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ABSTRACT

This paper describes a piloted simulation of algorithms for onboard computation

of trajectories for time-optimal intercept of a moving target by an F-8 aircraft.

The algorithms, which were derived using singular perturbation techniques, generate

commands which are displayed to the pilot on the command bars of the attitude indica-

tor in the cockpit. By centering the horizontal and vertical needles, the pilot

flies an approximation to a time-optimal intercept trajectory. Several example simu-

lations are shown and statistical data on the pilot's performance when presented with

different display and computation modes are described.

INTRODUCTION

From its beginning, NASA has had a very strong interest in aircraft trajectory

control. As technology improves, the tools and techniques available to the control

engineer also improve and allow more precise control of aircraft trajectories. The

advent of computers that can be flown onboard the aircraft and used for solving

flight control problems allows for onboard optimal control schemes that could not

even be considered in the past. To take advantage of this new freedom, NASA began a

program to apply singular perturbation techniques to study onboard optimal control of

aircraft trajectories. Singular perturbation techniques allow a large numerical

problem to be separated into a series of smaller subproblems that can be solved on

small flight computers. The history of these techniques and their application to

trajectory problems are described in references I and 2.

Singular perturbations were applied to the problem of time-optimal intercept of
a movingtarget because that problem demonstrated the characteristics of the generic
optimal control problem and was feasible for onboard implementation. Subsequent to a
request for proposals for work in this area, two contracts were awarded. These con-
tracts led to the general studies reported in references I and 2, and the more spe-
cific follow-up work included in reference 2. In reference 2, algorithms were
derived for onboard control of time-optimal intercept of a moving target for an
F-8 fighter aircraft. Computer simulations of the algorithms were included to demon-
strate the techniques. The present paper describes the simulation of those algo-
rithms on Langley's six-degree-of-freedom piloted simulation of the F-8 aircraft.

The intercept algorithms were programmed on Langley's real-time simulation
system. The computer generated position and velocity coordinates for a target that
was moving at a constant velocity. These algorithms can also be used to intercept
maneuvering targets as long as the control solutions are updated frequently enough.
The pilots who flew the simulated intercepts were all active Air Force or Air Force
Reserve pilots who were currently flying either F-15 or F-I06 aircraft.

The major purpose of the simulation described in this paper was to demonstrate

the feasibility of onboard computation of time-optimal intercept trajectories. It

was also undertaken to compare the different modes of computing the control inputs

and presenting information to the pilot for use in the flight environment. This

paper describes the complete problem statement and the algorithms used to compute the

control inputs. The specifics of the simulation are discussed including the imple-

mentation of the algorithms and the methods of displaying the control information to



the pilots. The results of the piloted simulations are described and compared to
demonstrate the feasibility of the different display modes. Sample time histories of
the simulator output are shown and compared with the non-piloted simulations of
reference 2. The results of a statistical analysis of the simulations are discussed
and some conclusions are presented.

SYMBOLS

A,B,C coefficients of quadratic equation for Iy4

CD drag coefficient

CD,o drag coefficient at zero lift

CL lift curve slope

D drag, N

E total energy per unit weight, m

Es energy level at which zero-energy-rate boundary crosses qmax boundary, m

Gmax maximum load factor

g acceleration due to gravity, m/sec2

H Hamiltonian function

h altitude, m

hc(E,Eo) altitude along climb path as function of E and Eo, m

hd(E) altitude along descent path as function of E, m

J cost function for optimization problem

K parameter in drag polar

K3 constant used for computing thrust increments

k multiplier for y-term in cost function

L lift, N

L13 vertical lift component for third boundary layer, N

L14 vertical lift component for fourth boundary layer, N

LIp proportional vertical lift, N

L22 horizontal lift component for second boundary layer, N

L23 horizontal lift component for third boundary layer, N
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L24 horizontal lift component for fourth boundary layer, N

M Mach number

m mass of aircraft, kg

q dynamic pressure, N/m2

R range to target, m

rc(E,EO) distance required to climb from E to Eo, m

rd(E) distance required to descend from E* to E, mo

S aircraft reference area, m2

s Laplace variable

T thrust, N

TmiI military thrust, N

t time, sec

tc(E,Eo) time required to climb from E to Eo, sec

* to E, sectd(E) time required to descend from E°

tgo estimated time remaining until intercept, sec

V true velocity, m/sec

V1 velocity used to compute climb and descent paths, m/sec

W aircraft weight, N

X,Y horizontal plane coordinates for ground track plots (figs. 8 and 11), m

x,y position of F-8 relative to target (fig. I), m

e angle of attack, rad

8 heading, rad

y flight-path angle, rad

YD desired flight-path angle

_( ) increment in ( )

parameter used to scale state equations for singular perturbations

damping ratio of second-order system used for proportional lift control

induced drag parameter
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angle-of-sight line to target

_o costate for state variable x

_o costate for state variable y

IE1 costate for state variable E

_82 costate for state variable 8

lh3 costate for state variable h

_4 costate for state variable

bank angle, rad

p air density, kg/m2

T scaled time variable

TI,T2 time constants used for proportional control for vertical lift

parameter used to solve for _4

_n undamped natural frequency of second-order system used for proportional
lift control, rad/sec

Subscripts:

c climb

d descent

f final

max maximum

min minimum

o outer layer

T target

0 initial

I first boundary layer

2 second boundary layer

3 third boundary layer

Superscripts:

( ) derivative with respect to time

* optimal cruise conditions
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PROBLEM STATEMENT

The particular problem chosen to demonstrate the feasibility of onboard trajec-
tory optimization is the minimum-time intercept of a moving target. It is assumed
that the initial time is fixed and given but that the final time is free and occurs
at target intercept. The objective function for this study is

tf 2
J = (I + k sin y) dt (k > 0) (I)

0

The second term in the cost function penalizes the oscillation in altitude and

flight-path angle caused by separating those two states in the singular perturbation
formulation of the problem. A minimum-time problem results when k is set to zero.
The choice of the parameter k is discussed in references 2 and 3.

The state equations for the F-8 aircraft considered as a point mass are as
follows:

x = V cos y cos 8
G*

= V cos 7 sin 8 - VT cos 7T

= (T - D)V
W

(2)

_ L sin _
mV cos y

= V sin X

= L cos _ - W cos
mV j

The variables in equations (2) are defined with the aid of figure I, where the sub-
script T is used to designate the target• These equations are valid for a flat
Earth, thrust (T) directed along the flight path, and constant weight (W). Drag is
assumed to have the parabolic form

D = qSCD = qS(CD,o + _CL @2) (3)



which can also be written as

KL2

D = qSCD,° + q--_- (4)

where the dynamic pressure q = pV2/2, p is the air density, and

K = (5)
cL

L = qSCL = qS(CL e) (6)

The variable E is the total aircraft energy (kinetic and potential) per unit
weight:

V2
E = h +- (7)

2g

where h is the aircraft altitude. The control variables are aircraft lift (L),
bank angle (B), and thrust (T).

The minimization of the objective function (eq. (1)) is subject to the following
state and control variable constraints:

L (WG (8)max

L (qSC L emax (9)

Tmin(h,V) ( T (Tmax(h,V) (10)

q ( qmax M _ M (h) (11)max

where Gmax is the maximum load factor, amax is the stall angle of attack, and
Tmin and Tmax are the minimum and maximum thrust levels, which are functions of
aircraft altitude (h) and velocity (V). The Mach limit is included for completeness.
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However, it was never encountered in the simulations. The boundary conditions are
such that the initial aircraft state is fully specified and intercept is defined by

x(tf) = y(tf) = 0 h(tf) = hT(tf) (12)

where hT(tf) is taken as the projected target altitude

hT(tf) = hT(0) + (VT sin YT)tf (13)

SINGULAR PERTURBATION FORMULATION

The solution of an optimal control problem generally involves solving a two-
point boundary value problem (TPBVP). The control solution thus obtained is a func-
tion of time and the initial and terminal conditions. In theory, a useful feedback
law could be obtained by periodically updating the solution of the TPBVP and basing
the boundary conditions on the current system state. However, for dynamics of even
modest complexity, numerically updating the TPBVP requires more time and core memory
than are compatible with implementation onboard an aircraft. Thus, for such an
application, simplifying approximations must be introduced into the control problem
formulation.

Aircraft dynamics are characterized by the presence of states whose speeds are
widely separated. Singular perturbation theory (SPT) is well suited to treat systems
such as this, which have a mixture of quick and slower motions. The application of
SPT to these systems can generate approximate solutions to high-order optimal control
problems which perform nearly as well as the complete solutions and are simpler to
derive and implement.

A singularly perturbed system is represented with small parameters scaling the
fast state derivatives. These parameters normally represent "parasitic" phenomena:
small time constants, masses, and so forth. The SPT approximation consists of set-
ting these small parameters to zero, and thus decomposing the dynamics into separate
"slow" and "fast" subsystems. This is advantageous for two reasons. First, it
breaks the original control problem into subproblems of lower dimension. Second,
while the wide separation of the state velocity magnitudes in the original problem
rendered it numerically ill-conditioned, the subproblems are well-conditioned. The
solutions of these subproblems, when reassembled, approximate the solution of the
original control problem. A comprehensive survey of SPT in control theory is found
in reference 4.

In the present study a small parameter, _, is introduced into the dynamics,
with successively faster state derivatives multiplied by successively higher powers
of _. Ideally, € would be identified with a particular system parameter, as in
references 5, 6, and 7. Here, however, £ is merely "small," and the ordering of
states with respect to speed is based on familiarity with the F-8 aircraft dynamics
and knowledge of the type of trajectories associated with minimum-time intercepts.
This approach, employed in references 1-3, 8, and 9, is often called "forced singular
perturbations." While the ordering of dynamics used here corresponds to that used in
references 2, 3, and 8, examples of other orderings appear in references 1 and 7.
References 2 and 3 discuss the rationale for the separation of altitude and



flight-path angle dynamics and compare some results for a vertical plane analysis of
motions with and without the separation.

The state equations scaled by powers of _ are as follows:

x = V cos ¥ cos 8

y = V COS y sin 8 - VT cos YT

_ (T- D)V
w

(14)

2 : L sin p
€ _ =

mV cos y

3_ = V sin y

4" L cos B - W cos
Y = mV

The first reduced-order problem, called the outer layer, is formulated by set-
ting _ = 0 in the equations of motion (eqs. (14)). This makes the left-hand sides
of the last four state equations zero, changing them from differential equations into
algebraic equations. Under the assumption of constant target velocity, the resulting
system can be solved for the cruise energy that should be used for a time-optimal
intercept. If the projected distance to the intercept point is sufficiently large,
the optimal cruise point for the aircraft is the solution to the outer layer problem.
If the projected distance is not large enough for the aircraft to climb efficiently
to that energy before intercept, then a lower altitude-energy combination is chosen
as the outer layer solution• The logic used for this part of the solution will be
described in a later section.

The remaining reduced-order problems that are used to approximate the solution

are called boundary layers and are derived by changing the independent variable for
the differential equations from t to T = t/eI, where i is the power of _ on
the left-hand side of the differential equation that describes the dynamics of inter-
est. For example, the first boundary layer is obtained by scaling the independent
variable by I/€, which changes the set of differential equations from equations (14)
to a similar set with the powers of € reduced by one in each equation. This has

the effect of multiplying the right-hand.sides of the first two equations by e and
removing € completely from the third (E) equation. When € is set to zero, there
remains only the one differential equation for E to solve, with x and y assumed
to be constant at the values used in the last iteration of the outer solution. The
solution to this first boundary layer subproblem gives the so-called energy climb
path that describes an ideal energy trajectory from the initial condition to the
cruise energy defined by the outer layer solution.
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The remaining subproblems (boundary layers) are derived by successive rescalings
of the independent variable to isolate the individual state differential equations so
that each may be solved separately. At the end of this process, equations for the
control variables in terms of the current values of the state variables are achieved.

This gives the desired feedback control law. Each of the separate subproblem solu-
tions will be discussed in more detail in later sections of the paper.

Singular perturbation techniques simplify the problem when the required assump-
tions are valid, even if each state equation cannot be isolated from all the others.
However, if more than one equation is being solved on the same time scale, in gen-
eral, a two-point boundary value problem must be solved. This precludes generating a
solution in real time onboard the aircraft. The special case of the first two state
equations for this problem can be solved on one time scale because of extra informa-
tion supplied by the geometry of the intercept formulation along with the assumption
of constant target velocity at each step.

Outer Layer

The outer layer subproblem, generated by setting _ to zero in equations (14),
has only the two state equations for x and y. Since the target velocity is
assumed to be constant, the subproblem consists of solving for an optimal intercept
in the horizontal plane. Even though there are two state equations, it is not neces-
sary to solve a two-point boundary value problem for the solution because there is
extra geometric information generated by the necessity of intercept with the target.
This condition is given by

V sin(8 - l) = VT cos YT cos I (15)

where _ is the angle-of-sight line to the target. The control variables for the
outer layer are h and E and are given by

ho,EO = arg max(V) (16)
h,E

Thrust equals drag and lift equals weight for the outer layer. Bank angle and
flight-path angle are both zero:

To = DO Bo = 0 Yo = 0 Lo = W (17)

For L = W, the drag is

KW2
Do = qSCD,o + q--_-- (18)



where

p(h)V2o
q = 2 (19)

Vo = J2g(Eo - ho) (20)

The cruise solution in the vertical plane is independent of target motion and
intercept geometry. It depends only on the projected intercept point. The optimal

heading Bo and the costates %x and %v resulting from the Hamiltonian formula-o _o
tion of the problem are the only variables that must be computed on-line:

80 = sin-1<_ cos YT cos II + _ (21)

-COS 80

AXo = V° - VT COS 7T sin 8o (22)

-sin 80

AYo = Vo - VT cos 7T sin 8o (23)

Equation (16) for the optimal energy is valid only if there is sufficient range
between the aircraft and the target to allow the aircraft to reach that energy prior
to intercept. In case the range to the target is not large enough, a lower outer
layer energy is chosen. This procedure is described in the section on control system
implementation.

First Boundary Layer

The first boundary layer subproblem is generated by changing the independent
variable t in equations (14) to T = t/_ and then letting _ approach zero. This

leaves only the two differential equations for energy E and its costate lEt. The
remaining state and costate equations all reduce to algebraic equations and give the
constraints,

_I = 0 71 = 0 LI = W (24)
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The control variables for the first boundary layer are T, h, and 8. The optimal

heading (81) is the same as that for the outer layer. Since T appears linearly in
the equations, optimal thrust is given by the two equations,

T1 = Tmax(h1,Vl ) <IEI < O> (25)

TI = Tmin(hl,VI) (IEI > 0) (26)

These equationsmean that thrustis maximizedduring climb and minimizedduring
descent. The optimalaltitudefor the first boundary layer also has two separate
equationscorrespondingto climb and descent:

I(Tmax - DO)V]I

hI = arg mhn _ _ % - (27)
E=Ecurrent
T>D (climb)

h (28)hI = arg m n _ - To
E=Ecurrent
T<D (descent)

The climb path to the optimalcruise point can be seen in figure 2. The descent path

followsthe qmax boundary. The costatefor the first boundary layer is given by

-WHo(E,hI)

IEI = VI(TI - DO) (29)

where Ho(E,hl) is the Hamiltonian for the outer solution evaluated at the first
boundary conditions:

Ho(E,hI)=[XxoVcosBO+ Xyo(VsinSo-VTcos_T)+I] (30)
E=Ecurrent

h=hI

The solution for hi(E) is independent of target motion and can be precomputed and

stored as a function of E. Only the costate IEI must be computed on-line.

11



Second Boundary Layer

The second boundary layer is obtained by setting T = t/€2 and letting
approach zero. This results in the constraints,

Y2 = 0 L 2 = L222 + W 2 (31)

where L is the total lift and L22 is the horizontal lift component. The control
variables in this boundary layer are T, h, and L22. The state variable 8 is
considered a faster variable than energy (eqs. (14)), so all turning is assumed to
take place near the initial time where < 0. Then the optimal thrust is

IEI

T 2 = Tmax(h2,V 2) (32)

where h2 is defined by

h2 = arg min[--h_ -P I|KVH1 (E,h,8) (33)
_E

current

8=8current

and HI(E,h,8 ) is the first boundary layer Hamiltonian evaluated at current values
of E, h, and 8. It is expressed as

(T - D )V

H1(E,h,8) = IxoV cos 8 + lyo(V sin 8 - VT cos yT ) + IEI W + oi
(34)

The solution for L22 is analytic and is given by

L22 = /-qSWH I(E,h,8)/vKIEI sign(8o - 8) (35)

After the minimizationin equation (33) is performed,the headingcostatevariable is
computed from

182 = -2HI(E,h,8)mV--_--I

L221h=h2 (36)

12



The calculationsin the above equationsmust be performedon-line. To acceler-

ate the minimizationfor h2 from equation (33), the solutionfrom the previous time
instantis used as a startingpoint. This calculationis performedeach time the
controlsolution is updated.

Third Boundary Layer

The third boundary layer addresses the altitude dynamics. The equations are
derived by introducing the transformation T = t/e3 and letting e approach zero.

The vertical lift L13 for this boundary layer is

L13 = W cos Y3 (37)

Because y can be nonzero, the penalty term k sin2 y in the cost function
(eq. (I)) has an effect on the solution for the third and fourth boundary layers.

The control variables here are horizontal lift L23 and Y3" The zero-order solu-
tion for L23 is given by

L23 = min(L2%max'L22/cOs Y3} (38)

where

=_L 2 - L2L2max max 13 (39)

It can be seen that L23 approaches L22 as Y3 approacheszero, which is the con-
strainedvalue for T in the secondboundary layer. The expressionfor T3 is

Y3 = arg max[sin Y/H2(h,E,8,y)]sign(h2 - h) (40)
T

where H2 is the secondboundary layer Hamiltonianevaluatedat the currentcondi-
tions for its arguments:

H2(h,E,8,Y) = (lXo COS 8 + lYo sin 8)V cos y - lyoVT cos YT

+ (T - D)V L23g + I + k sin2
IEI W + IB2 WV cos y y (41)
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The costate for this boundary layer is determined from
lh 3

-H2(h,E,8,Y3)
(42)

lh3 V sin Y3

To determine L23 in equation (41), equation (38) is evaluated at the search value
for _ in equation (40). All the calculations in this layer must be performed
on-line.

Fourth Boundary Layer

The equations for the fourth boundary layer are defined by using the time trans-
formation T = t/e4 and again letting e approach zero. In this layer, the verti-

cal and horizontal components of lift (L14 and L24, respectively) are refined to
reflect the flight-path angle dynamics. As long as L ( Lmax, the lift components
are

gqS (44)

L24 = 182 21EIKV2
cos

These are used to define the final lift and bank angle commands:

JL + (45)L = 14 L224

_ = tan-1/L24h (46)
\h4/

If L (definedabove) exceeds Lmax, we set L = Lmax and obtain an expressionfor
bank angle _:

= I 182 Y1 sign(8° - 8) (47)tan _ t4 cos

14



In this formulation I_4, the costate for y, is evaluated as a root of

AI 2 + B1 + C = 0 (48)

Y4 Y4

where

2 2 2 2
g (Lmax/W - cos _)

A = (49)
v 2

B = 2¢ cos y g/V (50)

182Lmaxg12
c - ¢2 (51)

(L2ax - W2 cos 2 y)KV

¢ HI + lh3V sin y (52)= - IEI qSW

Thesuchequationthat for 174 always has real roots of opposite sign; thus 174 is chosen

sign(Iy4 ) =-sign('{ 3 - "() (53)

Given this value for Iy4, bank angle _ is computed from equation (47) with
placed in the quadrant appropriate to sign(Y3 - y). It should be noted that the
arbitrary separation of h and 7 dynamics in the third and fourth boundary layers
fails to account for the coupling that naturally exists between these states. Refer-
ence 2, appendix D, shows a method for choosing k in the cost function so that this
problem is alleviated.

CONTROL SOLUTION IMPLEMENTATION

This section describes the feedback implementation of the control solution
formed from the singular perturbation outer and boundary layer solutions described in
the previous sections. Five topics are covered: organization of climb and descent
legs, an alternate proportional vertical lift scheme, thrust and lift control during
descent, avoidance of singularities in the control solution, and the overall organi-
zation of the actual feedback implementation.
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Climb and Descent Legs

If initial turning and other transients are ignored, long-range intercept tra-
jectories have three stages. The first stage is a climb to cruise at the long-range

optimal cruise energy (E_). The second stage is a cruise leg. The third stage can
take one of two forms. If the target altitude is below the altitude for long-range
cruise, it is a descent leg. If the target altitude is above the long-range cruise
altitude, the terminal stage is a zoom climb (constant-energy altitude gain) maneu-
ver. It is important to note that climb and descent in this paper refer to gain and
loss of energy - not altitude. For example, altitude decreases during a portion of
the climb profile.

Short-range intercepts are defined as occurring when the intercept range is less
than the range required to fly a long-range climb and descent. In this case, the
optimal trajectory would consist of climb and descent legs that meet at an energy
level less than E* at an altitude and velocity on the zero-energy-rate boundaryo
for T = Tmax, or on the dynamic pressure or Mach constraint boundaries. (Hence-
forth, these lower energy cruise conditions will be referred to as pseudo-cruise

points, Eo.) As in the case of long-range cruise, climb and descent paths meeting
at Eo < E_ are obtained from the first boundary layer altitude solutions (eqs. (27)
and (28)) and are functions of Vo(Eo), which permits them to be calculated off-line.
An example climb path to a pseudo-cruise energy is illustrated in figure 2. Refer-
ence 2 displays climb altitude profiles for the F-8 aircraft as functions of energy

for several values of Eo.

An important element in the control design is the decision logic which deter-
mines whether an intercept path is long- or short-range. When a short-range inter-

cept is identified, the logic must select an appropriate value of Eo. Ideally, Eo
would be chosen so that the horizontal range for climb and descent matches the pre-
dicted intercept range. In the control solution implementation, optimal climb and

descent altitude schedules for a number of discrete values of Eo are precomputed
and stored in the form hc(E,EO) for climb and hd(E) for descent. The descent
profiles are independent of EO because the optimal descent paths lie on the dynamic
pressure boundary. Given this discretization of the first boundary layer solution as

a function of Eo, the range-matching task becomes a matter of choosing the highest
value of Eo such that the horizontal range for climb and descent is less than or
equal to the predicted intercept range. When the inequality is strict, a cruise leg

at Eo is traversed before initiating descent. Descent is initiated when the
horizontal range for descent from Eo matches the predicted range to intercept.

The time t_(E,EA) and horizontal distance rc(E,Eo) required to climb fromy
E to Eo are determlned by computing the integrals,

_E E
tc(E,Eo) = o _ dE (54)

rc(E,Eo) = o __IdE (55)
E

16



where

V I = /[E - hI(E,EO)]2g (56)

and E is the energy rate computed at hc(E,Eo). Tabular data for hc(E,Eo),
tc(E,Eo), and rc(E,Eo) is presented in reference 2 for the F-8 aircraft at E* and
several pseudo-cruise energies.• o

The expressions used in calculating altitude and range for descent differ
slightly from those used in calculating altitude and range for climb. During
descent, the rapid rise in the rate of closure, normalized with respect to remaining
range, causes the terminal miss distance to become highly sensitive to error in the
remaining range estimate; thus,

EO 1
td(E) = 7 dE (57)

* E
o

EO rd
rd(E) = q-- dE (58)

* E
o

where

rd = Vl cos Yd (59)

- hd(E)]2g (60)

sin-l[(dhd/dE)1= Vl (61)

where E is the energy at initiation of descent. Tabular values for hd(E), td(E),
and rd(E) are provided in reference 2 for the F-8 aircraft•

Climb times and ranges from the current energy to the cruise energy are obtained
by interpolating and differencing the values in the tables of reference 2. A similar
procedure is used for descent. For example,

td(E,Ef) = td(Ef) - td(E) (62)

rd(E,Ef) = rd(Ef) - rd(E) (63)

17



In general, Ef is not known a priori and must be determined such that
h(tf) = hT(tf). A terminal constraint must be satisfied:

hd(Ef) = hT + VT sin _Ttgo (64)

where t is the estimated time remaining until intercept. Referring to the inter-go
cept geometry in figure I, descent is initiated when

rd(Eo,Ef) cos(8o - I) ) R + (VT cos _T sin l)td(Eo,Ef) (65)

is satisfied, where R is the current horizontal range.

Proportional Vertical Lift

An option was included in the control logic for stopping the singular perturba-
tion solution after the second boundary layer and using a suboptimal proportional
control for vertical lift. This option was included to investigate the sensitivity
of the solution to the final two boundary layers. Also, the proportional control is
computationally easier to implement than the full singular perturbation solution.
First the desired flight-path angle is defined by

h2 - h I _ dhI
+ (66)

YD = TIV V I dE

where VI = _iE - hI)2g. The second term in the above equation is an approximation
to the flight-path angle for following the first boundary layer climb path. The

proportional vertical lift (Lip) is computed based on a desired flight-path angle
rate proportional to (YD -

= - LIp w cos
T2 mV (67)

Solving for Lip, we have

YD - Y

LIp = mV T--_---+ W cos y (68)

18



The control variables, total lift L and bank angle _, are then computed as

JL 2 (69)L = Ip + L22

_ = tan-II_ 1 (70)\ ipl

A block diagram of these calculations is given in figure 3. The characteristic equa-
tion for the resulting transfer function is

T1T2 s2 + TlS + 1 = 0 (71)

where s is the Laplace variable. The undamped natural frequency (_n) and the damp-
ing ratio (_) for this second-order system are

I (72)

_n - _

(73)
_= 2

The values chosen for the F-8 aircraft were _n = 0.1 rad/sec and _ = 0.8, result-
ing in values for TI and T2 of 15.0 and 6.0 sec, respectively. The choice of _n
and _ was made on the basis of an eigenvalue analysis of the optimal h and y
dynamics over a range of energy levels, documented in appendix D of reference 2.

Thrust and Lift Control During Descent

In the ideal case of a fully optimal control solution, there would be insignifi-
cant maneuvering and throttle variation during descent. There is, however, signifi-
cant turning in the solution implemented, primarily because of two factors. First,
since the aircraft follows the dynamic pressure constraint boundary during most of
the descent and since the flight-path angle is nonzero, the intercept heading changes
from the optimal cruise heading value. Thus, it is necessary to update the intercept
heading during descent using the equation for the optimal heading 6o' from the outer
layer, and the horizontal component of aircraft velocity. Second, target maneuvers
that occur after the initiation of descent necessitate heading changes. The former

problem could be greatly reduced by correcting the outer solution to first order in
_, in a manner similar to the procedure followed in reference 9.
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In order to ensure intercept under all conditions, both thrust and L22 must be
modulated during descent. In the case of L22, maximum lift should always be used
during descent in maintaining the intercept heading, because 1E becomes positive.I
In practice, small heading errors are nulled by a proportional control law. Further,
during descent, the vertical lift command is obtained through the previously
described proportional control option.

Thrust modulations are used to control rate of descent to ensure that h = hT
at intercept. Two correction terms are introduced:

T = Td + _T 1 + _T2 (74)

where Td is the nominal descent thrust from the first boundary layer. The second
term corrects for the fact that L does not equal W during descent, since this is

assumed in generating the td and rd tabular data. Thus, _TI compensates for
the increased drag caused by lift variations:

K(L 2 _ W2)

_TI = qS (75)

The third term in equation (74) compensates for the current mismatch (_R) in range,
where we replace Eo by E in the equation for initiating descent to get

_R = R + (VT cos YT sin l)td(E,Ef) - rd(E,Ef) cos(8o - I) (76)

A proportional control law was derived by defining

6R = -K 3 aR (77)

Noting that

= drd(E'Ef)
dE cos(80 - I) _E (78)

=  T2V
W (79)
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one can solve for _T2 as

K3W _R

6T2 = V cos(8° - I)[drd(E,Ef)/dE] (80)

In order to allow for thrust variation, Tmin was set equal to Tmil/2, where Tmi1
is the military thrust level.

It should be noted that a portion of the descent path calls for Td = Tmax.
Referring to figure 4, note that upon initiating descent, for Eo > Es, the commanded
altitude on the descent path is such that VI(Eo) > Vo(Eo). As shown in appendix A
of reference 2, this means that IE remains negative until VI(E) < Vo(Eo), which
from the first boundary layer solution implies that T = Tmax.

Summaryof ControlCalculations

The control calculations including both proportional vertical lift and calcula-
tions for the full zero-order solution are summarized in figure 5. All on-line
calculations are referenced by equation numbers. The purpose of the range-matching

block is to establish the proper cruise or pseudo-cruise energy level Eo. During
climb, the costates are calculated on-line and hc(E,Eo) is taken from tabular
data. All turn parameters are calculated on-line. During descent, hd(E,Ef) is
drawn from tabular data, and thrust and lift are calculated as described in the
previous section.

AvoidingNumericalSingularities

Numerical difficulties evidenced by discontinuities in the control solution were
encountered when the aircraft altitude, heading, and/or flight-path angle approached
their optimal values for the second and third boundary layer solutions. These dis-
continuities occurred when certain functions approached an indeterminate form as the
optimum state values were approached. For example, the argument being minimized in

the second boundary layer equation for h2 approaches an indeterminate form as head-
ing error approaches zero. The corrective measures took the form of first-order
Taylor series expansions and approximations taking advantage of the asymptotic
character of the boundary layer solutions. A more detailed description is given in
appendix F of reference 2.

DESCRIPTION OF SIMULATION

The F-8 aircraft was chosen for this simulation because of the availability of a
very realistic simulation of NASA's Digital Fly-by-Wire (DFBW) aircraft, which is an
F-8C modified so that the only link between the pilot and the aerodynamic control
surfaces is through the onboard digital computer. The level flight envelope of the
DFBW aircraft is shown in figure 2. The zero-energy-rate contour defines the limits
of level steady-state flight with full thrust and afterburner. This contour, the
dynamic pressure limit below an altitude of 5100 m, and the maximum angle of attack
boundary at low speed define the envelope for steady-state flight.
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The Langley simulation of the DFBW aircraft uses a complete six-degree-of-
freedom model that accurately represents the aircraft throughout its flight envelope.
This software resides on Langley's real-time digital simulation system consisting of
several Control Data Corporation (CDC) 6000 series and CYBER 175 computers and asso-
ciated analog and digital interfaces.I

The cockpit used for the simulation is a general purpose fixed-base cockpit used
at Langley to represent various types of aircraft from small general aviation air-
planes to the Space Shuttle. For the F-8 simulation, this cockpit had the standard
instrumentation necessary for determining aircraft attitude, velocity, acceleration,
angle of attack, and sideslip angle. A schematic of the instrument panel is shown in
figure 6. The rudder pedals were standard for a jet fighter, the throttle was from
an actual F-8 cockpit, and the stick was a sidearm stick with force rather than
displacement transducers.

The information generated by the optimal trajectory algorithms was presented to
the pilot by flight director needles (command bars) on the attitude indicator at the
center of the instrument panel. The pilot's task was to keep both horizontal and
vertical needles centered in order to remain on the optimal intercept trajectory. In
addition, the pilot modulated the throttle during descent to null a display indicat-
ing desired thrust.

A number of flights were simulated by the authors to determine the characteris-

tics of the algorithms and to verify that a pilot could actually fly as directed by
the displays and achieve an intercept. These preliminary flights also served to
check a number of possible test cases for use by the professional pilots in the
second phase of the study. For the part of the simulation flown by the pilots, three
initial conditions were selected to represent possible situations for two aircraft.
The pilots were told to fly the simulator so that the needles remained centered in
order to intercept a computer-generated target. The set of initial conditions flown
by the pilots was chosen to require the algorithms to generate flight paths that the
pilots might fly themselves. This allowed the pilots to comment on what the algo-
rithms told them to do in relation to what they would do themselves under similar
circumstances.

The three sets of initial conditions are illustrated in figure 7. For case I,
the target aircraft was 46 736 m ahead and 26 924 m to the right of the F-8 and fly-
ing at about a 60° angle with respect to the F-8's flight path. Both the F-8 and the
target were at an initial altitude of 3048 m. The target flew at a constant velocity
at Mach 0.71. The F-8 was initially at Mach 0.9. Case 2 differed from case I only
in that the F-8 started at an initial altitude of 9144 m at Mach 0.5 and the target
was flying at an altitude of 6048 m at Mach 0.74. Case 3 was completely different;
the F-8 and the target were adjacent to each other but heading in opposite direc-
tions. They started at the same altitude separated by approximately one turn radius
for the F-8.

The first case was chosen to demonstrate the aspects of a standard intercept
without a lot of maneuvering required. Typically the F-8 initiated a gentle climbing

IThe authors would like to acknowledge the contribution of Susan Carzoo of the

Sperry Corporation to this paper. Her diligence went beyond what we could normally
expect and allowed us to run the simulation in a useful and timely manner.
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turn to the left to intercept the projected end point of the target trajectory,
climbed to an efficient altitude for speed, and then descended to intercept the tar-
get. The second case had the F-8 at a high altitude and low velocity to demonstrate
the algorithms' direction of a typical low-speed maneuver, consisting of a dive to
gain speed and then a climb back to an efficient altitude for fast cruise. Case 3
was chosen to demonstrate the performance of the algorithms when hard maneuvers are
called for. The pilot was required to make a hard 180° turn initially to chase the
target. The F-8's initial velocity was higher than the optimal turning velocity at
that altitude, so the algorithms directed the pilot to climbduring the first part of
the turn and then dive to gain speed. This is a typical high-speed yo-yo maneuver.
Since the algorithm called for a 5g turn, which was the maximum g-loading allowed,
the maneuver was difficult to perform - especially in a fixed-base cockpit.

Intercepts were flown with these three sets of initial conditions for combina-
tions of three display modes and two optimization modes. The three display modes
refer to the information shown to the pilot on the horizontal and vertical crossbars
of the standard attitude indicator instrument used in the simulator. The information

displayed in each of the three display modes is shown in table I. In each mode the
pilot was to fly the simulated aircraft in a manner that would keep the needles cen-
tered in the attitude indicator instrument. Therefore, the instrument indicated the
differences between the actual and desired values of the respective quantities as
computed by the intercept algorithms.

Two optimization modes were used to compute the commands used to drive the
vertical and horizontal display needles. The first optimization mode, called the
suboptimal mode, used singular perturbations to compute a feedback control based on
the four states: horizontal displacements x and y, total energy per unit weight
E, and heading _, but used a proportional control law for the control relating
altitude and flight-path angle dynamics, as discussed previously in the section on
proportional vertical lift. The second optimization mode, called the fully optimal
mode, used singular perturbation theory to compute a feedback control based on sepa-
rating all six state variables, including altitude and flight-path angle. The pro-
portional vertical lift control was always used for descent because during descent
the F-8 is flying away from a stable equilibrium condition (cruise) and small errors
at the top of descent would be magnified at the intercept point.

Nine pilots flew a total of eleven sets of data, and one pilot flew a partial
data set. Two of the pilots flew two data sets each on different days. A full data
set was comprised of 15 nonredundant combinations of initial conditions, display
modes, and optimization modes. Since the third display mode did not use information
that was unique to the fully optimal computation mode, that combination was not
flown. The pilots were all active duty Air Force pilots currently flying F-15's or
F-106's or, in one case, an active reserve pilot who was also currently flying
F-106's. They were each allowed to fly the simulator for a few minutes to get the
feel of the controls and instruments before data runs were begun.

The data recorded for each piloted flight consisted of the data necessary to
describe the case being flown (initial conditions, optimization mode, and display
mode), the time required to fly the intercept, and the computed distance from the
target at the time of closest approach to the target. The data run was terminated
when the F-8 passed the target and the range to the target started increasing, rather
than decreasing. Out of 172 data runs recorded, 10 were eliminated because the mini-
mum distance to the target was over 500 m. It was decided that these would not be
called intercepts since the average final range for the remaining flights was well
under 100 m.
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Discussion of Example Data Runs

Figures 8-13 show example piloted data runs for cases I and 3. Figure 8 shows
the ground tracks generated by the F-8 and the target for ease I with the fully opti-
mal computation mode (mode 2) and display mode I (load factor on the horizontal nee-
dle and bank angle on the vertical needle). The F-8 starts at (0,0) on the plot and
flies to intercept the target, which is flying at constant velocity. The curves in
the F-8's path at the beginning and end of the flight are due to the initial change
in heading and to heading corrections during the descent phase of the intercept.

Figure 9 shows altitude versus time for the same case. The curve marked by
small squares represents the altitude command generated by the first boundary layer
equations. Since altitude is considered control-like in these computations, jumps in
altitude are allowed. The vertical jump in this curve at about 30 seconds into the
flight occurs because the outer layer has at that point computed a new pseudo-cruise
altitude for the F-8 based on its current position. This occurred because the F-8
was lagging the reference altitude during climb, thus traveling faster than it should
have at all energy levels, and closing range with the target at a faster pace than
appropriate for the climb path. Finally, the range to the target became sufficiently
shortened that it became necessary to range-match to a lower pseudo-cruise energy
level. Another large vertical step in altitude occurs at the beginning of descent as
the first boundary layer equations shift to the descent path from the climb-cruise
arcs. The lift computations take into account the dynamics in altitude and flight-
path angle and thereby smooth the step changes that appear in the first boundary
layer output.

The other curve in figure 9, which is marked by small circles, represents the
actual altitude of the F-8 during the intercept. It can be seen that this curve has
none of the step changes in altitude that occurred in the first boundary layer out-
put. The actual altitude lags behind the reference altitude from the first boundary
layer during the climb portion of the flight. This occurs because the control solu-
tion is based on a zero-order singular perturbation analysis, which results in a type
zero control law. Hence, a nearly constant error results when following the ramp-
like altitude reference during climb. Inclusion of first-order correction terms in
the control solution would eliminate these errors.

Figure 10 shows altitude versus velocity for the same data run. The flight
starts on the left-hand side of the figure. The F-8 initially (after a slight decel-
eration during the initial turn maneuver) picks up velocity without gaining much
altitude. Then when the velocity has reached about 320 m/sec, the F-8 climbs from
3500 to 5500 m while the velocity decreases slightly. After one more jog in altitude
as Mach I is passed, the F-8 accelerates to the high-speed point for this flight. At
descent initiation, the algorithm directed the pilot to cut the throttle, roll the
aircraft 180°, and pull back on the stick to start the descent as quickly as possi-
ble. In this particular case, the pilot pulled back on the throttle and matched the
desired throttle indicator before rotating the aircraft and starting descent. This
caused the F-8 to slow down significantly at constant altitude before beginning the

descent. The F-8 then righted itself and flew down the qmax boundary to the
intercept point.

As noted earlier, figure 4 illustrates that when descent is initiated from suf-
ficiently high cruise energies, the initial portion of the descent path should be
flown at maximum thrust. Since this portion is relatively short in duration, it was
decided to use equation (74) from the start of descent for the cases described in the
paper. However, in retrospect, it seems that a better approach would have been to
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delay the use of equation (74) until the aircraft velocity falls below the cruise
velocity. This should result in a nearly constant-energy dive to the qmax boundary
in figure 10, rather than the initial deceleration at constant altitude.

It is interesting to compare the figures of this paper, for piloted flights,
with figures from reference 2, for computer-generated non-piloted flights. Represen-
tative figures from reference 2 are presented in the appendix. Figures 8-10 may be
compared with figures A1-A3. Curve 3 in the appendix figures represents the same
initial conditions as case I flown here, but with no pilot in the loop. The differ-
ences between the two sets of figuresare the result of pilot input. In the refer-

ence, perfect F-8 maneuvers were simulated based on the equations programmed for the
aircraft, while the pilot flying the cases in the present study is following the
visual commands shown on the cockpit instruments. Figure A3 actually represents a

longer range intercept than the one flown here, but the characteristics of the
shorter range case are similar.

Figures 11-13 are ground tracks, altitude versus time, and altitude versus
velocity for case 3. These figures correspond to figures A4-A6 in the appendix
except that for the piloted simulation the commands displayed were based on the sub-
optimal optimization mode rather than the fully optimal mode. The suboptimal mode
uses a proportional control law to compute commands based on the altitude and flight-
path angle equations of motion, instead of using the commands generated exclusively
by singular perturbations. For this reason, the lag between the reference and actual
altitudes that was visible in the previous case and is visible in figure A5 does not
appear in figure 12. Display mode I (load factor and bank angle) was again used for
this data run. The computer-generated flights in reference 2 differed more from the
piloted ones shown here because this case was very difficult for the pilots to fly.
This case does demonstrate that the algorithms direct the pilot to fly a standard
maneuver called a high-speed yo-yo in order to turn the F-8 around as quickly as pos-
sible. The algorithms direct the pilot to pull up as he starts the turn (at maximum
g-loading) in order to slow the aircraft to the velocity for maximum turn rate. Then
he is directed to dive again to gain speed as he approaches the proper heading for
the intercept. The piloted runs show a much greater speed loss during the turning
maneuver than do the computer-generated runs in reference 2.

Reference 10 contains a preliminary description of the piloted simulation
described in this paper. It includes several example trajectories that are not
included in this paper.

Discussion of Statistical Data From Piloted Runs

Tables II and III show statistics from the 162 data runs used for statistical
analysis. These tables show the averages and standard deviations of the intercept
times and intercept distances for the various optimization and display modes. Data
are shown for all three sets of initial conditions. The standard deviations in

intercept time for the three cases are shown in figure 14. The deviation for case 3
is over four times that of the other two cases.

The intercept times of the two pilots who each flew two full data sets are plot-
ted against the order of those flights in figures 15-17. The vertical scales for
these three plots have the same increments so that the slopes can be compared even
though the average intercept times differed for the three cases. The plots for
cases 1 and 2 show no significant decrease in intercept time as the pilots repeatedly
flew the simulation runs. Therefore, variations in the data represent differences
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due to the optimization and display modes chosen. However, for case 3, intercept
times obviously decreased as the number of attempts at that case increased. This

demonstrates that the pilots were still learning how to fly the intercept after 10
flights. The variations caused by different displays and optimization modes were
generally small when compared with the improvement in intercept time as the pilots
accumulated experience in flying the task. The difficulty of that particular case
was attributed to the initial high-g 180° turn combined with vertical maneuvers. The
pilots flying the simulator were aii capable of performing such maneuvers success-
fully in an airplane. However, the combination of the side stick with force trans-
ducers and the lack of motion and out-the-window cues made flying this case very
difficult.

Figure 18 shows that for the first two cases, the first display mode allowed for
slightly better intercept times. Figure 19 shows that the second optimization mode
(fully optimal) gave slightly better intercept times. The differences in intercept
times caused by the display and optimization modes are small. However, intercept
time is not the only consideration. Figure 20 shows that the intercept distance was
greatly affected by the choice of display mode. Since the intercept distance is
mainly determined by only the last part of the flight and is not influenced by the
early part at all, the miss distance data from case 3 is valid. Thus, the data in
figure 20 show the same trends for case 3 as the first two cases. These data show

that the second display mode (heading and altitude rate) outperformed the other two
consistently and that the third display mode (Mach number and heading) was by far the
worst. This conclusion was supported by the pilots during the simulations. They
found the third display mode very difficult to fly because of the very long lags
between control inputs and responses of the indicator needles. There was no clear

consensus among the pilots concerning the desirability of the first or second display
mode.

Timing Considerations

Both the calculations needed to run the F-8 simulation and the onboard calcula-
tions required to use the algorithms were done by the CDC CYBER 175 computer system.
To obtain an estimate of the time required to perform the onboard calculations, a
timing routine was used under a number of different flight conditions with the dis-
play and control modes that required the most computations. The average time
required by the onboard algorithms for all of these conditions was 1.2 msec, with a
maximum time of 1.5 msec and a minimum of 1.1 msec. The memory required for the

algorithms on the CDC computer was 47 7448 60-bit words. The number of words
required for the programs themselves were 67738 with the rest going to storage
(COMMON blocks). No attempt was made to optimize the program from the point of view
of either time or memory requirements.

CONCLUDING REMARKS

This paper has presented algorithms for onboard computation of time-optimal
intercept trajectories and described a piloted simulation of those algorithms. Sin-
gular perturbation techniques have been applied to that time-optimal intercept prob-
lem in order to simplify the problem for solution onboard the aircraft in real time.
The feedback implementation of the solution has been described in detail.

A piloted simulation of the F-8 aircraft using the algorithms to generate con-
trols for intercepting a moving target has demonstrated the feasibility of onboard
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computation of optimal trajectories. Three sets of initial conditions (cases) for
piloted simulations were chosen to demonstrate the capabilities of the algorithms and
to determine the best information to display to the pilot. The data runs were made
using two computation modes for the algorithms and three display modes for presenting
information to the pilots. For statistical comparisons, 162 simulated intercepts
were flown by 10 pilots.

Example data runs are shown that demonstrate the capabilities of the algorithms
in the two computation modes and these runs are compared with previously published
simulations which use the same algorithms but without a pilot in the loop. Informa-
tion is included on the time required to compute the onboard calculations along with
the storage requirements for the algorithms on CDC CYBER 175 computers.

The results of this simulation demonstrate that onboard computation of commands
for time-optimal intercept is feasible. The pilots were able to use cockpit displays
driven by the intercept algorithms to get very close to the target. Three different
sets of parameters could be presented to the pilot for directing the intercept. The
choice of display modes had little effect on the time required for intercept, but had
a large effect on the minimum intercept distance. The best parameters to show the
pilot, from the point of view of miss distance, were desired altitude rate and
desired heading. Desired load factor and desired bank angle gave only slightly
degraded performance.

For two sets of initial conditions (cases I and 2), the fully optimal computa-
tion mode, which used singular perturbation techniques to separate all the state
variables, gave slightly better intercept times than the suboptimal mode, which
relied on a proportional control law for the vertical lift command. The intercept
time data for case 3 reflected the learning curve for the pilots as they learned to
fly that very difficult case and was not useful for evaluating display or computation
modes.

NASA Langley Research Center
Hampton, VA 23665
March 19, 1985
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TABLE I.- INFORMATION DISPLAYED TO PILOT

Display Vertical Horizontal Left-hand
mode needle needle scale

I Bank angle Load factor Throttle
2 Heading Altitude rate Throttle
3 Heading Mach number Throttle

TABLE II.- PARTIAL STATISTICS FOR INTERCEPT TIMES

Optimization mode Display mode

Case Statistic
Suboptimal Fully I 2 3

optimal

I Average, sec ........ 259.19 244.66 250.86 253.18 259.05
Standard deviation, sec . . . 4.54 5.54 8.15 8.78 6.78

2 Average, sec ........ 275.50 269.99 269.20 275.95 276.27
Standard deviation, sec . . . 7.87 6.32 6.78 6.57 8.32

3 Average, sec ........ 204.51 228.13 230.02 209.82 190.68
Standard deviation, sec . . . 29.39 47.10 37.86 41.52 16.57

TABLE III.- PARTIAL STATISTICS FOR INTERCEPT DISTANCES

Optimization mode Display mode

Case Statistic
Suboptimal Fully I 2 3

optimal

1 Average, m .......... 98.98 65.61 69.06 52.10 188.49
Standard deviation, m ..... 92.43 48.69 47.74 21.63 116.08

2 Average, m .......... 85.39 72.07 71.91 56.18 152.96
Standard deviation, m ..... 93.00 77.40 80.51 33.84 135.07

3 Average, m .......... 75.03 76.64 74.12 56.61 122.83
Standard deviation, m ..... 91.23 96.60 93.65 86.85 91.33
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Figure 15.- Intercept time versus run order for case I.
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Figure 20.- Averageinterceptdistancesfor three displaymodes.
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APPENDIX

NON-PILOTED SIMULATION DATA FROM REFERENCE 2

This appendix presents figures 25-27 and figures 31-33 from reference 2, which
are included for comparison with figures 8-13 of the present paper. The initial con-
ditions for the simulations presented in figures AI-A6 are listed in table AI. Ini-
tial condition 3 in figures AI-A3 corresponds to case I in figures 8-10 and initial
condition 4 in figures A4-A6 correspond to case 3 in figures 11-13.

TABLE At.- INITIAL CONDITIONS FROM REFERENCE 2

Initial
condition x, m y, m h, m B, tad V, m/sec

F-8 aircraft

I 0 0 3048 0 295.92
2 0 0 3048 0 295.92
3 0 0 3048 0 295.92
4 0 0 3048 0 295.92

Target aircraft

I 140 208 -80 772 3048 1.0472 232.56
2 93 023 -53 209 3048 1.0472 232.56
3 46 698 -27 000 3048 1.0472 232.56
4 0 I 335.7 3048 3.1416 274.32
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This figure is from reference 2 of this paper.
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Figure A3.- Altitude versus velocity for initial
condition 2.
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initial condition 4.
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