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The cardinal spline approach to defining interpolatory curves has been of recent 
interest in the application of computer graphics to modelling and animation problems 
[I], [ 2 ] .  In our formulation of this interpolation problem (C) we desire to obtain 
a vector valued function V which forms a ~1 map from [0,n] into the plane in such a 
way that V(i) and V'(i) attain prespecified (vector) values P i  and Ti for the 
integers i=O, 1,. ..n. The intent is that the planar curves V(S) pass through each 
point P in the direction corresponding to T . In actual practice it is common for 

i i 
only the interpolation points P to be user specified. Suitable tangents T are then i i 
provided by some heuristic to complete the specification of (C). If, for instance, 
the Ti values are computed as 

(each tangent is the average of the incoming and outgoing chord vectors to the adja- 
cent points), then the solution to (C) is the Catmull-Rom spline. Once the tangents 
T. have been defined we may write the cardinal spline curve V(s) as a collection of 
1 

segments 

where each curve segment Vi is a Hermite interpolant which may be written simply in 
terms of the cardinal Hermite basis. Defining a vector function of a real variable 
s by 

we may wr'ite 

For most applications the magnitudes of the tangents T can be allowed to vary 
without effecting their primary function which is to furnisd a suitable direction for 
the interpolating curve at each node. The effects of these variations on the resulting 
curve are perceived subjectively as "shape" changes. They do not alter the funda- 
mental property of such curves - that they possess a continuously varying unit tangent 
vector. The effects are best understood by considering a single section of the curve 
which passes through points P and P with tangents T and TI. In general, increasing 

0 1 0 
the magnitude of a tangent vector forces the interpolating curve to "stay closer 
longer" to the line on which the tangent vector lies. Thus increasi.ng the magnitude 
of one tangent at the expense of the other will "pull" the curve in its direction. 
This effect is called "bias." Increasing the magnitudes of both tangents proportion- 
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ally, forces the bend more toward the middle; decreasing the magnitudes allows the 
curve to "leave the tangent directions sooner" and causes a flattening effect called 
"tension." A discussion of these effects is given in [ 3 ] .  

The important issue here is the point of view that the salient feature of the 
tangent vectors is the "direction" they impart to the curve and that their magnitudes 
may be adjusted to effect shape control. A natural question to ask in this context 
is the following - given the two endpoints and corresponding tangent directions which 
define a segment on the curve, what should be the default bias, i.e. the ratio of 
their magnitudes which serves as a base for further adjustments? We feel that this 
question has a natural answer based on the geometry of each curve segment, one that 
yields curves with interesting and desirable shape properties. We give a brief sum- 
mary of our treatment. 

Given a segment with endpoints P and P1 and tangents T and T we solve the 
equation 

0 0 1 

for scalar values x and y. There are three primary cases to consider: 

i) xy > 0 
ii) xy < 0 

iii) (3) has no solution 

Other cases occur when T and T lie on the line containing Po and PI and are degene- 
0 .1 racies which we discuss separately. For case i) we rescale To andT as xT and yT 

0 respectively. For cases ii) or iii) we solve (3) with To replaced by To , its 1 

"reflection" in the line containing Po and P1. The x and y thus obtained will now 
satisfy xy > 0, and we proceed as before rescaling To (the original To) as xTo and 
TI as yT This rescaling is the means by which a ltnatural1l bias for the segment is 

1 ' 
obtained. See figure 1. 

When the new tangents are multiplied by a common "tension" factor t, the resulting 
curve segment defined by (2) has the following properties which form our justification 
for using the word "naturall1 to describe the biasing technique. 

For case i) 

- For t = 3 the segment has zero curvature at both end points P and PI. 
0 

For t < 3 the segment will have no inflection points (changes of conca- 
vity). For t > 3 the segment will have exactly two inflection points. 

- For t = 2 the 3rd order terms vanish and the resulting curve is in fact 
a parametric quadratic. 

- For t = 6 the segment will have a cusp where the curve parameter s = .5. 

For cases ii) and iii) 

- The curve will intersect the line segment S connecting Po and P1 exactly 
once (let Q denote this point). 



- The maximum deviations of the curve from S on either side of Q will be 
the same. 

- For t = 3 the tangent to the curve at Q is perpendicular to S. 

As a consequence of our results for segments falling under case i) we can prove 
the following theorem. 

Let PI, P2, . . . Pn be vertices of a convex planar polygon P given in order of 
adjacency, and let tangents Ti be defined by (1) with 

T = T  and 
Tn+l 

= TI 
0 n-1 

The closed cardinal spline curve (whose segments are defined by (2) where the tangents 
are biased by the procedure we have outlined and controlled by a tension factor t) 
will form the boundary of a convex set C containing P for any value of t such that 
O < t < 3 .  

In short, a convex control polygon will yield a convex interpolant. We can also give 
examples where the interpolant fails to be convex if the tangents are left unbiased. 
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