
NASA Contractor Report 172615

lCASE REPORT NO. 85-29

ICASE
THE BLAZE LANGUAGE:

\ NASA-CR-17261 S

\ 19850022344

A PARALLEL LANGUAGE FOR SCIENTIFIC PROGRAMMING

Piyush Mehrotra

John Van Rosendale

Contracts No. NASl-17070 and NASl-17130

May 1985

INSTITUTE FOR CO~~UTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NI\SI\
National Aeronautics and
Space Administration

Langley Research Cent.
Hampton. Virginia 23665

I 1111111111111 1111 11111 1111111111 1111111111111
NF00737

LIBRARY C8PY

IJ\NGLEY RESSARCH CENTER
UBRARY, NASA

HAMPTOtL. VIRGINIA

The BLAZE Language: A Parallel Lauguage for Scientific Programming!

Piyush Mehrotra
Department of Computer Science, Purdue University

John Van Rosendale
Institute for Computer Applications in Science and Engineering

Abstract

Programming multiprocessor parallel architectures is a complex task. This

paper describes a Pascal-like scientific programming language, Blaze, designed to

simplify this task. Blaze contains array arithmetic, "forall" loops, and APL-style

accumulation operators, which allow natural expression of fine grained

parallelism. It also employs an applicative or functional procedure invocation

mechanism, which makes it easy for compilers to extract coarse grained

parallelism using machine specifiC program restructuring. Thus Blaze should

allow one to achieve highly parallel execution on multiprocessor architectures,

while still providing the user with conceptually sequential control flow.

A central goal in the design of Blaze is portability across a broad range

of parallel architectures. The multiple levels of parallelism present in Blaze

code, in principle, allows a compller to extract the types of parallelism

appropriate for the given architecture, while neglecting the remainder. This

paper describes the features of Blaze, and shows how this language would be

used in typical scientific programming.

lResearch was supported by the National Aeronaullcs and Space Adnunistranon under NASA
Contract Nos. NASl-17070 and NASl-1713O while the authors were in reSldence at leASE, NASA Langley
Research Center, Hampton, VA 23665.

1. Introduction

Designing software environments for parallel computers is a central issue in

parallel computing research. For a variety of reasons, it seems to be far

easier to program sequential computers than parallel machines. In particular,

designing concurrent programs having multiple threads of control flow, has

proven remarkably subtle. With parallel computing becoming the standard

approach to large scale scientific computing, better programming methodologies

are clearly essential.

One of the first questions to ask is whether the difficulty experienced in

programming parallel architectures is inherent in parallel execution or is instead

a reflection of the inadequacy of current software tools. We suspect the

latter, but the question is still open. Another way of posing this question is

to ask whether one can design programming environments which allow one to

write correct and efflcient parallel programs as easily as one currently writes

sequential programs. The Blaze language is intended as a first step towards

the creation of such environments.

1.1. The Blaze Language

Blaze is a parallel scientific programming language having a Pascal-like

syntax and functional or applicative procedure calls. The scientific orientation

of Blaze is reflected in a number of language features, such as the extensive

array manipulation facilities, which are similar to those of Ada[l] and Fortran

8x[15]. Blaze is also, to a lesser extent, intended as a general purpose

programming language containing extensive data structuring facilities and

3

structured flow control constructs. In particular, it contains records, lists,

recursion, type definitions, and enumerated data types. Pointers are not

provided, as pointers are virtually incompatible with the functional semantics of

procedure invocation here. However, the list data type provides some of the

same expressive power and is often much simpler to use.

Blaze is not a multi-tasking language. With the exception of the "forall" .
statement here, control flow in Blaze is entirely sequential. To be more

precise, control flow is conceptually sequential, though programs will often be

executed in asynchronous multi-tasking environments. The intention. is to

achieve highly parallel execution on a variety of SIMD, and MIMD

architectures, while shielding the user entirely from the details of parallel

execution. In particular, neither the program structure nor the execution results

will in any way reflect the multiple threads of control flow which may be

present during execution. Such issues are the responsibility of the compiler and

run-time environment.

Achieving the goal of hiding the parallel run-time environment· from the

user is largely a matter of compiler technology. With current compiler

technology, it is very difficult to achieve highly parallel execution by automatic

restructuring of conventional sequential languages. The structure of Blaze is

designed to meet this problem. Thus, for example, functional procedure

invocation is used here, both because it lends itself to a clean and elegant

programming style, and because it greatly simplifies the cpmpiler transformations

4

required to automatically extract parallelism. In this, and several other regards,

we follow the lead of the researchers in data flow languages.

Though Blaze is not a research language in the usual sense, it is intended

as a vehicle for several kinds of research. For example, Blaze is one of the

first languages to combine functional semantics in procedure invocation with

conventional imperative semantics within procedures. This idea has been used

before, in the language proposed by Kessels[9] and in the Edinburgh language

ML[6, 12, 13] but Blaze is the flISt language exploiting this idea intended for

widespread practical application. Thus, while Blaze is in some ways virtually a

data flow language, programming in Blaze feels almost like programming in

Pascal. or Mbdula. For: programmers trained in conventional languages, Blaze

programming will be natural, while programming in the data flow languages

appears to require a, significant adjustment.

Blaze is also intended as a research vehicle in compiler technology. Many

people would argue that high performance on multiprocessor architectures

requires the' use of multi-tasking languages whose semantics closely reflects the

underlying architecture. Whether the alternative approach here will succeed

depends on the kind of parallelism encountered in actual programs, on

architectural performance issues, and on the development of appropriate compiler

technology .

Finally, Blaze is also a research vehicle in the sense that it is one of the

few attempts in recent years to create a new scientific programming language.

Fortran has become such a standard that it is difficult to seriously consider

5

other scientific languages. However, if an alternate language provides obviously

useful features not avrulable in Fortran, users might be willing to adopt such a

language, especially if the alternate language yielded significantly faster

execution. Exactly which language features are most useful in scientific

programming is not well understood, and Blaze is, in a real sense, a probe

into this issue.

1.2. Overview of Paper

This paper presents the Blaze programming language and describes

preliminary work on its implementation. The design goals and central features

of Blaze are discussed, and the paper raIseS two basic questions. First, how

suitable is this language for scientific computation? Second, can Blaze programs

be easily compiled into efficient executable code for parallel architectures?

The first question is addressed in the next three sectlOns. Section two

discusses the central issues in parallel programming and the way in which these

issues affected the design goals of Blaze. Section three describes the principal

features of Blaze in relative detail Following that, section four presents an

extended example program taken from plasma physics From this example, one

should be able to assess reasonably well the relative merits of Blaze as a

scientific programming language.

The second questlOn, on compilation of Blaze, is discussed briefly in

section 5. On multiprocessor architectures, we hope to be able to automatically

extract large amounts of parallelism from typical scientific code, but many

research questions remain in this area.

6

2. Language Design

Given the hundreds of computer languages already in existence, one should

not casually introduce a new one. However, the problem of learning how to

use multiprocessor architectures is important enough to justify exploration of a

number of alternative approaches to this problem. In our view, the design of

programming languages appropriate for parallel architectures is one of the most

promising approaches to this problem.

One prominent viewpoint is that compilers should be COIl!ltructed which

automatically restructure conventional languages for efficient execution on parallel

architectures The difficulty with this viewpoint is that the semantics of

conventional languages reflect the sequential Von Neumann architecture so

strongly that the required program transformations are extremely difficult. For

example, in Fortran subroutine invocation the aliasing effects obscure data

dependenCIes and thus severely lImit the compiler's abIlity to extract parallelism.

As with the data flow languages, Blaze is based on the view that a more

rational approach is for programmers to meet compiler writers halfway, with

languages reflecting the needs of both. ConventIonal languages, such as Fortran

and Pascal, reflect the architecture, compiler technology, and programming needs

at the time of their creation. As programming methodologies and computer

architectures change, programming languages must evolve with them. Such

ev~}lution is seen in conventional languages, as Fortran 77 gives way to Fortran

8x, and Pascal to Ada and Modula. In Blaze, this natural evolution is carried

somewhat further, with the language semantics driven by compiler and

7

architectural issues to an unusual degree. However, Blaze is not a radically

new language and can be quickly mastered by programmers used to Pascal-like

languages.

2.1. Advantages of Functional Procedure invocation

In most current languages, procedures are the principal means for

structuring programs. Thus the method of passing parameters between

procedures is one of the critical distinguishing characteristics of a language.

Most languages allow two methods of accessing non-local data; parameters may

be passed via argument lists, and there is also some sort of global variable

referencing mechanism. For example, Fortran uses argument lists and common

blocks. Similarly, Pascal uses argument lists, and each procedure may also

access the variables of any procedure in which it is nested.

In functional languages every procedure is a pure function. That -is, there

is no global referencing environment for a procedure, nor can procedures save

values between invocations. Thus the entire effect of a procedure call in a

functional language is the assignment of values to returned parameters.

Functional programmmg is an inherently austere style of programming, conducive

to concise, easy to understand programs. An important benefit of this

programming style is that one can tell at a glance exactly which variables can

be effected by a procedure.

Blaze is a functional language, both because the functional programming

style appears to have clear benefits to the programmer, and because in parallel

environments functional languages have the advantage that they make extraction

8

of procedure level parallelism much easier. For example, in the Fortran

statement

Z = F(X) + G(X) + F(Y)

it may be possible to perform all three function invocations concurrently.

However, it is difficult for a compiler to determine whether this is possible,

since to do so it would have to check whether F alters its argument, and also

examine all common blocks and save statements in functions F and G and in

any functions or subroutines they in tum invoke.

Since Blaze is a functional language, two procedures can be executed

concurrently whenever there are no data dependencies between their passed

parameters This property dramatically simplifies construction of optimizing

compilers for Blaze, since global data flow analysis is now trivial. With

conventional languages, even if global data flow analysis is done, cases will

arise where a compiler cannot tell with certainty whether it is safe to execute

procedures concurrently. In such cases the compiler must make the safe but

suboptimal decision, and require sequential execution.

2.2. Alternative Approaches to Parallel Programming

The Blaze language is one of a number of possible approaches to

programming parallel architectures. Among the alternatives are the use of

"vector" or SIMD languages There are also a variety of functional or

applicatlve languages, such as Lisp, APL, FP, and the data flow languages

Sisal, VAL, and Id Another alternative is the use of explicit multi-tasking

9

languages such as esp, Ada, or Fortran' 8x. Finally, one can use a

conventional language such as Fortran or Pascal, relying on the compiler to

extract parallelism.

Each of these approaches has advantages and disadvantages. The

distinction between these approaches is largely a matter of how much of the

responsibility for exploiting parallelism falls to the user, to the compiler, and to

the run-time environment. With a vector language, or an explicit multi-tasking

language, such as esp, nearly all of the responsibility for exploiting parallel

architectures falls to the user. The other extreme is the use of compilers to

restructure conventional languages, where virtually all of the responsibility for

exploiting the parallel architecture is left to the compiler. The use of

functional or data flow language is an intermediate approach, where part of the

responsibility falls to the user and part to the compiler and run-time

environment.

A major attraction to the approach of using a conventional language, such

as Fortran, with compilers that automatically restructure programs for parallel

execution, is that this approach would allow one to transport the large body of

~xisting programs to parallel architectures essentially without change. Partly for

this reason, a substantial effort is being devoted to the development of such

compilers. One of the major efforts is at University of lllinois, where D.

Kuck and his colleagues, R. Kuhn, B. Leasure, D. Padua, M. Wolfe, and

others, have been developing the Paraphrase and KAP program restructuring

systems[10,11,14]. A related effort is underway at Rice University by K.

10

Kennedy, J. R. Allen, and others[3, 8]. Finally F. Allen, J. Ferrante, K.

Ottenstein, J. Warren, and others are carrying out similar research at mM

Yorktown Heights and Michigan Technical University[5,16].

One issue here is how well this approach will work as one moves to

highly parallel architectures. There has been considerable success so far but

many difficulties remain. A more serious issue is that the use of a

conventional language gives the programmer no feedback on the amount of

parallelism the compiler will extract. Such feedback can be critical in

designing efficient parallel programs.

An alternate approach to the use of conventional languages and advanced

compiler technology is the use of an explicit multi-tasking language. Such

languages reflect the parallel run-time environment very strongly, perhaps too

strongly. One disadvantage here is that multi-tasking programs tend to be

much more difficult to write. The programmer must divide the program into

a set of cooperating processes, with appropriate communication and

synchronizatIOn between processes. This is complicated and also introduces the

possibilities of dead-lock and non-determinate execution. Also, it is critical that

the granularity of user defined processes match that required by the specific

architecture. This gives the user the possibility of tuning his algorithm to the

architecture, at the cost of a corresponding loss of portability.

The approach of using a functional or data flow language is intermediate

between the approach of using a conventional language, with compilers that

automatically extract parallelism, and the alternate approach of using an explicit

11

multi-tasking language. With a functional language, the programmer, compiler,

and run-time environment share responsibility for achieving parallel execution.

The functional or side-effect free semantics of procedure invocation eliminates

the need for complex and expensive inter-procedural data flow analysis during

compilation However, sophisticated compilation techniques are still required to

split loops across processors, to deal with memory allocation, and to extract

parallelism.

3. Language Features

In this section, we survey the principal features of the Blaze language.

The first few subsections describe the data types available and the operations

allowed on them. The next few subsections present the sequential and parallel

control constructs of the language. Finally the input and output operations are

discussed.

A Blaze program consists of a main procedure (begun with the reserved

word program) and a sequence of other procedures. Blaze procedures can

return zero, one, or more values. Thus they subsume the roles played by both

functions and procedures in conventional languages.

Procedure invocation in Blaze is functional or applicative. Interpreted

strictly, this would mean that the entire effect of calling a procedure would be

the assignment of values to the parameters being returned. Blaze departs

slightly from strictly functional procedure invocation by allowing procedures to

read and write the standard input and output files. However, this is the only

side effect occurring in procedure calls here. In particular, access to non-local

12

variables is not allowed.

Blaze does allow global constants and global type definitions. These create

no unwanted side effects and are convenient. For example, array sizes can be

set by global constants. Global constants and type definitions are given in a

preamble before the program statement.

Unlike Pascal, where procedures may be nested, procedures here are all

declared at the same 'level,' as in the C language. This is natural here, since

procedures cannot access non-local variables. Thus the concept of nested

procedures is not very meaningful here. In a planned future extension, Blaze

will incorporate separate compilation units and some form of abstract data type,

thus largely obviating the need for procedure nesting.

3.1. Elementary Data Types

Blaze contains elementary and structured data types similar to those found

in other current languages. The elementary data types are integers, booleans,

characters, and single and double precision floating point numbers. The

language requires the explicit declaration of all variables, except loop indices,

using a declaration syntax similar to that of Pascal:

var iJ,k : integer;
flag : boolean;
x;y : double;

Blaze also allows constants. A constant here is a variable whose value is

set at declaration, and whose value may not be subsequently altered. The

constant declaration syntax is:

coost n = 10;
m = n-I;
u = 3.14e-2;
v = some Junction(m,n);

13

As shown, the value of a constant can be given by any expression, including

expressions involving procedure calls and thus may require run-time evaluation.

3.2. Structured Data Types

Blaze contains extensive facilities for constructing structured data types.

The structured types available here are arrays, records, enumerated types, lists,

and combinations of these types. The need for such structured data types is

now widely appreciated. They are especially important in languages like Blaze,

having functional procedure invocations and no global variables, since they make

it possible to package several types of data in a single structure, obviating the

need for long and awkward parameter lists.

Arrays

Arrays are the most important structured data type in scientific

computation, and Blaze contains an extensive set of array manipulation facilities.

The syntax for array declarations is similar to that of Pascal:

var U,V,W: array[l .. NJ of real;
b().bl : arrayll .. 512, I •. 512) of boolean;

One can also declare arrays using type declarations:

type vector = array[1 .. NJ of real;
bit_array = array[l .. 512. 1 .. 512J of boolean;

var u~v.w: vector;
bOp1 : bit_array;

14

In Blaze, one can access either single elements of arrays or rectangular

subarrays. The syntax for accessing a single element is the same as the syntax

in Pascal:

u[iJ - the rth element of u

bO[i + 3, 2*j] - an element of array bO

Rectangular subarrays can be accessed by using an index range or by using an

asterisk to specify the entire range of an index. Examples are:

u[l .. IOJ

bO[3, *]

bO[*, 2 .. 5]

- the first 10 elements of u

- the thlrd row of array bO

- a rectangular slice of array bO

In all cases, Blaze checks for out-of-range array accesses, though a compiler

option allows this checking to be turned off.

Blaze provides built-in primitives to determine the sizes of array variables.

For example, the lower and upper limits for indices of an array variable can

be determined as follows:

15

upper(u) - the upper limit oj the one .dimensional array u

upper(bO[*, D

lower(bO[, *D

- the upper limit oj the Jirst index oj array bO

- the lower limit oj the second index oj array bO

The asterisk here specifies the index position of interest and is optional for

one dimensional arrays.

Records

Arrays form a homogeneous collection of elements, while records structures

allow the programmer to specify heterogeneous elements in a single structure.

For example, the following record structure can be used for the specification of

the properties of a charged particle:

type ion_species = (electron, proton, neutron, deuteron, alpha);

charged_particle = record
xpos,ypos
charge
species

end;

: real;
: integer;
: ion_species;

The fields in a record may be of any previously declared type. Here, for

example, species is of the enumerated type ion_species. This allows arrays,

record structures. and lists to be fields of a record. Access to fields in

records follows standard Pascal syntax:

16

var a : cluuged ...,Ptlrticle;

a.xpos - the x position of the particle

a.species - the species of this particle

Blaze also allows tagged variant records, using syntax following that of

Ada. For example, the above record could have been extended as follows:

type variant_charged ...,PtlTticie = record
xpos. ypos : real;
xvel. yvel : real;
charge : integer;

when deuteron =>
proton_cross _section : real;

when alpha =>
ionization level : integer;

when others =>
lifetime : real;

end;
end;

The choice others is used to specify the fields for the default case.

Lists

Blaze provides an extensible one-dimensional array called a list. The

syntax for list declarations follows that of arrays:

var plasma: Ust of charged yarticle;

17

The lower limit of a list variable is always one, while the upper limit can be

changed dynamically. This can be done, for example, by concatenating another

list or element of the same base type to the end of the original list. This

will be described later in more detail. The elements of a list are accessed

exactly as one accesses the elements of a one dimensional arrays, and one can

use the built-in primitive upper to determine size of a list at any time.

3.3. Recursive Data Structures

There are no pointers in Blaze, but many of the data structures one

would construct with pointers in other languages can be built with the lists

here. We also allow recursive data structures. As in most languages, Blaze

does not allow a record type to have itself as one of its fields. However,

recursion is allowed in variant records:

case tag : (leaf, non _leaf) of

when leaf =>
data: integer;

when non leaf =>
- I_child, r _child : binary_tree _node;

end;

One can also use lists to achieve a similar effect:

type tree node = record
- data

sub tree
end;

18

: particle:
: list of tree_node;

This type definition recursively defines a general n-ary tree, while the previous

one defined a binary tree. Notice that these recursive definitions allow data

structures of arbitrary size, but do not imply infinite storage. The recursion is

terminated in the first case by setting the variant tag to "leaf," while in the

second case, lists of size zero will terminate the recursion.

3.4. Expressions

Expressions in Blaze are similar to those in other high level languages,

differing mainly in that the arithmetic operations are extended to allow array

operations The assignment operator is also somewhat more general than usual,

allowing assignment to occur to any type of compatible object. Thus arrays,

records, and lists are permitted on the left side of assignment statements.

These features are convenient and provide a natural source of low level

parallelism.

Arithmetic Expressions

Automatic type conversions of arithmetic operands occur in Blaze, as in

most languages. Integers are converted to reals when they occur together in

dyadic arithmetic operations, and, similarly, single precision reals are converted

to double precision when they occur together in expressions. The reverse

conversions occur only in assignment. For example, assigning a real value to

19

an integer variable induces rounding.

Array Expressions

Because of the importance of arrays in scientific computation, Blaze

contains extensive array manipulation features. Given arrays A and B which

have the same base-type, the same number of dimensions, and the same index

range in each dimension, one can perform the assignment:

A:= B;

Similarly, Blaze allows the pointwise arithmetic operations on arrays:

A +B A-B A*B AlB

In each case the result is the array produced by performing the given scalar

operation on each corresponding pair of elements of the arrays A and B.

This definition agrees with normal mathematical usage for addition and

subtraction while this type of array multiplication is more commonly used in

picture processing.

In order to admit the usual mathematical defmitions of array

multiplicatlOn, without violating this convention, we introduce the pound sign as

a separate kind of array multiplication. The product A#B is defined only

when A and B are one or two dimensional arrays with mathematically

appropriate size. When A and B are two dimensional, it yields the usual

matrix product, while when A and B are both one dimensional, it yields the

20

vector inner product. If one array is one dimensional and the other two

dimensional, it gives their matrix-vector product.

Given the emphasis here on array operations, it is natural to permit

automatic type conversion from scalars to arrays. For one thing, this makes it

trivial to assign a single value to all elements of an array. As examples of

type conversion of scalars to arrays, consider the code fragment:

var A/J,C
x,Y

A:= x;

: array[l .. N, 1 .. NJ of real;
: real;

C:= B#C -A + 1.0;

In each case, the scalar value is converted to a conforming array with all

elements set equal to the given scalar, before the arithmetic operation

Automatic conversion of scalars to arrays is strictly one-way. Assigning an

array value to a scalar variable is an error, an array value may be assigned

only to an array variable matching in size and dimension.

Operations on Records

Just as with arrays, Blaze allows assignment between record variables of

the same type.

21

var new yarticle, old J'article : charged yarticle;

new yarticle,'= old yarticle;

Since the fields of a record can be of any type, the operations of the

appropriate type extend to individual fields of a record.

Operations on Lists

As noted earlier, lists are just extensible one-dimensional arrays. Thus all

the operators that are valid for arrays are also valid for lists. In addition,

lists can be dynamically extended by using the concatenation operator cat, as

shown here:

var new "plasma, old "plasma, plasma " list of charged "particle;

plasma := plasma cat old ylasma;

new ylasma := old ylasma[15 .. 30J;

Here, the list plasma is replaced by a new list consisting of the original plasma

concatenated to the list old....Plasma. To shorten a list, one can use a subrange,

as shown, just as one can form rectangular subarrays of an array. Note that

the list old ylasma is completely unaffected by either of these operations.

22

Accumulation Operators

Blaze contains special accumulation operators, which allow one to

"accumulate" values onto a single variable. Thus to sum the elements of an

array the following statement can be included in a loop.

sigma sum= xli]:

This accumulation operator is analogous to the += operator in C. The effect

of the operator used here is to add the value of x [;J to the value of 0' and

store the result back in 0'. Thus when used in a sequential loop, the above

statement is equivalent to the following:

sigma := sigma + xli],

The semantics of accumulation operators in forall loops will be discussed later.

The Table 3.1 provides a list of accumulation operators available in Blaze.

Eventually, when abstract data types are added to the language, facilities for

user-defmed accumulation operators will be provided.

3.5. Sequential Control Structures

The sequential control structures here are if statements, case statements,

and several kinds of loop constructs. There is also a parallel control structure,

the forall statement, discussed in the next section.

23

multiplication/division mult

addition/subtraction sum

maximum max

minimum min

logical and and

logical or or'

list concatenation cat

Table 3J : List of Accumulation Operators

If Statements

The if statement in Blaze is identical to that in Modula. The basic

forms of this statement are:

and also:

if <boolean condition> then
<statement Irst>

end;

II <boolean condition> thm
<statement list>

else
<statement list>

end:

One can string if tests together here with an eIsif construct:

Case Statement

IIx>3thea
y:= 100:

elsif x > 2 thm
y:= 10:

elsif x > 0 and x <= 2 then
y:= 2:

else
panicO:

end:

24

The case statement can also be used for multiway branching. The

statement selects one of a number of alternative sequences of statements for

execution based on the value of the expression provided in the case header as

shown below:

var particle: variant_charged yarticle;

case particle.species of

end;

when deuteron =>
<statement list>

when alpha =>
<statement list>

when electron I proton I neutron =>
<statement list>

when others =>
<statement list>

25

The expression is evaluated and then the statement list specified by the when

clause matching the expression is executed. Multiple choices can be specified

as in the when clause for electrons, protons, and neutrons. The choice others

can be used as a default choice for all cases not explicitly covered. After the

execution of the appropriate statement list, control transfers to the statement

after the case statement.

Loops

Blaze contains several loop constructs including for and while loops.

There is also a parallel forall loop, described in the next subsection. The

simplest loop in Blaze has the form:

loop
<statement list>

end;

26

This type of loop would run forever unless one or more exit statements were

included within the loop body. Thus one could, for example, write a loop of

the form:

loop
<statement list>

exit when <boolean condition>;

<statement list>
end;

One may also omit the when clause in an exit statement leaving an

unconditional exit. An exit statement causes the enclosing loop to be

terminated with control being transferred to the statement after the loop

statement. Thus in situations where loops have been nested, an exit statement

will terminate only the closest enclosing loop.

The other kinds of sequential loops in Blaze are constructed by preceding

a loop-end block with a controlling cia lIse. The two alternatives are whUe

loops,

and for loops:

while <booleaif _ ctmilitioh> loop

<statement list>

end;

for <loop _index> in <range _specification> loop

<statement list>

end;

In either case, exit statements can be included within the loop.

27

The loop indices in for loops can be integers, user-defined enumerated

types, or the elements of lists or one dimensional arrays. A typical example

using integer indices is:

for i in 1 .. 1()() loop

end;

for k in 50 .. -50 by -5 loop

<statement list>

end;

The default increment is one, although alternate increments can be used, ' as

shown. One can also include a boolean where condition which selects a subset

of the index range over which the loop will execute:

for i in 0 .. 2000 by 2 where test(i) loop

<statement list>

end;

28

The effect of a where clause can also be achieved by an if statement, but the

syntax here appears quite natural.

There is one important semantic difference between the for loop here and

that in C or Pascal. In Blaze, the index variable of a for loop is local to

the loop and is, in effect, declared by the loop header. Thus in the following

code fragment:

i := 17;

for i in 1 .. 10 do

<statement list>

end;

k;= i;

the value assigned to k would be seventeen, since the loop index i is a

different variable than the previously declared variable i. This approach avoids

trivial loop index declarations and also eliminates the possibility of unintended

side effects which may occur when loop indices retain their value outside loops.

Aside from the simple discrete type of loop indexing, Blaze also allows

indexing over lists and one dimensional arrays. An example of this type of

loop is:

var x_array: array[O .. IOOJ of real;
sigma : real;

sigma := 00;

for x in x _array loop

sigma sum = x**2;

end;

29

This for loop would compute the sum of the elements in array x_array, and

similarly one can index over the elements in a list. Note that the loop

header serves as the declaration of the loop index, and in this case the loop

index is implicitly typed real since the array x_array here is an array or reals.

The by and the where clauses are also allowed in this type of for loop.

3.6~ Procedures

A procedure in Blaze begins with a header declaring a list of zero or

more input parameters and a list of zero or more output parameters. Next,

the types of these formal parameters are declared in a param section following

the header. Then, the constants, types, and variables local to the procedure

are then declared, and finally one gives the body of the procedure.

As a simple example of this syntax, consider the following procedure,

which sums two two-dimensional arrays:

procedure array _swn(XiY) returns: z;

param XiY : array[, J of real;

z : like(x);
begin

foraIl i in range(x[*, J) do

forall J in range(x[,*]) do

z[iJJ := x[ijJ + y[iJJ,·

end;
end;

end;

30

The size of input arrays need not be specified, though the base types and

number of dimensions must be declared. For output arrays, one must declare

the size as well. In this example, the built-in primitive like is used to create

an array of the same size and base type as one of the input arrays. Other

prunitives avadable here are lower, upper and range, which give the lower

bound, the upper bound and the range of a specified array variable as already

explained.

Procedure Invocation

As noted earlier, procedures in Blaze subsume the role played by functions

in languages like Pascal, Ada, and Modula. The example procedure array_sum,

descnbed above, could be invoked in the assignment statement:

31

This procedure has two input arrays and produces one array as output. Notice

that there is no requirement that inputs and outputs be distinct, as here, where

a occurs in both the input and output lists. Procedures, such as this, which

return only one value, can be used in expressions, even if the value returned

is an aggregate such as an array or record. It is only necessary that the type

of the output is appropriate in the context of that expression.

One can also define procedures with more than one output value, but

these cannot be invoked in expressions. An example of such a procedure is:

Ex. Ey := gradzent (phi).

Procedure with no input parameters or no output parameters also make

sense here, as in the procedure invocations:

write _arrays (x);

y := read _array().

These procedures could be user defined procedures performing input and output

on arrays.

Blaze is a strongly typed language, and thus the types of the input and

output parameters in the procedure invocation must agree with the formal

parameters in the procedure declaration. In the example above,

32

Ex, Ey := gradlent (phi)

the values of the first output parameter of gradIent is assigned to Ex, and the

second is assigned to Ey. The types of these parameters must match with the

types of Ex and Ey respectively. Most of this type checking is done at

compile tlme, but checking that array sizes match can, in general, be done

only at run-time. If the outputs of gradIent were arrays, and the sizes of the

output arrays produced did not match those of Ex and Ey, a run-time

exceptIon would be raised.

3.7. Parallel Constructs

The control constructs covered so far are similar to those in other

structured programming languages such as Pascal and Ada. Blaze also contains

an explicitly parallel construct, the forall loop. Syntactically a loran loop is

similar to a for loop, as shown below:

loran i in 1 . 100 do

<statement l,st>

end,·

The forall header specifies an index variable and a range of values for this

vanable The body of the forall loop is the list of statements following the

header. A copy of the body is invoked in parallel, for all values specified in

the range (hence the name lorall). In the above example, all one hundred

invocations of the body would be performed concurrently.

33

The header of a forall loop is syntactically the same as the header of for

loop. In particular, by and where clause are allowed in forall loops, and one

can use elements of lists and one dimensional arrays as indices. A major

difference between for loops and forall loops is that forall loop can contain

variable declarations. This declares variables local to the loop body, with a

separate copy of the variable for each loop invocation. For example, in the

loop,

forall i in 1 .. 100 do

var k : integer;

end;

k := some yrocedure (i)

xlk) := ylk+1)

each loop invocation has its own copy of k, and there is no communication

between loops.

By using a forall loop instead of a for loop, the programmer is asserting

that the loop invocations are to be executed concurrently. Consider, for

example, the following forall loop:

forall i in 1 .. 100 do

xll(i)) := xli);

end;

If the procedure f generates a permutation, then each invocation of the body

34

would assign a value to a different element of array x, satisfying the criterion

of independence. On the other hand, if the procedure f is such that it

returns the same value for the two different i values, then two invocations of

the loop body would assign to the same element of x. As a compiler option

such occurrence could be ignored or could raise a run time exception. In the

latter case, one can elect to have a warning message printed out or to halt

execution.

Each of the loop invocations in a foraIl loop is analogous to a procedure

call, in the sense that it has similar copy-in copy-out semantics. In the above

example, the values of x accessed on the right hand side of the assignment

are the old values of the x array regardless of the order in which the loop

invocations may be executed. Thus the array x is, in effect, 'copied into' each

invocation of the forall loop, and then the changes to x are 'copied out' and

used to modify x after the execution of all loop invocations.

Accumulation operators can be used to obtain information from all

invocations of a forall loop. For example, in the following loop,

var x " real~

x,'= 0.0;

forall i in 1 .. 100 do

x sum= y[i}:

end;

the values in the array y are summed across the loop invocations. This does

not raise a run-time exception, though direct assignment to x would have.

35

The order in which the associative accumulation operations are performed is

not specified as part of the language definition. Thus, given sufficiently many

processors, this accumulation can be done with a fan-in tree in logarithmic

time.

3.S. Input-Output

The current version of Blaze provides a simple set of input-output

facilities. Blaze procedures may read and write only to the standard input and

output files. This is done with read and write procedure calls, which are

syntactically similar to the 'scanf' and 'printf' statements of C.

variable _Irst := read (''format_string'),·

write (''format _string', variable_list);

The read procedure requires a format string as parameter (as in C) and

returns the values read from standard input. These values are then assigned

to the variables on the left side of the statement. The number of values and

their types are determined via the format string. Similarly, for the write

statement, the format_string specifies the format in which the values of the

variables are to be printed. The format notations used are the same as those

used in C.

There are a number of subtle difficulties in providing input-output facilities

in parallel environments. At the language level, input and output are side­

effects and thus contrary to the spirit of functional procedure invocation here.

There is also a determinacy question.

in forall loops? Finally, there are

implementation.

36

For example, what is the order of If 0

several problems that arise during

The determinacy question is treated here by observing that all control

constructs in Blaze can be viewed as having an implied sequential order. For

example, in the code fragment

y .= f(x);

z := h(g(x»;

the implied sequential order is that f is executed first, then g, and finally h.

Though the actual order of execution might differ from this, all input and

output would be done as if this sequential order had been followed at run­

time. Similarly in forall loops, we take the implied sequential order as being

that the loop invocations occur in sequence, with each invocation completing

before the next begins, exactly as with for loops.

Good input-output facilities are critical to a language's usability, especially

during mitlal program development. For this reason, the input-output facilities

were included here, though they raise severe implementation difficulties. These

difficulties are greatest in handling input. For output, each procedure creates

blocks of output data, which get concatenated together to generate the output

stream. This operation is highly parallel, and at least conceptually

straightforward. Treating input well is more subtle, and in the worst case read

statements may sequentialize program execution.

37

3.9. Status of the Language

The features described here characterize the Blaze language, as it currently

exists. However, as experience is gained in the use of this language, it will

necessarily evolve. Some of this evolution is predictable, such as inclusion of

features like separate compilation units, exception handlers, and abstract data

types. Inclusion of more flexible data structures than lists and of general file

input-output would also be desirable, but raises complicated research issues.

The most interesting language question here is whether the model of

computation embedded in this language is an adequate model of parallel

computation. It is our view that determinate execution is essential, if one

wishes parallel computation to be easy to describe and understand. However,

by restricting the language to determinate execution, we have restricted the

class of algorithms which can be described in this language. There is, for

example, no means of expressing the asynchronous relaxation algorithm of

Baudet[4], in Blaze. As experience in parallel computation grows, it may be

necessary to widen the computational model here, allowing a certain amount of

carefully controlled indeterminacy in the language.

38

4. A Plasma Simulation Eumple

One way to assess the relative merits of a programming language is to

look at examples. In this section we consider a comparatively extensive

numerical program, a plasma simulation code based on the particle-in-cell

method. This type of simulation program is routinely used to model plasmas

for controlled nuclear fusion, and similar programs are used to study the

motions of stars and galaxies[7]. This program makes an interesting example

here, since it contains two distinct phases of computation, one devoted to

numerical linear algebra, and the other devoted to data structure manipulation.

Moreover, the kinds of data structures and operations in this example are quite

typical of those required in many large scientific programs.

4.1. Description of Particle-in-Cell Program

A plasma is a high temperature gas consisting of free electrons and

positively ionized molecules. The motion of the particles (electrons and positive

ions) is governed by Newton's laws of motion. For simplicity, the only forces

we consider here are the electrostatic forces between the charged particles.

The partlcle-in-cell computation consists of a sequence of time steps, each

time step composed of two basic phases: a field Computatlon phase, and a

particle push phase. In the field computation phase, given the plasma charge

distribution, one solves a set of finite difference equations to determine the

global electric field. In the particle push phase, given the global electrical field,

one computes the force on each particle, integrates the particle motions over a

small time interval, and recomputes the global charge distribution. Both phases

I"

39

involve numerical operations, but the particle pwh phase also involves simple

data structure operations, demonstrating the utility of Blaze in this arena.

There are a variety of data structures which can be used to keep track

of the collection of particles in the particle-in-cel1 program. One of these is a

two dimensional array representing a grid of rectangular cells. Associated with

each cell is the list of all particles currently in that cell. Type declarations

for this data structure are given in Listing 4.1. This particular data structure

is especially useful if one wishes to extract information on particle collision

probabilities or collision velocities, as one might in controlled fusion studies.

type declarations for particles

const nx = 64;
ny = 64;

type ion_species = (electron, proton, deuteron, alpha);

charged yarticle = record
xpos, ypos : real; - position of particle
xvel, yvel : real; - velocity components of particle
charge : real; - electrical charge of particle
mass : real;
species : ion_species;

end;

ion Jist = list of charged yarticle;

plasma_cloud = array[O .. nx, 0 .. ny] of ion_list;

Listing 4.1 Data Types for Charged Particles

main program/or PIC computation

const tol = 1.0e-3;
max_time = 1000;

var phi,sigma,Ex,Ey: array[O .. ox,O .. ny] of real;
plasma : plasma_cloud;

begin

plasma := create ylasma; - generate particles. setting their

for time in 0 .. max_time loop

if (time % 25 = 0) then
graphics _ output (plasma);

end;

sigma := charge_dist(plasma);

- inllial positions and velocities and

- perform output 0/ current plasma
- configuration every 25 time steps

- compute charge distribution
- by summing over all particles

phi := multigrid(Phi,sigma,tol); - solve Poisson's equation/or
- the electric potential phi

Ex,Ey := gradient(phi); - take the gradient 0/ phi to
- compute the electric field

plasma := part yush(plasma,Ex,Ey); - now advance the particles
- along their trajectories

end;
end; -- particle-in-cell main program --

Listing 42 Main Procedure for Particle-in-Cell Program

40

41

Given these type declarations, one can program the main procedure of the

particIe-in-cell program as shown in Listing 4.2. One of the interesting things

to note here is that this procedure would have been relatively easy to

understand even if the comments had been omitted. The applicative procedure

calling mechanism, shared by Blaze and the data flow languages, seems to go a

long way toward clarifying code. For example, procedure gradient takes array

q, as input and has as output arrays Ex and Ey. This would be apparent,

even if one did not have the slightest conception of the purpose of this

procedure. By contrast, in languages like Ada and Pascal, one would need to

find the procedure header to determine which parameters were altered by a

procedure, while in Fortran, the entire body of the subroutine would have to

be scanned to determine this.

4.2. Field Computation Phase

We look next at the programming of the field computation phase, a routine

numerical computation. The electr<;static force on all· particles in the plasma

can be easily determined, if we know the electric potential phi (x ,y), which is

given by the Poisson equation

fl q, = 0',

where O'(x,y) is the spatial charge density. This equation is one of the

simplest partial differential equations. Using finite difference techniques, one

can convert this equation to an analogous numerical linear algebra problem

A q, = 0',

42

where A is a spare matrix, a is now a known vector representing the charge

distribution, and If, is now an unknown vector corresponding to the electric

potential.

One of the best methods for solving this linear system is the multigrid

method. A multigrid algorithm is generally programmed as a driver procedure,

which treats storage allocation and overall control flow, and a small number of

kernel procedures, which perform required numerical operations. As an

example of such a kernel procedure, we consider procedure project, given in

Listing 4.3. It takes as input an array corresponding to a given grid, and

produces smaller array having about one fourth as many values, corresponding

to a coarser grid

This procedure, written in Blaze, differs little from what it would look

like in most other imperative high level languages, and is practically a verbatim

translation of the corresponding Fortran code. Now suppose we have a family

of numerical kernel procedures, such as the project procedure just given. It is

an easy task in Blaze to combine these kernel procedures into a multigrid

Poisson solver. The driver procedure rrwJrigrid (Listing 4.4) does just that.

The kernel procedure smooth here performs a simple ''point'' iteration,

which would alone suffice to solve the linear system, but would be inefficient.

Instead, after a few iterations, we recursively call procedure multi grid , if

possible, to accelerate the iterative solution process. This process is repeated

until the error tolerance is met.

procedure project(res) returns" b:

param res : array [, J of real:
b : array[O "" me,O "" nc] of real;

const m = upper(res[*,]); me = m12;
n = upper(res[,*])," nc = n12;

cO = 025; c1 = 05; c2 = I J);

begin

b:= 0; - initiallze array b to zero

forall ic in 1 " mc-1 do
forall jc in 1 "" nc-1 do

var im,i,ip: integer;
jm,j,jp : integer;

j := 2*jc;

- loop over all mterior
- points of array b

i := 2*ic;
ip := i + 1;
im := i -1;

jp := j + 1;
jm := j - 1;

- compute value at an interior coarse grrd point as a
- weighted average of nine corresponding fine grid values

b[ic,jc] := cO '" res[im,jp] + c1 * res[i,jp] + cO * res[ip,jp]
+ c1 * res[im, j] + c2 * res[i, j] + c1 * res[ip, j]

end;
end;

+ cO * res[im,JDl] + c1 '" res[i,jm] + cO '" res[ip,jm];

end; -- procedure project --

Listing 43 Multigrid Kernel Routine Project

43

procedure multigrid(phi,sigma,tol) returns· phi;

param phJ,sigma : array[,] of real;
tol : real;

cnnst m = upper(phif*, j),.
n = upper(phJ[,*]);

niter = 4;

me = m12;
nc = n12;

var v,b: array[O mc,O .. nc] of real;
res: array[O .. m, 0 .. n] of real;

begin

loop ---- begin outer loop ----

phi := smooth(phi,sigma,n_iter); - perform n _iter iterations

res := residual(phi,sigma); - compute residual and test
exit when{ square norm{res) < tol); - for adequate convergence

if (em > 1) and (n > 1» then - test grid size

b := project{res); - interpolate residual

v := 0; - solve coarse grid problem
phi := phi + inject{multigrid{v,b,tol»; - and correct phi

end;

end;
end; ---- procedure multigrid ----

Listing 4.4 Driver for Multigrid Poisson Solver

4.3. Particle Posh Phase

44

Unlike the first phase of the particle-in-cell program, which dealt mainly

With arrays, the second phase deals with data structures representing collections

45

of charged particles. As shown in Listing 45, the particle push phase may be

written as calls to two kernel procedures. Procedure advance performs

numerical computation, updating the particle's velocities and spatial positions,

while procedure reshuffle realigns the data structure. Listing 4.6 gives the code

for procedure reshuffle. Note that the accumulation operator, cat=, allows

natural expression of the parallelism here.

5. Implementation

The extenSIve example program just described shows that Blaze is about as

expressive and natural for this type of programming as any current language.

This is not surprising, since the sequential constructs in Blaze have been

strongly influenced by these languages. The more important issue here is

compilatIon for parallel architectures, which is the central goal of the Blaze

procedure part yush(plasma,Ex,Ey) returns· plasma;

param

begin

plasma
Ex,Ey

: array[, J of ion_list;
: array[,J of real;

- advance particles numerically, updating
plasma := advance(plasma,Ex,Ey); - all positIOns and velocity fields

- move records of partrcles that have
plasma := reshuffle(plasma); - moved out of their mesh cells. placing

- them in their new cells list
end;

Listmg 45 Procedure for Particle Push with Grid Data Structure

procedure reshuffle(plasma) returns: new ylasma;

param plasma : array[• J of wn _list;
new ylasma : like(plasma);

const nx = opper(plasma[·, J);
TrY = upper(plasma[,.J);

begin

forall i in 0 .. nx do
forall j in 0 .. TrY do

foraII ion in range(outputylasma[, ..]) do

var inewjnew : integer;

mew := round(nx+ion.xpos);
jnew := round(rry*ion.ypos);

new ylasma[inewjnewJ cat= ion;

end;

end;
end:

end; -- procedlUe reshuffle --

Listing 4.6 Procedure to Maintain Plasma Data Structure

46

language. The Blaze programming language is intended as a scientific

programming language for parallel computers. Thus the question of how well

Blaze programs will execute on parallel computers is critical. This section

considers some of the research issues arising in mapping Blaze programs to

parallel run-time environments.

47

5.1. Structure of the Compiler

The structure of compilers for Blaze is dictated by our desire to target

this language to a number of sequential and parallel architectures, and by the

necessity of performing extensive optimization during compilation. Features such

as the functional procedure invocations and foraIl statements simplify compiler

optimization and permit the restructuring transformations required for

multiprocessor architectures. However, these same features will lead to

inefficient execution if compiler optimization is omitted. Thus optimization

during compilation is essential here.

The general structure of Blaze compilers is shown in Figure 5.1. The

lexical analysis, parsing, and first few phases of optimization can be performed

FIgure 5.1 General Structure of Compiler

48

in a machine independent compiler front end, as shown. After this, further

optimization and code generation is performed in machine specific compiler

back-ends.

The intermediate form used in the compiler front end is a type of control

flow graph. Simple examples of this intermediate form are shown in Figure

5.2. A variety of types of data flow analyses and optimizations can be

performed on this intermediate form, including uSCHlefinition and definition-use

chaining, live variable analysis, and dominator and post-dominator computation.

The absence of "goto" statements and the type of exit statement employed

imply that the flow graphs here will be reducible[2]. In consequence, data

flow analysis here is extremely fast. More importantly, because of the

functional procedure calls, data flow analysis here generates precise information.

Even when complete inter-procedural data flow analysis is performed for

conventional languages, the resulting information is imprecise, because language

features like pointers and common blocks often obscure data flow information.

5.2. Sequential Computers

Implementation of Blaze on sequential computers is not especially difficult,

since Blaze contains a relatively modest set of features. In most respects its

implementation is similar to that of Pascal, C, and similar languages supporting

static type checking and stack based run-time environments, though there are

important differences. In Blaze, as in Algol 60, the size of arrays can be

determined, in general, only at run time. This, together with some aspects of

the parameter passing mechanism, complicates stack allocation here. The run-

j

procedure
booy

T F

basic basic
block block

Figure 5.2 Intermediate Form

49

50

time environment is also complicated by the list data type, which requires heap

allocation and linked list access structures.

The most critical issues in sequential environments are parameter

transmission and storage allocation. Copy-in, copy-out semantics here has the

well known disadvantage of requiring time consuming copying of arrays and

record structures. These disadvantages, especially important on sequential

computers, can be minimized through careful design of the compiler and run­

time environment.

Our basic approach to this problem is to maintain conceptually copy-in

copy-out parameter transmission, while letting the compiler substitute "by­

reference" parameter transmission, whenever the effect seen by the user would

be identical. Transforming from copy-in, copy-out parameter transmission to

''by-reference'' transmission is relatively straight-forward here, partly because the

functional procedure calls eliminate most of the problems with aliasing. This

transformation can be done using a system of run-time flags, which pass the

data dependency context surrounding the procedure call. In the majority of

cases, we should be able to avoid copying of arrays, lists, and records.

5.3. Parallel Compoters

The Blaze language is designed to facilitate the compiler transformations

needed to map sequential languages to parallel architectures. This subsection

sketches the most critical implementation issues involved in mapping Blaze to

some of the anticipated target architectures.

51

From the point of view of vector processors, Blaze is much like the

proposed new Fortran, Fortran ax. In both Blaze and Fortran 8x there are

features to express low level parallelism, such as array arithmetic and foraIl

statements. These features greatly enhance the compiler's ability to exploit

vector hardware. For example, the Blaze array assignment

A :=B;

will yield much better executable code than the corresponding nested do loops

in Fortran n. However, the usual vectorization issues, such as loop

restructuring, treatment of "if" statements, and treatment of recurrences, still

remain and must be dealt with, since the explicit parallel constructs available in

Blaze and in other languages are not expressive enough for all programming

tasks.

A multiprocessor is a parallel architecture in which there are a number of

processors, each executing its own instruction stream. In restructuring Blaze

programs for execution on a multiprocessor, our principal goal is to exploit the

fine grained parallelism within loops. Scientific programs contain a variety of

kinds of loops, which are often nested several levels deep and can be quite

complex. In the first Blaze compiler for a multiprocessor, the kinds of "loop"

parallelism we are attempting to exploit are:

vector parallelism

parallel loops containing indirect addressing
(i.e. scatter/gather operations)

loops containing accumulation operators

loops containing procedure calls

52

One possible scheme for memory allocation here is to assume that there is

a control processor, with the other processors working in a quasi-SIMD mode,

as slaves to this controller. Large data structures, such as arrays and streams,

would be distributed across memory, with each processor having conflict free

access to its own slice of the data structure.

To allow procedure invocation within loops, the controller can free the

"slave" processors to run in MIMD-mode, each allocating storage on its own

private activation stack. Though this is a simple idea, and exploiting this type

of parallelism is obviously important, tricky load balancing issues may arise if

the execution times of the procedures invoked vary widely.

Blaze differs from the data flow languages primarily in not using the

single assignment rule, in which a variable name can occur on the left side of

an assignment only once. However, from the point of view of the compiler

writer, this is a minor issue, since it is trivial to achieve the effect of the

single assignment rule via variable renaming. Thus it should be easy to

implement Blaze on dynamic data flow architectures, though the use of

recursion and dynamic arrays here prohibits its use on static data flow

machines.

S3

6. Summary

The programming language Blaze is one response to the important problem

of providing software interfaces to parallel computer architectures. With Blaze,

responsibility for using parallel architectures falls equally on programmers,

compiler writers, and computer architects. The programmer is given the

responsibility of creating fast parallel algorithms and must also make the slight

adjustment of programming them in an unfamiliar language. The compiler

writer must design optimizing compilers to restructure programs so they will

execute efficiently on parallel architectures. And finally the computer architect

has the responsibility of constructing parallel architectures which are sufficiently

elegant and simple that the compiler writer's task is tractable. This seems an

equatable distribution of responsibility and should give this enterprise a

reasonable chance of success.

Several characteristics of the Blaze language distinguish it from competing

parallel languages. First, despite the significant changes in semantics entailed by

the use of functional procedure invocation, Blaze is syntactically close to Pascal

and similar conventional languages. Programmers are not faced with the

prospect of learning to create complex task systems, or with learning to write

programs using the single-assignment rule. Global variables are absent here, but

good programmers often try to avoid them anyway.

A second characteristic distinguishing Blaze, especially from the data flow

languages, is that in Blaze the user retains substantial control over memory

allocation. An optimizing compiler may create copies of a data structure when

54

this is necessary for parallel execution, but replication of data structures is done

parsimoniously. This is in contrast to the situation with data flow languages,

where the programmer relinquishes all control of memory allocation and

provides a new name for each new value, leaving it entirely to the compiler

to discover cases where differently named objects can reuse the same storage.

The powerful forall statement and accumulation operators also distinguish

Blaze from alternate parallel languages. Like the data flow languages, Blaze

yields determinate execution. However this is achieved here by run-time checks

on the execution. rather than by a restricted syntax which prevents one from

writing indeterminate programs. Our

considerably more flexibility, though it

environment substantially.

approach gives the programmer

does complicate the run time

Despite these differences between Blaze and other parallel languages, there

is a great deal in common as well. In particular, Blaze shares many features

with Sisal and V AL. As with these data flow languages, Blaze code tends to

be naturally short and elegant. due in part to the Pascal-style data structures

here. and in part the functional procedure invocation semantics. Functional

procedure invocation is clearly conducive to a clean and understandable

programming style.

Like the data flow languages. Blaze gives the user sequential control flow

and determinate execution. This feature sharply delineates Blaze from multi­

tasking languages like Ada and provides its central attraction. We share with

the data flow community the view that determinate execution is the central

55

issue in making parallel architectures readily -usable by non-expert programmers.

. " ..
7. References

1. Reference Manual for the Ada Programming Language. U. S. Department of
Defense, Draft Revised MIL-SID 1815 (1982).

2. Aho, A. V. and J. D. Ullman, Principles of Compiler Design. Addison­
Wesley Pub. Co., Reading Mass. (1977).

3. Allen, J. R., K Kennedy, C. Porterfield, and J. Warren, "Conversion of
Control Dependence to Data Dependence," Conference Record of Tenth
Annual ACM Symposium on Principles of Programming Languages, (January
1983).

4. Baudet, G., "Asynchronous Iterative Methods for Multiprocessors," Journal
of the ACM 2S pp. 226-244 (1978).

5. Ferrante, J, K. Ottenstein, and J. Warren, "The Program Dependence
Graph and Its Uses in Optimization," mM Technical Report RC 10208
(August 1983)

6. Gordon, M. J, A. J. Milner, and C. P. Wadsworth, "Edinburgh LCF: A
mechanised Logic of Computation," in Lecture Notes rn Computer Science
78, ed J. Hartmanis,Springer-Verlag, NY (1979).

7. Hockney, R. W. and J. W. Eastwood, Computer Simulation Using Particles.
McGraw-Hill, New York (1981).

8. Kennedy, K., "Automatic Translation of Fortran Programs to Vector
Form," Rice Technical Report 476-029-4, Rice University (October 1980.).

9. Kessels, J. L. W., "A Conceptual Framework for a Nonprocedural
Programming Language," CommunicatlOns of the ACM 20 (12) pp. 906-913
(1977)

10. Kuck, D. J., The Structure of Computers and Computation, Volume 1. John
Wdey and Sons, New York (1978).

11. Kuck, D. J., R. H. Kuhn, B. Leasure, D. A. Padua, and M. Wolfe,
"Dependence Graphs and Compiler Optimizations," Conference Record of
Eighth Annual ACM Symposium on Principles of Programming Languages,
(January 1981).

12. Milner, R., "A Theory of Type Polymorphism in Programming," J.
Computer and System Sciences, (17) pp. 348-375 (1978).

13. Milner, R., "A Proposal for Standard ML," Report CSR-157-83, Dept. of
Computer Science, Univ. of Edinburgh (1983).

14. Padua, D. A., D. J. Kuck, and D. H. Lawrie, "High Speed
Multiprocessing and Compilation Techniques," Special Issue on Parallel
Processing. IEEE TransactlOns on Computers C-29 (9) pp. 763-n6 (September
1980)

56

15. Wagener, J. L., ceStatus of Work Toward Revision of Programming
Language Fortran," SIGNUM Newsletter 19 (3XJuly 1984).

16. Warren, J., ceA hierarchical basis for reordering transformations," Conference
Record of Tenth Annual ACM Symposium on Principles of Programming
lAngUllges, (January 1983).

1 Report No NASA CR-172615 I 2 Government Accession No 3 Recipient's Catalog No

lCASE Report No. 85-29
4 Title and Subtitle 5 Report Dlte

The BLAZE Language: A Parallel Language for Ml'IV lQR'\

Scientific Programming 6 Performing OrganlZltlon Code

7 Author(s) 8 Performing Organization Report No

Piyush Mehrotra and John Van Rosendale 85-29
10 Work Unit No

9 Performlj! Organization Name and Address
lnst tute for Computer Applications in Science

and Engineering 11 Contract or Grant No

Mail Stop 132C, NASA Langley Research Center NAS1-17070; NAS1-17130
Hampton, VA 23665 13 Type of Report and Period Covered

12 Sponsoring Agency Name and Address
National Aeronautics and Space Administration f', n.

Washington, D.C. 20546 14 Sponsoring Agency COde

505-31-83-01
15 Supplementary Notes Submit ted to

Langley Technical Monitor: J. C. South, Jr. Parallel Computing
Final Report

16 Abstract

Programming multiprocessor parallel architectures is a complex t~sk. This
paper describes a Pascal-like scientific programming language, Blaze, designed
to simplify this task. Blaze contains array arithmetic, "forall" loops, and
APL-style accumulation operators, which allow natural expression of fine grained
parallelism. It also employs an applicative or functional procedure invocation
mechanism, which makes it easy for compilers to extract coarse grained
parallelism using machine specific program restructuring. Thus Blaze should

I

allow one to achieve highly parallel execution on multiprocessor architectures,
while still providing the user with conceptually sequential control flow.

A central goal in the design of Blaze is portability across a broad range
of parallel architectures. The multiple levels of parallelism present in Blaze
code, in principle, allows a compiler to extract the types of parallelism
appropriate for the given architecture, while neglecting the remainder. This
paper describes the features of Blaze, and shows how this language would be used
in typical scientific programming.

17 Key Words (Suggested by Author(s)) 18 Distribution Statement

parallel programming, 61 - Computer Programming & Software
applicative languages

Unclassified - Unlimited

19 Security Oasslf (of thiS report) 20 SecUrity Classlf (of thiS page) 21 No of Pages 22 Price

Unclassified Unclassified 57 A04

N-30S For sale by the National Technical Information SerVice, Springfield. Virginia 22161

End of Document

