
EFFECTS OF BEARING DEADBANDS ON BEARING LOADS 
AND ROTOR STABILITY 

John R. G l  aese and Angel i a  P. Bukl ey 
Control Dynamics Company 

Huntsv i l l  e, A1 abama 35805 

In t roduc t ion  

The problem o f  determining bearing loads and 
s t a b i l  i t y  propert ies of r o ta t i ng  machines such as the 
turbopumps used i n  high performance rocket  engines 
1 i k e  the Space Shutt le Main Engine (SSME) i s  complex. 
Very high speeds are at ta ined w i th  s i gn i f i can t  f l u i d  
flows. As a consequence, bearing loads are poten- 
t i a l l y  h igh w i th  subsynchronous wh i r l i ng  l i k e l y .  
Typical ly ,  models used t o  analyze such systems are 
very complicated and nearly impossible t o  use f o r  
gaining i ns i gh t  i n t o  the basic phenomena involved, 
Linear model s containing large numbers o f  degrees o f  
freedom have been developed and appl ied t o  the analy- 
s i s  w i th  mixed success. A s i g n i f i c a n t  nonl i n e a r i t y  
i s  ignored by these models. The bearings t y p i c a l l y  
have clearances o f  the order o f  .0005"-.0025". Since 
these machines are balanced to very high precision, 
the eccen t r i c i t y  of the ro tor ,  i.e. the distance be- 
tween the r o t o r  center o f  mass and i t s  geometric axis 
i s  o f  the same order o r  smaller i n  magnitude. Thus, 
bearing clearances o r  deadbands as they are more typ- 
i c a l l y  cal led, s i g n i f i c a n t l y  a f f e c t  the dynamics of' 
these systems and must be taken i n t o  account. Taking 
t h i s  non l inear i t y  i n t o  account makes the analysis o f  
the dynamics much more d i f f i c u l t .  It i s  very de- 
s i r ab l  e to have a simp1 i f i e d  model o f  a turbopump 
which re ta ins  the s i g n i f i c a n t  d r i v i ng  forces known to 
be present but  read i l y  lends i t s e l f  t o  analysis. 
Such a model i s  ava i lab le  and i s  usual ly  re fer red t o  
as the Je f f co t t  model. We have modif ied t h i s  model 
by adding deadband e f fec ts  along w i th  f l u i d  seal 
forces as cu r ren t l y  understood. Further, we have 
rewr i t ten  the equations o f  motion f o r  the model i n  



pol ar coordinates. Thi  s formul ation is more natural l y  
suited to the symmetry of the problem because the 
whirl orbi ts  tend to  be circular.  

I n  addition to  seal forces and deadbands, we 
have added a constant side force to the model to 
account for the 1 i kely m i  sal ignments between bearings 
and seals and also to account for hydrodynamic forces 
resul L i n g  from pumping f luids  which may not be per- 
fect ly  balanced due to s l ight  imperfections i n  the 
internal geometry of the pump. The side force and 
deadband effects,  working together, significantly 
a f fec t  the s t ab i l i t y  properties of the system i n  an 
interesting way. Stabil i ty  may be enhanced under 
proper combinations b u t  is only local s t ab i l i t y  in 
tha t  i t  i s  possible to drive the system into insta- 
b i l i t y  by impulsive disturbances or large rotor 
imbal ances. 

The Jef fcot t  rotor is closer t o  real i ty  than i t  
may appear to the casual observer. Periodic synchro- 
nous or nonsynchronous orbiting motions of the rotor, 
referred to as whirls, are normally the motions of 
the system exhibited. Such an orbital motion can be 
described by a planar model. Thus ,  values for the 
effect ive mass, s t i f fness ,  deadband and seal coef- 
f i c i en t s  can be found which will approximate the 
behavior of the more complex models. While exact 
frequencies of c r i t ica l  speeds and stabil  i t y  boun- 
daries cannot be inferred from Jef fcot t  models, very 
good qualitative behavior can be investigated w i t h  
these models and refined by higher f ide l i ty  hybrid 
simulations. For this reason, we consider the 
augmented Jef fcot t  model as the model of choice for 
devel oping an understanding of rotor whirl 
phenomena. 

Force Models & System Equations of Motion 

The assumed geometry for the derivation of the 
equations of motion of the simple rotor model i s  
depicted i n  Figure 1. The vector r is the displace- 
ment of the rotor center from its-equilibrium posi- 
t ion (rotor  a t  rest) .  The angle 4 is the angle made 
by r w i t h  the horizontal axis and i s  referred to as - 



Figure 1. Assuaed rotor geometry. 

Ftgure 2. Vector force dtagram, 



the a i r 1  angle. The rotor eccentricity i s  repre- 
sented by the vector E ,  the magnitude of which is 
constant, The shaft  Geed is denoted by w and is 
assumed constant for the analysis. The equations of 
motion are derived i n  polar coordinates. The u n i t  
vectors xr, u , and 3 i n  the figure indicate the 
polar coordin~te  reference frame. 

The forces which must be considered i n  the for- 
mu1 ation of the equations of motion include bear1 ng 
forces, seal forces, imbalance forces, and side 
forces. Figure 2 i s  a vector force diagram which in -  
dicates the direction i n  which each of the various 
forces acts. The turbopump rotors are maintained i n  
position by bearing forces. These bearing forces are 
generated by a rather cmpl ex interaction involving 
bending forces of the rotor shaft ,  the deformation of 
the bearing bal ls  or rol lers ,  the motion and defor- 
mation of the bearing races, the bearing retainers, 
the bearing carr iers ,  etc. For our purposes, we as- 
sume that the bearing acts as a l inear spring. Wow- 
ever, clearances between bearing races and car r ie rs  
o r  shafts a l l  ow some small region of free motion of 
the rotor shaft re lat ive t o  its housing. For sim- 
p l  i c i ty ,  we ideal ize the bearing bal ls  or ro l le rs  as 
a uniform annular ring separating the rotor shaft  and 
housing. The bearing force curve is idealized for 
the analysis as 

where K is  the bearing s t i f fness  and g is the dead- 
band. ?! f the magnitude of r is l ess than g,  then the 
bearing forces are  assumed To be zero. 

The fluid being pumped reacts upon the rotor 
wa ' th  forces tha t  are dependent upon rotor position 
and velocity and can be represented by l inear  models 
fo r  small displ acements.1 The seals prevent the h i g h  
pressure f l u i d  from leaking away and a1 so generate 
forces on the rotor which can be modeled l inearly.  
The assumed form representing these forces is given 
by 



where Ks i s  the seal s t i f fness,  Cs i s  the seal damp- 
i n g  coef f ic ient ,  QS i s  the cross coupling s t i f fness,  
and C i s  the cross coupling damping. These forces 
have t % e potent ia l  to dr i ve  whi r l  i ns tab i l  i ty. 

The force due to the mass eccen t r i c i t y  i s  a 
ro ta t i ng  force whose magnitude var ies as the square 
o f  the ro to r  speed and i s  d i rected toward the r o t o r  
center o f  mass. This force i s  po ten t i a l l y  destruc- 
t i v e  and must be minimized by s t r ingent  balancing o f  
the turbopump rotors. The form o f  t h i s  force i s  

w i t h  m representing the mass o f  the rotor.  The 
values o f  the parameters i n  the equations above are 
chosen such t ha t  the system model i s  representative 
o f  the SSME high-pressure oxygen turbopump. These 
values are: KB = 106 l bs l i n ;  KS = 2.0 x 105 l bs l i n ;  
CS = 200 lbs-sec/in; C = 40 1 bs-sec/in; QS = Csd2 
1 bs/in; and m = 0.2042% lbs-sec2/in. F ive deadband 
values are considered and are 0.5, 1.0, 1.5, 2.0, and 
2.5 m i l  s. Two val ues o f  r o t o r  eccen t r i c i t y  are a1 so 
used, they are 0.1 and 0.2 mils. Side force values 
range from 600 t o  1200 pounds i n  the invest igat ion.  

The force equation f o r  the system may be wr i t t en  as 

w i th  the summation representing the forces due to the 
seals, bearings, and the side force. The vector 
equation f o r  the system is, therefore 

mi: - = -Kg (2 -gzr) -KS - r - C S i  + 

Performing the vector cross products and der ivat ives 
indicated i n  equation 5 above, the fol lowing second 



order differential  equations which describe the 
system are obtaf ned. 
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L i m i t  Cycl e Analysis 

Analysis of the system is more readily carried 
out when the equations of motion are cas t  i n  s t a t e  
variable fom. 

Le L 

PI = r p2 = i ~3 = 4 ~4 = i (8 1 

Then 



Qs Cs CQ P2 Fs b4 = - - -  p 4 + -  - -  s i n  p3 

L 
W E 

+ - sin (wt-p3) - 2 p2p4 

I n  'tlPis fom,  the system i s  amenable t o  so lu t ion by 
numerical methods. Three d i f f e r e n t  types o f  o r b i t s  
are observed h e n  the system o f  equation i s  solved 
f o r  d i f f e r e n t  values o f  deadband, side force, and 
r o t o r  eccent r ic i ty .  These are re fer red to as A-type* 
B-type, and C-type motion.* X l l  us t ra t ions o f  the 
three are shown i n  Figures 3 through 5. A-type 
motion i s  per iodic and does not  enc i rc le  the o r ig in ,  
B-type motion i s  nonperiodic and somewhat random i n  
nature. C-type i s  per iodic and does surround the 
o r ig in .  The A-type and C-type motions are l i m i t  
cycl  es. 

To characterize the 1 i m i t  cycle motions present 
i n  the ro to r  system, an a1 gorithm has been developed 
which w i l l  converge to a set  o f  i n i t i a l  condit ions 
f o r  the four system states which, when input  i n t o  a 
simul a t ion  o f  t h i s  system, w i l l  cause the system t o  
immediately exh ib i t  the 1 i m i t  cycle behavior. The 
algori thm i s  based on the f a c t  t h a t  the funct ion f o r  
which the l i m i t  cycle i n i t i a l  condit ions are sought 
i s  periodic. That i s ,  the o r b i t  comes back around t o  
the same po in t  once each cycle. The idea i s  t o  
determine tha t  such a po in t  ex is ts  and the values o f  
the system states which sa t i s f y  t h i s  condit ion. 

Given the s ta te  equations which describe the 
system, a so lu t ion t o  the states may be obtained 
through integrat ion.  The mathematical statement of 
the problem i s :  

the so lu t ion t o  which i s  



Figure 3.  A-type r o t o r  motion. 
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gure 4. B-type r o t o r  motion. 
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Figure 5. C - t ~ e  ro to r  motion. 



where po i s  some initial state. I t  i s  desired t o  
determfie the lo such that 

p ( t )  = po for t = T - - (151 

2 71. 

where T = - J (16)  
U 

the period of the function. In other words, we wish 
t o  determine lo so that the integral i n  Equation 14 
i s zero. The problem may be restated as 

I f  - g ( 2 )  can be driven t o  zero, then - p(T)  = 10 . 
The function - g(e) may be approximated to 1st  order by 

where ~p i s  some incremental change in the state vec- 
tor p. - This i s  the quantity to be determined. I t  
will-be added to the original state vector. Because 
we wish  %(p) - to  be zero, Equation 17 is rewritten as 

where 

Ap = p - 1 0  (20)  

and J i s  the Jacobian of g ( 2 ) .  The solution for ~p - - - - 
i s  



A new s e t  o f  i n i t i a l  s ta tes  i s  formed as 

= Poold + A 1  * lonew - (22) 

For o r b i t s  which are C-type, another mod i f i ca t i on  t o  
t h e  a lgor i thm i s  required. Because the wh i r l  angle, 

i s  no t  per iod ic  bu t  increasing w i t h  time, t h i s  
method l e f t  unmodified w i l l  not  converge t o  a sol u- 
t i o n .  To fo rce  (p t o  appear t o  be per iodic,  the  value 
2n i s  subtracted from the + component o f  the s ta te  
vec tor  value a t  t ime t = T. Th is  procedure w i l l ,  i n  
f ac t ,  a l low the  a lgor i thm t o  converge t o  a s o l u t i o n  
t o  the C-type o r b i t  i n i t i a l  condi t ions.  

The p l o t  o f  the 1 i m i t  cyc le  shown i n  Figure 3 i s  
obtained using the i n i t i a l  cond i t ions  obtained w i th  
t h e  a lgor i thm described above. F igure  6 i s  a p l o t  o f  
t h a t  same 1 i m i t  cyc le  i nc lud ing  the t rans ien ts  t h a t  
occur when a s imula t ion  o f  the system i s  executed 
w i t h  the i n i t i a l  cond i t ions  s e t  a t  zero. Likewise, 
t h e  p l o t  i n  F igure 5 i s  obtained using l i m i t  cyc le  
i n i t i  a1 cond i t ions  obtained w i t h  t h e  a1 g o r i  thm. 
F igure  7 i s  a p l o t  o f  the same o r b i t  obtained from 
zero i n i  ti a1 condi t ions.  

S tab i l  i t y  Analys is  

The approach taken i n  the determinat ion o f  system 
s t a b i l i t y  i s  t o  examine the equations o f  motion, 
o m i t t i n g  the imbal ance fo rce  terms. Thi  s  procedure 
g r e a t l y  simp1 i f i e s  the  analysis. Our studies i n d i -  
ca te  t h a t  s ide forces and deadbands are i n f l u e n t i a l  
on l o c a l  s t a b i l i t y .  Under the in f luence o f  a s ide 
force, the r o t o r  s h i f t s  t o  a p o s i t i o n  o f  equ i l i b r i um 
when no imbalance i s  present. The add i t i on  o f  an 
imbalance, i n  general, causes the  r o t o r  t o  wh i r l  
about the equ i l i b r i um point .  The p o s i t i o n  o f  the 
equ i l i b r i um p o i n t  i s  dependent upon the magnitude o f  
t h e  s ide force, the deadband, and the s t i f f n e s s  coef- 
f i c i e n t s .  The p o s i t i o n  o f  the equ i l  ibrium, w i t h  
respect  t o  the deadband, determines the type o f  o r b i t  
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Figure 7. C-type motion wi th  transients. 



i n  h i c h  the r o t o r  w i l l  wh i r l .  Generally, i f  the 
equi l ib r ium po in t  i s  outside the deadband, the ro to r  
exh ib i t s  A-type motion wi th  C-type motion resul t i n g  
i f  the equi l  ibr ium po in t  i s  i ns ide  the deadband. 

The two parameters def in ing the equi l  ibr ium po in t  
are r0, the magnitude o f  the displacement o f  the 
r o b r  center from the r e s t  posi t ion,  and $0, the 
angle made by r0  w i th  the hor izontal  axis. If the 
r o t o r  i s  i n  equi l lbr ium, then the forces i n  the 
rad ia l  and transverse d i rec t ions  must both sum to 
zero. Because they have been balanced by the slde 
force, force terms a r i s i ng  due to the spin o f  the 
sha f t  have no inf luence on the equ i l ib r ium point.  
The two equations defining the equ i l ib r ium po in t  are, 
therefore, 

Kg ( r o  - g l  + Ks ro = Fs cos 40 (23) 

Q~ ro = Fs s i n  (24) 

where ts i s  used t o  denote side force magnitude. I f  
we deflne Fr t o  be the side force i n  the rad ia l  
d i r ec t i on  and Fq! t o  be the side force i n  the 
tangential directilon, then the f o l  l owing expression 
i s true. 

Using equations 23 and 24 w i th  equation 25 makes 
possib le the so lu t ion f o r  ro which i s  

Note t ha t  A e n  there i s  no deadband, any value o f  
s ide force w i l l  r e s u l t  i n  a pos i t i ve  so lu t ion f o r  r . 
However, i n  the presence o f  a deadband, the magnitu 8 e 
o f  the side force must be s u f f i c i e n t  t o  push the 
r o t o r  out t o  the bearing o r  e l  se the bearing s t i f f -  
ness p l w s  no r o l e  i n  the determination o f  Q. The 
minimum side force required t o  overcome the seal 



s t i f fness  is denoted FSMIN and is defined by the 
expression 

For any value of side force l e s s  than FSMIN, the 
value of rg i s  the positive solution to Equation 26 
w i t h  KR s e t  to zero. For cases i n  which the side 
force is greater than FSMIN and two positive solu- 
t ions resul t ,  then ro is  equal to  the larger of the 
two values because i t  will 1 i e  outside the deadband 
due to the side force being suff ic ient  to move the 
rotor to such a position. The angle +Q is easily 
obtained once the solution for rg i s  determined. 

Wi th  the equilibrium points well i n  hand, we m q y  
now proceed. Recall the vector equation which 
describes the system. I t  is repeated here, w i t h  the 
imbal ance term m i  t ted.  

mF' - = -Kg(r - 9) u ( r  - g) 2r -Ksrer - + Qsa x 

- C s i  + Cm x - + (28) 

We make the foll  owing definit ions for - r and er, 
r = r o + d  - - - (29) 

where ro is the equilibrium position vector, era is 
the unn vector i n  the direction of L~., and d aa?d der 
a re  the perturbations associated w i t h  - r-and 57, 
respectively. The radial component of r w i t h  i t s  
perturbation i s  Equation 30. Another wayto express 
e is -r 



which i s  equivalent to: 

We now examine the nonl inear deadband term i n  
Equation 27. I n  the small and t o  a f i r s t  order 
approximation, 

w i t h  sy and 6,  being the small perturbat ions about 
the  equi l ibr ium. It fol lows, therefore, t h a t  i n  
terms o f  the per turbat ion variables, the system may 
be expressed i n  the fo l lowing form: 

The e f f ec t s  o f  side forces are now inherent  i n  the 
formul at ion. Stab i l  i t y  may be assessed through exam- 
i n a t i o n  o f  equation 35. State assigments f o r  the 
per turbat ion var iab les  are given below. 



Rewrit ing 34 i n  s ta te  var iab le  format y i e l d s  the 
f o l l  owing d i f f e r e n t i  a1 equations. 

The sum 
+ Ks has been replaced by K f o r  sim- 

p l i c i t y ' s  sake. The system matr ix  i s  fomed as 
before from which the charac te r i s t i c  equation i s  
derived by solv ing the determinant o f  [sI - A].  

The s t a b i l i t y  boundaries establ ished are p l o t t ed  i n  
Figure 8. Several i n te res t ing  fac ts  are observed 
when t h i s  f i gu re  i s  examined. The s t a b i l i t y  boundary 
f o r  a deadband o f  zero i s  a constant 4848 radians/ 
second, the dashed curve i n  the f igure.  This i s  the 
same s t a b i l i t y  boundary which ma be establ ished f o r  
the simp1 es t  form o f  the system.$ This frequency 3 s 
considered t o  be the global s t ab i l  i t y  boundary. That 
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is,  the system is globally unstable when run  a t  fre- 
quencies higher than this value. Local s tab i l i ty ,  or 
s t ab i l i t y  i n  the small, may be enhanced by other fac- 
tors .  
Notice that  all  f ive of the non-zero deadband stabi- 
1 i t y  curves are very simil ar  i n  their  general charac- 
t e r .  The maxima appear a t  approximately the same 
s p i ~  frequency as do the i r  minima. We have shown 
tha t  these curves do, indeed, coll apse into a single 
curve Men the system is nondimensional ized. To ac- 
compl i s h  this ,  the units of displacement, force, and 
time are modified i n  such a way tha t  the system 
parmeters become u n i  t l  ess. Di spl acements are ex- 
pressed i n  units of g, the deadband. Forces may be 
expressed as the product of the seal s t i f fness  and 
deadband. Time is ex s of the system 
natural frequency is Figure 9 i s  a 
plot  of the s t ab i l i  r the nomalized 
system. W i t h  t h i s  curve and the given conversion 
factors,  one may determine the stabil  i t y  boundary for  
any deadband val ue. 

Beari ng Loads Considerations 

One of the major points of the study is  to deter- 
mine the effects  of the system parameters on bearing 
l oads. If these l oads become too large, the effects  
a re  detrimental. In i t i a l ly ,  we will look into this 
matter using a system w i t h  no side forces present, 
b u t  w i t h  a rotor imbalance. We will then take into 
consideration the added effects  of a side force pre- 
sent i n  the system. 

P l  otted i n  Figure 10 are the bearing loads h i c h  
r e su l t  &en the rotor eccentricity is 0.1 mils. The 
deadband range is from 0.0 to  0.2 mil s.  The general 
behavior is that  the smaller deadband produces the 
l argest bearing load. This makes sense because the 
seal forces must be overcome before there is any 
interaction between the rotor and the bearings. The 
more distance between the rotor and the bearing there 
i s ,  the more effect  the seal forces have. I t  has 
been shown that  i f  the rotor eccentricity i s  doubled, 
the bearing loads also double i f  a l l  other parameters 
a re  l e f t  unchanged.3 
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Bearing load analysis i s  performed f o r  two non- 
zero side force val ues. A value o f  side force i s  
chosen so tha t  it i s  always greater than FSMIN f o r  
any o f  the f i v e  deadbands considered up t o  a f re-  
quency o f  5000 radians per second. Figure 11 i s  a 
p l o t  o f  the bearing loads f o r  the deadbands o f  0.5 t o  
2.5 m i l  s f o r  the side force o f  1350 pounds. The max- 
imum bearing loads occur a t  the system natural f re-  
quency o f  approximately 2424 rad i  ans/second, the 
small es t  deadband producing the 1 argest l oad. The 
load curves are p l o t t ed  only up t o  a shaf t  spin f re-  
quency o f  4000 radians because the system becomes 
unstable f o r  frequencies higher than that. The pres- 
ence o f  the r o t o r  eccen t r i c i t y  o f  0.2 m i l s  i s  respon- 
s i b l e  f o r  the unstable behavior. 

A s im i la r  fami ly o f  curves i s  produced when the 
s ide force i s  increased t o  twice t h a t  o f  the "minimum" 
s ide force, or, 2700 pounds. The p l o t s  o f  these 
bearing loads are given i n  Figure 12. The same gen- 
era l  behavior i s  exh ib i ted as before. I ns tab i l  i t y  
occurs somewhat sooner, a t  3400 radians/second. The 
1 oads are much greater, as we1 1 . 

The curves presented were generated using the 
s imulat ion t o  determine the maximum ro to r  displace- 
ment, a f t e r  steady-state i s  achieved. Having t h i s  
value, i t  i s  a simp1 e matter t o  compute the bearing 
1 oad. Equation 43 i s used. 

BFMAX = KB(WAX - g) (43 

Concl usions 

I n  the previous sections we have discussed the 
modeling and analysis o f  the problem. It i s  now time 
t o  review and summarize our resu l ts .  

1. Observed 3 motion types ca l l ed  A, B, C; 
A - Per iodic but  does not  enclose o r ig in ,  may 

i ncl ude higher harmonics; 
B - Nonperiodic; 
C - Periodic enclosing o r ig in ,  synchronous o r  

nonsynchronous ; 



2 ,  L im i t  Cycle Algorithm developed and employed, 
bo th  A & C types observed. 

3. Deadband does not  a f f e c t  s t ab i l  i ty- in-  the- 
'! argie. 

4. Stab i l i ty -  i n- the- small are a f fec ted ( enhanced) 
by deadband and sideforce. 

5, Bearing loads are la rges t  f o r  C-type motion. 
6. Side force act ing i n  concert w i th  deadband 

e f f ec t s  may e i t he r  increase o r  decrease bearing 
1 oads. 

7. Bearing loads i n  a stable pump are determined 
p r ima r i l y  by r o t o r  imbalance and side forces. 

These resul t s  are qu i te  s i g n i f i c a n t  i n  our under- 
standing o f  the e f fec ts  o f  bearing deadbands. 
Hamonics of snychronous and nonsynchronous osc i l  1 a- 
4;ions have been observed. This i s  c l e a r l y  a nonl in- 
ear e f fec t .  Stable l i m i t  cycle wh i r l s  have been 
observed occurr ing a t  synchronous and nonsynchronous 
rboter speeds i n  our resul ts.  

The 1 i m i t  cyc le  algori thm t h a t  we have developed 
can be general ized t o  more complex turbopump models 
w i t h  more degrees o f  freedom. It w i l l  be useful f o r  
I oads analysis wi th  nonl inear forces f o r  r o t o r  dyna- 
mics and other appl icat ions. It i s  capable o f  con- 
verging t o  per iod ic  motions (so lu t ions)  which 
general l y  resul t i n  the highest 1 oad-producing con- 
d i t ions.  

Since s tab i l i t y - in - the - la rge  i s  u l t ima te ly  deter- 
ma"ned by behavior a t  extremely la rge  amp1 i tudes o f  
motion, deadband e f fec ts  become negl i g i b l  e. Thus, 
l inear model s remain adequate f o r  analysis o f  global 
s t ab i l  i t y  propert ies.  Stab i l  i ty- in- the-smal l  i s  
significantly a1 tered by the nonl inear ef fects o f  
deadbands. We have shown t h a t  sideforces can s igni-  
f i c a n t l y  enhance s tab i l  i t y  provided imbal ance o f f se t s  
and/or impul s ive disturbances do not cause s ign i  fi- 
cant displ  acement from the equi l  ibr ium pos i t i on  o f  
the ro tor ,  

Bearing loads have been shown t o  be s i g n i f i c a n t l y  
modif ied by deadband effects. C r i t i c a l  speeds are 
altered. Loads may increase o r  decrease. The shape 
o f  the c r i t i c a l  response curve i s  a l te red  wi th  higher 
1 oading a t  lower frequencies due t o  the deadband. 



These resu l ts  have been obtained using a r e l a t i -  
ve ly  simp1 e 2 degree-of-freedont model . This may 1 ead 
one to be1 ieve the resu l t s  are  lot appl i cab le  t o  real  
machines. This i s  not  the case, however, and indeed 
one can argue and demonstrate w i th  more sophist icated 
model s t h a t  these ef fec ts  arle real  . Since ro to r  
responses are most o f ten periodic, such motions can 
be described adequately by an e f f e c t i v e  mass 
responding to ef fect ive s t i f fnesses and deadbands, 
i .e., a 2-dimensional model . Thus, our resul t s  are 
a t  l e a s t  qua l i t a t i ve l y  v a l i d  f o r  the descr ip t ion o f  
turbo-pump motlons. 
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