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summar

During the contract period we have constructed an AsC13

epita y.ial system used to provide buffer layers for our FET strut-,

turer, we have developed a submicron lithographic processes using

deep U.V. tachniquee and, employing the: = techniques we have pro-

duced Working .5 aicron gate device°. In addition, we have con-

tinued our developing of submicron nixer diodes. In addition, we

have investigated the "gettering" of substrates as a technique to

improve the .nobility of ion implantated layers. The result of

this experiment showed was a correlation between improved hall

mobilities and Bettered substrates. Finally, several theorecti-

crl studies are reported.

1
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Materials Development

In section A, we will report on the progress in develop-

:vent of a AsC13 system for the production of high quality buffer

& active layers for our microwave devices. It is anticipated

that the AsC13 material will provide thick buffer layers for iso-

lating the substrate effects while growth technologies such as

MBE will provider the thin critical active regions. ?art B of

0
tnis section concentrates on our getterin3 exoerinants on GaAs 	 s

substrates for direct ion iarplantation applications while, part C
1

reports on the status and capabilities of our recently acquired

MBE system.

y
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A	 Project Status of CVD Reactor

Introduction

We report here the status of our redesigned halide tranr-

port VPE reactor and results obtained to date. This effort

parallels construction of a pyrolytic CVD reactor now completed.

As previously :mentioned, GaAs FET performance snows a

great dependence on submicron doping thicking products, backround

impurities and substrate properties. The syste •a is designed to

grow thick (greater than 10 micron)	 high-resistivity buffer

layers which isolates our FET devices from substrate related

Aproblems. a

The achievement of high resistivity buffer layers has All,
been well demonstrated	 in the	 literature	 to	 require use of the

well known "mole fraction effect"	 first described	 by Dilorenzo

and	 Moore	 in	 1971.	 A two bubbler	 systems similar to that of Cox
,

and	 Dilorenzo	 (1971)	 is	 adapted, but	 with	 ce-tai , , changes and

simplifications.

't\
- 4 -
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OF POOR QUALITY

VPE System Technology

A systematic outline of our system as originally desig-

ned is shown in figure (1). It was at first intended to demos-

trate high-purity and reasonable process control with a wimple

reactor design. Systems improvements were later added as they

proved necessary.

The original design was a teflon plumbin3 system using a

continuous hydrogen purge to avoid adding reactor bypass valves

as a posslbie source of contamination. The use of teflon is in-

tended to minimize the presence of any metallic impurities, as

well as decrease the "memory effect" of any system reagents. 	 °I
This teflon plumbing and buffer valves still seem to be a useful 	 \

	 ,,
system feature and were retained in use.

The first growths utilized AsC13 obtained in pre-

packaged plug-in bubblers from Apache Chemicals, Inc. These

AsC13 bubblers were designed to'plug into solid-sate temperature

controllers also manufactured by Apache chemicals, Inc. This was

deamed to be a valuable feature which would minimize toxic

hazards associated with loading the CVD system with AsC13, 1,7e

- 5 -



^. 
of

experienced many hardware problems with these temperature con-

trollers. After being sent several updated versions, we have

only this year obtained models which work as prescribed.

To check the reactor kinetics 45 grans of liquid Gallium

as source ;material was loaded. We then attempted source r atur3-
tion at 8200 C and observed the saturation time and otner charac-
teristics.	 le found it necessary to add a source baffle to in-

crease source saturation efficiency. Growth parameters of liquid
{

source runs 3 thru 5 are shown in Table I.

The source boat was later loaded with approximately 40

grams of crushed GaAs as a solid phase source. Solid sources

have been found to offer better thickness control, without the

troublesome source saturation / etch cycle of liq,_^id sources. Bet-
ter surface morphology is also observed.

Initially we used as source material the upper "cone"

portion of Bridgemgn process se •ni-insulating GaAs crystals pro-
vided by Cominco, Inc. This solid source .material was used in
growths under a variety of reactor temperatures, carrier gaes

flows, and bubbler temperatures shown in Table I, r.ns " thru 21.

\ Over certain parameter ranges 3ood :morphology and thickness con-
trol were obtained. Certain growth and 'hardware problems sere
encountered which h. attacked with several design changes.

OE POOR QUALITY.

	 X
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'de decided to reduce the normal buildup of reaction by

products at the exit end of the reactor tube by usa of a hydro3en

counterflow system. Thia build up could produce particle con-

tamination. Several endcap designs were tried in which the sub-

strate holder, dump tube and endcap were fuzed into one quartz

containment asse;nbly as shown in figure (2). The solid-source

was changed to sealed-vessel synthesized GaAs dices supplied by

Morgan Semiconductor for the runs remaining runs after run 020.

This high purity source material gave only a superficial improve-

ment in the electri^.al characteristics. Subsequently we were

able to eliminate the solid source as a cause of the extrinsic

i

i

compensation since no source, temperature or other growth

parameter dependence was observed.

While at this point the faulty temperature controllers

were still being used, it was suspected that the AsC13 itself was

contaminated and causing the.epilayers to become heavily

compensated.

The AsC13 was returned in tine plug-in bubblers to the

manufacturer for analysis. Flame spectrochemical analysis

revealed approximately 50 ppm Fe, 20ppm Si and a few pp-.n traces of

Ag and other elements. Tha rource Fe levels are very consistent

with the electrical characteristics observed in the epilayers.

- 7 -
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Fe backrounds generally in the 10- 8 .nole frbetion range will

yield hi„h remistivity layers with ;nobilities of approximately

1090-2000 cm 2 V- 1 Sec- 1 . We tentatively concluded, therefore,

that our low mobilities and high resietivities were caumed by

unintentional incorporation of bubbler Fe due to contaminated

A.C13.

System Modifications

To alleviate the above difficulties we hnve .nade ehan3es

in our source materials and proccess. The most important of

thesf: by far is the use of good quality AsC13 obtained from

other domestic :nanufacturers. 4 We will fill our plug-in bubblers

with the pure AsC13 demonstrated in the field as having the

requisite purity. 5 This chan3e alone is expecta:i to solve most

of the compensation problem.

The reactor tute itself has been modified extensively.

At the inlet side a vacuum chamber thermally isolates the inlet

tubes from the source region. This aids greatly in reducing any

premature thermal decomposition of main or bypass injection line

reagents. As already shown in figure (2), the substrate holder,

dump tuba and endcap were fuzed into one assembly for .naxi:nu;n

leakage integrity. Not shown is the new flat O-ring ,joints which

- 3 -
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Ô

O • • n • • t

O

N

1

n 	 •

eI • .
Q O N

•

n

•

•

{

•

i

•

e
m lr•/	 oei	 Nb	 .ei	 •	 NM'•	 o6

Y

N	 N	 H	 N	 M ••	 /nY	 M

n	 n	 ao	 r	 low
M	 M	 w	 M	 n

r	 O	 a	 .oi	 ..	 n	 n

^	 N	 W	 n	 n	 N	 ^	 ^

•

10N

s M M M w s s >^ s

°w'Sun NO.	 n	 M	 n	 ,.,°	 Y~w	 ,ml	 ,

e

S ^ 1	

QQ

O

• ^P4 E g

C

N ,M

°s {e^j s e
^ • ^ Wqq

'x as
. 

$e 

a^^
y4

•OMN 11 Omi 00^



will replace the ta per points used so far.

Up until now rotameters were used for :Hain and bypass

hydrogen gas metering in an initial attempt to keep costs low.

These have been replaced by electronic mass flow controllers

which will give superior accuracy.

The original plan to use Fe or Cr solid-phase doping for

the high resistivity buffer layer has been scrapped in favor of

more promising methods. Combinations of the :vole fraction effect

and addition of oxygen during growth have been observed to sup- 	 ;

press incorporation of backround impurities 697. This oxygen Bet-

tering occurs without the memory affect caused by contamination

of the tube when heavy metals are introduced as hi-resistivity 	 i

dopants. There is also evidence of deep oxygen donors further

serving to reduce the free carrier concentration. :Je will study

other methods of introducing oxygen into the system, e.g., using

CO2 gas, without adversely affecting the mobility of the api-

taxial active layers.

- 9 -
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Summary

, 
11 411

We conclude fro;n the studies completed thus far that the

more conventional designs for AsCl3, which our redesigned system

more closely resembles, are best ussd for th•i growth of high

purity GaAs buffer and active layers in conjunction with "clean"

Bettering techniques such as oxygen injection. Various oxygen

compounds such as CO2 and CO will allow better oxygen incorpora-

tion and at the same time introduce small quantities of deep car-

bon aeceptons to more adequately compensate , shallow Si donor and

other acceptor levels. The .nole fraction effect shows 3reat

promise in further dopant suppression when used in conjunction

with the oxygen incorporation.

With this considerations taken into account we believe

this modified approach is a much more fruitful method to reliably

produce hi-quality spitaxial GaAs.

- 10 -

.,U



V	 '^

References

1. Apache ChemicalInc., Seward Ill. 61077

2. Tatsuo Aoki, Jap.J. Appl. Phys. Vol.14 1 No.9., Sept.

1975 p• 1267

3. Morgan Semiconductor, Inc., Garland Texas

4. Metal Specialities, Inc., Fairfield Cr.. 05430

5. Raytheon Co., SAD0 Division, Morthboro AA 01532

6. G.D. See et.al ., "Spectroscopic Studies of 31

Suppression by the Addition of 02 in VH Growth of

GaAs", 1934 Electronic Materials Conf=rence.

7. T.S. Low et.al ., op. cit.

3
r

11



9	 y
A	 'i

ia	 Ion Implantation

Semi-insulating gallium arsenide grown by liquid encap-

suled Czochralski (LEC) method has been plagued by a number of

problems. For example, heating LEC substrates at typical anneal-

ing and growth temperatures (700-9000C) frequently proceduces a

highly conductive thin layer near the surface. This phenomenon

is usually accompanied by poor reproducibility of carrier con-

certrations, low mobilities, and photoluminescence changes. We

have began to study this and other problems related to GaAs sub-

strates for direct ion implantation applications. A simple "get-

tering" technique that em ploys heat-treatments at 3000 for 24

hours in flowing H2 with an overpressure of As provided by InAs

was used. An outline of our gettering experimental procedure is

provided in table b2 on page 15 of this report.

Routine hall measurements were taken at •room temperature

and 770 K. The hall samples employed the standard Van der Pauw

technique with clover-leaf shaped samples

specimen are made with tin bead's alloyed to the leaves, whi

I
turn provide edge contacts to the central part of the sampl

For our purposes, the carrier concentration and the mobilit

- 12 -
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particulary important values, and can be obtained from these

measurements.

The heat treated or "gettered" implanted and annealed

layers typically showed a higher room temperature and 770K

r	 mobility. The improvement in mobility varies from wafer to wafer

and is shown in the figures (3a) and (3b) of mobility vs sub-

strate or boule number. For instance, Q9 showed at 35 1M improve-
3

,.	 ment while Q11 showed no improvement. The wide range of data

k_	 reveals the large differences in the substrate properties,
A

residual impurities, and trap concentrations.

^ 	 h Standard photoluminescence spectra were also obtained

for both the Bettered and ungettered layers. The PL. was per-

formed at 7 0K using a Argon layer at a power level less than

ri

100mw. The luminescence radiation was dispersed by a 3/4 meter

grating monochromator and detected with a LN2 cooled photomul-

tiplier using phase-sensitive detection. The resulting PL spec-

tra of the gettered samples exhibited a reduction in the Mn and
r

Cu peak intensities. This result is illustrated in the PL spec-

trum of Q3 and Q4 (figure 4).

SIMS analysis experiments were performed on ungettered

and gettered samples at Cornell University. The SIAS analysis
kt'
M(.y

13
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revealed the presence of several residual impurities. These 15

purities : Carbon, chromium, boron, managanse, copper and magne-

sium were clearly present inthe 10 1u - 10 15 range. In addition,

we ooserved outdiffasion for the substrate of copper, managenese,

and magnesium. These results are shown in figure (S).
	 5

Electrically DLTS results figure (6) on schottky bar-

riers diodes formed on the Bettered and ungettered layers reveals

an increase in the EL2 level and a reduction in the broad shallow

peak. We believe that this broad peak is related to the presence

of several residual impurities.

In summary, we have concluded from the studies completed

that LEC substrates can be improved by heat treating. There

are,however, a couple of precautions: 1) It is necessary to

remove all of the gettered layer and, 2) provide an sufficent 	

^I

overpressure of As. This work was presented at the Electronic

_

Materials Conference held at Santa Barbara.

14
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GETTERING EXPERIME14TAL PROCEDURE
	

TABLE 112

POLISH 3UBSTRATE3

DIVIDE POLISHED SUBSTRATES INTO HALVES
	

i

BAKE ONE HALF OF THE SUBSTRATES AT

3000 FOR 24 HOURS

POLISH BOTH SIDES OF THE GETTERED SUBSTRATES

(REMOVE 35 mm)

STANDARD CLEAN

IMPLANT

S1 2 9	 6.09 X 10 11 40 KV

9.03 X 10 11 110 KV

4.5	 X 10 12 200 KV

ANNEAL AT 300 0C FOR 30 MINUTES IN A CAPLESS ANNEALING SYSTEI14ITH

FLO,dING H2

COMPARE ELECTRICAL PROPERTIES

15 —
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C	 Molecular Beam Epitaxy

We have a acquired and installed a MBE system. We an-

ticipate that this system will be used to grow the critical

layers for our FET structure. With AD E capabilities it will be

possible to investigate normal GaAs FET's as well as the high

electron mobility structures (H°_MPT). We anticipate that we will

be growing both single as well as multiple interface 1IEMPT

devices. Our machine has the capability of growing on 2 inch

a single pump

^s in preparation



Lithography

One of our principal problems during this work has bean

the development of our lithographic.  techniques. This section

will summarize our efforts.

At the beginning of the contract a FET mask set and a test

pattern were fabricated at the National Submicron Center located

at Cornell University. The best results were obtained using a

wet chemical etch. The smallest resolved features of the masks

have linewidths of better than 0.25 microns. We then went

through a period of considerable experimentation with the expo-

sure and development para:aeters. Our final process consists of a

N'

two layer photoresist technique utilizing a co-polymer of P:41A

and PAAA. The PAM A was used as the imaging resist and develops

more slowly, the co-polymer was used to form a lift off lip

similar to that shown in figure (7). Our final process is sum-

marized in Table III. Examples of our better gate lift off are

shown in figures (8),(9) and (10).

The key -element that we found necessary to reproduceably

fora .5 micron lines was to obtain "good" cofor: ,aal contact

between the ,mask and the GaAs substrate. In order to ascertain

- 17 -



Figure 7

mark is one micrcn
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Figure 8
Calibration mark is one .A cron	 J
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Figure 10
Calibration mark is one micron
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whether we are had contact a quartz plate was used. The substrate

was observed through a quartz plate the same size as the mask.

Figure ( 1) is representative of the type of contact we ware able

to obtain. On the areas where no fringes formed we observed a

darken region which were the areas where we obtained good con-

tact. We found excellent correlation between these contact areas

and production of high quality lines. As indicated in Table III

one of the process steps is dissolving the reAist by using a 02

plasma. For this process we have calibrated the etch rate in a

barrel plasma reactor and this is illustrated in figure (12).

41
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Arrow shows boundary between regions of different contact
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TABLE III

Procces Summary for two layer photoresiet

1. Cleaning and Degreasing

2. Bakeout in Air at 200 0 C for 30 min.

3. PMAA - P'4MA Copolymer

is spun on at 5000A o thickness

4. Bakeout at 1600C for 45 min

D. 41 PMMA is spun at 3000Ao thickness

6. Bakeout at 160 0 C for 60 min.

	

7.	 Wafer is placed under quartz plate to check confor

.nal contact

	

3.	 Contact adjustment

	

9.	 :flask position checked and wafer exposed for 5 minutes at

a lamp intensity of 19.3mw/rm2

- 19 -



10.	 Sample is developed in solution of 2 parts Propanol 1

part Toluene

11. Oxygen Plasma Clean-up 1 min g te at 100 watts a 1/2 torr

pressure

12. Sample is now ready for metallization

=1.y;
. II

- 20 -
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Device Structure and Results

In this section, we will summarizies our device result:^.

Since as mentioned in a previous section our vapnr systens were

not fully operational all of .devices results are on ion implanted

material. This material was baked out in order to attempt to

getter residual impurities.

Our first submicron structure attempted to illustrated our

lithography technology using a self aligned Ti/Au gate. In this .

structure the gate was deposited first and the source and drain

were aligned around the gate. This structure was alloyed with

the gate in place. We found it necessary to deposited a minimum

of 2000 1 A of Ti, to provide adequate protection durins our

source/drain alloying process. In the future, we intend to ex-

periment with Pt as a barrier .netal. Using this fabrication

sequence we have fabricated working devices. Date and pictures

for representation devices are shown in Table IV and figures

(13),(1 11),and (15) respectfully. 	 We observed some problems

with edge effects on the oh.nic contact •netalization layers. de

beliewe these problems can be corrected by the addition of nickel

to the netalization system.

- 21 -
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After demonstrating working devices we proceeded to

develop a standard process for our short gate FET experiments.

In this structure again the gate is deposited first then a "T"

structure is formed by selectively etching the Ti in a CFq plas-

ma. This is followed by a blanked evaporation of Au-Ge.

The source drain regions are then defined making this

structure a self aligned gate as well as self aligned source

drain structure. We anticipate that thin structure should lower

the parasitic resistance in the source region enough to enable

isolation of the effects of gate length on device performance.
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Table IV

D.C. Character• istire of representative .5 micron Fet's

Gate ideality factor,
	

1.34

Built in ;ate barrier	 . N3ev

Source r2nistance
	

55 ohm's

Drain resistance
	

rat oh(iis

Pinch off volta;e
	

3.75 volt^

Tr ansconductanre
	

73.2 .n-eimen:-
i.
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b1IXER RESULTS

	

III

The results of our mixer effort are summarizied in the fol-

lowirZ publication

- 24 -
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Theorectical Studies

We have investi;ated several areas related to FET device
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Coupling activities

As reported in the intarm reports we have had several cou-

piing activities with other government laboratories. With Harry
r

Dia:nond Laboratories we have fabricated ohmic contacts on super-

lattice structures. With the Naval Reasearch Laboratories we

have been investigating the annealing and characterization of

high energy implants. In addition, we have been investigating

DLTS spectra of irradiated :materials 	 One of these irradiation

studies has been concluded and a paper is attached. Finally we

have begun to establish a relationship with the University'of

Virginia. We will supply them with 4BE layers for the purpose of

fabricating mixer diodes they in turn will aid us $n our develop-

:vent of mixer technology.
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Abstract

Whereas improvement of the interface between the active layer and

the buffer layer has been demonstrated, the leakage effects can be

important if the buffer layer resistivity is not sufficiently high

and/or the buffer layer thickness is not sufficiently amallo We find

two butter leakage currents exist from the channel under the gate

to the source and from drain to the channel in addition to the buffer

leakage resistance between drain and source. It is shown that for 1 )t
gate length n-GaU MBSP89 if the buffer layer resistivity f is 12 a»mm

and the buffer layer thickness h is 2 ,p # the performance of the device

degrades drastically. We suggest that h should be below 2 .ju.



1, Introduction

The main advantage of using a butter layer in n-8aks MMPET is

that the interface between the active layer and substrate can be 	
gg

improved. However, since the butter layer placed between the active

layer and the substrate hae"thickness of several, microns and resistivity

much higher than that • of the active layer and lower than that of the

substrate, leakage currents may flow from and to the active layer

through the butter layer due to its lower resistivity. The leakage

effects on dhvice parameters and in particular on device performance

will be ezamined in this work.
i

In previous works dealiae; with leakage in a semi-infinite substrate j

(Lieohti, 1976 and Reiser, 1973) the model of the leakage current

was considered simply as a leakage resistance between the source and

drain. Waareas this simple model is useful for ezplai"In the effect

of the leakage resistance on the I-Q characteristics, a more detailed

model is desirable o in this work we have considered the leakage

problem of a finitely thick buffer layer and made detailed calculations

which enable us to present • a.better model. In addition to the drain-

to-annum leakage. resistance, the channel-to-source and drain-to.

channel leakage currents are included in our model. Parthermors we

have considered in our model, the varying channel potential which

is of importance for shoat gate PET.

In order to simplify the ciaculation, we have neglected the

possible effects of interface trapping and the space charge. Also

we assume that the diffusion current from the active layer to the

buffer layeie is negligible and that the transverse field in the'chaanel

Is much srualler than the longitud inal field so that the voltage

along y-directiou (traneverse direction ) can be considered - to be the

....:.,... a,t}l^-•ice.+;,. _...



same across the channel. This implies that the voltage on the channel-

gate interface is the same as that 6r. the channel -butter layer

interface under the, gate. Thua a virtual gate electrode(see Big. 1)

can be assumed to exist along the interface between the active and

buffer layer. In addition it is assumed that the gate-drain and gate-

source spacing are negligibly small. Based upon these aseumptions

it is therefore possible to deal with merely a static field problem

in the buffer layer. Along the interface between the buffet- layer and

S.I.substrate, no leakage is assumed to exist, i.e. the substrate is

assumed to be a perfect insulator: Leakage occurs only in the buffer

layer and its interface with the active layer..

By solving the field problem with the help of conformal mapping

we can calculate the buffer leakage resistance rdeb and the two

leakage current ecufoes I9 and I0 on using superposition principle

for current on the three electrodes (Seca II). With this model in

mind we derive the equivalent circuit including the leakage effect

from which the h-parameters for the device with and without buffer layer

can be determined. The performance parameters such as gains and P.M

otaa be obtained and compared for MESBBT"s with and without buffer

layer (Sec. Iii). Numerical results add conclusions are presented in

sections IV and V, respectively.

s
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a2 B

or
a

p' Q •tanh(=^ )
2

R'

II. Analysis of Leakage Elements

We will derive 'the leakage elements, i.e., leakage resistance and

the leakage current sources, by solving two-dimensional Laplace

equation for potential disttibutton in the buffer layer with appropriatc

boundary conditions set on the interface between the active and

buffer layers. In Pig.1 + S^ and D^ are the virtual source and drain

electrodes and G^ is the virtual gate electrode on which the voltage

varies along z-direction due to voltage variatio n in the channel.

Since the field solution assiciated with Pig.11with finite buffer

layer thickness h is difficult, we will use conformal mapping three

times to transform this original structure (A) to the parallel plate

structure (o) as shown in Pig .2-c from which the field and potential .

can easily be obtained.

As shown in Pig .2-a (structure A) S^, G o ane D o are the virtual

source, gate and drain, respectively where source and drain are

estended into safinity along im and-the buffer layer has a finite

thickness h. Structure A can be conformally mapped into structure B^

(Overmeyer, 1970) with the transformed dimensions given by

a2 sY b2= -^tanh(^-)	 (1)

ce -1i--	 (2)

where a1. is one half of the given gate length. A further transformation
gives structure B with new dimensions as given by
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	 Prom structure B the final parallel-plate structure (c) is obtained

again by using conformal mapping (Okoro, 1980). Prom structure c we have

Z=21(p)	 (gate length)	 (5)

'T=K I (p) 	 (buffer layer thickness)- (d)

•' e

	

	 where F.(-V) and K # (p) are the elliptical integral of the first kind
and.p is given in (4).

4	 When bias voltages are applied to the gate and drain, the channel

gg 

potential will vary along the longitudinal direotion(from S o to DO).

E As a result of conformal mapping the field variation is preserved.in

the various structures. The virtual gate potential distribution In

the original structure(structure A) can be approximated by two linear

regions based on the model of Pacel, 1975(see also Wang, 1979) as

( shown in Pig. 3 where VO(0) n0, VO(")--Vp and VO(2a1 )'g3)8 where • Vi.and =
VI)S are the pinch-off -and drain to source potentials, respectively,oCis

m	 is the position.of pinch-off point and 2a 1 is the total given gate

`	 length. The virtual gate potential distribution on structure C can

be transformed.from.P1,1. 3 into Pig. 4 by requiring that the source,

f'	 pinch-c= and drain voltages remain tuvariant,i.e. VO(0)M09 VO(oa)UV

and VO(2K(p))•VZB Where La2K$p) is the length of the parallel-plate
i structure (C). Ia region I of Pig. 3 we have

VO(x)WMJX	 OAV.L°c	
(7)

where m1 =Vp/Oc and in region I of Pig.4 we have
 Ae 

where MI MYO(. But
K

a	 a	 .
y, • gyp?	 ( 9)

.N



from which m, can be obtained and is given by

 ^r 	 (10)

1

Similarly in region II of 8ig.3 we obtains-.

VO(z)"%(x-oC)+Vp	 oC G:42a1	 (11)

where m2- (VDS-Vp)/(2a1 - oC), and in region II of 8ig.4 we obtain

V (i)^	 (x-oc)+Vp 	x4z428(p)	 (12)

where
2a1 -a

m2•m2 	 p _,C 	(13)

The parameters. for the two linear-region approximation of gate

potential distribution are summarized in table 1.

Here we will make use of superposition principle-by which we will

clock one of the three eleotrodes ,ive., source, gate, or drain, at a

time and calculate the leakage element so that the three leakage

elements. i.e., 	 , I^ sad Imo, can be determined from the final <#

parallel-plate structure.
A

A. Leakage resistance rdab [

4Leakage resistance is defined as the resistance between source

and drain when Ue gate electrode is blocked ,i.e., there is no

current flow on the gate or (aV/ey)I^T^O as shown Big.5. Therefore,

the structure reduces to a parallel-plate structure in which the

leakage resistance between drain and source is given by

rdsb'p 21(y) (14)

F-
• 7

1

i

„I



where P is the resistivity of the buffer layer, 28(p) is the distance

between drain and source and A is the crosa-sectional area which is

given by

d'g^(p)a
	

(15)

where a is the width of the structure (in a direction). Thus the

leakage resistance rdab in (14) becomes

.^ 28
rdab a gr(p)

S. Leakage currents

(16)

Leakage between the gate and source, and between the drain and

gate at>e modelled as two leakage sources Ias and ID O, instead of two

resistors, because on the gate, the voltage varies.along z-direction
and therefore uniform leakage resistances can not be defined. On using

the superposition principle Iea is obtaned bg calculating the voltage

distribution in the structure C with the drain electrode being blocked,

andIDS is obtained with source blocked.

(i). Source-to-gate leakage current ItGS

The structure C when the *drain is blocked is shown in 8ig.6. Note

that there is no leakage between the buffer and the S -I substrate.

The general eigen solution of Laplace equation as appliedto Fig.6

is given by

S►n(z.ya • tAncoeh(otnyJ+BnsinhCo^ny)^ rCncos( az)+Dnsia( a=)^ (17)
C	 i'	 k

Uaing the boundary conditions " showa in Fig . 6,i.e.2,

4n(z ,y)^
0 
=0	 (18)

L,



aVn(zry)
00	 (19)

+^	 I
y'

0

aV (z .y )	
.0	 (20)a^-	 1

a 
28ZP)

Vn(z .y 	 UVO(z)	 (21)

where VO (z) is the channel and therefore the butter layer potential.

The potential distribution in the buffer layer can be obtained and is

given by

V(z.y)	 t
un

 sin a^C z cosh AIKY	 (2:
n.odd ' cosh n $'	 48ep)	 4$(p)

where 
$(D)

^^ VO(z)sin n7C s dz	 (23)

a	 4g(P)
or from Pig.4

JOOc
VO(z)ein n = ds+.VO(=)sin nz dz	 (24)
 4H(p)	 0	 48(P)

3ubstiti. :ing the appropriate values of TOW . as shown in (81-and, (12)
into (24), we obtain

r •

ua^L RIC 2'2" 'r L n7C ^2 (m r-m2)sin	 (25)

The total leakage current 11 is given.by
P GS
K(p)

IGS a jaV(Z2Z)(a=
dy	

(26)7 
MMO

where z is the width of the structure and f is the resistivity of the

i

-;.	 ':43



butter layer. On using (22),'(25) and (26) the total leakage current

from the gate to source can be obtained and is given by

a 
I	

n N
to )^$(P) ad untan+4 
	

(27)

(ii). Drain-to-gate leakage current I 3,, .

The structure 0 when source is blocked is shown in Pig.7• Pig.7-a

shown the drain is biased at DDS . This is equivalent to the situation
as shown in Pig. 7-b from which a solution similar to that in the

previous subsection can_be obtained. Thus using boundary conditions as

shown in 81g.7-b, we - have	 j

$(p)•o(z.y)•	 d	 -	
g	

cos n	 cos n	 (28) i

	

cosh n— K(B)1
	 UTP7	 WIT

r
where un is given by

X(p)

^4s %,+%IZ• [V0 ( )°VDS] cos n̂ 7 dz	 (29)

On using the appropriate values of VO(a) given in (8) and ( ?2) in
(29), we obtain

2
^a•`4a I C(m 1 -m2)cos n^ -m^^	 (30)

And the total drain. to gate leakage current I is given by

. k(P)

Tr dyax
fz-28(P)

or

^• -gam 
Dodd 

%sin ^tanhl^ a(P1^	 (32)



^J ^

.	 .. y . I-

Note that the total leakage currents given by (27) and (32) are•

inversely proportional to the buffer layer resistivity which implies

that higher buffer layer resistivity will give rise to a decrease

in leakage currents resulting is better device performance. However,

as will be shown later, the butter layer thickness is critical to

leakage resistance and currents.

It should also be noted that the gate-to-source and the drain-

to-gate leakage currents are the same as the channel-to-source and

drain-to-channel leakage currents, respectively.
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III. Performance Parameters	
1

The equivalent circuit of MESPET including the leakage elements

obtained in Seo.iI is shown in Pig.B. The performance parameters of

the device can be obtained using h-paremeters (Ohkawa, 1975). Using

simple network theory, the h-parameters of Pig .8 can be obtainedsas folloa

V1 	1+1wc ehi

h11s f
	

wogs+lwodg w cgs	
(33)

V2 no	
ricdg

V1 1.1 	 (ode/Ogg 
)-B 	

(34)N T 	 + cd cgs
I'0

3 2	 96-1t'2d('+16#0 eri)
h21"	 343 0gs+ wodg + Wc^r^'	 (35)

V2n0

B)(A	 )

'42 12' (Qd^`/eg8_.. 11	 g — +Bgm+gdg+3wodg) (36)
1+(cdg/cgs ,	 dbs

1•u

Where

f	 (37)

En. 	 (38)

a airrdab
adbs Fdsb+ °'cd8rdsb d$+ ds	

(39)

For-the intrinsic device parameters see Table 2. The drain to gate

leakage tran9conductance gdg is given by

OF POOR C+UALITV..



FT .

SNAr 2 ri 
&d3

(43)

.

^

gdg I 
_4Zs1vGS

nconstant	
(40)

When no leakage exists in the buffer layer. ID, and 11G8 are equal to

zero and rdeb w oop the resultant h-parameters approaches to the well-

known intrinsic h-parameters(ohkawa„ 1975).

The performance parameters are:

A. Maximum stable gain GMS

GMSW 1221
121	

(41):

B. Unilateral gain V

Vi	
112, 2+122112	

(42)e	 1-e 2
+	 t2	 1

where 8e denotes the real part and Im denotea the imaginary part.

G. Maximum frequency cf oscillation F.
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I4. Numerical Results
tl

The MESBET numerically analyzed in this section has a gate

length of 1 p and a width of 500 }t with an active layer thickness

of 0:2 p and a buffer layer resistivity of 12 L-cm. The typical

intrinsic parameter values for the MESFET Is shown in table 2

(Liechti. 1976). Unless otherwise stated, the butter layer thickness
'	 4

is assumed to be 2 ^.

The comparisons between the'performance parameters of the MESBET

with and without butter layer are based on the intrinsic equivalent
t

circuit in which the parasitic elements have been neglected(see Big.B)

The leakage current sources are strongly dependent on the

resistivity of the buffer layer as shown in (27) and.(32). Therefore, 	 {

by increasing the ,resistivity of buffer, layer, the leakage currents

will decrease which improves the.device performance, in Fig.9 the 	 i

leakage resistance and currents are given as functions of the buffer
's

layer thickness. In order to reduce the leakage, the buffer layer

thickness must be less than 2.n. If othes4wi.se leakage will short-circui • f

the active layer current. It Id noted that I t I` This can be

accounted for by the existence of high field region between the drain

and gate. The variation of the leakage currents with the normalized

drain bias voltagft:73)SA is shown in Pig, 10 0 where the slopes of the

curves give the leakage transconductances.

It is shown in Big.11 that Fm. for the buffered device degrades

by a factor of 2 to 4 due to leakage effect. By increasing the buffer

layer resistivity and/or decreasing the buffer layer thickness•FMAX

will improve proportionally.



The unilateral and the mazU= stable gains vae frequency are

found decreasing with frequency * Pat they are much lower for the

buffered device due to leakage effect when compared with those of
+%a 1w4 4"n4^ AAw4^n a" mu^	 4w 94mm 4* m.A 42

0	 0

X^W
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V1- conclusions

The leakago .effect is MESBET hue been investigated. It has been
shown that if the buffer layer resistivity is low and/or the buffer

layer thickness is'large l, leakage effect will considerably degrade the.
device performance. we havQ shown that for the I )a gate-length n-Gaks
MESFET if the butter layer resistivity jP is 12-t-cm and the buffer

layer thickness h is 2 ,p, the gains of device decrease drastically
from their intrinsic values. Since the leakage resistance is proportion

to f and the leakage currents are inversely proportional to f thus
leakage effects can be reduced by increasing f,. However, both the
leakage resistance and currents depend oa h more strongly than p thus

it is advantageoui) to decrease h for improving performance. We

suggest that h should be lower than Zp.
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1
Table. 1

Parameters for two-linear region approximation of gate Dotentiai
distribution

(Imown)
Original atruoture Pinal structure

oC
.ac URI

t

v
mi MI • -P-7

m2(2a,-oc)
m2 m2 28(p)- oc

Table. 2

Typical intrinsic parameter values for the MBSPBT with this gate length
of 1js. ;width of 500 )z, active layer thickness of 0.2 with the doping

:.	 density ar101T	 3

cgs 00Tt^ . Pf
cdg 01038 Pf
ri 8.0

1350

A

s 2Z m-4r
Rds 1L
a'ds, 0.11 Pf

-	 I

• .	 fI.
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List Of Pigurse

1. Assumed MESPET structure where 8 # , 6 t and D I are the virtual
souboep gate and drain, respectively.

2. Oonformally mapped 'atructures. Pinal structure is the parallel-
plate (o).

3. Potential distribution of structure A.

4. Potential distribution of structure C.

S. Leakage resistance between source and drain when gate is blocked
(non-conducting).	 .

6. Leakage current from gate to source when drain is blocked.

7. Leakage current from drain to gate when source is blocked.

S. The ac equivalent circuit of a MESPET with leakage in the °sffar
layer, where IDegdg .V2 and I,,oggs•V2'

9. Plot of leakage elements vs# h for I  gate length MWPET when
VGS•-1.44 volts.

IQQ.Total leakage currents vs. V 3., for I  gate length MESPE2 with
buffer layer ' thickness of 2,u and buffer layer resistivity !2 A -cm.

31. PHAX va. VIM for MESPET with I p.gate 3ength and the buffer layer
with the resistivity of 12 JL-cm and the thickness of 2^tt.

12.Unilateral gain vs. frequency for 1 A gate length MMP32 with the
buffer layer thickness of 2,t and resistivity of 124L-cm.

13.Maximum stable gain vs. frequency for I p gate length MESPET with
the buffer layer thickness of 2p and resistivity of 12-4-cm.
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ABSTRACT

An analytical model of the GaAs MESPET with arbitrary

non-uniform doping is presented. Numerical results for linear

lateral doping profile are given as a apecial case. Theoretical

considerations predict that better device linearity and improved

PT can be obtained by using linear lateral doping when doping

de_aity increases from source to drain.
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IMproi red linea-c ity and noise figure in ^r.i's with vertical

non-uniform doping has been demonstrated by ',-l iliiams and Shaw( 1978) ,

Roberts, Lynch, Tan and !.•ladstone(1978), Pucel(1978) and Santis(1979).

In th!s paper we consider the non-uniform doping (along the electron

notion) in the GaAs layer of the c E'^. Two &dvantages in this type

of F ^T are anticipated. ?irst if an appropriate profile is used,

tre depletion-channel interfa,;e can become more uniform along the

lateral direction hence better linearity. Secondly, The cut-off

frequency ?,r, increase can be realized for cer`,a; :i lateral doping

rrofile.

A g^neral mati,eniatical a alysis is press,., ted In which the

depletion region potential ^_ q solved from Poisson's eouatJ.on as

a boui-iaary value problem. In the channel we adopt the saturation

velocity caode:t introduced by 'd'_lliam7, and S haw(1 978) which is

valid for short gate (Sze, 1081).  The analysis takes irto accou_st

two-dimensional general non- uniform do p ing profile. In obtaia.'.ng

numerical results however, a simple lineax doping profile along

the lateral direct' on. is assumed. Levice pax2_ceters such as gm,

C gs and ?T	given in tzr^ g o: the g.;.te b'_aa voltage for t:.e

?ET d tz gate iength of C.o ^.

In Sec. II she two dimensional potential in ti3e depletior.

regi cn in anal 7zed. In Sec. I', : the depleti: n :eight h/a, reduced

Dote,-.-. i al and channel c1trrent for linear lateral doping case axe

Dresen ted. :,e •r'_ce aarame tees are c ;ta_ned in Sec. IQ . ConclU3ior..5

are Siven -__ Sec. V.

t
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I'I. TWO DIKENSIONAL ANA '̂;YSIS OF THE

.DEPLETION REGION POTENTIAL

A. General solution

The two dimensional Poisson ' s equation is given by

02w(x .y)= 
2 (X	 ; Y w(:c	 --f(x , y )	 (1)•

lj	 where f (x,y)=gN (x,y)/e , N(x . y) is the x-and-y dependent doping
.f	 density and W (x,y) is the potential in the depletion region as

shown in Fig. 1. This inhomogeneous second order partial differential

equation can be solved by using Green ' s function method where

'	 equation ('':) will be written as

n^	
2	 2

a axx	+ a ayx	
8(x-i) 8 (Y- q )	 (2)

where t and v are the dummy variables. The boundary conditions

associated with ( 1) are given as follow

Schottky gate:	 W(x,y)I	 m0	 (3)
y=0

Depletion-channel	 a,^a
interface:

	

	 0
i	 (4)
t 3',°h

Ohmic contact source:	 aW z	 ^Q	 (5)
600 i

Ohmic contact drain:	 0W x	 90	 (6)x
Immi

where h is the variable depletion layer height and B is the gate
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length ( see Fig. 1). It is the unique property of the operator

(p2 ) which is the sum of the two commutative operators which enable'

uj% to find an explicit solution to (1). Equation ( 1) can be written as

02W(a .y ) =K1W (x 97) +B2W( x 4)
	

C't )

where K1 • a 2/ax2 and S2• a 2/a ye .
 Friedman (1956) shows that if K,

and K2 commute, K2 (or 1 1 ) can be treated as a constant so that the

partial differential equation ( 1) becomes an ordinary differential

equation given by

d W a	 + m2W(a,y)=-f(a,y)
2

(8)
. da

where mm iVZ^. Using the boundary conditions given in (5) and (6)0

the solution of (8) becomes

x
W(ary)- m f -f(rry) s in[9(x-C)] dr	 (9)

where f(r,y) is the spectral representation of g... The eigenvalues

of m•;i^ will be purely imaginary i.e., mo(jn*)/2h, and consequently

the sin term .1.n (9) will become sink. The eigenfunction of g1 can

be determined by considering the following homogeneous ordinary

differential equation

2	
•.

d	 d Wfz..Y) +^2W(a.Y)=0
dy

(10)

where A a °^. Using boundary conditions given in (3) and (4), the

4
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eigenfunctions of W can be obtained and they would be of the form

sinay where a•(n*y) /21%	 Because of the fact that W

is orthogonal and it can be normalized to unitye let

f(t.y)a
Zddlo-sin 'I1

(11)

where
h

Ba -s J sin" 7f (^.y ) dY	 _

0

(92)

where 2/h is the normalization factor. Substituting ( 12) into (11)e

the spectral representation of S 2 can be obtained and is given by

rh
f(r.y) • h	 sin(n )

J 
do f(r, Osin(^)	 (13)

flsOdd	 ^	 .

Note that f(ten) includes the general doping density in dummy

variables ten . i . e.., f(x,y)•gN (a,y)/e. The depletion region

potential W(zey) of the PET with general two dimensional doping

density can be obtained by substituting (13) into ( 9) and it is

given by

(	 X	 h

W(z . y)=-^^ (1/a)ein()t rdt0dn. N(C ► n)

flsOC^	 t •/

sin(2r, Sinh[n(Y- t)]^ (14)



d?

6

B. Uniform doping profile

whereas equation ( 14) satisfies ( 1) and its boundary conditions

as can be verified, it reduces tj the solution for uniform doping

(Pucel, 1975) by setting N(r,n)mNO in ( 14). Thus at the interface

(yh) equation ( 14) becomes

x h

w(Xth)•	
0—( 1 /a)s ia ( n=) 

J 
dC,o3n sin( nM'n-)e'-^[',(^-S^ (15)

After integration and some algebra, equation ( 15) becomes

16gh2N
W(a,h)• --3 O X (1/u3 )siu(-nr )	 (16)

n^odd

The identity

(17)

nsodd

i

can be applied to (16) to give the depletion region potential in i
a uniformly doped BBT, i.e.,

W(X,h)'W0o (	 )2	 (18)

which is identical Ito that obtained by Pucel ( 1975). WOO is the

pinch-off potential of a uniformly doped M.

ga2NO
Woos	

(19)

i

Note that there is no well-defined pinch-off potential for non-

uaiformly . doped PET.



A I wjrdt 5inh[Hnr(x.t)]
x

A20 twf:^- k'ainh
[nir

where

(24)

(25)

Or

AIM- uIr	 "rcosh 	
=x
	 (26)

III. LINEAR LATERAL DOPING PROFILE

For the special case . of lateral doping. N(r,n) wN(r) in

equation (14). where X(r) is the lateral doping profile. Therefore,

the depletion - region potential for lateral doping becomes

x 
h

W(z9y )•-	 (I/U)Bin( fllfx-) dr di? Ning nv 9
ei

) sjnh[nv(z_r)] (20)

n. odd	 f 'fac
A. Depletion height and reduced potential distribution

For linear doping let

N(C ) 0170 ( 1 + at 0	 (21)

where cK is the rate o2. change of doping density which increases

with t (or x) if IK>O and decreases if akO. No is assumed to be

1017 cm 3 . Substituting (21) into (20;,

4qN
:).-	 'Ir d'1 v3ro	 )2ro f 

x h
W(Xo y	df* d

nzodd	 (22)

After integration with respect to il, (22) becomes

I

W(zty)=— SqhNOV26 new
(I/u2)sin( nvy)(A2w- 1+A2) (23)



	

A2.a!- ass. coeh[(x-t)] -(n)2einh[(x-^^^ 	 (27)
ISOZ

Thus

•- n-;^	 (28)Al 
and

A2.- 2. w	 (29)

Therefore equation (23) becomes

W(x.y).- a
	

(1 /n2) sin',	 )(- 2ĥ 
_ 2h«x)
	 (30)

=7r E esOdd

or 

	 16gh2 7, (1/a3)sin(	 )(1+ors) (31)
?C E n add

At depletion-channel interface, i.e., y'h, the depletion region

potential W(x,y) becomes

16gh2N
w(x,h)•	 (I +01x) ; (1/n3)sin( )	 (32)

^ E	 saodd

Using the identity described in (17), equation (32) reduces to

2

	

g (1+ax)	 (33)

The reduced potential u which is the same as , w of Pucel ( 1975) can

be obtained as follows	
1

	

u2 (x,h)' w('^^ ^) 'rha
 J

2 (1+ax)	 -34)

where Woo is given in (19). Because 0C plays an important role in our

analysis, its range and limitation need to be considered. when



dVx =0
dz

(38)

a is too small, the doping becomes almost -uniform, however, of can

not be too large for otherwise the semiconductor will become

i..degenerate. We shall consider the two oases , i.e., smallat (14I-0.1)•

' ( and large of I oAwO.9) where the gate length is assumed to be 0.6/4.

(i). small o!ledl .0.1)

Tn this case the normalized depletion height h/a becomes

almost; anif orm in the saturation velooity model (Sze, 1981),i.e.,

u-s where s-u(O,h). Therefore ( 34) becomes

Fh/a• .	 =s	 (35)

Where s is the reduced potential at the source and is given by
e,

a`'	 (Pucel, 1975)

s---- 11	 (36)

Where Vg$ is the gate-source bias voltage and 0 is the barrier
pctex;tiat.

(ii). Large oC (I«II-0.9)
In this case it is necessary to calculate the potential

V(x) in the channel. From Fig. 1 and equation (34)^

V(x)° -(Vp+ *)+W(a.h)-WOO [u2 (x.h)-82j	 (37)
Under the commonly used assumption of neutral channel, where the

carrier and doping densities are the same, the Poisoon's equation

becomus

The assumption of neutral channel is reasonable for high doping

dens147. it is obvious that the . solution of (38) is V(x)odx+3,

I^

ere
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There A and B are constant to be determined. Using the conditions.

that V (0)s0 (source is grounded) and V (P)mVda ( drain-source bias

potential).; ° •oae obtains • - B-O; and AwVdafl . Therefore the channel , '•'

potential V(x) becomes,

V(x)=(Vds/,Q)x 	(39)

From (37) and ( 39).the reduced potential u(x,h) can be obtained

and is given by

'J s2+(V /$)x
u(x,h)•	

00	 ds	 (40)

And from (34) the normalized depletion height h /a can be obtained

and is given by

h(X)	 sZ+(Vdan/1)x
a. 

+^ ax	
(41)

Where Vdsn Vds/W00' Equation (41) implies that as oC increases I the

height of the depletion region is ad longer a constant and varies

with oe and x.

B,.Qhannel Current

The total current consists of the conduction current and

diffusion current. However, in the neutral channel the diffusion

current can be neglected. Also neglected here is the small band-

gap narrowing effect due to doping variation.

The conduction current is given by
4

Y(x)ngn(x)vsA	 (42)

Where q is the electron charge, n(x)=ffo ( 1+ Ox x) is the carrier
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(or doping) density, vs is the saturation velocity and

A(x)mz1a-h(x)}• is the 'cross-sectional area (z is the device width),

Thus from ( 42) we have

I(z) mgNo(.1+ ixx) I1- ha 1 azvs 	 (43—a)

in equation ( 43-a)(which is equivalent to (6) of Pucel, 1975). the

current is a function of h(x) and n(x). Therefore the total .average

current I (which is constant) is obtained by integrating (43-a)

from x00 to zu,Q

I
Im ^ f I(x)dx	 (43-b)

Thus for small 9 (,o(Qj.0.1), h(x) /a a s ( see (35)) # and the total average

current becomes

I=gzszaNO(1-s)(1+ ^) 	 (44)

And for large oc(IOU100.9), the total average current can be obtained
from (43), and is given by	 A

I qv zaN

fz4) ,

Xs^ 0 1+CCx)[I- "a(x)] dx	 (45)

It is convenient that we preform the integration in u instead

of x. From (40) we :solve x in:terms of u,
i

z'u

•

2_s2

dsn	
(46)

Substituting ( 46) into ( 45) we.get

d	 c
I 2gzay.N. 

`u 1 0^ Q 2' 2	 Oce 2 2
-^-- J +^—(u -a )- 1+	 (u -s) :u du (47)5	 1
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Where d is the reduced potential at the drain, and is given by

(Pucel, 1975)

V e+ m +vde

Equation (44) for small at and (47) for large ot • are dependent ou

the gate bias voltage, their transfer characteristics as functions

of (vgs+ 0)/W00 e2 are shown in Fig. 2. For the purpose of

numerical calculation, it is specified that o1 •1.678103 cm71 for

small of and 01.1.58104 cm 1 for large ot. Thus for example, for

ct.-1.67%103 cm 1, N(x) decreases from 10 17 cm 3 (source) to

981016 cm 3 (drain), or for ot.1.5g104 cm 1, N(x) increases from

1017 am"3 (source) to 1.981017 cm 3 (drain). The gate length is

assumed to be 0.6 ,P and the drain-source bias voltage is assumed to

be high enough to ensure saturation, i.e.. ods'W00-

Fig. 2 shows significant improvement in linearity when of-

is large. However, when ( 9(0 9 channel pinches off quickly at law

gate-source bias voltage. The reason why it pinches off so fast

is that both the channel apenaing and the carrier density are

decreasing function9 of x (see 8j). Therefore, the voltage swing

is very much limited and devices with 04<0 are of little use.

When Otis small, there-is no significant difference in the

transfer characteristics when compared with uniform doping (i

as it should be.	 r.

(gv
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I 	 IV. DEVICE PARAMETERS

The small -signal paramete r-e for the-case of linear doping

is presented is this section. Tho parameters • o.*. atypical PET is*.

assumed to be a•500 )u, a.0.2.n, .Q•0.6 'p, N0=10 17 am 3, B,=4.44 g7/cm,

I Er 12.59 )xo=4500 cm /V-sea., 0 .0.8 V, and ds^ftps . (0.1:50(2:50.9).

A. Transconductance gm

The trausconductance gm is defined as

0(I	 0(I as	 0(I d

'Vds.	 j7ds

When of is small, the traneconductance can be obtained by using (44)

and (49) and is given by

gavaaNO (1+

01
3/2)	 (50)

I(bla)01
3 	r 00s

When a is large, equation ( 47) can be numerically differentiated

according to (49). The transconductance for small and large a are

shown in Pig. 3. As expected, for small oc,the variation of gm with

gate bias voltage approaches to that of the uniform doping. However,

as (oci' approaches unity there is significant improvement ' in linearity

Of gm -

B. Gate-to-source capacitance Cgo

According to• Pucel 0 975),the total charge on the

gate electrod is given by

	

0(g' Fr (oz J By dx	 (51)

0
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Where Sy is the y-ccmponen:6w of the electric field defined as

2W
W x	 ^(h/g)(t+ax)

lywo	 .

(52) •	 .. .

Differentiating (14) with respect to y. Ey hence Q  can be evaluated.

Cgs is defined as (Pucel, 1975)

	

aQa^^	
-31

a,4 asCgs' age ' ( a a  g^do	 yds
For small 049 Qt oa4 be obtained from (51) and (52),

Qg 

UrECWCCzs (^ + of §2

	

• a 	 '^ )

And from (55)o Cgs becomes,

Camlasb/ass

Eoa(
) + 0 2)

	For large oc . Qg becomes	 n

2grECWCC2
S (I+oex)(h/a)dx

X

Qg --a --
0

(53)

(54)

(55)

(56)

Where h/a is given in (41). Su%stituting (56) into (53), Cgs for

large oe can numerically be evaluated. Fig. 4 shows that the rate

of change of Q  with (Ygg+ 0 ^CC is larger for smaI1o( then that

for large, o(: This implies that Cgs decreases aslocl increases, as

shown in Fig. 4.

C. Cut-off frequency FT

The unit gain cut-off frequency is given by



gmFTC F.Ir g
(57)

14

It is shown in Fig: • 5 that tor • a>Q PT does not vary with Vgs and

BT for large.•a (where ad v0.9,, as an example) is almost twice as

large as PT for small and vanishing a. This improvement in P T oa.

be accountel, for by the increase in gm and decrease in Cgs due to

the non-uniformity of doping.

i

i

R

6

l
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V. CONCLUSIONS

Analytical solution of potential in MESBET's with arbitrary

doping profile have been presented. The linear doping profile has

been treated"as a apecial case, in detail. Numerical results on

device parameters for linear lateral doping profile are presented

and compared-with those for un.^.form doping. It is shown that there is

significxrt improvement in linearity as: j actl approaches toward

unity. The transconductance of the BET is found to be large. for

P. oef =0.9 than that for ecQ-0.1. This improvement in g m can be accounted

for by the increase ir. carrier density in the channel. Significant

improvement it FT can be realized for FET's with increasing doping
density from source to drain(i.e.,oc> 0). The analytical solution

presented here is sufficiently general. and it can be applied to

other types of profiles such as exponential, power law and step*

for either vertical or lateral doping or their combinations. In

future these topics will be investigated. Although experiments

on vertical non-uniform doping have appeared, none has been available

on lateral or general doping. Our theory ;redicts that the device

performance depends on doping profile. Optimum lateral and vertical

doping-will be shown to be important for PET power amplifier.

6
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4. C and Q vs. normalized gate bias voltage for uniformly (oC.0)
and non-unit., *rmly (c(¢0) doped GaAs MESPET (as0.2p, JwO.6/t,

z'500^' NO`1017 cm 3 ' Vda W00°2.895 V1Er'12.5). .

5. Cut-off frequency FT vs. normalized gate bias voltage Par
uniformly (o(.0) and non-uniformly (0(*0) doped GaAs KESPET
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