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I. INTRODUCTION

A.	 Background

Under National Aeronautics and Space Administration Contracts

NAS9 -15401 and NAS9- 15211, Subtask 1, Applied Research Laboratories, The

University of Texas at Austin (ARL:UT), developed a computer model of an

orbiting synthetic aperture radar (SAR). 	 This model enabl3s the user to

create a terrain model of point reflectors on an arbitrarily specifiable

planet.	 The antenna is modeled by its gain pattern in azimuth and

elevation and is fixed to the orbiter in accordance with the platform

attitude and rates of change of attitude. The transmitter and receiver

are specified by frequency, pulse repetition rate (PRF), impulse response

characteristics, sampling rate, and range pulse compression codes.

Orbital conditions are specified, as well as the area on the planet to be

mapped and the geometry of the radar with respect to the area to be

mapped.	 Synthetic in-phase and quadrature (IPQ) video data are then

produced as the convolution of received scatterer echoes with the

transmitted waveform. The effects of antenna illumination, R4

attenuation, ambiguous ranging, and Doppler sampling are all taken into

account. The IPQ video data are then processed through an SAR processor,

and the resulting digital images are available for display and analysis.

While the scope of the model is limited in some respects, it provides a

powerful tool for certain parametric analyses (e.g., the ef fects of a

parameter or part of an SAR may be investigated in an ideal system).

The com puter model develo ped and documented  under the

aforementioned contracts is known as the orbital SAR simulation (OSS).

Currently, the OSS consists of approximately fifty subroutines and

programs and over 4500 lines of code written in FORTRAN IV and

implemented un the ARL:UT CYBER 180/830. Since the completion of the OSS

1
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version documented in Ref. 1, the OSS has been adapted to two subsequent

tasks. 2,3

B.	 Distributed SAR Simulation

This report under NAS9-17228 describes the effort to assess the

effects of degradation in a distributed array antenna on SAR images.

This study was performed in conjunction with the Physical Science

Laboratory, New Mexico State University (PSL/NMSU). PSL/NMSU studied the

effects of manufacturing tolerances of a di°tributed array antenna on its

gain pattern.	 Amplitude and phase variations in the transmit/receive

module were considered as were mechanical deformations. Then P'JL/NMSU

generated computer compatible tapes with three-dimensional gain patterns

from arrays with various levels of degradations.

The OSS was modified to use the antenna patterns generated by

PSL/NMSU.	 A series of simulations representative of the shuttle imaging

radar (SIR-C) were then executed.	 The antenna studies and the

simulations were performed at C-band, 5.3 GHz. 	 Two computer compatible

tapes containing five antenna patterns each were received from PSL/NMSU;

a summary of the data received is presented in Table I. 	 The approach

taken in this study was to set up a simulation and execute it using the

ideal antenna pattern (tape DSAR2, file l). The same simulation was then

run with degraded antenna patterns and the resulting images were

compared.

In previous SAR studies ARL:UT adopted a set of "image quality"

parameters to characterize an SAR image. 4 Most of these parameters

(i.e., resolution, geometric fidelity, crispness, speckle, etc.) are a

function of orbit geometry, radar hardware, or SAR processing parameters,

and they would not be affected by variations in the antenna gain

patterns.	 However, the extraction of backscatter levels (o o ) from the

terrain is very likely to be affected by degradations in the antenna gain

patterns.	 By placing fields with known values of a  in the terrain and

2



TABLE	 I
PSL/NMSU GENERATED ANTENNA PATTERNS

Data	 Files on Tape DSAR1

Data	 File No. Description

1 48 x 12 Array	 22 dB Taylor elevation
Taper -	 ideal	 case

2 48 x 12 Array	 22 dB Taylor elevation
Taper - parabolic bcw only 0.024 cm

3 48 x 12 Array	 22 dB Taylor elevation
Taper -	 random T/R module variations
at the element level
Amplifier	 variations	 +1.16 dB	 ,	 -3.0 d9

Phase Variations	 +/-	 10

4 48 x	 12 Array	 22 dB Taylor elevation
Taper -	 random T/R module variations
(1/R module drives entire 	 rnw)
Amplifier	 variations	 +1.76 dB	 -3.0 dB
Phase Amplifier	 +/-	 10

5 48 x 12 Array	 22 dB Taylor elevation
Taper -	 parabolic	 bow	 (0.024 cm)	 and
random T/R module variations at the
element level
Amplifier	 variations	 +1.16	 dB,	 -3.0 dB
Phase variations 	 +/-	 10

GaindB

35.29

35.29

34.84

35.11

34.81

4

5

Data	 Files on T y pe DSAR2

288 x 12 Element DSAR Array
22 dB Taylor	 Elevation	 Taper

Array dimensions	 12.4	 x 0.54 m

_	 Description Gain	 (dB)

Ideal	 case	 -	 no mechanical	 deformations 43.98
No T/R module degradations

Bow only - 0.175 cm oarabolic bow 43.96
No T/R module degradations

Weight only	 -	 no mechanical	 deformations 43.63
T/R module	 variations:	 amplitude	 +1.16,
-3 dB,	 phase	 +/-	 10
288 x	 12 T/R modules	 (at element	 level)

Both	 -	 0.175 cm parabolic	 bow 43.59
T/R module variations: amplitude +1.16,
-•3 dB,	 phase	 +/- 10
288 x 12 T/R modules (at element level)

Both 2 - 0.175 cm parabolic bow. 	 43.53
T/R mouule variations: amplitude +1.16,
-3 dB, phase +/- 10
16 x 12 T/R modules (each module feeds a
row, in a sub-panel, 18 elements long)

J

Data File No.

1

2

3
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then extracting the vales for c o from the images, the effects of the

antenna degradations on the measurement of a° can be assessed. It is

important at this ?oint to note that the shape of the antenna gain

pattern affects the measurement of Q ° within an image as a function of

both range and azimuth.	 If the exact pattern is kno^an, however, then the

:,lues for Q° ma y be properly adjusted (assuming there is no asymmetrical

e structure). We are concerned here with the degradations which cause the

antenna pattern to deviate from what was assumed. In other words, we are

interested in the effects on an SAR image due to the antenna degradations

after the pattern has been measu.ed.

4
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II.	 IMPLEMENTATION

ions

The basic change required t) the OS:. was a modification of the

program which uses the antenna pattern (program ECHO). The original

simulation used elevation and azimuth principal plane cuts to model the

antenna.	 Program ECHO and subroutine ANTWT were modified to use the

three-dimensional antenna patterns generated by PSL/NMSU (redesignated

PECHO and PANTWT).	 The antenna patterns were comprised of 181 conical

cuts (361 samples per cut, 10 in ^ per sample) of 0.5
0
 or 0.25

0
 in d per

4

cut.	 Since the 3 dB beamwidth in azimuth of the full array was on the

order of 0.25°, an interpolation scheme was also included in program

PECHO.	 For efficiency, the original version of the OSS did not use an 	 1

interpolation	 scheme;	 i , isteak;	 the	 desired	 antenna	 pattern	 was

sufficiently sampled so that interpolation was not necessary. 	 However,

in the present case, sufficient sampling of the antenna pattern would 	 j

have generated more data than could fit into memory. 	 A quadratic fit

through three points was used for interpolation.	 I

A program (ANTPSL) was also written to generate the file for use by

program PECHO.	 ANTPSL takes the antenna patterns generated by PSL/NMSU

on 0-track computer compatible tapes and decodes them into a binary file. 	 1

More operator interaction is required in the modified antenna simulation	 i

than in the original model, however, because the modified antenna

simulation was not fully integrated into the OSS.	 j

B.	 Image Analysis

The current version of the OSS provides no software for *.he

extraction of image statistics needed for image quality analyses. The

only post-processing routines available (POST) generated a tape for off-

line image display on an ARL:UT graphics system, which is no longer
I
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available. A version of program POST (PPOST) was generated which creates

a computer tape of the output SAR image for use on an HP 21MX

minicomputer with a brinnel color graphics display (we used only gray

scale and an attached Tektronix hard copy unit).

Another version of program POST (PPOSTST) was created which

h	
generates a binary file of the SAR image. 	 The structure of the file is

compatible with that generated by an SAR processor which uses real radar

E	 data.5 Programs were available from previous work 6 which allowed
t

extraction of statistics (max, min, mean, and standard deviation) from

the SAR images. For this study, these programs were used to print the

SAR image pixel values from which the locations of the fields in the

images could be deduced. Next, the portions of the images containing the

fields	 were	 statistically	 analyzed,	 and	 normalized	 cross-section

measurements were obtained.

C.	 Current Simulation Model

For the simulations performed, the planet modeled was earth.	 The

orbit parameters were chosen to correspond as closely as possible with

the shuttle's, 250 km altitude, near-polar orbit. The frequency was

C-band (5.3 GHz), the ground range resolution was 2.5 m with a sample

ratio of 2 (i.e., sample interval 112 of resolution), and the overlay

ratio was 2 (two "looks"). Two simulations were performed at a 20 0 nadir

angle and one at a 60 0 nadir angle.

The area of the terrain model to be imaged is shown in Fig. 1. For

the 200 nadir angle simulation (using the full array) the ambiguity

locations were computed (see p. 4/60 of Ref. 1 for a discussion of

ambiguity calculations); fields were then placed at these locations so

that the ambiguities would be introduced into the images.	 The antenna

pattern and SAR parameters act to suppress these ambiguities. 	 The

complete terrain model, used for all three simulations, is shown in

Fig. 2.	 The ambiguity locations for the 60 0 nadir angle simulation are

6
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I

different than for the 200 nadir angle simulation.	 However, the

unambiguous sector imaged was small, and some of the fields in ambiguity

locations fall	 in the azimuth sidelobes of the antenna pattern.

Therefore, the same terrain model could be used for all the simulations.

9
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III. RESULTS

A.	 600 Nadir Angle Simulation

The parameters used for this simulation are shown in Fig. 3. 	 The

simulation was exercised for the antenna patterns from tape DSAR2,

files 1 and 5 (see fable I).	 The SAR images produced by the OSS are

shown in Fig. 4.	 The normalized cross-section values from the imaged

fields are shown in Table II for the two antenna patterns. Two areas, Al

and A2, are outlined in the SAR images of Fig. 4. These are areas where

no targets were placed; the values obtained for Al and A2 represent

ambiguously imaged fields.

i

	

	 The var i ation in the computed scattering levels for imaged `fields

within one image is a function of the antenna gain pattern shape and the

(

	

	 p(,^'tion of the radar at the start of sampling. The two-way, 3 d5 width

of the distributed array is approximately 0.2 0 ; consequently, at a slant

range of 530 km, only 1.8 km of the terrain is illuminated. 	 The

synthetic array length was 0.7 km. 	 In a real system these variations

could be accounted for and need not concern us here. The differences in

ithe values obtained for the ideal and degraded patterns do not take into

account the difference in the gain of the two patterns indicated in

Table I. For full array patterns (DSAR2) the difference in gain between

the two patterns used was 0.45 dB; this translates to a 0.9 dB overall

reduction in the degraded pattern results.	 If a calibration were not

performed after deployment of the antenna, this could be significant.

The values obtained for sections Al and A2 give some idej of the

ambiguity level to be expected.	 It is important to note that the terrain

i	 illuminated by the antenna sidelobes was not filled with targets, and

j	 therefore the values for Al and A2 do not represent the integrated

+	 sidelobe ratio.	 However, the fields in the terrain model do fall in the

first few major sidelobes, and it is reasonable to expect that the values

11
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-	 3 dB 0.2

-	 6	 .i B -	 4.31

-	 9 dB -	 5.33

-12 dB -	 9.61

-15	 dB -11.41

+ 3 dB + 5.96

Al -12.3

A2 -16.0

Patch Center -	 1.79

0.16

- 4.35

- 5.36

- 9.61

-11.42

+ 5.92

-12.0

-15.6

- 1.79

TABLE II

EXTRACTED VALUES FROM SAR IMAGES

FOR THE 600 NADIR ANGLE SIMULATION

IDEAL PATTERN	 DEGRADED PATTERN

FIELD	 DSAR2/Fi'e 1	 DSAR2/File 5

(dB)	 (dB)

14
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w for Al and A2 are within 2-3 dB of the total ambiguity level. From these

data we can infer a value for dark target contrast (ratio of the mean

level of an area of very low reflectance to the mean level of the entire

image) of approximately -14 dB. 	 It appears that most of the energy is

r	 from a field ambiguously imaged in the main lobe.

B. 20
0
 Nadir Angle Simulation

Tne parameters used for this simulation are shown in Fig. 5. 	 The

simulatio•i was performed using files 1 and 5 from DSAR2. 	 The SAR images

produced are shown in Fig. 6, 	 Table III is a list of the extracted

values from the images. As pointed out in Section III.A, the variation

in reflectivity level, in azimuth, across the image is due to the shape

of the antenna gain pattern.

Fer this simulation, the values for ambiguous areas Al and A2 are

much lower than in the previous simu lation. The pulse repetition

frequency (PRF) for this simulation unambiguously images 0.5 0
 at the main

beam, instead of the 0.3° imaged in the previous sirmiulation.9 

C. 20° Nadir Angle Simulation, Short Arra

The geometry of this simulation was identical to the previous 20°

nadir angle case. The antenna patterns used, however, were from tape

DSARI (see Table I). These patterns were created from one panel (out of

six) of the distributed array antenna and have a corresponding beamwidth

six times that of the full array in azimuth (elevation dimensions are

identical). To avoid ambiguity problems, a higher PRF was uses'..

The parameters used for this simulation are shown in Fig. 7. 	 The

SAR images produced using the antenna patterns from DSAR1, files 1, 4,

and 5, are shown in Fig. 8. 	 The corresponding values for normalized

cross-section are presented it Table IV.
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*+ r a+•.••	 P L A N E T	 S P E C I F I C A T I O N 	 +* r**++•*
PLANCT NAME	 rw EARTH EQUATORIAL RADIUS (KM) 	 +* .63781670000E
ECCENTRICITY	 r+ .81820179996E-01 GRAVITATIONAL CONSTANT (KM3/SEC2) +• .39860100000E
ROTATIONAL RATE (DEG/S)	 +• .41780745995E-02 TIME OF PRIME MERIDIAN PASSAGE (S) **0.

++ x*** r r*	 O R B I T	 S P E C I F I C A T I O N	 •****• a•**
ORBIT	 I.D.	 ++ SHUTTLE SEMI-MAJOR AXIS (KM)	 *+ .66280000000E
ECCFNTRICITY	 ** .20000000000E-02 INCLINATION (DEG)	 ** .10800000000E
LONG OF ASCENDING NODE (DEG) 	 •+ 0. ARGUMENT OF PERIGEE (DEG)	 ** 0.
TIME OF PERIGEE PASSAGE (S)	 *• 0. ROTATIONAL RATE (DEG/S) 	 •r .67037540870E
ORBITER INITIALIZATION TIME(S) 	 ++ -.10000000,)OOE-03

* r••*•• <^ w	 R A D A R	 S P E C I F I C A T I 0 N	 r r w r s w••* r

RADAR	 I.D.	 •r SIR-C OPERATING WAVELENGTH (M) 	 w• .56600000000E
RECEIVER/TRANSMITTER BW (MHZ)	 *+ .16863430288E+02 RANGE TIME-BANDWIDTH PRODUCT 	 +* .10000000000E
SIGNAL-TO-NOISE RATIO (DB)	 *+ .10000000000E+03 A/D SAMPLE RATE (MHZ) 	 ** .33726860576E
SAMPLE LENGTH OF RANGE CORRELATION •* 1 SAMPLE LENGTH ACROSS PHASE INTERVAL •
BINARY PHASE CODE	 ** B BINARY PHASE CODE SEQUENCE	 *+ RANDOM
GROUND RANGE RESOLUTION (M) 	 •r 25000000000E+02 AZIMUTH RESOLUTION (M) 	 ** .25000000000E
RANGE SAMPLING RATIO (M)	 •• .20000000000E+01 AZIMUTH SAMPLING RATIO (M) 	 *w .20000000000E
RANGE IMPULSE RESPONSE FUNCTION	 •+ COSINE**2 APERTURE WEIGHT FUNCTION 	 •r TAYLOR
PATCH-TO-PATCH OFFSET, 	 RNG (M)	 +♦ 0. PATCH-TO-PATCH OFFSET,	 AZ (M)	 *+ 0.
RANGE SWATH WIDTH (KM)	 ++ .40000000000E+01 NO OF PATCHES	 *+
MAP START LATITUDE (DEG)	 +r .45000000000E+02

••*+*•*•	 A N( E N N A	 S P E C 1 F I C A T A 0 N 	 ***•** w+ r
ANTENNA I.D.	 ** 6-PANEL-C BORESIGHT NADIR AT TO (DEG) 	 ++ .20000000000E
BORESIGHT SQUINT AT TO (DEG)	 wr .90000000000E+02 AZIMUTH ANGULAR COVERAGE (DEG)	 +t .50000000000E
ELEVATION ANGULAR COVERAGE (DEG) 	 ++ .62000000000E+01 PHASE CENTER,	 BODY AXIS X (M)	 ** -.34000000000E.
PHASE CENTER,	 BODY AXIS Y (M) 	 •* 0. PHASE CENTER,	 BODY AXIS Z (M)	 +• 0.
COORD SYS,	 BODY AXIS ROLL,	 (DEG)	 ** 0. COORD SYS,	 BODY AXIS PITCH,	 (DEG) ++ -.70000000000E
COORD SYS,	 BODY AXIS YAW,	 (DEG)	 *w .90000000000E+02 PLAT ROLL RATE (DEG/S)	 ** J.
PLAT PITCH RATE (DEG /`5) 	 +* 0. PLAT YAW RATE (DEG/S)	 ** 0.	 J

++**+**+	 T E R R A I N	 S P E C I F I C A T I O N	 r w * w• r r r
TERRAIN I.D.	 *+ ANT-EVAL NO OF DISCRETES	 **
NO OF FIELDS	 ** 13 TOTAL NO OF SCATTERERS 	 •* 7
X-AXIS COVERAGE (KM)	 rr .31000000000E+02 Y-AXIS COVERAGE (KM)	 rr 11500000000E
TERRAIN CENTER,	 R	 (KM)	 *+ .63675192370E+04 TERRAIN CENTER,	 LAT (DEGi	 ** 45000000000E
TERRAIN CENTER,	 LONG (DEG)	 +* .33937463695E+03

i

* r r* r a	 S Y N T H E T I C	 A R R A Y	 P A R A M E T E R S 	 +*+*•
SYNTHETIC ARRAY NO	 ** 1 TRANSMISSION START TIME (S)	 ** .70807617257E
ARRAY LENGTH (M)	 *r .34254838328E+03 ARRAY INCLINATION (DEG) 	 ** .84558418492E
ARRAY FORMATION TIME (MS) 	 wr .4411210?067E+02 PLATFORM VELOCITY (KM/S)	 ** .77654057315E
NO OF PULSES	 ** 115 PRF	 (HZ)	 ** .26050123591EI
NO OF RANGE SAMPLES	 ++ 319 NO.	 OF AZIMUTH FILTERS 	 ++
PATCH CENTER RANGE SAMPLE NO. 	 •* 160 SLANT RANGE SWATH WIDTH (KM)	 ** .14221775309E'
SLANT RANGE RESOLUTION (M) 	 rr .8888BJ50377E+01 SLANT RANGE SAMPLE INTERVAL (M) 	 •* .44444175188E-
START RANGE (KM)	 r+ .26767702759E+03 RANGE PATCH CENTER (KM1	 ** .2AS38368998E
SQUINT ANGLE PATCH CENTER (DEG) 	 +* .90104737538E+02 NADIR ANGLE PATCH CENTER (DEG)	 *w .20001321723E
LOS AZIMUTH AT PATCH CENTER (DEG) ** -.11489683437E+03 LOS INCIDENCE AT PATCH CENTER (DEG)** .20827364886E
PATCH CENTER,	 R	 (KM)	 ** .63675192370E+04 ORBITER MASS CENTER,	 R	 (KM)	 ** .66190535439E
PATCH CENTER,	 LAT (DEG)	 +* .45000000000E+02 ORBITER MASS CENTER, 	 LAT (DEG)	 r• .44647387989E-
PATCH CENTER,	 LONG (DEG)	 *• .33937463695E+03 ORBITER MASS CENTER, 	 LONG (DEG)	 ** .33832143834E-

f
	

FIGURE 5

SARCON DATA 20 0 NADIR ANGLE SIMULATION
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TABLE III

EXTRACTED VALUES FROM SAR IMAGES

FOR THE 20° NADIR ANGLE SIMULATION

IDEAL PATTERN DEGRADED PATTERN
FIELD DSAR2/File	 1 DSAR2/File	 5

(dB) dB

-	 3 dB -	 0.02 0.41
-	 6 dB -	 7.13 -	 6.94
-	 9 dB -	 5.63 -	 5.96
-12 dB -12.63 -12.35

-15 dB -11.54 -11.51
+3 dB
Al -27.6 -27.8
A2 -51.8 -50.7
Patch	 Center -	 2.02 -	 2.01

d
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w w r* r•• w r	 P L A N E T	 S P E C	 I F I C A T I O N	 ***•**** w
.NET NAME	 •r EARTH EQUATORIAL RADIUS (KM)	 *• .63781670000E+04
ENTRICITY	 rw .81820179996E-01 GRAVITATIONAL CONSTANT ( KM3/SEC2) *• . 39860100000E+06

^'ATIO' :AL RATE	 ( DEG/S)	 •• . 41780745995E -02 TIME OF PRIME MERIDIAN PASSAGE ( S) **0.

*••+*••• r	 O R B I T	 S P E C I F I C A T I O N	 **•*•••••
IT	 1. C.	 •* SHUTTLE SEMI -MAJOR AXIS (KM)	 rw . 66280000000E +04
ENTRICITY	 ** . 20000000000E -02 INCLINATION ( DEG)	 ** .10800000000E+03

OF ASCENDING NODE (DEG) 	 ••rfG 0. ARGUMENT OF PERIGEE (DEG)	 •• 0.
^S E OF PERIGEE PASSAGE (S)	 *• 0. ROTATIONAL RATE (DEG/P,) 	 *w .67037540870E -01

ITER	 INITIALIZATION TIME(S) 	 **
111111

-.10000000000E-03

r r w•• w r r w	 R A D A R	 S P E C I F 	 I C A T I 0 N	 r r r• w r r w w•
-AR	 1. D.	 •+ SIR-C OPERATING WAVELENGTH (M) 	 •* .56600000000E -01
'EIVER / TRANSMITTER BW (MHZ)	 ** . 16863430288E +02 RANGE TIME -BANDWIDTH PRODUCT	 •* . 10000000000E+01
,NAL-TO-NOISE RATIO (DB)	 +* .1000OOO0000E+03 A/D SAMPLE RATE (MHZ)	 w• .33726860576E+02
'4PLE LENGTH OF RANGE CORRELATION r• 1 SAMPLE LENGTH ACROSS PHASE INTERVAL • 1
IARY PHASE CODE	 ** B BINARY PHASE CODE SEQUENCE 	 *• RANDOM
)UND RANGE RESOLUTION (M)	 •r .25000000000E+02 AZIMUTH RESOLUTION (M)	 ** .25000000000E+02
IGE SAMPLING RATIO ( M)	 •r .20000000000E +01 AZIMUTH SAMPLING RATIO ( M)	 sw .20000000000E+01
IGE IMPULSE RESPONSE FUNCTION	 •* COSINE•*2 APERTURE WEIGHT FUNCTION 	 •r TAYLOR
'CH-TO-PATCH OFFSET, 	 RNG (M)	 rw 0, PATCH-TO-PATCH OFFSET, 	 AZ (M)	 •+ O.
IGE SWATH WIDTH (KM)	 w• .4()0000000OOE+01 NO OF PATCHES	 •+ 2
START LATITUDE (DEG) 	 •• .45000000000E+02

f
+* w• r w r r	 A N T E N N A	 S P E C I F I C A T I O N	 • r* w	 r• r r

ENNA I. D,	 *• 6-PANEL-C BORESIGHT NADIR AT TO ( DEG)	 *• .20000000000E+02
!ESIGHI SQUINT AT TO (DEG)	 •+ .90000000000E+02 AZIMUTH ANGULAR COVERAGE (DEG)	 •+ .15000000000E+01
'VATION ANGULAR COVERAGE (DEG) 	 •+

(	 ^4SE CENTER,	 BODY AXIS Y (M)	 •*
.90000000000E+01

0.
PHASE CENTER,	 BODY AXIS X (M)	 *r
PHASE CENT=R,	 BODY AXIS Z (M)	 •w

0.
0.

IRD SYS,	 BODY AXIS ROLL,	 ( DEG)	 •• 0. COORD SYS,	 BODY AXIS PITCH,	 (DEG) +• -.70000000000E+02
)RD SYS,	 BODY AXIS YAW,	 (DEG)	 •• .90000000000E+02 PLAT ROLL RATE (DEG/S) 	 •• 0.
(T PITCH RATE (DEG/S)	 •• 0. PLAT YAW RATE (DEG/S) 	 •+ 0.

** r• r w r•	 T E R R A I N	 S P E C I F I C A T I 0 N	 •• r* w* r r r
tRAIN	 1. D.	 +• ANT-EVAL NO OF DISCRETES	 ** 71
OF FIELDS	 +• 13 TOTAL NO OF SCATTERERS	 *• 7095
iXIS COVERAGE (KM)	 s• .31000000000E+02 Y-AXIS COVERAGE (KM)	 *• .11500000000E+03
IRAIN CENTER,	 R	 (KM)	 *w .63675192370E+04 TERRAIN CENTER,	 LAT (DEG)	 •* .45000000000E+02
;RAIN CENTER,	 LONG (DEG)	 *• .33937463695E+03

-* r***	 S Y N T H E T I C	 A R R A Y	 P A R A M E T E R S	 r r•* r w

7THETIC ARRAY NO **
tAY LENGTH (M) +•
1AY FORMATION TIME (MS) *•
OF PULSES *•
OF RANGE SAMPLES •+
"CH CENTER RANGE SAMPLE NO. •*
%NT RANGE RESOLUTION (M) •r
1RT RANGE (KM) ••
IINT ANGL1 PATCH CENTER (DEG) •*
1 AZIMUTH AT PATCH CENTER (DEG) +• -
fCH CENTER, R (KM) +*
fCH CENTEN, LAT (QEG) ++
fCH CENTER, LONG (DEG) ++

1 TRANSMISSION START TIME (S) 	 •* .70807617257E+03
34254838328E+03 ARRAY INCLINATION (DEG)	 *• .84558418492E-01
44112102067E+02 PLATFORM VELOCITY (KM/S) 	 ++ .77654057315E+01

333 PRF	 (HZ)	 ** .75545358413E+04
319 N0,	 OF AZIMUTH FILTERS	 •• 200
160 SLANT RANGE SWATH WIDTH (KM) 	 ++ .14221775309E+01

88888350377E+01 SLANT RANGE SAMPLE INTERVAL (M)	 *+ .44444175188E+01
26767702759E+03 RANGE PATCH CENTER (KM)	 ** .26838368998E+03
90104737538E+02 NADIR ANGLE PATCH CENTER (DEC)	 ++ .20001321723E+02
11489683437E+03 LOS INCIDENCE AT PATCH CENTER (DEG)** .20827364886E+02
63675192370E+04 ORBITER MASS CENTER, 	 R	 (KM)	 *• .66190535439E-04
45000000000E+02 ORBITER MASS CENTER, 	 LAT (DEG)	 +• .44647387989E+02
33937463695E+03 ORBITER MASS CENTER, 	 LONG (DEG)	 •+ .33832143834E+03

FIGURE 1

SARCON DATA 20 0 NADIR ANGLE SIMULATION, SHORT ARRAY
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TABLE IV

EXTRACTED VALUES FROM SAR IMAGES

FOR THE 200 NADIR ANGLE SIMULATION, SHORT ARRAY

IDEAL PATTERN DEGRADED PATTERN DEGRADED PATTERN

FIELD DSAR2/File	 1 DSAR1/File 4 DSAR1/File 5

(dB) (dB) (dB)

-	 3 dB +	 1.64 +	 1.70 +	 1.64

-	 6 dB -	 1.68 -	 1.68 -	 1.70

-	 9	 c' B -	 4.88 -	 4.86 -	 4.88

-12 dB -	 7.53 -	 7.52 -	 7.53

-15 dB -	 9.91 -	 9.90 -	 9.91

+ 3 dB + 7.82 + 7.87

Al -20.4 -20.4 -20.4

A2 -16.8 -16.8 -16.8

Patch Center 0.05 + 0.05 + 0.05
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IV. CONCLUSIONS AND RECOMMENDATIONS

The OSS has been modified to use three-dimensional antenna patterns

(specified as co,iical cuts).	 The simulat i cii analyzed in this report was

exercised on three configurations with seven complete simulations. A

copy of the OSS modifications and programs used to analyze the images has

been sent to NASA/JSC on computer co-npatible tape, along with another

copy of the original OSS.

The results summarized in Tables II-IV show very little effect due

to distortions in the shape of the antenna patterns. The effect on the

images due to pattern distortions is on the order of a few "enths of a

decibel. Additionally there is a reduction in overall gain of up to

0.9 dB for the degraded 7atterns (see Table I for the one-way gain

reductions). A comparison of the antenna patterns received from PSL/NMSU

shows virtually no perceptible main beam distortion or pointing error.

The results of this study show that, for the electrical variations

in T/R modules on the order of +1.8/-3 dB and t10
0
 phase, the effects un

the SAR imag.-s are negligible except for a gain factor which would

I
	

pres , imably be measured after antenna construction and before deploy,iient.

Implicit in the previous statement is the assumption that the electrical

v', riations a~e the result of manufacturing tolerances and are not time

dependent. It is appropriate to note here that the antenna patterns were

modeled as lain versus angle, and that if there are any phase distortions

with angle across the main beam, then several parameters in an image

including resolution and SAR beamforming could be affected. 	 The

mechanical	 deformations	 which	 were	 modeled,	 however,	 represent

symmetrical variations in the manufacture of the antenna and may not be 	 I

representative of errors in the deployment of the antenna in space.

Asymmetrical mechanical deformations may be more serious than what have

been modeled to date.

23



Effects on th ,_ SAR image not fuli> modeled in this study include the

effects of amuiguities. The PRFs proposed for the SIR-C (1200-

1900 pulses!s) will not allow unambiguous imaging o` the main lobe of the

antenna pattern.	 in the 69 0 nadir simulation performed in this study,

the PRF was 1570 Hz, which corres pond; to an unambiguous imaging coverage

of 0.3 0 .	 The une-way 5 d3 width of the main lobe of th( , full array is

approximately 0.3 
0, 

so that for this set-up ambiguo, s returns on the

order of -12 dB would be observed.	 The other mechanism for ambiguous

imaging is the reception of scattered energy in the sidelobes of the

antenna.	 Without shading, the azimuth sidelobes are on th- , order of

-13 dB from the peak.	 Since ambiguous imaging through azimuth sidelobes

occurs from both transmission and reception through the sidelobes, the

received energy will be 26 dB below the peak. In the case of range

ambiguities which occur by eclipsing of the received pulses, however,

energy transmitted on several pulses i^ received through th? rar,ge

sidelobes of each pulse, thu! effect?vely changing the range sidnlobe

pattern by up to 10 dB. The range sidelobes of the patterns gene rated by

PSL/NMSU were 22-24 dB below the peak (22 dB Taylor weighting was used).

For the single panel case generated by 'SL/NMSU, with T/R modules driving

rows of 48 elements, the range sidelobes were onfy )9 dB down from the

peak. Depending on the configuration, these may be unacceptably high.

Future studies could take two paths. 	 One would be to more closely

mode'. the proposed SIR-C and investigate the effects of ambiguities and

mechanical deformations of the antenna. The second line o f research

would be to investigate the possible effects of mechanical deformations

due to deployment, thermal gradients, and other time varying factors on

the SAR images. Since measurement of the antenna gain pattern af^'er

u,?pliyment does not seem possible, th-.!se time varying tactors can create

irrecoverable errors in the SAR images.

14'
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