: 347:TASK

Figure D-75.	 FEDS23.CMD (Command File to Build System
Image for LSI-11/23) 	 (1 of 2)

D-52

INS C224,13DOPPRE23/PAR=DOPPRE
?IX DOPPRE
3ET /MAIN=OUTPRO:*:317:TASK
ENS C224,13OUTPRO23/PAR=OUTPRO
PIX OUTPRO
3ET /MAIN=STAPRE:*:154:TASK
ENS C224,13STAPRE23/PAR=STAPRE
?IX STAPRE
3ET /MAIN=ORBIT:*sl262:TASK
INS C224,13ORBIT23!PAR=ORBIT
^IX ORBIT
1UN EXEC
?AR

ASYNCHRONOUS COMMUNICATION LINES

'ET /SLAVE=TTOs
3ET /FDX=TTO-. -
3ET /TYPEAHEAD=TTO:

3ET /FDX=TT1:
3ET /SLAVE=TT1:
3ET /TYPFnuFnn=TT1:

3ET /FDX=RT2:
3ET /SLAVE=TT2:
.3ET /TYPFnuFnn=TT2:

OPERATOR'S CONSOLE

SET /FDX=TT3:
SET ITYPEAHEAD=TT3:
SET /SLAVE=TT3:
SET /CRT=TT3:
9 --

Figure D-75. FEDS23.CMD (Command File to Build System
Image for LSI-11/23) (2 of 2)

D-53

APPENDIX E - SUMMARY OF FEDS REQUIREMENTS

This appendix contains the updated FEDS requirements pre-

sented in Reference 1. The FEDS requirements are presented

according to level of detail, as follows:

i	 Section E.1 specifies the :system requirements,

which are the tasks the system must perform (on the

highest level) to satisfy the needs and objectives

of the end user.

•	 Section E.2 specifies the system performance re=

quiements and limitations. These consist of the

schedules on which specific requirements must be

satisfied and any limitations that will affect the

performance of the system.

•	 Section E.3 specifies the functional requirements,

t!. '	 which are the functions the system must perform to

satisfy the system requirements. These are the

most detailed requirements given.

E.1 SYSTEM REQUIREMENTS

FEDS will be an onboard orbit determination system requirinq

periodic ground support. The objective of FEDS is to pro-

vide the outside world with orbit information (i.e., posi-

tion and velocity) on a near-real-time basis that could be

used for experimental data annotation.

For the ground demonstration, FEDS will be located on the

ground with a transponder at GSFC. The external world in-

cluding the ground support system will be simulated by ADEPT

in GSFC's STL. Among other input, ADEPT will provide FEDS

with an initial spacecraft state. During the experiment,

the White Sands tracking station will perform Doppler com-

pensation based on the corresponding ephemeris tape. The

resulting Doppler signals will be transmitted through a TDRS

E-1

9808

to the transponder connected to FEDS. Based on the initial

state, FEDS will predict the Doppler frequency shift to

enable the transponder to receive these signals. The

Doppler measurements will then be used by FEDS to achieve a

new best estimate of the state. The new state vector will

be used on the next pass to predict the Doppler frequency

shift. Figure E-1, the FEDS context diagram, shows the

relationship of the ground demonstration version of FEDS to

its external environment.

This section specifies the system requirements, i.e., the

tasks that the prototype FEDS must perform to satisfy the

needs and objectives of the ground demonstration. These

requirements include the top-level FEDS requirements, pre-

sented in Section E.1.1, and the input and output require-

ments, presented in Sections E.1.2 and E.1.3, respectively.

E.1.1 TOP-LEVEL REQUIREMENTS

The top-level requirements of FEDS are as follows:

•	 FEDS will ,'provide position and velocity on a near-

real-time basis for experimental data annotation

and direct downlink.

•	 FEDS will predict one-way Doppler observations on a

scheduled basis for direct downlink to ADEPT and

for transponder acquisition.

• FEDS will generate and output a state vector pre-

dict table containing vectors at a specified fre-

quency over a specified time interval.

0	 FEDS will maintain and output an activity log on a

regular basis and when specifically requested

through d control command.

•	 FEDS will perform any preprocessing required to

process the input one-way Doppler observations.

E-2

9808
r

C

5

1 ,^

0

E
ro
H
tr^
ro

4J
x
w
41
a
0
V

q
W
W

W

w
H
t
tr
W

E-3

.7

(trR^ Y

•	 FEDS will be capable of recovering from both user

spacecraft and Tracking Data and Relay Satellite
(TDRS) maneuvers.

•	 FEDS will perform orbit determination using a batch

least-squares method of estimation, differentially

correcting the orbit of the target (user space-

craft). FEDS will estimate the following state

parameters:

Six parameters of the orbital state (target)

(position and velocity)

Atmospheric drag coefficient, CD

Coefficients of the frequency model for one-

way TDRS System (TDRSS) data

•	 FEDS will process one -way TDRSS Doppler observation

data.

E.1.2 INPUT REQUIREMENTS

The FEDS input requirements are as follows:

•	 FEDS will accept input messages containing data and

control commands.

•	 FEDS will accept from AZEPT the following input

data:

New TDRS vectors. These data include one

state vector (position and velocity) for each

active TDRS, up to two TDRSS. &ew TDRS vec-

tors will be uplinked at least once per day.

Maneuver schedule. This schedule specifies

the predicted states and times of user space-

craft and/or TDRS maneuvers. It covers up to

eight maneuvers and will be uplinked as neces-

sary. The entire maneuver schedule will be

unlinked at the same time.

E-4

9808

t
g
t

Tracking schedule. This schedule is the

tracking schedule for the prediction of one-

way Doppler frequency shift and the annotation

of observations with tracking conkiquration.

It covers 16 trackinq intervals and will be

uplinked as necessary. The entire tracking

schedule will be uplinked at the same Lime.

Initialization table. This table specifies

the initial conditions for the estimator, in-

cluding the a prinri state vector, which will

be propagated for output until a solution is

reached. This table will be uplinked at the

start of FEDS execution and then later at the

user's direction.

Constants. These constants, which will be

used throughout the FEDS processes, may have

to be changed during long-term operations.

They are categorized as follows: integration,

conversion, and physical constants; station

positions (minimum of 3 stations) and observa-

tion modeling constants; geopotential model

constants; atmospheric drag model constants;

and timing coefficients.

Estimation control parameters. This set of

parameters (e.g., maximum iterations, observa-

tion weights, convergence criteria) provides

control in estimating the spacecraft state.

It will be uplinked at the first estimation

process and then later at the user's discre-

tion.

• FEDS will accept Doppler observations from the com-

munications link with the transponder consisting of

a 40-bit serial word which is time tagged.

E-5

9808

vM

r^^

3

., Mj ..._...

3

s

9808

FEDS will recognize the following control commands

from ADEPT:

-	 REBOOT: Reboot FEDS.

-	 ABORT: Abort FEDS processing; output activity

loq.

-	 STOP: Terminate FEDS processing in a normal

manner; do not accept more data.

-	 START: Start FEDS processing; accept all

data. (This is a reply to commands STOP and

ABORT.)

-	 SUSPEND: Suspend computational processes;

continue accepting data.

-	 CONTINUE: Resume computations. (This is a

reply to command SUSPEND.)

-	 MARK TIME: Suspend all processing to allow

shutdown of ground support system.

-	 RESUME PROCESSING: P.esume all processing:

(This is a reply to command MARK TIME.)

-	 BEGIN FAST TIMING: Begin fast-timing mode

(i.e., compress out all idle time)

-	 STOP FAST TIMING: Terminate fast-timinq mode;

(i.e..., resume processing in real time).

-	 STATUS REQUEST: Output: activity log.

SET CLOCK: Set system clock to new time.

FEDS will accept the following control flaqs fr

the communications link with the transponder:

Stop Doppler compensation indicating that

receiver carrier is locked onto the TDRS s

nal.

E-6

Doppler data available flag indicatinq the

Doppler measurement has been taken and is

available for FEDS processing.

E.1.3 OUTPUT REQUIREMENTS

The FEDS output requirements are as follows:

•	 FEDS will periodically output an activity log con-

taininq a history of all activities it has per-

formed.

•	 FEDS will output priority messaqes to request spe-

cial ground support such as error handling, fast-

timinq, and so forth.

•	 FEDS will output tables of predicted state vectors

for direct downlink to ADEPT.

•	 FEDS will output predicted one-way Doppler fre-

quency shift on a scheduled basis to the tanspon-

der via the communication link for receiver

acquisition.

•	 FEDS will output predicted one-way Doppler fre-

quency shift on a scheduled basis for direct down-

link to ADEPT.

•	 FEDS will output the following reports `rom the

estimator:

Differential correction (DC) residuals re-

port. This report contains information about

each individual observation (e.g., tracking

confiquration, observation residual, editing).

DC summary and statistics report. This report

coatains DC summary information (e.g., state

update, new state, standard deviations of

state parameters) and DC statistics (e.g.,

E-7

9808

current coot-mean-square (rms), previous rms,

batch editing statistics).

E.2 SYSTEM PERFORMANCE REQUIREMENTS AND LIMITATIONS

This section specifies those requirements that deal with

system performance and the limitations associated with it.

Section E.2.1 presents the system performance requirements

that define the schedules on which specifjc requirements

must be satisfied. Section E.2.2 presents the hardware and

software requirements and the limitations that will affect

FEDS performance.

E.2.1 SYSTEM PERFORMANCE REQUIREMENTS

The system performance requirements for FEDS are as follows:

•	 FEDS will capture all incoming messages upon demand.

•

	

	 FEDS will service each control command immediately

after reception.

•	 FEDS will maintain an activity log and output

(downlink) it on a scheduled basis or when re-

quested by a control command.

•	 FEDS will output a table of predicted user space-

craft state vectors over a specified time interval

at a specified frequency. For example, if the time

interval is 1/2 hour and the frequency is 1 minute,

the state vector predict tables will be generated

as follows:

9808

Each time a new solution is reached or a new

a priori state vector (initialization table)

is received, a table containing state vectors

at 1-minute intervals starting at the current

time (t n) and ending 1 hour later (t n + 1)

will be generated and output.

E -8

r"

Then, 1/2 hour later (tn + 1/2), the next

table will be generated and output. This

table will contain state vectors at 1-minute

intervals over the next 1/2 hour. The start

time of this table will be the end time of the

previous table (tn + 1) and the end time

will be 1/2 hour after that (t n + 1-1/2).

The second step will be repeated until a new

solution is reached or a new a priori state

vector is received, which causes the process

to beqin again with the first step.

•	 FEDS will output one-way Doppler frequency shift no

later than 1 minute before the start time of the

current tracking interval. The actual amount of

lead time will be specified by ground control.

•	 FEDS will complete data preprocessing and estima-

tion on each batch of data by the time the next

pass of Doppler data is received. Since observa-

tions data will be received every revolution under

normal circumstances, this processing time will be

limited to the length of one revolution of the user

spacecraft (nominally, 100 minutes).

•	 FEDS will be capable of performing batch estimation

over a user-specified minimum data span that will

never be larger than 24 hours. In addition, FEDS

must be capable of handling a maximum of 125 obser-

vations in each batch of data.

•	 FEDS will be capable of qenerating two types of

reports during each DC slide:

-	 The DC residuals report, if generated, will be

F	 .`
generated either after the last inner edit

E-9

9808

I +j

loop of each iteration or after the last iter-

ation on each batch of data.

The DC summary and statistics report, if qen-

erated, will be generated either after each DC

iteration or after the last iteration of each

DC slide.

E.2.2 HARDWARE AND SOFTWARE REQUIREMENTS AND LIMITATIONS

The FEDS hardware and software requirements and the limita-

tions associated with them are as follows:

•	 The development computer wi21 be the Systems Tech-

nology Laboratory (STL) PDP-11/70 under the RSX-llM

operating system.

•	 The target computer will be a PDP-11/23 under the

RSX-11S operating system. It will have 256K bytes

of random access memory (RAM). The only peripheral)

available will be a ground terminal to monitor FEDS

status during testing.

•	 All necessary system software (i.e., the -_i:-vice

handlers) in both tho development and target com-

puters will be available.

•	 Since there will be no data storage peripherals in

the target system, all data mast be managed in

RAM. In addition, overlaying of tasks is impos-

sible.

•	 A communications link with the transponder will

provide time-tagged Doppler measurements and con-

trol Doppler compensation, indicate when a measure-

ment is available, and control the Doppler

accumulator.

E-10

V.f
9808

i
s

i	 `I

E.3 FUNCTIONAL REQUIREMENTS DEFINITION

This section specifies the FEDS functional requirements,

i.e., the functions that the system must perform to satisfy

the system requirements and the performance requirements.

E.3.1 FUNCTIONAL REQUIREMENTS

The FEDS functional requirements specified in this section

are presented according to functional areas, as follows:

•	 System control (Section E.3.1.1)

•	 Input processing (Section E.3.1.2)

•	 Data preprocessing (Section E.3.1.3)

•	 Data management (Section E.3.1.4)

•	 Estimation (Section E.3.1.5)

•	 One-way Doppler prediction (section E.3.1.6)

•	 Output processing (Section E.3.1.7)

These functional requirements are the most detailed require-

ments presented. No attempt is made to define computational

models or algorithms here, except where the requirements are

specifically affected,

The functional requirements specified in $Octiohs E.3.1.1

through E.3.1.7 are numbered for convenience. In the num-
	

I
bering system used, R indicates requirements.

E.3.1.1 System Control Functional Requirements

The functional requirements for system control are as tol-

lows:

R1.1

	

	 FEDS will maintain an activity log containing the

following: system events, information messages,

error messages, directives, and control conatrtds.

R1.2	 FEDS will service each control command immediately

Upon reception.

R1.3	 FEDS will schedule maneuver recovery accordin q to

clock time and the maneuver schedule.

E-11

9808	
pp

t+j

	R1.4	 FEDS maneuver recovery will consist of the follow-

inq:

R1t4.1	 TDRS maneuver. The predicted state after

the maneuver will be given to the data

Preprocessor to be used for f_:iture gener-

ation of the TDRS orbit file.

R1.4.2	 User spacecraft maneuver. ThP TDRS orbit

files and the observations file will be

purged. The startup procedure will be

performed; estimation will be resumed

only when a complete estimation span of

data has been received.

	

R1.5	 FEDS will schedule one-way Doppler prediction a

user-specified number of minutes before the start

time of each tracking interval in the tracking

schedule.

	

R1.6	 FEDS will schedule the output of data and messages.

R1.6.1 FEDS will schedule the output of severe

errors from which the system cannot re-

cover.

R1.6.2	 FEDS will schedule the output of priority

messages.

R1.6.3	 FEDS will schedule the output of the ac-

tivity log at a specified interval.

R1.6.4	 FEDS will sch-dole the output of the ac-

t?vity log when specifically requested

through a control command.

R1.6.5	 FEDS will schedule the output of the pre-

dicted Doppler frequency shift at least

minute before the time tag of the first

observation.

k

f

E-12

9808
	 D

t
R1.7 FEDS will schedule the generation and output of the

state vector :,.edict table at the end of the speci-

fied interval air„er the last time of output.

	

R1.8	 FEDS will schedule the qeneration and output of the

state vector predict table immediately after a new

solution is obtained.

	

R1.9	 FEDS will schedule input processing when the input

queue is full or when the input queue contains data

and the system is otherwise idle.

	

R1.10	 FEDS will schedule data preprocessing when a com-

plete pass of data has been processed through input

and estimation on the previous batch has been com-

pleted.

	

R1.11	 FEDS will schedule data preprocessing when a TDRS

maneuver occurs or when a new TDRS vector has been

received.

	

R1.12	 FEDS will schedule estimation when a new pass of

data has been added to the observations data set.

	

81.13	 FEDS will notify ground control when it has an ex-

cessive amount of idle time for fast timing.

E.3.1.2 Input Processing Functional Requirements

The functional requirements for input processing are as fol-

lows:

	

R2.1	 FEDS will capture all incoming messages upon demand.

	

R2.2	 FEDS will accept, as input, messages containing

data and control commands.

	

R2.3	 FEDS will process the following types of input

data: Doppler measurements, transponder control

flags, new TDRS vecturs, maneuver schedule, track-
	 .'

ing schedule, initialization table, estima°:%ion con-

trol parameters, and constants (i.e., miscellaneous

E-13

LV

9808

r

,!.

constants, station constants, qeopotential tables,

atmospheric density tables, and timing coeffi-

cients)

	

R2.4	 FEDS will accept the fvllowinq control commands:

REBOOT, ABORT, STOP, START, SUSPEND, CONTINUE,

STATUS REQUEST, SET CLOCK, MARK TIME, RESUME

PROCESSING, BEGIN FAST TIMING, and STOP FAST TIMING.

	

R2.5	 Deleted.

E.3.1.3 Data Preprocessing Functional Requirements

The functional requirements for data preprocessing are as

follows:

	

R3.1	 FEDS will accept only those Doppler observation

measurements that are in ascending time order and

have a reasonable value.

	

R3.2	 FEDS will convert the Doppler observation measure-

ments and time tag to the correct: engineering units.

	

R3.3	 No smoothing of the raw observation data will be•

Performed.

	

R3.4	 FEDS will preqenerate TDRS orbit files from the

uplinked TDRS vectors (one file for each TDRS.

These files will cover the same timespan as the

observations file; they will be used iteratively by

the batch estimator.

	

R3.5	 FEDS will update the TDRS orbit files when a new

TDRS vector is received.

R3.6 After a TDRS maneuver, FEDS will use the predicted

state vector as the base vector for generating the

TDRS orbit files in the future.

R3.7

9808

After receiving an update to a TDRS maneuver, FEDS

will update the appropriate TDRS orbit file frc

E-14

E-15

9808

i

_LN

the maneuver time to the current processing time by

propagating the input TDRS vector.

E.3.1.4 Data Management Functional Requirements

The functional requirements for data management are as fol-

lows:

	

R4.1	 FEDS will manage all data files in memory, since no

data storage peripherals will be'provided.

	

R4.2	 FEDS will have the capability to locate, read, and

write observation records in the observations file.

	

R4.3	 FEDS will have the capability to locate, read,

write, and update the records of the TDRS orbit

files.

	

R4.4	 FEDS will have the capability to purge all data

files.

E.3.1.5 Estimation Functional Requirements

The functional requirements for estimation are as follows:

	

R5.1	 FEDS will perform differential correction on the

most recent fixed-length minimum data span (speci-

fied through control parameters) of observation

data. The observations data used will be whole

passes except when data wraparound occurs.

	

R5.2	 The method of estimation will be batch least-

squares.

	

R5.3	 Due to the real-time processing of FEDS, the esti-

mation timespan will be slid forward to encompass

each new pass of observations data. This will be

referred to as a "sliding batch estimator."

	

R5.4	 During initialization of the estimation process

(defined as operations included in estimation using

(fir

a particular batch of data), the following will be

performed:

R5.4.1

	

	 FEDS will initialize the estimation pa-

rameters from the initialization table

and/or the estimation control parameters

if either was received since the begin-

ning of the previous estimation process.

R5.4.2	 FEDS will set up the new estimation span.

	

R5.5	 Initialization of the estimation parameters will be

performed after estimation has been suspended

through a control command.

	

R5.6	 FEDS will model one-way TDRSS Doppler observations.

R5.6.1	 Deleted.

R5.6.2	 Unless directed otherwise, the measure-

ment partials will be computed only on	 =)

the first iteration. The linearity test

described in R5.8.3 will determine

whether or not recomputation is necessary.

	

R5.7	 FEDS will perform an edit loop during the first

(or, on demand, subsequent) iteration of each DC

slide based on the predicted residuals and estima-

tion statistics (specified through control parame-

ters) .

85.7.1

	

	 The computed measurements and associated

partials will remain unchanged during

this process.

R5.7.2

	

	 The edit loop will terminate upon either

the maximum number of loops this itera-

tion (maximum = 10) or no observations

were edited during the predicted residual

versus sigma test (input parameter).

E-16
s
F	 9808

	R5.8	 FEDS will test for DC slide convergence, diver-

gence, and linearity violation at the end of each

iteration.

85.8.1	 FEDS will declare a new state solution at

the point of convergence. Convergence is

defined in Reference 5, "FEDS Estimation

Logic," memorandum Sections II.A.11(a)

and II.A.12(a).

R5.8.2	 FEDS will remain in the propagate mode if

divergence occurs. Divergence is defined

in Reference 5, Sections II.A.11(b) and

II.A.12(a).

R5.8.3'	 FEDS will perform another iteration if

neither convergence nor divergence has

occurred. The linearity test defined in

Reference 5, Section II.A.12(b) will be

performed to determine whether recomputa-

tion of partial derivatives and another

edit loop will be done on the next itera-

tion.

R5.8.4	 FEDS will declare the current iteration

as the last iteration of this DC slide if

either convergence or divergence occurs.

	

R5.9	 FEDS will be capable of generating a DC summary and

statistics report. This report, if generated, will

be generated and output either (1) after every it-

eration or (2) after the last iteration on each

batch.

R5.10 FEDS will be capable of geeterati.ng a DC residuals

report. If generated, this report will be output

either after the first and last edit loops of each

E-17

9808

F
S

E-18

08

iteration or after the last iteration of each DC

slide.

R5.11	 if time allows, FEDS will precompute values needed

for the next DC slide prior to the actual receipt

of the next data pass. This will be done for all

slides except the initial slide.

85.11.1	 The new epoch will be predetermined as

the current epoch plus a fixed lead time

(input parameter).

R5.11.2	 Measurement residuals and partial deriva-

tives will be computed over all observa-

tions in the previous slide.

E.3.1.6 One-Way Doppler Prediction Functional Requirements

The functional requirements for one-way Doppler prediction

are as follows:	 y

R6.1	 FEDS will predict (simulate) one-way Doppler fre-

quency shift over the timespans indicated by the

uplinked tracking schedule.

R6.2	 FEDS will use the TDRS, whose ID will be specified

with each trackinq interval, to predict the one-way

Doppler frequency shift.

R6.3 No observation feasibility checking will be per-

formed, since the tracking schedule will contain

valid intervals for the specified TDRS.

R6.4	 The target (user spacecraft) state vector used in

.one-way Doppler prediction will be based on the

most recent state solution. When a user spacecraft

maneuver has occurred or a new initialization table

has been received, the most recent solution will be

overridden by the new a priori estimate.	 ^^
ti

N

to flW V ,

I

	R6.5	 The TDRS state vector used in one-way Doppler pre-

diction will be based on the TDRS vector used to

generate the TDRS orbit file.

E.3.1.7 Output Processing Functional Requirements

The functional requirements for output processing are as

follows:

	

R7.1	 FEDS will generate and output the state vector pre-

dict table= This table will be based on the most

recent state solution. when a user spacecraft ma-

neuver has occurred or a new initialization table

has been received, the most recent solution will be

overridden by the new a priori state vector.

	

R7.2	 FEDS will output priority messages directly to the

gzormd control (ADEPT).

r	
R7.3	 FEDS will output the activity log to ADEPT.

R7.4 FEDS vA ll output the predicted Doppler shift to the

communications link with the transponder at a spec-

ified interval.

	

R7.5	 FEDS will output to ADEPT the DC residuals reports

as they are generated by the estimator.

	

R7.6	 FEDS will output . to ADEPT the DC summary and sta-

tistics reports as they are generated by the esti-

mator.

	

R7.7	 FEDS will output a table of the predicted Doppler

data for each tracking interval to ADEPT.

E-19

9808

?i

r.	
REFERENCES

1. Computer Sciences Corporation, Requirements Analysis for
Automated Orbit Determination System (ADDS) System Modi-
fication to Support the Ground Demonstration (memoran-
dum), M. Regardie and D. Shank, November 1983

2. --, CSC/TM-84/6083, Flight Experiment Demonstration Sys-

y
i^
r-j

I
:r

tem (FEDS) Mathematical_ Specification, D. ShanK, July
Tgrr-

3. --, CSC/SD-82/6068, Automated Orbit Determination Sys
(AODS) Environment Simulator for Prototype Testing
(ADEPT) User's Guide, S. Waligora, J. Fry, Jr., and
Y. Ong, June 1982

4. --, CSC/SD-82-6054, Automated Orbit Determination Sys
(AODS) Environment Simulator for Prototype_ Testing
(ADEPT) System Description, S. Waligora, J. Fry, Jr.,
Y. Ong, B, Prusewicz, and G. Klitch, June 1982

5. National Aeronautic and Space Administration, Goddard
Space Flight Center, Recommended Estimation Logic for
AODS (memorandum), J. Teles, January 1981 (also pub-
lished as Appendix E of Systems Technology Laboratory
(STL) document STL-80-003)

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf
	0001G14.pdf
	0002A01.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002C13.pdf
	0002C14.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf
	0002D07.pdf
	0002D08.pdf
	0002D09.pdf
	0002D10.pdf
	0002D11.pdf
	0002D12.pdf
	0002D13.pdf
	0002D14.pdf
	0002E01.pdf
	0002E02.pdf
	0002E03.pdf
	0002E04.pdf
	0002E05.pdf
	0002E06.pdf
	0002E07.pdf
	0002E08.pdf
	0002E09.pdf
	0002E10.pdf
	0002E11.pdf
	0002E12.pdf
	0002E13.pdf
	0002E14.pdf
	0002F01.pdf
	0002F02.pdf
	0002F03.pdf
	0002F04.pdf
	0002F05.pdf
	0002F06.pdf
	0002F07.pdf
	0002F08.pdf
	0002F09.pdf
	0002F10.pdf
	0002F11.pdf
	0002F12.pdf
	0002F13.pdf
	0002F14.pdf
	0002G01.pdf
	0002G02.pdf
	0002G03.pdf
	0002G04.pdf
	0002G05.pdf
	0002G06.pdf
	0002G07.pdf
	0002G08.pdf
	0002G09.pdf
	0002G10.pdf
	0002G11.pdf
	0002G12.pdf
	0002G13.pdf
	0002G14.pdf
	0003A01.pdf
	0003A02.pdf
	0003A03.pdf
	0003A04.pdf
	0003A05.pdf
	0003A06.pdf
	0003A07.pdf
	0003A08.pdf
	0003A09.pdf
	0003A10.pdf
	0003A11.pdf
	0003A12.pdf
	0003A13.pdf
	0003A14.pdf
	0003B01.pdf
	0003B02.pdf
	0003B03.pdf
	0003B04.pdf
	0003B05.pdf
	0003B06.pdf
	0003B07.pdf
	0003B08.pdf
	0003B09.pdf
	0003B10.pdf
	0003B11.pdf
	0003B12.pdf
	0003B13.pdf
	0003B14.pdf
	0003C01.pdf
	0003C02.pdf
	0003C03.pdf
	0003C04.pdf
	0003C05.pdf
	0003C06.pdf
	0003C07.pdf
	0003C08.pdf
	0003C09.pdf
	0003C10.pdf
	0003C11.pdf
	0003C12.pdf
	0003C13.pdf
	0003C14.pdf
	0003D01.pdf
	0003D02.pdf
	0003D03.pdf
	0003D04.pdf
	0003D05.pdf
	0003D06.pdf
	0003D07.pdf
	0003D08.pdf
	0003D09.pdf
	0003D10.pdf
	0003D11.pdf
	0003D12.pdf
	0003D13.pdf
	0003D14.pdf
	0003E01.pdf
	0003E02.pdf
	0003E03.pdf
	0003E04.pdf
	0003E05.pdf
	0003E06.pdf
	0003E07.pdf
	0003E08.pdf
	0003E09.pdf
	0003E10.pdf
	0003E11.pdf
	0003E12.pdf
	0003E13.pdf
	0003E14.pdf
	0003F01.pdf
	0003F02.pdf
	0003F03.pdf
	0003F04.pdf
	0003F05.pdf
	0003F06.pdf
	0003F07.pdf
	0003F08.pdf
	0003F09.pdf
	0003F10.pdf

