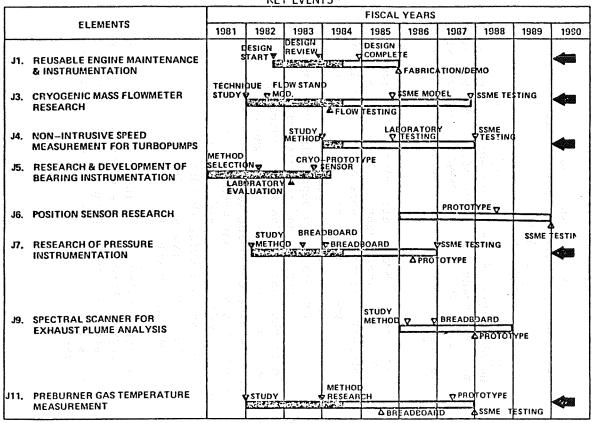
SESSION VIII INSTRUMENTATION TECHNOLOGY OVERVIEW


W. C. Nieberding
Instrumentation Research & Development Branch
NASA/LeRC
Cleveland, Ohio 44135 U. S. A.

The objective of the Instrumentation Technology program is to advance the state of the art of instrumentation associated with the SSME to improve service life and performance by providing increased measurement capability.

There are two broad categories of instrumentation technology being sought in this program. The first category includes sensors and systems destined to be used in and on the operational engine either during operation or between operations. The purpose of these measurements is to supply information necessary for engine control and/or diagnostics throughout the life of the engine. The second category includes measurement systems and techniques whose application will be to engine component test stands and possibly to the test bed engine but probably never to an operational engine. The primary purpose of these measurements is to provide the detailed information necessary to verify computer models of the performance of the various engine subsystems.

The accompanying charts show all of the elements of this program along with the schedules to the extent they are now known. Those elements for which progress is reported herein are denoted by an arrow on the right.

INSTRUMENTATION WORKING GROUP PLAN -KEY EVENTS-

FOR PLANNING PURPOSES ONLY - SUBJECT TO CHANGE WITHOUT NOTICE.

7/1/84

INSTRUMENTATION WORKING GROUP PLAN -KEY EVENTS-

	ELEMENT		FISCAL YEARS									
		1991	1982	1983	1984	. 1985	1986	1987	1988	1989	199	
		İ					١.			1.00		
					l				ti sing	ļ.,		
		i			1		,	DESIGN	EAR	l	l	
J19. DISPL	ACEMENT INSTRUMENT-	j .			1			& TEST	1			
	INVESTIGATION				l		İ			1	l	
						1	FEASIB	LITY		ŀ		
		ı				l	STUDY		FAB		l	
	WITD 160 15 TOPO 15	·					<u> </u>		<u> </u>			
	INTRUSIVE TORQUE R SENSOR TECHNOLOGY					-		Δ			1	
WEIERS	A SENSOR FECHNOLOGY	į .			l	1	1,000	DESIGN		TEST		
		1					FEASIBI STUDY	LITY	FAB	1		
							∇	S. Sarth	700			
	C/DYNAMIC HIGH	1			1			Δ		\Box		
	RATURE PRESSURE					•	1	DESIGN		TEST		
TRANSDUCE	SDUCER	į i					FEASIBI	ITY			l	
		į ·					STUDY		FAB		l	
J22 TRIBO	ELECTRIC MASS				19		<u> </u>		V	i		
	SENSOR				· ·			DESIGN		TEST	ŀ	
							1					
							FEASIB		FAB			
							7		V			
	LECTRON FATIGUE							Δ_		TEST		
TESTE								DESIGN				
					1	and the same						
					DEFIN	TION.	1	CARS		VERIF		
J24. INOBT	RUSIVE DIAGNOSTIC						Ι Δ			T VERIT	ILA	
SYSTE	М	1					LDV					
							SYSTEM					
			-									

601

INSTRUMENTATION WORKING GROUP PLAN -KEY EVENTS-

	FISCAL YEARS									
ELEMENTS	1991	1982	1983	1984	1965	1986	1987	1988	1989	1990
					ENSOR S	TUDY		SENS DEVE	OR LOPMEN	r
J12. THIN FILM SENSORS FOR SPACE PROPULSION TECHNOLOGY			P	ROCURE	AC	IPMENT UISITIO	STEM DE	IVERY		
J13. HEAT FLUX SENSORS CALIBRATOR				E V		Δsyste	м		7	
							OPMENT	ERIFICAT	ION	
J14. OPTICAL FLOW MEASUREMENT							- ∆	4 45 4 4 4		
						ONE D	MENSIO	IAL SYST	EM	
J15. OPTICAL STRAIN MEASUREMENT SYSTEM DEVELOPMENT						WO DIM YSTEM	nsionA		APPLICA	IONS
J16. HIGH TEMPERATURE HEAT FLUX SENSORS					SENSO	R FAB		SENSOR	SOR AVA	ļ
J17. HIGH TEMPERATURE/HIGH STRAIN					GA	E CONCI		R TESTIN	GAGE TE	STING
GAGES						5,00,00	0 120 1 0 1 1 1 1 1			
J18. TRANSIENT GAS TEMPERATURE PROBE			 V-1						DEMONS.	RATI

FOR PLANNING PURPOSES ONLY - SUBJECT TO CHANGE WITHOUT NOTICE

7/1/84