NASA-CR-168,329

NASA Contractor Report 168329

NASA-CR-168329 19850018853

COMPUTER PROGRAM FOR THE CALCULATION OF MULTICOMPONENT CONVECTIVE DIFFUSION DEPOSITION RATES FROM CHEMICALLY FROZEN BOUNDARY LAYER THEORY

Süleyman A. Gökoğlu

Analex Corporation Cleveland, Ohio

and

Bor-Kuan Chen and Daniel E. Rosner

Yale University New Haven, Connecticut

LIBRARY GEPY

LUR 13 1984

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

January 1984

Prepared for

3

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Contract NAS3-23293 and Grant NAG3-201 • 7

.~ ,

.

-

•

÷

. .

-

•

FNTER:D 85N27164 DISPLAY 85N27164/2 CATEGORY 34 RPT#: NASA-CR-168329 PAGE 2781 85N27164*# ISSUE 16 CNT#: NAS3-23293 NAG3-201 84/01/00 35 PAGES E-1971 NAS 1.26:168329 UNCLASSIFIED DOCUMENT

- UTTL: Computer program for the calculation of multicomponent convective diffusion deposition rates from chemically frozen boundary layer theory TLSP: Final Report
- AUTH: A/GOEKOGLU, S. A.; B/CHEN, B. K.; C/ROSNER, D. E.
- CORF: Analex Corp., Cleveland, Ohio.: Yale Univ., New Haven, Conn. SAP: HC A03/MF A01 AVATI .NTIS
- Washington Frepared in cooperation with Yale Univ., New Haven, Conn. MAJS: /*COMPUTER PROGRAMS/*THERMODYNAMIC PROPERTIES/*TRANSPORT PROPERTIES/*VAPOR
- DEPOSITION
- MINS: / BOUNDARY LAYERS/ HEAT TRANSFER/ HOT CORROSION/ MASS TRANSFER/ PREDICTION ANALYSIS TECHNIQUES/ USER MANUALS (COMPUTER PROGRAMS)
- Author ABA:
- The computer program based on multicomponent chemically frozen boundary ABS: layer (CFBL) theory for calculating vapor and/or small particle deposition rates is documented. A specific application to perimter-averaged Na2SO4 deposition rate calculations on a cylindrical collector is demonstrated. The manual includes a typical program input and output for users.

FNTER:P FAGE

PAGING COMPLETED. PLEASE ENTER *DISPLAY* FOR NEXT ITEM

COMPUTER PROGRAM FOR THE CALCULATION OF MULTICOMPONENT

CONVECTIVE DIFFUSION DEPOSITION RATES FROM CHEMICALLY

FROZEN BOUNDARY LAYER THEORY*

Süleyman A. Gökoğlu*

Analex Corporation Cleveland, Ohio 44135

and

Bor-Kuan Chen** and Daniel E. Rosner***

Yale University Chemical Engineering Department New Haven, Connecticut 06520

SUMMARY

The computer program developed based on multicomponent chemically frozen boundary layer (CFBL) theory for calculating vapor and/or small particle deposition rates is documented. A specific application to perimeter-averaged Na_2SO_4 deposition rate calculations on a cylindrical collector is demonstrated. The manual includes a typical program input and output for users.

I. INTRODUCTION

A wide variety of different engineering fields-including chemical coating of metals, solid state electronics device fabrication, filtration, aircraft icing, corrosion and fouling of gas turbine blades, heat exchangers, etc.-deal with vapor and particle capture, either to exploit or to suppress it, depending on the context. A comprehensive but tractable convective diffusion deposition rate theory has been developed at Yale University based on the assumption of a multicomponent "chemically frozen" boundary layer (CFBL) as outlined in Rosner et al. [1]. The theory which makes full use of available transport coefficient and property information is not only applicable under conditions of multicomponent vapor transport (e.g., CVD applications), but it is also intrinsically capable of simultaneously dealing with <u>particle</u> transport provided the particles are small enough to be considered heavy molecules. The purpose of this manual is to document a simple but useful computer code based on CFBL

⁺Supported by NASA Lewis Research Center Contract NAS3-23293 (Analex Corp.) and Grant NAG3-201 (Yale Univ.).

*Research scientist.

**Present address: E.I. du Pont de Nemours and Co., Biochemicals Dept. E335, Wilmington, Delaware 19898.

1/85-27164#

***Professor of Chemical Engineering, Director, High Temperature Chemical Reaction Engineering Laboratory.

E-1971

theory for calculating alkali sulfate deposition rates. We hope that the manual will prevent further misapplications of CFBL theory as has been encountered in the literature [2]. Detailed description of this program, with specific application to perimeter-averaged Na_2SO_4 deposition rate calculations on a cylindrical collector is given below. Typical program input and output is included with explanations. The manual contains the program listing in Appendix C.

SYMBOLS

.

.

BT	thermophoretic parameter, equation (35)		
С	nozzle discharge coefficient		
շ _{ահ}	coefficient defining relative sensitivity of mass transfer and heat transfer to variable properties, equation (37)		
с _р	heat capacity per unit mass at constant pressure		
ເ້	heat capacity per unit mass at constant volume		
D	Fick diffusion coefficient		
d	collector (target) diameter		
di	nozzle jet diameter		
F	function		
f	fuel to air mass flow rate ratio		
I	mainstream turbulence intensity		
К	coefficients of curve-fit in equation (11)		
k	Boltzmann constant		
L	mainstream turbulence length scale		
Le	Lewis number (ratio of Fick to thermal diffusivity)		
Μ	molecular weight		
М	average molecular weight of the mixture		
ش"	deposition mass flux		
Nu	Nusselt number		
Nu	Perimeter-averaged Nusselt number		
Р	pressure		
Pr	Prandtl number (ratio of kinematic viscosity to thermal diffusivity)		
R	universal gas constant		
Re	Reynolds number		
S	spin parameter, equation (33)		
S	defined by equation (31)		
Sc	Schmidt number (ratio of kinematic viscosity to Fick diffusivity)		
Т	absolute temperature		
U	velocity		
v	sonic velocity		
Wa	air mass flow rate		
Х	mole fraction		
<u>Greek Symt</u>	bols:		

۹Ţ	thermal diffusion factor
αŢ.œ	thermal diffusion factor at infinite temperature
°T1	coefficient of T^{-1} in power series expansion of αT
3	Lennard-Jones molecular interaction energy (well-depth) parameter
Y	specific heat ratio, c_n/c_v
λ	thermal conductivity
μ	viscosity
υ	number of Na atoms in species i

Φ	Wilke-Wassiljewa coefficients, equation (21)
ρ	density
σ	Lennard-Jones molecular size parameter
ω	angular speed of the collector (target)
Ω	collision integral

Subscripts:

3.4	avoragod guantitu
av	
CL	centerline
ср	constant properties
D	pertaining to Fick diffusion coefficient
h	heat transfer
1	species i
j	jet exit plane, location "j" in figure 1
k	species k
m	mass transfer
mix	gas mixture
0.	stagnation conditions
t	mainstream turbulence
W	target surface (wall)
μ	pertaining to viscosity
œ	mainstream, location " ∞ " in figure l

Miscellaneous:

CEC	chemical equilibrium code
CFBL	chemically frozen boundary layer
CVD	chemical vapor deposition

II. DESCRIPTION OF PROGRAM WITH APPLICATION TO Na₂SO₄ DEPOSITION

The CFBL computer code was developed for and is being used to interpret Na_2SO_4 deposition experiments at NASA Lewis Research Center, Cleveland, Ohio [3] because of its importance in hot corrosion. Therefore, here we specifically concentrate on Na_2SO_4 deposition rate prediction via the transport of many Na containing species to the collector, although the theory is general in that other salts can easily be incorporated. For a typical burner rig and collector configuration, and station nomenclature shown in figure 1, where any Na containing salt is seeded into the combustor, the deposition rate of Na_2SO_4 can be shown to be:

$$\dot{m}_{Na_{2}SO_{4}}^{"} = \frac{1}{2} \cdot \frac{M_{Na_{2}SO_{4}}}{\overline{M}} \cdot F(turb) \cdot \frac{P_{\infty}}{d} \cdot \sum_{1} \left\{ v_{1} \cdot D_{1,\infty} \cdot \overline{Nu}_{m,1} \cdot F_{1}(Soret) \right\}$$

$$\cdot \left[(X_{1,\infty} - X_{1,W}) - X_{1,W} \cdot \frac{B_{T,1}}{F_{1}(\text{Soret})} \cdot \left(\frac{Le_{1,W}}{Le_{1,\infty}} \right)^{0.6} \cdot \frac{c_{p,\infty}}{c_{p,W}} \cdot \frac{1}{c_{mh,1}} \right] \right\}$$
(1)

The multicomponent nature of the problem is reflected by the appearance of summations which include each Na carrier species i. The present program considers four different possible Na carriers: Na, NaOH, Na₂SO₄ and NaCl. Note the implicit assumption (<u>checked</u> below <u>via</u> the element flux ratio contraint) that once Na arrives at the surface of the collector by any of Na carriers, there is always enough sulfur available (e.g., supplied to the system by fuel) to form Na₂SO₄.

The mole fraction of each Na carrier species in the free stream and at the collector surface $(X_{j,\infty} \text{ and } X_{j,W})$ is supplied to the program by the user. The theory leads to simple algebraic flux relations for each species since it assumes that there is thermo-chemical equilibrium at stations " ∞ " and "w", although the boundary layer itself is chemically frozen. In the applications to Na₂SO₄ deposition experiments at NASA LeRC, the Chemical Equilibrium Code (CEC) developed at NASA LeRC [4] is used to obtain the equilibrium compositions after combustion at specified temperatures and pressures. However, the CFBL code is by no means restricted to coupling with CEC, and the user may provide $X_{j,\infty}$ and $X_{j,W}$ values by any other means available.

Conditions prevailing at station "w" require the imposition of one additional constraint other than vapor/condensate equilibrium [1,5]. Because Na₂SO₄ is being deposited, the molar fluxes of Na and S must stand in the ratio 2:1 at the prevailing vapor compositions. The element mass fractions of the inorganic constituents characterizing the free stream are dictated by the experimental conditions; however, the situation at station "w" is more complicated because transport across the boundary layer contributes to element "segregation." Therefore, the element mass fractions at the surface of the collector generally will not be the same as those in the free stream [5]. Hence, the CFBL program also calculates the total S molar flux to the surface with the same formulation given in equation (1). The dominant S carriers to the surface are chosen to be SO_2 , SO_3 , and H_2S . Therefore, the user has to provide $X_{1,\infty}$ and $X_{1,W}$ values for SO₂, SO₃, and H₂S as inputs to the program. For any particular set of $X_{i,\infty}$ and $X_{i,W}$ values, obtained from equi-librium calculations and input to the CFBL program, the output gives the calculated Na to S molar flux ratio. In order to satisfy both the thermodynamic (chemical equilibrium) and the transport (molar flux ratio) constraints, the user has to iterate on $X_{i,w}$ values obtained from equilibrium calculations with clever choices of element mass fractions. Finally, the properly chosen element mass fractions will give the proper equilibrium compositions of Na and S carriers at station "w" which in turn will satisfy the 2:1 Na to S molar flux ratio constraint. Experience with the CFBL program indicates that in cases where the system contains excess S, the predicted Na₂SO₄ deposition rates are practically insensistive to the fulfillment of the transport requirement except close to the dew point temperature.*

Modification of the CFBL program for application to the multicomponent chemical vapor deposition of condensates other than Na_2SO_4 is conceptually straightforward. It requires the proper choice of dominant carrier species and provision of relevant thermodynamic and transport parameters to the program. Generalized versions of the present CFBL code are being developed and applied to $Na_2SO_4 + K_2SO_4$ and $Na_2SO_4 + K_2SO_4 + Li_2SO_4$ solution condensate deposition situations used at Yale University [5] and NASA LeRC.

• .

[†]For the discussion of the fact that "dew-point" is not a pure thermodynamic quantity, the reader is referred to references [5] and [6].

III. EVALUATION OF THERMODYNAMIC AND TRANSPORT PROPERTIES

Description of the property calculations given below assumes that the following information is supplied to the program by the user as input for a typical configuration given in figure 1:

di	jet exit diameter, cm
ď	diameter of cylindrical collector (target), cm
f	fuel to air mass flow rate ratio
Pi	jet exit (ambient) pressure, atm
Po	stagnation pressure, atm
To	stagnation temperature, K
ΤŴ	collector surface (wall) temperature. K
Wa	air mass flow rate, g/sec

Note that we are assuming a circular jet and a cylindrical collector. For other geometries proper characteristic dimensions must be supplied to calculate the jet exit area, the Reynolds number and mass transfer Nusselt number.

The combustion is assumed to be complete and dominated by the reaction:

$$CH_2 + 3/2 \ 0_2 \rightarrow CO_2 + H_2 0$$
 (2)

Hence, starting with air of initial composition: 79.05 mole percent N₂ and 20.95 mole percent O_2 , we estimate the composition of combustion product gases by:

$$X_{N_2} = \frac{0.7905}{1 + 1.0331f}$$
(3)

$$X_{0_2} = \frac{0.2095 - 3.0993f}{1 + 1.0331f}$$
(4)

$$X_{CO_2} = X_{H_2O} = \frac{2.0662f}{1 + 1.0331f}$$
 (5)

All other species present in the combustion product gas stream are assumed to be of trace amounts and are neglected in the property calculations.

A. Calculation of \overline{M} , γ , T_j and U_j

Average molecular weight of the combustion gases is obtained from:

$$M = X_{N_2}M_{N_2} + X_{0_2}M_{0_2} + X_{0_2}M_{0_2} + X_{H_2}M_{H_2}$$
(6)

where X is the mole fraction of each indicated species.

The ratio of heat capacity at constant pressure to heat capacity at constant volume of the mixture is calculated by:

$$\gamma = \frac{c_{p,mix}}{c_{v,mix}} = \frac{c_{p,mix}}{c_{p,mix} - (R/\overline{M})}$$
(7)

where R is the universal gas constant (1.9872 cal/mole - K), and the calculation of $c_{p,mix}$ is described below. Assuming an isentropic jet, the temperature and the velocity at the jet exit plane is given by:

$$T_{j} = T_{0} \left(\frac{P_{j}}{P_{0}}\right)^{(\gamma-1)/\gamma}$$
(8)

and

$$U_{j} = \frac{RT_{j}}{P_{j}\overline{M}} \cdot \frac{W_{a}(1 + f)}{\left(\pi \frac{d_{j}^{2}}{4}\right) \cdot c}$$
(9)

where R is the universal gas constant (82.057 atm-cm³/mole-K), and C is the discharge coefficient of the jet nozzle to be supplied by the user. The discharge coefficient depends on the geometric shape of the nozzle and the Reynolds number based on the nozzle diameter. If no information is available for the nozzle discharge coefficient, then the program automatically assigns unity as the value of C. Note that the velocity calculated from equation (9) based on the total mass flow rate and the effective area of the nozzle exit should agree with the velocity which can be calculated also from the prevailing Mach number based on the isentropic jet assumption as:

$$U_{j} = v \cdot \left[\left(\frac{T_{o}}{T_{j}} - 1 \right) \frac{2}{\gamma - 1} \right]^{1/2}$$
(9a)

where v is the sonic speed in the gas mixture at T_0 . In equation (9) it is assumed that the mixture obeys the ideal gas law, so that the density of the mixture is simply:

 $\rho_{j} = \frac{P_{j}\overline{M}}{RT_{j}}$ (10)

B. Calculation of c_p , λ , μ , and D_1

The dimensionless heat capacity of each dominant species is computed from a curve fit:

$$\left(\frac{c_{p,i}M_{i}}{R}\right) = K_{5,i}T^{4} + K_{4,i}T^{3} + K_{3,i}T^{2} + K_{2,i}T + K_{1,i}$$
(11)

where R is the universal gas constant (1.9872 cal/mole - K). Two different sets of constants, K, are used for $T \ge 1000$ K and T < 1000 K for a better fit.

Viscosity, μ_1 , and thermal conductivity, λ_1 , of dominant species are calculated using Chapman-Enskog theory:

$$\mu_{1} = 2.6693 \times 10^{-5} \frac{\sqrt{M_{1}T}}{\sigma_{1}^{2} \Omega_{\mu,1}} \quad (g/cm-sec)$$
(12)

$$\lambda_{1} = \frac{R}{M_{1}} \left[\frac{15}{4} + 1.32 \left(\frac{c_{p,1}M_{1}}{R} - \frac{5}{2} \right) \right] \mu_{1} \quad (cal/cm-sec-K)$$
(13)

where σ_i is the Lennard-Jones molecular size parameter of the species and $\Omega_{\mu,i}$ is the collison integral for viscosity which is a function of the dimensionless temperature kT/ε_i where k is the Boltzmann constant and ε_i the Lennard-Jones molecular interaction energy (well-depth) parameter for species i.

The binary Fick diffusion coefficient of trace species k in each of dominant species i is also calculated from Chapman-Enskog theory:

$$D_{kj} = 0.0018583 \frac{\sqrt{T^{3} \left(\frac{1}{M_{k}} + \frac{1}{M_{1}}\right)}}{P_{\sigma_{k1}^{2} \Omega_{D,k1}}} \quad (cm^{2}/sec)$$
(14)

where

$$\sigma_{ki} = \frac{1}{2} \cdot (\sigma_k + \sigma_i) \quad (A) \tag{15}$$

and $\Omega_{D,kj}$ is the collision integral for diffusion coefficient which (just like $\Omega_{u,j}$) is also a function of kT/ϵ_{kj} where:

$$\frac{\varepsilon_{k1}}{k} = \frac{\sqrt{\varepsilon_{k}\varepsilon_{1}}}{k} \quad (K) \tag{16}$$

The dimensionless thermal diffusion factor for trace species i is conveniently expressed below after a curve-fit to calculations based on Chapman-Enskog theory.

 $\alpha_{T,1} = \alpha_{T,\infty,1} + \frac{\alpha_{T,-1,1}}{T}$ (17)

The resulting least-squares constants, $\alpha_{T,\infty,j}$ and $\alpha_{T,-1,j}$ for a number of species are given in reference [7].

It should be noted that unless experimentally determined, the uncertainties involved in the estimation of σ and ϵ/k are directly reflected in μ , λ , D, and α_T values [8]. Therefore the accuracy of prediction of the CFBL program is limited by the accuracy of such transport parameters.

C. Calculation of Mixture Properties

Specific heat of the gas mixture is simply given by:

$$c_{p,mix} = \sum_{i} X_{i}c_{p,i}$$
(18)

where X_i is the mole fraction of species i. Viscosity and thermal conductivity of the mixture are calculated from similar formulae

$$\mu_{\min x} = \sum_{i} \frac{x_{i} \mu_{i}}{\sum_{k} x_{k} \Phi_{ki}}$$
(19)

$$\lambda_{\min x} = \sum_{i} \frac{\frac{x_i \lambda_i}{\sum_{k} x_k \Phi_{ki}}}{\sum_{k} x_k \Phi_{ki}}$$
(20)

where Φ_{ki} are the Wilke-Wassiljewa coefficients given by:

$$\Phi_{k1} = \frac{1}{\sqrt{8}} \cdot \left(1 + \frac{M_1}{M_k}\right)^{-1/2} \cdot \left[1 + \left(\frac{\mu_1}{\mu_k}\right)^{1/2} \left(\frac{M_k}{M_1}\right)^{1/4}\right]^2$$
(21)

The diffusion coefficient of species i in the mixture is calculated from:

$$D_{i,mix} = \left(\sum_{k} \frac{x_{k}}{D_{i,k}}\right)^{-1}$$
(22)

۰.

с.

The reader is referred to reference [9] for the details of thermodynamic and transport property calculations.

IV. DIMENSIONLESS NUMBERS

The dimensionless numbers given below are evaluated either at station " ∞ " or "w" depending on relevance. The static temperature at station " ∞ ", T $_{\infty}$, is assumed to be equal to T_j, calculated in Section III.A. The collector surface temperature (or a representative average temperature if the collector is not isothermal) and the ambient pressure, P $_{\infty}(=P_j)$, are supplied as inputs by the user.

$$Pr = \frac{c_{p,mix} \mu_{mix}}{\lambda_{mix}}$$
(23)

$$Sc_{i} = \frac{\mu_{mix}}{\rho_{i,mix}}$$
(24)

$$Le_{i} = \frac{Pr}{Sc_{i}} = \frac{D_{i,mix}}{[\lambda_{mix}/(\rho c_{p,mix})]}$$
(25)

$$Re = \frac{\mu_{mix}^{U_{m}}d}{\mu_{mix}}$$
(26)

Calculation of the Reynolds number requires knowledge of U_{∞} . Although U_j is obtained in Section III.A, U_{∞} is not necessarily the same as U_j depending on the jet velocity profile and the jet divergence angle. For jet diameters larger than the collector diameter (usually) the case), one needs the <u>centerline</u> velocity at station " ∞ " for the proper calculation of Re. However, U_j calculated in Section III.A. is the <u>average</u> velocity at station "j". Therefore, two corrections are needed; first, to correct average U_j to centerline U_j , F (shape), and second, to correct centerline U_j to centerline U_{∞} , F (div). These corrections take into account the boundary layer effects and the flow area variation from station "j" to station " ∞ " depending on jet divergence angle. Hence:

$$U_{\infty} = U_{j} \cdot F \text{ (shape)} \cdot F \text{ (div)}$$
(27)

where F (shape) and F (div) are defined as:

$$F \text{ (shape)} \equiv \left(\frac{U_{cL}}{U_{av}}\right)_{j} \tag{28}$$

$$F (div) \equiv \frac{U_{cL,\infty}}{U_{cL,j}}$$
(29)

F (shape) and F (div) are optional inputs to the program. If no information is available, the program automatically assigns unity for both. Based on available data for fully developed turbulent flow in smooth circular ducts, a suggested estimate for F (shape) is:

$$F (shape) \approx \frac{(s + 1)(2s + 1)}{2s^2}$$
 (30)

where

$$s \approx 6.349 \left(\frac{\text{Re}_{j}}{10^{4}}\right)^{0.0465}$$
 (31)

The mass transfer Nusselt number correlations depend, among other things, on the geometry of the collector used. In the NASA LeRC experiment [3], a cylindrical collector was used. The example program listing given at the end of this manual also assumes a cylindrical collector. By making the replacement $Pr \rightarrow Sc_1$, the perimeter averaged mass transfer coefficient, $Nu_{m,1}$, becomes based on the heat transfer correlations recommended for stationary infinitly long cylinders [10]. The additional effects of variable properties and Mach number are approximated by incorporating a post-multiplier term based on the recommendations of references [11] and [12].

$$\overline{Nu}_{m,i} = (0.40 \text{ Re}^{1/2} + 0.06 \text{ Re}^{2/3}) \left(Sc_i^{0.4}\right) \left(\frac{T_w}{T_o}\right)^{0.04}$$
(32)

It should be noted that if a different collector geometry is used and/or the surface roughness of the collector can have an appreciable effect on mass transfer, the equation (32) may not be applicable, and the user has to modify the program to supply the best available corresponding mass transfer Nusselt number correlation from the literature.

In many experiments, uniformity of collector surface temperature is obtained by collector rotation and this requires additional modifications of the formulation given by equation (1). In the NASA LeRC deposition experiments the rotational speeds of the smooth collectors used have been neglected based on reference [13], which suggests that if one defines a "spin" parameter

$$S \equiv \frac{\omega d}{2U_{w}}$$
 (33)

where ω is the angular speed of the target, then equation (1) (or eq. (32)) should be corrected by the multiplier

$$F(spin) \cong (1 + 2S^2)$$
 (34)

V. THERMAL (SORET) DIFFUSION EFFECT, F (SORET)

Inclusion of thermal (Soret) diffusion in the mass transfer calculations introduces a nondimensional thermophoretic parameter, [14], which can be expressed as:

$$B_{T,i} \cong -\alpha_{T,i,w} \cdot (Le_{i,w})^{0.4} \cdot \left(\frac{T_o - T_w}{T_w}\right)$$
(35)

The effects of thermal (Soret) diffusion ("thermophoresis" for small particles) is thoroughly discussed and correlated in references [7, 14-17] for both vapor and small particle mass transfer. For the current applications of the CFBL program to NASA LeRC deposition experiments, the emphasis has been on <u>vapor</u>

deposition. Therefore, the "sink" effect of thermal diffusion is justifiably neglected, and only the "suction" effect is considered, i.e.:

$$F_{i}$$
 (Soret) \cong F_{i} (suction) $\cong \frac{-B_{T,i}}{1 - \exp(B_{T,i})}$ (36)

For small particle mass transfer applications where inertial effects are not important, the user should modify the program to include the "thermophoretic sink" effect as described in references [14] and [16]. For such applications a method for estimating small particle transport properties (D_i , $\alpha_{T,i}$, etc.) is given in reference [17].

In the program the user also has the option of completely "turning off," if so desired, the thermal diffusion effect from inclusion in the calculations by specifying the input variable "FSORET" as "false". In this simple way we can demonstrate the relative importance of thermal diffusion mass transport in any multicomponent CVD situation.

It is known that variable properties across the boundary layer affect mass transfer rates in a somewhat different manner than they do the better known heat transfer rates. In case of thermal diffusion, this effect is in addition to the one already incorporated in the perimeter-averaged Nusselt number (eq. (32)). Certainly, the effect will be different depending on the temperature dependence of the transport properties of the species in question and the characteristics of the mass transfer boundary layer. Therefore, it is convenient to introduce a new dimensionless parameter, $C_{mh_{\rm cl}}$, defined as:

$$C_{mh,i} \equiv \frac{(Nu_m/Nu_{m,cp})_i}{(Nu_h/Nu_{h,cp})}$$
(37)

Simple engineering correlations to predict the effect of variable properties on mass transfer (the numerator in eq. (37)) and on heat transfer (the denomenator in eq. (37)) are given in reference [12]. However, if the space reserved for $C_{mh,i}$ in the input data is left blank, the program automatically assigns a value of unity for each $C_{mh,i}$.

VI. MAINSTREAM TURBULENCE EFFECT, F (turb)

It is known that mainstream turbulence, apart from turbulence within the boundary layer, influences the transport rates to surfaces [18-19]. Although there is considerable quantitative disagreement among various researchers, the CFBL program uses the correlation given in reference [20] based on perimeter-averaged heat transfer measurements for cylinders in cross flow. If one has knowledge of free stream turbulence intensity, I_t , and axial macroscale of turbulence, L_t , then the correlation at a particular Re for a cylinder of diameter d is given in the separable form:

$$F(turb) \cong 1 + fct_1(I_+Re) \cdot fct_2(L_+/d)$$
(38)

where fct_1 and fct_2 are presented in graphical form in reference [20]. The CFBL program uses the following curve fits for fct_1 and fct_2 .

$$fct_{1}(I_{t}Re) \cong \begin{cases} 12.375 \left[1 - \left(1 - \frac{I_{t}Re}{10^{4}} \right)^{3/2} \right] & \text{if } I_{t}Re \le 10^{4} \\ 9.0 + 3.375 \times 10^{-4} I_{t}Re & \text{if } I_{t}Re > 10^{4} \end{cases}$$
(39)

$$fct_{2}(L_{t}/d) \cong \begin{cases} 0.124 \times 10^{-3} [(L_{t}/d) - 11.0]^{2} + 2.0 \times 10^{-3} & \text{if } L_{t}/d > 2 \\ -4.0 \times 10^{-3} [(L_{t}/d) - 1.75]^{2} + 12.25 \times 10^{-3} & \text{if } L_{t}/d \le 2 \end{cases}$$
(40)

F (turb) probably also depends on Sci, but the information is not yet sufficient in the literature to incorporate it into the present formalism. The user has three options in using the F (turb) factor:

- 1. If one chooses not to use the F (turb) factor, then leave the variable "TURB" blank in input data, in which case the program automatically assigns the value of unity for F (turb).
- 2. If the particular F (turb) to be used by the program is known, then that value should be read in as input for the variable "TURB", but leave the variables "TURIN" and "TURL" blank.
- 3. If one has knowledge of I_t and L_t and chooses to use the correlation supplied by the program based on equations (38) to (40), then input data for "TURB" is dummy, but "TURIN" (percent $I_t = I_t/100$) and "TURL" input values must be read in.

VII. ROUTINES

The names and functions of the subroutines used in the program are given below:

MAIN	calculates the deposition rate based on equation (1)
PARAM	provides ε/k , σ , and molecular weight of dominant species in the gas mixture
CALESL	provides the dimensionless heat capacity of dominant species in the gas mixture from a curve fit
CALMIX	calculates commiss in cal/g-K
COLINT	evaluates Ω_{μ} and Ω_{D} from a curve fit to the already supplied kT/ϵ versus Ω_{μ} and Ω_{D} data [8]. Also calculates μ_{i} and λ_{j} for dominant species
MIXPRO	calculates unter and Anter
COEDIF	calculates Due of trace species k in i
DIF	calculates D.
TMDF	calculates E (Sorot)
NIM	
	calculates num, j
IUKUL	calculates F (turb)

VIII. DESCRIPTION OF PROGRAM INPUT

The input data to the CFBL program is read in three different stages. The first stage reads in one card which contains the following information according to the format specified.

READ(5,1) IRUN, ITYPE, F, WA, TW, TO, PO, PJ, DC, WOBS, FSORET 1 FORMAT(212, 8F9.0, 3X, L1)

IRUN	The user can use this variable for his own purposes (e.g., to keep track of which experiment, which run, etc.).
ΙΤΥΡΕ	The user can use this variable for his own purposes (e.g., to keep track of the type of salt fed to the combustor, etc.).
F	Fuel to air mass flow rate ratio
WA	Air flow rate, g/sec
TW	Collector (target) surface temperature, K. Give an average tempera- ture if the collector surface is not isothermal.
то	Stagnation temperature. K
P0	Stagnation pressure, atm
РЈ	Jet exit (ambient) pressure, atm
DC	Discharge coefficient of jet nozzle. Optional input. Leave blank if no information is available. See Section III.A.
WOBS	Experimentally observed deposition rate. Used in calculating the percent error in the prediction, mg/hr.
ECODET	Logical vanishing - Specify as ITL if they may diffusion to destund to

FSORE1 Logical variable. Specify as 'T' if thermal diffusion is desired to be included in the calculations, or as 'F' if otherwise.

The second stage reads in one card which contains the following information according to the format specified:

READ(5,998) DIAW, LW, DJ, TURB, TURIN, TURL, SHAPE, DIV 998 FORMAT(8F10.0)

DIAW	Diameter of the cylindrical target, cm
LW	Length (height) of the cylindrical target, cm
DJ	Diameter of circular jet nozzle exit plane, cm
TURB	Turbulence enhancement factor, F (turb). Optional input. (a) Leave blank if no consideration is required.
	(b) Give your own estimate if information is available, but then leave "TURIN" and "TURL" blank.
TURIN	Percent mainstream turbulence intensity $(I_{+}/100)$. Optional input.
	(a) Leave blank if no consideration is required.
	(b) Leave blank if you supply your own "TURB".
	(c) Give your estimate if program consideration is desired,
	but then specify "TURL", too.
TURL	Axial macroscale of mainstream turbulence, cm. Optional input.
	(a) Leave blank if no consideration is required.
	(b) Leave blank if you supply your own "TURB".
	(c) Give your own estimate if program consideration is desired, but then specify "TURIN" too
SHAPE	E (shape). Optional input leave blank if no information is
	available. See Section IV
DIV	F (div). Optional input. Leave blank if no information is available. See Section IV.

The third stage reads in seven cards, one for each species. The order is given by:

1 = NaOH 2 = Na $3 = Na_2SO_4$ $4 = SO_2$ $5 = SO_3$ 6 = NaC1 $7 = H_2S$

Note that this input is specific to Na_2SO_4 deposition only, and must be modified for other salts and/or salt solutions accordingly. Each card contains the following information according to the format specified.

```
READ(5,2) XW(I), XJ(I), CMH(I)
2 FORMAT(2E15.4, F10.0)
```

XW(I) Equilibrium mole fraction of species i at station "w"

- XJ(I) Equilibrium mole fraction of species i at station "j" or equivalently at station " ∞ "
- CMH(I) Ratio of effect of variable properties on mass transfer to heat transfer. Optional input. See Section V.

A typical input data set is given in Appendix A.

IX. DESCRIPTION OF PROGRAM OUTPUT

The program output contains all the information read into the program as input. Description of the additional variables printed out is given below:

D(I)	Diffusion coefficient of species i in gas mixture, Di,mix,
NU(I)	Mass transfer Nusselt number of species i Nu .
SC(I)	Schmidt number of species i. Sc., at station ""
TAU(I)	Thermophoretic parameter of species i. Br
F(SORET)(I)	F ₁ (Soret) of species 1
M(I)	Equivalent Na ₂ SO ₄ deposition rate of species i mass transfer rate in mg/hr
YNAJ	Total Na mole fraction in flame
YNAW	Total Na mole fraction at station "w"
YSJ	Total S mole fraction in flame
YSW	Total S mole fraction at station "w"
AM	Average molecular weight of gas mixture (neglects trace species)
TURB	F(turb)
RE	Reynolds number at station "∞"
SUM	Total Na mass flux to the surface in g/cm ² -sec
SMS	Total S mass flux to the surface in g/cm ² -sec
RATIO	Na to S molar flux ratio at the surface
ERROR	Percent error between experimentally observed and predicted Na ₂ SO ₄ deposition rates
GM	$\gamma = \bar{c}_{D,mix}/c_v$
PR	Prandtl number at station "∞"

۰.

- •

X(I)	Mole fraction of dominant species in flame
TĴ	Jet exit static temperature, T₁ = T∞, K
RHOJ	Density of gas mixture at station "j" or equivalently "∞" in g/cm ³
UJ	Jet exit velocity, U ₁ , in cm/sec
ETAMIX	µ _{mix} at station "∞" in g/cm-sec
LAMIX	λ _{mix} at station "∞" in cal/cm-sec-K
CMIX	c _{p,mix} at station "∞" in cal/g-sec

A typical output data set is given in Appendix B.

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890×*** REFERENCE LINE

LW DJ TURB TUR 1.905 1.2649 2.54 0.0 0. XW(I) XJ(I) CMH(I) 6.9810E-14 6.3810E-06 0.0 3.1280E-20 8.2740E-07 0.0 3.6060E-12 2.6170E-13 0.0 8.0742E-06 2.4994E-05 0.0 1.3345E-05 4.8236E-08 0.0 0.0 0.0 0.0 5.9210E-31 1.1600E-16 0.0	.0 0.0 0.0 0.0
---	----------------

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890**** REFERENCE LINE

· .

16

14. A K

, **1**

۰.

1 .

,

CFBL THEORY FOR SODIUM SULFATE DEPOSITION RATE

ALL GAS PROPERTIES PERTAIN TO TJ,PJ

IRUN =19 ITYPE = 2 F = 0.048100 TW (K) = 900.000 TO (K) = 1885.500 PO (ATM) = 1.068000 PJ (ATM) = 1.000000 DC = 1.000000 WOBS (MG/HR) = 27.0000 FSORET =T WA (G/SEC) = 20.02139 DIAW (CM) = 1.90500 LW (CM) = 1.26490 DJ (CM) = 2.54000 TURIN = 0.0000 PERCENT TURL (CM) = 0.0000 SHAPE = 0.0000

анан со алартария со

I=1=NAOH , I=2=NA , I=3=NA2SO4 , I=6=NACL

I	D(I)	NU(I)	SC(I)	L(I)X	X(I).W	TAUCTO	F(SORET).T	MCTI
1	0.29905E 01	0.78633E 02	0.10820E 01	0.63810E-05	0.69810E-13	0.73861E-01	1.03738	0.10364E 02
2	0.37881E 01	0.71538E 02	0.85418E 00	0.82740E-06	0.31280E-19	-0.23133E-01	0.98848	0.14756E 01
3	0.18316E 01	0.95670E 02	0.17666E 01	0.26170E-12	0.36060E-11	0.26800E 00	1.13998	-0.64711E-05
6	0.251/8E 01	0.84235E 02	0.12851E 01	0.00000	0.00000	0.15291E 00	1.07840	0.00000

.

.

YNAJ YNAW YSJ YSW 0.720840E-05 0.728181E-11 0.250422E-04 0.214192E-04

AM = 28.81070 TURB = 1.00000 RE = 12913.625 SUM (G/CM**2/SEC) = 0.14063E-06 SMS (G/CM**2/SEC) = 0.26371E-06 RATIO = 0.7437 PREDICTED NA2S04 DEPOSITION RATE (MG/HR) = 11.83948 ERROR (%) = -56.1501 GM = 1.26601 PR = 0.689647 X(N2) = 0.753079 X(02) = 0.057563 X(H20) = 0.094679 X(C2) = 0.094679 TJ (K) = 1859.6157

RHOJ(G/CM**3)	UJ(CM/S)	ETAMIX(POISE)	LAMIX(CAL/CM/K/S)	CMIX(CAL/G/S)
0.188806E-03	0.219344E 05	0.610923E-03	0.290277E-03	0.327682E 00

APPENDIX C

0000100 C		
0000200 C*3	*********	***************************************
0000300 C		
0000400 C		
0000500 C		VARIABLE NAME LIST
0000600 C		
0000700 C		
0000300 C		
0000900 C	VARIABLE	DESCRIPTION
0001000 C		
0001100 C	ADT	= TEMPORARY STORAGE VALUE FOR KT/E
0001200 C	AII,AJJ	= TEMPORARY STORAGE VALUE FOR DATOS(3,I)
0001300 C	AJ	= AREA OF JET NOZZLE (CM**2)
0001400 C	ALPA(79)	= KIZE AS INPUT PERMANENT DATA
0001500 C	ALPHACID	= THERMAL DIFFUSION COEFFICIENT FOR TRACE SPECIES I
0001600 C	AM	= MEAN MOLEC. WEIGHT OF GAS MIXTURE(NEGLECTS TRACE SPECIES)
0001/00 C	APHMIX	= THERMAL DIFFUSIVITY OF MIXTURE AT STATION J
0001800 C	АРНЖ	= THERMAL DIFFUSIVITY OF MIXTURE AT STATION W
0001900 C	AIJ	= AREA OF THE COLLECTOR(TARGET), (CM**2)
0002000 C	•	
0002100 C	C	= CMIX_INTERMEDIATE
0002200 C	CJ	= DIMENSIONLESS HEAT CAPACITY
0002300 C	CMIX	= MIXIURE_HEAT_CAPACITY AT STATION J (CAL/(G*K))
0002400 C	CLIH(I)	= RATIO OF EFFECT OF VARIABLE PROP. ON MASS TO HEAT TRANS.
0002500 C		OPTIONAL INPUT.LEAVE BLANK IF NO INFORMATION AVAILABLE.
0002600 C	CDEF1	= COEFFICIENTS FOR COMPUTING HEAT CAPACITY (1000K <t<5000k)< td=""></t<5000k)<>
0002700 C	COEF2	= COEFFICIENTS FOR COMPUTING HEAT CAPACITY (300K <t<1000k)< td=""></t<1000k)<>
0002800 C	CONDT	<pre>= THERMAL CONDUCTIVITY (TEMPORARY) , (CAL/(CM*SEC*K))</pre>
0002900 C	CP	= MIXTURE HEAT CAPACITY AT STATION W (CAL/(G*K))
0003000 C	_	
0003100 C	D	= IEMPURARY STORAGE FOR BINARY DIFF. COEF. (CM**2/SEC)
0003200 C	DC	= DISCHARGE COEFFICIENT OF JET NOZZLE. OPTIONAL INPUT.
0003300 C		LEAVE BLANK IF NO INFORMATION IS AVAILABLE, IN WHICH
0003400 C		CASE THE PROGRAM AUTOMATICALLY ASSIGNS UNITY AS ITS VALUE
0003500 C	DA	<pre>= DIFF. COEFF. OF TRACE SPECIES AT STATION J (CM**2/SEC)</pre>
0003600 C	DATUS(1,1)	= E/K FOR SPECIES I
0003700 C	DATUS(2,1)	= SIGMA FOR SPECIES I (COLLISION DIAMETER PARAMETER)
0003800 C	DAIUS(3,1)	- NOLECULAR WEIGHT OF SPECIES I
0003900 C	DEN	
0004000 0	DIAN	- DIAMETER UP THE CYLINDERICAL CULLECTOR (CM)
0004100 C	DIFF	- TEMPURARY STURAGE FUR BINARY DIFF. COEF. (CM**2/SEC)
0004200 C	DIV	- DIVERGENCE FACTOR FOR NUZZLE JET DEFINED AS THE RATIO
0004300 C		OF CENTERLINE VELOCITY AT COLLECTOR LOCATION TO
0004400 C		CENTERLINE VELOCITY AT JET EXIT. DEPENDS ON THE JET
0004500 C		DIVERGENCE ANGLE. UPIIUNAL INPUI, LEAVE BLANK IF NO
0004600 C	DI	INFORMATION AVAILABLE.
0004700 6	DJ DU	DIANCIER OF JEI NUZZLE EXII PLANE (CM)
0004000 0	DW	- DIFF. CUEP. UF IRACE SPECIES AI STATION W (CM**2/SEC)
0004700 C	EVV	
0005100 0	CZ N	- KALLU UF HULEUULAK INIEKAUTIUN ENEKGY PARAMETER
0000100 0	FORT FORT	(LENNARD-JUNES) IU BULIZMANN CUNSTANT (K)
00002200 C	EUKI;EUKJ	- ICHTURART SIUKAGE FUK DAIUS(1,1)=E/K
0005300 0	EDCONK	- CYVY SANAKE KUNI OF ENKT*ENKT
00009400 6	EE SUVK	- 1818511.11-278

:

. •

•		
0005500 C	ERN	DIFFERENCE BETWEEN PREDICTED AND OBSERVED DEPO. RATES
0005600 C	ERROR	PERCENT ERROR BETWEEN PREDICTED AND OBSERVED DEP. RATE
0005700 C	ET .	EXPONENTIAL (-TAU), SORET INTERMEDIATE
0005800 C	ETA	MIXTURE VISCOSITY AT STATION W (G/(CM*SEC))
0005900 C	EIAMJ	- TEMPORARY VALUE FOR MIXIURE VISCOSITY (G/(CM*SEC))
	ETAMIX	MIXTORE VISCOSITE AT STATION J (G/(CM*SECJ)
0006100 C		- FUEL TO ATD BATTO (DV MACC)
0000200 6	F	- FUEL TU AIR RATIU (BI MASS)
00005300 C	FJUKEI	SET TO THE THEN THE CODET EFECT WILL BE THOUDED. THE T
0000400 C		SET TO TE THEN THE SORET EFFECT WILL BE INCLUDED. IF IT
0000500 0		15 SET TO 'F' THEN THE SURET EFFECT WILL BE EXCLUDED.
00000000 C	GM	- GAMMA
00007000 C	GMP	
000000000	G	
0007000 C	U	WASSILSLWA WIEKE FROMK
0007100 C	TTYPE	NOT USED BY PROGRAM. OPTIONAL FOR USER PURPOSES.
0007200 C	TRUN	NOT USED BY PROGRAM. OPTIONAL FOR USER PURPOSES.
0007300 C		
0007400 C	LAMDA	- MIXTURE THERMAL CONDUCTIVITY AT STATION W (CAL/(CM*SEC*K))
0007500 C	LAMP	TEMPORARY THERMAL CONDUCTIVITY (CAL/(CM*SEC*K))
0007600 C	LAMIX	MIXTURE THERMAL CONDUCTIVITY AT STATION J (CAL/(CM*SEC*K))
0007700 C	LEJ	LEWIS NUMBER FOR TRACE SPECIES AT STATION J
0007800 C	LOD	RATIO OF MAINSTREAM TURBULENCE LENGTH SCALE TO COLLECTOR DIAM.
0007900 C	LIN	- LENGTH OF THE CYLINDERICAL COLLECTOR (CM)
0008000 C	LEW	F LEWIS NUMBER FOR TRACE SPECIES AT STATION W
0008100 C		
0008200 C	M	DATOS(3,1)=MOLECULAR WEIGHT OF SPECIES I
0008300 C	M(I)	EQUIVALENT NA2SO4 DEPOSITION RATE OF TRACE SPECIES MASS
0003400 C		TRANSFER RATE (MG/HR)
0003500 C		
0003600 0	NU	NUSSELI NUMBER FUR MASS IRANSFER
00000000	OMENT OWN	- COLLECTON INTECOME
00000000 C	0112013000	- COLLISION INTEGRALS - Collision Integral Eod Mage Difenetuity
0000000	011ED(79)	COLLISION INTEGRAL FOR MASS DIFUSIVITI
00000000		COLLISION INTEGRAL FOR VISCOSITY OR THERMAL CONDUCTIVITY
0009200 C	РНТ	E E (THRB) INTERMEDIATE RELATED TO THRBH ENCE INTENSITY
0009300 C	PJ	= JET EXIT PLANE PRESSURE (AIM)
0009400 C	PO	STAGNATION PRESSURE (ATM)
0009500 C	PR	PRANDTL NUMBER AT STATION J
0009600 C	PROV	INTERMEDIATE IN CALCULATION OF ETAMIX
0009700 C	PSI	F(TURB) INTERMEDIATE RELATED TO TURBULENCE LENGTH SCALE
0009800 C		
0009900 C	R	- GAS CONSTANT=1.9872 CAL/(GMOLE*K)
0010000 C	RATIO	SODIUM TO SULFUR MOLAR FLUX RATIO
0010100 C	RE	REYNOLDS NUMBER AT COLLECTOR LOCATION
0010200 C	REJ	REYNOLDS NUMBER AT OUTLET OF JET
0010300 C	RHOJ	DENSITY OF MIXIURE AT JET OUTLET
UU10400 C	RHOM	DENSITY OF MIXTURE AT WALL
0010600 C	c c	COUNTRY NUMBER FOR TRACE CREATER AT ATATANY I
0010000 C		- SUMPE EACTOR (CENTERITHE VELOCITY)//AVERACE VELOCITY)
0010200 0	SHAFE	ODITONAL TNOUT LEAVE BLANK TE NO TOTONAL AVAILAD T
0010000 C		ULITOURE TULOT. LEAVE DEANN IL NU INLAKUALION AVAILABLE.

٠.

.

0010900	C SIGMA	= MOLECULAR SIZE PARAMETER (LENNARD-JONES)
0011000	C SIGI, SIGJ	= TEMPORARY STORAGE FOR DATOS(2,I)=SIGMA -
0011100	C SIGK,SIGL	= TEMPORARY STORAGE FOR DATOS(2,I)=SIGMA
0011200	C SIG2	= DATOS(2,I)=SIGMA
0011300	C SIG	= SIGMA_VALUE_FOR SPECIES I
0011400	C SM(I)	= MASS FLUX OF TRACE SPECIES I (G/CM**2/SEC)
0011500	C SIIS	= TOTAL SULFUR MASS FLUX TO THE SURFACE (G/CM**2/SEC)
0011600	C SUM	= TOTAL SODIUM MASS FLUX TO THE SURFACE (G/CM**2/SEC)
0011700	C	
0011800	C I	= TEMPERATURE (K)
0011900	CIAU	= SORET SUCTION PARAMETER FOR SPECIES I
0012000	C IU	= STAGNATION TEMPERATURE (K)
0012100	C THERM	= THERMAL DIFFUSION FACTOR FOR SPECIES I
0012200	C IJ	= JET (STATIC) TEMPERATURE (K)
0012300	C TURB	= IURBULENCE ENHANCEMENT FACTOR. OPTIONAL INPUT.
0012400		A) LEAVE BLANK IF NO CONSIDERATION REQUIRED.
0012500		B) GIVE YOUR OWN ESTIMATE IF INFORMATION AVAILABLE, BUT
0012600		LEAVE 'IURIN' AND 'TURL' BLANK IF YOU DO SO.
0012700	C IUKIN	= PERCENI MAINSIREAM INTENSITY. OPTIONAL INPUT.
0012000		A) LEAVE BLANK IF NU CUNSIDERATION REQUIRED.
0012900		B) LEAVE BLANK IF YOU SUPPLY YOUR OWN TURBY.
0013100		C) GIVE TOUR ESTIMATE IF PROGRAM CONSIDERATION DESIRED,
0013200		- MATUSTREAM LEVETM COALE (NACODO)
0013200		A) LEAVE DIANK TE NO CONCEDENTION DECUDER
0013300	c c	A) LEAVE BLANK IF NU CUNSIDEKAIDUN KEQUIKED.
0013500	č	CIVE DIANN IF TOU SUFFLI TOUR OWN 'TORB'.
0013500	c c	BUT THEN CIVE AN ESTIMATE IF PRUGRAN CUNSIDERATION DESIRED,
0013200		- MALL TEMPERATURE (V)
0013800	C	- WALL TEIN ERATORE (R)
0013900	Č ILI	= JET EXIT VELOCITY
0014000	č	
0014100	Č VISC(I)	= VISCOSITY OF SPECIES (G/(CM*SEC))
0014200	C V(T)	= NUMBER OF SODIUM ATOMS IN TRACE SPECIES I
0014300	Č Č	
0014400	Č WA	= AIR FLOW RATE (GZSEC)
0014500	C WI.WJ	= TEMPORARY STORAGE VALUES FOR DATOS(3,T)
0014600	C WPRED	= PREDICTED NA2SO4 DEPOSITION RATE (MG/HR)
0014700	C WOBS	= EXPERIMENTALLY OBSERVED NA2SO4 DEPOSITON RATE (MG/HR)
0014800	С	
0014900	C XJ(I)	= MOLE FRACTION OF SPECIES I IN FLAME
0015000	C XI	= TURIN*RE/100,F(TURB) INTERMEDIATE
0015100	C XW(I)	= MOLE FRACTION OF SPECIES I AT WALL
0015200	C X(4)	= MOLE FRACTION OF DOMINANT SPECIES IN MIXTURE
0015300	С	
0015400	C YNAJ	= TOTAL SODIUM MOLE FRACTION IN FLAME
0015500	C YNAW	= TOTAL SODIUM MOLE FRACTION AT STATION W
0015600	C YSJ	= TOTAL SULFUR MOLE FRACTION IN FLAME
0015700	C YSW	= TOTAL SULFUR MOLE FRACTION AT STATION W
0015800	C	
0015900	C	
0016000	C**********	***************************************
0016100	C	
0010200	G	

:

.

•

÷

.

. .

-

۲ :-

```
0016300 C
          SODIUM VERSION OF CHEMICALLY FROZEN BOUNDARY LAYER THEORY
Q016400 C
          USED FOR SODIUM SULFATE DEPOSITION RATE CALCULATIONS
Ó016500 C
0016600 C
          MAIN PROGRAM
0016700 C
0016800
             REAL LAMIX, LAMDA, LEW, LEJ, NU, LW
0016900
             REAL M(7)
0017000
             DIMENSION V(7), XW(7), XJ(7), SM(7), ALPHA(7), CMH(7)
0017100
             COMMON/VA/DATOS(3,5)
0017200
             LOGICAL FSORET
             COMMON FSORET
0017300
0017400
             COMMON/GFR/X(4)
0017500
             DATA V/ 1.0 , 1.0 , 2.0 , 0.0 , 0.0 , 1.0 , 0.0 /
0017600 C
0017700
             WRITE(6,490)
0017800
         490 FORMAT(10X, 'CFBL THEORY FOR SODIUM SULFATE DEPOSITION RATE',/)
0017900
             WRITE(6,900)
         900 FORMAT(10X, 'ALL GAS PROPERTIES PERTAIN TO TJ, PJ',/)
0018900
0018100 C
0018300 C
                                                                           ¥
0018400 C
             PAY SPECIAL ATTENTION TO THE FORMAT OF THE INPUT PARAMETERS
                                                                           ¥
0018500 C
             SEE 'VARIABLE NAME LIST' ABOVE FOR DESCRIPTION OF VARIABLES
                                                                           ¥
0018600 C
                                                                           ¥
0018800 C
0018900 C
          DOMINANT SPECIES IN THE MIXTURE
          1=NITROGEN , 2=OXYGEN , 3=WATER , 4=CARBON DIOXIDE
0019000 C
0019100 C
0019200 C
          TRACE SPECIES IN THE MIXTURE
0019300 C
          1=NAOH , 2=NA , 3=NA2SO4 , 4=SO2 , 5=SO3 , 6=NACL , 7=H2S
0019400 C
0019500 C
0019600 C
          INPUT : 1
0019700 C
0019800
             READ(5,1)IRUN, ITYPE, F, WA, TW, TO, PO, PJ, DC, WOBS, FSORET
0019900
           1 FORMAT(212,8F9.0,3X,L1)
0020000 C
          INPUT : 2
0020100 C
0020200 C
             READ(5,998) DIAW, LW, DJ, TURB, TURIN, TURL, SHAPE, DIV
0020300
0020400
         998 FORMAT(8F10.0)
0020500 C
0020600 C
          INPUT : 3
0020700 C
0020800
             DO 502 I=1,7
             READ(5,2) XW(I),XJ(I),CMH(I)
0020900
0021000
            2 FORMAT(2E15.4, F10.0)
0021100
         502 CONTINUE
0021200 C
0021300 C
          OUTPUT OF INPUT PARAMETERS
0021400 C
0021500
             WRITE(6,978) IRUN, ITYPE, F, TW, TO, PO, PJ, DC, WOBS, FSORET
0021600
         978 FORMAT(10X,'IRUN =',I2,/,10X,'ITYPE =',I2,/,10X,'F =',
```

*F10.6,/,10X,'TW (K) =',F10.3,/,10X, *'TO (K) =',F10.3,/,10X,'PO (ATM) =',F10.6,/,10X,'PJ (ATM) =',F10.6*,/,10X,'DC =',F9.6/10X,'WOBS (MG/HR) =',F10.4,/,10X,'FSORET =',L1)
WRITE(6,988) WA,DIAW,LW,DJ,TURIN,TURL,SHAPE,DIV 0021700 0021800 0021900 0022000 988 FORMAT(10X,'WA (G/SEC) =',F10.5,/,10X,'DIAW (CM) =',F10.5, */,10X,'LW (CM) =',F10.5,/,10X,'DJ (CM) =',F10.5,/,10X, *'TURIN =',F8.4,' PERCENT',/,10X,'TURL (CM) =',F10.5,/,10X, 0022100 0022200 0022300 0022400 *'SHAPE =', F7.4,/,10X,'DIV =', F7.4) WRITE(6,939) 0022500 0022600 939 FORMAT(/,10X,'I=1=NAOH , I=2=NA , I=3=NA2SO4 , I=6=NACL',/) 0022700 C 0022800 C ASSIGN E/K, SIGMA AND MOLECULAR WEIGHT OF DOMINANT SPECIES 0022900 C 0023000 DATOS(1,1)=71.4 DATOS(2,1)=3.798 0023100 0023200 DATOS(3,1)=28.0134 DATOS(1,2)=106.7 0023300 0023400 DATOS(2,2)=3.467 0023500 DATOS(3,2)=31.9988 0023600 DATOS(1,3)=356.0 DATOS(2,3)=2.649 0023700 0023800 DATOS(3,3)=18.0152 DATOS(1,4)=195.2 0023900 0024000 DATOS(2,4)=3.941 0024100 DATOS(3,4)=44.0098 0024200 C 0024300 C THERMAL DIFFUSION FACTOR OF TRACE SPECIES I==NAOH, I=2=NA, I=3=NA2SO4, I=4=SO2, I=5=SO3, I=6=NACL, I=7=H2S 0024400 C 0024500 C ALPHA(1)=0.1592*(1.-429.5/TW) 0024600 0024700 ALPHA(2)=-0.0607*(1.-551.2/TW) 0024800 ALPHA(3)=0.7828*(1.-476.2/TW) ALPHA(4)=0.3131*(1.-198.2/TW) ALPHA(5)=0.3877*(1.-184.3/TW) 0024900 0025000 0025100 ALPHA(6)=0.3462*(1.-420.0/TW) ALPHA(7)=0.0592*(1.-79.38/TW) 0025200 0025300 C 0025400 C COMPUTE THE AVERAGE MOLECULAR WEIGHT OF MIXTURE 0025500 C (NEGLECT THE TRACE SPECIES) 1=NITROGEN,2=OXYGEN,3=WATER,4=CARBON DIOXIDE 0025600 C MOLE FRACTIONS OF DOMINANT SPECIES AFTER COMBUSTION 0025700 C 0025800 C 0025900 DEN=1.+1.0331*F X(1)=0.7905/DEN 0026000 X(2)=(0.2095-3.0993*F)/DEN 0026100 0026200 X(3)=2.0662*F/DEN X(4) = X(3)0026300 0026400 AM=DATOS(3,1)*X(1)+DATOS(3,2)*X(2)+DATOS(3,3)*X(3)+DATOS(3,4)*X(4) 0026500 C 0026600 C CALCULATE JET EXIT TEMPERATURE, (K), AND VELOCITY, (CM/SEC) 0026700 C 0026800 CALL CALMIX(TO,AM,CMIX) 0026900 GM=CMIX/(CMIX-1.9872/AM) 0027000 GMR=(GM-1.)/GM

.

027100 0027200 0027220 0027220 0027300		\J=3.14159*DJ*DJ/4. [J=T0*(PJ/P0)**GMR [F(DC.EQ.0.00) DC=1.00 JJ=((82.057*TJ)/(PJ*AM))*(WA*(1.+F))/(AJ*DC)	
0027400 C 0027500 C	CAL	CULATE MIXTURE PROPERTIES AT STATIONS J AND W	
0027600 C 0027700 0027800 0027900 0028000 0028100 0028200 0028300 0028400		RHOJ=PJ*AM/TJ/82.057 RHOW=PJ*AM/TW/82.057 CALL CALMIX(TJ,AM,CMIX) CALL CALMIX(TW,AM,CP) CALL MIXPRO(TJ,ETAMIX,LAMIX) CALL MIXPRO(TW,ETA,LAMDA) APHMIX=LAMIX/CMIX/RHOJ APHMIX=LAMIX/CMIX/RHOJ	
0028500 0028600 C	CAL		
0028800 C 0028900 0029000 0029100 0029200	UNC	IF(SHAPE.EQ.0.0) SHAPE=1.0 IF(DIV.EQ.0.0) DIV=1.0 REJ=RH0J*UJ*DIAW/ETAMIX RE=RE_V\$SHAPE*DIV	
0029300 C 0029400 C 0029500 C	GIV	E VALUES OF E/K, SIGMA AND MOLEC. WEIGHT FOR TRACE SPECIES I	
0029600 0029700 0029800	25	DO 10 I=1,7 IF(I.GT.1) GO TO 5 DATOS(1,5)=1962.0	
0030000	5	DATOS(2,5)=3.004 DATOS(3,5)=39.9971 GO TO 11 TE(1 GT 2) GO TO 6	
0030200 0030300 0030400 0030500	J	DATOS(1,5)=1375. DATOS(2,5)=3.567 DATOS(3.5)=22.98977	
0030600 0030700 0030800	6	GO TO 11 IF(I.GT.3) GO TO 7 DATOS(1,5)=2221.	
0030900 0031000 0031100		DATOS(2,5)=5.00 DATOS(3,5)=142.0371 GO TO 11	
0031200 0031300 0031400	7	IF(I.GT.4) GO TO 8 DATOS(1,5)=335.4 DATOS(2,5)=4.112	
0031600 0031600 0031700	8	DATUS(3,5)=64.0588 GO TO 11 IF(I.GT.5) GO TO 9	
0031900 0032000		DATOS(2,5)=431.4 DATOS(2,5)=4.207 DATOS(3,5)=80.0582	
0032100 0032200 0032300	9	GU 10 11 IF(I.GT.6) GO TO 12 DATOS(1,5)=1989.	

.

$\begin{array}{c} 0 & 0 & 3 & 2 & 4 & 0 & 0 \\ 0 & 0 & 3 & 2 & 5 & 0 & 0 \\ 0 & 0 & 3 & 2 & 6 & 0 & 0 \\ 0 & 0 & 3 & 2 & 7 & 0 & 0 \\ 0 & 0 & 3 & 2 & 8 & 0 & 0 \\ 0 & 0 & 3 & 3 & 2 & 0 & 0 \\ 0 & 0 & 3 & 3 & 1 & 0 & 0 \\ 0 & 0 & 3 & 3 & 2 & 0 & 0 \end{array}$	c	DATOS(2,5)=4.186 DATOS(3,5)=58.4428 GO TO 11 12 CONTINUE DATOS(1,5)=301.1 DATOS(2,5)=3.623 DATOS(3,5)=34.0758 11 CONTINUE
0033300	č	DIFFUSION COEFFICIENT OF TRACE SPECIES AT STATIONS J AND W
0033400 0033500 0033600	C C	CALL DIF(TJ,PJ,DA) CALL DIF(TW,PJ,DW)
0033800	č	LEWIS NUMBER OF TRACE SPECIES AT STATIONS J AND W
0034000	c	LEJ=DA/APHMIX Lew=dw/aphw
0034200	č	SCHMIDT NUMBER OF TRACE SPECIES AT STATION J
0034400 0034500	С	SC=ETAMIX/RHOJ/DA
0034600 0034700 0034800	C C C	MASS TRANS. NUSSELT NO. (PERIMETER-AVERAGED, CYLINDERICAL COLLECTOR)
0034900	č	CALL NUM(TW,TO,RE,SC,NU)
0035100	C C C	COMPUTE F(SORET)
0035300	с	CALL TMDF(I,TW,TO,LEW,ALPHA,TAU,THERM)
0035500	č c	COMPUTE F(TURB)
0035700	С	CALL TURBL(RE, TURB, TURIN, TURL, DIAW)
0035900 0036000 0036100	C C C	CALCULATE NA2SO4 DEPOSITION RATE CONTRIBUTED FROM SPECIES I BY CFBL FORMULATION.
0036200 0036300 0036400 0036500		IF(CMH(I).EQ.0.0) CMH(I)=1.0 SM(I)=TURB*DA*RHOJ*THERM*((XJ(I)-XW(I))+XW(I)*TAU/THERM* *(LEW/LEJ)**0.6*CMIX/CP/CMH(I))*NU*DATOS(3,5)/AM/DIAW IF(V(I).EQ.0.0) GO TO 10
0036700		M(I)=AW×3.600E6×0.5×142.0371/DATOS(3,5)×SM(I)×V(I)
0036800 0036900 0037000	С С С	PRINT INTERIM OUTPUT
0037100 0037200 0037300	•	IF(I.GT.1) GO TO 546 IF(FSORET) GO TO 100 WRITE(6,544)
0037500		100 WRITE(6,545)
0037600 0037700		545 FORMAT(T2,'I',T11,'D(I)',T25,'NU(I)',T40,'SC(I)',T55,'X(I),- CJ',T70,'X(I),W',T85,'TAU(I)',T100,'F(SORET),I',T116,'M(I)')

:

Ċ

.

.

-

. . .

- .

-

4

7

0037800 546 WRITE(6,550) I,DA,NU,SC,XJ(I),XW(I),TAU,THERM,M(I) 0037900 550 FORMAT(1X, I1, 6E15.5, F15.5, 2E15.5,/) 0038000 **10 CONTINUE** 0038100 C 0038200 C COMPUTE TOTAL SODIUM(NA) AND SULFUR(S) MASS FLUX 0038300 C SUM=J(NA), SMS=J(S) 0038400 C SUM=SM(1)*22.98977/39.9971+SM(2)*1.0+SM(3)*2.*22.98977 0038500 //142.0371+SM(6)*22.98977/58.4428 0038600 SMS=SM(3)*32.06/142.0371+SM(4)*32.06/64.0588+SM(5)* 0038700 *32.06/80.0582+SM(7)*32.06/34.0758 0038800 0038900 C 0039000 C COMPUTE SODIUM TO SULFUR MOLAR FLUX RATIO 0039100 C 0039200 RATIO=SUM/SMS*32.06/22.98977 0039300 C 0039400 C COMPUTE TOTAL NA AND S MOLE FRACTIONS AT STATIONS J AND W 0039500 C 0039600 YNAJ=XJ(1)+XJ(2)+(XJ(3)*2)+XJ(6) $YNAW = XW(1) + XW(2) + (XW(3) \times 2) + XW(6)$ 0039700 0039800 YSJ=XJ(3)+XJ(4)+XJ(5)+XJ(7) 0039900 YSW=XW(3)+XW(4)+XW(5)+XW(7) 0040000 WRITE(6,211) 0040100 211 FORMAT(//, T8, 'YNAJ', T24, 'YNAW', T40, 'YSJ', T57, 'YSW') WRITE(6,212)YNAJ,YNAW,YSJ,YSW 0040200 0040300 212 FORMAT(4E16.6,/) 0040400 C CALCULATE NA2SO4 DEPOSITION RATE (MG/HR) 0040500 C 0040600 C 0040700 WPRED=M(1)+M(2)+M(3)+M(6)0040300 C 0040900 C COMPUTE PERCENT ERROR BETWEEN M(PRED) AND M(OBS) 0041000 C 0041100 ERR=WPRED-WOBS ERROR=ERR/WOBS*100. 0041200 0041300 C 0041400 C PRINT RESULTS 0041500 C 0041600 WRITE(6,4)AM,TURB,RE,SUM,SMS,RATIO,WPRED,ERROR,GM,PR,X(1),X(2),X(3), -0041700 *X(4),TJ 4 FORMAT(/,10X,'AM =',F10.5,/,10X,'TURB =',F10.5,/,10X,'RE =',F10.3,/, -*10X,'SUM (G/CM**2/SEC) =',E13.5,/,10X,'SMS (G/CM**2/SEC) =',E13.5,/, -0041800 0041900 *10X, 'RATIO =', F10.4,/,10X, 0042000 0042100 *'PREDICTED NA2SO4 DEPOSITION RATE (MG/HR) =', F10.5,/,10X, *'ERROR (%) =',F10.4,/,10X,'GM =',F10.5,/,10X,'PR =',F10.6,/,10X, *'X(N2) =',F10.6,/,10X,'X(O2) =',F10.6,/,10X,'X(H2O) =',F10.6,/,10X, 0042200 0042300 0042400 *'X(CO2) =',F10.6,/,10X,'TJ (K) =',F10.4,/) 0042500 WRITE(6,950) 0042600 950 FORMAT(/,T5,'RHOJ(G/CM**3)',T21,'UJ(CM/S)',T37,'ETAMIX(POISE) C', T52, 'LAMIX(CAL/CM/K/S)', T73, 'CMIX(CAL/G/S)') WRITE(6,951)RH0J,UJ,ETAMIX,LAMIX,CMIX 0042700 0042800 0042900 951 FORMAT(4E16.6,4X,E16.6,//) 0043000 STOP 0043100

END

0043200 C 0043400 C 0043500 SUBROUTINE PARAM (J, EPSOVK, SIG2, M) 0043600 C 0043700 C SUBROUTINE PARAM GIVES THE VALUES OF E/K, SIGMA AND MOLECULAR WEIGHT 0043800 C 0043900 REAL M 0044000 COMMON/VA/DATOS(3,5) EPSOVK=DATOS(1,J) 0044100 0044200 SIG2=DATOS(2, J) M=DATOS(3,J) 0044300 0044400 RETURN 0044500 END 0044600 C 0044800 C 0044900 SUBROUTINE CALESL(J,T,CJ) 0045000 C THIS SUBROUTINE CALCULATES DIMENSIONLESS HEAT CAPACITY FROM A CURVE FIT VALID FOR 300K < T < 1000K and 1000K < T < 5000K0045100 C 0045200 C 0045300 C 0045400 DIMENSION COEF1(5,4), COEF2(5,4) 0045500 DATA COEF1/ 0.28532899E+01 , 0.16022128E-02 ,-0.62936893E-06 , 0045600 ¥ 0.11441022E-09 ,-0.78057465E-14 , 0045700 0.36122139E+01 , 0.74853166E-03 ,-0.19820647E-06 , 0.33749008E-10 ,-0.23907374E-14 , ¥ 0045800 ¥ 0045900 ¥ 0.26340654E+01 , 0.31121899E-02 ,-0.90278449E-06 , 0046000 × 0.12673054E-09 ,-0.69164732E-14 , 0046100 ¥ 0.44608041E+01 , 0.30981719E-02 -0.12392571E-05 , 0046200 × 0.22741325E-09 ,-0.15525954E-13 / 0046300 DATA COEF2/ 0.37044177E+01 ,-0.14218753E-02 , 0.28670392E-05 , 0046400 ¥ -0.12028885E-08 ,-0.13954677E-13 0046500 × 0.37837135E+01 ,-0.30233634E-02 , 0.99492751E-05 , 0046600 ¥ -0.98189101E-08 , 0.33031825E-11 0.41675564E+01 ,-0.18106868E-02 , 0046700 × 0.59450878E-05 , 0.15284144E-11 , 0046800 ¥ -0.48670871E-08 , 0.87350957E-02 ,-0.66070878E-05 , 0046900 ¥ 0.24007797E+01 , 0047000 ¥ 0.20021861E-08 , 0.63274039E-15 / 0047100 IF(T.GT.1000.) GO TO 10 CJ=C0EF2(5,J)*T**4+C0EF2(4,J)*T**3+C0EF2(3,J)*T**2+C0EF2(2,J)*T 0047200 0047300 *+COEF2(1,J) 0047400 GO TO 20 10 CJ=COEF1(5,J)*T**4+COEF1(4,J)*T**3+COEF1(3,J)*T**2+COEF1(2,J)*T 0047500 0047600 *+COEF1(1,J) 0047700 20 RETURN 0047800 END 0047900 C 0048100 C 0048200 SUBROUTINE CALMIX(T,AM,CMIX) 0048300 C 0048400 C SUBROUTINE CALMIX PROVIDES MIXTURE HEAT CAPACITY IN CAL/(G*K) 0048500 C

•		
0048600	00 COMMON/GFR/X(4)	
048700	00 C=0.	
0048800	DO DO 8 J=1,4	
0048900	CALL CALESL(J,T,CJ)	
0049000	$C = C + C J \times X (J) \times 1.9872$	
0049100	10 8 CONTINUE	
0049200		
0079200		
0047500		
0049400		
0049500]] [
0049500		*****
0049700		
0049800	SUBROUTINE COLINT(II, JJ, T, OVDT, ETA, COND)T,OMEDT)
0049900	10 C	•
0050000	DO C THIS SUBROUTINE GIVES COLLISION INTEGRALS,	VISCOSITY AND THERMAL
0050100	D0 C CONDUCTIVITY OF SPECIES USING CHAPMAN-ENSK	LOG THEORY
0050200	0 C	
0050300	DO REAL M	
0050400	DIMENSION OME(79), ALPA(79), OMED(79)	
0050500	DO DATA ALPA/ 0.300 , 0.350 , 0.400 , 0.45	0 . 0.500 . 0.550 . 0.600
0050600	0.650 0.700 0.750 0.80	0 . 0.850 . 0.900 . 0.950
0050700	10 × 1.000 1.050 1.100 1.15	0, 1, 200, 1, 250, 1, 300, -
0050800		10 - 1550 - 1600 - 1650
0050900		(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0051000		$10 \ 7 \ 500 \ 7 \ 600 \ 7 \ 700 \ -$
0051100		$0 \ , \ 2.500 \ , \ 2.600 \ , \ 2.700 \ ,^-$
0051200		10 , 3.200 , 3.300 , 3.400 , $-$
0051200		0 , 5.900 , 4.000 , 4.100 ,-
0051300	10 × 4.200 , 4.300 , 4.400 , 4.50	0 , 4.600 , 4.700 , 4.800 ,-
0051400	10 * 4.900 , 5.000 , 6.000 , 7.00	0, 8.000, 9.000, 10.00, -
0051500	JU * 20.00, 30.00, 40.00, 50.0	10 , 60.00 , 70.00 , 80.00 ,-
0051600	JU * 90.00,100.0/	
0051700	DATA DME/ 2.7850 , 2.6280 , 2.4920 , 2.	3680 , 2.2570 , 2.1560 , -
0051800	0 × 2.0650 , 1.9820 , 1.9080 , 1.	8410 , 1.7800 , 1.7250 , -
0051900)0 × 1.6750 , 1.6290 , 1.5870 , 1.	5490 , 1.5140 , 1.4820 , -
0052000)0 × 1.4520 , 1.4240 , 1.3990 , 1.	3750 , 1.3530 , 1.3330 , -
0052100)0 * 1.3140 , 1.2960 , 1.2790 , 1.	2640 , 1.2480 , 1.2340 , -
0052200	00 × 1.2210 , 1.2090 , 1.1970 , 1.	1860 , 1.1750 , 1.1560 , -
0052300)0 × 1.1380 , 1.1220 , 1.1070 , 1.	0930 , 1.0810 , 1.0690 , -
0052400	1.0580 , 1.0480 , 1.0390 , 1.	0300 , 1.0220 , 1.0140 , -
0052500	1.0070, 0.9999, 0.9932, 0.	9870 . 0.9811 . 0.9755
0052600	0,9700,0,9649,0,9600,0	9553 . 0.9507 . 0.9464
0052700	0 × 0.9422 0.9382 0.9343 0.	9305 . 0.9269 . 0.8963
0052800	0 X 0.8727 0.8538 0.8379 0	8242 . 8 7432 . 8 7005
0052900		6196 . 0 6076 . 0 5973
0053000		
0053100	10 DATA OMEDI 2 6620 . 2 6760 . 2 3180 . 2	1860 2 0440 1 9440 -
0053200		
0053200	10	4040 J 7750 J 7640 -
0053600		2530 1 2330 1 2350
0053500		.2330 / 1.2330 / 1.2150 / -
0053200		.1730 , 1.1400 , 1.1280 , -
0053000		.0840 , 1.0/50 , 1.0570 , -
0053700		. 9996 , 0.9878 , 0.9770 , -
0053000		.9406 , 0.9328 , 0.9256 , -
0023900		LXYYX . N.8942 . N 8888 . —

0054000	×	0.8836 , 0.8788 , 0.8740 , 0.8694 , 0.8652 , 0.8610 , -	
0054100	×	$0.8568 \cdot 0.8530 \cdot 0.8492 \cdot 0.8456 \cdot 0.8422 \cdot 0.8124 \cdot -$	
0054200	×		
0054300	×		
0054400	¥	0 5170 / 0.5750 ; 0.5570 ; 0.5464 ; 0.5552 ; 0.5250 ; -	
0054500	~		
0054200			
0054000		CALL FARAN(JJ,EUNJ,SIGL,AJJ)	
0054700		CALL PARAMETI, EURI, SIGK, ALL)	
0054800		M=(A11+AJJ)/2.	
0054900		SIG2=(SIGL+SIGR)/2.	
0055000		EOVKIJ=SQRT(EOKJ×EOKI)	
0055100		ADT=T/EOVKIJ	
0055200		GO TO 68	
0055300	67	CALL PARAM(II,EPSOVK,SIG2,M)	
0055400		ADT=T/EPSOVK	
0055500	68	J=3	
0055600	69	IF(ADT-ALPA(J))112,111,110	
0055700	110		
0055800		IF(J.LE.79)G0 T0 69	
0055900		GO TO 204	
0056000	111		
0056100			
0056200		GO TO 200	
0056300	112		
0056400		D (NDIERY(R-1))*(ME(1-2)/2 +(1 - RXX2)*(ME(1-1)+RX(R+1))*(ME(1)/2	
0056500		ONEDTERY(RET) YOMED(1-2)/2.1(1. DAA2)YOMED(1-1)TER(DT1.)XUMED(1)/2.	
0056600	¥	SHEDT-DACE 1.7AGHED(J-27/2.+(1D**2)*OMED(J-1)+D*(D+1.)*OMED(J//2-	
0056700	~		
0056800	204	50 10 200 AVDT-0 500024(/ADT/100 XVV/-0 17XX	
0056000	204	UVDI-0.5002*((ADI/100.)**(-0.1/))	
0050500	200		
0057000	200		
0057100		$ \begin{array}{c} CALL & CALESL(1), 1, CR \\ CALESL(1), 1, CR \end{array} $	
0057200		CONDI-(1.98/2/M)*(15./4.+1.32*(CR-5./2.))*ETA	
005/300		KETURN	
0057400	•	END	
0057500	C		
0057600	C*****	***************************************	×
0057700	C		
0057800	~	SUBRUUTINE MIXPRU(T,ETAMIX,LAMIX)	
0057900	6		
0058000	C THI	5 SUBROUTINE PROVIDES MIXTURE VISCOSITY AND THERMAL CONDUCTIVITY	
0058100	C .		
0058200		REAL LARP, LAMIX	
0058300		DIMENSION VISC(4), LAMP(4)	
0058400	I	CONMON/VA/DATOS(3,5)	
0058500	. 1	CONMON/GFR/X(4)	
0058600	1	ETAMIX=0.	
0058700		LAMIX=0.	
0058800		0=11	
0058900	· 1	00 40 J=1,4	
0059000	1	L=N	
0059100		CALL COLINT(N,I1,T,OVDT,ETAMJ,CONDT,OMEDT)	
0059200	,	VISC(J)=ETAMJ	
0059300		LAMP(J)=CONDT	

0059400		40 CONTINUE
0059500		DO 18 I=1.4
0059600		PROVED
0059700		
0059800		G=1/(2) ¥CADT(2) N¥((1) +DATOC(2) TAZDATOC(2) (NYWA A CNNA2)
0059000		× 150 DT(VICO(1))X(01, TDAIU3(3, I)/DAIU3(3, J)]X(1
0057700		PROVERSION AND A CONTRACT
00000000		
0000100		
0060200		EIAMIX=EIAMIX+X(I)*VISC(I)/PROV
0060300		LANIX=LAMIX+X(I)*LAMP(I)/PROV
0060400		18 CONTINUE
0060500		RETURN
0060600		END
0060700	С	
0060800	C××	***************************************
0060900	С	
0061000		SUBROUTINE COEDIF(T.P.I.J.D)
0061100	С	
0061200	Ċ	THIS SUBROUTINE CALCULATES BINARY DIFFUSION COFFETCIENT
0061300	č	Second and the second and s
0061400	-	CALL COLINICT, L.T. OVDI, ETA CONDI OMEDIN
0061500		CALL PARAM(T, FPSOVK, STGT MT)
0061600		CALL PARAM(I) EPSOVY STCIAL)
0061700		SIGEL / 2 X(SIGLETCI)
0061800		
0061000		D=0.0010503*30((((***3)*(1./WI+1./WJ))/(P*OMEDT*(SIG**2))
0061700		
0002000	~	END
0002100		
0062200	6**	***************************************
0052300	C	
0062400	_	SUBROUTINE DIF(T,P,DA)
0062500	С	
0062600	С	SUBROUTINE DIF GIVES DIFFUSION COEFFICIENT OF TRACE SPECIES K
0062700	С	IN GAS MIXTURE
0062800	C	
0062900		COMMON/GFR/X(4)
0063000		DEN=0.0
0063100		DO 101 J=1.4
0063200		K=5
0063300		CALL COEDIE(T.P.K.J.DIEE)
0063400		
0063500	1	AT CONTINUE
0063600	-	
0063700		
0063200		
0003800	~	END
0003700	~~~~	
0004000	しまた:	^{╓╓╓╓╓╓╓} ╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨╨
0004100	C	
0064200	•	SUBRUUTINE TMDF(I,TW,TO,LEW,ALPHA,TAU,THERM)
0054300	C .	
0064400	C S	SUBRUITINE TMDF CALCULATES THERMAL DIFFUSION EFFECT, F(SORET).
0064500	<u>c</u> I	LABELLED AS 'THERM'. IF FSORET IS FALSE, THERM=1.0
0064600	С	
0064700		LOGICAL FORFT

```
0064800
            COMMON FSORET
0064900
            REAL LEW
0065000
            DIMENSION ALPHA(7)
0065100
            IF(FSORET) GO TO 10
0065200
            THERM=1.0
            TAU=0.0
0065300
0065400
            GO TO 20
         10 TAU=ALPHA(I)*LEW**0.4*(TO-TW)/TW
0065500
0065600
            ET=EXP(-TAU)
0065700
            THERM=TAU/(1.-ET)
0065800
         20 RETURN
0065900
            END
0066000 C
0066200 C
0066300
            SUBROUTINE NUM(TW, TO, RE, SC, NU)
0066400 C
0066500 C
         SUBROUTINE NUM CALCULATES PERIMETER AVERAGED NUSSELT NUMBER
         INCLUDING EFFECTS OF MACH NUMBER AND VARIABLE PROPERTIES
0066600 C
0066700 C
0066800
            REAL NU
0066900
            NU=(0.40*SQRT(RE)+0.06*RE**(2./3.))*(SC**0.4)*
           1(TO/TW)**(-0.04)
0067000
0067100
            RETURN
0067200
            END
0067300 C
0067500 C
0067600
            SUBROUTINE TURBL(RE, TURB, TURIN, TURL, DIAW)
0067700
      С
0067800 C
         SUBROUTINE TURBL CALCULATES EFFECT OF MAINSTREAM TURBULENCE
0067900 C
0068000
            REAL LOD
0068100
            IF(TURIN.NE.0.0) GO TO 5
0068200
            IF(TURB.EQ.0.0) GO TO 10
0068300
            GO TO 30
          5 LOD=TURL/DIAW
0068400
0068500
            IF(LOD.GT.2.0) PSI=0.124*(LOD-11.0)**2.+2.
            IF(LOD.LE.2.0) PSI=-4.0*(LOD-1.75)**2.+12.25
0068600
0068700
            PSI=PSI/1000
0068800
            XI=TURIN*RE/100
0068900
            IF(XI-100.)1,2,2
0069000
          1 PHI=12.375*(1.-(1.-XI/100.)**1.5)
0069100
            GO TO 20
0069200
          2 PHI=9.0+0.03375*XI
0069300
         20 TURB=1.+PSI*PHI
0069400
            GO TO 30
         10 TURB=1.0
0069500
0069600
         30 RETURN
0069700
            END
0069800 C
```

1

-

.

.

REFERENCES

 Rosner, Daniel E.; and et al.: Chemically Frozen Multicomponent Boundary Layer Theory of Salt/Ash Deposition Rates from Combustion Gases. Combust. Sci. Technol., vol. 20, no. 3-4, 1979, pp. 87-106.

- 2. Helt, James E.: Evaluation of Alkali Metal Sulfate Dew Point Measurement for Detection of Hot Corrosion Conditions in PFBC Flue Gas. ANL/CEN/FE-80-12, Argonne National Laboratory, 1980.
- 3. Santoro, Gilbert J.; Kohl, Fred J.; Stearns, Carl A.; Gökoglu, Süleyman A.; and Rosner, Daniel E.: Experimental and Theoretical Deposition Rates from Salt-Seeded Combustion Gases of a Mach 0.3 Burner Rig. NASA TP-2225, 1984.
- 4. Gordon, Sanford; and McBride, Bonnie J.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouget Detonations. NASA SP-273, 1971.
- 5. Rosner, Daniel E.; and Nagarajan, Ramamurthy: Transport Induced Shifts in Condensate Dew Point and Identity in High Temperature Multicomponent Systems with Chemical Reaction, Chem. Eng. Sci. (In press, 1984.)
- 6. Seshadri, K.; and Rosner, Daniel E.: Optical Methods of Dew Point and Deposition Rate Measurements in Salt/Ash-Containing Combustion Gases--1. B₂O₃(1) Deposition Rates by the Interference Method and Comparison with Theory, AIChE J. Vol. 30, No. 2, pp. 187-196, 1984.
- Rosner, Daniel E.: Thermal (Soret) Diffusion Effects on Interfacial Mass Transport Rates. PCH PhysicoChemical Hydrodynamics, vol. 1, no. 2-3, 1980, pp. 159-185.
- 8. Svehla, Roger A.: Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures. NASA TR-R-132, 1962.
- 9. Bird, Robert B.; Stewart, Warren E.; and Lightfood, Edwin N.: Transport Phenomena. John Wiley, 1960.
- 10. Whitaker, Stephen: Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles, AIChE J., vol. 18, no. 2, Mar. 1972, pp. 361-371.
- 11. Kays, William M.; and Crawford, Michael E.: Convective Heat and Mass Transfer. Second ed. McGraw Hill, 1980.
- 12. Gökoğlu, Süleyman A. and Rosner, Daniel E., "Engineering Correlations of Variable-Property Effects on Laminar Forced Convection Mass Transfer for Dilute Vapor Species and Small Particles in Air," NASA CR-168322 (1984).
- 13. Kays, William M.; and Bjorklund, I. S.: Heat Transfer from a Rotating Cylinder with and without Crossflow. Trans. ASME., vol. 80, 1958, pp. 70-78.
- 14. Gökoğlu, Süleyman A.; and Rosner, Daniel E.: Correlation of Thermophoretically-Modified Small Particle Deposition Rates in Forced Convection Systems with Variable Properties, Transpiration Cooling and/or Viscous Dissipation, Int. J. Heat Mass Transfer. Vol. 27, No. 5, pp. 639-645, 1984.
- 15. Srivastava, R.; and Rosner, Daniel E.: A New Approach to the Correlation of Boundary Layer Mass Transfer Rates with Thermal Diffusion and/or Variable Properties. Int. J. Heat and Mass Transfer, vol. 22, Sept. 1979, pp. 1281-1294.
- 16. Rosner, Daniel E.; Gökoğlu, Süleyman A.; and Israel, Rajasingh: Rational Engineering Correlations of Diffusional and Inertial Particle Deposition Behavior in Non-Isothermal Forced Convection Environments. Fouling of Heat Exchange Surfaces, Engineering Foundation Inc., 1983, pp. 235-256.

- 17. Gökoğlu, Süleyman A.: Thermophoretically Enhanced Deposition of Particulate Matter Across Nonisothermal Boundary Layers. Ph.D. Dissertation, Yale Univer., 1982.
- Morgan, V. T.: The Overall Convective Heat Transfer from Smooth Circular Cylinders. Adv. Heat Transfer, vol. 11, 1975, pp. 199-264.
- 19. Kestin, J.: The Effect of Free-Stream Turbulence on Heat Transfer Rates. Adv. Heat Transfer, vol. 3, 1966, pp. 1-32.
- 20. Van der Hegge Zijnen, B. G.: Heat Transfer from Horizontal Cylinders to a Turbulent Air Flow. Appl. Sci. Res., Sect. A, vol. 7, 1958, pp. 205-223.

Constants

1 5 54

.

.

•

.

1. Report No. NASA CR-168329	2. Government Accession No.	3. Recipient's Catalog No	
4. Title and Subtitle Computer Program for the Ca Convective Diffusion Deposi Frozen Boundary Layer Theory	l Iculation of Multicomponent tion Rates from Chemically y	5. Report Date January 1984 6. Performing Organizatio	n Code
7. Author(s) Süleyman A. Gökoğlu, Bor-Ku Daniel E. Rosner	an Chen* and	8. Performing Organizatio None 10. Work Unit No.	n Report No.
9. Performing Organization Name and Address Analex Corporation and Y 21000 Brookpark Rd. C Cleveland, Ohio N 44135 00	ale University hemical Engineering Dept. ew Haven, Connecticut 6520	11. Contract or Grant No. NAS3-23293 at 13. Type of Report and Per	nd NAG3-201
Netional Assessmentias and Co			eport
Washington, D.C. 20546	ace Administration	14. Sponsoring Agency Co	de
		533-04-1A	(E-1971)
Final report. Project Mana Research Center, Cleveland, Nemours & Co., Biochemicals 16 Abstract The computer program develo layer (CFBL) theory for cal is documented. A specific calculations on a cylinderi typical program input and o	ger, Carl A. Stearns, Materi Ohio 44135. *Present addr Dept. E335, Wilmington, Del ped based on multicomponent culating vapor and/or small application to perimter-aver cal collector is demonstrate utput for users.	als Division, Na ess: E.I. du Pe aware 19898. chemically froze particle deposi aged Na ₂ SO ₄ depe d. The manual	ASA Lewis ont de en boundary tion rates osition rate includes a
17. Key Words (Suggested by Authon(s)) Deposition; CVD; Corrosion; mass transfer; Boundary lay program	Heat and Unclassifie er; Computer STAR Catego	nt d - unlimited ry 34	
19. Security Classif. (of this report) 20. Unclassified	Security Classif. (of this page) Unclassified	21. No. of pages	22. Price*

÷

*For sale by the National Technical Information Service, Springfield, Virginia 22161

٠.

٢

,

.

4

: ; ~

•

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 SPECIAL FOURTH CLASS MAIL BOOK

Postage and Fees Paid National Aeronautics and Space Administration NASA-451 ł

1

,

,

•

NVZV

POSTMASTER:

.

.:

If Undeliverable (Section 158 Postal Manual) Do Not Return