NASA
Technical
Paper
2439
July 1985

Nacelle/Pylon/Wing Integration on a Transport Model With a Natural Laminar Flow Nacelle

Milton Lamb, William K. Abeyounis, and James C. Patterson, Jr.

NASA
Technical
Paper
2439

1985

Nacelle/Pylon/Wing Integration on a Transport Model With a Natural Laminar Flow Nacelle

Milton Lamb, William K. Abeyounis, and James C. Patterson, Jr.

Langley Research Center
Hampton, Virginia

Introduction

Extensive efforts are underway to develop efficient transport aircraft with reduced direct operating costs (ref. 1). Much of this effort is focused on providing extensive laminar boundary layers on the various aerodynamic surfaces of the aircraft (ref. 2). Laminar boundary layers can be maintained naturally by favorable pressure gradients. Pressure gradients favorable for laminar boundary layers are not favorable for lifting surfaces because of the rearward position of minimum pressure coupled with the trailing-edge pressure recovery. In addition, many of the lifting surfaces on transport aircraft have significant leading-edge sweep angles that generate spanwise flows which are unfavorable to maintaining laminar boundary layers. Since nacelles are not required to carry lift and have negligible leading-edge sweep, they may be designed to have favorable pressure gradients for maintaining laminar boundary layers on a large portion of their surface. Nacelles could, therefore, be a candidate for natural laminar flow. As shown in reference 3, a reduction on the order of $1 \frac{1}{2}$ to 2 percent of total aircraft drag at cruise may be achieved with little or no weight penalty by maintaining laminar flow on the nacelle.

An earlier study (ref. 3) was conducted in the Langley 16-Foot Transonic Tunnel to determine the extent of laminar flow obtainable on an isolated nacelle designed to have a favorable pressure distribution over approximately 70 percent of the fan cowl length. Integration tests conducted on a fullspan model would involve nacelle sizes considerably smaller than the isolated nacelle previously tested. The smaller nacelle with its lower Reynolds number is expected to have natural laminar flow over a larger portion of the nacelle length.

The main purposes of this study were twofold: First, to determine if the philosophy used in the design of this smaller nacelle, as well as the isolated nacelle, would result in laminar flow over that portion of the nacelle for which it was designed; and second, to determine if integration concepts had any adverse effect on the extent of laminar flow on the nacelle. In addition, this study determined the level of nacelle drag reductions that may be obtained with flowthrough laminar flow nacelles installed on a highwing transonic transport configuration. The effects of fixed and free transition as well as longitudinal position and pylon contouring were also investigated. Extensive static-pressure measurements were taken on the nacelle and wing. The investigation was conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5° to 4.0°.

Symbols and Abbreviations

A area, in ${ }^{2}$

$A_{\text {ref }} \quad$ wing reference area, $529.590 \mathrm{in}^{2}$
BL butt line of model (lateral dimension), in.
$b \quad$ wing span, 63.121 in .
$C_{D} \quad$ drag coefficient, $\frac{\text { Drag }}{q_{\infty} A_{\text {ref }}}$
ΔC_{D} installed drag, $C_{D, \text { WBNP }}-C_{D, \text { WB }}$
$C_{L} \quad$ lift coefficient, $\frac{\text { Lift }}{q_{\infty} A_{\text {ref }}}$
C_{m} pitching-moment coefficient, $\frac{\text { Pitching moment }}{\varphi_{00} \bar{C} A_{\text {ref }}}$
$C_{p} \quad$ pressure coefficient, $\left(p-p_{\infty}\right) / q_{\infty}$
$c \quad$ chord measure in wing reference plane, in.
c_{W} chord of wing at intersection with pylon, 9.972 in.
$\overline{\boldsymbol{c}} \quad$ mean geometric chord, 9.107 in.
$F_{\text {in }} \quad$ nacelle internal drag, lb
FS fuselage station (axial dimension measured from model nose), in.
$k \quad$ constant in figure $1(\mathrm{c})$
l nacelle length, 12.770 in .
$M \quad$ Mach number
m mass, slugs
NBL nacelle butt line, in. (fig. 3)
NWL nacelle water line, in. (fig. 3)
NS nacelle station (axial dimension measured from nacelle lip), in.
$p \quad$ local static pressure, $\mathrm{lb} / \mathrm{in}^{2}$
$p_{\infty} \quad$ free-stream static pressure, $\mathrm{lb} / \mathrm{in}^{2}$
$q_{\infty} \quad$ free-stream dynamic pressure, $\mathrm{lb} / \mathrm{in}^{2}$
r nacelle radius, in.
V velocity, $\mathrm{ft} / \mathrm{sec}$
WL fuselage water line, in.
WRP wing reference plane (fig. $1(\mathrm{a})$)
$x \quad$ local axial dimension, in.
$x_{\text {LE }}$ axial distance from pylon leading edge for defining cap leading-edge section shape, in. (fig. 4(a))
$x_{\text {LE,N }}$ leading edge of nacelle, in.
$x_{\mathrm{TE}} \quad$ axial distance from pylon trailing edge for defining strut trailing-edge section shape, in.
y local lateral dimension, in.
$z \quad$ local vertical dimension, in.
$\alpha \quad$ angle of attack, deg
$\eta \quad y /(b / 2)$ for wing pressure locations (fig. 1(c))
$\phi \quad$ circumferential angular measurements for nacelle orifice locations, deg (fig. 2)
Subscripts:
exit nacelle exit
o nacelle inlet
Model components:
B body
N nacelle
P pylon
W wing

Experimental Apparatus and Procedure

Wind Tunnel

The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel. This tunnel is an atmospheric, single-return wind tunnel with continuous air exchange and is capable of operating at Mach numbers from 0.20 to 1.30 . A detailed description of the tunnel is presented in references 4 and 5.

Model and Support System

The $1 / 24$-scale model, representative of a widebody transport, is shown in figure $1(\mathrm{a})$, and a photograph of the model with laminar flow nacelles in the forward position is shown in figure $1(\mathrm{~b})$. The model, which had a high wing with supercritical airfoil sections, was mounted on a sting-supported sixcomponent strain-gage balance. Details of the fuselage, wing, and wing pressure orifice locations can be found in references 6 and 7 . For these tests, the wing of reference 6 was modified to reduce the curvature of the wing lower surface in the region around the nacelle pylon (see fig. $1(\mathrm{c})$) to reduce the flow velocities in that region.

A low-order panel method (ref. 8) in conjunction with a specific compressibility correction technique (ref. 9) was used in designing the long-duct flowthrough laminar flow nacelle to solve for the basic
installed flow field, with no consideration for laminar boundary-layer stability theory. The desired nacelle shape was analytically modeled into the wing-body flow field, and the resulting pressure gradient of the nacelle was checked for separation as well as for peak surface Mach number. If either the pressure gradient or peak Mach number proved unsatisfactory, the nacelle contour was modified and the entire process was repeated until a satisfactory shape was obtained. The final nacelle contour, shown in figure 2, had a highly polished surface and a favorable pressure gradient over a significant portion (60 percent) of its length. As shown in figure 3 , the nacelle was installed in a forward position (top sketch) or a rearward position (bottom sketch) on the symmetrical pylon and in a forward position (middle sketch) on a contoured pylon.

Details of the symmetrical pylons are shown in figure 4(a) and details of the contoured pylon are shown in figure 4(b). Because flow acceleration around pylons is a major contributor to the high velocity peaks on the wing lower surface, the pylon was contoured in an attempt to reduce these high velocities. The low-order panel method discussed earlier was used to design the contoured pylon using the wing/body/nacelle flow field obtained for the laminar flow nacelle in the forward position.

Instrumentation and Data Reduction

The model aerodynamic force and moment data were obtained by an internally mounted six-component strain-gage balance. The model surface static pressures were measured by scanning electrical straingage transducers located in the model nose to reduce the lag time required between data points. Sting cavity pressures, measured by remotely located straingage transducers, were used to correct the cavity pressure to the free-stream static pressure. Based on repeated runs, the accuracy was equivalent to 1 count of drag (C_{D} of 0.0001).

All wind-tunnel parameters and model data were recorded simultaneously on magnetic tape. Except for scanning valve pressures, averaged values were used to compute all parameters. The model angle of attack was computed by correcting the support strut angle, both for sting deflections based on balance loads and for tunnel upflow determined from inverted model runs in a previous tunnel entry (ref. 6). Stingcavity pressures were used to correct the longitudinal balance components for pressure forces in the sting cavity. Nacelle internal drag corrections were made by using internal static pressures to determine the mass flow for a one-dimensional flow calculation; that
is,

$$
F_{\mathrm{in}}=m V_{\mathrm{exit}}-m V_{o}+\left(p_{\mathrm{exit}}-p_{o}\right) A_{\mathrm{exit}}
$$

Forces and moments were transferred to the model moment center, the quarter-chord point of the mean geometric chord on the model water line.

The turbulent skin-friction drag for the nacelles was calculated by the method of Frankl and Voishel for compressible turbulent flow over a flat plate. Laminar skin-friction drag for the nacelles was calculated by the method of Blasius. No corrections were made for grit drag.

Tests

This experimental wind-tunnel investigation was conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and Reynolds number from approximately 2.5×10^{6} to 3.0×10^{6} based on the mean geometric chord of the wing. The model angle of attack was varied from -2.5° to 4.0°. Boundary-layer transition on the model was fixed using a grit-transition-strip procedure (ref. 10). A 0.1 -in-wide strip of No. 100 carborundum grit was attached 1.0 -in. behind the nose of the fuselage. Strips of No. 90 and No. 80 grit were applied on the upper and lower wing surfaces (see fig. 11 of ref. 7) in a rearward position in order to match the boundary-layer thickness at the trailing edge of the wing (ref. 11). In those cases where it was desirable to fix transition on the nacelles, a $0.10-\mathrm{in}$. strip of No. 120 grit was placed 1.05 in. $(x / l=0.08)$ and $0.375 \mathrm{in} .(x / l=0.03)$ aft of the nacelle lip on the external and internal surfaces, respectively. The text matrix is shown in the table below.

Mach number	Angle of attack, deg	Nacelle position	Pylon	Nacelle transition
0.70 to 0.82	-2.5 to 4.0	Forward	Symmetrical	Free \& fixed Free \& fixed
0.70 to 0.82	-2.5 to 4.0	Forward	Contoured Fymmetrical	Free \& fixed
0.70 to 0.82	-2.5 to 4.0	Rearward	Symmer	

Results and Discussion

The basic aerodynamic characteristics of the different nacelle configurations are presented in figures 5 to 7. The wing-body configuration with original wing leading edge is presented to show the effect of nacelle installation with wing leading-edge modification and the effect of free and fixed nacelle transition. The addition of the nacelles reduced the lift coefficient and increased the drag coefficient. Fixing the nacelle
transition caused a significant increase in drag coefficient while lift and pitching-moment coefficients were affected only slightly, if at all.

Laminar Flow Design

The purpose of this study, as discussed earlier, was aimed at determining if a nacelle designed to achieve laminar flow over a large portion of the nacelle length could be integrated into a transport (nacelle/pylon/wing integration) configuration and preserve the extent of laminar flow achieved on the isolated nacelle. For the configuration with the nacelle in the forward position (position which should produce the least interference), the drag reduction due to laminar flow (increment between fixed and free transition) is approximately 9 counts. (See fig. 5(e).) Calculations of the skin-friction drag for the nacelle with fixed and free transition (indication of the extent of laminar flow achieved on the nacelle) indicate that the drag reduction expected for a nacelle of this size with 60-percent laminar flow (observed in sublimation runs) is approximately 9 counts. Thus, it would seem that the ability to design a nacelle to achieve laminar flow has not been significantly altered by integration.

Effect of Nacelle Position

The effect of longitudinal position of the nacelles on the longitudinal aerodynamic characteristics is shown in figure 8 . The nacelles were installed on symmetrical pylons such that the ratio $x_{\text {LE,N }} / c_{W}$ was -1.20 or -0.90 . (See fig. 3.) A large reduction in lift and increase in drag is associated with installing the nacelle in the rearward position $\left(x_{\mathrm{LE}, \mathrm{N}} / c_{W}=\right.$ -0.90). This increase in drag and the associated loss in lift are revealed by the wing pressure distributions presented in figure 9. While there is some decrease in upper surface pressure coefficients near the wing leading edge (see fig. 9), there is a large decrease in the lower surface pressure coefficients. This large decrease is possibly due to flow acceleration between the nacelle/pylon/wing and fuselage as the nacelle is moved rearward, thus resulting in shock-induced boundary-layer separation and the increase in drag shown in figure 8.

Pylon Contouring

The effect of pylon contouring on the longitudinal aerodynamic characteristics is shown in figure 10. This contoured-pylon configuration exhibits less drag than the configuration with symmetrical pylons. The increment in drag between the symmetrical and contoured pylons increases with increasing Mach number, not unusual since the contoured pylon was designed for $M=0.80$. The wing pressure data inboard
of the pylon (fig. 11) show that the contoured pylon allows a better pressure recovery on the upper surface and reduces the lower surface velocities, thereby producing lift and reducing drag as noted in figure 10.

Installed Drag

In figure 12, the installed drag coefficients ($\Delta C_{D}=$ $C_{D, \mathrm{WBNP}}-C_{D, \mathrm{WB}}$) are presented across the Mach number range for the configuration cruise condition ($C_{L}=0.45$). The curves were obtained from interpolated values of C_{D} at $C_{L}=0.45$. Configurations with the nacelles installed in the forward position (figs. 12(a) and (b)) show only slight changes in installed drag over the Mach number range. The contoured-pylon configuration with free transition (fig. 12(b)) exhibits less drag than the symmetricalpylon configuration with free transition (figs. 12(a) and (c)). The installed drag for the nacelle-forward symmetrical-pylon configuration with fixed transition remains essentially constant over the Mach number range, whereas the installed drag for the contoured-pylon configuration with fixed transition decreases as Mach number increases. For the configuration with rearward-installed nacelles (fig. 12(c)), installed drag increases rapidly with Mach number and the increment between free and fixed transition decreases rapidly with Mach number.

Nacelle Pressures

Figures 13 to 15 show the nacelle pressurecoefficient distributions at $C_{L} \approx 0.45$ over the Mach number range. These pressure distributions will probably explain the extreme differences noted for the installed drags. For the configurations with the nacelles in the forward position (figs. 13 and 14), the pressure-coefficient distribution over the Mach number range is similar, with only a slight increase in peak pressure coefficient with increase in Mach number. However, for the configuration with the nacelles in the rearward position (fig. 15), peak pressure coefficient increases rapidly with Mach number, particularly on the inboard side in the region close to the nacelle-pylon juncture. This high peak pressure is essentially the same for free and fixed transition and tends to override the pressure differences (i.e., a local disturbance due to transition strip) resulting from fixed transition at low values of x / l. This probably explains why the free and fixed transition installed drag approaches the same value at the higher Mach numbers.

Comparison of Installed Drag at $M=0.80$

The installed drag coefficients at $M=0.80$ and $C_{L}=0.45$ are compared in figure 16, with the drag
broken down into skin-friction drag and interference drag. For free transition, laminar flow was assumed to exist over 60 percent of the nacelle length (based on design and on sublimation pictures). Since only the nacelles were allowed to have free transition, the differences between the same nacelle-pylon configurations with free and fixed transition should be essentially equal to the skin-friction differences between turbulent and laminar flow. Such is the case except for the contoured-pylon configuration of about 4 counts higher. This increase in drag is attributed to interference drag.

Conclusions

An experimental investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of installing flow-through laminar flow nacelles on a high-wing transonic transport configuration. The effects of fixed and free transition as well as longitudinal position and pylon contouring were obtained. The results of this investigation indicate the following:

1. The ability to achieve laminar flow on the nacelle was not significantly altered by nacelle/pylon/ wing integration for the nacelles on symmetrical pylons.
2. The increment of drag between free and fixed transition was essentially the calculated differences between turbulent and laminar flow on the nacelles.
3. With the nacelles in a forward position, the installed drag for the contoured pylon was less than that for the symmetrical pylons.
4. The contoured pylon had increased interference drag with fixed nacelle transition.
5. The installed drag for the nacelles in a rearward position was greater than that for the nacelles in a forward position.
6. The increment between free and fixed transition for the rearward nacelle decreased with an increase in Mach number, probably due to the high peak pressures which overrode the pressure differences resulting from fixed transition.

NASA Langley Research Center
Hampton, VA 23665
April 1, 1985

References

1. James, Robert L., Jr.; and Maddalon, Dal V.: Airframe Technology for Aircraft Energy Efficiency. NASA TM85749, 1984.
2. Wagner, Richard D.; Maddalon, Dal V.; and Fischer, Michael C.: TechnologyDevelopments for Laminar Boundary Layer Control on Subsonic Transport Air-
the Fluid Dynamics Panel Symposium on Improvement of Aerodynamic Performance Through Boundary Layer Control and High Lift Systems (Brussels, Belgium), May 1984.
3. Younghans, J. L.; and Lahti, D. J.: Analytical and Experimental Studies on Natural Laminar Flow Nacelles. AIAA-84-0034, Jan. 1984.
4. Corson, Blake W., Jr.; Runckel, Jack F.; and Igoe, William B.: Calibration of the Langley 16-Foot Transonic Tunnel With Test Section Air Removal. NASA TR R423, 1974.
5. Peddrew, Kathryn H., compiler: A User's Guide to the Langley 16-Foot Transonic Tunnel. NASA TM-83186, 1981.
6. Lee, Edwin E., Jr.; and Pendergraft, Odis C., Jr.: Installation Effects of Long-Duct, Pylon-Mounted Nacelles on a Twin-Jet Transport Model With a Swept, Supercritical Wing. NASA TP-2457, 1985.
7. Abeyounis, William K.; and Patterson, James C., Jr.: Effect of Underwing Aft-Mounted Nacelles on the Longitudinal Aerodynamic Characteristics of a High-Wing Transport Airplane. NASA TP-2447, 1985.
8. Maskew, Brian: Prediction of Subsonic Aerodynamic Characteristics-A Case for Low-Order Panel Methods. AIAA-81-0252, Jan. 1981.
9. Dietrich, D. A.; Oehler, S. L.; and Stockman, N. O.: Compressible Flow Analysis About Three-Dimensional Wing Surfaces Using a Combination Technique. AIAA-83-0183, Jan. 1983.
10. Braslow, Albert L.; Hicks, Raymond M.; and Harris, Roy V., Jr.: Use of Grit-Type Boundary-Layer-Transition Trips on Wind-Tunnel Models. NASA TN D-3579, 1966.
11. Blackwell, James A., Jr.: Preliminary Study Effects of Reynolds Number and Boundary-Layer Transition Location on Shock-Induced Separation. NASA TN D-5003, 1969.

(b) Model with laminar flow nacelles installed in forward position.

At any local station: $(z / c)_{\text {modified }}=(z / c)_{\text {original }}-(\Delta z / c)(k)$
Negative sign on $\Delta z / c$ values indicate undercut Positive sign on $\Delta z / C$ values indicate material added

x / c	$\Delta z / c$	x / c	$\Delta z / c$	x / c	$\Delta z / c$
0.000	0.0000	0.120	-0.0064	0.360	0.0013
0.002	-0.0044	0.140	-0.0055	0.380	0.0013
0.005	-0.0064	0.160	-0.0045	0.400	0.0013
0.010	-0.0079	0.180	-0.0035	0.420	0.0012
0.020	-0.0092	0.200	-0.0027	0.440	0.0011
0.030	-0.0095	0.220	-0.0019	0.460	0.0008
0.040	-0.0094	0.240	-0.0012	0.480	0.0006
0.050	-0.0072	0.260	-0.0005	0.500	0.0004
0.060	-0.0089	0.280	0.0000	0.520	0.0003
0.070	-0.0085	0.300	0.0004	0.540	0.0001
0.080	-0.0081	0.320	0.0007	0.560	0.0000
0.100	-0.0072	0.340	0.0011		

(c) Wing leading-edge modifications.

Figure 1. Concluded.

[^0]Figure 2. Details of nacelles. Linear dimensions are in inches.

Figure 3. Nacelle test matrix. Linear dimensions are in inches.

Figure 4. Details of pylons. Linear dimensions are in inches.

(b) Contoured pylon.

Figure 4. Concluded.

(a) $M=0.70$.

Figure 5. Longitudinal aerodynamic characteristics with nacelles in forward position on symmetrical pylons.

Figure 5. Continued.

(c) $M=0.78$.

Figure 5. Continued.

(d) $M=0.80$.

Figure 5. Continued.

Figure 5. Concluded.

(a) $M=0.70$.

Figure 6. Longitudinal aerodynamic characteristics with nacelles in forward position on contoured pylons.

(b) $M=0.75$.

Figure 6. Continued.

Figure 6. Continued.

(d) $M=0.80$.

Figure 6. Continued.

(e) $M=0.82$.

Figure 6. Concluded.

(a) $M=0.70$.

Figure 7. Longitudinal aerodynamic characteristics with nacelles in rearward position on symmetrical pylons.

Figure 7. Continued.

(c) $M=0.78$.

Figure 7. Continued.

(d) $M=0.80$.

Figure 7. Continued.

(e) $M=0.82$.

Figure 7. Concluded.

(a) $M=0.70$.

Figure 8. Effect of longitudinal position of nacelles on aerodynamic characteristics with nacelles installed on symmetrical pylons.

(b) $M=0.75$.

Figure 8. Continued.

(c) $M=0.78$.

Figure 8. Continued.

(d) $M=0.80$.

Figure 8. Continued.

Figure 8. Concluded.

(a) Free transition.

Figure 9. Effect of nacelle position on wing chordwise pressure distributions inboard of pylon ($\eta=0.328$). Nacelles on symmetrical pylons, $M=0.80$, and $C_{L} \approx 0.45$.

(b) Fixed transition.

Figure 9. Concluded.

(a) $M=0.70$.

Figure 10. Effect of pylon contouring on longitudinal aerodynamic characteristics with nacelles in forward position.

(b) $M=0.75$.

Figure 10. Continued.

(c) $M=0.78$.

Figure 10. Continued.

(d) $M=0.80$.

Figure 10. Continued.

(e) $M=0.82$.

Figure 10. Concluded.

(a) Free transition.

Figure 11. Effect of pylon contouring on wing chordwise pressure distributions inboard of pylon ($\eta=0.328$).
Nacelles in forward position, $M=0.80$, and $C_{L} \approx 0.45$.

(b) Fixed transition.

Figure 11. Concluded.

Figure 12. Variation of installed drag with Mach number for $C_{L}=0.45$.

(a) $M=0.70$.

Figure 13. Nacelle pressure-coefficient distribution at $C_{L} \approx 0.45$ of nacelles in forward position on symmetrical pylons.

Figure 13. Continued.

Figure 13. Continued.

Figure 13. Continued.

(e) $M=0.82$.

Figure 13. Concluded.

(a) $M=0.70$.

Figure 14. Nacelle pressure-coefficient distribution at $C_{L} \approx 0.45$ of nacelles in forward position on contoured pylons.

Figure 14. Continued.

(c) $M=0.78$.

Figure 14. Continued.

Figure 14. Continued.

(e) $M=0.82$.

Figure 14. Concluded.

Figure 15. Nacelle pressure-coefficient distribution at $C_{L} \approx 0.45$ of nacelles in rearward position on symmetrical pylons.

(b) $M=0.75$.

Figure 15. Continued.

Figure 15. Continued.

Figure 15. Continued.

(e) $M=0.82$.

Figure 15. Concluded.

> Free transition
Figure 16. Comparison of installed drag coefficients at $M=0.80$ and $C_{L}=0.45$.

[^0]: ${ }^{0}$ Dimensions are given to an accuracy to insure laminar
 flow of nacelle.

